ON THE DIRICHLET PROBLEM IN CYLINDRICAL DOMAINS FOR EVOLUTION OLEĬNIK–RADKEVIČ PDE'S: A TIKHONOV-TYPE THEOREM

ALESSIA E. KOGOJ

ABSTRACT. We consider the linear second order PDO's

$$\mathscr{L} = \mathscr{L}_0 - \partial_t := \sum_{i,j=1}^N \partial_{x_i} (a_{i,j} \partial_{x_j}) - \sum_{j=i}^N b_j \partial_{x_j} - \partial_t$$

and assume that \mathscr{L}_0 has nonnegative characteristic form and satisfies the Oleňnik–Radkevič rank hypoellipticity condition. These hypotheses allow the construction of Perron-Wiener solutions of the Dirichlet problems for \mathscr{L} and \mathscr{L}_0 on bounded open subsets of \mathbb{R}^{N+1} and of \mathbb{R}^N , respectively.

Our main result is the following Tikhonov-type theorem:

Let $\mathcal{O} := \Omega \times]0, T[$ be a bounded cylindrical domain of \mathbb{R}^{N+1} , $\Omega \subset \mathbb{R}^N$, $x_0 \in \partial\Omega$ and $0 < t_0 < T$. Then $z_0 = (x_0, t_0) \in \partial\mathcal{O}$ is \mathscr{L} -regular for \mathcal{O} if and only if x_0 is \mathscr{L}_0 -regular for Ω .

As an application, we derive a boundary regularity criterion for degenerate Ornstein–Uhlenbeck operators.

1. INTRODUCTION

We consider linear second order partial differential operators of the type

(1.1)
$$\mathscr{L}_{0} := \sum_{i,j=1}^{N} \partial_{x_{i}} \left(a_{ij} \partial_{x_{j}} \right) + \sum_{j=1}^{N} b_{j} \partial_{x_{j}}$$

in an open set X of \mathbb{R}^N , $N \geq 2$, and their "evolution" counterpart in $X \times \mathbb{R}$

(1.2)
$$\mathscr{L} = \mathscr{L}_0 - \partial_t.$$

We assume \mathscr{L}_0 in (1.1) is of non totally degenerate Oleı́nik and Radkevič type, i.e., we assume

(H1) $a_{ij} = a_{ji}, b_i \in C^{\infty}(X, \mathbb{R})$ and

$$A(x) := (a_{ij}(x))_{i,j=1,\dots,N} \ge 0 \qquad \forall x \in X.$$

Moreover

$$\inf_{X} a_{11} =: \alpha > 0.$$

²⁰¹⁰ Mathematics Subject Classification. 35H10; 35K65; 35J70; 35J25; 31D05; 35D99.

Key words and phrases. Dirichlet problem, Perron-Wiener solution, Boundary behavior of Perron-Wiener solutions, Hypoelliptic operators, Potential theory.

(H2) rank Lie
$$\{X_1, \ldots, X_N, X_0\}(x) = N$$
 $\forall x \in X$, where,

$$X_i = \sum_{j=1}^{N} a_{ij} \partial_{x_j}, \ i = 1, \dots, N,$$
 and $X_0 = \sum_{j=1}^{N} b_j \partial_{x_j}.$

Hypotheses (H1) and (H2) imply that \mathscr{L}_0 is hypoelliptic in X (see [OR73]), that is:

 Ω open subset of $X, u \in \mathcal{D}'(\Omega), \mathscr{L}_0 u \in C^{\infty}(\Omega, \mathbb{R}) \implies u \in C^{\infty}(\Omega, \mathbb{R}).$

The same assumptions (H1) and (H2) also imply that $\mathscr{L}_0 - \partial_t$ is hypoelliptic in $X \times \mathbb{R}$.

We will show in Section 2 that \mathscr{L}_0 and $\mathscr{L}_0 - \partial_t$ endow X and $X \times \mathbb{R}$, respectively, with a local structure of σ^{\pm} harmonic space, in the sense of [3], Chapter 6. As a consequence, in particular, the Dirichlet problems

$$\begin{cases} \mathscr{L}_0 u = 0 \text{ in } \Omega, \\ u|_{\partial\Omega} = \varphi, \end{cases} \quad \text{and} \quad \begin{cases} (\mathscr{L}_0 - \partial_t)v = 0 \text{ in } \mathcal{O} := \Omega \times]0, T[, \\ v|_{\partial\mathcal{O}} = \psi, \end{cases}$$

have a generalized solution in the sense of Perron–Wiener, for every bounded open set $\Omega \subset \subset X$, for every T > 0, and for every $\varphi \in C(\partial\Omega, \mathbb{R})$ and $\psi \in C(\partial\mathcal{O}, \mathbb{R})$. We will denote such generalized solutions by, respectively,

$$H^{\Omega}_{\varphi}$$
 and $K^{\mathcal{O}}_{\psi}$

As usual, we say that a point $x_0 \in \partial \Omega$ $((x_0, t_0) \in \partial \mathcal{O})$ is \mathscr{L}_0 -regular for Ω (\mathscr{L}_0) -regular for \mathcal{O} if

$$\lim_{x \to x_0} H^{\Omega}_{\varphi}(x) = \varphi(x_0) \qquad \forall \varphi \in C(\partial\Omega, \mathbb{R})$$
$$\left(\lim_{(x,t) \to (x_0,t_0)} K^{\mathcal{O}}_{\psi}(x,t) = \psi(x_0,t_0) \qquad \forall \psi \in C(\partial\mathcal{O}, \mathbb{R})\right).$$

The aim of this paper is to prove the following theorem:

Theorem 1.1. Let Ω be a bounded open set with $\overline{\Omega} \subseteq X$, and let $x_0 \in \partial\Omega$ and $t_0 \in]0, T[$. Then, x_0 is \mathscr{L}_0 -regular for Ω if and only if (x_0, t_0) is $\mathscr{L}_0 - \partial_t$ -regular for $\mathcal{O} := \Omega \times]0, T[$.

When $\mathscr{L} = \Delta - \partial_t$ is the classical heat operator, our result re-establishes a theorem proved by Tikhonov in 1938 [Tik38]. Other proofs of the Tikhonov Theorem were given by Fulks in 1956 and in 1957 [Ful56, Ful57] and by Babuška and Výborný in 1962 [BV62]. Chan and Young extended the Tikhonov Theorem to parabolic operators with Hölder continuous coefficients in 1977 [CY77], and Arendt to parabolic operators with bounded measurable coefficients in 2000 [Are00]. The corresponding version for *p*-Laplacian-type evolution operators has been proved by Kilpeläinen and Lindqvist in 1996 [KL96] and by Banerjee and Garofalo in 2015 [BG15].

