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Abstract

In a recent generalisation of the SAFT-VR equation of state the method was extended so as to deal

with wide square-well ranges, namely, 1.2 ≤ λ ≤ 3.0 [B. H. Patel, H. Docherty, S. Varga, A. Galindo,

and G. C. Maitland. Mol. Phys., 103(1), 129–139, 2005.]. In this work, this equation is used to

revisit the adjustment of intermolecular model parameters, with special emphasis on substances

where the upper boundary of the potential range (λ = 1.8) has been previously reported or may

be expected on grounds of the polar nature of the molecules. For this purpose, we follow the work

of Clark et al. [G. N. I. Clark, A. J. Haslam, A. Galindo, and G. Jackson. Mol. Phys., 104(22-

24), 3561–3581, 2006] and study a relative least squares objective function and the percentage

absolute average deviation (%AAD) to determine the intermolecular model parameters (m, λ, σ,

ϵ/kB , ϵhb/kB and rc) by comparison to experimental vapour-pressure and saturated liquid density

data. In order to ensure in each case that the global minimum is identified, the dimensionality of

the problem is reduced by discretising the parameter-space. Applying this method to the study

of argon, nitrogen, benzene, carbon dioxide, carbon monoxide, n-alkanes, the refrigerant R1270,

water, hydrogen chloride and hydrogen bromide, we find that the optimal models always present

square-well ranges λ < 1.8, meaning that an upper bound value of λ = 1.8 (as set in the original

approach) for the square-well range is sufficient to model real fluids. Accurate intermolecular

potential models with ranges higher than 1.8 are also identified, but we find that these do not

usually correspond to the global minimum of the objective function considered.

PACS numbers:

2



I. INTRODUCTION

The square-well (SW) intermolecular potential is one of the simplest models in which

both repulsive and attractive interactions are included. It may be defined as

uSW (r) =

{

∞ if r < σ
−ϵ if σ ≤ r ≤ λσ

0 if r > λσ
(1)

where r is the intermolecular centre-to-centre distance, σ is the hard-core diameter, ϵ the

depth of the well and λ its range.

The SW potential has been used as a model in many theoretical as well as numerical

approaches, such as in the solutions of the Percus-Yevick, hypernetted chain and mean-

spherical integral equations1–3 and in the application of the high-temperature perturbation

theory of Barker and Henderson4. In addition to this, it has been used in numerous simu-

lation studies (see for example5–9), including the prediction of solid-solid6 and glass-glass10

transitions, reversible colloidal gelation11 in systems of short-ranged SW particles, and in

the study of confinement effects on the phase behaviour and structural properties of the SW

fluid9. Further details may be found in the recent work of del Ŕıo et al.12 which provides

an excellent review, up to 2002, of key studies relating to the square-well fluid. Further to

this, and in the context of this paper, the interested reader is directed to the work of Schöll-

Paschinger et al.13 who have studied the phase behaviour of square-well fluids of ranges

1.25 ≤ λ ≤ 3 with a self-consistent Ornstein-Zernike approximation (SCOZA) and com-

pared it to the perturbation approaches of Gil-Villegas et al.14 for intermediate ranges and

of Benavides and del Ŕıo15 for long ranges. The SCOZA is found to be especially accurate

for long-ranged (λ > 1.5) square-well fluids.

Of particular interest to us is the use of the SW fluid as a reference system in the

development of equations of state for chain molecules such as those stemming from the ther-

modynamic perturbation theory (TPT) of Wertheim16–21, which is commonly implemented

in the form of the statistical associating fluid theory (SAFT)22,23. Since its development,

many versions of SAFT have been proposed based on a wide variety of reference systems,

such as the Hard-Sphere and Lennard-Jones fluids. An interesting development has been

the acknowledgement of the importance of a variable potential range in the modelling of

real fluids. In the SAFT-VR approach24, intermolecular potentials of variable range are

used to incorporate the non-conformal effects of fluids. We note that while in the modelling
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of real fluids the most common reference system for this equation of state is a square-well

fluid 25–33, the approach is general and, in the original work, was applied to the square-well,

Yukawa, Sutherland and Mie potentials. However, in this work, we have chosen to use the

square-well fluid as a reference system. Recently a Mie potential of variable repulsive range

has been proposed to model phase coexistence and derivative properties34,35 and, it has been

shown that, the use of a variable repulsive range results in an excellent description of coex-

istence and derivative properties, yielding intermolecular potential parameters that follow

physically-meaningful trends. These works provide further evidence of the importance of

incorporating potentials of variable range.

In the SAFT-VR equation of state24 the properties of the reference monomer fluid are

obtained from a high-temperature perturbation expansion following Barker and Hender-

son4,36,37 with a hard-sphere (HS) fluid as reference. Additionally, in order to obtain an

analytical expression of the free energy, the mean attractive energy A1 is written by map-

ping the radial distribution function of the reference fluid gHS to the value of the function

at contact using an effective packing fraction ηeff and the mean value theorem to solve the

integral, such that

A1

NkT
= −

( ϵ

kT

)

12η

∫ ∞

1

gHS(x; η)x2dx ≈ −
( ϵ

kT

)

4ηgHS(1; ηeff)
(

λ3 − 1
)

(2)

where N is the number of molecules, k Boltzmann’s constant, T the absolute temperature, η

the packing fraction of the fluid and x = r/σ. Since it is possible to obtain the contact value

for a hard-sphere fluid analytically using equations such as the Carnahan-Starling38 equation,

a numerical expression has effectively been replaced for an analytical one. Although this

results in a loss of generality (as we discuss below the mapping of functions cannot be done

in a general sense), analytical equations of state are more convenient in terms of speed

of calculation and manipulation. In order to obtain the corresponding effective packing

fraction in each case, the left hand-side of equation (2) is solved numerically for a range of

η and λ values. In the original work, square-well potential values of λ between 1.2 and 1.8

were considered. Because of this, the SAFT-VR equation of state, employing a square-well

potential to account for dispersive forces, is strictly only applicable for square-well fluids

with a potential range of between 1.2 and 1.8.

