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We have obtained the interfacial properties of short rigid-linear chains formed from tangentially
bonded Lennard-Jones monomeric units from direct simulation of the vapour-liquid interface. The
full long-range tails of the potential are accounted for by means of an improved version of the inho-
mogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)] proposed
recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] valid for spherical as well as
for rigid and flexible molecular systems. Three different model systems comprising of 3, 4, and 5
monomers per molecule are considered. The simulations are performed in the canonical ensemble,
and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the sur-
face tension, we also obtain density profiles, coexistence densities, critical temperature and density,
and interfacial thickness as functions of temperature, paying particular attention to the effect of the
chain length and rigidity on these properties. According to our results, the main effect of increasing
the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the
width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the sur-
face tension increases as the molecular chains get longer. The surface tension has been scaled by crit-
ical properties and represented as a function of the difference between coexistence densities relative
to the critical density. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4746120]

I. INTRODUCTION

The knowledge of interfacial properties plays a key role,
not only in many scientific fields such as nucleation or dynam-
ics of phase transitions, but also in a great number of practical
and industrial applications, attracting the attention from sim-
ulators of the liquid community over the last years. From the
theoretical and practical point of view, the surface tension is
obviously the most important and challenging property to be
determined and predicted in the context of inhomogeneous
systems.1–3 Despite the great number of studies, especially
in the area of computer simulation, the calculation of surface
tension remains a subtle problem due to different reasons, in-
cluding the ambiguity in the definition of the pressure tensor,
the finite size effects due to capillary waves, or the difficulty
for the calculation of the long-range corrections (LRCs) asso-
ciated to intermolecular interactions.

From a microscopic point of view, interfacial problems
can be studied using well-established statistical mechan-
ics tools, and particularly, molecular simulation techniques,
which are routinely used to examine inhomogeneous systems.
Computer simulation methods have experienced a great de-
velopment in this field during last years, especially on new
techniques for the determination of fluid-fluid interfacial ten-
sion. The standard methodology for calculating the interfacial

a)Electronic mail: felipe@uhu.es.

tension involves the mechanical route through the determina-
tion of the normal and tangential pressure tensor profiles using
the virial according to the recipes of Irving and Kirkwood,4

and Harasima,5 among others. A useful and recent revision
of the theoretical background of the methods of Irving and
Kirkwood and Harasima can be found in the work of Varnik
et al.6

Alternatively, more effective, and elegant methods based
on the thermodynamic definition of surface tension have been
introduced, developed, and used during the last decade, in-
cluding the expanded ensemble7 and wandering interface
method,8 or perturbative procedures such as the test-area (TA)
technique9 or the determination of the macroscopic compo-
nents of the pressure tensor (using virtual changes to evalu-
ate the corresponding Boltzmann factor, as the methodology
proposed by de Miguel and Jackson10, 11 or Brumby et al.12).
These methods are becoming very popular and are being used
routinely to determine the vapour-liquid interfacial properties
of Lennard-Jones (LJ),13–15 several models of water,16, 17 the
Mie potential18 or binary mixtures,19–21 among others.

The methodology to account for the interactions beyond
cutoff in systems that exhibit a planar vapour-liquid interface,
and in general, any inhomogeneity with planar symmetry,
has been until recently a difficult problem to solve. Different
authors have contributed to the establishment of appropriate
and standard LRCs, including Blokhius,22 Mecke,23, 24

Daoulas,25 Guo and Lu,26 and finally, Janeček,27, 28 and the

0021-9606/2012/137(8)/084706/11/$30.00 © 2012 American Institute of Physics137, 084706-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arias Montano: Institutional Repository of the University of Huelva

https://core.ac.uk/display/287864701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


084706-2 Blas et al. J. Chem. Phys. 137, 084706 (2012)

recent improved methods proposed by MacDowell and Blas14

and de Gregorio et al.29

As a consequence of the intensive and deep development
of the new methods and techniques in molecular simulation,
a great number of studies for determining the interfacial
properties of molecular systems, with special emphasis on
chain-like molecules and its interfacial tension, have been
carried out lately.30, 31 Chain-like molecules are substances
formed from monomeric units with a certain degree of flex-
ibility, and n-alkanes molecules and their isomers lie in this
general set of molecules. All of them exhibit intramolecular
flexibility governed by bending and torsional potentials, that
determine the molecular configurations the chains can adopt
without overlaps.

From a formal point of view, n-alkanes exhibit an inter-
mediate behaviour between those shown by two well-known
model systems, i.e., the fully-flexible13, 14, 32–35 and rigid-
linear LJ chain models.36 The fully-flexible chain-like sys-
tem has neither bending nor torsional potentials between the
monomers in a chain. Therefore, there is no energetic penalty
when the monomers of the chains adopt a close packed struc-
ture at high densities. On the contrary, in the rigid-linear chain
model the bond length, bond angles, and internal degrees of
freedom are fixed. As a consequence of this, both models ex-
hibit completely different phase diagrams, as demonstrated
several years ago by Galindo et al.36 Apparently, the vapour-
liquid phase behaviour of both models seems to exhibit small
differences: rigid-linear LJ chains exhibit vapour-liquid co-
existence curves wider and higher critical temperatures than
the corresponding to fully-flexible chains. In addition to that,
a clear stabilization of the solid phase with respect to the
fluid is seen for increasing chain lengths in the case of rigid-
linear LJ chains, contrary to that exhibited by fully-flexible
LJ molecules. As a consequence of this, a marked increase of
the triple-point temperature is observed, whereas the triple-
point temperature of fully-flexible LJ chains is practically in-
dependent of the chain length. In summary, as a result of
the stabilization of the solid phase, the fluid range (charac-
terized by the ratio of triple temperature to critical tempera-
ture) decreases for increasing chain length, and it is predicted
to disappear for chains with more than six LJ monomers.36

This is in marked contrast with the phase behaviour of fully-
flexible LJ chains, which is dominated by the vapour-liquid
coexistence. In fact, the phase diagram of rigid-linear LJ
chains is probably much more different than that of fully-
flexible LJ chains due to the presence of liquid crystalline
mesophases. This point was previously indicated by Galindo
et al.36 In addition to that, a similar model, the rigid-linear
hard-sphere chain-like model considered by Vega et al.37 sev-
eral years ago, exhibits liquid crystalline phases for chain
lengths equal or larger than five segments, including isotropic,
nematic, and smectic, a phase between the isotropic liquid
and solid phases. Currently, Blas and del Río38 are investigat-
ing the phase diagram of rigid-linear LJ chains formed from
6–9 monomeric units. Preliminary results indicate the exis-
tence of intermediate liquid crystal phases (nematic). This
corroborates the previous hypothesis of Galindo et al.36 on
the existence of intermediate (liquid crystal) mesophases of
rigid-linear LJ chains.

