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We extend the well-known Test-Area methodology of Gloor et al. [J. Chem. Phys. 123, 134703
(2005)], originally proposed to evaluate the surface tension of planar fluid-fluid interfaces along a
computer simulation in the canonical ensemble, to deal with the solid-fluid interfacial tension of sys-
tems adsorbed on cylindrical pores. The common method used to evaluate the solid-fluid interfacial
tension invokes the mechanical relation in terms of the tangential and normal components of the
pressure tensor relative to the interface. Unfortunately, this procedure is difficult to implement in the
case of cylindrical geometry, and particularly complex in case of nonspherical molecules. Following
the original work of Gloor et al., we perform free-energy perturbations due to virtual changes in
the solid-fluid surface. In this particular case, the radius and length of the cylindrical pore are var-
ied to ensure constant-volume virtual changes of the solid-fluid surface area along the simulation.
We apply the modified methodology for determining the interfacial tension of a system of spher-
ical Lennard-Jones molecules adsorbed inside cylindrical pores that interact with fluid molecules
through the generalized 10-4-3 Steele potential recently proposed by Siderius and Gelb [J. Chem.
Phys. 135, 084703 (2011)]. We analyze the effect of pore diameter, density of adsorbed molecules,
and fluid-fluid cutoff distance of the Lennard-Jones intermolecular potential on the solid-fluid in-
terfacial tension. This extension, as the original Test-Area formulation, offers clear advantages over
the classical mechanical route of computational efficiency, easy of implementation, and generality.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795836]

I. INTRODUCTION

During the last years there has been a great advance in
the understanding of the interfacial properties of inhomoge-
neous systems from a molecular perspective. This knowledge
is not ascribed only to the cases of vapour-liquid and liquid-
liquid (free) interfaces, but also to other inhomogeneous sit-
uations, including systems formed by molecules near planar
walls, inside slit-like pores, as well as cylindrical pores and
spherical cavities, and in general, to all situations concerning
fluids adsorbed on structured materials as zeolites, nanotubes,
and amorphous adsorbents. These are only a few examples of
systems for which new methods of Statistical Mechanics and
computer simulation techniques are now available to describe
their thermodynamic and structural behaviour.

This advance is due to the continuous development of
Statistical Mechanics molecular-based theories. The rapid de-
velopment of Density Gradient Theory (DGT)1–7 and Density
Functional Theory (DFT)8, 9 allows us to determine thermo-
dynamic and structural properties of spherical and molecular
inhomogeneous systems. Particularly relevant to this discus-
sion are the works published for predicting and understand-
ing the behaviour of fluids at free interfaces and adsorbed
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on different materials. The new generation of functional the-
ories, such as those based on Fundamental Measure The-
ory (FMT)10–12 and their different versions, have provided an
important insight in the field. We recommend the works of
Llovell et al.13 for a recent review of the literature, as well
as the recent work of Malijevský and Jackson14 on the de-
termination of the interfacial properties of nanoscopic liquid
drops.

Computer simulation methods have also experienced a
great development in the field of interfacial properties, partic-
ularly due to the appearance of new techniques for calculat-
ing fluid-fluid interfacial tension. The traditional method used
for determining this key property has been (and still is) the
mechanical route, through the evaluation of the microscopic
components of the pressure tensor from the virial. The first
explicit expression of the local pressure tensor for a planar
vapour-liquid interface was proposed by Irving and Kirkwood
in 1950.15 This method is based on the well-known mechan-
ical or virial route for the determination of the pressure. Al-
ternatively, Harasima proposed a different but also valid ex-
pression for the local tangential pressure several years later.16

However, although the calculation of the interfacial tension,
as well as the pressure tensor components, is always possi-
ble via the mechanical or virial route, care has to be taken in
the case of systems interacting through discontinuous poten-
tials due to the impulsive forces and the corresponding delta
functions associated to the virial. These contributions must be
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calculated accurately, as shown by Allen17 and more recently
by de Miguel and Jackson18 and Brumby et al.19

As mentioned previously, during the last decade there
has been an intense and fruitful development of new method-
ologies based on the thermodynamic definition of surface
tension. The use of new theoretical approaches, such as the
Expanded Ensemble,20, 21 Wandering Interface Method,22 or
perturbative methods as the Test-Area (TA)23 technique, or
the determination of the macroscopic components of the pres-
sure tensor (using for instance virtual volume changes, as pro-
posed by de Miguel and Jackson18, 24 or Brumby et al.19),
are only a few examples of the new methods available in
the literature from a computer simulation perspective. These
methods are becoming very popular, and as an example the
TA method has been so far used by several authors to de-
termine vapour-liquid interfacial properties of fully-flexible
Lennard-Jones (LJ) chains,25 linear-tangent LJ chains,26, 27

several models of water,28–30 the Mie potential,5, 31 or binary
fluid mixtures.7, 32, 33

The mechanical and thermodynamic methods have been
applied for determining the fluid-fluid (mainly vapour-liquid)
surface tension of simple and complex systems using Monte
Carlo and Molecular Dynamics computer simulations. How-
ever, this is not the case when dealing with confined inho-
mogenous systems. There are only a few studies in which the
solid-fluid (SF) interfacial tension of molecules confined in
planar geometries, such as slit-like pores, is calculated from
computer simulation (see, for instance, the works of Hen-
derson and van Swol,34 Heni and Löwen,35 Varnik et al.,36

Fortini et al.,37 Hamada et al.,38 Singh and Kwak,39 and
Das and Binder40), while most authors concentrate on phase
behaviour,41 adsorption,42 or fluid structure.43 This is because
the SF interfacial tension of confined substances is not ex-
perimentally accessible. However, its determination is impor-
tant from a formal point of view because this quantity is eas-
ily calculated theoretically from DFT. A comparison between
theoretical and computer simulation predictions constitutes a
strong test to check the ability of a theory in predicting the
behaviour of adsorbed molecules in a pore.44