The importance of the limits of the potential range for which the SAFT-VR equation of

state may be confidently used becomes apparent when trying to obtain optimized parameters
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for real fluids such as water or hydrogen fluoride, among others39–41. In these examples, the

upper bound of λ = 1.8 is met on optimization, meaning that it is possible that an optimal

model has not been obtained. One solution to this has been to use values λ ≥ 1.8 for the

potential range as it can be expected that the mapping will still provide accurate Helmholtz

free energies when the bounds are only slightly exceeded. However, the relationship between

η and ηeff quickly becomes more complex as λ > 1.842 and the original parametrization

cannot be used. In a recent work a new mapping for the relationship between η and ηeff

including values of λ > 1.8 (specifically for 1.2 ≤ λ ≤ 3.0) has been presented42. Having tried

a variety of expressions, a Padé approximant was proposed as it gives a good representation

of both the simple (low λ) and complex (high λ) relationship of ηeff and η. The accuracy of

the chosen expression was assessed by comparison with phase equilibrium data for a range

of λ values obtained by computer simulation.

In this work, we investigate the applicability of the generalised SAFT-VR equation for

square-well potentials42 to model the phase behaviour of real substances. Specifically, we

return to the study of substances in which the upper bound of λ = 1.8 has been previously

reported as part of the optimized intermolecular parameter set, and of substances where

their polar nature may suggest the need of longer intermolecular parameter ranges. In

order to ensure that a global minima is achieved, we follow the work of Clark et al.33 and

study the objective function and the percentage of the absolute average deviation (%AAD)

surfaces represented as two-dimensional contour plots where the axes correspond to two of

the intermolecular parameters which are varied discretely so as to reduce the dimensionality

of the problem.

The rest of the paper is organised as follows: details of the molecular models and theory

are briefly reviewed in section II; the optimization procedure is presented in the section III;

results are given in section IV; and discussion and conclusions are made in section V.

II. MOLECULAR MODEL AND THEORY

In the SAFT-VR approach, molecules are modelled as chains of m tangentially bonded

spherical segments of hard-core diameter σ interacting via attractive potentials of variable

range. In this work we consider square-well interactions. The square-well potential (Eq. 1)

is characterized by a depth ϵ and a range λ. Hydrogen bonding and highly polar molecules
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are treated by incorporating a number s of short-ranged attractive sites (association sites)

of a given type that mediate the formation of aggregates. A model chain molecule is shown

in Figure 1(a). The associating systems studied in the present work are water, hydrogen

chloride and hydrogen bromide. The water molecule is modelled as spherical (m = 1) with

four off-centre square-well attractive sites (two sites of type e represent the oxygen lone-

pairs of electrons and two sites of type H represent the hydrogens), as shown in Figure

1(b). The hydrogen chloride and hydrogen bromide molecules are modelled as spherical

(m = 1) with two off-centre square-well attractive sites (one site of type e represent the

chloride and bromide lone-pairs of electrons and one site of type H represent the hydrogen),

as shown in Figure 1(c) . The sites are placed at a distance rd from the centre of the

sphere, and have a cut-off range rc. When two sites are closer than the cut-off distance rc

an attractive interaction of depth ϵHB is realised. Only H-e bonding is allowed (i.e., no H-H

or e-e bonding).

The Helmholtz free energy corresponding to the models discussed is written in the SAFT-

VR approach as a sum of four separate contributions

A

NkT
=

AIDEAL

NkT
+

AMONO

NkT
+

ACHAIN

NkT
+

AASSOC

NkT
. (3)

The term AIDEAL corresponds to the ideal free energy of the fluid, and AMONO, ACHAIN

and AASSOC are the residual contributions to the free energy due to monomer-monomer

interactions, chain formation and site-site intermolecular association (hydrogen bonding),

respectively. Each of the contributions have been presented in detail in previous works24,42

and so we do not provide further details here. Of particular interest to this work is the

recent extension in which long-range square-well potentials are considered42.

In the SAFT-VR approach the square-well monomer contribution is obtained from a

Barker-Henderson4,36,37 high-temperature perturbation expansion up to second order, i.e.,

AMONO

NkT
=

AHS

NkT
+

A1

NkT
+

A2

NkT
, (4)

where the hard-sphere reference free energy AHS is given by the Carnahan-Starling expres-

sion38 and, as mentioned in the introduction, the mean attractive energy A1 can be expressed

analytically by an appropriate mapping where the contact value of the radial distribution

function at an effective density is used in place of the integral over the radial distribution
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function (see equation (2)). A2 is treated within the local compressibility approximation.

For further details of the approach and of the specific expressions the reader is directed to

the original papers24,25,42.

