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Wertheim’s first order thermodynamic perturbation theory~TPT1! @M. S. Wertheim, J. Chem. Phys.
87, 7323 ~1987!# is extended to model the solid phase of chains whose monomers interact via a
Lennard-Jones potential. Such an extension requires the free energy and contact values of the radial
distribution function for the Lennard-Jones reference system in the solid phase. Computer
simulations have been performed to determine the structural properties of the monomer
Lennard-Jones system in the solid phase for a broad range of temperatures and densities. Computer
simulations of dimer Lennard-Jones molecules in the solid phase have also been carried out. The
theoretical results for the equation of state, the internal energy, and the sublimation curve of the
dimer model in the solid phase are in excellent agreement with the simulation data. The extended
theory is used to determine the global~solid–liquid–vapor! phase diagram of the LJ dimer model;
the theoretical estimate of the triple point temperature for the LJ dimer isT* 50.653. Similarly,
Wertheim’s TPT1 is used to determine the global phase diagram of chains formed by up to 8
monomer units. It is found that the calculated triple point temperature is hardly affected by the chain
length, and that for large chain lengths the fluid–solid equilibrium coexistence densities are virtually
independent of the number of monomers in the chain when the densities are expressed in monomer
units. This is in agreement with experimental indications observed in polyethylene, where both the
critical and the triple point temperatures tend to finite values for large molecular weights. ©2002
American Institute of Physics.@DOI: 10.1063/1.1465397#
sf
or

el
on

r
nl
id
m
tio
o

i
o

im

be

l-

c-
me
ia

al
in
rip-

he
of

of
lso

le
that
he
id–
ve
olar
ms,
t

-

I. INTRODUCTION

In the mid-1980s Wertheim presented a very succes
theory to study the thermodynamic properties of hard-c
fluids interacting via short-range attractive~association!
forces,1–4 such as hydrogen bonding fluids. In this mod
when the association strength becomes infinitely str
chains are formed from a fluid of associating monomers.5 In
this way it is possible to derive an equation of state fo
chain of freely-jointed tangent hard segments using o
thermodynamic information of the monomer reference flu
In the simplest implementation of the theory, which is co
monly denoted as the first order thermodynamic perturba
theory ~TPT1!, the only information required in order t
build an approximate equation of state for the chain fluid
the equation of state of the monomer fluid and its pair c
relation function at contact. The equation of state~EOS! aris-
ing from TPT1 was proposed independently by Werthe6

and by Chapman, Jackson, and Gubbins.7 In the early 1990s
Chapman8 showed that Wertheim’s formalism could also
applied to systems with attractive~dispersion! forces. The
work of Johnsonet al.9,10 has shown that Wertheim’s forma
ism yields a good description of the Lennard-Jones~LJ!
7640021-9606/2002/116(17)/7645/11/$19.00
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chain fluid, provided that the EOS and pair correlation fun
tion of the reference LJ fluid are accurately known. The sa
is true for chains formed from monomers interacting v
other pair potentials, for instance, the square well potenti11

and the Yukawa potential12 have also been incorporated
this context. Therefore, an approximate but reliable desc
tion of the fluid phase of fully flexible chains~i.e., with no
constraint in the bonding angle or torsional state! can be
obtained nowadays in a rather straightforward way. T
TPT1 theory of Wertheim provides reasonable predictions
the vapor–liquid equilibria for a number of different types
chain.13–16 Notice that other theoretical treatments are a
succesfull for LJ chains.17

In order to obtain the global phase diagram of flexib
chains, the solid phase should also be considered so
fluid–solid coexistence is adequately located within t
phase diagram of the model. In the last decade the flu
solid equilibrium of a number of molecular models ha
been considered, for example, hard dumbbells, quadrup
hard dumbbells, hard spherocylinders, hard ionic syste
benzenelike models, and others~see, for instance, the recen
review of Monson and Kofke18!. However, efforts consider
5 © 2002 American Institute of Physics
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ing the fluid–solid equilibrium of flexible chains are scarc
Malanoski and Monson19 have determined via compute
simulation the fluid–solid equilibrium of freely jointed har
sphere chains, and of a hard model ofn-alkane molecules.20

Polson and Frenkel21 have determined the fluid–solid equ
libria of LJ chains~with a bending potential! and of a LJ
model ofn-alkane molecules.22 Theoretical works describing
the phase equilibria of flexible chains in the solid phase
even more scarce, the work of Sear and Jackson,23 and of
Malanoskiet al.,24 in which the the cell theory is extended
study the solid phase of these molecules, are the excep

Solid phases of long flexible molecules are of inter
since it is at room temperature and pressure that these
ecules exhibit the solid phase. For instance, all linear alka
with more than 20 carbon atoms are solids at room temp
ture and pressure, and the same is true for polyethylene.25 In
many industrial processes one has to deal with the flu
solid separation of alkane mixtures. A theoretical descript
of the solid phase of flexible chain molecules would be
great interest both from a fundamental and from a pract
point of view. Taking into account the success of Wertheim
TPT1 approach in modelling the fluid phase of chain m
ecules one is tempted to raise the following question: can
approach be extended to describe the solid phase of flex
chains? Recently Vega and MacDowell26 have shown that
Wertheim’s TPT1 can be extended to the solid phase
freely jointed hard spheres obtaining excellent agreem
with the simulation results of Malanoski and Monson.19 The
theory is also able to describe the solid phase of tw
dimensional freely jointed discs.27 Although chains formed
by hard spheres are of interest, it would certainly be m
interesting to consider the case of chains formed by Lenn
Jones monomers. Due to the presence of attractive forces
Lennard-Jones model exhibits vapor–liquid equilibria in a
dition to the fluid–solid equilibrium, and is therefore o
greater practical interest. The goal of this paper is to ext
Wertheim’s theory to the solid phase of freely jointed
molecules and to provide a first estimate of the global ph
diagram of these systems.

