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Abstract: In recent years, many olive orchards, which are a major crop in the Mediterranean basin,
have been converted into intensive or super high-density hedgerow systems. This configuration is
more efficient in terms of yield per hectare, but at the same time the water requirements are higher
than in traditional grove arrangements. Moreover, irrigation regulations have a high environmental
(through water use optimization) impact and influence on crop quality and yield. The mapping of
(spatio-temporal) variability with conventional water stress assessment methods is impractical due to
time and labor constraints, which often involve staff training. To address this problem, this work
presents the development of a new low-cost device based on a thermal infrared (IR) sensor for the
measurement of olive tree canopy temperature and monitoring of water status. The performance of
the developed device was compared to a commercial thermal camera. Furthermore, the proposed
device was evaluated in a commercially managed olive orchard, where two different irrigation
treatments were established: a full irrigation treatment (FI) and a regulated deficit irrigation (RDC),
aimed at covering 100% and 50% of crop evapotranspiration (ETc), respectively. Predawn leaf
water potential (ΨPD) and stomatal conductance (gs), two widely accepted indicators for crop water
status, were regressed to the measured canopy temperature. The results were promising, reaching a
coefficient of determination R2

≥ 0.80. On the other hand, the crop water stress index (CWSI) was
also calculated, resulting in a coefficient of determination R2

≥ 0.79. The outcomes provided by
the developed device support its suitability for fast, low-cost, and reliable estimation of an olive
orchard’s water status, even suppressing the need for supervised acquisition of reference temperatures.
The newly developed device can be used for water management, reducing water usage, and for
overall improvements to olive orchard management.

Keywords: thermal infrared; remote sensor; water stress; irrigation; canopy temperature; stomatal
conductance; predawn leaf water potential; olive

1. Introduction

Water management has become a key factor in sustainable agriculture, especially in regions
such as the Mediterranean, where water scarcity problems are rising [1]. Traditional olive orchard
cultivation is the most widespread method [2]. This approach is based on having rain-fed trees at a
density of 100–300 trees ha−1, where irrigation is controlled through cultural practices, such as pruning,
which reduces water requirements [3]. In recent years, many traditional orchards have been converted
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into intensive and super high-density (SHD) hedgerow systems, with higher yields per ha and reduced
managing costs due to augmented mechanization and automatization. Most of these new orchards are
under irrigation scheduling, requiring 5000 m3 ha−1 to replace maximum crop evapotranspiration in
semi-arid regions, such as the south of Spain and Portugal [4].

Current irrigation practices depend on uniform applications of water over large fields, with varying
degrees of heterogeneity (water retention capacity). Due to this heterogeneity, much of the field
receives more water than needed [5]. Plant monitoring to assess the water status is required in order to
optimize water usage, but it also has a direct impact on olive production and quality [6,7]. Mapping
the spatio-temporal variability with conventional water stress assessment methods, such as a pressure
chamber [8], is impractical due to the demanding work, required time and cost, and need for expert and
trained personnel [9]. In addition, the reliability of the information provided by a pressure chamber
decreases when the species display isohydric behaviour, characterized by strong stomatal regulation,
reducing the sensitivity of leaf water potential measurements under conditions of low soil water
content and high evaporative demand [6].

The relationship between leaf temperature and stomatal regulation was established many years
ago [10–15]; when leaf transpiration occurs, water is lost through stomata, reducing leaf temperature.
On the other hand, stomatal closure will result in leaf temperature rise, as no heat dissipation through
evaporation occurs. Thereby, the temperature of transpiring leaves should be close to air temperature,
while in the case of the stressed ones it should be higher [16]. This is the theoretical assumption that
enables the estimation of water stress through canopy temperature.

The variability in environmental conditions, plant morphology, and meteorological factors
could affect leaf temperature, and thus its precision in leaf transpiration and stomatal conductance
(gs) indicators [17]. Many indexes have been developed to normalize leaf temperature by taking
previous reference measurements (reducing the disturbance of the environmental factor over canopy
temperature) [18,19], with the crop water stress index (CWSI) [15] being one of the most widely
used for a variety of crops [17,19,20]. The calculation of the CWSI relies on two thresholds: the
non-water-stressed baseline (Twet), which represents a fully transpiring crop, and the maximum
stressed baseline (Tdry), which corresponds to a non-transpiring crop [17]. The proposed method for
CWSI calculation avoids the need for reference temperatures, since the adaptative thresholds (Tdry

and Twet) are estimated from the temperature distribution histogram of the complete set of thermal
images. This approach reduces the requirement for specialized equipment, the cost, and the time
to perform each measurement. Moreover, this paves the way for the automation of water status
monitoring. However, this advantage has a limitation—a wide range of water stress levels must
exist in the field, resulting in representative canopy temperature values for stressed and non-stressed
plants. Nevertheless, this assumption is deeply linked to the specific needs of precision agriculture
itself, where homogeneous treatments (for example, same irrigation regime) result in heterogeneous
responses linked to the non-uniformity of the field characteristics (soil properties, plot morphology,
and microclimate, among others), and even to the different responses of plants.

Traditional temperature measurement techniques (using thermometers or thermocouples attached
to the leaves) are impractical for large-scale experiments or industrial applications [21]. Remote infrared
(IR) sensors, which could be used for canopy temperature assessment, have pushed the development
of a wide range of applications, such as irrigation scheduling [14], its use as an indicator of plant
physiology and ecophysiology [22], or plant phenotyping [23]. In this fashion, thermal cameras are
used as manually operated portable devices [24], controlled trough mobile phones [25] or installed
in all-terrain vehicles (ATVs) [9], aircrafts [26], satellites [27], or recently on remotely piloted aircraft
systems (RPAS), usually called drones [28]. Satellite and aircraft-installed sensors can measure canopy
temperatures remotely, but these applications do not typically have the spatial or temporal resolution
necessary for irrigation decisions [29]. The reduced resolution provided by the microbolometer sensors,
combined with the distance to the target, increase the problem of the “mixed-pixel value”, where canopy
and soil are present in a given pixel, considerably reducing the quality of the data [5,30]. Another
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limitation is related to the atmospheric conditions, which may also affect image quality, and hence the
derived measurements [31]. In addition, although zenithal images (the only ones available) are suitable
for continuous crops, they are not appropriate for woody perennial vegetation with discontinuous
canopies [5]. Moreover, they are too expensive and impractical for small-scale farms [28].