From a technical point of view, the calculation of the SF
interfacial tension, as well as the normal and tangential com-
ponents of the pressure tensor of fluids confined in slit-like
pores, is not a difficult task. In fact, this can be done eas-
ily evaluating the local pressure tensor components through
the mechanical (virial) route of Irving and Kirkwood15 or
Harasima.16 For a system confined inside a slit-like pore, the
molecules are located between two parallel walls that inter-
act with the fluid via a known SF intermolecular potential.
The z-axis is chosen perpendicular to the walls of the pore
and the x-axis and y-axis are parallel to the walls. It is impor-
tant to recall here that in a inhomogeneous system the pres-
sure is not a scalar but a tensorial quantity. In the particular
case of pores with planar geometry in which the inhomogene-
ity of the system is along the direction perpendicular to the
walls, i.e., the z-axis, the microscopic perpendicular or nor-
mal (along the z-axis direction) component of the pressure
tensor, Pzz ≡ PN, is constant and equal to the “true” thermo-
dynamic pressure inside the pore. The microscopic tangen-
tial components of the pressure tensor, parallel to the walls,

Pxx(z) = Pyy(z) ≡ PT(z), are functions of the z coordinate or
distance to the walls, and it is different to PN, i.e., PT(z) "= PN.
Obviously, this is exactly the same scenario as in vapour-
liquid and liquid-liquid (free) interfaces. Care must be taken
however in this particular case since an extra contribution to
the normal component of the pressure tensor must be consid-
ered. Note that the tangential component is also calculated as
in the case of planar free interfaces since the wall potential
acts only in the z-direction along which the system exhibits
the inhomogeneity. For further details see the work of Varnik
et al.36 and references therein.

The number of papers devoted to study the interfacial ten-
sion and the determination of the components of the pressure
tensor of a fluid confined in a cylindrical pore are even more
scarce, probably due to the mathematical difficulties in solv-
ing the corresponding equations. It is important to recall here
that, contrary to what happens in problems involving planar
geometries, the normal component of the pressure tensor in
cylindrical geometry is no longer constant along the radial di-
rection (perpendicular to the SF interface). There exist studies
on vapour-liquid (free) cylindrical interfaces using both the-
ory and computer simulation, such as the works of Lovett and
co-workers45–47 and Thompson et al.48 As previously men-
tioned, the rapid development of the DFT formalisms, with
particular emphasis on the FMT approaches, has allowed us
to study the adsorption and structural behaviour of fluids ad-
sorbed in cylindrical pores.49, 50 However, to our knowledge,
there are no studies in which the SF interfacial tension of flu-
ids adsorbed in cylindrical pores is evaluated from computer
simulation.

The goal of this work is to generalize the TA technique
to deal with SF interfacial tensions of molecules confined in
cylindrical pores. The method is extended using the appropri-
ate virtual or perturbative changes in the SF interfacial area
keeping the volume of the system constant, as in the origi-
nal approach.23 The new technique is validated considering
different relative SF surface area changes in a range of small
values and then extrapolating the interfacial tension values to
zero. We have also applied the methodology proposed to in-
vestigate the effect of pore diameter, fluid-fluid cutoff distance
associated to the corresponding intermolecular potential, and
system size on the SF interfacial tension. To our knowledge,
this is the first time this interfacial property is determined us-
ing a perturbative method from computer simulation.

The rest of the paper is structured as follows. In Sec. II
we derive the extension of the formalism for determining the
SF interfacial tension of molecules inside cylindrical pores.
Section III presents the models and simulation details and in
Sec. IV we discuss the results obtained. Finally, we present
the main conclusions of this work.

II. TEST-AREA METHODOLOGY FOR CYLINDRICAL
GEOMETRY

Consider a system of N particles at a given temperature
T and occupying a cylinder of volume V . In the canonical
or NV T ensemble, the key free energy is the Helmholtz en-
ergy F = F (N,V, T ) ≡ FNV T . The variation in Helmholtz
free energy when the temperature, volume, and number of
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particles are changed with their corresponding infinitesimal
amounts is given by the well-known change of free energy in
the canonical ensemble. However, density variations produce
an extra contribution to the thermodynamic state functions in
general, and to the Helmholtz free energy in particular. In the
presence of an interface the free energies and particularly F
need to be modified to include the work that has to be imposed
by external forces in order to change the interfacial area A by
dA,

dF (A) = −SdT − PdV + µdN + γ dA. (1)

The contribution γ dA is the work needed to change the
interfacial area a differential amount dA, at constant tem-
perature, volume, and number of particles, and the coeffi-
cient γ is the interfacial tension of the system. Note that now
F = F (N,V, T ,A) ≡ FNV T (A) is also a function of the in-
terfacial area A. Its thermodynamic definition follows from
the expression,

γ =
(

∂F

∂A

)

NV T

, (2)

where the partial derivative must be evaluated at constant
number of particles N, volume V , and temperature T.

Similarly to the case of the planar geometry, the interfa-
cial tension can be computed efficiently from the previous ex-
pression by using fictitious increasing and decreasing surface
area. The Helmholtz free energy is related with the canonical
partition function QNV T through the well-known Statistical
Mechanics relationship,

F ≡ FNV T (A) = −kBT ln QNV T , (3)

where kB is Boltzmann’s constant. The canonical partition
function of a system of N spherical molecules without inter-
nal degrees of freedom, at temperature T and volume V , can
be written as

QNV T = 1
#3NN !

∫
drN exp[ −βUN (rN ) ] = 1

#3NN !
ZNV T ,

(4)
where # is the de Broglie wavelength associated to the trans-
lational degrees of freedom of the system, UN ≡ UN (rN ), the
intermolecular potential energy of a system formed by N par-
ticles that depends on all the positions rN ≡ {r1, . . . , rN }, β

= (kBT)−1, and ZNV T is the configurational partition function
of the system

ZNV T =
∫

drN exp [−βUN (rN ) ]. (5)

Although we have explicitly used the relationship given
by Eq. (4) valid for systems that interact through spherical in-
termolecular potentials, with no internal degrees of freedom,
the methodology is equally applicable to molecular systems.

