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Wertheim’s first order thermodynamic perturbation the@pT1) [M. S. Wertheim, J. Chem. Phys.

87, 7323(1987] is extended to model the solid phase of chains whose monomers interact via a
Lennard-Jones potential. Such an extension requires the free energy and contact values of the radial
distribution function for the Lennard-Jones reference system in the solid phase. Computer
simulations have been performed to determine the structural properties of the monomer
Lennard-Jones system in the solid phase for a broad range of temperatures and densities. Computer
simulations of dimer Lennard-Jones molecules in the solid phase have also been carried out. The
theoretical results for the equation of state, the internal energy, and the sublimation curve of the
dimer model in the solid phase are in excellent agreement with the simulation data. The extended
theory is used to determine the gloljablid—liquid—vapoy phase diagram of the LJ dimer model;

the theoretical estimate of the triple point temperature for the LJ dim&f is0.653. Similarly,
Wertheim’'s TPT1 is used to determine the global phase diagram of chains formed by up to 8
monomer units. It is found that the calculated triple point temperature is hardly affected by the chain
length, and that for large chain lengths the fluid—solid equilibrium coexistence densities are virtually
independent of the number of monomers in the chain when the densities are expressed in monomer
units. This is in agreement with experimental indications observed in polyethylene, where both the
critical and the triple point temperatures tend to finite values for large molecular weighg0®
American Institute of Physics[DOI: 10.1063/1.1465397

I. INTRODUCTION chain fluid, provided that the EOS and pair correlation func-

] ] tion of the reference LJ fluid are accurately known. The same

In the mid-1980s Wertheim presented a very successfyl (e for chains formed from monomers interacting via
the_ory _to stud_y the _thermodynamlc prope_rtles of _ha_rd-cor%ther pair potentials, for instance, the square well potéhtial
fluids interacting via short-range attractiv@ssociation and the Yukawa potentil have also been incorporated in

1-4 . . .
forces,” ™ such as h_ydrogen bonding fluids. _In_ t.h's mOdel'this context. Therefore, an approximate but reliable descrip-
when the association strength becomes infinitely strong . ¢'ne fiuid phase of fully flexible chaing.e., with no

chains are formed from a fluid of associating mononidrs. . . .
I u! 1afing constraint in the bonding angle or torsional staten be

this way it is possible to derive an equation of state for a btained d . h traiahtf d Th
chain of freely-jointed tangent hard segments using onl ained nowadays in a rainer straigntiorward way. 1he

thermodynamic information of the monomer reference fluid. PT1 theo“_/ OT Werth(_airr_l provides reasonat_)le predictions of
In the simplest implementation of the theory, which is com-t"€ _valpg)ialrﬁ—lquld equilibria for a number of different types of
monly denoted as the first order thermodynamic perturbatiofin@in:~ " Notice that o7ther theoretical treatments are also
theory (TPT2), the only information required in order to Succesfull for LJ chgun%. _ .
build an approximate equation of state for the chain fluid is !N order to obtain the global phase diagram of flexible
the equation of state of the monomer fluid and its pair corchains, the solid phase should also be considered so that
relation function at contact. The equation of st&©S aris- fluid—solid coexistence is adequately located within the
ing from TPT1 was proposed independently by Wertlfeim phase diagram of the model. In the last decade the fluid—
and by Chapman, Jackson, and GubBiitsthe early 1990s solid equilibrium of a number of molecular models have
Chapmah showed that Wertheim’s formalism could also be been considered, for example, hard dumbbells, quadrupolar
applied to systems with attractiv@ispersion forces. The hard dumbbells, hard spherocylinders, hard ionic systems,
work of Johnsoret al®'°has shown that Wertheim’s formal- benzenelike models, and othésee, for instance, the recent
ism yields a good description of the Lennard-Jorie3) review of Monson and Kofké). However, efforts consider-
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ing the fluid—solid equilibrium of flexible chains are scarce.the density is high, and the system is ordered from the point
Malanoski and Monsdi have determined via computer of view of the atoms but not from the point of view of the
simulation the fluid—solid equilibrium of freely jointed hard molecular bonds. The disorder of bonds means that there is
sphere chains, and of a hard modeheélkane molecule®  an additional contribution to the entropy of the system aris-
Polson and Frenk®l have determined the fluid—solid equi- ing from the degeneracy of the structure. For this reason the
libria of LJ chains(with a bending potentialand of a LJ  stable solid structure for freely jointed models is one with
model ofn-alkane molecule® Theoretical works describing disordered bonds. The extreme flexibility of freely jointed
the phase equilibria of flexible chains in the solid phase arénodels makes the existence of such a solid possible. Any
even more scarce, the work of Sear and Jackd@md of reduction of flexibility, such as fixing a bond angle in the
Malanoskiet al,2%in which the the cell theory is extended to model, would make the existence of the closed-packed solid
study the solid phase of these molecules, are the exceptionwvith random bonds impossible, since it is likely that the mo-
Solid phases of long flexible molecules are of interestecular bonding angle would not be compatible with the
since it is at room temperature and pressure that these makngles of an fcc arrangement of atoms. As discussed earlier,
ecules exhibit the solid phase. For instance, all linear alkand$ the TPT1 approximation a freely-jointed chain is assumed,
with more than 20 carbon atoms are solids at room temperdence, the expected structure of its solid phase corresponds
ture and pressure, and the same is true for polyethyfeme. to that with the monomer segments arranged in an fcc lattice
many industrial processes one has to deal with the fluid-with random bond orientations. Assuming this structure we
solid separation of alkane mixtures. A theoretical descriptiorhave used computer simulations to compare with the theoret-
of the solid phase of flexible chain molecules would be ofical calculations.
great interest both from a fundamental and from a practical The scheme of this paper is as follows: In Sec. Il the
point of view. Taking into account the success of Wertheim'sextension of Wertheim's theory to the solid phase of LJ
TPT1 approach in modelling the fluid phase of chain mol-chains is described. In Sec. Il details of the simulations per-
ecules one is tempted to raise the following question: can théormed in this work are given. In Sec. IV the results for the
approach be extended to describe the solid phase of flexible] dimer system are presented, and in Sec. V the global
chains? Recently Vega and MacDovt&lhave shown that Phase diagrams of LJ chains are presented.
Wertheim’s TPT1 can be extended to the solid phase of
freely jointed hard spheres obtaining excellent agreement
with the simulation results of Malanoski and Monsd8ithe || BRIEF DESCRIPTION OF WERTHEIM'S
theory is also able to describe the solid phase of twoPERTURBATION THEORY
dimensional freely jointed dis&.Although chains formed
by hard spheres are of interest, it would certainly be more ~We summarize the main ideas contained within Wer-
interesting to consider the case of chains formed by Lennar¢heim’s theory by following the formulation introduced by
Jones monomers. Due to the presence of attractive forces, té&iou and Stelf®~%* Let us assume that we have a certain
Lennard-Jones model exhibits vapor—liquid equilibria in ad-number,N"', of spherical monomer particles within a certain
dition to the fluid—solid equilibrium, and is therefore of volumeV at temperaturd’, and that these particles interact
greater practical interest. The goal of this paper is to extenéhrough a spherical pair potential®(r). In this work the
Wertheim's theory to the solid phase of freely jointed LJPair potentialu™{(r) is the Lennard-Jones potential with pa-
molecules and to provide a first estimate of the global phasameterso- ande. We denote this fluid as the reference fluid
diagram of these systems. and the properties of this reference fluid will be labeled by
Let us briefly discuss the solid structure of freely-jointed the superscript ref. Let us also assume that in another con-
chains. In a freely jointed chain there is neither bending nof@iner of volumeV and temperaturd, we haveN=N"/m
torsional potentials between the monomers of the ckalin fuIIy_ flexible chains ofm monomers each..By fuI'Iy flexible
though there is an intramolecular pair interaction betweer¢nains we mean chains @i monomers, with a fixed bond
monomers of the same chain separated by more than of@hgth ofL=0, and no other constrain.e., there is no
bond. Therefore there is no energetic penalty when the atfestriction in either bondlng angle_s or in tor_5|onal angles
oms of the chains adopt a close-packed structioe in- Each monomer of a certain chain interacts with all the other