It is clear from the ensuing discussion that a first attempt
to determine the phase diagram and other thermodynamic
properties of rigid molecules should first involve a careful
study of the isotropic liquid phases. During the last years,
there has been an increasing number of studies to determine
the interfacial properties of very realistic chain-like systems
modelling n-alkanes and some of their isomers.39–41 However,
only a reduced number of works have been dedicated to deter-
mine the interfacial properties of simpler chain-like models.
These systems, although more simplified, are able to provide
important information on how microscopic parameters deter-
mine the macroscopic interfacial properties. In particular, the
study and comparison of the phase diagram and interfacial
properties of two simple models with different molecular ar-
chitecture, such as fully-flexible and rigid-linear chain-like
systems, would provide a valuable information on how the
internal degrees of freedom (flexibility) control the interfacial
properties of chain-like systems.

The main goal of this work is to study the vapour-liquid
interfacial properties of short rigid-linear LJ chains. Here,
we concentrate in short chain-like systems that only exhibit
isotropic fluid but not liquid crystalline phases, apart from
the corresponding stable solid phases. In particular, we
consider the effect of temperature and chain length on the
vapour-liquid coexistence curve, interfacial thickness, and
surface tension. In addition to that, we extend the improved
method of Janeček to account for LRCs, proposed recently
by MacDowell and Blas, to deal with rigid molecules. This
technique allows to determine the thermodynamic, including
phase equilibria, and interfacial properties of rigid-linear
LJ chains interacting through the full potential. In a recent
paper,42 it has been shown that the use of this formal
scheme to account for the LJ LRCs represents a relevant
contribution to the interfacial properties of systems that
interact through this intermolecular potential, which are not
adequately described from a quantitative point of view by
a simple truncation of the potential, even for long cut-off
radius.

The rest of the paper is organized as follows. In
Sec. II we consider an improved method for determining
the long-range corrections of inhomogeneous chain-like sys-
tems. The molecular model and the simulation details of
this work are presented in Sec. III. Results obtained are dis-
cussed in Sec. IV. Finally, in Sec. V we present the main
conclusions.

II. EFFECTIVE LONG-RANGE PAIRWISE POTENTIAL
FOR MOLECULAR SYSTEMS

In 2006, Janeček27 proposed a new methodology for cal-
culating LRC to the energy in systems that interact through
spherically symmetric intermolecular potentials. This proce-
dure allows to treat in a simple way the truncation of the in-
termolecular energy of systems that exhibit planar interfaces.
More recently, MacDowell and Blas14 have demonstrated that
the Janeček’s procedure can be rewritten into an effective
long-range pair potential plus a self term that allows for a fast,
easy, and elegant implementation of the method. Since the
original and improved methodologies have been introduced
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elsewhere,14, 27, 28 we only account here for the most impor-
tant details of the current version for spherical molecules.
In particular, we focus on the methodology for chain-like
molecules and discuss the particular expressions for linear
tangent chains.

Consider a system of N spherical molecules contained
in a volume V that interact through a pairwise intermolecu-
lar potential. The total intermolecular potential energy can be
written as

U = 1
2

N∑

i=1

N∑

j=1
(j !=i)

u(rij ) = 1
2

N∑

i=1

Ui, (1)

where u(rij) is the intermolecular potential between particles
i and j, that depends on the distance between the centres of
molecules rij ≡ |ri − rj |, and Ui is the potential energy of
molecule i due to the interactions with all molecules of the
system. During a simulation, the potential energy of a particle
is usually split into two contributions: one arising from the
interaction of molecule i with all molecules inside a sphere of
radius r (i)

c centered at this molecule, and a second term that
corresponds to the interaction between the molecule i and the
rest of molecules forming the system (i.e., all the molecules
located outside the cut-off sphere). The potential energy of a
molecule i can be then written as

Ui =
∑

j∈r
(i)
c

u(rij ) + ULRC
i , (2)

where r (i)
c is the so-called cut-off distance of particle i, the

notation j ∈ r (i)
c denotes all the particles j located inside the

cut-off sphere centered at the position of particle i, and ULRC
i

represents the intermolecular interactions between particle i
and the rest of the system due to LRC. Note that r (i)

c ≡ rc

since all molecules have the same cut-off distance.
In the original Janeček’s methodology, the simulation

box is divided into strips parallel to the xy-plane (and to the
planar interface) of width !z, in such a way that the number
density of the system ρ(z) is considered to be approximately
constant inside of each of them. Here we have chosen arbitrar-
ily the z-axis as the direction along which the simulation box
exhibits its inhomogeneity, consisting in a planar interface.
If one assumes that the pair correlation function between two
particles separated beyond the cut-off distance is equal to one,
i.e., the distribution of particles separated a distance rij ≥ rc

is uniform, the intermolecular potential of a particle i located
at position zi associated to the long-range interaction with the
rest of the system is given by27

ULRC
i (zi) =

ns∑

k=1

w(|zi − zk|)ρ(zk)!z, (3)

where ρ(zk) is the density of the system in the slab of width
!z and centered at zk, the index k runs for all the ns slabs
in which the simulation box is divided along the z-axis, and
w(|zi − zk|) accounts for the intermolecular interactions due
to the LRC between a particle i at zi and all the particles lo-
cated inside the slab centered at zk. The particular expression

for w(|zi − zj |) depends on the election of the intermolecular
potential of the system. In the original Janeček’s method, ap-
plicable for molecules interacting through the Lennard-Jones
intermolecular potential, the function w(z) is given by

w(z) =






4πεσ 2

[
1
5

(
σ

rc

)10

− 1
2

(
σ

rc

)4
]

, z < rc

4πεσ 2

[
1
5

(
σ

z

)10

− 1
2

(
σ

z

)4
]

, z > rc.

