provided by Archivio istituzionale della ricerca - Università di Trie

LE MATEMATICHE Vol. LXXV (2020) – Issue I, pp. 57–66 doi: 10.4418/2020.75.1.3

BREAKING THROUGH BORDERS WITH σ-HARMONIC MAPPINGS

GIOVANNI ALESSANDRINI - VINCENZO NESI

We consider mappings $U = (u^1, u^2)$, whose components solve an arbitrary elliptic equation in divergence form in dimension two, and whose respective Dirichlet data φ^1, φ^2 constitute the parametrization of a simple closed curve γ . We prove that, if the interior of the curve γ is not convex, then we can find a parametrization $\Phi = (\varphi^1, \varphi^2)$ such that the mapping U is not invertible.

> *Dedicato a chi sconfina frontiere geografiche o ideologiche, a chi travalica stereotipi e va oltre i pregiudizi.*

1. Introduction

Let $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ denote the unit disk. We denote by $\sigma =$ $\sigma(x)$, $x \in B$, a possibly non–symmetric matrix having measurable entries and satisfying the ellipticity conditions

$$
\sigma(x)\xi \cdot \xi \ge K^{-1}|\xi|^2, \text{ for every } \xi \in \mathbb{R}^2, x \in B, \sigma^{-1}(x)\xi \cdot \xi \ge K^{-1}|\xi|^2, \text{ for every } \xi \in \mathbb{R}^2, x \in B,
$$
\n(1.1)

Received on June 28, 2019

AMS 2010 Subject Classification: 30C62, 35J55

Keywords: Elliptic equations, Beltrami operators, quasiconformal mappings.

G. A. has been supported by PRIN 2017 "Direct and inverse problems for partial differential equations: theoretical aspects and applications".

V. N. has been supported by Sapienza - Ateneo 2018 Project "Stationary and Evolutive Problems in Mathematical Physics and Materials Science".

for a given constant $K \geq 1$.

Given a homeomorphism $\Phi = (\varphi^1, \varphi^2)$ from the unit circle ∂B onto a simple closed curve $\gamma \subset \mathbb{R}^2$, we denote by *D* the bounded domain such that $\partial D = \gamma$.

Consider the mapping $U = (u^1, u^2) \in W_{loc}^{1,2}(B; \mathbb{R}^2) \cap C(\overline{B}; \mathbb{R}^2)$ whose components are the solutions to the following Dirichlet problems

$$
\begin{cases} \operatorname{div}(\sigma \nabla u^{i}) = 0, & \text{in } B, \\ u^{i} = \varphi^{i}, & \text{on } \partial B, i = 1, 2. \end{cases}
$$
 (1.2)

We call such a *U* a σ*-harmonic mapping*.

In the last two decades, it has been investigated, by the present authors and others, under which conditions can one assure that *U* is an invertible mapping between *B* and *D*.

The classical starting point for this issue is the celebrated Radò–Kneser– Choquet Theorem [\[10,](#page-9-0) [11,](#page-9-1) [13,](#page-9-2) [16\]](#page-9-3) which asserts that assuming $\sigma = I$, the identity matrix, (that is: u^1, u^2 are harmonic) if *D* is convex then *U* is a homeomorphism. Generalizations to equations with variable coefficients have been obtained in [\[2,](#page-8-0) [7\]](#page-9-4) and to certain nonlinear systems in [\[6,](#page-9-5) [8,](#page-9-6) [14\]](#page-9-7). Counterexamples [\[3,](#page-8-1) [10\]](#page-9-0) show that if *D* is not convex then the invertibility of *U* may fail. In fact Choquet $[10]$ proved that, whenever *D* is not convex, there exists a homeomorphism Φ : $\partial B \rightarrow \gamma$ such that the corresponding *harmonic* ($\sigma = I$) mapping *U* is not invertible. The proof is crucially based on the classical mean value property of harmonic functions. Also the counterexample in [\[3\]](#page-8-1) is limited to the purely harmonic case.

In [\[3,](#page-8-1) [5\]](#page-9-8) the present authors investigated which additional conditions are needed for invertibility in the case of a possibly non–convex target *D*. Let us recall the main result in that direction.