To the best of our knowledge, the only Tikhonov-type theorem for second order "evolution" sub-Riemannian PDO's appearing in the literature is the result by Negrini [Neg83] in abstract β -harmonic spaces¹.

This paper is organised as follows. In Section 2, all the notions and results from Potential Theory that we need are briefly recalled. In particular, we recall the notion of σ^* -harmonic space and then we prove that \mathscr{L}_0 and \mathscr{L} endow X and

 $\mathbf{2}$

¹For a definition of β -harmonic spaces see [CC72].

 $X \times \mathbb{R}$, respectively, with a local structure of σ^{\pm} harmonic space. In this way, we derive the existence of a generalized solution in the sense of Perron–Wiener in both our settings. Section 3 is devoted to two key results for the proof of the main theorem (Theorem 1.1), which is the content of Section 4. Finally, combining our Tikhonov-type theorem with a corollary of the Wiener–Landis-type criterion for Kolmogorov-type operators proved in [KLT18], we establish a geometric boundary regularity criterion for degenerate Ornstein–Uhlenbeck operators.

2. \mathscr{L}_0 -harmonic and \mathscr{L} -harmonic spaces

2.1. The σ^{\pm} harmonic space. For the readers' convenience we recall the definition of σ^{\pm} harmonic space supported on a an open set $E \subseteq \mathbb{R}^p$, $p \ge 2$, and refer to Chapter 6 of the monograph [BLU07] for details.

Let \mathcal{H} be a sheaf of functions in E such that $\mathcal{H}(V)$ is a linear subspace of $C(V, \mathbb{R})$, for every open set $V \subseteq E$. The functions in $\mathcal{H}(V)$ are called \mathcal{H} -harmonic in V. The open set V is called \mathcal{H} -regular if

- (i) $\overline{V} \subseteq E$ is compact;
- (ii) for every $\varphi \in C(\partial V, \mathbb{R})$ there exists a unique function such that

$$h^V_{\omega}(x) \to \varphi(\xi)$$
 as $x \to \xi$, for every $\xi \in \partial V$;

 $(iii) \ h_{\varphi}^V \geq 0 \ \text{if} \ \varphi \geq 0.$

A lower semicontinuous function $u: W \longrightarrow] -\infty, \infty], W \subseteq E$ open, is called \mathcal{H} -superharmonic if

- (i) $u \geq h_{\varphi}^{V}$ in V for every \mathcal{H} -regular open set V with $\overline{V} \subseteq W$ and for every $\varphi \in C(\partial V, \mathbb{R})$ with $\varphi \leq u|_{\partial V}$;
- (ii) $\{x \in W \mid u(x) < \infty\}$ is dense in W.

We denote by $\overline{\mathcal{H}}(W)$ the cone of the \mathcal{H} -superharmonic functions in W.

The couple (E, \mathcal{H}) is called a σ^* -harmonic space if the following axioms hold:

- (A1) There exists a function $h \in \mathcal{H}(E)$ such that $\inf h > 0$.
- (A2) If $(u_n)_{n\in\mathbb{N}}$ is a monotone increasing sequence of \mathcal{H} -harmonic functions in an open set $V \subseteq E$ such that

$$\{x \in V \mid \sup_{n \in \mathbb{N}} u_n(x) < \infty\}$$

is dense in Ω , then

$$u := \sup_{\mathcal{U}} u_n$$
 is \mathcal{H} -harmonic in V .

- (A3) The family of the \mathcal{H} -regular open sets is a basis of the Euclidean topology on E.
- (A4) For every $x, y \in E$, $x \neq y$, there exist two nonnegative \mathcal{H} -superharmonic and continuous functions u, v in E such that

$$u(x)v(y) \neq u(y)v(x).$$

(A5) For every $x_0 \in E$ there exists a nonnegative \mathcal{H} -superharmonic and continuous function S_{x_0} in E, such that $S_{x_0}(x_0) = 0$ and

$$\inf_{E \searrow V} S_{x_0} > 0$$

for every neighborhood V of x_0 .

We now recall some crucial results in σ^* harmonic space theory; first of all the definition of Perron–Wiener solution to the Dirichlet problem.

Let V be a bounded open set with $\overline{V} \subseteq E$, and let $\varphi : \partial V \longrightarrow \mathbb{R}$ be a bounded lower semicontinuous or upper semicontinuous function. Define

$$\overline{\mathcal{U}}_{\varphi}^{V} = \{ u \in \overline{\mathcal{H}}(V) \mid \liminf_{x \longrightarrow \xi} u(x) \ge \varphi(\xi) \quad \forall \xi \in \partial V \}$$

and

(2.1)
$$H_{\varphi}^{V} =: \inf \overline{\mathcal{U}}_{\varphi}^{V}$$

Then H^V_{φ} is \mathcal{H} -harmonic in Ω . It is called the generalized Perron–Wiener solution to the Dirichlet problem

$$\begin{cases} u \in \mathcal{H}(V), \\ u|_{\partial V} = \varphi. \end{cases}$$

We also have

(2.2)
$$H^V_{\varphi} =: \sup \underline{\mathcal{U}}^V_{\varphi}$$

where,

$$\underline{\mathcal{U}}_{\varphi}^{V} = \{ v \in \underline{\mathcal{H}}(V) \mid \limsup_{x \longrightarrow \xi} v(x) \leq \varphi(\xi) \quad \forall \xi \in \partial V \}$$

Here $\underline{\mathcal{H}}(V) := -\overline{\mathcal{H}}(V)$ denotes the cone of the \mathcal{H} -subharmonic functions in V. A point $y \in \partial V$ is called \mathcal{H} -regular for V if

$$\lim_{x \longrightarrow y} H^V_{\varphi}(x) = \varphi(y) \qquad \forall \varphi \in C(\partial V, \mathbb{R}).$$

On the σ^* harmonic space Bouligand Theorem holds. Indeed: a point $y \in \partial V$ is \mathcal{H} -regular for V if and only if there exists a \mathcal{H} -barrier for V at y, i.e., if there exists a function b \mathcal{H} -superharmonic in $V \cap W$, where W is a neighborhood of y, such that

(i) b is \mathcal{H} -superharmonic;

(ii) $b(x) > 0 \ \forall x \in V \cap W \text{ and } b(x) \longrightarrow 0 \text{ as } x \longrightarrow y.$

For our purposes it is important to recall that if $y \in \partial V$ is \mathcal{H} -regular for V there exists a barrier function for V at y which is defined and \mathcal{H} -harmonic all over V.