Some drawbacks of traditional thermal imaging techniques include the camera cost and resolution,
and the time and labor needed to implement the techniques [32]. Sensor resolution must be high
enough when used for remote acquisition or the precision of water stress assessment will be reduced.
IR array sensors, used for proximal acquisition, can overcome these limitations, greatly reducing the
cost and doubling the accuracy in temperature measurements from 1 ◦C to 0.5 ◦C, as reported by
Martínez et al. [32]. The use of CWSI also enables the automation of the data acquisition as reference
measurements are not needed, allowing for the installation of the sensor in vehicles or autonomous
robots, which eases the mapping of the orchard. Moreover, cost saving will allow the sensors to be
installed on a permanent basis, continuously monitoring the water needs in different locations of the
orchard, covering its spatial variability. For this approach, the number of sensors would be determinant
for a reliable estimation of the water needs of the crop. This would depend on the heterogeneity of
the field characteristics, thereby it would be used with as many nodes as irrigation areas in the field,
understanding an irrigation area as a zone with homogeneous water needs. According to this fact,
the installation of such a sensor network would require a previous study of the field site. Moreover,
it is important to highlight that the reduced cost will allow the increase of the number of nodes,
which would have an advantage in ameliorating the spatial heterogeneity problem. On the other hand,
as it will require specific manual measurements, this approach is intended for small farmers who
cannot afford costly equipment, as described by Jason Shaw et al. [33]. In such cases, a small number
of sample points can be representative of orchard status because of the reduced field dimensions or
homogeneous conditions.

The goal of this research is to assess the suitability of a new low-cost device based on thermal
infrared sensors integrated in a device. The developed tool includes a screen, a microcontroller and its
associated software, and a battery for in-field plant water status assessment. To this end, a portable
prototype device has been developed and validated through an experimental case study (real-case
scenario). The prototype is based on a low-cost development platform which uses an Arduino MEGATM

development board (Arduino LLC, Turin, Italy), an IR temperature sensor array, and common electronic
components. The portable prototype includes a secure digital (SD) card and a screen for in-field data
storage and supervision. All these features are included in the proposed device at a cost of 145 euros.
This cost corresponds to the version used in this research for specific measurements, but it could be
reduced if the purpose is to install it permanently, since some components (screen, trigger button)
would be expendable.

In the first instance, the performance of the developed device was compared with a commercial
thermal camera. Once the accuracy of the low-cost IR thermal camera was demonstrated, a field
evaluation was carried out, which included the validation of the acquired canopy temperature and the
calculated CWSI against two widely accepted water stress indicators, namely gs and ΨPD. This enabled
the demonstration of the capacity of the developed device for estimating plant water status from
measured canopy temperature.

2. Materials and Methods

2.1. Sensor Performance Evaluation

A laboratory test was performed to evaluate the low-cost IR sensor device. The accuracy of the
measured temperature was compared to the data obtained with a TestoTM 875-1i infrared camera.
The Testo IR camera has a resolution of 160 by 120, it is factory-calibrated following the standard
ISO (International Standarization Organization) 9001:2008, and its thermal sensibility is under 50 mK
at 30 ◦C.
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For the experiment, a controlled temperature chamber and a uniform flat surface (a stack of white
paper) were used. White paper was selected because it is easily obtainable and it provides a uniform
surface with high emissivity, and it is commonly used as an emissivity reference for thermographic
inspection [34]. The uniformity of the target ensures the accuracy of the test, even when the sensor
does not capture the same target’s area due to differential FOVs. The chamber was used to fix the
temperature of the target, along with the sensor temperature. Two different temperatures were used,
namely 20 ◦C (ambient temperature in the laboratory) and 30 ◦C (fixed temperature inside the chamber).
The measurements corresponding to warmed targets were performed inside the chamber to reduce the
target heat dissipation. Thirty minutes of exposure was used to ensure that both the target and the
sensors met the desired temperature. Moreover, an additional five minutes was added to stabilize the
sensors measurements after the power was switched on. The combination of two temperatures for
both the target and the sensors generated 4 different combinations for each sensor:

• Sensor at ambient temperature (20 ◦C) measuring target at ambient temperature (20 ◦C).
• Sensor at ambient temperature (20 ◦C) measuring target at 30 ◦C.
• Sensor at 30 ◦C measuring target at ambient temperature (20 ◦C).
• Sensor at 30 ◦C measuring target at 30 ◦C.

Four images for each of the combinations were taken with the commercial camera (resulting
in 76,800 pixels) and 8 images with the low-cost developed device (512 pixels). Mean and standard
deviation were computed to evaluate both the estimated temperature and the pixel dispersion when
measuring a uniform temperature target.