stance the face centered cubic fcc close-packed stryctur§0nomers in the systerfi.e., in the same molecule or in

with an ordered arrangement of atoms but with no |ong_other molecules with the only exception of the monomer/s to

- . - - . B f -
range orientational order in the bond vectors of the chaing¥hich it is bondegwith the pair potential’™(r). The chain
Wojciechowskiet al2>2%were the first to realize this impor- system described so far will be denoted as the chain fluid.

raf
tant feature in a continuum hard two-dimensional model. In  1he Helmholtz free energy of the reference fIAd' can

fact Wojciechowskiet al232° showed that the stable solid P€ divided into an ideal and a residual part as
structure of tangent hard-disc dimers in two dimensions is Aref ef A ref
formed by a close-packed arrangement of atoms with a dis- NEKT N,efkTJr NEKT =In(p"®H—1+ N’ (D)
ordered arrangement of bonds. The same idea holds for hard

chains in three dimensio$,and one may expect that the where p" is the reduced number density of the reference
same would occur for a three-dimensional LJ chain. In &luid (p"=N"¢%/V). In Eq. (1) we have arbitrarily as-
sense this is a clever solution of nature. The moleculesigned the value of thermal de Broglie wavelength tosbe

achieve the close-packed structure of hard spheres, so thahe residual term represents the difference between the ref-
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erence fluid and that of a system without intermolecular inqg;ﬁfid(g)] of the monomer LJ fluid. In this work we use their

teractions at the same temperature and density. implementation of the TPT1 approact in what relates to
The free energy of the chain flui can also be divided the fluid phases. Van der Hdéfhas recently proposed an
into an ideal and a residual part, so that analytical expression for the free energy of the LJ monomer
A A A A solid. His analytical expression is essentially a fit to the most
ideal residual residual

In(p)—1+

= + = , (2 recent simulation results for the solid phase of this model.
NkT  NkT - NkT NkT We adopt the expression provided by van der Hoef for the
where p is the reduced number density of chaifi®., p free energy of the LJ monomer solid. The other information
=No?/V). Note that the thermodynamic properties withoutrequired by the theory is the value g %f,id((r) for the LJ
the superscript ref refer to the chain fluid. In addition to themonomer solid. Since this is not available from previous
reduced number density of chains, the reduced number demorks we have performed computer simulations of the LJ
sity of monomers in the chain fluig,, is defined asp,, = monomer system in the solid phase in order to obtain

=mNg?/V. This density is useful when comparing the prop-g=<'. (o) for a number of temperatures and densities. The

erties of chains of different lengths since it seems more apsimulation results ofg™}, (o) were fitted to an empirical
propriate to compare them at the same reduced number deexpression of the same form as that proposed by Johnson
sity of monomers. Following Zhou and Stell, the residualet al. for the fluid phasé® In order to check the theory we
properties of the chain fluid are given, after several approxihave also performed a number of computer simulations of
mations, as the LJ dimer system in the solid phase. Details of the simu-

ref lations are given in the following section.
AresiduaI: mAresiduaI_ (m_ 1)In ref( ) (3)
NKT T NeKT y-ta,