Finally, we recall the *minimum principle* for \mathcal{H} -superharmonic functions.

Let V be a bounded open set with $\overline{V} \subseteq E$ and let $u \in \overline{\mathcal{H}}(V)$. If

$$\liminf_{x \longrightarrow y} u(x) \ge 0 \quad \forall y \in \partial V,$$

then $u \ge 0$ in V.

2.2. The \mathscr{L}_0 -harmonic space. Let E be a bounded open subset of X such that $\overline{E} \subseteq X$. For every open set $V \subseteq E$ we let

$$\mathcal{H}(V) = \{ u \in C^{\infty}(V, \mathbb{R}) \mid \mathscr{L}_0 u = 0 \text{ in } V \}.$$

Then, $V \mapsto \mathcal{H}(V)$ is a sheaf of functions such that $\mathcal{H}(V)$ is a linear subspace of $C(V, \mathbb{R})$.

If $u \in \mathcal{H}(V)$ we will say that u is \mathcal{H} -harmonic or \mathscr{L}_0 -harmonic in V. We have that

(2.3)
$$(E, \mathcal{H})$$
 is a σ -harmonic space.

Before showing this statement we remark that a C^2 -function u in a open set V is \mathcal{H} -superharmonic if and only if $\mathscr{L}_0 u \leq 0$ in V. This is a easy consequence of Picone's maximum principle (see e.g. [KP16], page 547). Now we are ready to prove (2.3).

(A1) is satisfied since the constant functions are \mathcal{L}_0 -harmonic.

(A2) -(A4) are proved in [KP16]. We would like to stress that our operators \mathscr{L}_0 are contained in the class considered in [KP16] since the rank condition (H2) implies that both \mathscr{L}_0 and $\mathscr{L}_0 - \beta$, for every $\beta \ge 0$, are hypoelliptic.

The axiom (A5) follows from the following Lemma which seems to have an independent interest in its own right.

Lemma 2.1. Let us consider a linear second order PDO of the kind

$$\mathcal{L} := \sum_{i,j=1}^{N} a_{ij} \partial_{x_i x_j} + \sum_{j=1}^{N} b_j \partial_{x_j},$$

where $a_{ij} = a_{ji}, b_j$ are continuous functions in \overline{Y} , where Y is a bounded open subset of \mathbb{R}^N . Suppose

$$\inf_{Y} a_{11} := \alpha > 0 \quad and \quad \sum_{j=1}^{N} a_{jj} > 0 \ in \ Y^{2}.$$

Then, for every $x_0 \in Y$ there exists a function $h \in C^{\infty}(Y, \mathbb{R})$ such that

- (i) $h(x_0) = 0$ and h(x) > 0 for every $x \neq x_0$;
- (ii) $\mathcal{L}h > 0$ in X.

Proof. For the sake of simplicity we assume $x_0 = 0$. We define

$$h(x) = E(\lambda x_1) + (x_2^2 + \dots + x_N^2), \quad x = (x_1, x_2, \dots, x_N) \in \mathbb{R}^N,$$

where $\lambda > 0$ will be fixed below. Moreover,

$$E(s) = \exp(\phi(s)) - \exp(\phi(0))$$

and

$$\phi(s) = \sqrt{1 + s^2}, \quad s \in \mathbb{R}.$$

We have:

$$\phi(0) = 1, \quad \phi(s) > 1 \quad \forall s \neq 0, \quad E(s) > 0 \quad \forall s \neq 0, \quad E(0) = 0,$$

$$\phi'(s) = \frac{s}{s} \quad \phi''(s) = \frac{1}{s}$$

$$\phi'(s) = \frac{s}{\sqrt{1+s^2}}, \quad \phi''(s) = \frac{1}{(1+s^2)^{\frac{3}{2}}}.$$

Hence

$${\phi'}^2 + {\phi''} = \frac{s^2}{1+s^2} + \frac{1}{(1+s^2)^{\frac{3}{2}}} \ge \frac{1}{2\sqrt{2}} \quad \forall s \in \mathbb{R}.$$

On the other hand

$$E' = \exp(\phi)\phi', \quad E'' = \exp(\phi)({\phi'}^2 + \phi'').$$

Therefore, letting

$$\beta := \sup_X \sum_{j=1}^N |b_j| \qquad (<\infty) \quad \text{ and } \quad \lambda = \sup_{x \in \overline{X}} |x|,$$

²We don't require $(a_{ij})_{i,j=1,...,N}$ to be nonnegative definite.

we get

$$\mathcal{L}h(x) = \lambda^{2} E''(\lambda x_{1})a_{11}(x) + \lambda E'(\lambda x_{1})b_{1} + 2\sum_{j=2}^{N} (a_{jj}(x) + b_{j}(x)x_{j})$$

$$\geq \exp(\phi(\lambda x_{1})) \left(\frac{a_{11}(x)}{2\sqrt{2}}\lambda^{2} - \lambda|b_{1}|\right) - 2\sum_{j=2}^{N} |b_{j}||x_{j}|$$

$$\geq \lambda^{2} \left(\frac{\alpha}{2\sqrt{2}} - \frac{|b_{1}|}{\lambda}\right) - 2\beta\lambda$$

$$\geq \lambda^{2} \left(\frac{\alpha}{2\sqrt{2}} - \frac{\beta}{\lambda}\right) - 2\beta\lambda.$$

If λ is big enough, this implies

$$\mathcal{L}h > 0$$
 in X.

Moreover

$$h(0) = E(0) = 0, \quad h(x) > 0 \quad \text{if } x > 0.$$

The proof is complete.

2.3. The \mathscr{L} -harmonic space. Let \widehat{E} be a bounded open subset of $X \times \mathbb{R}$ such that $\overline{\widehat{E}} \subseteq X \times \mathbb{R}$. For every open set $V \subseteq \widehat{E}$ we let

$$\mathcal{K}(V) = \{ u \in C^{\infty}(V, \mathbb{R}) \mid \mathscr{L}u = 0 \text{ in } V \}.$$

Then, $V \mapsto \mathcal{K}(V)$ is a sheaf of functions making

$(\widehat{E}, \mathcal{K})$ a σ^* -harmonic space.

