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ON THE DIRICHLET PROBLEM IN CYLINDRICAL DOMAINS
FOR EVOLUTION OLEINIK-RADKEVIC PDE’S:
A TIKHONOV-TYPE THEOREM

ALESSIA E. KOGOJ

ABSTRACT. We consider the linear second order PDO’s

N N
L= — 0 =Y 05,(aij0z;) — > bjOu; — 0,
i,j=1 j=i

and assume that %2y has nonnegative characteristic form and satisfies the
Oleinik—Radkevi¢ rank hypoellipticity condition. These hypotheses allow the
construction of Perron-Wiener solutions of the Dirichlet problems for . and
% on bounded open subsets of RVN+1 and of RV, respectively.

Our main result is the following Tikhonov-type theorem:
Let O := Qx]0,T[ be a bounded cylindrical domain of RN*+1, Q c RN, z €
0Q and 0 < to < T. Then zg = (zo,t0) € 00 is L-regular for O if and only if
o is Zp-regular for Q.

As an application, we derive a boundary regularity criterion for degenerate
Ornstein—Uhlenbeck operators.

1. INTRODUCTION

We consider linear second order partial differential operators of the type

N N
(11) L = Z 6% (aij(?zj) + ijamj
=1

i,j=1
in an open set X of RV, N > 2, and their “evolution”counterpart in X x R
(1.2) =% — 0.

We assume % in (1.1) is of non totally degenerate Oleinik and Radkevi¢ type,
i.e., we assume

(Hl) Q5 = aji,bi S COO(X, R) and

A(z) == (aij(2))ij=1,..n >0 VrelX.
Moreover

infayj; =:a>0.
nban
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(H2) rank Lie{Xy,..., XN, Xo}(z) =N Vo € X, where,
N N
Xi:Zaijaxj,izl,...,N, and XO:ij[)zj.
=1 j=1
Hypotheses (H1) and (H2) imply that .4 is hypoelliptic in X (see [OR73]), that
is:
Q open subset of X, u € D'(Q), Hu € C*(,R) = u e C*(Q,R).
The same assumptions (H1) and (H2) also imply that % — 9; is hypoelliptic in
X xR
We will show in Section 2 that %y and £y — 9 endow X and X x R, respectively,
with a local structure of o*harmonic space, in the sense of [3], Chapter 6. As a
consequence, in particular, the Dirichlet problems

Zu=01n Q, and (L —0)v=01in O :=Qx]0, T,
U|6Q =¥, v|80 = 1/)7
have a generalized solution in the sense of Perron—Wiener, for every bounded open

set Q CC X, for every T > 0, and for every ¢ € C(99Q,R) and ¢ € C(00O,R). We
will denote such generalized solutions by, respectively,
HJ and K.
As usual, we say that a point zg € IQ ((xo,t0) € 00) is Ly-regular for Q (L-
regular for O) if
. Q.
zlirflxg H«p (I) - (ﬂ(.f()) V@ € O(ang)
lim  KJ(x,t) = ¢(xo,t v ecaO,R).
(L, 0m K0 = (i) Vo€ C@OR

The aim of this paper is to prove the following theorem:

Theorem 1.1. Let Q2 be a bounded open set with Q C X, and let zo € 0Q and
tg €]0,T[. Then, xo is ZLp-reqular for Q if and only if (xo,to) is Ly — Op-regular
for © .= Qx]0,T7.

When . = A — 0; is the classical heat operator, our result re-establishes a
theorem proved by Tikhonov in 1938 [Tik38]. Other proofs of the Tikhonov The-
orem were given by Fulks in 1956 and in 1957 [Ful56, Ful57] and by Babuska and
Vyborny in 1962 [BV62]. Chan and Young extended the Tikhonov Theorem to par-
abolic operators with Holder continuous coefficients in 1977 [CY77], and Arendt to
parabolic operators with bounded measurable coefficients in 2000 [Are00]. The
corresponding version for p-Laplacian-type evolution operators has been proved by
Kilpeldinen and Lindqvist in 1996 [KL96] and by Banerjee and Garofalo in 2015
[BG15].