Theorem 1.1. *Let* Φ *and U be as above stated. Assume that the entries of* σ *satisfy* $\sigma_{ij} \in C^{\alpha}(\overline{B})$ *for some* $\alpha \in (0,1)$ *and for every i*, *j* = 1,2*.* Assume also that $U \in C^1(\overline{B};\mathbb{R}^2)$. The mapping U is a diffeomorphism of \overline{B} onto \overline{D} if and only *if*

$$
\det DU > 0 \quad everywhere \; on \quad \partial B. \tag{1.3}
$$

The object of the present note is to extend the construction by Choquet to σ-harmonic mappings with arbitrary coefficient matrix σ. The main result will be as follows.

Theorem 1.2. *Given a homeomorphism* $\Psi : \partial B \to \gamma \subset \mathbb{R}^2$, let D be the bounded *domain such that* $\partial D = \gamma$ *. Assume that D* is not convex. For every $\sigma = \sigma(x)$ *, satisfying* [\(1.1\)](#page-0-0)*, there exists a* C^{∞} *diffeomeomorphism* $\Xi : \partial B \to \partial B$ *such that, posing* $\Phi = \Psi \circ \Xi$, the σ -harmonic mapping U solving [\(1.2\)](#page-1-0) is not invertible.

Note that the parametrization Φ of the curve γ is as much smooth as the original one Ψ. In particular, if Ψ is $C^{1,\alpha}$ so is Φ. Hence under the hypothesis of Hölder continuity of σ , it turns out that *U* is $C^{1,\alpha}$ up to the boundary. As a consequence, we obtain that the hypothesis (1.3) in Theorem [1.1](#page-1-2) is indeed non–trivial.

Let us illustrate what should be the features of a candidate counterexample: first we recall that Kneser $[13]$ noticed that, in the purely harmonic case, if it is a–priori known that $U(B) \subset D$, then indeed *U* is invertible, whether or not *D* is convex. The observation by Kneser, is merely of topological nature, see also Duren [\[11,](#page-9-1) p. 31], and hence it actually extends to the σ -harmonic case, for any σ . That is, in order to violate invertibility in general, we must provide a mapping *U* whose image exceeds *D*.

Viceversa, again by elementary topological arguments, if *U* is one–to–one on all of \overline{B} , then it is an open mapping, hence a homeomorphism. Therefore it maps ∂*B* onto γ and *B* onto *D*. In other terms, if *U* maps some point of *B* outside of \overline{D} , then it cannot be one–to–one.

In conclusion, in order to construct an example of a non–invertible σ – harmonic mapping *U*, whose boundary data $\Phi : \partial B \to \gamma$ is invertible, it is necessary and sufficient that *U trespasses* the boundary γ, or in other words, that *U* maps some interior point of *B* outside of \overline{D} . This will be indeed the crux of our argument below.

2. σ–harmonic measure

Given σ as in [\(1.1\)](#page-0-0), and $\varphi \in C(\partial B)$, consider the scalar Dirichlet problem

$$
\begin{cases} \operatorname{div}(\sigma \nabla u) = 0, & \text{in } B, \\ u = \varphi, & \text{on } \partial B, \end{cases}
$$
 (2.1)

the, by now, classical theory of divergence structure elliptic equation tells us that there exists a unique weak solution $u \in W_{loc}^{1,2}(B) \cap C(\overline{B})$, see for instance [\[12,](#page-9-9) Theorem 8.30]. In particular the functional

$$
C(\partial B) \ni \varphi \to u(0) \in \mathbb{R}
$$

is bounded and linear. Hence there exists a Radon measure ω_{σ} on ∂B such that

$$
u(0) = \int_{\partial B} \varphi \mathrm{d}\omega_{\sigma} \ .
$$

We call ω_{σ} the σ *–harmonic measure*. Note that, being $u \equiv 1$ the solution to [\(2.1\)](#page-2-0) when $\varphi \equiv 1$, we trivially have $\omega_{\sigma}(\partial B) = 1$.

From examples due to Modica and Mortola and to Caffarelli, Fabes and Kenig [\[9,](#page-9-10) [15\]](#page-9-11), it is known that the the σ -harmonic measure may not be absolutely continuous with the arclength measure. Still, some kind of continuity holds. For every *P* \in ∂*B* and for every *r* > 0 let us denote

$$
\Delta_r(P)=\partial B\cap B_r(P)\ .
$$

We prove the following.