This can be proved just by proceeding as in subsection 2.2. We call \mathcal{K} -harmonic or \mathscr{L} -harmonic in a open set V the solutions to $\mathscr{L}u = 0$ in V.

Here we prove some typical results of the present \mathcal{K} -harmonic space, that we will need in the proof of the main theorem of this paper. We first show a "parabolic" minimum principle for \mathscr{L} -subharmonic functions in cylindrical domains.

Proposition 2.2. Let Ω be a bounded open subset of X such that $\overline{\Omega} \subseteq X$ and let T > 0. Consider the cylindrical domain $\mathcal{O} := \Omega \times]0, T[$ and define the "parabolic boundary" of \mathcal{O} as follows

$$\partial_p \mathcal{O} := (\Omega \times \{0\}) \times (\partial \Omega \times]0, T]).$$

Then, if $u \in \overline{\mathcal{K}}(\mathcal{O})$ is such that

$$\liminf_{z \longrightarrow \zeta} u(z) \ge 0 \quad \forall \zeta \in \partial_p \mathcal{O},$$

we have $u \geq 0$ in \mathcal{O} .

Proof. For every arbitrarily fixed $\widehat{T} \in]0, T[$ we let $\widehat{\mathcal{O}} = \Omega \times]0, \widehat{T}[$. We will prove that $u \geq 0$ in $\widehat{\mathcal{O}}$. Since \widehat{T} is arbitrarily fixed in]0, T[, this will give the proof of our lemma. To this end, given any $\varepsilon > 0$, we define

$$u_{\varepsilon}(z) = u_{\varepsilon}(x,t) := u(x,t) + \frac{\varepsilon}{\widehat{T} - t}, \quad z \in \widehat{\mathcal{O}}.$$

 $\mathbf{6}$

Since u is \mathcal{K} -superharmonic in \mathcal{O} and

$$\mathscr{L}\frac{\varepsilon}{\widehat{T}-t} = -\varepsilon\partial_t \frac{1}{\widehat{T}-t} = -\frac{\varepsilon}{(\widehat{T}-t)^2} < 0 \text{ in } \widehat{\mathcal{O}},$$

then u_{ε} is \mathcal{K} -superharmonic in \mathcal{O} . Moreover

$$\liminf_{z \longrightarrow \zeta} u_{\varepsilon}(z) \ge 0 \quad \forall \zeta \in \partial_p \widehat{\mathcal{O}},$$

and, for every $\xi \in \Omega$,

$$\liminf_{z \longrightarrow (\xi, \widehat{T})} u_{\varepsilon}(z) \geq u(\varepsilon, \widehat{T}) + \liminf_{t \nearrow \widehat{T}} \frac{\varepsilon}{\widehat{T} - t} = \infty.$$

By the minimum principle recalled in subsection 2.1, we have $u_{\varepsilon} \ge 0$ in $\widehat{\mathcal{O}}$. Letting ε go to zero we have $u_{\varepsilon} \ge 0$ in $\widehat{\mathcal{O}}$, thus completing the proof. \Box

Proposition 2.3. Let $\Omega \subseteq X$ be open and let T_0 and $T \in \mathbb{R}$, such that $0 < T_0 < T$. Let $\mathcal{O} := \Omega \times]0, T[$ and $u : \mathcal{O} \longrightarrow \mathbb{R}$ be such that the restrictions $u|_{\Omega \times]0, T_0[}$ and $u|_{\Omega \times]T_0, T[}$ are \mathcal{K} -superharmonic. Then, if

(2.4)
$$\lim_{\substack{z \to (\xi, T_0) \\ (x,t) \in \mathcal{O}}} u(x,t) = \liminf_{\substack{z \to (\xi, T_0) \\ t < T_0 \\ (x,t) \in \mathcal{O}}} u(x,t) = u(\xi, T_0) \quad \forall \xi \in \Omega,$$

the function u is \mathcal{K} -superharmonic in $\Omega \times]0, T[$.

Proof. Since u is lower semicontinuous in $\Omega \times]0, T_0[$ and in $\Omega \times]T_0, T[$, the assumption (2.4) implies that u is lower semicontinuous in $\mathcal{O} = \Omega \times]0, T[$.

To prove that u is \mathcal{K} -harmonic in \mathcal{O} we will show the following claim. *Claim.* For every $z \in \mathcal{O}$ there exists a basis B_z of \mathcal{K} -regular neighborhoods of V such that

$$u(z) \ge K_{\varphi}^{V}(z) \qquad \forall \varphi \in C(\partial V, \mathbb{R}), u|_{\partial V} \ge \varphi.$$

Here K_{φ}^{V} denotes the unique \mathcal{K} -harmonic function in V, continuous up to ∂V and such that $K_{\varphi}^{V}|_{\partial V} = \varphi$.

From this Claim our assertion follows thanks to Corollary 6.4.9 in [BLU07].

If $z \in \Omega \times]0, T_0[$ or if $z \in \Omega \times]0, T[$, the Claim is satisfied since u is \mathcal{K} -superharmonic both in $\Omega \times]0, T_0[$ and in $\Omega \times]0, T[$. Then it remains to prove the Claim for every point $\zeta = (\xi, T_0), \xi \in \Omega$. Let $B_{\rho} = (V)$ be a basis of \mathcal{K} -regular neighborhoods of ζ such that $\overline{V} \subseteq \mathcal{O}$. Let $\varphi \in C(\partial V, \mathbb{R}), \varphi \leq u|_{\partial V}$. Then $u - K_{\varphi}^V$ is \mathcal{K} -superharmonic in $\Omega \times]0, T_0[$ and

$$\liminf_{z \longrightarrow z'} u(z) \ge u(z') - u(z') \ge 0 \qquad \forall z' \in \partial_p \Omega \times]0, T_0[.$$

Therefore, by Proposition 2.2,

$$u - K_{\varphi}^V \ge 0 \text{ in } V \cap \{t < T_0\}.$$

As a consequence, keeping in mind assumption (2.4),

$$u(\xi, T_0) = \liminf_{\substack{(x,t) \longrightarrow (\xi,\tau) \\ t < T_0}} u(x,t) \ge \liminf_{\substack{(x,t) \longrightarrow (\xi,T_0) \\ t < T_0}} K_{\varphi}^V(x,t) = K_{\varphi}^V(\xi, T_0),$$

that is,

$$u(\xi, T_0) \ge K_{\varphi}^V(\xi, T_0).$$

This completes the proof.