I1l. SIMULATION DETAILS
wherey'®( o) is the background correlation functidrof the

referencgmonomey fluid at contact length. The background A. Computer simulations of the LJ monomer in the

. . ? . .~ _solid phase
correlation function is related to the pair correlation function
g"(r) by We have used the canonical ensembiV() Monte
ol e of ef Carlo (MC) simulation technique to obtain the pair radial
y=(r)=exp(Bu™(r))g™(r), (4 distribution function at contact length in a system of

where B=1/(kT). Since for the LJ potential/(c)=0, it Lennard-Jones spheres in the solid phase. All simulations
holds thaty™/(o) = g"®(¢"). Therefore, the free energy of the Were carried out foN"™'=500 particles, with initial configu-
chain fluid can be written as rations of particles arranged in cubic close packing. In par-
ticular, the Lennard-Jones spheres are arranged on a face-
centered cubic or fcc structure.

As corresponds to aNVT Monte Carlo simulation, the

The above equation shows that the free energy of th(_Qumber of particles, volume, and temperature are spedfied

chain fluid may be obtained from a knowledge of the re_priori, allowing the pressure and internal energy to fluctuate.

sidual free energy of the reference fluid and the pair back'-b‘ttemIOtS to displace a molecule in a random manner are

; . ; made in order to reach internal equilibrium. Periodic bound-
ground correlation function of the reference fluid at the o S ; )
. ; : . ._ary conditions and the minimum image convention are also
bonding distance of the monomers in the chain. The equation . . . : .
: . used. The calculation of the configurational internal energy is
of state which follows from Eq(5) is given by . .
performed in the usual way by truncating the Lennard-Jones
aln g’ef(cr)) interactions at a distance.=3c, and the pressure is ob-

_ f f
Z=mZ®-(m— 1)( 1+p" o (6)  tained using the virial equatiofi.The total internal configu-

ref
residual

A
- = — _ _ ref
NKT In(p)—1+ m—f—N,ekT (m—=1)Ing" (o). (5)

- e refr ref rational energy and pressure are recovered by adding back
where we have defined™ as Z™'=p™/(p"™kT). The re-  the standard long-range corrections. The pair radial distribu-

sidual part of the internal enerdy is given by tion function is calculated using the standard procetiure
U yrref aIngi(o) with a grid spaceAr=0.01o. Such a fine grid is required
msznL(m— nT 1 (7) sinceg;%ﬂid(cr) changes significantly in the proximities of

and this effect is especially important in the solid phase. The
We denote Egs(5), (6), and (7) as Wertheim’s TPT1 total simulation length is set to 200000 cycles, with 50 000
theory, noting that the arguments used to arrive to Eg)s.  equilibration cycles and 150000 averaging cycles. Each
(6), and(7) make no special mention as to the actual natureycle consists oN™' attempted particle displacements. The
(i.e., fluid or solid of the phase consideréf>>We suggest errors are estimated by dividing the simulation in blocks of
the use of these two equations footh the fluid phase and 10000 cycles, so as to obtain statistically-independent block
the solid phase. All that is then needed in order to obtain @equences, and calculating the standard errors of the mean.
unified theory for the phase equilibria of chain molecules is  The results obtained in this work are expressed in terms
the residual free energy, compressibility factor and pair corof reduced units, so that, the diameter in the Lennard-Jones
relation function of the monomer system both in the fluid potential, is the unit of length, and the maximum attractive
and the solid phase. Johnsenal ®° have provided values energy e of the potential is the energy unit. The reduced
of the free energy, and the structural propertig®., temperature and pressure are defined askT/e and p*
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FIG. 1. States for whictNVT simulations of the LJ monomer solid were
performed. For each state the valuegd (o) was obtained.

=po’le. In the Lennard-Joned.J) monomer reference fluid //~\
the reduced number density is denofé¥ (we suppress the - |
superscript in order to keep the notation as simple as pos- —
sible), and it is defined ap'®'=N"s3/V. :

We have considered 134 state-points building up ate 2| 1
T*p' grid in which the radial distribution function of the

AC

soli

solid Lennard-Jones system is evaluated. Temperatures fror
T*=0.4 up toT*=2.7, with a grid stepAT*=0.1 have Ly
been considered. In each isotherm several densities are simi
lated. The first corresponds to a density lower, but close ta 0 ,
the solid density at which the solid—liquid equilibria occurs. 0.0 0.5 1.0 1.5 20 25 3.0
The second chosen density is the solid density at melting.(b) r=

. . f_ . . f
Higher densities(up to p"'=1.25 with a grid stepAp™ FIG. 2. g (o) of the LJ monomer solid as obtained from th&/ T MC

solid

=0.05 are also studied. The overall density range is 0.9Qimulations of this worksymbol3 and as given by the fit of Eq8) (solid

spmfs 1.3. In Fig. 1 the temperature—density states studiedurves. (8) Results for five isotherms. From bottom to t@m the left hand
are indicated. side the results correspond ©*=0.4,1,1.5,2, and 2.7, respectivelyn)
ref . . . Results for four isochores. From bottom to top the results correspond to
In order to haveys o) in the solid phase as a continu- ei_1 1112 1.25, respectively.
ous function of the number density and temperature, the

simulation data fogrs?jid(cr) are fitted to an empirical expres-

sion of the form proposed by Johnsenal.Ci.e.,
5 5

GAMS, a high-level modeling environment for mathematical
; B 1 programming problem® The values of the pair radial dis-
g;%”d(a)—le;l le aij(PrEf)'T*( D, ®  tribution function at contact length obtained from the simu-
s _ lations are compared with the results of E8). in Fig. 2. In
Hence,g"™(o) is given by Eq.(8) for the fluid and for  rig ), gl (), as a function of reduced density, is
the solid phase. In the fluid phalsoe the paramedgrased are  shown for five isotherms. As can be seen, the radial distribu-
those proposed by Johnsenal,™ while in the solid phase tjon function at contact length is an increasing function of
the parameters proposed in this work, which are given iNensity, G9! (o)/3p™) >0, in the range of densities cov-