2.2. Experimental Case Study Design

The experimental case study to evaluate the sensor capabilities to estimate plant water status was
carried out on 11th September, 2019, in a commercial olive orchard (Olea europaea L. cv. “Arbequina”)
located in Elvas, Portugal (38◦49′33.6”N, 7◦07′53.76”W), (Figure 1), at an elevation of around 180 m
above sea level and administrated by ElaiaTM (SovenaTM Group, Alges, Portugal). The experimental
site is a SHD with tree spacing of 1.35 m × 3.75 m (inter and intra-row, respectively), resulting in
2116 trees/ha. The fertilization consists of a fertigation system with periodical adjustment of the
nutrient content based on the chemical analysis of leaves. The weed in the experimental site was
mechanically controlled. The orchard’s soil has a heterogeneous composition, loan and sandy-loan
areas are preponderant, but there are some clay-loan zones in the north of the crop. This irregular
pattern relative to the composition of the soil has a correlation with the values of electrical conductivity
(CEa). A variable amount of low and medium CEa values are observed, except for specific areas where
the highest CEa values are shown. Finally, the pH determined in the soil was between 7 and 8.

The climate of the study area according to the Köppen–Geiger classification [35] is Csa (hot-summer
mediterranean climate), with average annual rainfall of approximately 600 mm, concentrated from
October to May and mostly distributed outside a 4-month summer drought period. During this
drought period, irrigation is needed for acceptable production levels, since rainfall is not enough to
cover plant water needs due to the plant density. In order to solve this, the orchard has been equipped
with a drip irrigation system that supplies water during this period—from the endocarp sclerification
(May) to the harvest time (September).

The mentioned irrigation system was modulated to have two distinct areas (two different
treatments): full irrigated (FI) plots and regulated deficit irrigated (RDC) plots (50% of the FI dosage).
The irrigation scheduling consisted of a daily drip irrigation for the FI plants, calculated to cover
100% of crop evapotranspiration. On the other hand, the RDC plants were exceptionally exposed to
alternating drought and irrigated periods of one week. As a result of this irrigation schedule, FI plants
received approximately 480 m3/ha per month between May and September, while RDC plants received
just 240 m3/ha per month. Five tree rows, oriented from north to south with a homogeneous irrigation
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scheduling, were selected for each plot: one experimental row (central row) and four guard rows.
Four trees in the experimental row were chosen as representative for each treatment (Figure 1).Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 
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Figure 1. Location of the experimental case study in Elvas (Portugal). Deficit irrigated plot is enclosed
in yellow lines and full irrigated plot in blue lines. Red dots correspond to the selected trees from
each plot.

The day of the experiment (11th September) was a sunny day with winds that were not strong
enough to be considered as a source of error for thermal measurements (8–12 Km/h). This date is
situated at the end of the summer drought period typical of this climate zone, so there was no rain
event close to this period.

Irrigation status was assessed using ΨPD the day of the experiment. Additionally, gs measurements
were acquired simultaneously with the image capture. According to the literature [6], the maximum
daily gs in olive trees can be observed around 10 AM. After this, a progressive increase in the vapor
pressure deficit until afternoon occurs, and the plants respond by closing stomata, such that decreasing
gs counterbalances the deficit in vapor pressure. This fact limits the ability of plants to regulate their
canopy temperature. In order to evaluate this effect, measurements were acquired early in the morning
(10 AM) and during midday (15 PM). The canopy temperature was measured in both FI and RDC
plants with the developed low-cost device based on thermal infrared sensors. The images were taken
from a lateral perspective, avoiding the effects of the soil pixels. The horizontal field of view of the
camera is 60◦, so the images were taken from a distance of one meter, capturing a representative image
of one single tree. Four thermal images of the sunlit canopy and four of the shaded canopies of each
selected tree were taken (n = 8 images/tree x 4 tree/plot x 2 plots = 64 observations). The environmental
temperature during the day of the experiment reached 26 ◦C at 10 AM and 34 ◦C at 15 PM. A whole
measurement cycle lasted around 45 minutes, during which the weather conditions were stable (the
distance between both treatment plots was just 100 metres).

2.3. Physiological Measurement

Olive trees, as drought-adapted species, show an isohydric behaviour characterized by strong
stomatal regulation [6]. Due to this circumstance, the reliability of the pressure chamber measurements
to estimate water status decreases during the day [6]. On the other hand, during the night, the stomata
of the leaves are locked (the evaporative demand is minimal), so the leaf water potential is not
influenced by transpiration, giving more reliable information of the water available in the soil [6].
Because of this, the leaf water potential was measured before dawn.
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The ΨPD (MPa) is the required pressure for water mobilization through the plant (measured
before dawn), which mainly depends on the balance between the water that is lost by transpiration
and the water that is gained by absorption [8]. This variable was measured on two healthy leaves
per tree (n = 2 leaves/tree × 4 tree/plot × 2 plots = 16 observations) with a Scholander-type pressure
chamber (Solfranc TecnologíasTM). The evening before the experiment, the leaves were covered with
aluminium foil to avoid condensation on the leaf surface and enclosed in polyethylene bags to totally
stop transpiration, according to the procedure of Gucci et al. [36]. Measurements within the pressure
chamber were made with the leaves still enclosed in the plastic bag at 06 AM (before sunrise).

The gs (mol m−2 s−1) is the degree of stomatal opening, which is related to the water vapor
exiting through the stomata of a leaf. Water stress induces stomatal closure, which in turn limits
leaf transpiration, and hence the evaporative cooling process. This results in higher leaf and canopy
temperature values [14,22]. The gs was measured on four mature sunlit leaves per tree (n = 4 leaves/tree
× 4 tree/plot × 2 plots = 32 observations), on the same trees used for the predawn leaf water potential
measurements, using a model SC-1 leaf porometer (Decagon DevicesTM). Measurements of stomatal
conductance were taken early in the morning (10 AM) and during midday (15 PM), simultaneously to
thermal image acquisition.