(4)

The total energy arising from the LRCs is given as a
sum over individual contributions, with a factor of 1/2 not to
include mutual interactions twice,

ULRC = 1
2

N∑

i=1

ULRC
i (zi). (5)

Equations (3)–(5) constitute the original Janeček’s method
for estimating the intermolecular interactions of the system
due to LRCs. Although this method allows to calculate
very accurately the LRCs of a Lennard-Jones system that
exhibits a planar interface, it has several drawbacks. The
most important one is the calculation of the density profile
on the fly, i.e., it is necessary to have the instantaneous
density profile every step for being used in Eq. (3) and
hence, to be able to calculate the tail corrections at each
Monte Carlo step. Unfortunately, this makes the procedure
cumbersome, especially in the case of molecular fluids,14 and
also complicates the programming since the density profile
must be updated each Monte Carlo step.

The improved methodology proposed recently by Mac-
Dowell and Blas,14 simpler and more accurate, elegant, and
easier to implement in a simulation code than the original one,
assumes that Eq. (3) can be written more accurately as

ULRC
i (zi) =

∫ +∞

−∞
w(|zi − z|) ρ(z) dz. (6)

The density profile of a system formed by N particles can be
written formally as a summation of δ-Dirac distributions cen-
tered at the positions zj, with j = 1, . . . , N,

ρ(z) = 1
A

N∑

j=1

δ(z − zj ), (7)

where A is the interfacial area of the xy-plane of the system.
Using Eq. (7) in Eq. (6), ULRC

i (zi) is given by

ULRC
i (zi) = 1

A

N∑

j=1

w(|zi − zj |). (8)

It is important to note that summation in Eq. (8) runs over all
the values of the index j (j = 1, . . . , N), and this also includes
the case j = i.
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The total intermolecular interaction energy arising from
the LRCs, given by Eq. (5), is then expressed as

ULRC = 1
2A

N∑

i=1

N∑

j=1

w(|zi − zj |). (9)

The unrestricted summation over indexes i and j can be finally
transformed into a sum of pairwise effective (integrated) in-
termolecular potential over all the pairs of molecules in the
system and N self-energy terms as

ULRC = 1
A

N−1∑

i=1

N∑

j=i+1

w(|zi − zj |) + 1
2A

N∑

i=1

w(0). (10)

The expressions given by Eqs. (8) and (10) are the key re-
lationships of the improved version proposed by MacDowell
and Blas:14 the interaction energy due to the LRCs are given
by an effective pairwise intermolecular potential between all
the particles forming the system.

The last term in Eq. (10), the self-energy contribution,
is not a truly summation of self energy terms. In fact, the
function w(z) is not a real intermolecular potential between
a pair of particles but an effective (integrated) potential.
Each contribution 1

Aw(|zi − zj |) in Eq. (8) represents the
intermolecular potential, due to the interactions between
the particle i with all the particles located inside the slab
centered at zj due to the long-range interactions. Therefore,
w(0) represents the long-range intermolecular interactions
between a molecule and the rest of molecules located inside
the same slab but beyond the cut-off radius.

Now we present the extension of the methodology for
the general case of systems of chain-like molecules formed
by a number of monomeric units. We first formulate the ex-
tension for the most general case, including molecules with
intermolecular and intramolecular interactions. The particu-
lar case of rigid-linear LJ chains, which corresponds to a
system in which intramolecular interactions are constant and
hence irrelevant, is also discussed in detail at the end of this
section.

In the case of molecular systems, and particularly in
molecules formed from monomeric segments, the interaction
due to the LRCs between a given segment k of a molecule
i and the rest of the system should have three different
contributions according to the ensuing discussion: (a) an
intermolecular contribution, ULRC

i,k,inter , to account for the
LRCs between the segment k of the molecule i with all the
segments of the rest of the chains forming the system, j
= 1, . . . N, with j != i; (b) an intramolecular contribution,
ULRC

i,k,intra , accounting for the LRCs between the segment k
of the molecule i and the rest of segments of the same chain
i, k′ = 1, . . . m, with k′ != k; and finally (c) a self-energy
contribution, ULRC

i,k,self , which takes into account the interac-
tion due to the LRCs associated to the self-energy term of
the segment k. The total energy felt by the segment k of the

molecule i, located at position zi, k can be written as

ULRC
i,k (zi,k) = ULRC

i,k,inter (zi,k) + ULRC
i,k,intra(zi,k) + ULRC

i,k,self (zi,k)

= 1
A

N∑

j=1
(j !=i)

m∑

k′=1

w(|zi,k − zj,k′ |)

+ 1
A

m∑

k′=1
(k′ !=k)

w(|zi,k − zi,k′ |) + 1
A

w(|zi,k − zi,k|)

= 1
A

N∑

j=1
(j !=i)

m∑

k′=1

w(|zi,k − zj,k′ |)

+ 1
A

m∑

k′=1
(k′ !=k)

w(|zi,k − zi,k′ |) + 1
A

w(0). (11)

The total energy felt by the whole molecule i, due to the
long-range interactions with all the molecules that form the
system, can be written as

ULRC
i = ULRC

i,inter + ULRC
i,intra + ULRC

i,self . (12)

The intermolecular potential energy between molecule i and
the rest of molecules forming the system, due to the LRCs,
can be written as

ULRC
i,inter = 1

A

N∑

j=1
(j !=i)

m∑

k=1

m∑

k′=1

w(|zi,k − zj,k′ |). (13)

The energy corresponding to the intramolecular interac-
tions associated to segments of molecule i is given by

ULRC
i,intra = 1

A

m−1∑

k=1

m∑

k′=k+1

w(|zi,k − zi,k′ |). (14)

Note that Eq. (14) only takes into account the intramolecular
interactions, associated to the LRC, i.e., all possible interac-
tions between segments of molecule i.