Let us briefly discuss the solid structure of freely-joint
chains. In a freely jointed chain there is neither bending
torsional potentials between the monomers of the chain~al-
though there is an intramolecular pair interaction betwe
monomers of the same chain separated by more than
bond!. Therefore there is no energetic penalty when the
oms of the chains adopt a close-packed structure~for in-
stance the face centered cubic fcc close-packed struc!
with an ordered arrangement of atoms but with no lon
range orientational order in the bond vectors of the cha
Wojciechowskiet al.28,29 were the first to realize this impor
tant feature in a continuum hard two-dimensional model.
fact Wojciechowskiet al.28,29 showed that the stable soli
structure of tangent hard-disc dimers in two dimensions
formed by a close-packed arrangement of atoms with a
ordered arrangement of bonds. The same idea holds for
chains in three dimensions,19 and one may expect that th
same would occur for a three-dimensional LJ chain. In
sense this is a clever solution of nature. The molecu
achieve the close-packed structure of hard spheres, so
Downloaded 16 Apr 2002 to 147.96.5.37. Redistribution subject to AIP
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the density is high, and the system is ordered from the p
of view of the atoms but not from the point of view of th
molecular bonds. The disorder of bonds means that ther
an additional contribution to the entropy of the system a
ing from the degeneracy of the structure. For this reason
stable solid structure for freely jointed models is one w
disordered bonds. The extreme flexibility of freely jointe
models makes the existence of such a solid possible.
reduction of flexibility, such as fixing a bond angle in th
model, would make the existence of the closed-packed s
with random bonds impossible, since it is likely that the m
lecular bonding angle would not be compatible with t
angles of an fcc arrangement of atoms. As discussed ea
in the TPT1 approximation a freely-jointed chain is assum
hence, the expected structure of its solid phase corresp
to that with the monomer segments arranged in an fcc lat
with random bond orientations. Assuming this structure
have used computer simulations to compare with the theo
ical calculations.

The scheme of this paper is as follows: In Sec. II t
extension of Wertheim’s theory to the solid phase of
chains is described. In Sec. III details of the simulations p
formed in this work are given. In Sec. IV the results for t
LJ dimer system are presented, and in Sec. V the glo
phase diagrams of LJ chains are presented.

II. BRIEF DESCRIPTION OF WERTHEIM’S
PERTURBATION THEORY

We summarize the main ideas contained within W
theim’s theory by following the formulation introduced b
Zhou and Stell.30–32 Let us assume that we have a certa
number,Nref, of spherical monomer particles within a certa
volumeV at temperatureT, and that these particles intera
through a spherical pair potentialuref(r ). In this work the
pair potentialuref(r ) is the Lennard-Jones potential with p
rameterss ande. We denote this fluid as the reference flu
and the properties of this reference fluid will be labeled
the superscript ref. Let us also assume that in another c
tainer of volumeV and temperatureT, we haveN5Nref/m
fully flexible chains ofm monomers each. By fully flexible
chains we mean chains ofm monomers, with a fixed bond
length of L5s, and no other constraints~i.e., there is no
restriction in either bonding angles or in torsional angle!.
Each monomer of a certain chain interacts with all the ot
monomers in the system~i.e., in the same molecule or in
other molecules with the only exception of the monomer/s
which it is bonded! with the pair potentialuref(r ). The chain
system described so far will be denoted as the chain flui

The Helmholtz free energy of the reference fluidAref can
be divided into an ideal and a residual part as

Aref

NrefkT
5

Aideal
ref

NrefkT
1

Aresidual
ref

NrefkT
5 ln~r ref!211

Aresidual
ref

NrefkT
, ~1!

where r ref is the reduced number density of the referen
fluid (r ref5Nrefs3/V). In Eq. ~1! we have arbitrarily as-
signed the value of thermal de Broglie wavelength to bes.
The residual term represents the difference between the
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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erence fluid and that of a system without intermolecular
teractions at the same temperature and density.

The free energy of the chain fluidA can also be divided
into an ideal and a residual part, so that

A

NkT
5

Aideal

NkT
1

Aresidual

NkT
5 ln~r!211

Aresidual

NkT
, ~2!

where r is the reduced number density of chains~i.e., r
5Ns3/V!. Note that the thermodynamic properties witho
the superscript ref refer to the chain fluid. In addition to t
reduced number density of chains, the reduced number
sity of monomers in the chain fluidrm is defined asrm

5mNs3/V. This density is useful when comparing the pro
erties of chains of different lengths since it seems more
propriate to compare them at the same reduced number
sity of monomers. Following Zhou and Stell, the residu
properties of the chain fluid are given, after several appro
mations, as

Aresidual

NkT
5m

Aresidual
ref

NrefkT
2~m21!ln yref~s!, ~3!

whereyref(s) is the background correlation function33 of the
reference~monomer! fluid at contact length. The backgroun
correlation function is related to the pair correlation functi
gref(r ) by

yref~r !5exp~buref~r !!gref~r !, ~4!

whereb51/(kT). Since for the LJ potentialuref(s)50, it
holds thatyref(s)5gref(s). Therefore, the free energy of th
chain fluid can be written as

A

NkT
5 ln~r!211m

Aresidual
ref

NrefkT
2~m21!ln gref~s!. ~5!

The above equation shows that the free energy of
chain fluid may be obtained from a knowledge of the
sidual free energy of the reference fluid and the pair ba
ground correlation function of the reference fluid at t
bonding distance of the monomers in the chain. The equa
of state which follows from Eq.~5! is given by

Z5mZref2~m21!S 11r ref
] ln gref~s!

]r ref D , ~6!

where we have definedZref as Zref5pref/(r refkT). The re-
sidual part of the internal energyU is given by

U

NkT
5m

U ref

NrefkT
1~m21!TS ] ln gref~s!

]T D . ~7!