In a previous work the mapping of densities used to obtain an analytical expression for

the mean attractive energy (A1) term was extended to treat square-well potentials of short

(λ ≥ 1.2) and long (λ ≤ 3) range. A new parametrization was provided for this mapping,

expressed as the Padé approximant

ηeff =
c1η + c2η2

(1 + c3η)3
, (5)

where the coefficients cn are given by the matrix:

⎛

⎜

⎝

c1

c2

c3

⎞

⎟

⎠
=

⎛

⎜

⎝

−3.16492 13.35007 −14.80567 5.70286

43.00422 −191.66232 273.89683 −128.93337

65.04194 −266.46273 361.04309 −162.69963

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1/λ

1/λ2

1/λ3

1/λ4

⎞

⎟

⎟

⎟

⎟

⎠

. (6)

As noted by Tan and colaborators 43 there was an error in Figure 1 of reference42, in that the

solid line was a guide to the eye and not the result of the theoretical calculation as provided

by the parameterisation above. We note that the Helmholtz free energies obtained with the

parameterisation presented are in very good agreement with the numerical values for the

range of λ and η of interest. Although the more complex parameterisation of Tan et al.43

provides better agreement for the mapping of densities, it is limited to λ < 2.5 and, in terms

of the Helmholtz free energy, provides an essentially equivalent result to that of our work

and is, as expected, not suitable for λ > 2.5 (see Figure 2). We also note in passing that

the matrix presented by Tan et al.43 appears to have the indexes ij in the wrong order. In

Figures 3 and 4 the phase diagrams for square-well fluids of different ranges λ > 2 calculated

using the SAFT-VR equation with the mapping of equations (5) and (6) and with that of

Tan et al.43 are compared with simulation data. The temperature-density and a Clausius-

Clapeyron representation of the vapour pressure are given. Differences between the two

parameterisations are seen more clearly in terms of the density. The main improvement

seen with the more complex mapping of Tan et al.43 is seen for λ = 2.3, in all other cases

little or no difference is observed or, as in the case of λ = 2, our mapping turns out to be

more accurate. In all, we feel that the simple mapping provided by equations (5) and (6)

is perfectly suitable to describe the general phase behaviour of square-well fluids from short

to long ranges (1.2 ≤ λ ≤ 3).
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III. OPTIMISATION PROCEDURE

The equation of state discussed in the previous section has been applied to model the

phase behaviour of a number of non-associating and associating compounds, with special

emphasis on the effect of potential range in the optimization of intermolecular parameters.

The intermolecular parameters (m, λ, σ, ϵ/kB, ϵHB/kB and rc) of the SAFT-VR approach

that characterize the compounds of interest are usually determined by comparison of calcu-

lated and experimental vapour-pressure and saturated liquid density data by minimising a

relative least-squares objective function

fobjective =

⎡

⎣ωp

Nexp,p
∑

i=1

(

P calc
i − P

exp
i

P
exp
i

)2

+ ωρliq

Nexp,ρliq
∑

j=1

⎛

⎝

ρcalc
liqj

− ρ
exp
liqj

ρ
exp
liqj

⎞

⎠

2⎤

⎦ (7)

where Nexp,p is the number of experimental pressure points, Nexp,ρliq
the number of ex-

perimental saturated liquid density points, P
exp
i and ρ

exp
liqj

are the experimental values of

the vapour pressure and saturated liquid density of each point, respectively, and P calc
i and

ρcalc
liqj

are the corresponding vapour pressures and saturated liquid densities calculated with

the SAFT -VR approach for a given intermolecular parameter set at the same temperature.

The weighting factors ωp and ωρliq
are fixed equal to 1. The range of temperatures of the

experimental data sets considered span from the melting point up to the critical point. How-

ever, it is well known that the critical region cannot be described with analytical equations

of state such as SAFT-VR (a method to extend the approach to incorporate an accurate

description of the critical region has been presented by McCabe and Kiselev44,45 but we do

not consider it here). In order to obtain an optimization of the intermolecular parameters

that gives a better description of the low and intermediate temperature regions, the range

of experimental temperatures in our work is limited to up to 90% of the critical temperature

of the each pure substance.

It is also useful in comparing with experimental data to calculate the percentage absolute

average deviation (%AAD) which is given by

%AAD =
1

Nexp,p

Nexp,p
∑

i=1

∣

∣

∣

∣

∣

P calc
i − P

exp
i

P
exp
i

∣

∣

∣

∣

∣

+
1

Nexp,ρliq

Nexp,ρliq
∑

j=1

∣

∣

∣

∣

∣

∣

ρcalc
liqj

− ρ
exp
liqj

ρ
exp
liqj

∣

∣

∣

∣

∣

∣

. (8)

While we use the objective function of equation (7) to estimate the model parameters, we

use the %AAD as a measure of the error of the calculation.
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In multiparameter equations of state, such as SAFT-VR, it is difficult to determine an

optimal set of intermolecular potential model parameters from local-search algorithms with-

out resorting to global minimisation methods. A simple method that takes advantage of the

speed of local methods but implements, to a degree, a global view of the objective function

space as been presented recently33. The idea is to reduce the dimensionality of the problem

by fixing the value of two of the parameters at discrete intervals that eventually encompass

the entire parameter space. The reduction of the dimensionality provides faster convergence

of each of the minimisation problems. The space is then analysed in two-dimensional contour

plots, of the error or objective function, and areas that may contain the global minimum

are identified. Each point of the two-dimensional grid is an evaluated point of the mini-

mum value of the objective function, with a corresponding %AAD (see equations (7)-(8)),

obtained with two parameters fixed (as corresponding to the axes of the grid) while all other

parameters are optimized to the experimental vapour pressure and saturated liquid density

data using a combined simplex and annealing method46. In particular, the potential range

λ is used in this work as one of the fixed variables at each grid-point. Our aim is to ensure

that a global minimum is identified, so as to determine if models with λ > 1.8 need to

be considered in modelling the experimental phase behaviour of pure compounds. In some

cases we have also carried out optimizations with m fixed, so as to be able to compare with

models previously presented.