And finally, the self-energy contribution to the potential
energy of molecule i can be simply written as

ULRC
i,self = 1

A

m∑

k=1

w(0) ≡ 1
A

mw(0). (15)

The self-energy contribution associated to the long-range in-
teractions given by Eq. (15) is only due to segments belonging
to molecule i.

The total potential energy of a system of N molecules
formed by m segments, due to the long-range interactions, is
then calculated as

ULRC = ULRC
inter + ULRC

intra + ULRC
self . (16)
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The total intermolecular potential energy, due to the long-
range interactions, is given by

ULRC
inter = 1

2

N∑

i=1

ULRC
i,inter = 1

2A

N∑

i=1

N∑

j=1
(j !=i)

m∑

k=1

m∑

k′=1

w(|zi,k−zi,k′ |)

= 1
A

N−1∑

i=1

N∑

j=i+1

m∑

k=1

m∑

k′=1

w(|zi,k − zj,k′ |), (17)

where we have transformed the unrestricted summation over
indexes i and j (with the exception of the case i = j corre-
sponding to intramolecular interactions) into a sum of pair-
wise effective (integrated) intermolecular potential over all
the pair of molecules in the system, similarly to the case of
spherical molecules (see Eq. (10)).

The total intramolecular potential energy due to the long-
range interactions is given by

ULRC
intra =

N∑

i=1

ULRC
i,intra = 1

A

N∑

i=1

m−1∑

k=1

m∑

k′=k+1

w(|zi,k − zi,k′ |).

(18)

Finally, the total self-energy potential energy due to the
long-range interactions is written as

ULRC
self = 1

2

N∑

i=1

ULRC
i,self = 1

2A

N∑

i=1

m∑

k=1

w(0) ≡ 1
2A

N∑

i=1

mw(0)

≡ 1
2A

Nmw(0). (19)

Equations (12)–(19) represent the generalization of the
improved version of MacDowell and Blas,14 based on
Janeček’s method, for the inhomogeneous LRC of chain-like
systems, including flexible and rigid molecules. Since in this
work we are dealing with the case of rigid linear Lennard-
Jones chains, the intramolecular potential energy is constant
and set to zero. Consequently, the corresponding contribution
due to the long-range interactions is also set equal to zero,
i.e., ULRC

intra = 0. In this work, we calculate the total potential
energy of molecule i associated to the LRC as

ULRC
i = 1

A

N∑

j=1
(j !=i)

m∑

k=1

m∑

k′=1

w(|zi,k − zj,k′ |) + 1
A

mw(0), (20)

and the corresponding total potential energy as

ULRC = 1
A

N−1∑

i=1

N∑

j=i+1

m∑

k=1

m∑

k′=1

w(|zi,k − zi,k′ |) + 1
2A

Nmw(0).

(21)

It is important to recall here that the intramolecular inter-
actions (due to LRCs) for rigid-linear LJ chains, i.e., ULRC

i,intra

and ULRC
intra , are strictly constant due to the rigidity of the chain

and intramolecular constrains of the molecular model. How-
ever, this contribution must be taken into account when deal-
ing with molecular systems that have intramolecular interac-

tions, as in the case of fully-flexible LJ chains. Special care
should be taken in the case of long-chain molecules in which
monomeric units of the same chain separated by distances
larger than rc can interact, and consequently, the intramolec-
ular LRC, ULRC

i,intra and ULRC
i , must be calculated.

This procedure provides several important advantages
over the original method: (1) Eqs. (8) and (10), for the case
of spherical fluids, and Eqs. (12)–(19) for molecular systems,
correspond to the exact evaluation of the intermolecular in-
teractions due to the LRCs. It is important to recall that the
use of the original Janeček version of the method implies a
discretization of the simulation box along the z-axis, which is
in fact an approximation; (2) the improved procedure allows
to evaluate ULRC

i and ULRC without the explicit calculation
of the density profile on the fly, i.e., it is not necessary to up-
date the density profile ρ(z) each Monte Carlo step. Just to
give an order of magnitude, if the simulation of the vapour-
liquid interface of a Lennard-Jones system is equilibrated typ-
ically in 106 Monte Carlo cycles, and in each cycle we attempt
to move N molecules (N ∼ 103 molecules), the density profile
of the system should be updates 109 times along the equili-
bration stage; (3) finally, the implementation of the method
is straightforward. If one has a standard Monte Carlo code in
the canonical ensemble, the only change needed is to include
a new subroutine for the evaluation of the contribution to the
total intermolecular energy due to the LRCs (at the beginning
of the simulation), and an additional subroutine for calculat-
ing the contribution to the intermolecular energy of a given
particle due to the LRCs (each time a molecule is attempted
to be moved).

III. MODEL AND SIMULATION DETAILS

We consider chain molecules formed by m identical LJ
sites (monomer segments) characterized by a diameter σ

and dispersive energy ε. The molecules are modeled as lin-
ear and rigid with monomer-monomer bond length L = σ ,
which means that chains are formed by tangent monomers
or segments. The interaction potential between two different
molecules is given by

uLJ (1, 2) =
m∑

i=1

m∑

j=1

4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

, (22)

where rij is the distance between monomer i of molecule 1 and
monomer j of molecule 2. Since we are considering a rigid
model the intramolecular potential energy is constant, and we
set it to zero. As in a previous work,36 the internal energies
reported here are due only to intermolecular interactions (and
not intramolecular interactions). As previously discussed in
the Introduction, it is important to distinguish between this
model and a similar one, the fully-flexible model. In this lat-
ter system, molecules are flexible, i.e., there is no restriction
neither for the bonding or the torsional angles), so that each
monomer of a certain chain interacts with all other monomers
in the system (in the same molecule or in other molecules with
the only exception of the monomer(s) to which it is bonded)
with the Lennard-Jones potential. As mentioned previously, in
the first model the interactions between segments are identical
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to those in the fully-flexible model, but as the chains are rigid,
intramolecular interactions (interactions between segments in
the same molecule) are now irrelevant since their contribution
to the Hamiltonian of the system is simply a constant, as noted
before.