We denote Eqs.~5!, ~6!, and ~7! as Wertheim’s TPT1
theory, noting that the arguments used to arrive to Eqs.~5!,
~6!, and~7! make no special mention as to the actual nat
~i.e., fluid or solid! of the phase considered.30,32 We suggest
the use of these two equations forboth the fluid phase and
the solid phase. All that is then needed in order to obtai
unified theory for the phase equilibria of chain molecules
the residual free energy, compressibility factor and pair c
relation function of the monomer system both in the flu
and the solid phase. Johnsonet al.9,10 have provided values
of the free energy, and the structural properties@i.e.,
Downloaded 16 Apr 2002 to 147.96.5.37. Redistribution subject to AIP
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gfluid
ref (s)# of the monomer LJ fluid. In this work we use the

implementation of the TPT1 approach9,10 in what relates to
the fluid phases. Van der Hoef34 has recently proposed a
analytical expression for the free energy of the LJ monom
solid. His analytical expression is essentially a fit to the m
recent simulation results for the solid phase of this mod
We adopt the expression provided by van der Hoef for
free energy of the LJ monomer solid. The other informati
required by the theory is the value ofgsolid

ref (s) for the LJ
monomer solid. Since this is not available from previo
works we have performed computer simulations of the
monomer system in the solid phase in order to obt
gsolid

ref (s) for a number of temperatures and densities. T
simulation results ofgsolid

ref (s) were fitted to an empirica
expression of the same form as that proposed by John
et al. for the fluid phase.10 In order to check the theory we
have also performed a number of computer simulations
the LJ dimer system in the solid phase. Details of the sim
lations are given in the following section.

III. SIMULATION DETAILS

A. Computer simulations of the LJ monomer in the
solid phase

We have used the canonical ensemble (NVT) Monte
Carlo ~MC! simulation technique to obtain the pair radi
distribution function at contact length in a system
Lennard-Jones spheres in the solid phase. All simulati
were carried out forNref5500 particles, with initial configu-
rations of particles arranged in cubic close packing. In p
ticular, the Lennard-Jones spheres are arranged on a
centered cubic or fcc structure.

As corresponds to anNVT Monte Carlo simulation, the
number of particles, volume, and temperature are specifiea
priori , allowing the pressure and internal energy to fluctua
Attempts to displace a molecule in a random manner
made in order to reach internal equilibrium. Periodic boun
ary conditions and the minimum image convention are a
used. The calculation of the configurational internal energ
performed in the usual way by truncating the Lennard-Jo
interactions at a distancer c53s, and the pressure is ob
tained using the virial equation.35 The total internal configu-
rational energy and pressure are recovered by adding b
the standard long-range corrections. The pair radial distri
tion function is calculated using the standard procedur35

with a grid spaceDr 50.01s. Such a fine grid is required
sincegsolid

ref (s) changes significantly in the proximities ofs,
and this effect is especially important in the solid phase. T
total simulation length is set to 200 000 cycles, with 50 0
equilibration cycles and 150 000 averaging cycles. Ea
cycle consists ofNref attempted particle displacements. Th
errors are estimated by dividing the simulation in blocks
10 000 cycles, so as to obtain statistically-independent bl
sequences, and calculating the standard errors of the me

The results obtained in this work are expressed in te
of reduced units, so thats, the diameter in the Lennard-Jone
potential, is the unit of length, and the maximum attract
energy e of the potential is the energy unit. The reduc
temperature and pressure are defined asT* 5kT/e and p*
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5ps3/e. In the Lennard-Jones~LJ! monomer reference fluid
the reduced number density is denotedr ref ~we suppress the
superscript* in order to keep the notation as simple as p
sible!, and it is defined asr ref5Nrefs3/V.

We have considered 134 state-points building up
T* r ref grid in which the radial distribution function of th
solid Lennard-Jones system is evaluated. Temperatures
T* 50.4 up to T* 52.7, with a grid stepDT* 50.1 have
been considered. In each isotherm several densities are s
lated. The first corresponds to a density lower, but close
the solid density at which the solid–liquid equilibria occu
The second chosen density is the solid density at melt
Higher densities~up to r ref51.25! with a grid stepDr ref

50.05 are also studied. The overall density range is 0
<r ref<1.3. In Fig. 1 the temperature–density states stud
are indicated.

In order to havegsolid
ref (s) in the solid phase as a continu

ous function of the number density and temperature,
simulation data forgsolid

ref (s) are fitted to an empirical expres
sion of the form proposed by Johnsonet al.,10 i.e.,

gsolid
ref ~s!511(

i 51

5

(
j 51

5

ai j ~r ref! iT* (12 j ). ~8!

Hence,gref(s) is given by Eq.~8! for the fluid and for
the solid phase. In the fluid phase the parametersai j used are
those proposed by Johnsonet al.,10 while in the solid phase
the parameters proposed in this work, which are given
Table I, are used. Theai j constants have been obtained usi

FIG. 1. States for whichNVT simulations of the LJ monomer solid wer
performed. For each state the value ofgsolid

ref (s) was obtained.

TABLE I. Coefficients for the fit ofgsolid
ref (s) as a function of temperature

and density for the LJ solid monomer. The expression of the fit is
proposed by Johnsonet al. ~Ref. 10! @see Eq.~8! of the main text#.

i j 51 j 52 j 53 j 54 j 55

1 211.632 37.706 2140.655 52.675 1.019
2 86.742 240.865 335.679 2108.881 217.970
3 2131.434 2190.010 2110.953 22.908 48.886
4 68.219 311.947 2197.314 114.210 247.051
5 210.560 2120.436 112.935 254.753 15.058
Downloaded 16 Apr 2002 to 147.96.5.37. Redistribution subject to AIP
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GAMS, a high-level modeling environment for mathematic
programming problems.36 The values of the pair radial dis
tribution function at contact length obtained from the sim
lations are compared with the results of Eq.~8! in Fig. 2. In
Fig. 2~a!, gsolid

ref (s), as a function of reduced density,
shown for five isotherms. As can be seen, the radial distri
tion function at contact length is an increasing function
density, (]gsolid

ref (s)/]r ref)T.0, in the range of densities cov
ered by the simulations. This means that the contribution
the pressure due to chain formation in the solid phase
negative at all thermodynamic conditions considered. It c
also be seen that Eq.~8! accurately reproduces the simulatio
data in our range of temperatures. The temperature de
dence ofgsolid

ref (s) for four isochores is presented in Fig. 2~b!.
The distribution function at contact length as a function
the temperature exhibits different behavior depending on
density considered. At the lowest densities studied~r ref