ALESSIA E. KOGOJ

3. Some preliminary results

The proof of our main theorem rests on the following two lemmata.

Lemma 3.1. Let Ω be a bounded open set such that $\overline{\Omega} \subseteq X$, and let $\mathcal{O} := \Omega \times]0, T[, T \in \mathbb{R}, T > 0$. Let $\varphi : \partial \mathcal{O} \longrightarrow \mathbb{R}$ be upper semicontinuous and such that $t \longmapsto \varphi(x, t)$ is monotone decreasing, $\forall x \in \partial \Omega$ and

$$\varphi(x,0) = M = \sup_{\partial \mathcal{O}} \varphi \qquad (M \in \mathbb{R}).$$

Then, the Perron solution $K_{\varphi}^{\mathcal{O}}$ is monotone decreasing w.r.t. the variable t: more precisely

 $t \longmapsto K_{\varphi}^{\mathcal{O}}(x,t)$ is monotone decreasing for every fixed $x \in \Omega$.

Proof. For every fixed $\delta \in]0, T[$ let us define

$$h(x,t) = K^{\mathcal{O}}_{\varphi}(x,t) - K^{\mathcal{O}}_{\varphi}(x,t+\delta), \ x \in \Omega, 0 < t < T-\delta.$$

It is enough to prove that $h \ge 0$ in $\mathcal{O}_{\delta} := \Omega \times]0, T - \delta[$. To this end we show that, for every $u \in \overline{\mathcal{U}}_{\varphi}^{\mathcal{O}}$ and $v \in \underline{\mathcal{U}}_{\varphi}^{\mathcal{O}}$, the function

$$w(x,t) = u(x,t) - v(x,t+\delta)$$

is nonnegative in \mathcal{O}_{δ} . Now, we have:

(a) w is \mathcal{K} -superharmonic in \mathcal{O}_{δ} , since $u \in \overline{\mathcal{K}}(\mathcal{O})$ and $(x,t) \mapsto v(x,t+\delta)$ is \mathcal{K} -subharmonic in \mathcal{O}_{δ} being $v \in \underline{\mathcal{K}}(\mathcal{O})$ and \mathscr{L} translation invariant in the variable t.

(b) For every
$$\overline{x} \in \Omega$$
,

$$\begin{split} \liminf_{(x,t)\longrightarrow(\overline{x},0)} w(x,t) &\geq \lim_{(x,t)\longrightarrow(\overline{x},0)} u(x,t) - \liminf_{(x,t)\longrightarrow(\overline{x},0)} v(x,t+\delta) \\ &\geq \varphi(\overline{x},0) - v(\overline{x},\delta) \\ &= M - v(\overline{x},\delta) \geq 0. \end{split}$$

We remark that $v \leq M$ in \mathcal{O} since v is \mathcal{K} -subharmonic and

$$\limsup_{z \to \zeta} v(z) \le \varphi(\zeta) \le M \quad \forall \zeta \in \partial \mathcal{O}.$$

Here we use the maximum principle for subharmonic functions. (c) For every $\zeta = (\xi, \tau), \ \xi \in \partial\Omega, \ 0 < \tau < T - \delta$,

$$\liminf_{(x,t)\longrightarrow (\xi,\tau)} w(x,t) \geq \varphi(\xi,\tau) - \varphi(\xi,\tau+\delta) \geq 0,$$

by hypotesis.

From (a), (b) and (c) and the minimum principle for superharmonic functions we get

$$w \ge 0$$
 in \mathcal{O}_{δ}

This completes the proof.

With Lemma 3.1 at hand we can easily prove the following key result for our main theorem.

Lemma 3.2. Let Ω be a bounded open set such that $\overline{\Omega} \subseteq X$, and let $\mathcal{O} := \Omega \times]0, T[$, $T \in \mathbb{R}, T > 0$. Let $z_0 = (x_0, t_0) \in \partial \Omega \times]0, T[$ be a \mathscr{L} -regular boundary point.

Then there exists a function $b \in \mathcal{K}(\mathcal{O})$ such that

ON THE DIRICHLET PROBLEM IN CYLINDRICAL DOMAINS FOR EVOLUTION PDE'S 9

- (i) b is an \mathscr{L} -barrier for \mathcal{O} at z_0 ;
- (ii) $t \mapsto b(x,t)$ is monotone decreasing for every fixed $x \in \Omega$.

Proof. Let Y be a bounded open set such that $\overline{\Omega} \subseteq Y \subseteq \overline{Y} \subseteq X$ and let $x_0 \in \Omega$. By Lemma 2.1 there exists a function $h \in C^{\infty}(Y, \mathbb{R})$ such that

(a) $h(x_0) = 0$ and h(x) > 0 $\forall x \neq x_0$. (b) $\mathscr{L}_0 h > 0$ in Ω .

For a fixed $\delta \in]0, T_0[$ let us define

$$\widehat{h}:\overline{\Omega}\times [0,T] \longrightarrow \mathbb{R}, \quad \widehat{h}(x,t) = \begin{cases} h(x) & \text{if } \delta < t \leq T, \\ M & \text{if } 0 \leq t \leq \delta, \end{cases}$$

where $M = \sup_{\overline{\Omega}} h$.

This function is \mathscr{L} -superharmonic in $\mathcal{O}_1 := \Omega \times]0, \delta[$ and in $\mathcal{O}_2 := \Omega \times]\delta, T[$ since

$$\mathscr{L}h = 0$$
 in \mathcal{O}_1 and $\mathscr{L}h = \mathscr{L}_0h > 0$ in \mathcal{O}_2 .

On the other hand,

$$\limsup_{\substack{(x,t) \longrightarrow (\xi,\delta) \\ t < \delta}} \widehat{h}(x,t) = M = \limsup_{\substack{(x,t) \longrightarrow (\xi,\delta)}} \widehat{h}(x,t).$$

Then, by Proposition 2.3,

$$\widehat{h} \in \underline{\mathcal{K}}(\Omega \times]0, T[).$$

Moreover,

 $t \mapsto \widehat{h}(x,t)$ is monotone decreasing,

for every fixed $x \in \overline{\Omega}$.