. . solid
Table |, are used. Tha; constants have been obtained usingereqd by the simulations. This means that the contribution to

the pressure due to chain formation in the solid phase is
TABLE |. Coefficients for the fit ofg’®|(o) as a function of temperature negative at all thermodynamic conditions considered. It can

and density for the LJ solid monomer. The expression of the fit is that?!SO be seen that EB) accurately reproduces the simulation

proposed by Johnsaet al. (Ref. 10 [see Eq(8) of the main text data in our range of temperatures. The temperature depen-

dence ofg'!. (o) for four isochores is presented in Figh2

- — — — 4 — Ol : _
: J J =3 ! 175 The distribution function at contact length as a function of
1 —11.632 37.706 —140.655 52.675 1.019 the temperature exhibits different behavior depending on the
g 13613-122 —lgg-gig 13130551739 —10§-§§81 _];178.9878% density considered. At the lowest densities studiptf'

- . - . - . —-2. . _ ref ; ; ; _
4 68.219 311.947 -197.314 114.210 —47.051 =1.0 and 1.1 Ysig( ) increases for increasing tempera
5 10560 —120436 112.935 —54.753 15058  tures. Since the contribution to the internal configurational

energy due to the chain formation in the solid phase is

Downloaded 16 Apr 2002 to 147.96.5.37. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 116, No. 17, 1 May 2002 Extending Wertheim’s perturbation theory 7649

cIoser related with the first derivative s%flid(o') with re- TABLE II. Thermodynamic properties of a LJ dimer in a disordered solid

; . . phase as obtained from tip T MC simulations of this work. The results
spect to the temperatufat constant densily this contribu- correspond td* = 1. The results presented are the arithmetic average of the

tion is positive at the lowest densities. At higher densitieSesults for two independent disordered configurations. The reduced pressure

(p=1.2 top™=1.25 g;%ﬂid(a) shows a more complicated is defined ap* =p/(e/a®). The reduced number density of dimers is de-

behavior; at low temperatures it behaves as an increasiﬁ@ed asp=No?/V. N stands for the number of molecules. The blank line
function of the temperature, a maximum is observed at inter§eparates the results of the isotropic fluid from those of the solid phase. For

. ! . . a few states we have presented in parentheses the difference between the
mediate temperatures, and at the highest temperatures it turjs s of the two independent disordered configurations.
to a decreasing behavior. In summary, the contribution to the

internal configurational energy due to the chain formation in p* P U/(Ne)
the solid phase is negative at high temperatures and densi- 0.6 0.4255 ~10.99
ties, and positive for all other thermodynamic conditions 0.8 0.4309 —11.12
considered in our study. 1.0 0.4353 —-11.22
1.2 0.4396 -11.31
1.4 0.4432 -11.39
B. Computer simulations of the LJ dimer in the solid 16 0.4973 —~13.15
phase 18 0.5002 ~13.19
In order to test .the prpposed theqry we have performed g 8:223;4) :g:gg( 4)
NpT Monte Carlo simulations of LJ dimer molecules in the 4 0.5314 ~13.74
solid phase. The reduced bond length of the dimeL*s 6 0.5490 —13.89
=L/o=1, whereL is the bond length. In the Monte Carlo 8 0.5626 —13.92
run three different types of moves were performed: particle ig 8'222? :13'32(3)
translations, particle rotations, and volume changes. These 7, 0.5921 1365
three types of move leave the bond length unchanged. Notice 16 0.6001 —13.49
that the LJ chains considered by Johnszirall® in their 18 0.6074 ~13.30
molecular dynamics study used stiff springs to keep contigu- 20 0.61423) —13.10(3)
ous monomers bonded so that in their study the bond length gg g'gigz :ﬁ'gg
is allowed to fluctuate around the equilibrium value o-. In 35 0.6549 1103
our simulations a typical run consisted of 30000 equilibra- 40 0.6656 ~10.54
tion cycles and 30000 averaging cycles, where a cycle con- 45 0.67511) —-9.83(2)
sists of a trial movdtranslation or rotationper particle plus 50 0.6838 —-9.12