Perturbative methods in computer simulation allow to
calculate a number of thermodynamic properties from esti-
mation of the change in the appropriate free energy under
fictitious perturbation. The works of Eppenga and Frenkel,51

Harismiadis et al.,52 and de Miguel and Jackson,18, 24 in the
case of pressure or components of the pressure tensor, and
that of Gloor et al.23 in the case of surface tension, are clear
examples of this methodology. Following the work of Gloor

et al.,23 the interfacial tension can be easily evaluated in the
canonical ensemble using the appropriate thermodynamics
definition. Using Eq. (2), the interfacial tension, in the ref-
erence state, can be expressed as the difference in Helmholtz
free energy between two states with different surface areas,

γ =
(

∂F

∂A

)

NV T

= lim
%A→0

FNV T (A0 + %A) − FNV T (A0)
%A

≈ %FNV T

%A
,

(6)

where A0 is the interfacial area of the reference state and
A1 ≡ A0 + %A the interfacial area of the perturbed state.
Since the TA methodology has been presented and applied
elsewhere, here we only give the key final expressions of
this technique. For further details we recommend the origi-
nal works.

The difference in Helmholtz free energy is proportional
to the logarithm of the average of the Boltzmann factor as-
sociated to the surface area perturbation over the unperturbed
system of surface area A0. This configurational average can
be written as

%FNV T = −kBT ln 〈exp [−β%U+ ]〉NV T , (7)

where %U+ = U (A1) − U (A0) ≡ U (A0 + %A) − U (A0) is
the change in potential energy when the interfacial area
changes from A0 to A1 ≡ A0 + %A. The final expression of
the interfacial tension is then

γ + = −kBT

%A
ln 〈exp [−β%U+ ]〉NV T . (8)

In principle, one could also have selected a backward,
finite difference scheme to approximate the first derivative of
the free energy. In this case one can write

γ =
(

∂F

∂A

)

NV T

= lim
%A→0

FNV T (A0 − |%A|) − FNV T (A0)
|%A|

(9)
which results in an expression for the interfacial tension of the
form

γ − = − kBT

|%A|
ln 〈exp [−β%U− ]〉NV T , (10)

where %U− = U (A1) − U (A0) ≡ U (A0 − |%A|) − U (A0)
is the change in potential energy when the interfacial area
changes from A0 to A1 ≡ A0 − |%A|.

For systems of particles interacting through continuous
potentials, γ + and γ − are expected to be equal to the value of
the interfacial tension as long as %A → 0. In practical imple-
mentations, small but finite values of %A must be used, and
the forward and backward approaches will not yield exactly
the same value. Once independent values of surface tension
for the positive and negative change in SF interfacial area are
obtained from Eqs. (8) and (10) for several values of the per-
turbation parameter, the final estimate of the SF interfacial
tension is determined from an extrapolation to %A → 0 with
linear fit of the averages obtained for the different values of
%A.
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As in previous works,18, 21, 23–25, 28, 29, 33, 53 the central
finite-difference approximation should provide a more reli-
able estimate of the derivative given by Eqs. (6) and (9). In
this case, the interfacial tension can be expressed as

γ = γ + + γ −

2
, (11)

where γ + and γ − are given by Eqs. (8) and (10), respectively.
Special care must be taken when using Eq. (11) for deter-
mining the interfacial tension of systems that interact through
non-continuous intermolecular interactions. The use of
Eq. (11) assumes implicitly that both increasing and decreas-
ing surface area perturbations are appropriate to gauge the
value of interfacial tension. This is not expected for sys-
tems with discontinuous intermolecular potentials, as was first
noted by Eppenga and Frenkel51 some years ago, and more
recently by de Miguel and co-workers.18, 19, 24 However, as
we deal with continuous intermolecular potentials, the use of
Eqs. (8), (10) and (11) is fully justified from a theoretical point
of view.

In this work we extend the TA methodology for deal-
ing with SF interfaces. Here we briefly give the most impor-
tant technical details of this extension. Our inhomogeneous
system consists of a fluid (gas or liquid) in direct contact
with the solid phase of a substrate that acts as adsorbent. In
other words, in the reference state the fluid phase is contained
within a cylindrical simulation box of volume

V0 = πR2
0H0, (12)

where R0 is the pore radius in the reference state. If the z-
axis is chosen along the symmetry axis of the cylinder, H0 is
the dimension of the simulation box along the z-axis in the
reference state.

Following the original work of Gloor et al.,23 we assume
that A0, the SF interfacial area of the reference state, may be
written as

A0 = 2πR0H0, (13)

where R0 and H0 are the radius and length along the z-axis
of the simulation box in the reference state. The appropriate
dimensionless perturbation parameter ξ , set at the start of the
simulation, is defined as usually, i.e., ξ = %A/A0, where A0

is given by Eq. (13) and %A is a (small) change in the SF
interfacial area, which in this particular case corresponds to
the lateral area of the cylindrical simulation box, %A = A1

− A0. The interfacial area after a virtual change of the lateral
area may be written as A1 = A0(1 + ξ ). The volume of the
system in the perturbed state, V1, may be written in terms of
the interfacial area A1 = 2πR1H1 as

V1 = πR2
1H1 = πR2

1

(
A1

2πR1

)
= 1

2
R1A1. (14)

Since we are using the original TA methodology devel-
oped for simulations carried out in the canonical or NV T

ensemble, one possibility is to perform perturbations in such
a way that the scaled dimension along the radial dimension
axis is decreased. This corresponds to positive values of ξ

and %A, meaning that the SF interfacial area is increased. Un-
der this hypothesis, the radial dimension in the perturbed state

is given by

R1 = R0(1 + ξ )−1. (15)

To keep the overall volume constant, for the case
ξ = %A/A0 > 0, the dimension in the axial or z direction
is increased according to

H1 = H0(1 + ξ )2. (16)

It is easy to demonstrate that the choice of Eqs. (15)
and (16) corresponds to a new SF surface area given by
A1 = A0(1 + ξ ). Other choices for R1 and H1 are however
possible although in this work we only used the recipes given
by the last two equations.

The procedure described above corresponds to posi-
tive TA perturbations, in such a way that the SF interfacial
area is increased, %A ≡ A1 − A0 > 0. Note that the posi-
tive TA perturbation implies that the radius of the cylindri-
cal box is decreased and the dimension along the z-axis of
the cylinder is increased. In the same way as in the original
TA methodology,23 negative perturbations are also possible
here. In this case, the dimensionless parameter ξ is negative,
ξ = −|%A|/A0. According to that, the radius and the dimen-
sion along the z-axis are increased and decreased, respec-
tively, using the following expressions

R1 = R0(1 − |ξ |)−1 (17)

and

H1 = H0(1 − |ξ |)2. (18)

As in previous works, positive and negative perturbations
are undertaken simultaneously once every Monte Carlo cycle
to evaluate the Boltzmann factors associated to the difference
in configurational energy which are required to determine the
change in free energy and the SF interfacial tension.