2.4. Crop Water Stress Index Calculation

The crop water stress index (CWSI) was developed as a normalized index to quantify stress and
reduce the disturbance of the environmental parameters affecting the relationship between water stress
and canopy temperature [11,15]. It has been widely used as a water status indicator [19,20]. It provides
the crop stress level based on canopy–air temperature differences. The CWSI algorithm applied in the
study was introduced by Jones et al. [37], which can be represented as follows:

CWSI =
Tcanopy − Twet

Tdry − Twet
(1)

where Tcanopy is canopy temperature from the thermal images; Twet is the temperature of a fully
transpiring leaf, or lower reference; and Tdry is the temperature of a non-transpiring leaf, also considered
the upper reference. Therefore, as the CWSI index (Equation (1)) is the result of normalized canopy
temperature based on high and low reference temperatures, the effects of environmental conditions are
minimized, and the water status is the main factor determining the index value.

2.5. Adaptative Temperature Thresholds

With the aim of simplifying the in-field CWSI assessment, adaptive thresholds of Twet and Tdry
based on the method proposed by Park et al. [38] were estimated. The process involved using an
adaptive approximation based on the TIR histograms derived from the images. It is assumed that Twet

and Tdry can be taken from the coldest and the hottest part of the temperature distribution histogram
of the thermal images, respectively (n = 64 pixels/imagen × 32 imagens/ measurement cycle = 2048
temperature values). The collected measurements feature normal density distributions, however
there were some data represented at a reasonably low frequency that were considered outliers (i.e.,
non-representative canopy temperature). To avoid the influence of the outliers, Tdry (Equation (2)) and
Twet (Equation (3)) were calculated according the following expressions:

Tdry = Tcanopy + 2σ (2)

Twet = Tcanopy − 2σ (3)

where σ is the standard deviation. With this approach, we discarded 2.2% of the data situated at the
upper and lower thresholds of the normal distribution of temperature. These data were considered
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outliers, which could represent, for example, surfaces of the tree without transpiration capacity
(branches or stems) [39].

2.6. Statistical Analyses

Analysis of variance (ANOVA) was used to compare the average values measured between
treatments relative to plant-based variables and canopy temperatures. Error probability (EP) values
below 0.01 were considered significant. The relationships between canopy temperature and CWSI
index regarding the physiological measurements were evaluated through linear regression analyses.
In all cases, the coefficient of determination R2 was used to assess the quality of the statistical model.

3. Developed Device for Measuring Canopy Temperature and Water Status Monitoring

A new low-cost device based on a thermal infrared sensor for olive tree canopy temperature
measurement and water status monitoring was developed. A block diagram of its architecture can
be seen in Figure 2, with its physical implementation shown in Figure 3. The controller of the whole
device is a low-cost development platform, specifically an ArduinoTM MEGA 2560.
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The blocks of the developed device depicted in Figure 2 are described below.

3.1. Thermal Infrared Sensor

The chosen low-cost thermal IR sensor is embedded in the integrated circuit (IC) MLX90620
(MelexisTM). In addition to its low cost, the choice is based on the fact that it is a fully calibrated IR
temperature sensor array (16 × 4 pixels) capable of remote non-contact temperature measurements,
with 16-bit precision and noise equivalent temperature difference (NETD) under 0.5 K; its operating
temperature is very suitable for operating in agriculture, specifically from−40 ◦C to +85◦C. The sensor is
encapsulated in a 4-lead TO-39 (metal can package) containing two chips: the thermal IR sensor with its
associated signal conditioning hardware and an electrically erasable programmable read-only memory
(EEPROM) chip used for calibration data storage. The sensor is available in two different field of view
(FOV) configurations: 60◦ and 40◦; the latter was selected, since it provides optimum temperature
measurements of the central canopy zone at 1 m, resulting in an approximated measurement area of
75 cm (horizontal) by 10 cm (vertical) and a pixel size of 4.7 by 1.25 cm.
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The MLX90620 is an infrared sensor composed 64 thermopile units (16 by 4 array). Thermopiles
are composed of several thermocouples in series. A thermocouple is a device that generates voltage
when its dissimilar metals (thermocouples) are exposed to differential temperatures. The output
voltage is directly proportional to the temperature differential from their junction point (related to
the IR radiation of the object the sensor is pointed to) and the voltage measurement point, not to the
absolute temperature. Thermocouples can be connected in series (forming thermopiles), increasing
the magnitude of the voltage output, and thus reducing the error associated with measuring the
small voltages they produce (in the millivolts range). The MLX90620 integrates its own circuit to
amplify (a low-noise, chopper-stabilized amplifier) the sensor signal, which is then converted to
digital by a fast-integrated 16-bit ADC that is also embedded in the chip. As previously described,
a thermocouple’s output is proportional to the temperature differential of the junction and the voltage
measurement points, in this case the device package temperature that is measured by an additional
sensor (also included in the chip package), a PTAT. To block wavelengths that are not relevant to the
measurements, the sensor incorporates a long-wave filter in front of it.

The outputs of both IR and PTAT sensors are stored in an internal RAM and are accessible
through a I2C (PhilipsTM) inter-integrated circuit communication protocol bus. The controller and the
MLX90620 are connected using the I2C bus through the interface board (described in the next section).
The I2C protocol uses a two-wire bus for bidirectional communication. Each I2C integrated circuit has
a unique identifying number (ID) and the master (in this case the device controller) communicates
with each of them using its address.

3.2. Interface Board

The interface board that connects all the elements was designed using KiCad 5.1.4 as a single-sided
circuit board (Figure 3b).
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The system is powered by a 2s LiPo (Lithium-ion Polymer) battery connected to the device
controller board (ArduinoTM MEGA 2560). To supply the device components, different voltage levels
were implemented: the SD card reader and the display were powered with 5 V from the regulator of
the device controller board; regarding MLX90620 IC, it requires 2.6 V for operation, so a diode was
connected in the interface board to drop the voltage level down from the 3.3 volts available at the
power rail of the device controller.

