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1 Introduction

F-theory [1–3] constitutes a convenient framework to oversee the String Theory Landscape

in various dimensions. In fact, provided the known dualities relating F-theory to type IIB

string theory, heterotic string theory as well as M-theory, F-theory compactifications are

representative of string theory vacua. In particular, F-theory is expected to be a good arena

to study how effective field theories that look consistent at low energy may get obstructions

when completed with quantum gravity.

There has been more than a decade long search for consistent F-theory models that

could be of relevance for particle physics, starting by the pioneering work of [4, 5]. This

has led to significant progress towards understanding formal aspects of the theory related

to the possible gauge symmetries (Abelian and non-Abelian, continuous and discrete), the

type of matter that is allowed as well as the interaction terms. Regarding the moduli

sector and the cosmological applications the theory still faces critical challenges. For this

reason, the Landscape analysis in F-theory has concentrated essentially on issues related

to particle physics.

A challenge for F-theory is to construct explicit models that are beyond the known

landscape and, in doing so, identifying possible obstructions to realize lower dimensional

effective theories. Regarding the non-Abelian symmetries, F-theory has an advantage over

type IIB string theory in that it allows to obtain exceptional groups. Many of the con-

structed models contain subgroups of E8, but systematic surveys show that gauge sym-

metries including as many as O(100) E8 factors are possible in four dimensions [6, 7].

Concerning the Abelian gauge symmetry sector in F-theory, significant progress in under-

standing the corresponding proper global setup has led to fully fledged models with up to

three U(1) factors1 [8, 10–14]. Similarly, it has been possible to obtain the Weierstrass form

for globally consistent models with Z2, Z3 and Z4 discrete gauge symmetries [8, 15–19].

A pressing question deals with what types of massless multiplets are possible in the

effective theories resulting from F-theory. In dimesions higher than six, supersymmetry is

constraining enough to ensure that the matter multiplet representations must not be bigger

than the adjoint. In 6D and 4D one is only at the mercy of the anomaly cancellation

conditions and these do not exclude the possibility for light exotic matter beyond the

adjoint representation [20–27]. Common representations that arise in F-theory models

are the fundamental, the two index antisymmetric and the adjoint. However, in recent

constructions it has been possible to obtain a three index symmetric and antisymmetric

representations of various SU(N) gauge groups [28–31]. The problem becomes more severe

when considering Abelian gauge symmetries: is there an upper bound on the maximum

U(1) charge of a massless state? This question was raised in [27, 32, 33]. So far, in F-theory

it has been possible to construct globally consistent models with fields with U(1) charges

only up to Q = 3 and Q = 4 [16, 34].

1Models with four U(1) symmetries have been constructed from complete intersection fibers in [8].

Similarly 8D F-theory models resulting from elliptically fibered K3 compactifications have been construted

in [9]. However one expects more generic charge patterns for U(1)4 models to be realized for elliptic fibers

realized as determinantal varieties.
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The above considerations are essentially an invitation to the explicit construction of

F-theory models that lie at the frontier between the Landscape and the Swampland. In

this paper we are going to approach the problem of constructing models with U(1) sym-

metries exhibiting massless states with large U(1) charges. Since U(1) symmetries are due

to the presence of extra sections of the elliptic fibration, one expects the Weierstrass form

describing these models to be highly specialized. U(1) models with charges |Q| > 2 are

described in terms of so called non unique factorization domains (non-UFD) [30]. The

non-UFD description has been used to extend the charge Q = 3 model found in [16], and

to obtain a Weierstrass model with Q = 4 [34]. We will show that these models are rela-

tively easy to construct in the dual type IIB theory, in the perturbative limit. Thanks to

this correspondence we will be able to straightforwardly extend the construction to charge

Q = 5 and Q = 6 models in type IIB. Their F-theory lift is non-trivial, but in principle

doable and we will leave this for a future project.

To understand the type IIB duals of F-theory models with one massless U(1) and states

with high charge, we apply the Sen weak coupling limit [35]. This approach was intiated

in [36], where we obtained the weak coupling limit for a variety of globally consistent F-

theory models, including one with gauge group U(1) and charge up to Q = 3 and the Z3

models of [16]. In this work we proceed more systematically towards the analysis of the

features of these models, including the U(1) construction with charge Q = 4. Part of the

systematics has to do with a way to construct divisors in the base B of the elliptic fibration

that are guaranteed to split into two divisors in the type IIB double cover Calabi-Yau (CY)

X. Thanks to these techniques, we are able to obtain a family of type IIB models with a

single massless U(1) symmetry and maximum charges that can reach up to Q = 6. Thanks

to type IIB we are also able to rediscover the F-theory charge Q = 4 model of [34] in a

straightforward way: in type IIB it is easy to understand which deformation of the D7-

brane loci leads from a model with Z3 symmetry to the charge Q = 4 model; applying the

same deformation to the Z3 F-theory model of [16], one immediately obtains the charge

four model of [34].

This paper is organized as follows, in section 2 we describe the generalities of the

double cover Calabi-Yau manifolds and the techniques necessary to construct D7-brane

configurations with one massless U(1) and high charge spectrum. In section 3 we discuss

the features of type IIB models with higher U(1) charges, and present the configurations of

branes and orientifolds leading to a single massless U(1) symmetry. We focus on the case

where we have two U(1) D7-branes and one orientifold odd axion available to make one

U(1) massive, leaving the other U(1) massless. We show that, under certain assumptions,

in this setup the homology relations among the various 7-brane cycles allow models with

maximum charges Q = 3, 4, 5, 6. In section 4 we describe the models with maximal charges

Q = 3 and Q = 4 from the perspective of type IIB and F-theory. In section 5 we present

the type IIB versions for the charge Q = 5 and Q = 6. For the case of charge 6 model we

present an explicit K3 compactification. We devote section 6 to present our conclusions

and prospects. We present some complementary material in the appendices.
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2 Type IIB manifold vs. F-theory base

F-theory is defined on a manifold Y that is an elliptic fibration over a base manifold B.

The perturbative type IIB limit is defined on a double cover X of the base manifold B. In

this section, we will describe tools that allow to directly connect the two descriptions.

2.1 Double covers

Our starting point will be a Kähler manifold B and a line bundle L⊗2 on B. Take a section

b2 of L⊗2. The double cover X of B branched over the locus b2 = 0 is given by the following

hypersurface in the total space of the line bundle L [37, 38]:

X : ξ2 = b2 , (2.1)

where ξ is a coordinate along the fiber. If the line bundle L is the anticanonical bundle of

B, i.e. L = K̄B, then X is a Calabi-Yau space.

By construction, X is symmetric under the involution

I : ξ 7→ −ξ , (2.2)

whose fixed point locus is {ξ = 0} (i.e. b2 = 0). Taking the quotient of X by the in-

volution (2.2) one obtains the space B we started with. Said in another way, there is

a map

f : X → B , (2.3)

that is two-to-one, except at the fixed point locus.

Let us call DivX the group of divisor on X and DivB the group of divisors on B. The

map f induces a map

f∗ : DivX → DivB . (2.4)

f∗ is defined as follows on a reducible connected divisor D of X: if D is invariant under (2.2)

then it is of degree two and f∗(D) = 2f(D); on the other hand, if D is different from its

image under (2.2), then it is of degree one and f∗(D) = f(D).2

The map (2.4) induces a map between the Poincaré dual cohomologies: f∗ : H2(X)→
H2(B). If b2 in (2.1) is a sufficiently generic polynomial, then this map is one-to-one, i.e.

b2(X) = b2(B). If this is the case, then any pair of divisors D and I(D) are in the same

homology class. On the other hand, if b2 presents a specific factorization, there can be

more divisors in DivX than in DivB.3 In the last case, there will be a divisor DB of B

such that f∗(DB) splits into two divisors DX and I(DX) that are in different homology

classes in X. Correspondingly, b2 becomes a square when restricted to the locus DB. If

this happens globally, one can write b2 as

b2 ≡
s2

6

4
− sLsR , (2.5)

2Notice that the map f∗f
∗ acts as the multiplication by 2 on DivB, while f∗f∗(D) = D + I(D) for any

divisor D of X (moreover, DX · f∗(DB) = f∗(DX) ·DB for DX ∈DivX and DB ∈DivB).
3This happens in two cases: 1) when the most generic section of L⊗2 must be factorized or 2) when one

restricts the choice of the section b2 to a factorized one. In the second case, if the manifold X has dimC > 2,

then it is typically singular.
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where s6 is a section of the line bundle L, sL is a section of another line bundle LL on B

and sR is consequently a section of L⊗2⊗L−1
L . This factorization produces a singularity on

X at ξ = s6 = sL = sR = 0. This is a conifold singularity when X is a three-fold. However,

in this paper we will consider type IIB compactifications to 6 dimensions; hence X is a

(complex) two-dimensional space in a three-dimensional ambient space and then there are

generically no solution to the four equations. For this reason, in this paper we will assume

X to be smooth. Most of our results will be valid also for 4D compactifications, if one

considers base manifolds B such that the locus {s6 = sL = sR = 0} is empty [39].