Let us now put

$$b := K^{\mathcal{O}}_{\widehat{h}|\partial\mathcal{O}},$$

which is well defined and \mathcal{K} -harmonic in \mathcal{O} , since $\hat{h}|_{\partial \mathcal{O}}$ is bounded and upper semicontinuous.

Moreover, by Lemma 3.1, $t \mapsto b(x,t)$ is monotone decreasing for every fixed $x \in \Omega$.

It remains to show that b is an \mathscr{L} -barrier for \mathcal{O} at z_0 . To this end we first remark that

$$\widehat{h} \in \underline{\mathcal{U}}^{\mathcal{O}}_{\widehat{h}|_{\partial \mathcal{O}}},$$

so that

$$\widehat{h} \leq b$$
 in \mathcal{O} .

This implies b > 0 in \mathcal{O} since \hat{h} is strictly positive.

On the other hand, since $\hat{h}|_{\partial \mathcal{O}}$ is continuous in a neighborhood of z_0 , and z_0 is \mathscr{L} -regular for \mathcal{O} ,

$$\lim_{z \longrightarrow z_0} b(z) = \lim_{z \longrightarrow z_0} K^{\mathcal{O}}_{\widehat{h}|_{\partial \mathcal{O}}}(z) = \widehat{h}(z_0) = \phi(x_0) = 0.$$

This completes the proof.

4. Proof of Theorem 1.1

Let us keep the notation of Theorem 1.1 and split the proof in two steps.

(1) If $x_0 \in \partial \Omega$ is \mathscr{L}_0 -regular for Ω , then $z = (x_0, t_0)$ is \mathscr{L} -regular for \mathcal{O} .

Indeed, the \mathscr{L}_0 -regularity of x_0 implies the existence of a \mathscr{L}_0 -harmonic barrier for Ω at x_0 , i.e. a function $b_0 \in \mathcal{K}(\Omega)$ such that

 $b_0 > 0$ in Ω and $b_0 \longrightarrow 0$ as $x \longrightarrow x_0$.

It follows that

$$b(x,t) = b_0(x), \quad (x,t) \in \mathcal{O},$$

is \mathscr{L} -harmonic in $\mathcal{O}(\mathscr{L}\widehat{b} = \mathscr{L}_0 b_0 = 0)$. Moreover,

$$\widehat{b} > 0$$
 in \mathcal{O} and $\widehat{b}(x,t) = b_0(x) \longrightarrow 0$ as $(x,t) \longrightarrow (x_0,t_0)$.

Hence, \hat{b} is an \mathscr{L} -barrier function for \mathcal{O} at z_0 and, as a consequence, z_0 is \mathscr{L} -regular for \mathcal{O} .

(2) If
$$z = (x_0, t_0)$$
, $x_0 \in \Omega, 0 < t_0 < T$, is \mathscr{L} -regular for \mathcal{O} , then x_0 is \mathscr{L}_0 -regular for Ω .

Indeed, by Lemma 3.2, there exists a function $b \in \mathcal{K}(\mathcal{O})$ such that b > 0, $b(z) \longrightarrow 0$ as $z \longrightarrow z_0$ and

 $t \mapsto b(x, t)$ is monotone decreasing $\forall x \in \Omega$.

It follows that, letting $b_0(x) = b(x, t_0)$,

$$\mathscr{L}_0 b_0 = \mathscr{L} b + \partial_t b = \partial_t b \le 0 \text{ in } \Omega.$$

Hence, b_0 is \mathscr{L}_0 -superharmonic in Ω . Moreover, $b_0 > 0$ in Ω and

$$b_0(x) = b(x, t_0) \longrightarrow 0 \text{ as } x \longrightarrow x_0.$$

Therefore, b_0 is an \mathscr{L} -barrier for Ω at x_0 , and x_0 is \mathscr{L}_0 -regular.

5. An application to degenerate Ornstein–Uhlenbeck operators

In \mathbb{R}^N let us consider the partial differential operator

(5.1)
$$L_0 = \operatorname{div} (A\nabla) + \langle Bx, \nabla \rangle,$$

where $A = (a_{ij})_{i,j=1,...,N}$ and $B = (b_{ij})_{i,j=1,...,N}$ are $N \times N$ real constant matrices, $x = (x_1, \ldots, x_N)$ is the point of \mathbb{R}^N , div, ∇ and \langle , \rangle denote the divergence, the Euclidean gradient and the inner product in \mathbb{R}^N , respectively.

We suppose that the matrix A is symmetric, positive semidefinite and that it assumes the following block form

$$A = \begin{bmatrix} A_0 & 0\\ 0 & 0 \end{bmatrix},$$

 A_0 being a $p_0 \times p_0$ strictly positive definite matrix with $1 \le p_0 \le N$. Moreover, we assume the matrix B to be of the following type

(5.2)
$$B = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 \\ B_1 & 0 & \dots & 0 & 0 \\ 0 & B_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & B_r & 0 \end{bmatrix},$$

where B_j is a $p_{j-1} \times p_j$ block with rank p_j $(j = 1, 2, ..., r), p_0 \ge p_1 \ge ... \ge p_r \ge 1$ and $p_0 + p_1 + ... + p_r = N$.

Finally, letting

$$E(s) := \exp(-sB), \quad s \in \mathbb{R},$$

we assume that the following condition is satisfied

$$C(t) = \int_0^t E(s)AE^T(s) ds$$
 is strictly positive definite for every $t > 0$.

As it is quite well known this condition implies the hypoellipticity of L, see [LP94]. In that paper it is proved that the evolution counterpart of L_0 , i.e. the operator

$$L = L_0 - \partial_t$$
 in \mathbb{R}^{N+1}

is left translation invariant and homogeneous of degree two on the homogeneous group

$$\mathbb{K} = (\mathbb{R}^{N+1}, \circ, \delta_{\lambda})$$

with composition law \circ defined as follows

$$(x,t) \circ (x',t') = (x' + E(t')x, t+t')$$

and dilation $\delta_{\lambda}, \lambda > 0$, of this kind

$$\begin{split} \delta_{\lambda} : \mathbb{R}^{N+1} \longrightarrow \mathbb{R}^{N+1}, \quad \delta_{\lambda}(x,t) &= \delta_{\lambda}(x^{(p_0)}, x^{(p_1)}, \dots, x^{(p_r),t}) \\ &:= (\lambda x^{(p_0)}, \lambda^3 x^{(p_1)}, \dots, \lambda^{2r+1} x^{(p_n)}, \lambda^2 t), \end{split}$$

where $x^{(p_i)} \in \mathbb{R}^{p_i}, i = 0, \dots, r$.