III. MODELS AND SIMULATION DETAILS

We have applied the methodology proposed in Sec. II to
study the SF interfacial tension of a simple fluid confined in-
side cylindrical pores. In particular, the pores considered in
this work are cylinders that mimic the SF Steele 10-4-3 po-
tential. The molecules confined inside these pores are spheri-
cal molecules whose intermolecular interaction energy is de-
scribed through the classical Lennard-Jones (LJ) potential:

uff (rij ) = 4εff

[(
σff

rij

)12

−
(

σff

rij

)6
]

, (19)

where uff(rij) is the intermolecular potential energy between
particles i and j that depends only on the distance between
the centers of molecules rij ≡ |ri − rj |. The interactions are
spherically truncated but not shifted at a given distance rc.
No long-range corrections are applied and all the calculations
are carried out considering two different cutoff distances,
rc = 2.5 and 4.5σ ff. As it is well known, σ ff stands for
the diameter of the molecular spherical core, and εff is the
depth of the pairwise interaction potential. The subscript ff
stands for fluid-fluid molecular interactions. The confinement
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of LJ spheres inside cylindrical pores of the characteristics ex-
plained in this work has been recently studied using DFT by
Siderius and Gelb.54

The LJ molecules interact with the cylindrical wall.
Among the extensive collection of models proposed in liter-
ature to account for SF molecular interactions, the so-called
Steele55 10-4-3 potential is very popular as it has been used to
reproduce the interaction with realistic planar solid substrates.
This model considers that the atoms constituting the solid sub-
strate are placed in layers equispaced by a distance %, and
placed in parallel to the SF dividing surface. Each of the solid
substrate atoms is supposed to interact with every individual
fluid molecule through a LJ potential. According to Siderius
and Gelb,54 a cylindrical analog of the 10-4-3 Steele poten-
tial models a material composed of a continuous cylindrical
surface of radius R formed by atoms that interact with the
fluid molecules through the classical LJ intermolecular poten-
tial. In addition to that, the pores have a continuum cylindrical
surface of radius R with a real density ρA, composed of atoms
that interact with the fluid through the LJ potential, and a con-
tinuum slab of material that begins at position r = R + α% and
extends to R → ∞, of volume density ρS, composed of atoms
that interact with the molecules via the attractive portion of
the LJ potential. It is important to recall here that α is an em-
pirical, positive-value parameter, as in the case of the original
planar 10-4-3 Steele potential. Following Siderius and Gelb,
ρA = ρS% and the total interaction between a fluid molecule
and the cylindrical wall is written as54

usf (r, R) = 2πρS%σ 2
sf εsf

[
ψ6(r, R, σsf ) − ψ3(r, R, σsf )

−σsf

%
φ3(r, R + α%, σsf )

]
, (20)

where r is the distance from the center of the cylindrical pore
to the position of the molecule inside it, R is the pore radius,
and ψn(r, R, σ sf) and φn(r, R, σ sf) are given by

ψn(r, R, σsf ) = 4
√

π
.(n − 1

2 )

.(n)

(σsf

R

)2n−2
[

1 −
( r

R

)2
]2−2n

×F

[
3 − 2n

2
,

3 − 2n

2
; 1;

( r

R

)2
]

(21)

and

φn(r, R, σsf )= 4
√

π

2n − 3

.(n− 1
2 )

.(n)

(σsf

R

)2n−3
[

1−
( r

R

)2
]3−2n

×F

[
3 − 2n

2
,

5 − 2n

2
; 1;

( r

R

)2
]

. (22)

. is the Gamma function and F is the hypergeometric func-
tion. Note that n must be either an integer or half-integer
greater that 1/2. Following the works of Siderius and Gelb54

and Steele,55 the typical graphite values of ρS and % are used
here, i.e., ρS = 114.0 nm−3 and % = 0.335 nm. The α param-
eter may be tuned to match some particular material, but ac-
cording to Siderius and Gelb,54 we use α = 0.61 to be consis-
tent with the planar Steele 10-4-3 potential. σ sf and εsf are the
molecular size and dispersive energy associated to the LJ in-
termolecular interaction between a fluid molecule and a single
constituent particle of the solid. These parameters are calcu-

lated using the usual Lorentz-Berthelot combining rules, i.e.,
σsf = 1

2 (σss + σff ) and εsf = (εssεff)1/2. For calculating σ sf

and εsf is necessary to find the molecular parameters of the
LJ units of the solid and the absorbed fluid. In our work, the
spherical molecules forming the cylindrical wall are carbon
units that model graphite, for which we use the original val-
ues of Steele σss = 0.340 nm and εss/kB = 28.0 K, and the
spherical LJ molecules of the fluid are modelled as methane,
i.e., σff = 0.37327 nm and εff /kB = 149.92 K.56

We apply the methodology presented in Sec. II to de-
termine the SF interfacial tension of a system of spheri-
cal molecules contained in cylindrical pores with different
pore radius, number of adsorbed molecules, and densities
inside the pore. In particular, we consider systems contain-
ing N = 500 and 1000 spherical molecules interacting with
other molecules through the Lennard-Jones intermolecular
potential and with the walls of the pore according to the
generalization of the 10-4-3 Steele potential, as discussed
previously.

Simulations are performed in the canonical or NV T en-
semble. We consider a system of N molecules at a temperature
T in a volume V = πR2H , where R and H are the pore radius
and the dimension of the cylindrical box along the z-axis, re-
spectively. Initially, N Lennard-Jones molecules are placed in-
side the cylindrical simulation box at positions randomly se-
lected. This procedure ensures that simulations are run at the
desired (and fixed) density.