To the best of our knowledge, the only Tikhonov-type theorem for second or-
der “evolution”sub-Riemannian PDQ’s appearing in the literature is the result by
Negrini [Neg83] in abstract S-harmonic spaces’.

This paper is organised as follows. In Section 2, all the notions and results
from Potential Theory that we need are briefly recalled. In particular, we recall
the notion of o*harmonic space and then we prove that %y and . endow X and

IFor a definition of 8-harmonic spaces see [CCT2].



ON THE DIRICHLET PROBLEM IN CYLINDRICAL DOMAINS FOR EVOLUTION PDE’S 3

X x R, respectively, with a local structure of o*harmonic space. In this way, we
derive the existence of a generalized solution in the sense of Perron—-Wiener in both
our settings. Section 3 is devoted to two key results for the proof of the main
theorem (Theorem 1.1), which is the content of Section 4. Finally, combining our
Tikhonov-type theorem with a corollary of the Wiener—Landis-type criterion for
Kolmogorov-type operators proved in [KLT18], we establish a geometric boundary
regularity criterion for degenerate Ornstein—Uhlenbeck operators.

2. %-HARMONIC AND .Z-HARMONIC SPACES

2.1. The otharmonic space. For the readers’ convenience we recall the definition
of otharmonic space supported on a an open set £ C RP p > 2, and refer to Chapter
6 of the monograph [BLUOQ7| for details.

Let H be a sheaf of functions in E such that H (V) is a linear subspace of C(V,R),
for every open set V' C E. The functions in H (V') are called H-harmonic in V. The
open set V' is called H-reqular if

(i) V C E is compact;
(77) for every ¢ € C(0V,R) there exists a unique function such that
hg(a:) — (&) as x — &, for every & € OV

(iid) hY > 0if p > 0.

A lower semicontinuous function v : W —] — 0o, 00|, W C E open, is called
‘H-superharmonic if

(i) w > hY in V for every H-regular open set V with V' C W and for every
¢ € C(OV,R) with ¢ < ulav;
(17) {zx € W | u(z) < oo} is dense in W.
We denote by H(W) the cone of the H-superharmonic functions in W.
The couple (E,H) is called a o*harmonic space if the following axioms hold:

(A1) There exists a function h € H(E) such that inf & > 0.
(A2) If (un)nen is a monotone increasing sequence of H-harmonic functions in
an open set V C F such that

{z € V| supun(x) < oo}
neN

is dense in 2, then
U= supu, is H-harmonic in V.
14
(A3) The family of the H-regular open sets is a basis of the Euclidean topology
on E.

(A4) For every z,y € E, © # y, there exist two nonnegative H-superharmonic
and continuous functions u, v in E such that

u(@)o(y) # u(y)o(z).

(A5) For every o € E there exists a nonnegative H-superharmonic and contin-
uous function S, in E, such that S;,(zo) =0 and

inf Sz, >0
EXV

for every neighborhood V' of .
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We now recall some crucial results in o*harmonic space theory; first of all the
definition of Perron—Wiener solution to the Dirichlet problem.

Let V be a bounded open set with V C E, and let @ : OV — R be a bounded
lower semicontinuous or upper semicontinuous function. Define

U, = {ue (V) | iminfu(r) > o) VEe€dV)

and
Vo —V
(2.1) Hy, =:inflUd,,.

Then HX is H-harmonic in . It is called the generalized Perron—Wiener solution
to the Dirichlet problem

Ulav = .