Let us consider the divisor DB = {sL = 0} in B. f∗(DB) splits on X into the loci

{ξ−s6/2 = sL = 0} and {ξ+s6/2 = sL = 0}, that are in different homology classes [39–41].

Let us call the corresponding divisors DL,− and DL,+. They are image to each other under

the involution ξ 7→ −ξ and by construction their homology classes satisfy the following

relation in H2(X)

[DL,+] + [DL,−] = [sL] , (2.6)

where [sL] is the homology class of the locus {sL = 0} in X.

In the following, we will need information about the intersection numbers. As before,

we take X to be a (complex) two-dimensional hypersurface in the ambient space A that is

the total space of the line bundle L on B. If P is a polynomial in the coordinates of B,

then we have

[P ] · [DL,±] = [P ] · [sL] · [ξ]|A =
1

2
[P ] · [sL] (2.7)

where the double intersections are always meant in X if not specified. We keep this

convention also in the following. Moreover, we have

[DL,+] · [DL,−] = [sL] · [ξ] · [s6]|A =
1

2
[sL] · c1(L) = [DL,±] · [ξ] (2.8)

and, using (2.6),

[DL,±]2 = ([sL]− [DL,∓]) · [DL,±] =
1

2
[sL] · ([sL]− c1(L)) . (2.9)

2.2 Splitting divisors from matrices

The existence of a new divisor class can be detected also from the fact that if b2 takes the

form (2.5), then X has a 2 × 2 matrix factorization (MF) (see [42] for more details on an

analogous model),4 i.e. there exist matrices (M, M̃) such that

M · M̃ = M̃ ·M = (−ξ2 + b2)12 , (2.10)

with

M =

(
sR −ξ − s6

2

ξ − s6
2 sL

)
and M̃ =

(
sL ξ + s6

2

−ξ + s6
2 sR

)
. (2.11)

One can then define

LM ≡ coker
(
V2

M−→ W2

)
, (2.12)

4For a nice review on MF in physics see [43]. For application of MF in similar contexts see also [44–46].
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where V2 = L ⊗ (L−1
L ⊕ L−1) and W2 = L ⊗ L−1

L ⊗ (L ⊕ LL) (with L an arbitrary line

bundle). All the involved line bundles are naturally defined on the base manifold B and

can be easily lifted to X by the map f∗.

If X is smooth, LM is a line bundle on X: in fact detM = ξ2− b2 and hence at ξ2 = b2
the matrix rank goes down to one, generating a one-dimensional cokernel.5 The first Chern

class of a line bundle L is the Poincaré dual of the divisor where a generic section of L
vanishes. The line bundle LM is given as the cokernel of the map M. For a 2 × 2 MF

(M, M̃), one has an isomorphism cokerM ∼=imM̃ given by the map M̃ restricted to cokerM.6

Hence the locus where a section of LM vanishes is the same as the locus where a section of

imM̃ vanishes, i.e.

c1(LM) = [Dp] with Dp : M̃ ·

(
p1

p2

)
= 0 , (2.13)

where ~p = (p1, p2) is a section of the vector bundle W2 in (2.12). The homology class of Dp

can be computed in the following way: one can deform the generic divisor Dp by setting

p2 = 0. Then the ideal M̃~p = 0 splits into the union of p1 = 0 in X and the divisor DL,−,

i.e. at the level of homology classes:

[Dp] = [p1] + [DL,−] . (2.14)

The equation ξ2− b2 = 0 has an inequivalent MF (M′, M̃′) that is obtained from (2.11)

by taking ξ 7→ −ξ. Following the same steps as before, we can then construct a line bundle

LM ′ , whose first Chern class is

c1(LM′) = [D′p] with D′p : M̃′ ·

(
p1

p2

)
= 0 (2.15)

whose homology class is

[D′p] = [p1] + [DL,+] . (2.16)

In particular, when (p1, p2) = (1, 0) we have Dp = DL,− and Dp′ = DL,+.

Notice that

M̃ = A1 + ξ B0 where A1 =

(
sL

s6
2

s6
2 sR

)
and B0 =

(
0 1

−1 0

)
. (2.17)

M̃′ is written also in terms of A1 and B0 but with ξ 7→ −ξ. It is then easy to see that the

divisors Dp and D′p intersect each other over two loci:

{ξ = 0, A1 · ~p = 0} and {p1 = 0, p2 = 0} . (2.18)

5If the locus {ξ = s6 = sL = sR = 0} is non-empty, then on this points the matrix rank goes down by

two units and at that point the cokernel dimension jumps from one to two. Such a LM is called a non-trivial

irreducible Maximal Cohen Macaulay (MCM) module.
6The space cokerM is given by W2/imM. But over ξ2 = b2 the exactness of the sequence implies that

imM =kerM̃. Hence, by definition, kerM̃ = 0 when the map M̃ is restricted to cokerM and hence it is an

isomorphism between cokerM and imM̃.
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The first one is on top of the fixed point locus of the involution I, while the other may

intersect the fixed point locus but its points are generically not fixed.

The two divisors Dp and Dp′ are mapped to each other by the involution I. Hence

they will be projected down by f to the same divisor DB,p of B: DB,p = f∗Dp = f∗D
′
p,

where we also have f∗DB,p = Dp +D′p.

We now prove that DB,p is described by the equation7

(p1, p2) ·A1 ·

(
p1

p2

)
= 0 . (2.19)

• We first prove that all points of DB,p satisfy (2.19): such points are pulled-back by

f∗ to points either of Dp or of D′p; over these loci A1~p = ∓ξB0~p. Hence ~p · A1~p =

∓ξ~p · B0~p = 0 as B0 is antisymmetric.

• We then prove that any points satisfying (2.19) belong to DB,p: over these points,

A1~p is orthogonal to ~p, i.e. it is proportional to B0 ~p. This means that B0 ~p is an

eigenvector of A1B0 (B2
0 = −1). We also have (A1B0)2 = −det(A1)1. Hence the

eigenvalues of A1B0 are ±
√
b2. If we pull-back these points, they will belong either

to Dp or to D′p (since on X we have b2 = ξ2).

The formula (2.19) gives then an algebraic expression for a divisor DB,p of B that,

once lifted to the double cover X, splits into two components, one the image of the other

under the inolution I.8

2.3 Splitting divisors of higher degree

The procedure outlined above can be used to construct other pairs of algebraic cycles

mapped to each other by the involution I: take the line bundle L⊗2
M ; thanks to the isomor-

phism given by M̃ restricted on cokerM, this line bundle is isomorphic to im(M̃⊗ M̃). The

vanishing locus of a generic section is then given by

M̃⊗ M̃ ·


q1

q2

q3

q4

 = 0 . (2.20)

On top of the double cover X, the matrix M̃ ⊗ M̃ has rank
(

M̃⊗ M̃
)

= rank(M̃)2 = 1.

Hence the condition (2.20) is actually giving a codimension one locus, as it should be for

a divisor.
7Notice that the submanifold (2.19) in B is singular at p1 = p2 = 0. This is not surprising. The locus

{p1 = p2 = 0} is the intersection locus of the divisor Dp and D′p away from the fixed point locus. On the

other hand, the two divisors of X join each other in B, forming a connected divisor DB,p. The two branches

of DB,p still intersect transversally at p1 = p2 = 0, hence generating a singularity. This also happens when

D and D′ are in the same homology class.
8It is easy to see why the equation (2.19) splits when intersected with ξ2 = b2. In fact, b2 =-detA.

Hence, on X the determinant of A is a square and then the quadratic form in (2.19) factorizes into two

factors (that are exchanged by taking ξ 7→ −ξ).
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The 4 × 4 matrix M̃ ⊗ M̃ can be effectively reduced to a 3 × 3 matrix. This can be

shown for a generic matrix M =
(
a b
c d

)
. The tensor produc of M with itself is

M⊗M =


a2 ab ab b2

ac ad bc bd

ac cb ad bd

c2 cd cd d2

 ,

that is equivalent to the block diagonal form
a2 −ab b2

−ac 1
2(ad+ cb) −bd

c2 −cd d2

2(ad− cb)


up to operation of summing or subtracting lines or columns and changing the order of lines

and columns. Notice that the element 2(ad− bc) is proportional to the determinant of M.

Let us apply this to M = M̃. Notice that in the block-diagonal form the relevant part of

M̃⊗ M̃ is the 3× 3 block (since detM̃ vanishes on X). We can moreover separate the parts

linear in ξ as

(M̃⊗ M̃)3×3 = A2 + ξ B1 (2.21)

with

A2 =

 s2
L − s6sL

2
s26
2 − sLsR

− s6sL
2 sLsR − s6sR

2
s26
2 − sLsR −

s6sR
2 s2

R

 and B1 =

 0 −sL s6

sL 0 −sR
−s6 sR 0

 . (2.22)

The subscript “2” signals the fact that A2 is homogeneous of degree 2 in sL, s6, sR. On the

other hand B1 is of degree 1.