an attempt to change the volume of the system. The magni- __ °° 0.6917 —839

tude of the displacement of the center of mass, angle of
rotation and volume change was controlled to keep the ac-
ceptance ratio close to 0.4. Translation and rotation moves
were accepted by following the standard Metropolisconfigurations similar to those considered here, are also
criterion®® The site—site LJ potential is truncated gt  found in two-dimensional hard dimer di&€®3"and in hard
=2.50, and the long-range corrections to the internal energyphere chailf systems. Note also that there is no true close
are added as usual by assuming that the site—site pair corrpacking for a soft potential such as the LJ but the reduced
lation function is equal to one for distances larger than thenumber density of hard spheres at close packing, V&.,
cutoff value®® Note that in ourNpT simulations the long provides a good starting point. This disordered structure was
range correction to the energy was incorporated into the Marexpanded to lower densities by performiNg T simulations
kov chain(whenever the volume of the system changed  at successively decreasing pressures. In order to assess the
that the output densities are good estimates of the corra@nfluence of generating different starting random solid con-
sponding densities of the system without truncation. A numfigurations a second random structure was generated, then
ber of simulations withr .=30¢ have also been carried out, carrying out a number oNpT simulations in an identical
finding no significant difference with the densities obtainedway. It is important to note that, since the distribution of
usingr.=2.50. bonds in the solid phase is assumed isotropic, the scaling in
In order to describe a disordered structure, a closetheseNpT simulations was done isotropically. In what fol-
packed faced centered culifcc) arrangement of atoms was lows the reduced configurational internal energy will be
generated and the molecular bonds were randomly distribgiven asU* =U/(Ne) (note thatN corresponds to the num-
uted. That was done as follows. We generated a cubic hypeber of molecules, and not the number of segmeriifie
cell by joining together eight face centered cubic unit cells ofsimulation results in this work were obtained for two iso-
atoms. The number of atoms per hypercell is(32in the thermsT*=1 andT* =2. In Table Il the simulation results
vertex, 15 in the faces, 3 in the edges, and 13 inside  for the disordered solid phase &t =1 are shown. The re-
connected the 32 atoms randomly, forming 16 dimers. Theults presented are the average of the runs for two indepen-
simulation box was obtained by joining together 27 suchdent disordered configurations. For a number of pressures the
hypercells. Therefore the total number of molecules in theypical difference between the properties of the two indepen-
NpT MC simulations of the disordered structure whls dent configurations are indicated in parentheses. As can be
=432 (27 hypercells with 16 dimers eactDisordered solid seen the differences in thermodynamic properties between
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TABLE Ill. Thermodynamic properties of a LJ dimer in a disordered solid TABLE IV. Thermodynamic properties of a LJ dimer in an ordered solid
phase as obtained from tip T MC simulations of this work. The results phase as obtained from tiepT MC simulations of this work. The results
correspond tol* =2. The rest of the notation is as in Table Il. The blank correspond toT* =1. The solid structure used in the simulations is that
line separates the results of the isotropic fluid from those of the solid phaselenoted as CP1 in Ref. 38. The rest of the notation is as in Table Il. Results
of this table were obtained witN=256. In a few caseflabeled with an

p* p U/(Ne) asterisk we consideredN=500 to analyze the system size dependence.
0.6 0.2912 -6.72 p* p U/(Ne)
0.8 0.3096 -7.17
1.0 0.3226 —-7.47 0.6 0.4256 -10.99
1.2 0.3335 -7.73 0.8 0.4307 -11.12
1.4 0.3427 -7.95 1.0 0.4349 —-11.21
1.6 0.3511 -8.14
18 0.3584 -8.30 1.2 0.4827 —13.09
5 0.3652 _g8.45 1.4 0.4904 -13.34
4 0.4113 -9.37 1.6 0.4951 —13.48
8 0.4619 10.03 2 0.5010 -13.59
10 0.4800 ~10.15 2 0.5029 —13.67
3 0.5153 -13.91
12 0.5373 -11.68 4 0.5263 —14.08
14 0.5526 -11.77 6 0.5434 —14.25
16 0.5658 -11.78 6* 0.5437 —-14.26
18 0.5763 -11.72 8 0.5569 —14.30
20 0.5854 -11.60 10 0.5683 —-14.27
25 0.6049 -11.20 10 0.5684 —-14.27
30 0.6209 -10.69 12 0.5781 -14.18
35 0.6346 -10.09 14 0.5869 —14.06
40 0.6470 —-9.47 16 0.5947 -13.91
45 0.6579 -8.80 18 0.6020 -13.73
50 0.6679 -8.10 20 0.6090 —-13.53
55 0.6770 -7.39 20 0.6090 -13.53
60 0.6853 —6.67 25 0.6243 —-12.96
30 0.6382 -12.31
30 0.6382 -12.31
35 0.6505 —-11.61
40 0.6617 -10.88
the two independent configurations are very small. At pres- jg* %‘23112 _ig'ii
sures belowp* =1.6 the solid phase becomes mechanically 50 06812 936
unstable and melts into an isotropic fluid. The melting is 50 0.6812 —~9.36
detected by a sudden drop of the translational order 55 0.6898 -8.57
parametef> by an increase in the molecular diffusion and by 60 0.6978 —7.78
60* 0.6978 -7.78

a strong increase in the volume of the simulation box. We
use the location of the atom@nd not of the center-of-
massepwhen evaluating the translational order parameter. In
Table Il the simulations results fof* =2 are presented.
Since the differences between the two disordered configurder nonisotropic changes in the simulation box sh¥pin
tions atT* =1 are small we have performed simulations atTable IV the simulation results for this systemTat=1 are
T* =2 for just one of them. At this temperature the solid presented. As can be seen the size dependence of the simu-
phase becomes mechanically unstable and melts into an iskation results is quite small. By comparing the results of
tropic fluid at pressures belop* = 12. Table IV to those of Table Il it can be seen that the thermo-
Although the stable solid structure of the dimer systemdynamic properties of the ordered and disordered solid are
must be a disordered one, we have also considered an asimilar. At a given pressure, the densities of the disordered
dered structure. It is interesting to study the differences irsolid are about 1% higher than those of the ordered solid,
thermodynamic properties between an ordered and a disoand the internal energies of the disordered solid are also
dered dimer solid. In particular we have considered the strucslightly higher than those of the ordered solid. These results
ture labeled as CP1 in a previous study of hard dumbbells imre in agreement with those of Wojciechowskial,?® who
the solid phasé® In this caseN =256 molecules arranged in found little difference between the EOS of ordered and dis-
four layers with 64 molecules per layer were used. For a fewordered solids in hard disc dimeise., in a two-dimensional
states we performed simulations for a somewhat larger sysysten). It is important to note however, that although the
temN=500 in the CP1 structur layers of 100 molecules EOS and internal energy of the ordered and disordered struc-
each, to analyze the size dependence of the simulation retures are quite similar this is not the case for the entropy,
sults. As before, the length of the runs was of 30 000 equiliwhich is much higher for the disordered structéfté®
bration cycles, followed by 30 000 averaging cycles. Since irHence, the Helmholtz free energy of the disordered solid is
this case the system is no longer cubic, the Rahman-significantly lower than that of the ordered solid, so that the
Parrinelld® version of theNpT MC is used in order to allow equilibrium structure of the LJ dimer in the solid phase cor-
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FIG. 3. Site—site correlation functions in the solid phas@’at1 as ob-
tained from Monte Carlo simulations. The results for the dimer2 at p
=0.545 in the disordered solighick solid curve and in the ordered solid
(thin solid curve are shown. The results for the LJ monomer in the solid
phase at the same monomer dengi§f=1.09 are also presentddashed
curve.