{u e H(V),

We also have

(2.2) HY =:supUy,

where,
\74 _ .
U, ={veH(V) | hfl_sgpv(w) <p(§) VEeoV}
Here H(V) := —H(V) denotes the cone of the H-subharmonic functions in V.
A point y € 9V is called H-regular for V if

. 1% _

On the o*harmonic space Bouligand Theorem holds. Indeed: a point y € OV
is H-regular for V if and only if there exists a H-barrier for V at vy, i.e., if there
exists a function b H-superharmonic in V N W, where W is a neighborhood of y,
such that

(i) b is H-superharmonic;

(1) b(x) >0V e VNW and b(x) — 0 as x — y.

For our purposes it is important to recall that if y € 9V is H-regular for V there
exists a barrier function for V' at y which is defined and H-harmonic all over V.

Finally, we recall the minimum principle for H-superharmonic functions.
Let V be a bounded open set with V C E and let u € H(V). If

liminfu(x) >0 Vy € IV,
r—>Y
then v > 0in V.

2.2. The Zs-harmonic space. Let E be a bounded open subset of X such that
E C X. For every open set V C E we let

HV)={ue C®V,R) | Lou=0inV}.
Then, V +—— H(V) is a a sheaf of functions such that H (V) is a linear subspace of
C(V,R).
If u € H(V) we will say that u is H-harmonic or .%-harmonic in V.
We have that

(2.3) (E,H) is a o*harmonic space.
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Before showing this statement we remark that a C?-function u in a open set V
is H-superharmonic if and only if Zu < 0 in V. This is a easy consequence of
Picone’s maximum principle (see e.g. [KP16], page 547). Now we are ready to
prove (2.3).

(A1) is satisfied since the constant functions are %p-harmonic.

(A2) -(A4) are proved in [KP16]. We would like to stress that our operators
Z are contained in the class considered in [KP16] since the rank condition (H2)
implies that both % and %, — 3, for every 8 > 0, are hypoelliptic.

The axiom (A5) follows from the following Lemma which seems to have an
independent interest in its own right.

Lemma 2.1. Let us consider a linear second order PDO of the kind

N N
L= Z aijamﬂj + ijamja
Jj=1

i,j=1
where a;; = aj;,b; are continuous functions in Y, whereY is a bounded open subset
of RN . Suppose
N
igf a1 :=a>0 and Zajj >0 in Y2
7j=1
Then, for every xo € Y there exists a function h € C*(Y,R) such that
(i) h(zo) =0 and h(x) > 0 for every x # xo;
(i) Lh >0 in X.
Proof. For the sake of simplicity we assume zo = 0. We define
h(z) = EQxy) + (22 +---+2%), 2= (z1,22,...,2n5) € RV,
where A > 0 will be fixed below. Moreover,

E(s) = exp(¢(s)) — exp(¢(0))

and
o(s)=V1+s2, sekR.
We have:
P(0)=1, ¢(s)>1 Vs#0, E(s)>0 Vs#0, E(0)=0,
/ _ s 11 _ 1
=T TS e
Hence
s? 1

1
> Vs € R.

,2 72
¢+ 9 Wi

= + 3
L+s% (14522

On the other hand
E' =exp(9)d/, E" =exp(9)(¢” +¢").

Therefore, letting

N
B = supz b5 (<o0) and A= sup |z,
R z€X

2We don’t require (@ij)i,j=1,...,N to be nonnegative definite.
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we get

N
N E"(Az1)ary () + AE' (Az)by + 2 (aj;(2) + bj(2)z;)

=2

Lh(z)

2v/2
> A2<i—@>—2m
> NI
o & B _
s (- 8) o

If A is big enough, this implies

N
> exp(é(her) (ﬁx - A|b1|) ~2 3 byl
=2

Lh>0in X.
Moreover
h(0)=FE(0) =0, h(z)>0 if z>0.
The proof is complete. (|

2.3. The Z-harmonic space. Let E be a bounded open subset of X x R such
that F C X x R. For every open set V' C E we let

KV)={ueC®V,R)| Lu=0inV}.
Then, V —— K(V) is a a sheaf of functions making

(E,K) a o*harmonic space.