Lemma 2.1. *For every P* \in ∂*B we have*

$$
\lim_{r \to 0+} \omega_{\sigma}(\Delta_r(P)) = 0.
$$
\n(2.2)

Proof. Let h_r be the Perron solution to the Dirichlet problem

$$
\begin{cases} \operatorname{div}(\sigma \nabla h_r) = 0, & \text{in } B, \\ h_r = \chi_{\Delta_r(P)}, & \text{on } \partial B, \end{cases}
$$
 (2.3)

our aim is to prove that

$$
\lim_{r\to 0+}h_r(0)=0.
$$

We start considering the selfadjoint case, that is when $\sigma = \sigma^T$. We extend $\sigma = I$ outside of *B*.

Let *D_r* be the annulus $B_2(P) \setminus \overline{B_r(P)}$, and let c_r be the solution of the following Dirichlet problem

$$
\begin{cases}\n\text{div}(\sigma \nabla c_r) = 0, & \text{in} \quad D_r, \\
c_r = 0, & \text{on} \quad \partial B_2(P), \\
c_r = 1, & \text{on} \quad \partial B_r(P).\n\end{cases}
$$
\n(2.4)

.

By the maximum principle, we have

$$
0 \leq h_r \leq c_r \text{ , on } B \setminus \overline{B_r(P)} .
$$

Because of selfadjointness, we have

$$
\int_{D_r} \sigma \nabla c_r \cdot \nabla c_r =
$$

$$
= \min \left\{ \int_{D_r} \sigma \nabla v \cdot \nabla v \, \Big| \, v \in W^{1,2}(D_r), v = 0 \text{ on } \partial B_2(P), v = 1 \text{ on } \partial B_r(P) \right\}
$$

Choosing

$$
v(x) = \frac{\log \frac{2}{|x-P|}}{\log \frac{2}{r}},
$$

we compute

$$
\int_{D_r} \sigma \nabla c_r \cdot \nabla c_r \le K \int_{D_r} |\nabla v|^2 =
$$

= $2\pi K \frac{1}{\log \frac{2}{r}} \to 0 \text{ as } r \to 0.$

Next we invoke a more or less standard form of Poincaré inequality, the emphasis being on the uniformity of the inequality with respect to the small radius *r*. A proof is outlined in Section [4](#page-7-0) below.

Lemma 2.2. *For every* $w \in W^{1,2}(D_r)$, *having zero trace on* $\partial B_2(P)$ *, we have*

$$
\int_{D_r} w^2 \le 16 \int_{D_r} |\nabla w|^2.
$$

Consequently we obtain $||c_r||_{W^{1,2}(D_r)} \to 0$ as $r \to 0$, and by an interior bound-edness estimate [\[12,](#page-9-9) Theorem 8.17], $c_r(0) \rightarrow 0$, and the thesis follows.

Now we remove the symmetry assumption on σ .

It is well–known that there exists $k_r \in W^{1,2}(B)$, called the *stream function* of *h^r* such that

$$
\nabla k_r = J \sigma \nabla h_r \,, \tag{2.5}
$$

where the matrix *J* denotes the counterclockwise 90◦ rotation

$$
J = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right],\tag{2.6}
$$

see, for instance, [\[1\]](#page-8-2). Denoting

$$
f = h_r + ik_r , \qquad (2.7)
$$

it is well–known that *f* solves the Beltrami type equation

$$
f_{\bar{z}} = \mu f_z + v \overline{f_z} \quad \text{in } B , \tag{2.8}
$$

where, the so called complex dilatations μ , ν are given by

$$
\mu = \frac{\sigma_{22} - \sigma_{11} - i(\sigma_{12} + \sigma_{21})}{1 + \text{Tr}\,\sigma + \det\sigma} \quad , \quad \nu = \frac{1 - \det\sigma + i(\sigma_{12} - \sigma_{21})}{1 + \text{Tr}\,\sigma + \det\sigma} \quad , \tag{2.9}
$$

and satisfy the following ellipticity condition

$$
|\mu| + |\nu| \le k < 1,\tag{2.10}
$$

where the constant k only depends on K , see [\[4,](#page-8-3) Proposition 1.8] and the notation Tr*A* is used for the trace of a square matrix *A*. We can also write