51.0 and 1.1! gsolid
ref (s) increases for increasing temper

tures. Since the contribution to the internal configuratio
energy due to the chain formation in the solid phase

t

FIG. 2. gsolid
ref (s) of the LJ monomer solid as obtained from theNVT MC

simulations of this work~symbols! and as given by the fit of Eq.~8! ~solid
curves!. ~a! Results for five isotherms. From bottom to top~on the left hand
side! the results correspond toT* 50.4,1,1.5,2, and 2.7, respectively.~b!
Results for four isochores. From bottom to top the results correspon
r ref51,1.1,1.2,1.25, respectively.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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closely related with the first derivative ofgsolid
ref (s) with re-

spect to the temperature~at constant density!, this contribu-
tion is positive at the lowest densities. At higher densit
~r ref51.2 tor ref51.25! gsolid

ref (s) shows a more complicate
behavior; at low temperatures it behaves as an increa
function of the temperature, a maximum is observed at in
mediate temperatures, and at the highest temperatures it
to a decreasing behavior. In summary, the contribution to
internal configurational energy due to the chain formation
the solid phase is negative at high temperatures and de
ties, and positive for all other thermodynamic conditio
considered in our study.

B. Computer simulations of the LJ dimer in the solid
phase

In order to test the proposed theory we have perform
NpT Monte Carlo simulations of LJ dimer molecules in th
solid phase. The reduced bond length of the dimer isL*
5L/s51, whereL is the bond length. In the Monte Carl
run three different types of moves were performed: part
translations, particle rotations, and volume changes. Th
three types of move leave the bond length unchanged. No
that the LJ chains considered by Johnsonet al.10 in their
molecular dynamics study used stiff springs to keep conti
ous monomers bonded so that in their study the bond len
is allowed to fluctuate around the equilibrium valueL5s. In
our simulations a typical run consisted of 30 000 equilib
tion cycles and 30 000 averaging cycles, where a cycle c
sists of a trial move~translation or rotation! per particle plus
an attempt to change the volume of the system. The ma
tude of the displacement of the center of mass, angle
rotation and volume change was controlled to keep the
ceptance ratio close to 0.4. Translation and rotation mo
were accepted by following the standard Metropo
criterion.35 The site–site LJ potential is truncated atr c

52.5s, and the long-range corrections to the internal ene
are added as usual by assuming that the site–site pair c
lation function is equal to one for distances larger than
cutoff value.35 Note that in ourNpT simulations the long
range correction to the energy was incorporated into the M
kov chain~whenever the volume of the system changed!, so
that the output densities are good estimates of the co
sponding densities of the system without truncation. A nu
ber of simulations withr c53s have also been carried ou
finding no significant difference with the densities obtain
using r c52.5s.

In order to describe a disordered structure, a clo
packed faced centered cubic~fcc! arrangement of atoms wa
generated and the molecular bonds were randomly dis
uted. That was done as follows. We generated a cubic hy
cell by joining together eight face centered cubic unit cells
atoms. The number of atoms per hypercell is 32~1 in the
vertex, 15 in the faces, 3 in the edges, and 13 inside!. We
connected the 32 atoms randomly, forming 16 dimers. T
simulation box was obtained by joining together 27 su
hypercells. Therefore the total number of molecules in
NpT MC simulations of the disordered structure wasN
5432 ~27 hypercells with 16 dimers each!. Disordered solid
Downloaded 16 Apr 2002 to 147.96.5.37. Redistribution subject to AIP
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configurations similar to those considered here, are a
found in two-dimensional hard dimer discs28,29,37and in hard
sphere chain19 systems. Note also that there is no true clo
packing for a soft potential such as the LJ but the redu
number density of hard spheres at close packing, i.e.,&,
provides a good starting point. This disordered structure w
expanded to lower densities by performingNpT simulations
at successively decreasing pressures. In order to asses
influence of generating different starting random solid co
figurations a second random structure was generated,
carrying out a number ofNpT simulations in an identica
way. It is important to note that, since the distribution
bonds in the solid phase is assumed isotropic, the scalin
theseNpT simulations was done isotropically. In what fo
lows the reduced configurational internal energy will
given asU* 5U/(Ne) ~note thatN corresponds to the num
ber of molecules, and not the number of segments!. The
simulation results in this work were obtained for two is
thermsT* 51 andT* 52. In Table II the simulation results
for the disordered solid phase atT* 51 are shown. The re-
sults presented are the average of the runs for two inde
dent disordered configurations. For a number of pressures
typical difference between the properties of the two indep
dent configurations are indicated in parentheses. As can
seen the differences in thermodynamic properties betw

TABLE II. Thermodynamic properties of a LJ dimer in a disordered so
phase as obtained from theNpT MC simulations of this work. The results
correspond toT* 51. The results presented are the arithmetic average of
results for two independent disordered configurations. The reduced pre
is defined asp* 5p/(e/s3). The reduced number density of dimers is d
fined asr5Ns3/V. N stands for the number of molecules. The blank li
separates the results of the isotropic fluid from those of the solid phase
a few states we have presented in parentheses the difference betwee
results of the two independent disordered configurations.

p* r U/(Ne)

0.6 0.4255 210.99
0.8 0.4309 211.12
1.0 0.4353 211.22
1.2 0.4396 211.31
1.4 0.4432 211.39