This can be proved just by proceeding as in subsection 2.2. We call K-harmonic
or .Z-harmonic in a open set V the solutions to Zu =0 in V.

Here we prove some typical results of the present K-harmonic space, that we
will need in the proof of the main theorem of this paper. We first show a “para-
bolic”minimum principle for Z-subharmonic functions in cylindrical domains.

Proposition 2.2. Let Q be a bounded open subset of X such that Q C X and let
T > 0. Consider the cylindrical domain O = Qx]0,T[ and define the “parabolic
boundary”of O as follows

0,0 = (Q x {0}) x (002x]0,T7]).
Then, if u € K(O) is such that
liminfu(z) >0 V¢ € 9,0,

z—C

we have u > 0 in O.

Proof. For every arbitrarily fixed T €]0, T[ we let O = Qx]0, T[. We will prove that
u > 0in O. Since T is arbitrarily fixed in ]0, T, this will give the proof of our
lemma. To this end, given any € > 0, we define
g ~
ue(2) = ue(z,t) == u(z,t) + 7 ze€O.




ON THE DIRICHLET PROBLEM IN CYLINDRICAL DOMAINS FOR EVOLUTION PDE’S 7

Since u is KC-superharmonic in O and

1 e
P e = — % <00,
T—t T—t (T —t)2
then u. is K-superharmonic in O. Moreover

liminfuc(z) >0 V(e 8,,(5,
z—(

and, for every £ € Q,

liminf w.(z) > u(e,T) + lim inf ° — .

z—(&,7) t T T —t
By the minimum principle recalled in subsection 2.1, we have u. > 0 in 0. Letting
€ go to zero we have u. > 0 in O, thus completing the proof. ([

Proposition 2.3. Let Q2 C X be open and let Ty and T € R, such that 0 < Ty < T.
Let O := Qx]0,T[ and v : O — R be such that the restrictions u|qxom,| and
uloxiry, 1| are K-superharmonic. Then, if

2.4 liminf w(z,t) = lminf wu(z,t) =u(€,Ty) Ve,
(2.4) Zlm(ngU)U(x ) zlm(ggpo)U(x ) =u(&To) V¢
(I,t)G(’) t<To
(z,t)€O

the function u is K-superharmonic in 2x]0,T].

Proof. Since u is lower semicontinuous in 2x]0,To[ and in Qx]Tp, T[, the assump-
tion (2.4) implies that u is lower semicontinuous in O = Qx]0, 7.

To prove that u is K-harmonic in O we will show the following claim.

Claim. For every z € O there exists a basis B, of K-regular neighborhoods of V/
such that

u(z) 2 K/(2) Vo€ COV,R),ulov > ¢.
Here K X denotes the unique K-harmonic function in V', continuous up to 9V and
such that KX|3V = .

From this Claim our assertion follows thanks to Corollary 6.4.9 in [BLUO7].

If z € 2x]0, Tp[ or if z € 2x]0, T'[, the Claim is satisfied since u is K-superharmonic
both in Qx]0,7T,[ and in 2x]0,T[. Then it remains to prove the Claim for every
point ¢ = (£,T0),& € Q. Let B, = (V) be a basis of -regular neighborhoods of ¢
such that V' C O. Let ¢ € C(AV,R), ¢ < ulpy. Then u — KY is K-superharmonic
in x]0, Tp[ and

liminfu(z) > u(z’) —u(z') >0 Vz' € 9,02x]0, To|.
z—z’
Therefore, by Proposition 2.2,
u—KY >0inVn{t<Tp}
As a consequence, keeping in mind assumption (2.4),
w(é,Ty) = lminf w(z,t) > liminf KY(x,t) = KY (¢, T,),
(&To) = lminf ufz,t)> lminf K (2,1) = K, (& To)
t<To t<Ty
that is,

U(§7 TO) > KX(€7 TO)
This completes the proof. (I
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3. SOME PRELIMINARY RESULTS
The proof of our main theorem rests on the following two lemmata.