The two divisors mapped to each other by I are then

D(2)
q : (A2 + ξ B1) ·

q1

q2

q3

 = 0 and D(2)′
q : (A2 − ξ B1) ·

q1

q2

q3

 = 0 . (2.23)

Their divisor classes can be derived as above and are

[D(2)
q ] = 2[DL,−] + [q1] and [D(2)′

q ] = 2[DL,+] + [q1] . (2.24)

The two divisors D
(2)
q and D

(2)′
q intersect each other over two loci:

{ξ = 0,A2 · ~q = 0} and {B1 · ~q = 0} . (2.25)

The points of the second locus are generically away from the fixed point locus. To write

the second equation we have used the fact that

A2 = I · B1 where I = Bt
1 · C , and C =

 0 0 −1
2

0 1 0

−1
2 0 0

 . (2.26)

– 8 –
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One can then find the divisor of B that splits into D
(2)
q and D

(2)′
q when lifted to the

double cover X, i.e. D
(2)
B,q = f∗D

(2)
q = f∗D

(2)′
q , where we also have f∗D

(2)
B,q = D

(2)
q + D

(2)′
q .

Following similar considerations as for the previous case, we found that it is given by

D
(2)
B,q :

(
q1 q2 q3

)
·A2 ·

q1

q2

q3

 = 0 . (2.27)

By analogous considerations, one can construct divisors D
(3)
r and D

(3)′
r : the matrix

M̃⊗ M̃⊗ M̃ can be reduced to a 4× 4 matrix A3 + ξB2 on top of X, where

A3 =


s3
L −s2

Ls6/2 (sLs
2
6 − 2s2

LsR)/2 (−s3
6 + 3sLs6sR)/2

−s2
Ls6/2 s2

LsR −sLs6sR/2 (s2
6sR − 2s3s

2
R)/2

(sLs
2
6 − 2s2

LsR)/2 −sLs6sR/2 sLs
2
R −s6s

2
R/2

(−s3
6 + 3sLs6sR)/2 (s2

6sR − 2sLs
2
R)/2 −s6s

2
R/2 s3

R


(2.28)

and9

B2 =


0 −s2

L s6sL −s2
6 + sLsR

s2
L 0 −sLsR s6sR

−s6sL sLsR 0 −s2
R

s2
6 − sLsR −s6sR s2

R 0

 . (2.29)

The two divisors are then

D(3)
r : (A3 + ξ B2) ·


r1

r2

r3

r4

 = 0 and D(3)′
r : (A3 + ξ B2) ·


r1

r2

r3

r4

 = 0 (2.30)

and their homology classes are

[D(3)
q ] = 3[DL,−] + [r1] and [D(3)′

q ] = 3[DL,+] + [r1] . (2.31)

The divisor D
(3)
B,q = f∗D

(3)
q = f∗D

(3)′
q is given by the equation

D
(3)
B,q :

(
r1 r2 r3 r4

)
·A3 ·


r1

r2

r3

r4

 = 0 . (2.32)

One can in principle continue with this procedure to obtain divisors in homology classes

n[DL,∓] + [P ]. We give the result for n = 4 in appendix A.

9Once again there is a relation between A3 and B2: A3 =


s6/2 sL 0 0

−sR/2 0 sL/2 0

0 −sR/2 0 sL/2

0 0 −sR −s6/2

 ·B2.
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2.4 Odd divisor classes

The involution I in (2.2) splits the second cohomology of X into even and odd elements:

H2(X) = H2
+(X) ⊕H2

−(X). The even elements, as we said, are in one-to-one correspon-

dence with the divisors of B (b2(B) = b2+(X)). The odd elements can be written as

differences between divisors (or Poincaré dual two-forms) that are mapped to each other

by I. Of course, to obtain non-trivial elements, one needs that such divisors are in different

classes. The divisors constructed in section 2.2 are of this type. We can then associate an

odd class in H2(X) with the matrix factorization (2.11):

D− ≡ [Dp]− [D′p] . (2.33)

Changing ~p does not affect the class of D− in H2(X), as can be seen from (2.14) and (2.16):

D− = [Dp]− [D′p] = [DL,−]− [DL,+] = [DR,+]− [DR,−] ∀~p . (2.34)

If we take differences of connected algebraic divisors D
(n)
q and D

(n)′
q , constructed by

the matrices M̃⊗n and (M̃′)⊗n, we obtain multiples of D−:

[D(n)
q ]− [D(n)′

q ] = n([DL,−]− [DL,+]) = nD− .

If the space X admits further MF’s, we can associate an independent odd class to each

of them.

3 Type IIB limit of F-theory

3.1 F-theory models with U(1) gauge group

F-theory is defined on a CY manifold Y that is an elliptic fibration over a Kähler manifold

B. If the fibration has a section (called the “zero section”) the space Y can be described

by a Weierstrass model, i.e. by the equation

y2 = x3 + fxz4 + gz6, (3.1)

where f and g are sections of K̄⊗4
B and K̄⊗6

B respectively (KB is the canonical line bundle

of the base manifold B), and x, y and z sections of (K̄B ⊗H)⊗2, (K̄B ⊗H)⊗3 and H (H

is the line bundle which z belongs to). The elliptic curve degenerates over the zero locus

of the discriminant ∆ = 4f3 + 27g2: this gives the location of the 7-branes.

If the Weierstrass model is smooth, the effective lower dimensional theory has no gauge

group nor matter. In this paper, we are interested on the simplest gauge group, that is

U(1). This is realized when the elliptic fibration Y has one extra section. When this

happens, Y develops singularities along codimension-2 loci in the base B, where states

charged under the U(1) gauge group live. The charge of states localized at different loci

are typically different.

So far, models with charges up to 4 have been constructed as global F-theory compact-

ifications [10, 16, 34, 47]. The Weierstrass model descriptions of such configurations are
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birationally equivalent to smooth manifolds Ỹ that are hypersurfaces in an ambient space

PBFi that is the fibration of a toric two-dimensional variety PFi over the base manifold B.

They are described by the equation [16, 48],

P (z1, . . . , zk) =
∑
w∈F ∗i

sw

k∏
`=1

z
〈v`,w〉+1
` = 0 . (3.2)

The toric variety PFi is defined over the polytope Fi, with homogeneous coordinates

z1, . . . , zk, one per each non-zero lattice vector v` ∈ Fi, and w being lattice vectors in

the dual polytope F ∗i (including the origin). The polynomial in (3.2), called Batyrev

polynomial, defines a hypersurface XFi ∈ PBFi elliptically fibered over the base B. The ac-

companying coefficients sw are taken as sections of line bundles over the base manifold B

and can be seen (locally) as polynomials on the base manifold’s coordinates. The birational

map allows to write f and g in (3.1) in terms of the sections sw: the particular expression

of f and g brings all the information about which configuration one has, i.e. one can de-

form the sw, by choosing a different generic section in the same line bundle, but the gauge

group and which charged spectrum one has, does not change. Instead, if some of sw’s are

identically zero or have very specific factorized forms, then the gauge group or the charged

spectrum can change. This is what happens for example for the charge 4 models [34]: as

we will see in section 4.4, one can start from a model with a Z3 discrete symmetry in

the form (3.2) and deform some of the sw’s to specific sections of the corresponding line

bundle; these sw’s will be written in terms of sections a1, b1, di of new line bundles on the

base manifold B generating a model with gauge group U(1) and charge 4 matter. Now

choosing different generic sections s′w, a1, b1, di in the new line bundles does not chage the

gauge group and matter spectrum. In the following the sections defining the gauge group

and the matter sector will be called sκ (so, for example, in [34] sκ = s′w, a1, b1, di).

3.2 Sen limit

In this paper we are interested in the weak coupling limit of F-theory comapactifications

with U(1) gauge group. This limit, first studied by Sen [35], is a limit in the complex struc-

ture moduli space. For this reason, it is a delicate limit: complex structure deformations

can change the gauge group and the matter spectrum of the F-theory model; on the other

hand, for a weak coupling limit one means studying the F-theory 7-brane configuration

under consideration but in the perturbative type IIB language. Hence, the weak coupling

limit should not change the gauge group and the matter spectrum. As we have said above,

the information about the 7-brane configuration is encoded in a choice of line bundles over

B and corresponding generic sections sκ, in terms of which f and g are expressed. So, the

Sen limit should not deform the polynomials sκ.

In order to see how the Sen limit works, one can first reparameterize f and g in (3.1) as

f = −b
2
2

3
+ 2b4, g =

2

27
b32 −

2

3
b2b4 + b6, (3.3)

where bi’s are sections of K̄⊗iB . Correspondingly the discriminant ∆ = 4f3 + 27g2 becomes

∆ = 4b22(b2b6 − b24)− 36b2b4b6 + 32b34 + 27b26. (3.4)
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In F-theory, the type IIB axio-dialaton τ (and thus the string coupling) varies over the

base manifold B. The SL(2,Z) invariant function j(τ) is in fact given by f3/∆. Sen found

a limit that sets the string coupling small almost everywhere in B: if one scales

b2 → ε0b2, b4 → ε1b4, b6 → ε2b6, (3.5)

the discriminant becomes

∆ −−→
ε→0

−4ε2b22(b24 − b2b6) +O(ε3), (3.6)

and then the string coupling becomes small: in fact j(τ)
ε→0−−→ ε−2 and j(τ) = exp (−2πiτ)+

744 +O[exp (2πiτ)] (recall that τ = C0 + i e−φ with gs = eφ).