1.6 0.4973 213.15
1.8 0.5002 213.19
2 0.5047 213.29
3 0.5197~4! 213.57(4)
4 0.5314 213.74
6 0.5490 213.89
8 0.5626 213.92

10 0.5738~5! 213.88(3)
12 0.5835 213.78
14 0.5921 213.65
16 0.6001 213.49
18 0.6074 213.30
20 0.6142~3! 213.10(3)
25 0.6297 212.53
30 0.6431 211.90
35 0.6549 211.23
40 0.6656 210.54
45 0.6751~1! 29.83(2)
50 0.6838 29.12
55 0.6917 28.39
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the two independent configurations are very small. At pr
sures belowp* 51.6 the solid phase becomes mechanica
unstable and melts into an isotropic fluid. The melting
detected by a sudden drop of the translational or
parameter,35 by an increase in the molecular diffusion and
a strong increase in the volume of the simulation box.
use the location of the atoms~and not of the center-of
masses! when evaluating the translational order parameter
Table III the simulations results forT* 52 are presented
Since the differences between the two disordered config
tions atT* 51 are small we have performed simulations
T* 52 for just one of them. At this temperature the so
phase becomes mechanically unstable and melts into an
tropic fluid at pressures belowp* 512.

Although the stable solid structure of the dimer syst
must be a disordered one, we have also considered an
dered structure. It is interesting to study the differences
thermodynamic properties between an ordered and a d
dered dimer solid. In particular we have considered the st
ture labeled as CP1 in a previous study of hard dumbbell
the solid phase.38 In this caseN5256 molecules arranged i
four layers with 64 molecules per layer were used. For a
states we performed simulations for a somewhat larger
tem N5500 in the CP1 structure~5 layers of 100 molecules
each!, to analyze the size dependence of the simulation
sults. As before, the length of the runs was of 30 000 equ
bration cycles, followed by 30 000 averaging cycles. Since
this case the system is no longer cubic, the Rahm
Parrinello39 version of theNpT MC is used in order to allow

TABLE III. Thermodynamic properties of a LJ dimer in a disordered so
phase as obtained from theNpT MC simulations of this work. The results
correspond toT* 52. The rest of the notation is as in Table II. The bla
line separates the results of the isotropic fluid from those of the solid ph

p* r U/(Ne)

0.6 0.2912 26.72
0.8 0.3096 27.17
1.0 0.3226 27.47
1.2 0.3335 27.73
1.4 0.3427 27.95
1.6 0.3511 28.14
1.8 0.3584 28.30
2 0.3652 28.45
4 0.4113 29.37
6 0.4401 29.81
8 0.4619 210.03

10 0.4800 210.15

12 0.5373 211.68
14 0.5526 211.77
16 0.5658 211.78
18 0.5763 211.72
20 0.5854 211.60
25 0.6049 211.20
30 0.6209 210.69
35 0.6346 210.09
40 0.6470 29.47
45 0.6579 28.80
50 0.6679 28.10
55 0.6770 27.39
60 0.6853 26.67
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for nonisotropic changes in the simulation box shape.40 In
Table IV the simulation results for this system atT* 51 are
presented. As can be seen the size dependence of the s
lation results is quite small. By comparing the results
Table IV to those of Table II it can be seen that the therm
dynamic properties of the ordered and disordered solid
similar. At a given pressure, the densities of the disorde
solid are about 1% higher than those of the ordered so
and the internal energies of the disordered solid are a
slightly higher than those of the ordered solid. These res
are in agreement with those of Wojciechowskiet al.,28 who
found little difference between the EOS of ordered and d
ordered solids in hard disc dimers~i.e., in a two-dimensional
system!. It is important to note however, that although th
EOS and internal energy of the ordered and disordered st
tures are quite similar this is not the case for the entro
which is much higher for the disordered structure.28,29

Hence, the Helmholtz free energy of the disordered solid
significantly lower than that of the ordered solid, so that t
equilibrium structure of the LJ dimer in the solid phase c

e.

TABLE IV. Thermodynamic properties of a LJ dimer in an ordered so
phase as obtained from theNpT MC simulations of this work. The results
correspond toT* 51. The solid structure used in the simulations is th
denoted as CP1 in Ref. 38. The rest of the notation is as in Table II. Re
of this table were obtained withN5256. In a few cases~labeled with an
asterisk! we consideredN5500 to analyze the system size dependence.

p* r U/(Ne)

0.6 0.4256 210.99
0.8 0.4307 211.12
1.0 0.4349 211.21

1.2 0.4827 213.09
1.4 0.4904 213.34
1.6 0.4951 213.48
1.8 0.4991 213.58
2 0.5010 213.59
2* 0.5029 213.67
3 0.5153 213.91
4 0.5263 214.08
6 0.5434 214.25
6* 0.5437 214.26
8 0.5569 214.30

10 0.5683 214.27
10* 0.5684 214.27
12 0.5781 214.18
14 0.5869 214.06
16 0.5947 213.91
18 0.6020 213.73
20 0.6090 213.53
20* 0.6090 213.53
25 0.6243 212.96
30 0.6382 212.31
30* 0.6382 212.31
35 0.6505 211.61
40 0.6617 210.88
40* 0.6618 210.88
45 0.6718 210.14
50 0.6812 29.36
50* 0.6812 29.36
55 0.6898 28.57
60 0.6978 27.78
60* 0.6978 27.78
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responds to the disordered solid, and not to the ordered s
The structural properties of the disordered and orde

dimer solids were also analyzed. In Fig. 3 the site–site c
relation functions as obtained from MC simulations forT*
51 and r50.545 are presented for the disordered so
~thick solid curve!, and for the ordered solid~thin solid
curve!. Differences between the two types of solid are clea
visible at large distances, and in the first peak. The ato
atom correlation function of the LJ monomer solid at t
same temperature and monomer density (r ref51.09) is also
shown~dashed curve!. The comparison between the site–s
correlation function of the dimer and the atom–atom cor
lation function of the monomer illustrates the effect of bon
ing on the structure of the system.