Lemma 3.1. Let Q be a bounded open set such that Q C X, and let O := Qx]0, T,
TeR,T>0. Let p : 00 — R be upper semicontinuous and such that t — @(x,t)
is monotone decreasing, Vo € 02 and

o(x,0) =M =supyp (M €R).
o0

Then, the Perron solution Kg 18 monotone decreasing w.r.t. the variable t: more
precisely

t— KS (z,t) is monotone decreasing for every fized x € Q.

Proof. For every fixed 6 €]0, T let us define
h(z,t) = KG(2,t) — K9 (z,t +0), 2 €Q,0<t <T —34.
It is enough to prove that A > 0 in Os := Q2x]0,T — §[. To this end we show that,
for every u € L_{g and v € QS, the function
w(x,t) = u(z,t) —v(zr, t+9)

is nonnegative in O5. Now, we have:

(a) w is K-superharmonic in Os, since u € K(O) and (z,t) — v(z,t + 0) is

KC-subharmonic in Os being v € £(O) and .Z translation invariant in the

variable ¢.
(b) For every T € Q,

liminf w(z,t) >  liminf w(z,t)— liminf o(z,t+9)
(z,t)—(=,0) (z,t)—(=,0) (z,t)—(T,0)

©(Z,0) — v(T, d)
= M-z, >0.

We remark that v < M in O since v is K-subharmonic and

Y%

limsupv(z) < p(() <M V¢ € 90.

z—C
Here we use the maximum principle for subharmonic functions.

(¢) For every ( = (£,7), £ €0Q,0<T<T -4,

lminf  w(z,t) > @(€,7) — p(&, 7 +0) > 0,
(z,t)—(&,7)

by hypotesis.
From (a), (b) and (¢) and the minimum principle for superharmonic functions we
get
w >0 in Og.
This completes the proof. (I

With Lemma 3.1 at hand we can easily prove the following key result for our
main theorem.

Lemma 3.2. Let Q be a bounded open set such that Q C X, and let O := Qx]0,T],
TeR, T>0. Let zo = (x0,t0) € 0Nx]0,T[ be a .L-regular boundary point.
Then there exists a function b € K(O) such that
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(1) bis an ZL-barrier for O at zo;
(13) t — b(x,t) is monotone decreasing for every fized x € .

Proof. Let Y be a bounded open set such that QCYCY C X and let o € Q.
By Lemma 2.1 there exists a function h € C*(Y,R) such that

(a) h(zg) =0and h(z) >0 Vz # xo.

(b) Zoh > 01in Q.
For a fixed 6 €]0, Ty[ let us define

h(z) if §d<t<T,

h:Qx[0,T] — R, h(x,ﬂ—{M if0<t<o

where M = supg h.
This function is Z-superharmonic in Oy := 2x]0, §[ and in O := Qx]4, T since

Sh=0in O, and ZLh=%h>0inOs.
On the other hand,

lim sup ?L(:E,t):M: lim sup ﬁ(a:,t).
(zqt)zs(éﬁ) (@,1)—(&,0)

Then, by Proposition 2.3,
h € K(Qx]0,T]).

Moreover,

t — h(z,t) is monotone decreasing,

for every fixed x € Q.
Let us now put

b= Kga o
which is well defined and /C-harmonic in O, since ?L|a(/) is bounded and upper semi-
continuous.
Moreover, by Lemma 3.1, ¢ — b(z,t) is monotone decreasing for every fixed
x € Q.
It remains to show that b is an .Z-barrier for O at zg. To this end we first remark
that

heul

“hlao’
so that
h <bin O.

This implies b > 0 in O since B is strictly positive.