As it can be seen from (3.6), in this limit the codimension-1 loci of the base where the

7-branes lie are described by the two zeroes of the discriminant:

b2 = 0 and ∆E ≡ b24 − b2b6 = 0. (3.7)

From the monodromies of τ around these loci, one can find that b2 = 0 and ∆E = 0

describe respectively an O7-plane and a D7-brane, i.e. one has only perturbative objects.

The type IIB compactification manifold must be a double cover of the base B branched

over the O7-plane locus, i.e. it is given by the equation ξ2 = b2 in (2.1). The involution I

that sends ξ 7→ −ξ is the orientifold involution.

When the Weierstrass model is smooth, the locus ∆E = 0 describes one brane that is

invariant with respect to the involution ξ → −ξ; if the bi have a proper special form, then

∆E can factorize so that there is more than one stack of D7-branes. As we will see, one

can also have pairs of branes and their orientifold images.

Let us start with a model of the form (3.2) (or specializations thereof). There is a

birational map to the Weierstrass model that gives f and g as functions of sκ. After a

choice of b2, that will also be a function of sκ (it is not a coincidence the name we gave

to the polynomials in (2.5)), one can derive the expressions for b4 and b6 in terms of sκ:

using (3.3), we need to take b4 = (f+b22/3)/2, and then b6 = g−(2/27)b32+(2/3)b2b4. These

will be functions of the sκ’s as well. As we said above, in the weak coupling limit we should

not deform the polynomial sκ as they bring the information about the 7-brane configuration

(gauge group and matter spectrum). Hence the Sen limit should be implemented by scaling

(some of) the sκ, i.e.10

sκ → εnκsκ with nκ = 0, 1, 2 , (3.8)

such that we realize the scaling (3.5) for the bi’s.
11 Of course, the sκ that are in b2 should

not scale. If the F-theory model we started with has several gauge groups, at weak coupling

∆E = b24 − b2b6 will split into several components (when intersected with ξ2 = b2).

10In some cases, a weak coupling limit is possible but it necessarily generates extra gauge groups (see [49]).
11In doing this, it can happen that b4 has a leading term that scales with ε but has also a term that

scales with ε2. The term that survives in the weak coupling limit is of course only the order ε term. This is

what happens for example in the weak coupling limit of the Morrison-Park model (one massless U(1) with

charge 1 and 2 states), as discussed in [36].
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Figure 1. The weak coupling limits for toric hypersurfaces can be constructed by scaling with ε

all base sections along a line on the dual associated polytope while leaving the other base sections

invariant. The polytope F3 has four weak coupling limits associated to the facets of its dual polytope.

There are two inequivalent weak couplings from the type IIB perspective as the limits (a) and (d),

as well as (b) and (c) are equivalent because they produce the same D-brane configuration.

There is a general observation regarding the weak coupling limits of toric hypersurface

fibers. The consistent scalings leading to a perturbative type IIB model can be obatined

with scalings of the form (3.8) with nκ = 1 for all the points κ lying along a facet in the

dual polytope, while leaving all other sections invariant under the scaling. This occurs for

all of the 16 2D hypersurfaces considered in [16]. Take for example the polytope F3 = dP1.

One has then four weak coupling limits as indicated in figure 1. In reality, from the type

IIB perspective such limits lead to only two inequivalent brane setups.

3.3 Massive and massless U(1)’s

In type IIB compactification, the U(1) symmetries live on the worldvolume of single D7-

branes. If the D7-brane locus is invariant under the orientifold involution, the U(1) gauge

boson is projected out; hence a U(1) symmetry is present if there is a pair of a D7-brane and

its orientifold image. If the loci of these two branes are in the same homology class, then

the U(1) gauge boson is massless. If the loci are in different homology classes, the gauge

boson gets a mass through the “geometric” Stückelberg mechanism [50–52], by eating an

axion. This axion comes from the reduction of the RR 2-form C2 along an odd two-form

of the double cover CY.

If there are several massive U(1)’s in the compactification, some combinations of them

may be massless. For example, if we have two massive U(1) gauge bosons and h1,1
− (X) = 1,

then one combination of them will eat the only one axion, while the orthogonal combination

will stay massless.

The fields living at the intersection of the D7-branes are charged under the U(1)

symmetries. If we have two sets of brane/image-brane, D71, D7′1 and D72, D7′2, we have

two sets of states: 1) at the intersection D71∩D72 with charges (q1, q2) = (1,−1) and 2) at

the intersection D71∩D7′2 with charges (Q1, Q2) = (1, 1). If we have a set of brane/image-
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brane, D71, D7′1 and an invariant D7-brane, we have states at the intersection D71∩D7inv

with charge Q1 = 1. If brane and image-brane intersect each other away from the orientifold

plane, there are states at the intersection D71 ∩D7′1 with charge Q1 = 2.

The charge corresponding to the massless gauge boson will be a linear combination of

the charges of all the U(1)’s living on the D7-branes.

Let us see how one can find the massless U(1) generator in 6D compactifications (for

the 4D case see [53–55]). On the D7-brane worldvolume, the coupling that gives mass to

the gauge bosons is given by: ∫
D7
C6 ∧ F , (3.9)

where F is the six-dimensional gauge boson field strength and C6 is the dual of the RR two-

form C2. The C6 potential can be expanded as C6 =
∑

α c
α
4 ∧ ω

(−)
α , with ω

(−)
α ∈ H1,1

− (X)

and cα4 six dimensional four-forms (dual in 6D to axionic scalar fields). Plugging this

expansion in (3.9) we obtain∫
D7
C6 ∧ F =

∑
α

∫
R1,5

F ∧ cα4
∫
DD7

ω(−)
α =

∑
α

∫
R1,5

F ∧ cα4
∫
X
D(−)
D7 ∧ ω

(−)
α (3.10)

where DD7 = D(+)
D7 + D(−)

D7 is the divisor wrapped by the D7-brane in the compact space

and D(+)
D7 (D(−)

D7 ) is the even (odd) component under the orientifold involution. The image-

brane gives the same coupling term (it has opposite odd components and its field strength

is −F). An invariant brane does not have such a coupling, as its odd component is zero.

If we haveN massive U(1) branes, we will have the following term in the six dimensional

effective action

N∑
i=1

h1,1
−,eff∑
α=1

∫
R1,5

niαFi ∧ cα4 with niα =

∫
X
D(−)
D7i
∧ ω(−)

α (3.11)

where h1,1
−,eff is the dimension of the subspace of H1,1

− (X) generated by D(−)
D7i

(i = 1, . . . , N)12

and ω
(−)
α (α = 1, . . . , h1,1

−,eff) are elements of a basis in H1,1
− (X).

If N = h1,1
−,eff , all the U(1) gauge bosons get a mass by Stückelberg mechanism [50–52].

On the other hand, if N > h1,1
−,eff there are N − h1,1

−,eff massless combinations.

3.4 Minimal models with high charges

We want to construct a model in type IIB with one massless U(1) and with states that

have high charge under this U(1).

The easiest way to realize a massless U(1) is to take a pair of a D7-brane and its

image in the same homology class (see [10] for an F-theory realization and [44, 56] for

the weak coupling limit). If there are no other branes, there will be only a state at the

intersection D7 ∩ D7′ that will have unit charge. On the other hand, if there is another

(invariant)13 brane, there will be a state with charge 1 at D7 ∩ D7inv and a state with

12The divisors D(−)
D7i

are not independent of each other in general.
13If there is another pair, it must be massive, otherwise we would have two massless U(1)’s.
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D7inv

D7′1 D71

D7′2 D72

O7

(i)

D7inv

D7′1 D71

D7′2 D72

O7

(ii)

Figure 2. (i) When branes and image branes intersect away from the orientifold it is possible to

get up to charge 4 (with a = 2, b = 1) or up to charge 6 (with a = 3, b = 2). (ii) If D71 and D7′1
intersect only on top of the O7, one can only get up to charge 3 (with a = 2, b = 1) or up to charge

5 (with a = 3, b = 2).

charge 2 at the intersection of the D7-brane with its image, away from the orientifold

locus, i.e. at (D7 ∩ D7′) \ (D7 ∩ O7) (see [47] for an F-theory realization and [36] for its

weak coupling limit).

To obtain U(1) models with charges higher than 2, one needs to introduce massive

U(1) D7-branes in a CY double cover with h1,1 6= 0. Since we want to end up with only

one massless gauge boson, we need that the number of massive U(1) D7-branes is one unit

bigger than the number of axions to be eaten, that is equal to h1,1
−,eff . The minimal choice

is h1,1
−,eff = 1. We will see that under this assumption we will construct the weak coupling

limit of all the high charge F-theory models known so far. We will then consider the case

when the double cover CY is given by the equation

ξ2 =
s2

6

4
− sLsR .