The simulations are organized in cycles. A cycle is de-
fined as N trial moves (displacement of the center of the
molecule). The magnitude of the appropriate displacement is
adjusted so as to get an acceptance rate of 30% approximately.
We use periodic boundary conditions and minimum image
convention along the z-axis of the simulation box (direction
of the axis of the cylinder). A typical run consisted of 2 × 106

equilibration cycles followed by a production stage of at least
2 × 106 cycles. During this last stage averages of the desired
interfacial properties were computed, including density pro-
files and SF interfacial tension. Simulation box profiles along
the r-axis direction were determined by dividing the cylindri-
cal box in 100 concentric cylindrical shells with equal width
along the radial direction. The production stage is divided into
blocks. The ensemble averages of the SF interfacial tension,
for several relative surface area changes ξ = %A/A0 in the
range 10−4 ≤ |ξ | ≤ 10 × 104 (see Sec. IV and Figs. 2–4
for further details), are obtained from the arithmetic mean of
the block averages, and the statistical precision of the sam-
ple averages are estimated from the standard deviation of the
mean.57 From this information, the final SF interfacial tension
values are obtained by linear regression to |ξ | → 0 of the val-
ues obtained from increasing-area (γ +*) and decreasing-area
(γ −*) perturbations, and a combined increasing-decreasing
(γ *) perturbation given by Eq. (11). Results presented for
the final SF interfacial tension values and their correspond-
ing estimates of the statistical precision correspond to the
errors associated to the linear extrapolations. We have com-
pared the uncertainties obtained from block averaging and
linear extrapolation and checked carefully that the relative
sizes of both of them are equivalent and of the same order of
magnitude.
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IV. RESULTS

We now turn to analyze the adequacy of the extension
of the TA methodology presented in Sec. II for the deter-
mination of the SF interfacial tension of fluids confined in
cylindrical geometry. In the following discussion, the fluid-
fluid dispersive energy parameter εff and the diameter σ ff are
chosen as the units of energy and length, respectively. Ac-
cording to this, we define the following reduced quantities:
temperature, T* = kBT/εff; bulk number density and density
profile, ρ∗ = ρσ 3

ff and ρ∗(r∗) = ρ(r∗)σ 3
ff ; surface tension,

γ ∗ = γ σ 2
ff /εff ; pore diameter, R* = R/σ ff; length of the

simulation box along the z-axis (direction of the symmetry
axis of the cylinder), L∗

z = Lz/σff ; distance from the cen-
ter of the cylinder, r* = r/σ ff; and fluid-fluid cutoff distance,
r∗
c = rc/σff .

We first consider systems of N = 500 LJ molecules
in cylindrical pores of fixed radius R* = 7.5 and length
along the symmetry axis L∗

z = 15 (ρ* = 0.1886), L∗
z = 10

(ρ* = 0.2829), L∗
z = 8.8 (ρ* = 0.3215), and L∗

z = 7.5 (ρ*
= 0.3773). We also consider systems of N = 1000, R*
= 7.5, and L∗

z = 8.8 (ρ* = 0.6431). All the systems consid-
ered are studied at a fixed temperature of T* = 2.0, which
corresponds to supercritical fluid states in the bulk. Two cases
are analyzed: we first consider fluid-fluid interactions spheri-
cally truncated (but non-shifted) at a cutoff distance r∗

c = 4.5;
after, we consider interactions spherically truncated and non-
shifted, but the fluid-fluid cutoff distance is now r∗

c = 2.5.
This allows us to check the effect of the long-range correc-
tions of the fluid-fluid intermolecular LJ potential on the de-
termination of the SF interfacial properties.

We have used the methodology explained in Sec. II to
obtain the SF interfacial tension of the system using the two
cutoff distances mentioned previously. In addition to that, we
have also obtained the density profiles of the molecules ad-
sorbed inside the pore. In Fig. 1 we present the density pro-
files of LJ molecules adsorbed inside two different cylin-
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FIG. 1. Density profiles of LJ molecules adsorbed on cylindrical pores with
pore radius (a) R* = 7.5 and (b) R* = 5.0 at T* = 2.0 obtained from MC NVT
simulations. The curves correspond to total densities inside the cylindrical
pore of ρ* = 0.1886 (continuous line), 0.2829 (dotted line), 0.3215 (dashed
line), 0.3773 (dotted-dashed line), and 0.6431 (dotted-dotted-dashed line).

drical pores that interact with the wall through the 10-4-3
Steele interaction potential described in Sec. III. Results
presented here correspond to simulations performed with
N = 500 molecules. We have also simulated larger systems
formed by N = 1000 LJ spheres, but since the results corre-
sponding to density profiles are nearly identical, we have not
represented them. We have also compared the density pro-
files for molecules with different cutoff distances, r∗

c = 4.5
and 2.5. Comparison between both density profiles indicate
that differences are fully negligible. We have considered, as
previously mentioned, systems of LJ molecules with differ-
ent number densities inside the cylindrical pore of radius
R* = 7.5. As can be seen in part (a) of the figure, the system
develops different adsorbed layers inside the pore depending
on the number density of the system. In particular, molecules
tend to be preferentially adsorbed close to the cylindrical wall,
forming a ring of molecules adsorbed. As the distance from
the center of the pore decreases the height of the peaks as-
sociated to the corresponding density profile also decreases,
observing a nearly flat density profile around the center of the
cylinder, as expected. This indicates that SF interactions are
negligible for molecules located in this region and hence, a
bulk-like behaviour of the system is exhibited there. At ρ*
= 0.1886, the system develops only a dense ring layer at r*
≈ 6.5, and a second but much smaller adsorption peak at r*
≈ 5.5, approximately. As the number density inside the pore
increases, from ρ* = 0.2829 up to 0.3773, the two adsorp-
tion peaks become higher, and eventually, a third adsorption
ring layer appear at r* ≈ 4.5, as expected. For even denser
systems, i.e., ρ* = 0.6431, the molecules distribute inside the
pore in 6–7 ring layers. Note that oscillations of the density
profile due to correlations provoked by the confinement of
molecules inside the pore are present along the whole cylin-
der, including its central region.