On the other hand, since ﬁ|00 is continuous in a neighborhood of zy, and zp is
Z-regular for O,

lim b(z) = lim K (2)="h(z) = ¢(x0) = 0.

zZ—>20 zZ—>20 hlao

This completes the proof. O
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4. PROOF OF THEOREM 1.1
Let us keep the notation of Theorem 1.1 and split the proof in two steps.
(1) If xg € 09 is Ly-regular for Q, then z = (xg,to) is L-reqular for O.

Indeed, the Zy-regularity of zy implies the existence of a Zp-harmonic barrier for
Q at zo, i.e. a function by € K(£2) such that

bo>0in Q and by — 0asz — xp.

It follows that

o~

b(iE,t) = bo(I), (Iat) € Ov
is .Z-harmonic in O (.ZE = %bo = 0). Moreover,

-~

b>0in O and bz, t) = bo(z) — 0 as (z,t) —> (z0,to).

Hence, b is an Z-barrier function for O at zy and, as a consequence, zg is
ZL-regular for O.

(2) If z = (x0,t0), zo € Q,0 < to < T, is L-regular for O, then xo is
Lo-regular for Q.

Indeed, by Lemma 3.2, there exists a function b € K(O) such that b > 0,
b(z) — 0 as z — zp and

t — b(x,t) is monotone decreasing Va € €.
It follows that, letting bo(x) = b(x, to),
Lobo = ZLb+0:b=0b<01in Q.
Hence, by is Zh-superharmonic in 2. Moreover, by > 0 in 2 and
bo(z) = b(z,t9) — 0 as z —> xo.

Therefore, by is an Z-barrier for 2 at g , and zq is Zp-regular.

5. AN APPLICATION TO DEGENERATE ORNSTEIN—UHLENBECK OPERATORS

In R¥ let us consider the partial differential operator

(5.1) Lo = div (AV) + (Bz, V),

where A = (ai;) j=1,...n and B = (b;;); j=1,...n are N x N real constant matrices,
x = (21,...,2y) is the point of RV, div, V and ( , ) denote the divergence, the
Euclidean gradient and the inner product in RY, respectively.

We suppose that the matrix A is symmetric, positive semidefinite and that it
assumes the following block form

4 0
=[5

Ap being a pg X pg strictly positive definite matrix with 1 < py < N. Moreover, we
assume the matrix B to be of the following type
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o o0 ... 0 O

B, 0 ... 0 0
(5.2) B=|0 By ... 0 0 7

0o 0 ... B 0

where B; is a pj_1 x p; block with rank p; (j =1,2,...,7), po > p1 > ... > pr > 1
and po +p1 + ... + pr = N.
Finally, letting

E(s) :=exp(—sB), s€R,

we assume that the following condition is satisfied

t
Ct) = / E(s)AET(s)ds is strictly positive definite for every t > 0.
0

As it is quite well known this condition implies the hypoellipticity of L, see
[LP94]. In that paper it is proved that the evolution counterpart of Lo, i.e. the
operator

L=Ly— 9 in RN*L,
is left translation invariant and homogeneous of degree two on the homogeneous
group
K = (RV*1 0,6,)
with composition law o defined as follows
(2,8) 0 (@', 1) = (a' + B(t)a, t + 1)
and dilation dy, A > 0, of this kind

Sy RVFL S RNVHL 5y (m,t) = 65 (x®0), 2P) . gt
= Az N3gp) N2y (ee) 224
where z(Pi) € RPi 4=0,...,r
The natural number g := @ + 2, with
(5:3) Q :=po+3p1+ ...+ (2r + 1)p,,

is the homogenous dimension of K. In what follows we will write

Oxr(z) = dx(z,t) = (D)\(,T),)\2t),

where,

Dy(z) = ()\x(p"), NgPr) o \ZrLg(en) 2.