FIG. 4. Equation of state for the LJ dimer as given by the théowves
and by simulation results from this woKlsymbolg. Results are presented
for the fluid and solid phases at the reduced temperaflifesl and T*
=2. The open symbols correspond to the simulation data at a temperature of
T* =1, and the closed symbols " =2. The circles indicate fluid states
and the squares solid states. The tie-lines represent the fluid—solid coexist-
ence as determined from TPT1, which occup@at=4.35 andp* = 19.02 for
T*=1 andT* =2, respectively. Fol* =2 we have also included simula-
responds to the disordered solid, and not to the ordered solitlon resuilts from Ref. 10 for the fluid phase.

The structural properties of the disordered and ordered
dimer solids were also analyzed. In Fig. 3 the site—site cor-

relation functions as obtained from MC simulations ot In the following section our simulation data of the dimer
—1 and p=0.545 are presented for the disordered solid-J solid are compared with the theoretical calculations, in all

(thick solid curve, and for the ordered solidthin solid ~cases the simulation results correspond to those of the disor-

curve. Differences between the two types of solid are clearlydered solid, as this is the true equilibrium structure of the
visible at large distances, and in the first peak. The atom-model.

atom correlation function of the LJ monomer solid at the

same temperature and monomer densit§'€ 1.09) is also  IV. THE PHASE DIAGRAM OF THE LENNARD-JONES
shown(dashed curve The comparison between the site—site DIMER

correlation function of the dimer and the atom—atom corre-
lation function of the monomer illustrates the effect of bond-

N9 3\? tEe strulcture Off the (sjystem. ber of simulati for th simulation data for the dimer LJ system. It is important to
€ have aiso performed a number of simulations 101 th€, i0 1t the equation of state described in Sec. Il corre-

dimer LJ system at very low temperatures and zero pressurgponds to that of a solid with a fcc structure of monomers
since an estimate of the solid densities along the sublimatioBut with random orientation of the bond vectds disor- ’
curve can be obtained by performirgpT S|r_nulat|ons at dered soligl Hence we have used the data in Tables II, and
zero pressure. These results are presented in Table V for trlmﬁ for comparison, but not those of Table IV. The EOS for
disordered solid and for the CP1 structure. two isothermgT* =1 andT* =2) is examined in Fig. 4. At
each temperature the fluid branch can be seen at lower den-
TABLE V. Properties of the LJ dimer in the solid phase along the sublima-slltIeS and the .SOI'd bra”Ch at'hlgher densn.les, tqgether with a
tion line, as obtained froipT simulations at zero pressure. Results for an first-order fluid—solid transition. The simulation results
ordered and disordered structure are presented. present hysteresis, so that it is possible to simulate the solid
for pressures lower than that of melting, and the fluid for

An unbiased assessment of the equation of state pro-
posed can be obtained by comparison with the presented

T Solid P U/i(Ne) pressures higher than that of freezing. In the case of the
0.40 Disordered 0.5380 —-15.17 theoretical calculations, the conditions for equilibtequal-

0.45 Disordered 0.5340 —15.00 ity of pressure and chemical potenjiatere solved for each
8:?2 3:22:32:23 g:gzgg :ii:gg temperature, and the calculated coexistence pressures for
0.60 Disordered 0.5199 _14.45 each temperature can be seen in Fig. 4. The metastable
0.65 Disordered 0.5144 —14.24 branches obtained with the equation of state are also pre-
0.40 CP1 0.5343 —-15.50 sented for comparison with the simulated data. A further test
0.50 CP1 0.5260 —15.16 of the theory is provided by an examination of the internal
0.55 CcP1 0.5216 ~14.98 energy. In Fig. 5 the simulation data of the internal energy of
0.60 CP1 0.5169 —-14.79 : ; e

0.65 cP1 0.5118 1459 the dimer are compared to the theoretical predictions for

temperature§* =1 andT* =2. The agreement between the
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U/(Ne)

12

FIG. 5. Configurational internal enerdy/(Ne) for the LJ dimer as given 0.8
by the theory(curves and by simulation results from this wofkymbols.

Results are presented for the fluid and solid phases at the reduced temper
turesT*=1 andT*=2. The rest of the notation is as in Fig. 4. Fbt

=2 we have also included simulation results from Ref. 10 for the fluid 07}
phase.

simulation data and the calculations is found to be very good& 0.6 |
over the wide range of densities considered, both for the
equation of state data, and for the internal energy data.