3.3. Display

In order to help and guide the user during the measurement, the developed device includes an
Arduino display, specifically a 1.8 inch TFT-LCD (thin film transistor-liquid crystal display) with a
resolution of 128 by 160 pixels, as well as a micro-SD slot (see Figures 2 and 3c). Both elements are
ruled by the device controller through the interface board, using a bus based on the serial peripheral
interface (SPI).

During operation, the display shows procedures, tasks, and data, as well as device status.
In addition, the display shows a matrix (16 by 4) representing each of the IR temperature measurements.
In order to provide very intuitive information, each pixel acquires its own RGB colour value, depending
on the value of its temperature. The matrix is updated each second, coinciding with the update of
the sensor measurements. The measurements and interest data, such as file names, were stored in a
SD card.

The availability of an integrated display avoids the use of a computer in the field or some other
external device to verify the status of the device and its proper operation, also delivering real-time data.

3.4. Device Casing

The device casing was designed using Freecad 0.16 and manufactured with a 3D printer using
biodegradable polylactic acid (PLA) 3D printer filament. Two different parts were designed (front and
back) to provide a perfect enclosure. A section of the device and its casing can be seen in Figure 3a,
as well as its back in Figure 3c. All device elements are housed inside the developed casing, except the
battery, which is installed outside to avoid temperature interferences with the IR sensor that could
affect the precision of the measurement, as well as to simplify its field replacement.

3.5. Device Controller Board

The device controller board (ArduinoTM MEGA 2560) includes a microcontroller, which based on
the written and uploaded program, performs the programmed functions. The program was developed,
compiled, and uploaded to the device controller board using the ArduinoTM development environment
version 1.8.9. The flow chart of Figure 4 shows the basic functionalities of the program.

The process to perform an IR temperature measurement requires successive steps, as depicted in
the flowchart in Figure 4. These will be described below:

1. Initialization. During this process, all the elements of the device are initialized:

- Communication parameter configuration: The baud rates and port assignation for the
communication between the different components of the developed device are set up.

- SD card initialization: The SD slot is checked for card presence, after which the files present
are examined to determine the next image file name.

- Sensor calibration data read: The registers containing the calibration information (determined
during fabrication), including the offset and slope calibration value for every pixel, are
read during this phase. The data is stored in the RAM of the device controller board for
faster correction calculation.

- Display initialization: The display is initialized, showing the status of the system and the
errors during the process (if present).
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2. Temperature registers read: The raw data of the temperature measured by the IR sensor is stored in
the MLX90620 RAM. The value corresponding to every pixel and the temperature of the chip
(through PTAT) are read by the device controller using the I2C bus.

3. Temperature correction: The raw temperature data must be corrected to obtain canopy temperature
values. This process is performed in three different steps:

- Sensibility per pixel correction: The raw temperature data is operated in conjunction with
the stored calibration values to standardize the sensor response and to obtain TO(i, j),
the temperature corresponding to each pixel with the following equation:

TO(i, j) =
4

√
VIR(i, j)_COMPENSATED

α(i, j)
+ (Ta + 273.15)4

− 273.15 (4)

where α(i,j) corresponds to the individual pixel sensitivity coefficient calculated (as
described in the MLX90620 datasheet) from data stored in EEPROM, Ta is the ambient
temperature correction, calculated with Equation (5), and VIR(i, j)_COMPENSATED is the
parasitic free IR compensated signal, obtained with Equation (6).

- Ambient temperature correction: The temperature of the sensor (ambient temperature)
affects the measurements. To correct this, MLX90620 includes a PTAT sensor to adjust
the IR temperature values. The equation that calculates the ambient temperature is
described below:

Ta =
−KT1 +

√
K2

T1 − 4KT2(VTH(25) − PTAT_data)

2KT2
+ 25 (5)

where KT1, KT2, and VTH are constants (fixed during the in-factory calibration) stored in
the MLX90620 EEPROM (are defined by the manufacturer), and PTAT_data refers to the
value measured by the in-chip temperature sensor.

- Emissivity correction: The device measures the thermal radiation of a target and estimates
its temperature as corresponding to a black body. The emissivity corrects the measurement
considering that the object under study is not a perfect black-body emitter. The emissivity
was set to 0.98, as this value has been reported to induce errors of less than 1 ◦C when
measuring the canopy of different horticultural crops [40].

VIR(i, j)_COMPENSATED =
VIR(i, j)_TGC_COMP

ε
(6)

where ε is the emissivity and VIR(i, j)_TGC_COMP corresponds to the pixel thermal value after
the pixel sensibility and offset compensation process, as described in MLX90620 datasheet.

4. Display update: After all the corrections have taken place, the display is updated with the measured
temperature. The temperatures are shown as a coloured matrix, with colour values reflecting the
temperature associated with the corresponding pixel.

5. File writing (in the event of the trigger button is pressed): When the trigger button is pressed,
the temperature measurement (already corrected) is stored in a file and saved on the micro SD
card for further processing. The name of the file is automatically generated.
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3.6. Device Components and Cost

The labor required to manufacture, assemble, and test each element of the developed device,
as well as housing them in the casing, is about 3 h for circuit board fabrication, 10 h for 3D printing of
the device casing, and 2 h for final assembly and testing. Costs of the circuit and sensor components
are shown in Table 1, with a cost of materials under 150 € for the whole device. As a comparison,
the TestoTM 875-1i used for the sensor performance evaluation has an acquisition cost of around 3500 €.

Table 1. List of the developed device components.

Description Part Number Manufacturer Cost (€)

IR sensor MLX90620 MelexisTM 40
Arduino MEGA 2560 A000067 ArduinoTM 35

Arduino display and micro SD card reader A000096 ArduinoTM 35
LiPo Battery 7.4v (2s) TA-2500-2S1P TattuTM 25

Other components (Interface board, button,
PLA for device casing, etc.) - - 10

Total 145

4. Results

4.1. Sensor Performance Evaluation

The results of the evaluation of the two sensors under the two different operation conditions are
represented in Table 2.
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Table 2. Results of the performance of the measurement of a uniform temperature target. Both the
sensors and the targets were tested at two temperatures, 20 ◦C and 30 ◦C.