In the case of non associating molecules for each fixed λ, there remain three parameters

to be determined. Therefore, three possible contour-plots can be studied: the chainlength

(m) versus potential range (λ), the segment diameter (σ) versus potential range (λ) and

energy parameter (ϵ/kB) versus potential range (λ) (not considered here). Details of the

grids considered in each case are given below:

• m − λ plot:

Values of 1.00 ≤ m ≤ 6.00 for the chain length and values of 1.20 ≤ λ ≤ 3.00 for the

potential range are considered. The intervals for each variable used in the grid are

∆m = 0.05 and ∆λ = 0.018. The total number of evaluated points is 10201.

• σ − λ plot:

Values of 1.00 Å ≤ σ ≤ 6.00 Å in intervals of ∆σ = 0.05 Å and potential range values

1.20 ≤ λ ≤ 3.00 in intervals of ∆λ = 0.018 are considered. The total number of
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evaluated points is 10201.

Given the global nature of the method, any of the surfaces discussed is expected to lead

to the same optimal model. We have confirmed this for each of the substances studied.

In the case of associating molecules, the number and type of association sites need to be

specified, and the site-site association energy (ϵHB/kB), and the association cut-off length

(rc) are optimized by comparison to experimental data. There are hence a number of

additional two-dimensional grids that may be constructed. Since the association interaction

plays an important role in the thermodynamic properties of these compounds (and especially

in water, which is of interest in this work), we construct the contour plots of the objective and

%AAD surfaces for fixed λ and ϵHB/kB. We have selected λ as the parameter to be controlled

discretely as opposed to ϵ, which was used in the work of Clark et al.33, as we are particularly

interested in investigating models with long potential ranges. In the SAFT-VR approach

the dipole of water is not incorporated explicitly, so that a longer square-well range may be

expected. We treat values 1000 K ≤ (ϵHB/kB) ≤ 1600 K at intervals of ∆(ϵHB/kB) = 6 K

and values 1.20 ≤ λ ≤ 3.00 for the potential range in intervals of ∆λ = 0.018. In total 10201

optimizations are carried out.

For clarity, in the figures presented in the following section only grid points with values

of the objective function (fobjective) between [0 − 1] and values of the %AAD between

[0-5]% are plotted. Values higher than these for both functions correspond to models that

are deemed unsatisfactory, they provide no useful information and are represented as white

regions in the plots. Once the interesting areas of the parameter space are determined, the

grid minimum is identified. In a final step, all intermolecular parameters are optimized using

the grid minimum as a starting point, and setting tight bounds for all parameter values.

IV. RESULTS

We have applied the method discussed in the previous section to determine optimal

intermolecular model parameters for a range of substances. We have chosen argon as repre-

sentative of the simplest non-polar spherical molecules, and four n-alkanes as representatives

of non-polar chain-like molecules; these have been thoroughly studied with SAFT-like ap-

proaches, so they provide a good means of comparison. We consider also a number of

quadrupolar molecules (nitrogen, benzene, carbon dioxide) which can be expected to find
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corresponding molecular models of longer range, refrigerant R1270 (propene), and dipo-

lar molecules such as carbon monoxide, hydrogen chloride and hydrogen bromide and water

which also presents string hydrogen bonding interactions. Our aim is to assess if in modelling

real substances there is a need to incorporate square-well potentials of very long range.

The optimal parameters for the substances studied are presented in Tables I and II

together with values already presented in the literature, which are given for comparison. It is

useful to recall that when comparing the values of intermolecular parameters and deviations

with the current method and with the original SAFT-VR approach small differences are

expected in all cases. Although some effort was placed in the development of the generalised

version to maintain the mapping between η and ηeff as close as possible to the original SAFT-

VR equation for 1.2 ≤ λ ≤ 1.8, the two are not mathematically identical. The experimental

data was obtained mostly from the Detherm R⃝ database.47 In addition, all references that

were used in the evaluation the objective function and the %AAD are given explicitly for

each substance. In Figures 5-8 a sample of the contour plots of the objective function and

%AAD obtained for benzene, carbon dioxide, n-butane and water are presented. In each

case well-defined areas of minima are identified. It should be noted that only water has

previously been treated with a global approach as carried out here.

A. Non-polar molecules

It is useful to treat first non-polar molecules, which provide a reference for the value of the

square-well range related to real compounds. We first consider argon. This simple molecule

is treated as spherical with m = 1, the remaining parameters (λ, σ and ϵ/kB) are optimized

as described above. A well-defined single minimum region is observed for λ = [1.4 − 1.6]

and σ = [3 − 3.6] Å. The minimum of all evaluated points can be found at λ = 1.5 and

σ = 3.3 Å. With the values of the parameters found at this evaluated point, we perform

a final optimization considering only values that are inside of this region. The optimized

parameters and the resulting %AAD are presented in Table I.