As explained in section 2, for generic sections s6, sL, sR of the corresponding line bundles

on B, this space has an odd 2-form dual to the divisor D−, whose class can be represented

by the difference Dp −D′p, where Dp, D
′
p are given in (2.13).

In this situation, we obtain one massless U(1) from two would-be geometrically massive

U(1)’s: one combination of them will eat the axion associated to D− whereas the orthogonal

combination remains a massless U(1). In type IIB we then have two pairs of massive D7

brane/image-brane, plus a possible invariant D7-brane (see figure 2). Let’s assume that

the odd brane divisor classes satisfy

D(−)
D71

= bD− and D(−)
D72

= −aD− ; (3.12)

then the six-dimensional coupling will be (with the normalization
∫
X ω

(−) ∧D− = 1)∫
R1,5

bF1 ∧ c4 −
∫
R1,5

aF2 ∧ c4 =

∫
R1,5

(bF1 − aF2) ∧ c4 . (3.13)
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D71 ∩D72 D71 ∩D7′2 D71 ∩D7′1 D72 ∩D7′2 D71 ∩D7inv D72 ∩D7inv

(Q1, Q2) (1,−1) (1, 1) (2, 0) (0, 2) (1, 0) (0, 1)

Q (a− b)/κ (a+ b)/κ 2a/κ 2b/κ a/κ b/κ

Table 1. U(1) charges for generic a, b (see (3.14)).

Hence the combination bF1− aF2 is massive and the orthogonal combination aF1 + bF2 is

massless. In particular, the charge associated with the massless U(1) will be a combination

of the two massive U(1) charges:

Q =
1

κ
(aQ1 + bQ2) , (3.14)

where a, b are integers and κ is the greatest common divisor of the U(1) charges aQ1 + bQ2

of the states in the configuration. In table 1 we report the massless U(1) charge for each

state in the configuration we have chosen.

We will consider only configurations in which the different intersections provide matter

with charges taking all the integral values between 1 and Qmax, where Qmax is the maximal

charge realized in the model. In this way we will automatically satisfy the completeness

conjecture. It in fact states that an effective field theory with a U(1) gauge symmetry is

only consistent with quantum gravity provided that all charges Q ∈ Z appear at some level

in the mass spectrum [57, 58].14

Notice that in table 1 there are six different states. Hence if we want that all the values

of Q are filled up to Qmax, then we can only construct models with the highest charge up

to 6. Hence with the chosen configuration we have models with Qmax = 3, 4, 5, 6:

• Charge 3 (I): a = 2, b = 1, κ = 1 and D71 ∩D7′1 \D71 ∩ O7 = ∅ with the presence

of an invariant brane D7inv.

• Charge 3 (II): a = 3, b = 1, κ = 2, non empty D71 ∩ D7′1 \ D71 ∩ O7 and no

invariant brane.

• Charge 3 (III): a = 5, b = 1, κ = 2, D71∩D7′1 \D71∩O7 = ∅ and no invariant brane.

• Charge 3 (IV): a = 6, b = 2, κ = 4, non empty D71 ∩ D7′1 \ D71 ∩ O7 and no

invariant brane.

• Charge 4 (I): a = 2, b = 1, κ = 1 and non-empty D71 ∩ D7′1 \ D71 ∩ O7 with the

presence of an invariant brane D7inv.

14While this observation is not entirely restricitive for the massless spectrum of our interest, we rely on

the generic observation that for all F-theory models with U(1) symmetries constructed so far, the structure

of the elliptic fiber allows for singularities at base codimension two, such that all charges between 1 and a

certain maximum charge Qmax are possible. However, it could happen that over a specific base some of the

matter loci are empty and then there are no fields with a given charge Qi (1 ≤ Qi ≤ Qmax) in the massless

spectum (see [27] for further details and examples of this phenomenon). This can also happen for some

realization of the models we construct in this paper.
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• Charge 4 (II): a = 4, b = 2, κ = 2, non-empty D71 ∩D7′1 \D71 ∩O7 with or without

an invariant brane.

• Charge 5 (I): a = 3, b = 2, κ = 1 and D71 ∩D7′1 \D71 ∩ O7 = ∅ with the presence

of an invariant brane D7inv.

• Charge 5 (II): a = 4, b = 1, κ = 1 and D71 ∩D7′1 \D71 ∩O7 = ∅ with the presence

of an invariant brane D7inv.

• Charge 6 : a = 3, b = 2 and non-empty D71 ∩D7′1 \D71 ∩O7.

In principle, in the cases with a = 2 and b = 1 the invariant brane is not necessary to

realize all charges up to Qmax, as the charges of D7i ∩ D7′i are already realized in other

intersections. We will see in the following that the invariant brane is necessary when a+ b

is odd. We will also see at the end of section 3.5 why we have secretly considered the

bound a+ b ≤ 8. All the values of a, b satisfying this bound and that we did not consider

correspond to models where some of the charge values is not populated by actual massless

states. We do not consider models with a = b, that always give states with zero charge.

3.5 6D compactification and D7-brane setup

We consider 6D type IIB compactifications on a K3 surface X with an orientifold projec-

tion.15 Holomorphic involutions on K3 were classified by Nikulin [60] in terms of three

integer parameters (r, a, δ). In particular r is the number of K3 two-cycles that are even

under the involution, i.e. b+2 (X) = r and b−2 (X) = 22 − r (remember that b2(K3) = 22).

The fixed point locus is always given (except for two special cases) by the disjoint union of

a genus g curve and k spheres, that have the following expressions in terms of r and a:

g =
1

2
(22− r − a), k =

1

2
(r − a) . (3.15)

In our case, the fixed point locus ξ = 0 that lives in the homology class c1(L) = K̄B (where

K̄B is the anticanonical class of the quotient B, pulled back to X). We consider cases

where we have only one connected O7-plane. This means that k = 0, i.e. r = a.16 The

genus of the O7-locus is

g =
1

2
(2− χO7) =

1

2

(
2−

∫
O7
c1(O7)

)
= 1 +

1

2
K̄2
B . (3.16)

We can then derive the relations

b+2 (X) = r = 10− 1

2
K̄2
B and b−2 (X) = 22− r = 12 +

1

2
K̄2
B . (3.17)

The 6D effective theory has N = 1 supersymmetry. The low energy spectrum will

be made up by the gravity multiplet, V vector multiplets, T tensor multiplets and H

15For some aspects of type IIB 6D models related to F-theory constructions see [59].
16When k 6= 0, the O7-planes wrap rigid two-sphere in K3 with gauge group SO(8). The corresponding

F-theory lift will have Non-Higgsable Clusters with non-abelian D4 singularities. Since we are interested in

abelian gauge groups, we consider only involutions with k = 0.
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hypermultiplets. The number of vectors is given by the number of non-invariant D7-branes

(if the D7-brane worldvolume is invariant, the corresponding gauge field is projected out

by the orientifold). The number of tensors is given by b+2 (X); considering that one tensor

sits in the gravity multiplet, we have

T = b+2 (X)− 1 = 9− 1

2
K̄2
B (3.18)

tensor multiplets, that includes also b+2 (X) − 1 Kähler moduli. There are then 2b−2 (X)

further complex scalars that organize in Hbulk = b−2 (X) = 12 + 1
2K̄

2
B hypermultiplets:

• 1 axio-dilaton C0 + i e−φ;

• 1 volume modulus complexified by C4 along the volume form of X;

• b−2 (X)− 2 complex structure moduli;

• b−2 (X) complex scalars coming from reducing B2 + iC2 along the odd two-forms.

The open string sector introduces further hypermultiplets: there are neutral hypermul-

tiplet that include the open string moduli (deformations of the D7-branes and the Wilson

lines) and the charged hypermultiplets living at the intersection of the D7-branes.

In all the models we consider in this paper, we will consider configurations with two

pairs of (massive) brane/image-brane, say D71/D7′1 and D72/D7′2, and (in most cases) an

invariant brane D7inv.

Let us begin considering the pairs of brane/image-brane. Given the consideration in

section 3.4, the divisors wrapped by the branes are in the classes

[DD71 ] = b[DL,+] + [x1] [DD7′1
] = b[DL,−] + [x1] (3.19)

[DD72 ] = a[DL,−] + [y1] [DD7′2
] = a[DL,+] + [y1] (3.20)

where the corresponding loci are given by (see section 2)

DD71 : M̃⊗bred · ~x = 0 DD7′1
: M⊗bred · ~x = 0 (3.21)

DD72 : M⊗ared · ~y = 0 DD7′2
: M̃⊗ared · ~y = 0 (3.22)

with ~x = (x1, . . . , xa+1) and ~y = (y1, . . . , yb+1), and M⊗kred the (k + 1)× (k + 1) non trivial

block of M⊗k.