We examine a spherically truncated potential model with
a cut-off distance of rc = 3σ . We consider inhomogeneous
LRCs using the MacDowell and Blas14 recipe (presented in
Sec. II), based on the Janeček’s method,27, 28 obtaining results
for the full LJ potential, i.e., corresponding to infinite trun-
cation distance. According to the discussion of the previous
paragraph, since intramolecular interactions are irrelevant for
this model, we also set to zero ULRC

i,intra and ULRC
intra .

The number of molecules, N, used in each simulation de-
pends on the number of monomers per molecule. We con-
sider N = 666, 500, and 400 for systems formed from 3, 4,
and 5 monomers, respectively. As in previous studies,13, 14

this choice is made so as to have systems with the same to-
tal number of monomers irrespective of the monomers per
molecule.

Simulations are performed in the NVT ensemble. We con-
sider a system of N molecules at a temperature T in a volume
V = Lx Ly Lz, where Lx, Ly, and Lz are the dimensions of the
rectangular simulation box. A homogeneous liquid system is
first equilibrated in a rectangular simulation box of dimen-
sions Lx = Ly = 10σ , and Lz = 24, 25, and 32σ for systems
of rigid-linear LJ chains formed from 3, 4, and 5 monomers,
respectively. The box is then expanded to three times its orig-
inal size along the z direction, while leaving the liquid phase
at the center. As a result, we obtain a centered liquid slab
with those chain bits spanning across the boundary conditions
of the original liquid configuration protruding into empty
boxes of equal size at each side. The final overall dimensions
of the vapour-liquid-vapour simulation box are therefore Lx

= Ly = 10σ , and Lz = 72, 75, and 96σ for the corresponding
chain lengths.

The simulations are organized in cycles. A cycle is de-
fined as N trial moves (displacement of the center of mass
and/or molecular rotation). The magnitudes of the appropriate
displacement and rotations are adjusted so as to get an accep-
tance rate of 30 % approximately. We use periodic boundary
conditions in all three directions of the simulation box.

The calculation of the surface tension is performed us-
ing the TA methodology.9 Since the TA method is a stan-
dard and well-known procedure for evaluating the fluid-
fluid interfacial tension of a liquid, we only provide the
most important features of the technique. For further details
we recommend the original work9 and the most important
applications.10, 13, 14, 16–21, 43–45 The implementation of the TA
technique involves performing test-area deformations of mag-
nitude !A during the course of the simulation at constant N,
V , and T every MC cycle. As shown by Gloor et al.,9 the
surface tension follows from the computation of the change
in Helmholtz free energy associated with the perturbation,
which in turn can be expressed as an ensemble average of the
corresponding Boltzmann factor. Further details can be found
in Ref. 9. We consider in all cases two perturbations of size
!A* = !A/A0 = ±0.0005, where A0 = LxLy = 100σ 2 is the
interfacial area of the unperturbed state.

As in previous studies,13, 14 for each length we perform
simulations of inhomogeneous systems at different tempera-
tures where vapour-liquid equilibrium is expected. We typi-
cally consider either eight or nine temperatures in the range
∼0.5 Tc up to ∼0.9 Tc, where Tc is the critical temperature of
the system. Each series is started at an intermediate tempera-
ture. This system is well equilibrated for 106 MC cycles, and
averages are determined over a further period of 2 × 106 MC
cycles. The systems at other temperatures of each series are
equilibrated for 5 × 105 MC cycles and averages are deter-
mined over the same number of cycles (2 × 106). The pro-
duction stage is divided into M blocks. Normally, each block
is equal to 105 MC cycles. The ensemble average of the sur-
face tension is given by the arithmetic mean of the block av-
erages and the statistical precision of the sample average is
estimated from the standard deviation in the ensemble aver-
age from σ/

√
M , where σ is the variance of the block aver-

ages. We consider M = 20, but in some cases averages are
taken over more blocks. In particular, in the case of chains
formed from five monomeric units (m = 5), M is equal to 40.
This means that we use 4 × 106 MC cycles for the production
stage of each simulation.

All the quantities in our paper are expressed in conven-
tional reduced units, with σ and ε being the length and energy
scaling units, respectively. Thus, the temperature is given in
units of ε/kB, the densities in units of σ−3, the surface tension
in units of ε/σ 2, and the interfacial thickness in units of σ .

IV. RESULTS AND DISCUSSION

In this section, we present the main results from the simu-
lations of rigid-linear LJ chains with varying chain length. We
focus on the interfacial properties, such as density profiles, in-
terfacial thickness, and surface tension of chains considering
a cut-off distance of rc = 3σ and the effective LRCs presented
in Sec. II. In particular, we examine the temperature and chain
length dependence of these properties.

We follow the same analysis and methodology than in
our previous works,13, 14 and consider different chain lengths
and temperatures. The equilibrium density profiles ρ(z) are
computed from averages of the histogram of densities along
the z direction over the production stage. For convenience,
density profiles are presented in terms of the monomeric
units. The bulk vapour and liquid densities are obtained by
averaging ρ(z) over appropriate regions sufficiently removed
from the interfacial region. This procedure is meaningful as
far as the central liquid slab is thick enough. This turns out to
be the case in our simulations, including those performed at
the higher temperatures. The bulk vapour density is obtained
after averaging the density profiles on both sides of the liquid
film. The statistical uncertainty of these values is estimated
from the standard deviation of the mean values. Following
our previous works, additional interfacial properties, such as
the position of the Gibbs-dividing surface, z0, and the 10−90
interfacial thickness, t, are obtained by fitting each of the two
equilibrium density profiles to hyperbolic tangent functions1