The homologous series of the n-alkanes is also of general interest given their importance

as components of crude oil, as oligomers of polyethylene, and as ideal chain-like molecules

with which to test molecular models and theories. In addition, mixtures of n-alkanes and

polyethylene molecules exhibit a variety of interesting phase behaviours53–55. Here we revisit
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the models and parameter sets for four of the smaller n-alkanes: ethane, propane, n-butane

and n-octane. We minimise the objective function, studying an m − λ grid and, for fixed

values of m as used in the literature, we construct contour plots of the objective function and

the %AAD in the σ−λ plane. An example of the type of surface obtained for the n-alkanes

is given in Figure 5 (n-butane is chosen as a characteristic molecule). While a relatively

wide range of minima is obtained for optimizations with free m, a better defined region of

minima is seen in the case of models with m fixed. The optimal parameter sets for the four

n-alkanes considered are presented in Table I. Two key conclusions can be drawn from these

calculations: we find that by fixing m the surface of the objective function is better behaved

with less local minima, a second conclusion is that none of the optimal models presents a

value of the square-well range λ greater than 1.8.

B. Quadrupolar molecules

Benzene is highly non-spherical and strongly quadrupolar due to the delocalisation of

electrons in the aromatic ring and, as such, it may be expected that a larger value of λ

will be necessary to account for the long range nature of these interactions. The m −

λ surfaces of the objective function and %AAD are shown in Figure 6. We note that

while in both figures a region of possible interest extends to longer values of λ, a discrete

region of lowest minima occurs around a grid minimum value located at m = 2.750 and

λ = 1.722. Further refinement of this region using tight bounds around the grid minimum

results in the optimal set of intermolecular model parameters presented in Table I which

are consistent with recently published parameters for the same system48. Small differences

can be attributed to the different mappings in the generalised SAFT-VR equation of this

work and the original one used in reference48. A main conclusion of our calculations is that

even for the case of a strongly quadrupolar molecule such as benzene, the optimal set of

intermolecular parameters identified corresponds to one with λ < 1.8.

Another quadrupolar molecule of interest is carbon dioxide (CO2), which has become a

useful replacement for organic solvents and is particulary important in supercritical extrac-

tion applications due to its relatively accessible critical point. In previous works a model

of two tangentially bonded segments, i.e., m = 2 has been presented and used to study

the phase behaviour of mixtures containing CO2 very successfully49–52. Here, we carry out
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minimisations of the objective function in an m − λ space, and also consider models with

m = 2 fixed, where we study the σ−λ space. In Figure 7 the objective function and %AAD

in each of the spaces are presented. As can be seen in the top figures (a) and (b), in the case

where m is an optimizable parameter, an almost linear region of lowest minima is observed,

running from m = 1, λ = 1.3 to approximately m = 4.5 and λ = 2.2. However, further reso-

lution leads to a grid minimum value of the objective function at m = 3.050 and λ = 1.7580.

The final set of parameters obtained in a minimisation with this starting point and tight

bounds is presented in Table I. The optimizations carried out with fixed m = 2 (Figures

6(c) and 6(d)) clearly present a better behaved surface with a smaller region of equivalent

parameter sets. The minimum of the grid in this case is found for λ = 1.542 and σ = 2.750

Å; the optimal set of parameters is presented in Table I. It is also interesting to note the

relation between σ, ϵ and λ in the integrated mean-field parameter α = 2πσ3ϵ(λ3 − 1), so

that combinations of these parameters leading to the same value of α result in very similar

thermodynamic properties. Note however that small differences can be expected in mod-

elling chain molecules as the contribution to the free energy due to the formation of a chain

is explicitly dependent on λ.

For comparison, the values of the CO2 molecular parameters obtained in previous

works49,50 are given in Table I with corresponding values of %AAD obtained with the same

experimental data, but using the original SAFT-VR approach. As can be seen, the parame-

ters of the two approaches (for a fixed m = 2) are very close and the differences in the value

of %AAD small. These results are entirely justified based on the fact that the mapping

presented in the generalised SAFT-VR equation42 was developed in such a way that for

λ < 1.8 the parameterisation of the effective packing fraction can be compared to that of

the original SAFT-VR, and that, as discussed earlier, models developed with a priori fixed

values of m lead to objective functions with less local minima, so that in most cases the

global minimum can be identified easily with local search methods.

We have also developed a model for nitrogen. As for CO2, we consider two grids: one

in which the number of segments m is optimized, and another in which m is fixed. In the

first case a grid in the space m − λ is constructed, and multiple local minima of similar

depth are observed, which highlights the importance of considering global methods. A

minimum is identified at m = 1.4 and λ = 1.55 (with corresponding values of σ = 3.1488

Å and ϵ/kB = 84.294 K). Using this as the starting point for a final optimization with
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tight bounds, the optimal model is found (see Table I). In order to compare with optimal

parameters previously presented by Haslam et al.32, in the second grid the value of m is

fixed to 1.3 and a σ−λ surface is calculated. We observe that, as in the case of CO2, setting

the value of m to a fixed value greatly reduces the number of local minima on the surface

of the objective function. The optimal model found is presented in Table I. The values

of the intermolecular parameters for nitrogen obtained by Haslam et al.32 are included in

the table for comparison. As can be seen from Table I, the model obtained in this work

is entirely comparable to that of Haslam et al.32. We note that although the values of the

objective function and the %AAD of this work are slightly lower than those of Haslam et al.,

the difference cannot be considered significant; both parameter sets result in overall %AAD

< 1.