We have also considered the adsorption behaviour of
LJ molecules inside a thinner cylindrical pore of radius
R* = 5.0, considering the cutoff distances previously used,
namely, r∗

c = 4.5 and 2.5. Since the main goal of this work is
to check the ability of the generalization of the TA method-
ology in predicting the SF interfacial tension in cylindrical
geometry, we only concentrate only in systems of N = 500
molecules in a cylindrical pore of length along the symmetry
axis L∗

z = 16.85 and number density ρ* = 0.3778, L∗
z = 10

and number density ρ* = 0.6366, and reduced temperature
of T* = 2.0. As in the case of the adsorption in wider pores,
the density profiles of LJ molecules with different cutoff dis-
tances are indistinguishable, an expected result for systems in
which the SF interactions dominate its behaviour. At the low-
est density (ρ* = 0.3778), the density profile exhibits three
peaks at r* ≈ 4, 3, and 2, and bulk-like behaviour in the cen-
tral part of the cylinder. At the highest density, ρ* = 0.6366,
the density profile shows five different adsorbed (ring-like)
layers. In particular, the density profile shows the expected
oscillatory behaviour as the distance from the center of the
cylinder is varied, similar to that found at approximately the
same density in the cylinder of pore R* = 7.5. An interesting
behaviour exhibited by the system in narrower pores is the ex-
istence of an adsorbed layer of molecules located exactly at
the center of the cylinder. This expected behaviour is a
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consequence of the cylindrical geometry, as observed previ-
ously by several authors.49

Once the structural behaviour of the LJ fluid inside the
pore is well characterized in terms of the density profiles,
we present the simulation data for the SF interfacial tension
of the system of N = 500 LJ molecules, with r∗

c = 4.5, at
T* = 2.0, adsorbed inside a cylindrical pore of radius
R* = 7.5. Interfacial tension is obtained from Eqs. (8), (10),
and (11) for relative SF surface changes |ξ | = %A/A in the
range 10−4 ≤ |ξ | ≤ 10 × 10−4. We use the methodology pre-
viously described in Sec. II. In particular, the virtual surface
area perturbations of magnitude ξ are performed every cy-
cle by rescaling the radius and box length along the z-axis
according to Eqs. (15)–(18). Following the original method-
ology, the positions of the molecular centers of mass are also
calculated according to the transformations r′ = (1 ± |ξ |)−1r
and z′ = (1 ± |ξ |)2z. Here r and z (and r′ and z′) are the radial
and z-axis cylindrical coordinates of the molecules, respec-
tively. Note that, as is the original TA23 and their different
extensions,5, 7, 24–29, 31–33, 44 rc remains unchanged under this
transformation.

It is clear from Fig. 2 that surface tension exhibits a defi-
nite linear behaviour over the range of values of ξ considered
here for all the densities studied. The set of data obtained from
both increasing and decreasing perturbations of the SF surface
are extrapolated cleanly to the same value γ *, for each of the
densities considered, when |ξ | → 0. Results corresponding
to the five densities are also presented in Table I. Note that
for ρ* = 0.6431 we have performed simulations only for N
= 1000 LJ molecules, but not for N = 500 particles. As can
be seen, the SF interfacial tension becomes more negative as
the density inside the cylindrical pore is larger. This is the
expected behaviour since the SF cohesion energy increases
as the density of the adsorbed phase is increased. However,
this trend is not followed when increasing the density from
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FIG. 2. Interfacial tension for the SF interface in a system of N = 500 LJ
molecules adsorbed on a cylindrical pore of radius R* = 7.5 as obtained
from surface area perturbations in MC NVT simulations with fluid-fluid in-
teraction cutoff distance at r∗

c = 4.5. The reduced temperature is T* = 2.0
and density inside the cylindrical pore is (a) ρ* = 0.1886, (b) ρ* = 0.2829,
(c) ρ* = 0.3215, and (d) ρ* = 0.3773. Data are shown for different values
of the relative surface area of the perturbation. The circles correspond to the
results obtained from perturbations with ξ > 0 (increasing-area, γ +*), the
squares to the data for perturbations with ξ < 0 (decreasing-area, γ −*), and
the diamonds to the data from combined increasing/decreasing surface area
(central difference scheme given by Eq. (11), γ *). The error bars are larger
than the vertical scale of figure and are not shown for clarity.

ρ* = 0.3773 to 0.6431. In fact, the SF interfacial tension in-
creases (i.e., it becomes less negative) a 2.6% approximately
for the system with r∗

c = 4.5 and about a 1.3% for that with
r∗
c = 2.5, as can be seen in Table I. How is it possible to ex-

plain this behaviour? Actually, the explanation of the presence
of this minimum in the SF interfacial tension, as a function of
density inside the cylinder, is also related with the competi-
tion between the fluid-fluid and solid-fluid cohesive energies

TABLE I. Interfacial tension for the SF interface in systems of LJ molecules with fluid-fluid cutoff distance of
(a) r∗

c = 4.5 and (b) r∗
c = 2.5 adsorbed on cylindrical pores with two different radii as obtained by a linear extrap-

olation to |ξ | → 0 of the values obtained from increasing-area (γ +*) and decreasing-area (γ −*) perturbations,
and a combined increasing-decreasing (γ *) perturbation given by Eq. (11) in MC NVT simulations at reduced
temperature T* = 2.0, and different reduced densities and system sizes.

ρ* γ +∗
(a) γ −∗

(a) γ ∗
(a) γ +∗

(b) γ −∗
(b) γ ∗

(b)

R* = 7.5 N = 500
0.1886 − 1.717(7) − 1.717(7) − 1.718(5) − 1.74(2) − 1.74(2) − 1.740(6)
0.2829 − 2.36(3) − 2.36(3) − 2.36(2) − 2.40(3) − 2.40(2) − 2.40(2)
0.3215 − 2.563(7) − 2.563(7) − 2.563(5) − 2.61(2) − 2.61(2) − 2.603(7)
0.3773 − 2.77(3) − 2.77(3) − 2.77(2) − 2.81(2) − 2.82(2) − 2.81(2)
0.6431 . . . . . . . . . . . . . . . . . .