Sensor Sensor
Temperature (◦C)

Target
Temperature (◦C)

Average Measured
Temperature (◦C)

Measured Temperature
Standard Deviation (◦C)

TestoTM 875-1i

20 20 18.94 0.14
20 30 30.50 0.62
30 20 17.27 0.75
30 30 33.73 1.78

Low-cost IR
sensor device

20 20 22.78 0.77
20 30 30.62 0.67
30 20 22.33 0.77
30 30 31.78 1.09

The precision of the measurements decreases as the sensor temperature increases, affecting both
the commercial camera and the low-cost developed sensor. The performance of both sensors is similar
in terms of both average temperature drift and dispersion of the values across the image.

4.2. Plant-Based Variables Reference Values

As described in Section 2, two different treatments were established in a commercial olive orchard:
FI and RDC. In order to check the differences in water status, two physiological variables related to
water stress were assessed for each treatment: gs and ΨPD. Differences in these parameters between
treatments would confirm the quality of the experimental case study design. The ΨPD was measured
by a Scholander-type pressure chamber and the gs by a leaf porometer.

Measured ΨPD responded to the water stress from the different irrigation treatments, oscillating
between 0.32 and 3.73 MPa, with the lowest values corresponding to the FI treatment (Table 3). On the
other hand, gs was highest in the morning and declined continuously towards the afternoon in both
irrigation treatments. However, statistical differences between irrigated treatments (related to the rate
of decrease) could be found during the morning and afternoon, with reductions in gs between RDC and
FI plants of around 48% at 10 AM and 57% at 15 PM. The measured water stress indicator confirmed
the differences in the physiological state of the plants subjected to different irrigation treatments.

Table 3. Measured reference values on September 11, 2019 for the experimental plot. Data collected at
10 AM and 15 PM. Note: FI, full irrigated treatment; RDC, deficit irrigation treatment; 1–4 represent
selected trees from each part of the plot. Average values of the gs followed by different letters are
different at EP ≤ 0.01. Average values of the ΨPD followed by different letters are different at EP ≤ 0.01.

Treatments Tree gs at 10:00 AM
(mol m−2 s−1)

gs at 15:00 PM
(mol m−2 s−1) ΨPD (MPa)

FI

1 561.13 441.83 0.49
2 598.77 455.17 0.39
3 656.47 475.60 0.51
4 625.43 337.37 0.32

Average 610.45 a 427.49 c 0.43 a

RDC

1 363.40 166.97 3.73
2 292.30 217.97 3.73
3 327.33 160.33 3.43
4 298.47 189.83 3.09

Average 320.38 b 183.78 d 3.49 b

4.3. Canopy Temperature

Once the physiological variability between treatments (FI and RDC) was confirmed, the experiment
continued to try to verify that this physiological variability was related to differences in canopy
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temperature. Therefore, simultaneously to the gs data collection by the leaf porometer, the canopy
temperature was measured using the developed device. The canopy temperature averaged per
treatment showed that RDC trees presented higher crown temperatures than FI trees (Table 4).
Additionally, as expected, larger disparities were found in the sunlit side of the canopy at 15 PM,
with differences of up to 3.24 ◦C.

Table 4. Canopy temperature measured by the developed device on September 11, 2019 for the
experimental plot. Data collected at 10 AM and 15 PM. Note: Tcanopy sunlit (◦C), canopy temperature of
the sunlit face; Tcanopy shaded (◦C), canopy temperature of the shaded face; FI, full irrigated treatment;
RDC, deficit irrigation treatment; 1–4 represent selected trees from each part of the plot. Average values
followed by different letters are different at EP ≤ 0.01.

Treatments Tree
Tcanopy Sunlit (◦C) Tcanopy Shaded (◦C)

10:00 AM 15:00 PM 10:00 AM 15:00 PM

FI

1 30.69 34.93 27.02 33.10
2 30.43 34.07 25.64 32.32
3 30.79 36.15 26.23 32.01
4 29.91 35.41 26.58 33.11

Average 30.45 a 35.14 c 26.37 e 32.63 g

RDC

1 32.58 38.62 27.48 33.23
2 33.15 38.81 28.04 33.59
3 32.55 38.04 28.35 33.60
4 32.85 38.07 29.01 33.71

Average 32.78 b 38.38 d 28.22 f 33.53 h

On the other hand, Tcanopy measured on the shaded side of the canopy also showed a significant
response to varying irrigation levels (Table 4). However, these differences were smaller than those
shown by the sunlit side. The larger disparities of this side were found at 10AM, with differences up to
1.85 ◦C.

4.4. Relationship Between Canopy Temperature and Plant-Based Variable Reference Values

The relationship between Tcanopy (measured in the sunlit face of the canopy, Table 4) and the
two plant-based variables (ΨPD and gs, Table 3) is shown in Figure 5. Here, ΨPD exhibited a strong
coefficient of determination (R2) to canopy temperature: 0.96 at 10 AM and 0.90 at 15 PM. On the
other hand, gs showed a solid correlation to canopy temperature at 15 PM (R2 = 0.80), with the best
results obtained with the data collected at 10 AM (R2 = 0.94). It must be noted that in the case of ΨPD,
it was assessed before dawn (a unique measurement for the entire day), while the gs was measured
simultaneously to canopy temperature. The correlation of gs with the measured temperature in the
shaded face of the canopy was weaker: R2 = 0.81 at 10 AM and R2 = 0.71 at 15 PM. The ΨPD showed
lower correlations: R2 = 0.71 at 10 AM and R2 = 0.62 at 15 PM. In view of these results, the measured
temperature from the sunlit face of the canopy was selected for CWSI determination.