We have also performed a number of simulations for
dimer LJ system at very low temperatures and zero press
since an estimate of the solid densities along the sublima
curve can be obtained by performingNpT simulations at
zero pressure. These results are presented in Table V fo
disordered solid and for the CP1 structure.

FIG. 3. Site–site correlation functions in the solid phase atT* 51 as ob-
tained from Monte Carlo simulations. The results for the dimerm52 at r
50.545 in the disordered solid~thick solid curve! and in the ordered solid
~thin solid curve! are shown. The results for the LJ monomer in the so
phase at the same monomer densityr ref51.09 are also presented~dashed
curve!.

TABLE V. Properties of the LJ dimer in the solid phase along the sublim
tion line, as obtained fromNpT simulations at zero pressure. Results for
ordered and disordered structure are presented.

T* Solid r U/(Ne)

0.40 Disordered 0.5380 215.17
0.45 Disordered 0.5340 215.00
0.50 Disordered 0.5296 214.83
0.55 Disordered 0.5250 214.65
0.60 Disordered 0.5199 214.45
0.65 Disordered 0.5144 214.24
0.40 CP1 0.5343 215.50
0.50 CP1 0.5260 215.16
0.55 CP1 0.5216 214.98
0.60 CP1 0.5169 214.79
0.65 CP1 0.5118 214.59
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In the following section our simulation data of the dim
LJ solid are compared with the theoretical calculations, in
cases the simulation results correspond to those of the d
dered solid, as this is the true equilibrium structure of t
model.

IV. THE PHASE DIAGRAM OF THE LENNARD-JONES
DIMER

An unbiased assessment of the equation of state
posed can be obtained by comparison with the prese
simulation data for the dimer LJ system. It is important
note that the equation of state described in Sec. II co
sponds to that of a solid with a fcc structure of monome
but with random orientation of the bond vectors~a disor-
dered solid!. Hence we have used the data in Tables II, a
III for comparison, but not those of Table IV. The EOS f
two isotherms~T* 51 andT* 52! is examined in Fig. 4. At
each temperature the fluid branch can be seen at lower
sities and the solid branch at higher densities, together wi
first-order fluid–solid transition. The simulation resul
present hysteresis, so that it is possible to simulate the s
for pressures lower than that of melting, and the fluid
pressures higher than that of freezing. In the case of
theoretical calculations, the conditions for equilibria~equal-
ity of pressure and chemical potential! were solved for each
temperature, and the calculated coexistence pressures
each temperature can be seen in Fig. 4. The metast
branches obtained with the equation of state are also
sented for comparison with the simulated data. A further t
of the theory is provided by an examination of the intern
energy. In Fig. 5 the simulation data of the internal energy
the dimer are compared to the theoretical predictions
temperaturesT* 51 andT* 52. The agreement between th

-

FIG. 4. Equation of state for the LJ dimer as given by the theory~curves!
and by simulation results from this work~symbols!. Results are presente
for the fluid and solid phases at the reduced temperaturesT* 51 andT*
52. The open symbols correspond to the simulation data at a temperatu
T* 51, and the closed symbols toT* 52. The circles indicate fluid state
and the squares solid states. The tie-lines represent the fluid–solid co
ence as determined from TPT1, which occur atp* 54.35 andp* 519.02 for
T* 51 andT* 52, respectively. ForT* 52 we have also included simula
tion results from Ref. 10 for the fluid phase.
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simulation data and the calculations is found to be very g
over the wide range of densities considered, both for
equation of state data, and for the internal energy data.

In Fig. 6~a! the global phase diagram for the LJ dimer
obtained from Wertheim’s TPT1 for the fluid and solid pha
is presented. The Gibbs ensemble simulation data for
vapor–liquid equilibria of the LJ dimer as reported by Dub
et al.41 have been included, together with our simulation
sults for the zero-pressure densities of the LJ dimer soli
low temperatures. Since the vapor–pressure~in reduced
units! is very small along the vapor–solid coexistence cur
these simulations provide a good estimate of the solid d
sities along the sublimation curve. As can be seen, the th
describes very accurately the available simulation result
the phase diagram of the LJ dimer. The triple point tempe
ture for the LJ dimer as estimated from the theory presen
in this work is Tt* 50.653. In the case of the monomer L
system, the triple point temperature predicted by the the
(Tt* 50.687) is in excellent agreement with the estimate
Agrawal and Kofke42 (Tt* 50.687). As can be seen, th
triple point temperature of the LJ dimer is 5% lower than th
of the LJ monomer. Differences in the triple point densit
are somewhat larger, as can be seen in Fig. 6~b!. Following
the encouraging results obtained for the dimer system
continue, in the next section, to study the phase behavio
longer chain molecules.

V. GLOBAL PHASE DIAGRAM FOR LJ CHAINS

Using the theory presented in Sec. II, we have also s
ied the phase behavior of fully-flexible Lennard-Jones cha
of lengthsm54 and m58. In Fig. 7~a! the temperature–
density (T* rm) projection of the phase diagram is show
where, as in the previous section, the reduced density co
sponds to the reduced monomer density. The phase enve
corresponding to the monomerm51 and dimer m52
Lennard-Jones systems are included for comparison. As