R* = 7.5 N = 1000
0.1886 − 1.717(5) − 1.718(5) − 1.718(4) − 1.737(4) − 1.739(5) − 1.737(3)
0.2829 − 2.360(5) − 2.360(6) − 2.360(4) − 2.40(3) − 2.40(3) − 2.40(2)
0.3215 − 2.551(7) − 2.553(7) − 2.55(2) − 2.59(2) − 2.59(2) − 2.59(7)
0.3773 − 2.78(2) − 2.78(2) − 2.779(7) − 2.820(7) − 2.820(2) − 2.819(6)
0.6431 − 2.71(5) − 2.71(5) − 2.71(3) − 2.78(4) − 2.78(4) − 2.78(3)

R* = 5.0 N = 500
0.3778 − 2.594(6) − 2.594(5) − 2.594(5) − 2.63(2) − 2.632(7) − 2.635(6)
0.6366 − 2.24(4) − 2.25(3) − 2.25(3) − 2.36(3) − 2.36(3) − 2.36(3)
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involved in this problem. According to our previous explana-
tion for the variation of the surface tension with density inside
the cylinder, if density is increased the solid-fluid cohesive
energy of the system increases relatively with respect to the
fluid-fluid cohesive energy. This can be clearly understood by
a simple inspection of Fig. 1(a): most of the molecules, at low
densities, are adsorbed preferentially close to the curved sur-
face of the cylinder. As the density increases, additional layers
of adsorbed molecules appear closer to the center of the cylin-
der. As the number of layers is increased, the rate at which
the SF interfacial tension becomes more negative decreases,
although the absolute value of γ increases (see Table I). How-
ever, when density inside the cylinder changes from 0.3773 to
0.6431, the system seems to exhibit a pronounced pore fill-
ing. Due to that, the density in the central part of the cylinder
is greatly enhanced (see Fig. 1(a)), and as a consequence of
this, the fluid-fluid interactions become relatively more im-
portant than the solid-fluid interactions, leading to an effec-
tive decrease of the solid-fluid cohesive energy producing the
increase of the SF interfacial tension observed in our simu-
lations. This explanation is also corroborated with the values
obtained for the LJ system with a cutoff distance of r∗

c = 2.5.
For this system, the increase of SF interfacial tension is lower
when passing from ρ* = 0.3773 to 0.6431, which is a di-
rect consequence of the lower fluid-fluid cohesive energies in
comparison with those in systems with r∗

c = 4.5.
It is important to note that the calculation of the SF in-

terfacial is, in general, less sensitive to molecular details than
the fluid-fluid surface tension of similar models. In particular,
the fluctuations of the γ values, as well as the estimation of
the errors, are much smaller than that in the case of free inter-
faces. As in previous works,24, 58 if the size of the perturbation
is larger, the values of the interfacial tension computed using
the surface area perturbation with a forward or backward dif-
ference scheme deviate systematically from the extrapolate
values shown in Fig. 2 and Table I.

In order to investigate the effect of system size on the
interfacial tension, we have also considered systems formed
by N = 1000 LJ molecules, at the same thermodynamic con-
ditions and confined in the same geometry. In this case, the
length of the simulation box along the z-axis is set equal to
L∗

z = 30 (ρ* = 0.1886), L∗
z = 20 (ρ* = 0.2829), L∗

z = 17.6
(ρ* = 0.3215), L∗

z = 15 (ρ* = 0.3773), and L∗
z = 8.8

(ρ* = 0.6431). Results corresponding to systems formed by
N = 1000 LJ molecules are shown in Table I. Note that
the results for the higher density studied for R* = 7.5 and
N = 1000 are not represented in Fig. 3 because they exhibit
the same behaviour as those corresponding to lower densities
already shown in the figure. As can be seen, the SF interfacial
tension is nearly independent of the system size, an issue that
we have checked in all the simulations we have performed.

We have also calculated the SF interfacial tension of the
LJ molecules, but now with a cutoff distance r∗

c = 2.5, at the
same temperature and densities considered for the cylindri-
cal pore of radius R* = 7.5. The results obtained from our
simulations are shown in Fig. 3 and Table I. Here we do not
discuss the effect of the system size on interfacial tension be-
cause, as previously mentioned, is qualitatively identical than
those corresponding to the case of r∗

c = 4.5. As can be seen,
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FIG. 3. Interfacial tension for the SF interface in a system of N = 500 LJ
molecules adsorbed on a cylindrical pore of radius R* = 7.5 as obtained from
surface area perturbations in MC NVT simulations with fluid-fluid interaction
cutoff distance at r∗

c = 2.5. The reduced temperature is T* = 2.0 and den-
sity inside the cylindrical pore is (a) ρ* = 0.1886, (b) ρ* = 0.2829, (c) ρ*
= 0.3215, and (d) ρ* = 0.3773. The meaning of data is the same as in Fig. 2.

the data exhibit now a strong dependence on the size and sign
of the relative SF surface area change ξ = %A/A. A simi-
lar behaviour was also observed by de Miguel and Jackson24

when the cutoff distance was decreased. However, the extrap-
olated values obtained for the SF interfacial tension in the case
r∗
c = 2.5 as |ξ | → 0 are very similar than those correspond-

ing to systems in which r∗
c = 4.5, as can be seen in Table I.

In fact, differences between both results (for all densities con-
sidered) are less than a 2% in all cases. As in the case of the
LJ system with r∗

c = 4.5, a small but measurable dependence
on density is also observable. In addition to that, the SF in-
terfacial tension values corresponding to the case r∗

c = 2.5
are systematically more negative than those corresponding to
r∗
c = 4.5. This may be explained in terms of the behaviour

of the cohesion energy of the system when varying the cut-
off distance. The attractive forces between LJ molecules with
shorter cutoff distances are weaker than those associated to
larger rc values. Due to that, the SF cohesive energy of the
system effectively increases, leading to a more negative SF
interfacial tension. It is important to recall again that although
the differences are measurables, as Monte Carlo simulations
indicate, from a practical point of view they are negligible.