(see Eq. (3) of our previous work13 for further details).
We fix liquid, ρL, and vapour, ρV , densities to previously
computed values and treat z0 and t as adjustable parameters.
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TABLE I. Liquid density ρL, vapour density ρV , 10−90 interfacial thick-
ness t, and surface tension γ at different temperatures for systems of rigid-
linear LJ chains formed from m monomers with a monomer-monomer LJ
cut-off distance rc = 3σ and inhomogeneous LRCs. All quantities are ex-
pressed in the reduced units defined in Sec. III. The errors are estimated as
explained in the text.

m T ρL ρV t γ

3 1.10 0.826(3) 0.00010(6) 1.919(8) 1.07(2)
3 1.20 0.794(2) 0.0009(2) 2.155(5) 0.92(2)
3 1.30 0.763(2) 0.0022(3) 2.447(7) 0.78(1)
3 1.40 0.730(2) 0.0035(2) 2.77(1) 0.69(1)
3 1.50 0.696(1) 0.0073(4) 3.18(1) 0.55(1)
3 1.60 0.660(1) 0.0155(5) 3.689(5) 0.437(7)
3 1.70 0.619(1) 0.0269(4) 4.33(6) 0.331(8)
3 1.80 0.576(1) 0.0413(7) 5.38(6) 0.228(6)
3 1.85 0.548(2) 0.0501(2) 6.02(4) 0.195(6)

4 1.45 0.765(3) 0.0006(1) 2.54(1) 0.77(2)
4 1.50 0.747(2) 0.0009(2) 2.691(5) 0.72(2)
4 1.60 0.712(2) 0.0035(2) 2.99(3) 0.60(1)
4 1.70 0.679(2) 0.0067(3) 3.44(1) 0.50(1)
4 1.80 0.641(2) 0.0107(2) 3.96(6) 0.40(1)
4 1.85 0.623(2) 0.0159(4) 4.27(8) 0.362(9)
4 1.90 0.601(2) 0.0226(7) 4.53(4) 0.30(1)
4 1.95 0.584(1) 0.0272(4) 5.049(9) 0.263(9)

5 2.05 0.611(2) 0.0158(6) 4.78(1) 0.31(5)
5 2.10 0.588(2) 0.0200(5) 5.22(6) 0.27(5)
5 2.15 0.565(3) 0.0258(5) 5.89(3) 0.26(2)
5 2.20 0.546(2) 0.0321(8) 6.6(2) 0.21(1)
5 2.23 0.525(2) 0.037(1) 6.96(4) 0.17(2)
5 2.25 0.519(2) 0.0414(9) 7.6(3) 0.154(9)
5 2.27 0.502(3) 0.046(2) 7.9(4) 0.13(1)
5 2.30 0.490(2) 0.0522(4) 9.0(8) 0.12(1)

Our simulation results for the bulk densities and interfacial
thickness for rigid-linear LJ chains formed from 3, 4, and 5
monomers are collected in Table I. The interfacial thickness
values summarised here correspond to the average of the
values for the two interfaces appearing in the system.

We show in Fig. 1 the segment density profiles ρ(z)
for rigid-linear LJ chains formed from three, four, and five
monomers (m = 3, 4, and 5) at several temperatures in the
vapour-liquid coexistence region. For the sake of clarity, we
only present one half of the profiles corresponding to one of
the interfaces. Also for convenience, all density profiles have
been shifted along z so as to place z0 at the origin. As can be
seen, the slope (in absolute value) of the density profiles in the
interfacial region decreases as the temperature is increased,
an obvious behaviour since the system approaches the critical
point, where the interfacial thickness must diverge. A less ob-
vious but also expected decreasing behaviour can be noticed
in the slope of the profiles when going from the vapour to the
liquid phase, at constant temperature, as the chain length is in-
creased from m = 3 (Fig. 1(a)), through m = 4 (Fig. 1(b)), and
finally up to m = 5 (Fig. 1(c)). This is in agreement with the
increase of the surface tension as the chain length increases
(at constant temperature), as we will show later in this work.

It is important to mention in this context that the density
profiles corresponding to chains formed from five monomers
were significantly more difficult to equilibrate than the cor-
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FIG. 1. Simulated equilibrium density profiles across the vapour-liquid in-
terface of rigid-linear LJ chains formed from three (m = 3), four (m = 4),
and five (m = 5) monomers with a monomer-monomer LJ cutoff of rc = 3σ
and inhomogeneous LRCs at several temperatures. From top to bottom (in
the liquid region): (a) T = 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70.1.80, and
1.85; (b) T = 1.45, 1.50, 1.60, 1.70, 1.80, 1.85, 1.90, and 1.95; (c) T = 2.05,
2.10, 2.15, 2.20, 2.23, 2.25, 2.27, and 2.30.

responding to chains formed from three and four monomeric
units. This is certainly clear when comparing the number of
Monte Carlo cycles needed for equilibrating them. In the case
of the shorter chains (m = 3 and 4), only 2 × 106 cycles were
necessary for obtaining well equilibrated density profiles and
smooth values of the surface tension along the vapour-liquid
coexistence region. As previously mentioned, longer simula-
tions were needed to equilibrate the system formed from five
monomeric units (m = 5). We think this is due probably to the



084706-8 Blas et al. J. Chem. Phys. 137, 084706 (2012)

TABLE II. Critical temperature and density from the analysis of the coex-
istence densities. All quantities are expressed in the reduced units defined in
Sec. III.

m ρa
c T a

c ρb
c T b

c T c
c

3 0.27(1) 2.05(2) 0.27(1) 2.08(2) 2.1(2)
4 0.26(1) 2.25(3) . . . . . . 2.3(3)
5 0.24(2) 2.50(4) 0.23(5) 2.49(6) 2.6(2)

aUsing Eqs. (23) and (24).
bTaken from the work of Galindo et al.36

cCritical temperature obtained from the analysis of the computed tension data using
Eq. (25) and fixing the critical point to µ = 1.258.

increasing stability of a nematic phase, relative to the isotropic
liquid, as the chain length is increased. According to prelimi-
nary studies of Blas and del Río,38 simulations for rigid-linear
LJ chains formed from seven (m = 7) and eight (m = 8) seg-
ment units indicate that these systems exhibit stable nematic
phase between isotropic liquid and solid phases. However, it
is important to notice that no stable nematic neither other liq-
uid crystal phase has been found for m = 5.