In Fig. 6(a) the global phase diagram for the LJ dimeras s |
obtained from Wertheim’s TPT1 for the fluid and solid phase
is presented. The Gibbs ensemble simulation data for the
vapor—liquid equilibria of the LJ dimer as reported by Dubey .
et al** have been included, together with our simulation re- 0.7 0.85
sults for the zero-pressure densities of the LJ dimer solid a' (b)

low temperatures. Since the vapor—presstre reduced
P P P U FIG. 6. (a) Global phase diagram of the LJ dimer in thé& vs p,, repre-

units) is_very S_ma” alon_g the vapor—sqlid coexistence _Curvesentation. Solid line, theoretical results from this work using Wertheim’s
these simulations provide a good estimate of the solid denrpT1 for the fluid and solid phases; circles, simulation results for the
sities along the sublimation curve. As can be seen, the theomgpor—liquid equilibria from Dubeyet al. (Ref. 41; squares, simulation
describes very accurately the available simulation results d]esults for the sublimation line from this wortb) Triple point region of the

. . . . LJ dimer(dashed linpand monome(solid line) as obtained from the theory
the phase diagram of the LJ dimer. The triple point temperags inis work.
ture for the LJ dimer as estimated from the theory presented
in this work isT{ =0.653. In the case of the monomer LJ
system, the triple point temperature predicted by the theory _ _ )
(T¥=0.687) is in excellent agreement with the estimate ofP€cted, an increase of the chain length results in a more
Agrawal and Kofké? (T¥=0.687). As can be seen, the dramatic variation of the vapor—liquid coexistence than of
triple point temperature of the LJ dimer is 5% lower than thatthe solid—liquid and solid—gas phase boundaries. Since the
of the LJ monomer. Differences in the triple point densitiestheoretical predictions corresponding to the fluid phases have

continue, in the next section, to study the phase behavior dfa- For each chain length, the liquid—solid transition densi-
longer chain molecules. ties are found to increase with temperature. The increase is

more pronounced in the monomer system than for longer
chains. The temperature at which solid, liquid, and gas are
found in coexistencéhe triple point temperatuyes seen to
Using the theory presented in Sec. Il, we have also studdecrease with increasing chain lendtee Fig. ) and
ied the phase behavior of fully-flexible Lennard-Jones chainJable VI for more details Below the triple point tempera-
of lengthsm=4 andm=8. In Fig. 7a) the temperature— ture, solid—gas coexistence is observed. The binodal curves
density (T*p,,) projection of the phase diagram is shown, corresponding to the solid phase associated to the solid—gas
where, as in the previous section, the reduced density corrgghase transition shift toward higher densities for increasing
sponds to the reduced monomer density. The phase envelopkain length. As in the case of the solid—liquid coexistence
corresponding to the monomen=1 and dimerm=2 curves, the largest change in the solid—gas phase boundaries
Lennard-Jones systems are included for comparison. As exs observed between the monomer and the dimer.

1.15

V. GLOBAL PHASE DIAGRAM FOR LJ CHAINS
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FIG. 7. T*p,, global phase diagram for LJ chains of chain lengths
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curves correspond ton=1, the short dashed curves to=2, the long
dashed curves tm=4, and the dashed—dotted curvesiie-8. (a) Global

0.25

0.50

phase diagramb) The region close to the triple point.

Extending Wertheim’s perturbation theory 7653

(€)

where X stands for any of the thermodynamic properfigs

or u/(kT)]. Since this is true for the fluid and the solid
phase, the equilibrium condition for, say, the chemical poten-
tial between the fluid and solid phagssuperscriptf ands,
respectively may be expressed as

X(pm ,T,m) :Xl(pm 1)+ mXZ(pm 1),

wi(pme, T) 23(Pms T)

m +M§(Pms-T)v

(10
wherep,,+ andp,s stand for the monomer number density in

the fluid and in the solid phase at coexistence. For suffi-
ciently large values o, Eqg. (10) reads as

+ (Pt T) =

13(pme 1) = 43(Pms, T), (1)
which is independent ain. Similarly, starting from Eq(9)

for the compressibility factor, and imposing the condition of
equal pressure for the fluid and solid phases, one can show
that the reduced pressupf at coexistence becomes inde-
pendent ofm in the infinite-chain limit(see Ref. 26 for more
details.

From the results of Fig. 7 the triple point of LJ chains in
the limit m—o can be estimated close & =0.634 (per-
forming, for instance, a Shultz—Flory extrapolafidff). The
existence of an asymptotic limit in the triple point tempera-
ture for long polymer chains is experimentally well known.
In fact the triple point temperature ofalkanes reaches the
asymptotic valuel,=414 K (Refs. 25 and 4bfor large mo-
lecular weights. When modeling-alkanes with tangent LJ
chains the value of the parametefk is close to 300 K*®
This means that the reduced temperature-afkanes at the
gxperimental triple point is roughly; =1.38. As it can be
seen the reduced triple point temperature of LJ chains is
quite different of the reduced triple point temperature of
n-alkanes. It seems that a fully-flexible LJ chain is not par-
ticularly adequate to describealkanes in the solid phase.
We shall come back to this point later in this work. The fluid

The results of Fig. 7 strongly indicate the existence ofdensities at the triple point in-alkane systems also reach
asymptotic limits in the freezing properties of LJ chains forasymptotic values for large molecular weightshen ex-
large values ofn. In fact, they suggest that the triple point pressed as masses per unit of voliintieis gratifying to see

temperature and the fluid—solid coexistence densftiggen

that the theory is able to explain the origin of these limiting

expressed in monomer unigg,) become independent of the behaviors. However, the liquid range of the fully flexible LJ
chain length for large values ofi. These observations are a chains seems to be extremely large. In fact since the critical
direct result of the functional form of the Helmholtz free temperature of infinitely long LJ chaifis®? (i.e., the® tem-
energy in Wertheim’'s TPT1 approach. In Wertheim’s formal-perature is close toT* =4.6, so that the ratid@, /T for LJ

ism, the compressibility factoZz and chemical potential

w/(KT) can be written &8

chains is of the order of 0.14. One of the liquids with a
largest liquid regime is propane, for whidh/T.=0.23, and

in a spherical fluid such as argon, this ratio is about 0.55; this
provides an idea of the extraordinary liquid regime presented