Finally, and in order to check the ability of the method
for calculating the SF interfacial tension in narrower pores,
we consider now the behaviour of N = 500 LJ molecules,
using two different fluid-fluid cutoff distances, r∗

c = 4.5 and
2.5, inside a thinner cylindrical pore of radius R* = 5.0 at the
same reduced temperature, T* = 2.0. We study only two dif-
ferent densities, ρ* = 0.3778 (with L∗

z = 16.85) and 0.6366
(with L∗

z = 10). Figures 4(a) and 4(b) show the behaviour
of the interfacial tension (using increasing-area, decreasing-
area, and central difference scheme) as a function of the rel-
ative SF surface change |ξ |. As can be seen in Fig. 4(a), the
SF interfacial tension also exhibits a definite linear behaviour
over the range of values of ξ considered in this work. The be-
haviour observed for the interfacial tension, as a function of
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FIG. 4. Interfacial tension for the SF interface in a system of N = 500 LJ
molecules adsorbed on a cylindrical pore of radius R* = 5.0 as obtained from
surface area perturbations in MC NVT simulations at reduced temperature T*
= 2.0 and different densities and fluid-fluid interaction cutoff distances: (a)
ρ* = 0.3778 and r∗

c = 4.5, (b) ρ* = 0.3778 and r∗
c = 2.5, (c) ρ* = 0.6366

and r∗
c = 4.5, and (d) ρ* = 0.6366 and r∗

c = 2.5. The meaning of data is the
same as in Fig. 2.

ξ , is smoother and more uniform in the case of the LJ systems
with the larger cutoff distance. This behaviour is in agreement
with the results from de Miguel and Jackson24 and with the
results previously shown here for the case of the cylindrical
pore with radius R* = 7.5. Data values obtained from linear
fits and extrapolation procedure as |ξ | → 0 are also presented
in Table I. As can be seen in part (b) of the figure, the SF inter-
facial tension values of the LJ system with r∗

c = 2.5 is more
negative, a 4%–5% approximately, than those corresponding
to the system with r∗

c = 4.5. This result is in agreement with
our previous argument by which a LJ system with shorter cut-
off distance (r∗

c = 2.5) exhibits weaker attractive interactions,
and consequently, the SF cohesive energy is enhanced com-
pared with a system with larger values of the cutoff distance
(r∗

c = 4.5). In our particular case, as can be seen in Table I,
this provokes larger negative values in the corresponding SF
tension for the case of r∗

c = 2.5.
As in the case of the widest cylindrical pore, R* = 7.5,

the SF interfacial tension of LJ molecules inside the pore of
R* = 5.0 increases (it becomes less negative) when passing
from a density of ρ* = 0.3778–0.6366 (see Table I and Figs.
4(c) and 4(d)). The reason of this behaviour has been ex-
plained previously, although now the effect is more important.
In the case of LJ molecules absorbed in a cylinder of radius
R* = 7.5, the increase of the SF interfacial tension (γ be-
comes less negative) is approximately a 2.6% in the case of
fluids with r∗

c = 4.5 and a 1.3% in those with r∗
c = 2.5. As

can be seen in Table I, the increase of the SF interfacial ten-
sion in the cylinder with R* = 5.0 is a 13% and 10% for fluids
with r∗

c = 4.5 and r∗
c = 2.5, respectively. The enhancement of

this effect when passing from a cylindrical pore of R* = 7.5 to
other thinner (R* = 5.0) is because the narrower pore is more
adsorbent than the other one. As it was discussed previously,
the effect of the local confinement in the narrower pore, at
the same total density inside de cylinder, is higher compared

with that of the wider pore. This effect, that it is clearly seen
in Figs. 1(a) and 1(b), and particularly, when comparing the
structure of the confined fluids in the center of the pores, ex-
plains the increasing of the difference between the fluid-fluid
and solid-fluid cohesive energies, and hence, the behaviour
observed in our computer simulation results.

V. CONCLUSIONS

We have extended the TA methodology, originally pro-
posed to evaluate the surface tension of vapour-liquid inter-
faces along a computer simulation in the canonical ensem-
ble, to calculate the solid-fluid interfacial tension of systems
adsorbed on cylindrical pores. This has been done following
the original work of Gloor et al. and performing free-energy
perturbations due to virtual changes in the solid-fluid surface
area. In particular, the method allows one to modify appro-
priately the radius and length of the cylindrical pore by en-
suring constant-volume virtual changes along the simulation.
According to this, we perform both increasing and decreasing
surface area perturbations to very accurately account for the
value of the solid-fluid interfacial tension as long as the mag-
nitude of the perturbation is small enough or if values are ex-
trapolated to ξ = |%A|/A → 0, where %A is relative change
of surface area. We also combine increasing-decreasing per-
turbations to estimate the surface area with a central finite-
difference approximation, allowing to obtain very accurate
values of the solid-fluid interfacial tension.

We have applied the new methodology performing
canonical Monte Carlo computer simulations to calculate the
solid-fluid interfacial tension of spherical molecules (that in-
teract through the Lennard-Jones intermolecular potential)
adsorbed in cylindrical pores with different pore sizes, densi-
ties of adsorbed molecules, and fluid-fluid cutoff distances of
the Lennard-Jones intermolecular potential. Solid-fluid inter-
actions are accounted for the generalization of the well-known
10-4-3 Steele potential for cylindrical pores recently proposed
by Siderius and Gelb. Results indicate that an increase of the
density of adsorbed molecules inside the pore provokes more
negative solid-fluid interfacial tension values. This effect is
the result of a competition between the solid-fluid and fluid-
fluid cohesive energies. However, at the highest densities con-
sidered, the effect is inverted. This can be explained taking
into account the existence of a phase transition that occurs at
high densities. Since above the coexistence density the system
seems to exhibit a liquid-like phase inside the pore (and not a
gas-like phase as it occurs at lower densities), the fluid-fluid
cohesive energy is enhanced, in comparison with the solid-
fluid cohesion, provoking a change in the behaviour of the
interfacial tension as a function of density. Finally, the effect
of fluid-fluid cutoff distance associated to the Lennard-Jones
intermolecular interactions on the solid-fluid interfacial ten-
sion is usually negligible, although it can be more important
in the case of small cylindrical pores.

It is important to note that the solid-fluid interfacial ten-
sion, for a particular pressure, must be a function of the cylin-
drical radius. In particular, γ * must approach asymptotically
to a solid-fluid interfacial value of a planar system compa-
rable to the cylindrical system. Since the goal of this work
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is to generalize the TA technique to deal with the interfacial
tension of systems confined in cylindrical pores, we have not
performed a systematic study of the behaviour of γ * with the
cylindrical radius and its comparison with equivalent planar
systems. This will be the subject of a future work.
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