It is also useful to estimate the location of the critical
point resulting from our direct Monte Carlo simulations. The
critical temperature Tc and density ρc are obtained using the
simulation results for the vapour and liquid coexistence den-
sities (Table I) and the scaling relation for the width of the
coexistence curve,

ρL − ρV = A(T − Tc)β, (23)

and the law of rectilinear diameters
ρL + ρV

2
= B + CT . (24)

A, B, and C are constants, and β is the corresponding critical
exponent. A universal value of β = 0.325 is assumed here.1 In
Table II we report the values of the critical temperatures and
densities as obtained from this procedure for all the systems
studied in this work.

The vapour-liquid phase envelopes of rigid-linear LJ
chains with rc = 3σ and inhomogeneous LRCs are depicted
in Fig. 2. As previously mentioned, densities are presented in
terms of the monomeric densities since the coexistence curves
fall in the same scale when plotted in this way. As can be seen,
the phase envelope becomes wider as the chain length is in-
creased, as one would expect. A similar behaviour is also ob-
served for the critical temperature. In order to check the con-
sistency of our results, as well as the expressions proposed
in Sec. II for the inhomogeneous LRCs for rigid-linear LJ
chains, we have compared the predictions obtained from NVT
MC simulations of this work with previous results obtained
by some of us several years ago36 using Gibbs ensemble
Monte Carlo method and by performing isobaric-isothermal
NPT calculations at zero pressure. As can be seen in Fig. 2,
results obtained from both methods are in excellent agree-
ment at all the temperatures considered. This comparison is
obviously a convincing test for consistency for the inhomo-
geneous LRCs. Note that similar consistent results have been
found in previous applications of the method.14 In addition to
that, Fig. 2 also shows a good agreement between critical tem-
peratures and densities obtained here and those calculated by

0 0,2 0,4 0,6 0,8
ρ

1

1,5

2

2,5

T

FIG. 2. Vapour-liquid coexistence densities for rigid-linear LJ chains with
a monomer-monomer LJ cut-off distance of rc = 3σ and inhomogeneous
LRCs. The open green circles, red squares, and blue diamonds correspond
to the coexistence densities obtained from the analysis of the equilibrium
density profiles obtained from MC NVT simulations for chain lengths of
m = 3, 4, and 5, respectively. The filled green circles and blue diamonds
correspond to the coexistence densities obtained from Gibbs ensemble MC
and by performing isobaric-isothermal NPT calculations at zero pressure by
Galindo et al.36 Symbols at the highest temperatures for each of the coex-
istence curve represent critical points estimated from Eqs. (23) and (24) and
those taken from the work by Galindo et al.36

Galindo et al.36 Critical data obtained from simulation in this
work from vapour-liquid coexistence data and surface tension
analysis, as well as the values obtained from previous Gibbs
ensemble Monte Carlo data36 are presented in Table II.

Another interesting property obtained from our analysis
is the 10−90 interfacial thickness (cf. Table I). For a given
chain length, t is seen to increase with temperature, which
simply reflects the fact that the interfacial region gets corre-
spondingly wider, as can be observed in Fig. 2. At low tem-
peratures the density profiles exhibit a sharp interface, which
corresponds to a low value of the interfacial thickness. As
the temperature is increased towards the critical value, the
interfacial region becomes wider, and hence, the value of
the interfacial thickness increases and diverges to infinity as
T → Tc. The variation of interfacial thickness with temper-
ature for different chain lengths is illustrated in Fig. 3. Ac-
cording to the figure, increasing the chain length results in a
decrease of the thickness of the interface at fixed temperature,
which is consistent with the fact that the systems of longer
molecules have a larger cohesive energy. This behavior is con-
sistent with that found for the shape of the vapour-liquid phase
envelopes. The behaviour observed here is similar to that pre-
dicted previously for the case of fully-flexible LJ chains ob-
tained by Blas et al.13 and MacDowell and Blas.14 The main
difference between both results, as explained previously in the
Introduction, is the range of temperatures at which vapour-
liquid phase equilibria is stable in both models: whereas the
fully-flexible LJ chain model exhibits a huge range in which
vapour and liquid phases coexist, the vapour-liquid coexis-
tence range corresponding to the rigid-linear chain model is
much more limited.36 Another subtle difference between both
models is the fluctuation of the interfacial width. The values
of the error bars of the interfacial thickness corresponding to
the shortest chains lengths studied here, m = 3 and 4, are
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FIG. 3. The 10−90 interfacial thickness t as a function of the tempera-
ture for rigid-linear LJ chains with a monomer-monomer cut-off distance of
rc = 3σ and inhomogeneous LRCs. The meaning of the symbols is the same
as in Fig. 2. The curves are included as a guide to the eyes.

similar to those obtained for fully-flexible LJ chains with the
same size.13, 14 However, relatively larger values have been
obtained for the interfacial width corresponding to the longest
chain length studied in this work. As previously mentioned in
this section, we think this phenomenon is associated to the
relative instability of the isotropic liquid phase with respect
to a liquid crystalline phase (possibly nematic), and the corre-
sponding fluctuations of the interface.

The density profiles of chains with five monomers (see
Fig. 1) show systematically more fluctuations than those cor-
responding to chains formed from three and four monomeric
segments, especially in their corresponding bulk (liquid and
vapour) regions. Particularly, equilibrium density profiles for
chains form from three and four LJ segments were equili-
brated during 2 × 106 cycles, whereas for chains with five
segments 4 × 106 cycles were needed in order to have simi-
lar equilibrated density profiles. In order to check if the fluc-
tuations found in the case of the longest chains are due to
the hypothetical nematic fluctuations in the system, we have
also determined the nematic order parameter profile along the
vapour-liquid interface for all the chains lengths and at sev-
eral temperatures. Our results indicate that the order parame-
ter is equal to zero in both phases, vapour and liquid, for all
the chainlengths considered and at all temperatures consid-
ered. However, larger fluctuations but still negligible, where
found in the case of the longest chain-like molecules consid-
ered (m = 5) in comparison with those for chains with m = 3
and 4. Finally, as mentioned previously here, Blas and del
Río38 have found that systems formed from longer chain
lengths, i.e., m = 7 and 8, exhibit stable nematic phases at
certain thermodynamic conditions, another result suggesting
that the vapour- (isotropic) liquid coexistence will become un-
stable if the chain length is increased.