The number of open string moduli for each pair is given by the genus of the surface

DD7i , i.e.

gD7i =
1

2

(
2 +

∫
X
D2
D7i

)
. (3.23)

Plugging (3.19) and (3.20) into (3.23) and using the relations (2.7), (2.8) and (2.9) one ob-

tains

gD71 = 1 +
b2

4
[sL] · ([sL]− K̄B) +

b

2
[sL] · [x1] +

1

2
[x1]2 , (3.24)

gD72 = 1 +
a2

4
[sL] · ([sL]− K̄B) +

a

2
[sL] · [y1] +

1

2
[y1]2 . (3.25)
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The number of charged hypermultiplets at the inersection of branes coming from different

pairs is given by the intersection numbers [DD71 ] · [DD72 ] and [DD71 ] · [DD7′2
]:

ND71∩D72 =
ab

2
[sL] · K̄B +

1

2
[sL] · (a[x1] + b[y1]) + [x1] · [y1] , (3.26)

ND71∩D7′2
=
ab

2
[sL] · ([sL]− K̄B) +

1

2
[sL] · (a[x1] + b[y1]) + [x1] · [y1] . (3.27)

The number of states at the intersection of a brane with its image is instead given

by 1
2([DD7i ] · [DD7′i

]− [O7] · [DD7i ]):

ND71∩D7′1
=
b(b− 1)

4
[sL] · K̄B +

b

2
[sL] · [x1]− 1

2
K̄ · [x1] +

1

2
[x1]2 , (3.28)

ND72∩D7′2
=
a(a− 1)

4
[sL] · K̄B +

a

2
[sL] · [y1]− 1

2
K̄ · [y1] +

1

2
[y1]2 . (3.29)

The invariant brane can be obtained by recombining a pair of brane/image-brane. The

recombination can be described by a Higgs mechanism: a field living at the intersection of

the brane with its image gets a non-zero vev, the vector multiplet living on the D7-brane

gets a non-zero mass by eating one of the charged hypermultiplets. The number of open

string moduli hypermultiplets of the invariant brane is then given by

ninv = gD7 +ND7∩D7′ − 1 . (3.30)

In what follows we will always consider invariant branes obtained by recombining a pair

of brane/image-brane wrapping a divisors in the classes [DL,±] + [w2], i.e. it will wrap

the locus

PD7inv = sRw
2
1 − s6w1w2 + sLw

2
2 + 4

(
s2

6

4
− sLsR

)
w3 (3.31)

in the class [DD7inv ] = [sL] + 2[w2] = 2K̄B + [w3]. We then have

ninv =
1

4
[sL] · ([sL]− K̄B) + [sL] · [w2]− 1

2
K̄ · [w2] + [w2]2 . (3.32)

The invariant brane intersects the branes D71 and D72, giving respectively [DD7inv ] · [DD71 ]

and [DD7inv ] · [DD72 ] hypermultiplets:

ND7inv∩D71 =
b

2
[sL]2 + b[sL] · [w2] + [sL] · [x1] + 2[x1] · [w2] , (3.33)

ND7inv∩D72 =
a

2
[sL]2 + a[sL] · [w2] + [sL] · [y1] + 2[y1] · [w2] . (3.34)

If we sum the Hbulk hypermultiplets and the open string hypermultiplets, we obtain

the total number of hypermultiplets. In both cases, with and without invariant brane

we obtain

H = 14 +
29

2
K̄2 = V + 273− 29T (3.35)

i.e. this configuration satisfies the gravitational anomaly cancellation condition, as it should

be for a D-brane configuration with all D-brane charges canceled. The same occurs for the
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mixed U(1)-gravitational as well as the pure U(1) anomaly. The details of the anomaly

computation can be found in appendix B.

We finish this section with the D7-brane tadpole cancellation condition. In the case

when D7 is present, we have

[DD71 ] + [DD7′1
] + [DD72 ] + [DD7′2

] + [DD7inv ] = 8[O7] . (3.36)

Plugging (3.19), (3.20), [DD7inv ] = [sL]+2[w2] and [O7] = K̄B into this expression we obtain

(a+ b)[sL] + 2[x1] + 2[y1] + 2K̄B + [w3] = 8K̄B . (3.37)

We now use the condition that a[sL] + [x1] = a[s6] + [xa+1], as it can be seen from (3.21).

Analogously one has b[sL] + [y1] = b[s6] + [yb+1]. Moreover, remember that [s6] = K̄B. We

can then write the equation (3.37) in the form

(6− a− b)K̄B = [x1] + [xa+1] + [y1] + [yb+1] + [w3] . (3.38)

For connected loci of D7-branes (except the case in which [D7] = [DL,±] or [D7] = [DR,±]),

the classes [xi], [yj ] and [w`] are effective. K̄B is effective as well (it is the class of the

orientifold plane). The equation (3.38) then constrains a and b to be bounded as a+ b ≤ 6

when there is an invariant brane like the one described in eq. (3.31). If there is no invariant

brane, then (by analogous computations) the bound becomes a + b ≤ 8, as anticipated in

the previous section.

4 Charge 3 and 4 models and their F-theory lift

4.1 Type IIB models with maximal charge 3 or 4

In this section we will consider models with charge 3 (I) and (II) and model with charge 4 (I).

As we will see the first two come from the Sen limit of the same F-theory model.

Charge 3 (I) and charge 4 (I) models. We start with a = 2 and b = 1 and an

invariant brane, that realizes the charge 3 (I) and charge 4 (I) models. The values of a and

b imply that

DD72 −DD7′2
= −2(DD71 −DD7′1

) , (4.1)

where DD7 is the divisor class wrapped by the D7 brane. The D71 locus in the quotient is

PD71 = 0 where PD71 is given by (2.19), i.e.

PD71 = sRp
2
1 − s6p1p2 + sLp

2
2 , (4.2)

while the D72 locus in the quotient is PD72 = 0 where PD72 is given by (2.27), i.e.

PD72 = (sLq1 − sRq3)2 − (sLq2 − s6q3) (s6q1 − sRq2) . (4.3)

The only difference between Qmax = 3 and Qmax = 4 models is that in the first case the

intersection D71 ∩ D7′1 is empty outside the O7-plane locus. This means that, while for
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D71 ∩D72 D71 ∩D7′2 D71 ∩D7′1 D72 ∩D7′2 D71 ∩D7inv D72 ∩D7inv

(Q1, Q2) (1,−1) (1, 1) (2, 0) (0, 2) (1, 0) (0, 1)

Q 1 3 4 2 2 1

Table 2. U(1) charges for charge 3 (I) and charge 4 (I) models in type IIB. The state at D71∩D7′1
is present only in charge 4 models.

the Qmax = 4 model the vector (p1, p2) is generic, for the Qmax = 3 model it is given by

either (1, 0) or (0, 1).

The invariant brane must satisfy the constraint that it has double intersection with

the orientifold plane ξ = 0, i.e. on top of the O7-plane it must split as a brane/image-brane

pair [61, 62]. In particular, we require that the polynomial ∆E (where ∆E = 0 is the full

D7-brane locus in (2.27)) reduces to a square on top of the O7-plane b2 = 0 [61, 62]. Since

sL, sR, s6 appear linearly in PD71 (for generic p1, p2) and quadratically in PD72 (for generic

q1, q2, q3), then they should appear to an odd power in PD7inv , up to a polynomial that

vanishes if b2 = 0. If we make the minimal choice (in which s6, sL and sR appear linearly),

we have an invariant brane wrapping the locus (3.31).17

The full D7-brane locus is then ∆E = 0, where

∆E = PD71PD72PD7inv . (4.4)

The charges of the states and their locations are reported in table 2. We notice that in

type IIB there are two loci corresponding to charge 2 and two corresponding to charge 1.

As we shortly see, loci with the same charge recombine away from weak coupling, giving a

unique locus with charge 1 and a unique locus with charge 2 in F-theory.

Charge 3 (II) model. We now consider the charge 3 (II) model, i.e. a = 3, b = 1. In

this case there is no invariant brane. We then have

DD72 −DD7′2
= −3(DD71 −DD7′1

) . (4.5)

The D71 locus in the quotient B is PD71 = 0 where PD71 is again given by (2.19), i.e.

PD71 = sRp
2
1 − s6p1p2 + sLp

2
2 . (4.6)

The D72 locus in the quotient is PD72 = 0 where now PD72 is given by (2.32) , i.e.

PD72 = r2
1s

3
L − r1s6(r4s

2
6 + sL(−r3s6 + r2sL)) + r1sL(3r4s6 − 2r3sL)sR

+ sR(r2
2s

2
L + sR(−r3r4s6 + r2

3sL + r2
4sR) + r2(r4s

2
6 − r3s6sL − 2r4sLsR))

. (4.7)

The full D7-brane locus is then ∆E = 0, where

∆E = PD71PD72 . (4.8)

The charges of the states and their locations are reported in table 3.We notice that in

type IIB there are two loci corresponding to charge 1. These will recombine away from

weak coupling.