Obviously, (Dy)aso is a group of dilations in RY. The natural number @ in
(5.3) is the homogeneous dimension of RY w.r.t. the group (Dy)x>o-
The operator L has a fundamental solution I' given by

F(207 Z) = ’Y(Z_l © ZO)) Z, 20 € RNJrla
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where o is the composition law in K, z~! denotes the opposite of z in K and, for a
suitable Cg > 0,

0 if t<0,

’7(557” = 9

?—gexp <—HD (:17)’ > if ¢>0,

1
Vi c

where,
Yl = (C7 M)y, y),
see again [LP94].
It is quite easy to recognise that our Tikhonov-type theorem applies to the
operators Ly and L. Hence, if Q is a bounded open subset of RV, 2y € 9Q and
to €] = T,T[,T > 0, we have:

xg s Lo-regular for Q
if and only if
20 = (20,0) s L-regular for Op := Qx] =T, T].
On the other hand, in [KLT18, Corollary 1.3] it is proved that
2o 1s L-regular for O

if, for a p €]0, 1], the following condition holds:

o O0f1,(20)]
5.4 g d =
( ) — ua(k) Q$2 )
where a(k) = klogk, | - | denotes the Lebesque measure in RV*! and

1\*® 1 @)
O7 k(20) = {Z #Or : (;) < D(20,2) < <;> } :

We express now this condition in a more explicit form. To this end we let

1 a(k)
(5.5) Af(x) = {(x,t) eRN | 24 Q, (27 o (2,0) > (;) } .

Then,
a(k+1)
071 ((70,0)) = (Ax(zo) \ Ag+1(20)) U {7 - (l> }

1
Ap(xo) N Agt1(20)-

Hence, denoting for the sake of brevity,

I

d, = |A(z0)] and v=p T

condition (5.4) is satisfied if

3

o0

di — di+1
k=1
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On the other hand, for every p € N,

o0

Z d, — di41
a(k
— (k)
4 1 2 1 2 dpi1
= om T (,/a@) - ya(l)) totdy (,/a(p) B ya(P—1)> o)
< (1 log 2 ¢ di, dp+1
<@1-v )Zya(k) T el
k=1
. dp-‘,—l . e . .
Then, since o 0 as p — oo (as we will see later) condition (5.6) is satisfied
VOL
if
[e'S) dk}
k=1

Keeping in mind the very definition of ', we have that Ag(zo) is equal to the
following set

2

{(:v,t) eRNT 20t <0,
[kd

D\%_(wo — E(|t|z))

a(k)) 3
§ 2@1%%}7
C t

whereby, with the change of variables y := 2o — E(|t|)x, T = —t, we get

2

Il

(5.8) di = |{(y,7’) | 7>0, y€xy— E(1)(Q°, ‘D\/;_ .

<2Qlog&}|.
T

Here Ry, = (CQua(k))% and Q¢ (= RN+1 Q.
Therefore,

2
dy,

IN

Il

forro 2]

c
(using the change of variables y = D /z(§), T = Rxs)
Q+2 1

{65155 0]p 0] < 201087}

R,°

Hence, for a suitable dimensional constant Ca > 0,

Q2 * o
di, < C'auo‘(k) @ =Cov (k)
Then,

0< @ < ua(p-irl)—a(p) —50asp —s oo,
VO‘(ZD) Q
since 0 < p < 1 and a(p+ 1) — a(p) = plog 2

p

+log(p+1) — oo.
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We have completed the proof of the following criterion:
Let L be the Ornstein—Uhlenbeck-type operator in (5.1) and let @ C RYN be a bounded
open set. Then, a point xg € 02 is L-reqular for Q if
— i (L z9)

where d(Q, xo) := dy. is defined in (5.8).

We note that condition (5.9) holds if 2 satisfies the exterior cone-type condition
introduced in [Kogl9]. Geometric boundary regularity criteria for wide classes of
hypoelliptic evolution operators are also established in [Man97], [LU10], [LTU17]
and [Kogl7].
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