The temperature dependence of the surface tension for
rigid-linear LJ chains is shown in Fig. 4. At any given temper-
ature, the interfacial tension is larger for longer chains. Once
again, this is consistent with the larger cohesive energy in sys-
tems consisting of long chains. As can be seen from Fig. 4, an
essentially linear behavior is found for the range of temper-

1.0 1.5 2.0 2.5
T

0.00

0.25

0.50

0.75

1.00

1.25

γ

FIG. 4. Surface tension as a function of the temperature for rigid-linear LJ
chains with a monomer-monomer LJ cut-off distance of rc = 3σ and inho-
mogeneous LRCs calculated using the TA methodology. The meaning of the
symbols is the same as in Fig. 2. The curves represent the fits of the simu-
lation data to the scaling relationship of the surface tension near the critical
point given by Eq. (25) with µ = 1.258.

atures considered here, with a slight curvature close to the
critical point for each system. The effect of chain length on
the slope of the surface tension curves is remarkable. At a
given temperature, this slope becomes less negative as m is
increased, a trend which is also exhibited by fully-flexible LJ
chains,13, 14 as well as by the first members of the n-alkane
series.46 The same qualitative behavior has been previously
found by Bryk and collaborators.47

The computed values of the surface tension allow us to
obtain an independent estimate of the critical temperature for
each chain length from the scaling relation

γ = γ0 (1 − T/Tc)µ , (25)

where γ is the surface tension at temperature T, γ 0 is the
“zero-temperature” surface tension, µ is the corresponding
critical exponent, and Tc is the critical temperature. Here, we
fix µ to the universal value of µ = 1.258 as obtained from
renormalization group theory (RGT).1 Our estimates for the
critical temperatures are collected in Table II. The overall
agreement between these values and those obtained from an
analysis of the coexistence densities is satisfactory. It is also
possible to compare these results with predictions obtained
previously by Galindo et al.36 using Gibbs ensemble Monte
Carlo data. As can be seen in Table II, the agreement between
both results is satisfactory in all cases.

Similar to the case of fully-flexible LJ chains, the rigid-
linear model seems to exhibit a certain convergence of the
surface tension with increasing the chain length; however, as
we have previously mentioned in this work, the asymptotic
regime is not possible to attain for this model due to the pres-
ence of the solid phase, which turns out to be more stable than
the liquid at the corresponding thermodynamic conditions as
it was demonstrated by Galindo et al.36 several years ago.
Nevertheless, and following the corresponding-states princi-
ple of Guggenheim,48 as noticed recently by Galliero,15 we
have demonstrated that it is possible to provide a univer-
sal scaling behaviour for the vapour-liquid surface tension
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FIG. 5. Reduced surface tension as a function of the difference between the
vapour and liquid coexistence densities with respect to the critical density
for rigid-linear LJ chains with a monomer-monomer LJ cut-off distance of
rc = 3σ and inhomogeneous LRCs. The blue circles, blue squares, and blue
diamonds correspond to the reduced surface tension is calculated according
to Eq. (26).

of several molecular chain-like systems using the appropri-
ate reduced units and representing the corresponding values
as a function of the difference between liquid and vapour
densities relative to the critical density.49 Following previous
works,15, 48, 50 the vapour-liquid surface tension is reduced as

γr = γ

kBTc(ρc/m)2/3
, (26)

where kB is Boltzmann constant, ρc and Tc are the critical
density and temperature, and m is the chain length of the sys-
tem. The key point here is to represent γ r, not as a function
of the temperature T or the usual reduced temperature used
in the literature, i.e., T/Tc, but in terms of the difference be-
tween the vapour and liquid densities. This way of expressing
the surface tension closely follows the spirit of the Macleod’s
parachord approach. Although this simple but successful cor-
relation is clearly empirical, its functional expression can be
founded in the more fundamental and modern RGT, as re-
cently shown by Blas and co-workers.50 According to this,
Fig. 5 shows the reduced surface tension of rigid-linear LJ
chains formed from three, four, and five segments. As can
be seen, a universal behaviour is observed for all the sys-
tems considered here, showing that the relationship given by
Eq. (26) is also valid for rigid molecular systems.

V. CONCLUSION

We have determined the interfacial properties of the
vapour-liquid interface of rigid-linear chains formed by tan-
gentially bonded LJ monomers. Chains formed from three,
four, and five monomers are considered. The intermolecular
monomer-monomer interactions are truncated at a cut-off dis-
tance of 3σ , σ being the diameter of the monomers. In addi-
tion, we use an improved version of the Janeček methodology
proposed recently by MacDowell and Blas that allows to eval-
uate the long-range corrections to the potential energy as an
effective pairwise intermolecular potential, without need of

the explicit calculation of the current density profile along the
simulation. We use Monte Carlo NVT simulations of the inho-
mogeneous system containing two vapour-liquid interfaces.
The surface tension is evaluated using the TA approach. We
have examined the density profiles, interfacial thickness, and
surface tension in terms of the temperature and the number of
monomers forming the chains. In addition, we have also cal-
culated the coexistence phase envelope, including the location
of the critical point from an analysis of the density profiles and
the surface tension.

The effect of the chain length on the density profiles,
coexistence densities, critical temperature and density, inter-
facial thickness, and surface tension has been investigated.
The vapour-liquid interface is seen to sharpen with increasing
chain length corresponding to an increase in the width of the
coexistence phase envelope, and an accompanying increase
in the surface tension. The vapour-liquid surface tension of
rigid-linear LJ chains is seen to exhibit a universal scaling
behaviour when is appropriately reduced with respect to the
chain length and critical density and temperature, and repre-
sented as a function of the difference between the vapour and
liquid coexistence densities (relative to the critical point).
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