FIG. 5. Configurational internal energyU/(Ne) for the LJ dimer as given
by the theory~curves! and by simulation results from this work~symbols!.
Results are presented for the fluid and solid phases at the reduced tem
tures T* 51 andT* 52. The rest of the notation is as in Fig. 4. ForT*
52 we have also included simulation results from Ref. 10 for the fl
phase.
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pected, an increase of the chain length results in a m
dramatic variation of the vapor–liquid coexistence than
the solid–liquid and solid–gas phase boundaries. Since
theoretical predictions corresponding to the fluid phases h
been discussed in detail elsewhere~see Refs. 13–15!, in this
work we concentrate on the study of the solid–fluid equil
ria. For each chain length, the liquid–solid transition den
ties are found to increase with temperature. The increas
more pronounced in the monomer system than for lon
chains. The temperature at which solid, liquid, and gas
found in coexistence~the triple point temperature! is seen to
decrease with increasing chain length@see Fig. 7~b! and
Table VI for more details#. Below the triple point tempera
ture, solid–gas coexistence is observed. The binodal cu
corresponding to the solid phase associated to the solid–
phase transition shift toward higher densities for increas
chain length. As in the case of the solid–liquid coexisten
curves, the largest change in the solid–gas phase bound
is observed between the monomer and the dimer.

era-

FIG. 6. ~a! Global phase diagram of the LJ dimer in theT* vs rm repre-
sentation. Solid line, theoretical results from this work using Wertheim
TPT1 for the fluid and solid phases; circles, simulation results for
vapor–liquid equilibria from Dubeyet al. ~Ref. 41!; squares, simulation
results for the sublimation line from this work.~b! Triple point region of the
LJ dimer~dashed line! and monomer~solid line! as obtained from the theory
of this work.
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The results of Fig. 7 strongly indicate the existence
asymptotic limits in the freezing properties of LJ chains
large values ofm. In fact, they suggest that the triple poi
temperature and the fluid–solid coexistence densities~when
expressed in monomer unitsrm) become independent of th
chain length for large values ofm. These observations are
direct result of the functional form of the Helmholtz fre
energy in Wertheim’s TPT1 approach. In Wertheim’s form
ism, the compressibility factorZ and chemical potentia
m/(kT) can be written as26

FIG. 7. T* rm global phase diagram for LJ chains of chain lengthsm
51,2,4 and 8, as obtained from the theory presented in this work. The
curves correspond tom51, the short dashed curves tom52, the long
dashed curves tom54, and the dashed–dotted curves tom58. ~a! Global
phase diagram.~b! The region close to the triple point.

TABLE VI. Triple point properties of fully flexible LJ chains as obtaine
from Wertheim’s TPT1 for the fluid and solid phases. The coexistence d
sities of the fluid and solid phases are denoted asrm f andrms , respectively.

m Tt* p* rm f rms

1 0.687 1.1531023 0.848 0.963
2 0.653 8.1331027 0.918 1.025
4 0.642 9.97310213 0.943 1.059
8 0.639 4.28310224 0.953 1.074
Downloaded 16 Apr 2002 to 147.96.5.37. Redistribution subject to AIP
f
r

-

X~rm ,T,m!5X1~rm ,T!1mX2~rm ,T!, ~9!

whereX stands for any of the thermodynamic properties@Z
or m/(kT)#. Since this is true for the fluid and the soli
phase, the equilibrium condition for, say, the chemical pot
tial between the fluid and solid phase~superscriptf and s,
respectively! may be expressed as

m1
f ~rm f ,T!

m
1m2

f ~rm f ,T!5
m1

s~rms,T!

m
1m2

s~rms,T!,

~10!

whererm f andrms stand for the monomer number density
the fluid and in the solid phase at coexistence. For su
ciently large values ofm, Eq. ~10! reads as

m2
f ~rm f ,T!5m2

s~rms,T!, ~11!

which is independent ofm. Similarly, starting from Eq.~9!
for the compressibility factor, and imposing the condition
equal pressure for the fluid and solid phases, one can s
that the reduced pressurep* at coexistence becomes ind
pendent ofm in the infinite-chain limit~see Ref. 26 for more
details!.

From the results of Fig. 7 the triple point of LJ chains
the limit m→` can be estimated close toTt* 50.634 ~per-
forming, for instance, a Shultz–Flory extrapolation43,44!. The
existence of an asymptotic limit in the triple point temper
ture for long polymer chains is experimentally well know
In fact the triple point temperature ofn-alkanes reaches th
asymptotic valueTt5414 K ~Refs. 25 and 45! for large mo-
lecular weights. When modelingn-alkanes with tangent LJ
chains the value of the parametere/k is close to 300 K.46

This means that the reduced temperature ofn-alkanes at the
experimental triple point is roughlyTt* 51.38. As it can be
seen the reduced triple point temperature of LJ chains
quite different of the reduced triple point temperature
n-alkanes. It seems that a fully-flexible LJ chain is not p
ticularly adequate to describen-alkanes in the solid phase
We shall come back to this point later in this work. The flu
densities at the triple point inn-alkane systems also reac
asymptotic values for large molecular weights~when ex-
pressed as masses per unit of volume!. It is gratifying to see
that the theory is able to explain the origin of these limiti
behaviors. However, the liquid range of the fully flexible L
chains seems to be extremely large. In fact since the crit
temperature of infinitely long LJ chains47,32 ~i.e., theQ tem-
perature! is close toT* 54.6, so that the ratioTt /Tc for LJ
chains is of the order of 0.14. One of the liquids with
largest liquid regime is propane, for whichTt /Tc50.23, and
in a spherical fluid such as argon, this ratio is about 0.55;
provides an idea of the extraordinary liquid regime presen
by these LJ chains. It is not easy to describe trends inTt /Tc

for molecular fluids. Considerable effort has been devoted
the last decade to explain this ratio in a number of molecu
fluids.48,49,18Can we provide a qualitative explanation of th
origin of the value 0.14 forTt /Tc in fully-flexible LJ chains?
The critical temperature of LJ chains increases fromT*
51.31 for the monomer up to about 3.5 times this value
very long chains. This is a huge variation. However, t
triple point temperature of very long chains is just 0.93 tim

lid

n-
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that of the LJ monomer. One can understand easily the e
mous increases of the critical temperature of LJ chains w
respect to the monomer. How to understand the almost c
stant value for the triple point temperature? As can be see
Fig. 7, at low temperatures the increase of the orthob
density fromm51 to m52 is almost identical to the in
crease in the density at freezing fromm51 to m52, so that
the triple point temperature remains practically unaffect
Of course this is not exact, but it provides a simple view
to why the triple point temperature is approximately co
stant.