$$
f_{\bar{z}} = \widetilde{\mu} f_z \text{ in } B ,
$$

where $\tilde{\mu}$ is defined almost everywhere by

$$
\widetilde{\mu} = \mu + \frac{\overline{f_z}}{f_z} \nu ,
$$

and consequently we obtain

$$
\operatorname{div}(\widetilde{\sigma}\nabla h_r)=0, \text{ in } B
$$

where σ is given by

$$
\widetilde{\sigma} = \begin{bmatrix} \frac{|1-\widetilde{\mu}|^2}{1-|\widetilde{\mu}|^2} & -\frac{2\Im m(\widetilde{\mu})}{1-|\widetilde{\mu}|^2} \\ -\frac{2\Im m(\widetilde{\mu})}{1-|\widetilde{\mu}|^2} & \frac{|1+\widetilde{\mu}|^2}{1-|\widetilde{\mu}|^2} \end{bmatrix},
$$

which satisfies uniform ellipticity conditions of the form (1.1) with a new constant *K* only dependent on *K*, see, for instance, [\[4\]](#page-8-3), but in addition is symmetric. Hence we may proceed as before, just replacing σ with σ in [\(2.3\)](#page-3-0) and obtain again

$$
\lim_{r \to 0+} h_r(0) = 0 . \qquad \qquad \Box
$$

The above Lemma can be seen as a continuity result for the cumulative distribution function associated to ω_{σ} .

Given two points $P, Q \in \partial B$ we denote by \overline{PQ} the arc of the unit circle ∂B which connects *P* to *Q*, moving in the counterclockwise direction. The above Lemma, along with Harnack's inequality, implies the following straightforward consequence.

Corollary 2.3. *For every P* \in ∂*B, the function*

$$
\partial B \ni Q \to \omega_{\sigma}(\widehat{PQ}) \in [0,1]
$$

is a strictly increasing, onto and continuous function, as Q performs a full counterclockwise rotation on ∂*B starting from P and ending on P itself. Moreover, for every P* ∈ ∂*B, there exists exactly one point Q* ∈ ∂*B such that*

$$
\omega_{\sigma}(\widehat{PQ})=\omega_{\sigma}(\widehat{QP})=\frac{1}{2}.
$$

3. Assembling a parametrization

Let us consider a given homeomorphism $\Psi: \partial B \to \gamma \subset \mathbb{R}^2,$ let us fix two distinct points $a, b \in \gamma$. For any $\varepsilon > 0$ let α, β two disjoint simple open arcs in γ such that

$$
a\in \alpha\subset B_{\varepsilon}(a)\ ,\ b\in \beta\subset B_{\varepsilon}(b)\ .
$$

Denote

$$
A = \Psi^{-1}(a) , B = \Psi^{-1}(b) ,
$$

and

$$
\widehat{A^{-}A^{+}}=\Psi^{-1}(\alpha) , \widehat{B^{-}B^{+}}=\Psi^{-1}(\beta) .
$$

Having fixed points $P, Q \in \partial B$ such that

$$
\omega_{\sigma}(\widehat{PQ}) = \omega_{\sigma}(\widehat{QP}) = \frac{1}{2}
$$

for any $r, 0 < r < 1$ we select a C^{∞} diffeomeomorphism $\Xi_r : \partial B \to \partial B$ such that

$$
\Xi_r(\Delta_r(P)) = \widehat{A^+B^-} , \ \Xi_r(\Delta_r(Q)) = \widehat{B^+A^-} .
$$

In other words, setting $\widehat{P^-P^+} = \Delta_r(P)$, $\widehat{Q^-Q^+} = \Delta_r(Q)$, we need to construct a diffeomorphism Ξ_r which maps the points P^-, P^+, Q^-, Q^+ to the points $A^+, B^-,$ *B*⁺,*A*[−] in their respective order. More generally, we can prove the following Lemma, whose proof is deferred to the next Section [4.](#page-7-0)

Lemma 3.1. *Let* $N > 2$ *and let* P_1, \ldots, P_N *be distinct, cyclically ordered points on* ∂*B and let Q*1,...,*Q^N be another N–tuple of distinct, cyclically ordered points on* ∂*B. There exists a C*[∞] *diffeomeomorphism* Ξ : ∂*B* → ∂*B such that* $\Xi(P_n) = Q_n$ for every $n = 1, \ldots, N$.