It is also of interest to follow from the work of Swaminathan and Visco56, where the

intermolecular parameters reported for propene (also known as refrigerant R1270) have a

potential range λ = 1.8172, which is of interest here since it is larger than 1.8. We consider

two models for this molecule, one in which the number of segments m is optimized and

the other case where m is fixed to the value reported in the literature (m = 1.0152). In

the case of free m the objective function is minimised over a grid in the m − λ space, with

the corresponding contour plot presenting a wide minimum area for a range of values of

the parameter m, as for the n-alkanes. The minimum in the grid is identified at m = 2.3

and λ = 1.70 (with corresponding values of σ = 3.2169 Å and ϵ/kB = 142.891 K). The

optimized parameters are presented in Table I together with the corresponding %AAD. We

have also carried out optimizations with a fixed value of m = 1.0152 in order to compare

the work of Swaminathan and Visco56. As before, fixing m leads to objective functions with

less local minima. The minimum in the grid is identified at λ = 1.25 and σ = 4.8 Å (with

corresponding value of ϵ/kB = 480.566 K ). The optimal set of parameters found is presented

in Table I. For comparison the molecular parameters for R1270 presented by Swaminathan

and Visco56 are given in Table I. We note that the low value of the square-well depth found

in their model is related to the fact while that while in the article they state that propene

is modelled without sites, in fact they modelled this compound including two association

sites57. However, as can be seen from our fully optimized model (cf. table I), a very good

representation of the phase behaviour of this system can be obtained without the need for

association sites.
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C. Small polar molecules

It is well-known that dipole-dipole interactions are very long-ranged, and that special

techniques such as the Ewald sum are needed to simulate dipolar systems58. Recently

considerable effort has also been placed to incorporate explicit polar terms into the SAFT

framework59-65. In the original SAFT-VR approach, however, dipoles are treated in an

effective way via a variable square-well range, so that given the long-ranged nature of the

dipole-dipole interaction values of λ > 1.8 may at first be expected. Indeed, models for

polar molecules have been presented where the upper bound of λ = 1.8 was used39,49.

Here we consider three small polar molecules; carbon monoxide (CO) which is weakly polar

(its dipole moment µ in the gas phase is reported as 0.12 Debye), hydrogen chloride (HCl,

µ = 1.08 Debye) and hydrogen Bromide (µ = 0.80 HBr), and model them as non-associating

molecules treating dipole-dipole interactions only in an effective way via the variable range

of the attractive square-well. CO is modelled as non-spherical so that four intermolecular

parameters (m, σ, ϵ and λ) need to be determined, while HCl and HBr are treated as spherical

(i.e., m = 1). We follow the proceduce presented in section II studying the m − λ or

σ − λ parameter spaces to identify the global minimum of the objective function given in

equation (7). In the case of CO we carry out optimizations in the m − λ space as well

as in the σ − λ space with m = 1.519 fixed for comparison with a model available in the

literature48. The final optimal intermolecular model parameters, together with values for

the AAD%, are presented in table I. As can be seen, contrary to what may be expected, we

find values of the square-well potential that are within the range of the original SAFT-VR

approach (i.e., λ < 1.8). It is in fact interesting to note that the optimal models for HCl

and HBr present values of the square-well range shorter than those for non-polar molecules.

Since in the standard SAFT-VR approach dipoles are not incorporated explicitly, another

approach to treat strongly polar compounds is by introducing associating sites. We have

also followed this approach for HCl and HBr. A two-site model is used, where one site of

type e models the electronegative atom and the other of type H the proton. The sites are

placed at a distance rd/σ = 0.25 from the centre of the spherical segment and have a range

rc/σ so that when two sites are closer than this distance an attractive interaction ϵHB is

realised. We carry out a set of optimizations in a grid at discrete fixed values of λ and ϵHB

described in section III. The optimized model parameters are presented in table II. We find
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that using these models, the overall AAD% are lower than when no sites are included. This

may indicate that the two-site models are better suited to treat polar molecules, but the

fact that added parameters are needed to characterize the site-site interactions obscures this

conclusion (the more parameters the better a model should be expected to perform).

D. Water

Although in recent work33 an exhaustive study of water models and intermolecular pa-

rameters has been presented, it is useful for completeness to assess here the impact of

implementing the extended SAFT-VR equation to model this compound. We have obtained

the association energy ϵHB/kB - potential range λ contour plot of the objective function

and %AAD (Figure 8) for a fixed value of m = 1, since water is treated as spherical. In

this case a wide region of minima is observed, with the minimum of the grid found for

ϵHB/kB = 1282 K and λ = 1.65 (with corresponding σ = 3.0353 Å, ϵ/kB = 347.7427 K, and

rc = 0.6804),. A final optimization with the initial point and tight bounds leads to the pa-

rameter set presented in Table II. The set of parameters obtained here is entirely consistent

with the one published earlier33; exact mathematical agreement cannot be expected due to

the different mappings of the original SAFT-VR and the one used here. A key finding is

that we confirm that even in the case of a strongly polar molecule, and even though dipolar

interactions are not treated explicitly in the SAFT-VR approach, the square-well potential

of the model is relatively short-ranged.