It is useful to examine also thep* T* projection of the
phase diagram as obtained with the theoretical approach~see
Fig. 8!. In Fig. 8~a! the vapor–pressure curve, solid–liqu
transition line, and solid–gas transition line corresponding
freely-jointed Lennard-Jones chains of up to eight monom
(m58) are presented. The coexistence lines of the Lenn
Jones monomer system are included for comparison.
more interesting to analyze the high-pressure region of
p* T* projection of the phase diagram@Fig. 8~b!#. The
liquid–vapor and solid–gas coexistence curves canno
seen in this plot since these boundaries occur at very

FIG. 8. p* T* representation of the global phase diagram for LJ chains w
m51,2,4, and 8 as obtained from the theory presented in this work.
solid curves correspond tom51, the short dashed curves tom52, the long
dashed curves tom54, and the dashed–dotted curves tom58. ~a! Low
pressure region.~b! High pressure region.
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pressures compared to the range at which solid–liquid tr
sition continues. As can be seen, at low temperatures
fluid–solid transition pressures increase with increasingm,
however, at high temperatures this trend is inverted, and
solid–liquid transition pressures decrease for increas
chain lengths. The slope in thep* T* is related to the melting
enthalpy and to the volume change through the Clapey
equation.50

VI. CONCLUSIONS

In this work Wertheim’s TPT1 theory has been extend
to study the solid phase of LJ chains. The theory require
knowledge of the free energy and of the contact value of
radial distribution function of the reference LJ monom
Johnsonet al.9,10 have given expressions for both of the
properties in the fluid phase, and van der Hoef34 has recently
proposed an expression for the free energy of the solid ph
In order to determinegref(s) in the solid phase we hav
performed computer simulations and fitted the numerical
sults to an empirical expression of the same form as
proposed by Johnsonet al.10 The theory has been tested b
comparing simulation and theoretical results for the
dimer. For this purpose computer simulations were p
formed for the disordered solid structure of the LJ dimer
has been shown that the theory describes very accuratel
EOS and internal energy of the LJ dimer solid. Furthermo
the densities of the solid along the sublimation curve are a
found to be in excellent agreement with simulation data. O
estimate of the triple point temperature for the LJ dimer
Tt* 50.653. Using Wertheim’s TPT1 for the fluid and for th
solid phase we have calculated the vapor–liquid, liqui
solid, and solid–vapor coexistence lines as well as the glo
phase diagram of LJ chains.

Studying longer chain molecules, it has been shown t
the calculated triple point temperature of LJ chains tends
an asymptotic finite value ofTt* 50.634, which means tha
the chains present an enormous liquid range~i.e., Tt /Tc

50.14!. The calculated coexistence densities~when ex-
pressed in monomers per unit of volumerm! also tend to
asymptotic values for large values ofm. Although the model
used in this work is a crude one, it is able to capture some
the features presented in the phase diagram of real flex
molecules. In polyethylene the triple point temperatu
reaches a finite value and the fluid–solid coexistence de
ties become very similar for large chain lengths~when the
densities are expressed in units of mass per volume!.

It should be noted, however, that fully flexible mode
may not be particularly realistic when describing so
phases of real substances. The extreme flexibility of the
chain allows the existence of a singular solid with orderi
of atoms but disorder of bonds. It must be mentioned t
such a solid cannot be constructed using real polymers; o
lap between contiguous monomers, whose distance is
than the sum of their van der Waals radii, and the existe
of bond angles and torsional potentials make such a h
density disordered solid an impossibility. When these g
metrical constraints are included in the model, the only w
of obtaining a highly-packed solid is to generate an orde

h
e
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solid, in which the bonds are also ordered. Certainly, r
chains are not formed by fully flexible tangent LJ segmen
this is reflected in the fact that theTt /Tc ratio for
polyethylene51 is close to 0.40~with some recent estimates o
Tc of polyethylene52 this ratio will be somewhat smaller
namely, 0.34! in contrast to the valueTt /Tc50.14 obtained
in this work using fully flexible LJ chains. Obviously, chem
cal and geometrical details of the molecule matter wh
dealing with the description of solid phases. The fully fle
ible LJ model does not seem to be the most appropr
model to describe the solid structure ofn-alkanes. This was
not our goal here, but rather to determine the phase diag
of LJ chains in a full theoretical manner, and to show tha
very simple model can be useful in explaining some of
trends~not the actual values! in a number of properties of th
phase diagram of real polymers.

Concerning the issue of whether the theory presen
here could be useful, in an engineering sense, to describ
global phase behavior~vapor–liquid, vapor–solid, liquid–
solid equilibrium! of real chains, we believe that the answ
is, in principle, no. One cannot reproduce the valueTt /Tc

50.4 of polyethylene51 with a model that yieldsTt /Tc

50.14. The freely jointed LJ chain is not a good model
an n-alkane after all. A look at the important differences
the freezing properties of freely jointed hard sphere cha
and hard models ofn-alkanes with a realistic description o
the molecular shape already suggests this.19,20 This paper
provides further evidence. Although we can descr
n-alkanes in the fluid phase using a freely jointed LJ ch
model, after fitting all the parameters to experimental pr
erties, the model will never be able to describe correctly
global phase diagram of ann-alkane ~including solid
phases!. If a model is required to describe the comple
phase diagram ofn-alkanes, models such as the Ryckaert a
Bellemans,53 and their modern variations,54–56which include
the geometrical details of the molecule, might be more pro
ising. Maybe a less ambitious approach is possible if o
allows a different set of potential parameters for the fluid a
the solid phase, or if a set of potential parameters is u
solely to describe the solid phase. This does not seem t
justified from a molecular point of view~molecular param-
eters of the potential should be the same in the fluid and s
phase! but could be of interest for practical applications.
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