Proof of Theorem [1.2.](#page-1-3) We let $\Phi_r = \Psi \circ \Xi_r$ and consider $U = U_r$ as the solution to [\(1.2\)](#page-1-0) when $\Phi = \Phi_r$. If *D* is not convex, we may find two points $a, b \in \gamma$ such that the open segment with endpoints *a*, *b* lies outside \overline{D} . In particular

$$
\frac{1}{2}(a+b)\notin\overline{D} .
$$

We have

$$
U_r(0) = \int_{\partial B} \Phi_r \mathrm{d}\omega_\sigma
$$

and we may split ∂B into the four arcs $\widehat{P^-P^+}$, $\widehat{P^+Q^-}$, $\widehat{Q^-Q^+}$, $\widehat{Q^+P^-}$. Let $M > 0$ be such that $\gamma \subset B_M(0)$, then we evaluate

$$
\left|\int_{\widehat{P-P^+}} \Phi_r \mathrm{d}\omega_{\sigma}\right| \leq M \omega_{\sigma}(\Delta_r(P)) \to 0
$$

as $r \rightarrow 0$ and, analogously,

$$
\left|\int_{\widehat{Q}^{-}\widehat{Q^{+}}}\Phi_{r}\mathrm{d}\omega_{\sigma}\right|\leq M\omega_{\sigma}(\Delta_{r}(Q))\to 0.
$$

Conversely, $\Phi_r(\widehat{P^+Q^-}) \subset \beta \subset B_{\epsilon}(b)$ and $\Phi_r(\widehat{Q^+P^-}) \subset \alpha \subset B_{\epsilon}(a)$, that is

$$
|\Phi_r - b| < \varepsilon \text{ on } \widehat{P^+Q^-} \text{ , } |\Phi_r - a| < \varepsilon \text{ on } \widehat{Q^+P^-} \text{ .}
$$

Note also that

$$
\lim_{r \to 0+} \omega_{\sigma}(\widehat{P^+Q^-}) = \lim_{r \to 0+} \omega_{\sigma}(\widehat{Q^+P^-}) = \frac{1}{2}
$$

Hence we may find $r > 0$ small enough and a constant $C > 0$ such that

$$
|U_r(0) - \frac{1}{2}(a+b)| \leq C\varepsilon
$$

and, in conclusion, with r, ε small enough, $U = U_r$ is such that

$$
U(0)\notin\overline{D} .
$$

 \Box

.

4. Auxiliary proofs

Proof of Lemma [2.2.](#page-4-0) As is customary in this context, it suffices to consider $w \in$ $C^1(\overline{D_r})$, $w(P+2e^{i\vartheta})=0$ for all ϑ . Hence, for every $\rho \in (r,2)$ we have

$$
w^2(P+\rho e^{i\vartheta})=-\int_{\rho}^2\frac{\partial}{\partial s}w^2(P+s e^{i\vartheta})ds,
$$

hence

$$
w^2(P+\rho e^{i\vartheta}) \leq 2\int_{\rho}^2 |w||\nabla w|(P+se^{i\vartheta})\mathrm{d} s.
$$

Consequently

$$
\int_{D_r} w^2 \le 2 \int_0^{2\pi} d\vartheta \int_r^2 \rho d\rho \int_\rho^2 |w| |\nabla w|(P + s e^{i\vartheta}) ds,
$$

and, using the inequalities $0 < r \le \rho \le s$,

$$
\int_{D_r} w^2 \le 2 \int_0^{2\pi} d\vartheta \int_r^2 d\rho \int_\rho^2 |w| |\nabla w| (P + s e^{i\vartheta}) s ds \le
$$

$$
\le 2 \int_0^{2\pi} d\vartheta \int_0^2 d\rho \int_r^2 |w| |\nabla w| (P + s e^{i\vartheta}) s ds ,
$$

that is

$$
\int_{D_r} w^2 \le 4 \int_{D_r} |w| |\nabla w|,
$$

and by Schwarz inequality the thesis follows.