V. DISCUSSION AND CONCLUSIONS

The generalised SAFT-VR equation of state42 has been used to model a number of com-

pounds including simple non-polar molecules such as argon, chain-like molecules such as

n-alkanes, polar molecules such as nitrogen, benzene and carbon dioxide, carbon monoxide,

hydrogen chloride and hydrogen bromide, and hydrogen bonding molecules such as water

as examples. We first of all confirm the accuracy of the approach in comparison with com-

puter simulation data and with the calculations of Tan et al.43. In terms of comparisons

with experimental phase behaviour, a relative least-square objective function of the sum of

residuals of pressure and saturated liquid density as compared to experimental data is min-
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imised at fixed grid points of two of the intermolecular parameters of the molecular model.

This technique has been shown to be useful in identifying regions of minima in the complex

objective function surface of multiparameter equations of state such as SAFT-VR33.

A key aim of this paper was to evaluate the need to call on models with long square-

well ranges (λ > 1.8). In the case of models for electrolytes, Tan et al.43 have found it is

necessary to use values for the potential range λ > 1.8, and in the treatment of critical

states, McCabe and Kiselev44,45 made use of the generalised SAFT-VR approach used here.

We find however that, in terms of modelling the phase behaviour of non-electrolytes, when

critical approaches are not implemented, there does not appear to be a need.

We find this result slightly disappointing, but entirely sensible. In fact, in the generali-

sation of the SAFT-VR equation it is shown how longer ranges of the square-well potential

correspond to a phase behaviour closer to the mean-field limit of van der Waals, which is usu-

ally associated with dispersion interactions (as opposed to the longer-ranged non-conformal

polar interactions). In this respect, it can be seen that even for polar compounds the range

of the square-well may not be expected to be longer. It is also useful to recall that a Boltz-

mann averaging of the dipole-dipole interaction energy over all orientations leads to the

Keesom potential169, an interaction which varies as the sixth inverse power of intermolecu-

lar distance; i.e. comparable to the range of van der Waals or dispersion forces and which

can be treated as contributing to the overall van der Waals intermolecular interaction.

Using propene as an example, we have shown that the few instances when optimal models

previously obtained in the literature have resulted in values of the square-well potential range

λ > 1.8, these were most likely due to optimization problems, understood in terms of local

minima being identified as opposed to the global minimum. As discussed by Clark et al.33,

reducing the dimensionality of the optimization problem in multiparameter equations of

state such as SAFT-type approaches, and using a global (if discrete) search of the remaining

space, leads to an optimal model that is closest to the global minimum and not one of the

local minima.
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Table I: Optimised intermolecular parameters for non-associating real substances for the generalised

SAFT-VR for longer potential ranges.

m λ σ (Å) ϵ/kB (K) fobjective %AAD Nexp

Ar 1.0000 b 1.47225 3.30219 127.380 0.17960 1.3508 22166–73

C2H6 2.0966 a 1.75984 3.07979 110.750 0.12970 2.4435 13588–99

1.3333 b 1.41429 3.81131 253.022 0.33710 3.8605 13588–99

1.3333 c,100 1.44900 3.78800 241.800 0.66250 6.0653
C3H8 2.4162 a 1.69285 3.25909 143.285 0.18160 2.8668 13566,88,89,98,101–107

1.6667 b 1.44687 3.87357 266.610 0.29223 2.9684 13566,88,89,98,101–107

1.6667 c,100 1.45200 3.87300 261.900 0.24050 2.6904
n-C4H10 2.3843 a 1.60509 3.57315 198.487 0.18400 2.5352 7766,89,98,101,108–118

2.0000 b 1.49857 3.87565 261.829 0.19385 2.2954 7766,89,98,101,108–118

2.0000 c,100 1.50100 3.88700 253.600 0.24650 2.8861
n-C8H18 4.3968 a 1.75917 3.45352 154.753 0.03920 1.4492 13766,88,119–123

3.3333 b 1.54815 3.94697 267.204 0.11211 2.0617 13766,88,119–123

3.3333 c,100 1.57400 3.94500 250.300 0.28610 3.9227
C6H6 2.7521 a 1.71922 3.35218 197.775 0.00653 0.5596 9766,76–80

2.7604 c,48 1.73910 3.34730 193.620 0.00751 0.6019
CO2 3.0274 a 1.75849 2.29391 94.865 0.00304 0.4092 5081–86

2.0000 b 1.52676 2.77393 179.317 0.00395 0.5396 5081–86

2.0000 c,49 1.51570 2.78640 179.270 0.00497 0.6838
N2 1.4110 a 1.56717 3.05750 78.346 0.00549 0.5055 9866,74,75

1.3000 b 1.51652 3.17571 88.605 0.00625 0.5053 9866,74,75

1.3000 c,32 1.53400 3.19400 84.530 0.01703 0.8360
R1270 2.3182 a 1.68104 3.22085 147.165 0.52605 2.6327 28397,118,124–155

1.0152 b 1.27235 4.70262 458.300 1.23795 5.1456 28397,118,124–155

1.0152 c,56 1.81720 4.41230 142.219 ≫ 10 ≫ 10
CO 1.6275 a 1.63095 2.90812 68.776 0.00829 0.6386 15287

1.5190 b 1.57850 2.99908 78.139 0.00945 0.6200 15287

1.5190 c,48 1.60040 3.00420 73.950 0.00786 0.5995
HCl 1.0000 b 1.3311 3.6190 365.235 0.25167 3.4960 9187