The natural number q := Q + 2, with

(5.3)
$$Q := p_0 + 3p_1 + \ldots + (2r+1)p_r,$$

is the homogenous dimension of K. In what follows we will write

$$\delta_{\lambda}(z) = \delta_{\lambda}(x, t) = (D_{\lambda}(x), \lambda^2 t),$$

where,

$$D_{\lambda}(x) = (\lambda x^{(p_0)}, \lambda^3 x^{(p_1)}, \dots, \lambda^{2r+1} x^{(p_n)}, \lambda^2 t).$$

Obviously, $(D_{\lambda})_{\lambda>0}$ is a group of dilations in \mathbb{R}^{N} . The natural number Q in (5.3) is the homogeneous dimension of \mathbb{R}^{N} w.r.t. the group $(D_{\lambda})_{\lambda>0}$.

The operator L has a fundamental solution Γ given by

$$\Gamma(z_0, z) := \gamma(z^{-1} \circ z_0), \quad z, \ z_0 \in \mathbb{R}^{N+1},$$

where \circ is the composition law in \mathbb{K} , z^{-1} denotes the opposite of z in \mathbb{K} and, for a suitable $C_Q > 0$,

$$\gamma(x,t) = \begin{cases} 0 & \text{if } t \le 0, \\\\ \frac{C_Q}{t^Q} \exp\left(-\frac{1}{4} \left| D_{\frac{1}{\sqrt{t}}}(x) \right|_C^2 \right) & \text{if } t > 0. \end{cases}$$

where,

$$y|_C^2 = \langle C^{-1}(1)y, y \rangle,$$

see again [LP94].

It is quite easy to recognise that our Tikhonov-type theorem applies to the operators L_0 and L. Hence, if Ω is a bounded open subset of \mathbb{R}^N , $x_0 \in \partial \Omega$ and $t_0 \in] -T, T[, T > 0$, we have:

$$x_0$$
 is L_0 -regular for Ω

if and only if

$$z_0 = (x_0, 0)$$
 is L-regular for $\mathcal{O}_T := \Omega \times] - T, T[.$

On the other hand, in [KLT18, Corollary 1.3] it is proved that

Ŀ

 z_0 is L-regular for \mathcal{O}_T

if, for a $\mu \in]0,1[$, the following condition holds:

(5.4)
$$\sum_{k=1}^{\infty} \frac{|\mathcal{O}_{T,k}^c(z_0)|}{\mu^{\alpha(k)\frac{Q+2}{Q}}} = \infty,$$

where $\alpha(k) = k \log k$, $|\cdot|$ denotes the Lebesque measure in \mathbb{R}^{N+1} and

$$\mathcal{O}_{T,k}^{c}(z_0) = \left\{ z \neq \mathcal{O}_T : \left(\frac{1}{\mu}\right)^{\alpha(k)} \leq \Gamma(z_0, z) \leq \left(\frac{1}{\mu}\right)^{\alpha(k+1)} \right\}.$$

We express now this condition in a more explicit form. To this end we let

(5.5)
$$A_k^c(x_0) = \left\{ (x,t) \in \mathbb{R}^{N+1} \mid x \notin \Omega, \gamma(z^{-1} \circ (x,0)) \ge \left(\frac{1}{\mu}\right)^{\alpha(k)} \right\}.$$

Then,

$$\mathcal{O}_{T,k}^c((x_0,0)) = (A_k(x_0) \smallsetminus A_{k+1}(x_0)) \cup \left\{ \gamma = \left(\frac{1}{\mu}\right)^{\alpha(k+1)} \right\}$$
$$\supseteq A_k(x_0) \smallsetminus A_{k+1}(z_0).$$

Hence, denoting for the sake of brevity,

 $d_k = |A_k(z_0)|$ and $\nu = \mu^{\frac{(Q+2)}{Q}}$,

condition (5.4) is satisfied if

(5.6)
$$\sum_{k=1}^{\infty} \frac{d_k - d_{k+1}}{\nu^{\alpha(k)}} = \infty.$$

On the other hand, for every $p \in \mathbb{N}$,

$$\sum_{k=1}^{\infty} \frac{d_k - d_{k+1}}{\nu^{\alpha(k)}}$$
$$= \frac{d_1}{\nu^{\alpha(1)}} + d_2 \left(\frac{1}{\nu^{\alpha(2)}} - \frac{2}{\nu^{\alpha(1)}}\right) + \dots + d_p \left(\frac{1}{\nu^{\alpha(p)}} - \frac{2}{\nu^{\alpha(p-1)}}\right) - \frac{d_{p+1}}{\nu^{\alpha(p)}}$$
$$\leq (1 - \nu^{\log 2}) \sum_{k=1}^p \frac{d_k}{\nu^{\alpha(k)}} - \frac{d_{p+1}}{\nu^{\alpha(p)}}.$$

Then, since $\frac{d_{p+1}}{\nu^{\alpha(p)}} \longrightarrow 0$ as $p \to \infty$ (as we will see later) condition (5.6) is satisfied if

(5.7)
$$\sum_{k=1}^{\infty} \frac{d_k}{\mu^{\alpha(k)}} = \infty.$$

Keeping in mind the very definition of Γ , we have that $A_k(x_0)$ is equal to the following set

$$\left\{ (x,t) \in \mathbb{R}^{N+1} \mid x \in \Omega^c, t < 0, \left| D_{\frac{1}{\sqrt{|t|}}} (x_0 - E(|t|x)) \right|_C^2 < 2Q \log \frac{(C_Q \mu^{\alpha(k)})^{\frac{2}{Q}}}{t} \right\},$$

whereby, with the change of variables $y := x_0 - E(|t|)x$, $\tau = -t$, we get

(5.8)
$$d_k = \left| \left\{ (y,\tau) \mid \tau > 0, \ y \in x_0 - E(\tau)(\Omega^c), \left| D_{\frac{1}{\sqrt{|\tau|}}} \right|_C^2 < 2Q \log \frac{R_k}{\tau} \right\} \right|$$