17With a different choice we would have added more coefficients ri, with a higher restriction on their

degrees and the degrees of the coefficients pj , qk. This choice will give the most generic such situation;

specializing these coefficients, one can realize the configuration with higher powers of sL,6,R.
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D71 ∩D72 D71 ∩D7′2 D71 ∩D7′1 D72 ∩D7′2

(Q1, Q2) (1,−1) (1, 1) (2, 0) (0, 2)

Q 1 2 3 1

Table 3. U(1) charges for charge 3 (II) models in type IIB.

Section Line Bundle

u O(H − E1 + S9 +KB)

v O(H − E1 + S9 − S7)

w O(H)

e1 O(E1)

Figure 3. The polytope F3 and its dual. The table on the right provides the line bundle classes

for the coordinates in PF3
.

4.2 Charge 3 type IIB model from F-theory

In F-theory the charge three model was described in [16]. The weak coupling limit was

performed in [36]. We summarize the result here.

The F-theory fourfold can be described as a toric hypersurface fibration based on

the toric ambient space PF3 = dP1 as shown in figure 3. The hypersurface equation is

pF3 = 0 with

pF3 = s1u
3e2

1 + s2u
2ve2

1 + s3uv
2e2

1 + s4v
3e2

1 + s5u
2we1

+ s6uvwe1 + s7v
2we1 + s8uw

2 + s9vw
2 . (4.9)

The line bundles of the si are fixed by choosing two arbitrary classes, in this case S7 = [s7]

and S9 = [s9], and by requiring that all the monomials of (4.9) are sections of the same

line bundle O(3H −E1 + 2S9 −S7). After mapping pF3 to the Weierstrass form we obtain

f , g and ∆, which can be taken from [16] and are also reported in appendix B of [36].

The fourfold described by (4.9) has two sections of the elliptic fibration: the (bira-

tionally equivalent) Weierstrass model zero section S0, and an extra section S1. This gives

a massless U(1) gauge symmetry in the low dimensional effective theory.

There are no codimension-one singularities. At codimension-two one finds three I2

fibers corresponding to states charged under the U(1) symmetry. The loci for the corre-

sponding states are given in table 4.

Let us now discuss the type IIB limit of this model. As pointed out already in sec-

tion 3.2, from the facets of the dual polytope we can deduce four types of ε-scalings leading

to consistent weak coupling limits. Out of these four, only two are inequivalent from the

point of view of the brane setups one realizes in type IIB, both of these lead to the same

gauge group and matter spectrum of the parent F-theory model.
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Representation Locus

13 V (I(3)) := {s8 = s9 = 0}

12 V (I(2)) := {s4s
3
8 − s3s

2
8s9 + s2s8s

2
9 − s1s

3
9 = s7s

2
8 + s5s

2
9−s6s8s9 = 0}\ V (I(3))

11 V (I(1)) := {y1 = fz4
1 + 3x2

1 = 0}\ (V (I(2)) ∪ V (I(3)))

Table 4. The loci for the charged matter representations under the U(1) symmetry. The charges

are written as subscripts. The locus for the state 11 is given in terms of the sections x1, y1 and z1
discussed in appendix C.

Sen limit to charge 3 (I) model. We start with the limit studied in [36]. We set the

following ε scalings for the sections si:

s1 → ε1s1, s5 → ε1s5, s8 → ε1s8, si → ε0si (i 6= 1, 5, 8) . (4.10)

In the limit ε → 0 the discriminant of the elliptic fibration factorizes as ∆ ∼ b2∆E . The

location of the O7-plane is at b2 = 0 with

b2 =
s2

6

4
− s2s9 .

The D7-brane locus is ∆E = 0 with

∆E = − 1

4
s9 (s2

2s
2
8 + s2(−s5s6s8 + s2

5s9 − 2s1s8s9) + s1(s2
6s8 − s5s6s9 + s1s

2
9))

× (−s3s6s7 + s2s
2
7 + s2

3s9 + s4(s2
6 − 4s2s9)) .

(4.11)

We then find the charge 3 (I) model that we constructed from scratch in type IIB, with

the identifications (sL, s6, sR) = (s9, s6, s2), (p1, p2) = (0, 1), (q1, q2, q3) = (s1, s5, s8) and

(w1, w2, w3) = (s7, s3, s4).

Applying the limit ε→ 0 to the matter loci in table 4, one sees that the charge 3 locus

become the corresponding locus in type IIB, while the charge 1 (charge 2) locus splits into

the two charge 1 (charge 2) loci of the type IIB model [36]. We will see how this mechanism

works explictly in the next example. For the charge 3 (I) model the computations are

reported in [36]

Sen limit to the charge 3 (II) model. One can take a different weak coupling limit,

by choosing the following scaling

s1 → ε1s1, s2 → ε1s2, s3 → ε1s3, s4 → ε1s4, si → ε0si (i 6= 1, 2, 3, 4) . (4.12)

After the limit ε→ 0, the location of the O7-plane is at b2 = 0 with

b2 =
s2

6

4
− s5s7 ,

while the D7-brane locus is ∆E = 0 with

∆E = − 1

4
(s5s

2
9 − s9s6s8 + s7s

2
8)

× (s2
4s

3
5 − s4(s3s

2
5s6 + s1s6(s2

6 − 3s5s7) + s2s5(−s2
6 + 2s5s7))

+ s7(s2
3s

2
5 + s7(s2

2s5 − s1s2s6 + s2
1s7) + s3(−s2s5s6 + s1(s2

6 − 2s5s7)))) .

(4.13)
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Section Line Bundle

a1 O([a1])

b1 O([b1])

d0 O([ẑ]− 2K̄B − [a1]− 3[b1])

d1 O([ẑ]− 2K̄B − 2[a1]− 2[b1])

d2 O([ẑ]− 2K̄B − 3[a1]− [b1])

s1 O(7K̄B − 2[ẑ] + 3[a1] + 3[b1])

s2 O(4K̄B − [ẑ] + 2[a1] + [b1])

s3 O(K̄B + [a1]− [b1])

s5 O(4K̄B − [ẑ] + [a1] + 2[b1])

s6 O(K̄B)

s8 O(K̄B − [a1] + [b1])

Section Line Bundle

u O(H − [a1] +KB)

v O(H + [b1]− [a1])

w O(H)

Table 5. Left: the base sections and their corresponding line bundle classes. Right: the classes for

the sections in the toric ambient space PF1
.

We then find the type IIB charge 3 (II) model, with the identifications (sL, s6, sR) =

(s5, s6, s7), (p1, p2) = (s9, s8), (r1, r2, r3, r4) = (s4, s3, s2, s1). The compete match of codi-

mension two loci between the F-theoretic and the type IIB model is summarized in ap-

pendix C. In this case the intersections D71 ∩ D72 and D72 ∩ D7′2 recombine away from

weak coupling.

4.3 Charge 4 type IIB model from F-theory

The first U(1) F-theory model with massless matter charged up to Qmax = 4 was derived

in [34]. It can be viewed as a specialized version of the torus hypersurface equation (p̃F1 = 0)

in the toric ambient space PF1 [16]. The polynomial equation is given as follows

p̃F ′1 = u(s1u
2+s2uv+s3v

2+s5uw+s6vw+s8w
2)+(a1v+b1w)(d0v

2+d1vw+d2w
2). (4.14)

The divisor classes of the coordinates in PF1 as well as those for the sections si, ai and di
are given in table 5. The model is therefore described in terms of three base divisors: [a1],

[b1] and [ẑ] where

ẑ = (s2b1 − s5a1)α2 +
1

a1
(s6a1 − 2s3b1)αβ − 1

a1
(d1a1 − 2d0b1)β2 (4.15)

with

α = d2a
2
1 − d1a1b1 + d0b

2
1 and β = s8a

2
1 − s6a1b1 + s3b

2
1 , (4.16)

is the coordinate of the extra section S1 of the elliptic fibration, responsible for the mass-

less U(1).

The matter spectrum is given in table 6, we stick to the notation of [34] and refer to

it for further details. For our purposes it suffices to specify the expression

t = s1α
3 + (s2s6b1 − s2s8a1 − s5s3b1)α2 + (2s3s8 − s2

6)αβ

− β2(s8d0 − s6d1 + s3d2) + a1s6(d0s8b1 − s3d2b1 + s6d2a1 − a1d1s8)β .
(4.17)
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Representation Locus

14 V (I(4)) := {a1 = b1 = 0}

13 V (I(3)) := {α = β = 0}\ V (I(4))

12 V (I(2)) := {t = ẑ = 0}\ V (I(4)) ∪ V (I(3))

11 V (I(1)) := {ŷ = fẑ4 + 3x̂2 = 0}\ V (I(4)) ∪ V (I(3)) ∪ (V (I(2))

Table 6. The loci for the charged matter representations under the U(1) symmetry for the charge

4 model. The charges are written as subscripts. The locus for the state 11 is given in terms of the

sections x̂, ŷ and ẑ that are the coordinates for the additional section discussed in appendix D.