Proof of Lemma [3.1.](#page-6-0) Up to rotations, we may assume $P_n = e^{i\vartheta_n}, Q_n = e^{i\varphi_n}, n =$ 1,...,*N* where

$$
0=\vartheta_1<\ldots<\vartheta_N<2\pi\;,0=\varphi_1<\ldots<\varphi_N<2\pi\;.
$$

We may construct a continuous, strictly increasing, piecewise linear function *f* mapping the interval $[0,2\pi]$ onto itself, such that

$$
f(\vartheta_n) = \varphi_n
$$
 for every $n = 1, ..., N$,

we may consider to extend *f* to R in such a way that $f(\vartheta) - \vartheta$ is 2 π –periodic. We may also require that its corner points $\xi_1, \ldots, \xi_J \in [0, 2\pi]$ are distinct from the points

$$
0=\vartheta_1,\ldots,\vartheta_N,\vartheta_{N+1}=2\pi.
$$

Let $\delta = \min \{ |\vartheta_n - \xi_j| | n = 1, ..., N + 1, j = 1, ..., J \}$. Let χ_{ε} be a family of *C*[∞], mollifying kernels, supported in $[-\varepsilon, \varepsilon]$, even symmetric with respect to 0. Fixing $\varepsilon < \delta$ and denoting

$$
g=\chi_{\varepsilon}\ast f\;,\;
$$

we compute $g(\theta_n) = f(\theta_n)$ for all *n*, we obtain that *g* is C^{∞} with positive derivative everywhere and we conclude that

$$
\Xi(e^{i\vartheta})=e^{ig(\vartheta)}
$$

fulfils the thesis.

REFERENCES

- [1] Alessandrini, G. & Magnanini, R.: Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal., 25 5, 1259–1268 (1994).
- [2] Alessandrini, G. & Nesi, V.: Univalent σ-harmonic mappings. Arch. Ration. Mech. Anal., 158 2, 155–171 (2001).
- [3] Alessandrini, G. & Nesi, V.: Invertible harmonic mappings, beyond Kneser. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. V, 8 5, 451–468 (2009). Errata Corrige. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. V, 17 2, 815–818 (2017).
- [4] Alessandrini, G. & Nesi, V.: Beltrami operators, non–symmetric elliptic equations and quantitative Jacobian bounds. Ann. Acad. Sci. Fenn. Math., 34 1, 47–67 (2009).

 \Box

- [5] Alessandrini, G. & Nesi, V.: Globally diffeomorphic σ–harmonic mappings, arXiv:1906.00902, submitted.
- [6] Alessandrini, G. & Sigalotti, M.: Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two, Ann. Acad. Sci. Fenn. Math. 21, 249–266 (2001).
- [7] Bauman, P., Marini, A. & Nesi, V.: Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J., 50 2, 747–757 (2001).
- [8] Bauman, P. & Phillips, D.: Univalent minimizers of polyconvex functionals in two dimensions. Arch. Rational Mech. Anal., 126 2, 161–181 (1994).
- [9] Caffarelli, L., Fabes, E. & Kenig, C.: Completely Singular Elliptic-Harmonic Measures. Indiana University Mathematics Journal, 30(6), 917-924, (1981).
- [10] Choquet, G.: Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 156-165, (1945).
- [11] Duren, P.: Harmonic mappings in the plane. Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge (2004).
- [12] Gilbarg, D. and Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol 224, 2nd edn, Springer, Berlin (1983).
- [13] Kneser, H.: Lösung der Aufgabe 41. Jber. Deutsch. Math.-Verein., 35, 123–124 (1926).
- [14] Iwaniec, T., Koski, A. & Onninen, J.: Isotropic p-harmonic systems in 2D Jacobian estimates and univalent solutions. Rev. Mat. Iberoam. 32, 57–77 (2016).
- [15] Modica, L. & Mortola, S.: Construction of a singular elliptic-harmonic measure, Manuscripta Math. 33 1, 81–98 (1980) .
- [16] Radó, T.: Aufgabe 41, Jber. Deutsch. Math.-Verein. **35**, 49 (1926).

GIOVANNI ALESSANDRINI formerly Dipartimento di Matematica e Geoscienze Universita di Trieste ` Via Valerio 12/b, 34100 Trieste, Italia e-mail: 55gioale@gmail.com

VINCENZO NESI Dipartimento di Matematica "G. Castelnuovo" Sapienza, Universita di Roma ` Piazzale A. Moro 2, 00185 Roma, Italia e-mail: nesi@mat.uniroma1.it