Here $R_k = (C_Q \mu^{\alpha(k)})^{\frac{2}{Q}}$ and $\Omega^c := \mathbb{R}^{N+1} \smallsetminus \Omega$. Therefore,

$$\begin{aligned} d_k &\leq \left| \left\{ (y,\tau) \mid \tau > 0, \ \left| D_{\frac{1}{\sqrt{|\tau|}}} \right|_C^2 < 2Q \log \frac{R_k}{\tau} \right\} \right| \\ & \text{(using the change of variables } y = D_{\sqrt{R_k}}(\xi), \tau = R_k s) \\ &= \left| R_k^{\frac{Q+2}{Q}} \left| \left\{ (\xi,s) \mid s > 0, \left| D_{\sqrt{\frac{1}{s}}}(\xi) \right| \le 2Q \log \frac{1}{s} \right\} \right|. \end{aligned}$$

Hence, for a suitable dimensional constant $C_Q^\ast>0,$

$$d_k \le C_Q^* \mu^{\alpha(k)\frac{Q+2}{Q}} = C_Q^* \nu^{\alpha(k)}.$$

Then,

$$0 \leq \frac{d_{p+1}}{\nu^{\alpha(p)}} \leq C_Q^* \mu^{\alpha(p+1) - \alpha(p)} \longrightarrow 0 \text{ as } p \longrightarrow \infty,$$

since $0 < \mu < 1$ and $\alpha(p+1) - \alpha(p) = p \log \frac{p+1}{p} + \log (p+1) \longrightarrow \infty$.

We have completed the proof of the following criterion: Let L be the Ornstein–Uhlenbeck-type operator in (5.1) and let $\Omega \subseteq \mathbb{R}^N$ be a bounded open set. Then, a point $x_0 \in \partial \Omega$ is L-regular for Ω if

(5.9)
$$\sum_{k=1}^{\infty} \frac{d_k(\Omega, x_0)}{\mu^{\alpha(k)\frac{Q+2}{2}}} = \infty$$

where $d_k(\Omega, x_0) := d_k$ is defined in (5.8).

We note that condition (5.9) holds if Ω satisfies the exterior cone-type condition introduced in [Kog19]. Geometric boundary regularity criteria for wide classes of hypoelliptic evolution operators are also established in [Man97], [LU10], [LTU17] and [Kog17].

ACKNOWLEDGMENT

The author has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

- [Are00] W. Arendt. Resolvent positive operators and inhomogeneous boundary conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29(3):639–670, 2000.
- [BG15] A. Banerjee and N. Garofalo. On the Dirichlet boundary value problem for the normalized p-Laplacian evolution. Commun. Pure Appl. Anal., 14(1):1–21, 2015.
- [BLU07] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. *Stratified Lie groups and potential theory* for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.
- [BV62] I. Babuška and R. Výborný. Reguläre und stabile Randpunkte für das Problem der Wärmeleitungsgleichung. Ann. Polon. Math., 12:91–104, 1962.
- [CC72] C. Constantinescu and A. Cornea. Potential theory on harmonic spaces. Springer-Verlag, New York-Heidelberg, 1972. With a preface by H. Bauer, Die Grundlehren der mathematischen Wissenschaften, Band 158.
- [CY77] C. Y. Chan and E. C. Young. Regular regions for parabolic and elliptic equations. Portugal. Math., 36(1):7–12, 1977.
- [Ful56] W. Fulks. A note on the steady state solutions of the heat equation. Proc. Amer. Math. Soc., 7:766–770, 1956.
- [Ful57] W. Fulks. Regular regions for the heat equation. Pacific J. Math., 7:867–877, 1957.
- [KL96] T. Kilpeläinen and P. Lindqvist. On the Dirichlet boundary value problem for a degenerate parabolic equation. SIAM J. Math. Anal., 27(3):661–683, 1996.
- [KLT18] A. E. Kogoj, E. Lanconelli, and G. Tralli. Wiener-Landis criterion for Kolmogorov-type operators. Discrete Contin. Dyn. Syst. Ser. A, 38(5):2467–2485, 2018.
- [Kog17] A. E. Kogoj. On the Dirichlet problem for hypoelliptic evolution equations: Perron– Wiener solution and a cone-type criterion. J. Differential Equations, 262(3):1524–1539, 2017.
- [Kog19] A. E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete Contin. Dyn. Syst. Ser. S, in press, 2019.
- [KP16] A. E. Kogoj and S. Polidoro. Harnack inequality for hypoelliptic second order partial differential operators. *Potential Anal.*, 45(3):545–555, 2016.
- [LP94] E. Lanconelli and S. Polidoro. On a class of hypoelliptic evolution operators. *Rend. Sem. Mat. Univ. Politec. Torino*, 52(1):29–63, 1994. Partial differential equations, II (Turin, 1993).
- [LTU17] E. Lanconelli, G. Tralli, and F. Uguzzoni. Wiener-type tests from a two-sided gaussian bound. Annali di Matematica Pura ed Applicata, 196(1):217–244, 2017.
- [LU10] E. Lanconelli and F. Uguzzoni. Potential analysis for a class of diffusion equations: a Gaussian bounds approach. J. Differential Equations, 248(9):2329–2367, 2010.
- [Man97] M. Manfredini. The Dirichlet problem for a class of ultraparabolic equations. Adv. Differential Equations, 2(5):831–866, 1997.

ON THE DIRICHLET PROBLEM IN CYLINDRICAL DOMAINS FOR EVOLUTION PDE'S15

- [Neg83] P. Negrini. Punti regolari per aperti cilindrici in uno spazio β -armonico. Boll. Un. Mat. Ital. B (6), 2(2):537–547, 1983.
- [OR73] O. A. Oleinik and E. V. Radkevič. Second order equations with nonnegative characteristic form. Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife.
- [Tik38] A. N. Tikhonov. The heat equation for several variables. Byull. Mosk. Gos. Univ. Mat. Mekh., 1(9):1–49, 1938.

DIPARTIMENTO DI SCIENZE PURE E APPLICATE (DISPEA), UNIVERSITÀ DEGLI STUDI DI URBINO "CARLO BO", PIAZZA DELLA REPUBBLICA, 13 - 61029 URBINO (PU), ITALY.

 $E\text{-}mail\ address:$ alessia.kogoj@uniurb.it