TABLE VI. Triple point properties of fully flexible LJ chains as obtained DY these LJ chains. It is not easy to describe trendg Iif
from Wertheim's TPT1 for the fluid and solid phases. The coexistence denfor molecular fluids. Considerable effort has been devoted in

sities of the fluid and solid phases are denoted asandp,,s, respectively.

m Tl* p* Pmf Pms

1 0.687 1.1%10°2 0.848 0.963
2 0.653 8.1x10° 7 0.918 1.025
4 0.642 9.9%10 0.943 1.059
8 0.639 4.2& 10 % 0.953 1.074

the last decade to explain this ratio in a number of molecular
fluids*34%18Can we provide a qualitative explanation of the
origin of the value 0.14 folr, /T, in fully-flexible LJ chains?
The critical temperature of LJ chains increases frdm
=1.31 for the monomer up to about 3.5 times this value for
very long chains. This is a huge variation. However, the
triple point temperature of very long chains is just 0.93 times
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pressures compared to the range at which solid—liquid tran-
sition continues. As can be seen, at low temperatures the
fluid—solid transition pressures increase with increasmg
however, at high temperatures this trend is inverted, and the
solid—liquid transition pressures decrease for increasing
chain lengths. The slope in thg T* is related to the melting
enthalpy and to the volume change through the Clapeyron
equatiorr?

VI. CONCLUSIONS

In this work Wertheim’s TPT1 theory has been extended
to study the solid phase of LJ chains. The theory requires a
knowledge of the free energy and of the contact value of the
radial distribution function of the reference LJ monomer.
Johnsonet al®? have given expressions for both of these

properties in the fluid phase, and van der Hbags recently
proposed an expression for the free energy of the solid phase.
In order to determing/(¢) in the solid phase we have
performed computer simulations and fitted the numerical re-
sults to an empirical expression of the same form as that
proposed by Johnscet all® The theory has been tested by
comparing simulation and theoretical results for the LJ
dimer. For this purpose computer simulations were per-
formed for the disordered solid structure of the LJ dimer. It
has been shown that the theory describes very accurately the
EOS and internal energy of the LJ dimer solid. Furthermore,
the densities of the solid along the sublimation curve are also
found to be in excellent agreement with simulation data. Our
estimate of the triple point temperature for the LJ dimer is
TF =0.653. Using Wertheim's TPT1 for the fluid and for the
FIG. 8. p*T* representation of the global phase diagram for LJ chains withgglid phase we have calculated the vapor—liquid, liquid—
m= 1,2,4, and 8 as obtained from the theory presented in this work. Th%olid, and solid—vapor coexistence lines as well as the global
solid curves correspond o= 1, the short dashed curvesno=2, the long . .
dashed curves tmm=4, and the dashed-dotted curvesne-8. (a) Low phase d|a_gram of LJ Ch,ams' .
pressure region(b) High pressure region. Studying longer chain molecules, it has been shown that
the calculated triple point temperature of LJ chains tends to
an asymptotic finite value ofy =0.634, which means that
that of the LJ monomer. One can understand easily the enothe chains present an enormous liquid rarge., T,/T,
mous increases of the critical temperature of LJ chains with=0.14). The calculated coexistence densitieg8hen ex-
respect to the monomer. How to understand the almost corpressed in monomers per unit of volumpeg,) also tend to
stant value for the triple point temperature? As can be seen iasymptotic values for large valuesof Although the model
Fig. 7, at low temperatures the increase of the orthobaricised in this work is a crude one, it is able to capture some of
density fromm=1 to m=2 is almost identical to the in- the features presented in the phase diagram of real flexible
crease in the density at freezing fram=1 tom=2, so that molecules. In polyethylene the triple point temperature
the triple point temperature remains practically unaffectedreaches a finite value and the fluid—solid coexistence densi-
Of course this is not exact, but it provides a simple view agies become very similar for large chain lengttwghen the
to why the triple point temperature is approximately con-densities are expressed in units of mass per volJume
stant. It should be noted, however, that fully flexible models
It is useful to examine also thg* T* projection of the may not be particularly realistic when describing solid
phase diagram as obtained with the theoretical apprGah phases of real substances. The extreme flexibility of the LJ
Fig. 8. In Fig. 8@ the vapor—pressure curve, solid—-liquid chain allows the existence of a singular solid with ordering
transition line, and solid—gas transition line corresponding tmf atoms but disorder of bonds. It must be mentioned that
freely-jointed Lennard-Jones chains of up to eight monomersuch a solid cannot be constructed using real polymers; over-
(m=8) are presented. The coexistence lines of the Lennardap between contiguous monomers, whose distance is less
Jones monomer system are included for comparison. It ithan the sum of their van der Waals radii, and the existence
more interesting to analyze the high-pressure region of thef bond angles and torsional potentials make such a high-
p*T* projection of the phase diagraifFig. 8b)]. The density disordered solid an impossibility. When these geo-
liquid—vapor and solid—gas coexistence curves cannot bmetrical constraints are included in the model, the only way
seen in this plot since these boundaries occur at very lowf obtaining a highly-packed solid is to generate an ordered
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