CWSI values derived from canopy temperatures (measured in the sunlit side) for each irrigation
treatment against ΨPD and gs are plotted in Figure 6. Significant linear regression coefficients can
be obtained from all the relationships. The fit of the relationships between ΨPD and gs with CWSI
were similar, with coefficients of determination close to 0.90. The relationship between gs and CWSI
was slightly lower, especially at 15 PM, with a coefficient of determination of 0.80. However, a strong
correlation was found at 10 AM with R2 = 0.94. On the other hand, the ΨPD was the physiological
variable that exhibited the tightest linear relationship with CWSI, with a coefficient of determination
(R2) of 0.96 at 10 AM and 0.90 at 15 PM. During the first afternoon hours (15 PM), lower correlations
were obtained between gs and both canopy temperature and CWSI index.
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Figure 5. Sunlit face of the canopy: (a) relationships between stomatal conductance (gs) and canopy
temperature at 10 AM; (b) relationships between stomatal conductance (gs) and canopy temperature at
15 PM; (c) relationships between predawn leaf water potential (ΨPD) and canopy temperature at 10
AM; (d) relationships between predawn leaf water potential (ΨPD) and canopy temperature at 15 PM.
The bars represent standard error.
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between stomatal conductance (gs) and CWSI at 15 PM. (c) Relationships between predawn leaf water
potential (ΨPD) and CWSI at 10 AM. (d) Relationships between predawn leaf water potential (ΨPD)
and CWSI at 15 PM. The bars represent standard error.
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A dispersion in the values represented by the standard error bars can be observed in Figures 5
and 6. This was caused by the variance in the 4 images x 64 pixel/image = 256 values captured per
sampling point (olive tree), corresponding to a standard deviation of 2.16 for the ones obtained at 10 AM
and 2.51 for 15 PM. This variability could be associated with differences in leaf health, orientation,
or age, among other possibilities. As shown in the correlations between thermal acquired data and
physiological status, the area of the tree (and its corresponding mean) that was measured using the
developed device is representative of plant water stress estimation.

5. Discussion

The first step towards the validation of the proposed low-cost IR sensor device was to compare its
precision with a commercially available thermal camera. The relationship between canopy temperature
and water status has been widely studied, even with low cost devices [25]. In this study, the accuracy
of the sensor was evaluated against a commercially available thermal camera, resulting in comparable
precision (in both measured temperature drift and pixel value dispersion) under different operational
temperatures. A decrease in measurement precision was observed when the sensor operated at higher
temperature (even when a correction is performed). Nevertheless, the commercial camera exhibited a
similar effect; future works must be conducted to evaluate the influence of this effect for plant water
status assessment.

The laboratory results showed than an error up to 2◦ C depending on operation conditions must
be expected. To determine when this bias affects the utility of the sensor, an in-field experiment
in an olive orchard was performed to evaluate the sensor capability of identifying different plant
water statuses. The clear response of ΨPD to the different irrigation treatments showed the different
physiological states of the plants. On the other hand, gs showed a decreasing trend throughout the day
in all measured plants, which could be due to the isohydric behaviour of the olive [6], but the rate
of decrease was significantly higher in RDC plants. Comparable results were reported by Moriana
et al. [41], who concluded that the capacity of stomata to regulate transpiration is lost when soil water
is severely depleted. In addition, Torres-Ruiz et al. [42] found a total absence of leaf water potential (Ψ)
regulation by stomatal closure when this variable was as low as 4.8 MPa. Both gs and ΨPD are two
reliable indicators of water stress, which are widely accepted by the scientific community [22,43,44],
so the differences between both treatments (represented in Table 2) confirm a clear response to varying
irrigation levels.

On the other hand, Tcanopy also showed a response to different irrigation treatments. As expected,
the trees exposed to a water deficit showed the higher crown temperature and larger disparities were
found in the sunlit face of the canopy at 15PM. This effect is caused by stomata closure in stressed trees,
resulting in an increase in canopy temperature. This effect was partially inhibited in FI plants due
to their delayed stomata closure, which resulted in a better transpiration capacity [44]. The canopy
temperatures measured on the shaded side of the orchard also showed significant differences between
treatments (Table 3). Nevertheless, the differences between the average values of the treatments were
smaller when compared to the sunlit side. This fact was due to the lower exposure to sunlight of the
shaded face, resulting in less heating of the leaves, and thus reduced differences between treatments,
even when differences exist in terms of stomatal conductance (gs) [11].

Once the variability in water status of the plants was ensured (as demonstrated by the reference
measurement values showed in Table 3), the next step was to investigate whether this different water
status had a relation with the low-cost IR sensor device measurements. For this, both CWSI and Tcanopy

were regressed against each water stress indicator (gs and ΨPD). The correlation of gs with the measured
temperature in the shaded face of the canopy was weaker. For this reason, to establish the CWSI,
the measured temperature in the sunlit face of the canopy (since it showed greater sensitivity [11])
was selected. Both CWSI and Tcanopy showed a lower correlation with gs at 15PM than at 10AM.
This fact was also noticed by Ben-Gal et al. [45] and was attributed to the variation in environmental
conditions during data collection and the isohydric behaviour of olive orchards [45]. The combination
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of both facts attenuates the relation between measured gs and obtained irrigation status indicators
(Tcanopy and CWSI). Isohydric behaviour is characterized by a cycle of gs fluctuating during the day,
independently of the water status of the tree. This means that the differences in gs were attenuated by
the decrease in the gs of FI plants due to their isohydric behaviour. If the variations in the environmental
conditions (incoming short-wave radiation, air temperature, relative humidity, wind speed, vapor
pressure deficit) at 15 PM compared with 10 AM are added, a lesser degree of correlation between
gs and the temperature reached by the canopy was expected. On the other hand, Sepulcre-Cantó
et al. [31] found that temperature obtained from airborne thermal imagery earlier in the morning was
less affected by background effects than that measured at noon. Nevertheless, in the experimental case
study, the thermal images were acquired from a lateral view, avoiding the soil temperature interference.