HBr 1.0000 b 1.3448 3.8210 386.655 0.06075 1.4996 9087

a Corresponds to the results when the adjustment is done for all molecular parameters.

b Corresponds to results when m is fixed and then the adjustment is done for the rest of

the molecular parameters. c Corresponds to results obtained with the optimization

procedure using the original SAFT-VR approach and the parameters are those found in

the reference given.
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Table II: Optimised intermolecular parameters for associating real substances for the generalised

SAFT-VR for longer potential ranges.

m λ σ (Å) ϵ/kB (K) ϵHB/kB (K) rc fobjective %AAD Nexp

H2O 1.0 b 1.65921 3.03528 342.371 1279.405 0.68044 0.03840 0.5958 583156–164

1.0 c,33 1.71825 3.03300 300.433 1336.951 0.68433 0.03786 0.5960
HCl 1.0 b 1.50245 3.46735 261.505 673.8676 0.65313 0.03167 1.1246 9187

HBr 1.0 b 1.46592 3.72646 279.924 608.2353 0.74888 0.00097 0.2175 9087

b and c same as Table I.
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Figure 1. Models for (a) non-associating compounds used in this work: argon, nitrogen,

carbon dioxide, carbon monoxide, benzene, n-alkanes (ethane, propane, n-butane and n-

octane) and R1270; model for water (b) and model for hydrogen chloride and hydrogen

bromide (c), the associating systems studied, together with the square-well potential (part

(d)).

Figure 2. The first perturbation term (A1/NkT ) as a function of the packing fraction

(η) for square-well fluids of different ranges. Solid lines are obtained using the Padé ex-

pression for the effective packing fraction presented in a previous work42 while dashed lines

are obtained using the expression for the effective packing fraction presented by Tan et

al.43. Squares correspond to the numerical solution of the equation (2), where the radial

distribution function was treated in the Perkus-Yevick approximation with the Verlet-Weis

modification165,166.

Figure 3. Vapour-liquid coexistence for the square-well fluid of range (a) 1.25, (b) 1.50, (c)

1.75, (d) 2.00, (e) 2.30 and (f) 2.50. Solid lines are obtained using the Padé expression for

the effective packing fraction presented in a previous work42 while dashed lines are obtained

using the expression for the effective packing fraction presented by Tan et al.43. Symbols

correspond to simulation data: Diamonds are the GEMC data of Vega et al.167, circles are

the hybrid MC data of del Rio et al.12, triangles are the MD data of Elliot and Hu7 and

crosses are the NVT data of Patel et al.42.

Figure 4. Clausius-Clapeyron representation of the vapour pressure for square-well fluids of

different ranges. Solid lines are obtained using the Padé expression for the effective packing

fraction presented in a previous work42 while dashed lines are obtained using the expression

for the effective packing fraction presented by Tan et al.43. Symbols correspond to simulation

data: Diamonds are the GEMC data of Vega et al.167, circles are the hybrid MC data of del

Rio et al.12, triangles are the MD data of Elliot and Hu7, crosses are the NVT data of Patel

et al.42, and pluses are the data of Orkoulas and Panagiotopoulos168.

Figure 5. Representation of the objective function (parts (a) and (c)) and %AAD values

(parts (b) and (d)) obtained when the intermolecular parameters (m, ϵ/kB, σ and λ) of

the extended SAFT-VR approach are adjusted to the experimental data of vapour pressure

and saturated liquid density of n-butane (C4H10)66,89,98,101,108–118. Part (a) and (b) show the
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results for the optimization procedure when m and λ are fixed values for each grid point,

i.e. ϵ/kB and σ are adjusted; and part (c) and (d) show the results for the optimization

procedure when σ and λ are fixed values for each grid point and also fixing m = 2.0, i.e.

only ϵ/kB is adjusted.

Figure 6. Representation of the objective function (a) and %AAD values (b) obtained when

the intermolecular parameters (m, ϵ/kB, σ and λ) of the extended SAFT-VR approach are

adjusted to the experimental data of vapour pressure and saturated liquid density of benzene

(C6H6)66,76–80 Part (a) and (b) show the results for the optimization procedure when m and

λ are fixed values for each grid point, i.e. ϵ/kB and σ are adjusted.

Figure 7. Representation of the objective function (parts (a) and (c)) and %AAD values

(parts (b) and (c)) obtained when the intermolecular parameters (m, ϵ/kB, σ and λ) of the

extended SAFT-VR approach are adjusted to the experimental data of vapour pressure and

saturated liquid density of carbon dioxide (CO2)81–86. Part (a) and (b) show the results for

the optimization procedure when m and λ are fixed values for each grid point, i.e. ϵ/kB

and σ are adjusted; and part (c) and (d) show the results for the optimization procedure

when σ and λ are fixed values for each grid point and also fixing m = 2.0, i.e. only ϵ/kB is

adjusted.

Figure 8. Representation of the objective function (a) and %AAD values (b) obtained

when the intermolecular parameters (σ, ϵ/kB, λ, ϵHB/kB and rc) of the extended SAFT-VR

approach are adjusted to the experimental data of vapour pressure and saturated liquid

density of water (H2O)156–164. These results represent the optimization procedure when

ϵHB/kB and λ are fixed values for each grid point and also fixing m = 1.0, i.e. σ, ϵ/kB and

rc are adjusted.
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