The crop water stress index (CWSI) was developed as a normalized index to quantify stress and
overcome the effects of other environmental parameters affecting the relationship between stress and
plant temperature [11,15], so differences were expected in the accuracy of the estimation of water stress
by this parameter compared with using Tcanopy alone. In this experimental case study, no relevant
differences were found in the precision of CWSI in comparison with Tcanopy. This fact was due to the
measurements being collected in a short period of time, during which the environmental conditions
did not show large variations. It is likely that lower correlations with canopy temperature would
be shown by analysing multi-day datasets, since by using the CWSI, the influence of environmental
conditions is removed [31]. This suggests that the canopy temperature may be a reliable indicator if
the goal is simply comparing between the water status of plants within a given plot at a given time.
Nevertheless, if a comparison over time to regulate irrigation is required, the use of the CWSI index
will probably be preferable to the canopy temperature. Unfortunately, the data collected for this study
cannot assess this hypothesis. Future work is aimed at evaluating the developed device performance
under varying environmental conditions and cultivars to define the best indicator of water stress under
variable conditions.

The envisaged manufacture costs enable a large margin with the establishment of a very competitive
sale price compared with other devices used for water status monitoring. The pieces of equipment
used in this research study (pressure chamber and leaf porometer) have final costs of around 1500
euros each. Regarding the cost of the developed device (145 euros) (see Table 1), it is more than an
order of magnitude less. On the other hand, if compared with other commercially available devices
with similar features, it is still cheaper. For example, the FLIRTM thermal camera TG165 has a final cost
of around 350 euros, which is more than double the expense of the developed device. Furthermore,
automated industrial manufacturing would significantly reduce costs. It is true that this device has
better features than the proposed device (it has a resolution of 80 × 60 pixels). However, this could
be considered as a strength of the proposed device, since even assuming the worst features enables
detection of water stress with similar efficacy.

In summary, the new low-cost device based on the thermal infrared sensor presented in this paper
would improve the current state-of-the-art in olive tree canopy temperature measurement and water
status monitoring from different points of view. On the one hand, it has an excellent accuracy–cost
ratio. Additionally, it is easier and quicker to use than the traditional methodology. In addition, it runs
in a non-destructive way and can be operated by non-expert personnel. The reduced cost also enables
its integration into a sensor network for permanent monitoring, where the price per device is a key
factor to determine the number of nodes, and in turn, the precision of the collected data. Moreover,
this approach would further reduce costs, since some components (screen, trigger button) would be
expendable. On the other hand, its installation on vehicles or even in autonomous robots would enable
the monitoring and mapping of large crop areas with minimal effort.

6. Conclusions

In this work, a new low-cost device based on thermal infrared sensors was presented to measure,
in a non-destructive way, the olive tree canopy temperature and to monitor its water status. Sensor
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performance was evaluated against a commercially available thermal camera with a cost of around
20 times higher, showing comparable accuracy. The device was also tested in-field, measuring the
canopy temperature and crop water stress index (CWSI) (calculated from the IR measurements),
which showed high correlation indices when compared to two standardized water stress assessment
methods: predawn leaf water potential (ΨPD) and stomatal conductance (gs). Although the results
were promising, further work is needed to expand the experimental setup to different environmental
conditions and plant water statuses. Nevertheless, the aim of this research was to develop a low-cost
alternative for plant water status estimation based on thermal IR measurements. Water stress estimation
by canopy temperature has been widely studied and accepted [11–14,17,19,20], although it still has
some limitations.

The low-cost of the developed device, along with its ease of use (it does not need to be operated
by expert personnel), labour cost savings, and high precision, paves the way for the implementation of
an olive orchard water status appraisal system as an alternative to more costly current technologies,
and consequently, to increased efficiency and production. These numerous advantages could create new
paths in sustainable oliviculture, enabling the deployment of solutions for automatic and continuous
evaluation of water needs for more precise and efficient irrigation. Future works will include the
evaluation of the suitability of the developed device for the monitoring of different vegetal species
in addition to the olive tree, as well as its accuracy under different environmental conditions, in the
context of precision agriculture. Moreover, the reduced cost of the sensor itself enables its integration
into wireless sensor networks or robotic devices. Continuous monitoring of plant water status will
lead to water use optimization during the growing season, reducing environmental impacts in the
current context of climate change and water scarcity.
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Abbreviations

ADC Analog-to-digital converter
AM Ante meridian
ANOVA Analysis of variance
ATV All-terrain vehicle
CEa Electrical conductivity
CWSI Crop water stress index
RDC Regulated deficit irrigated
ETc Crop evapotranspiration
EEPROM Electrically erasable programmable read-only memory
EP Error probability
ERDF European Regional Development Fund
FI Fully irrigated
FOV Field of view
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I2C Inter-integrated circuit protocol
IC Integrated circuit
IR Infrared
ISO International Standarization Organization
LiPo Lithium-ion Polymer
NETD Noise equivalent temperature difference
PLA Polylactic acid
ΨPD Predawn leaf water potential
Ψ Leaf water potential
PCB Printed Circuit Board
PM Post meridian
PTAT Proportional to absolute temperature
RAM Random access memory
RPAS Remotely piloted aircraft systems
gs Stomatal conductance
SD Secure digital
SHD Super-high density
SPI Serial peripheral interface
Tcanopy Canopy temperature from the thermal images
Tdry Temperature of a non-transpiring leaf
Twet Temperature of a fully transpiring leaf
TFT-LCD Thin film transistor- liquid crystal display
σ Data standard deviation
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