Let us now consider the following weak coupling limit

a1 → ε1a1 , b1 → ε1b1 , di → ε0di , si → ε0si . (4.18)

We then have

b2 =
s2

6

4
− s3s8 and ∆E = −1

4
∆1 ·∆2 ·∆3 , (4.19)

with the irreducible components ∆i given by

∆1 ≡ b21s3 − a1b1s6 + a2
1s8,

∆2 ≡ s3s
2
5 − s2s5s6 + s1s

2
6 + s2

2s8 − 4s1s3s8, (4.20)

∆3 ≡ d2
2s

2
3 − d1d2s3s6 + d0d2s

2
6 + d2

1s3s8 − 2d0d2s3s8 − d0d1s6s8 + d2
0s

2
8.

The first locus corresponds to a pair of massive U(1) brane/image-brane of the form (4.2),

the second is an invariant brane of the type (3.31) and the third is a pair of brane/image-

brane of the type (4.3). Hence we find the configuration predicted in section 2.4, with the

identifications (sL, s6, sR) = (s3, s6, s8), (p1, p2) = (b1, a1), (w1, w2, w3) = (s2, s5, s1) and

(q1, q2, q3) = (d2, d1, d0) The match of the charged loci with the type IIB ones is provided

in appendix D.

4.4 Charge 4 in F-theory from a Z3 model through type IIB

In [34], the author found the charge 4 model by Higgsing a non-generic U(1) × U(1)

model [63]. In this section we show that this model can be obtained also from the model

in [16], i.e. a fourfold with Z3 discrete symmetry. We will use the weak coupling limit to

achieve this result.

The genus one fibration describing the Z3 fiber in PF1 = P2 is given by the equation

pF1 = s1u
3+s2u

2v+s3uv
2+s4v

3+s5u
2w+s6uvw+s7v

2w+s8uw
2+s9vw

2+s10w
3 . (4.21)

The Sen limit of the Z3 was studied in [36], with the scaling

s4 → εs4 , s7 → εs7 , s9 → εs9 , s10 → εs10 . (4.22)
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The type IIB double cover CY X is given by the equation ξ2 =
s26
4 − sLsR. with sL = s3

and sR = s8. The weak coupling discriminant is

∆E = − 1

4

(
s2

2s8 − s2s5s6 + s2
5s3 + 4s1

(
s2

6

4
− s3s8

))
×
[
s2

10s
3
3 − s10(s4(s3

6 − 3s3s6s8) + s3(−s2
6s7 + 2s3s7s8 + s3s6s9))

+ s8(s2
4s

2
8 + s4(−s6s7s8 + s2

6s9 − 2s3s8s9) + s3(s2
7s8 − s6s7s9 + s3s

2
9))
]
.

The D7-brane configuration is given by a massive U(1) D7-brane and an invariant brane.

The U(1) brane wraps a divisor defined by the equation (2.32) in the quotient B with

(r1, r2, r3, r4) = (s10, s9, s7, s4), while the invariant brane wraps a divisor described by

equation (3.31) with (w1, w2, w3) = (s5, s2, s1).

At weak coupling, one may wonder which restriction on the sections ri makes the U(1)

brane locus (2.32) factorize into two massive branes, one with equation (4.2) ((p1, p2) =

(b1, a1)) and one with equation (4.3) ((q1, q2, q3) = (d2, d1, d0)), i.e. one needs to find the

expressions of r1,...,4 in terms of p1,2 and q1,2,3 that solve the equation

~r ·A3~r = (~p ·A1~p) (~q ·A2~q ) . (4.23)

This problem has a definite answer, that in the F-theory model notation is

s10 = b1d2 , s9 = b1d1 + a1d2 , s7 = b1d0 + a1d1 , s4 = a1d0 . (4.24)

The resulting D7-brane configuration is the one realizing the charge 4 (I) type IIB model.

This result is just obtained in the perturbative limit of the Z3 model. If one applies the

same restriction (4.24) to the equation (4.21), one gets the equation

p′F1
= s1u

3 + s2u
2v + s3uv

2 + s5u
2w + s6uvw + s8uw

2

+ (a1v + b1w)(d0v
2 + d1vw + d2w

2) . (4.25)

that is exactly the F-theory charge 4 model found in [34].

This computation shows how the weak coupling limit can help to construct explicit

complicated models in a simple way. We leave for the future the application of this method

to higher charge models.

5 Charge 5 and 6 models in type IIB

As we have seen in section 3.4, there are not many possibilities to construct a model

with maximal charge 5 or 6 when h1,1
−,eff = 1. There is only one charge 6 model and in

principle two charge 5 ones. Actually only the charge 5 (II) model can be constructed in

full generality. The charge 5 (I) model requires a brane/image-brane pair wrapping the

locus (2.32) with zero intersection away from the orientifold locus; this is not as easy to

realize as when they wrap a locus like (2.32); only for specific base manifolds this may be

realized. For this reason we will explicitly describe only the charge 5 (II) model and the

charge 6 one.
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D71 ∩D72 D71 ∩D7′2 D71 ∩D7′1 D72 ∩D7′2 D71 ∩D7inv D72 ∩D7inv

(Q1, Q2) (1,−1) (1, 1) (2, 0) (0, 2) (1, 0) (0, 1)

Q 3 5 − 2 4 1

Table 7. U(1) charges for the charge 5 (II) model. The state at D71 ∩D7′1 is absent.

5.1 Charge 5 (II) model in type IIB

In this case we have the following homology relation among the odd cycles:

DD72 −DD7′2
= −4(DD71 −DD7′1

) , (5.1)

which is consitent with the choice a = 1, b = 4 for the generator of the massless U(1).

Note that the intersections among DD71 and DD7′1
are required to vanish away from the

orientifold locus. This is possible whenever we specialize the vector ~p in (2.19) to be of the

form (p1, p2) = (1, 0) such that the brane locus in the weak coupling discriminant reads18

PD71 = 0 with

PD71 = sL . (5.2)

The locus for the brane DD72 and its image must be of order four in sL, s6 and sR,

and it can be written as,

PD72 =
(
t1 t2 t3 t4 t5

)
·A4 ·


t1
t2
t3
t4
t5

 . (5.3)

The matrix A4 can be obtained as the non-trivial 5 × 5 block inside M̃⊗4 and it is given

in (A.1). Equation (5.3) finally reads

PD72 =s4
Lt

2
1 + s3

L(−s6t1t2 + sR(t22 − 2t1t3)) + t5(s4
6t1 − s3

6sRt2 + s2
6s

2
Rt3 − s6s

3
Rt4 + s4

Rt5)

+ s2
L(s2

6t1t3 + s6sR(−t2t3 + 3t1t4) + s2
R(t23 − 2t2t4 + 2t1t5))

+ sL(−s3
6t1t4 + s2

6sR(t2t4 − 4t1t5) + s6s
2
R(−t3t4 + 3t2t5) + s3

R(t24 − 2t3t5)) ,

with the D72 locus given by PD72 = 0. The invariant brane locus is given by PD7inv =

0, with the polynomial PD7inv given in (2.32). The D7-brane configuration is therefore

described by ∆E = PD71PD72PD7inv . Note that from the weak coupling perspective we

require 11 sections of line bundles on B in order to describe the charge five model: s6,L,R,

w1,2,3, t1,...,5. These must become the sections sκ defining the F-theory model.

The charges of the fields for the type IIB perspective are given in table 7.

As a final remark, notice that in this model we have the peculiarity that all the matter

loci exhibit different charges under the massless U(1) therefore in the F-theory uplift we

expect no recombination phenomena occurring for the codimension two loci.

18Here one could as well take the divisor PD71 = sR for the choice (p1, p2) = (0, 1).
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D71 ∩D72 D71 ∩D7′2 D71 ∩D7′1 D72 ∩D7′2 D71 ∩D7inv D72 ∩D7inv

(Q1, Q2) (1,−1) (1, 1) (2, 0) (0, 2) (1, 0) (0, 1)

Q 1 5 6 4 3 2

Table 8. U(1) charges for the charge 6 model.

5.2 Charge 6 model in type IIB

The charge six model at weak coupling is obtained with a = 3, b = 2 and κ = 1. We will

have the following relation among the odd divisors:

2(DD72 −DD7′2
) = −3(DD71 −DD7′1

) . (5.4)

The D7-brane configuration is given by ∆E = PD71PD72PD7inv with PD71 given

by (2.27), i.e.

PD71 = (sLq1 − sRq3)2 − (sLq2 − s6q3) (s6q1 − sRq2) , (5.5)

and PD72 = 0 as in (2.32), i.e.

PD72 = r2
1s

3
L − r1s6(r4s

2
6 + sL(−r3s6 + r2sL)) + r1sL(3r4s6 − 2r3sL)sR

+ sR(r2
2s

2
L + sR(−r3r4s6 + r2

3sL + r2
4sR) + r2(r4s

2
6 − r3s6sL − 2r4sLsR)) .

(5.6)

The invariant brane is at PD7inv = 0 with PD7inv given in terms of the base sections

(w1, w2, w3) according to (3.31). For completeness we summarize the charges for the fields

in table 8.

Note that all different intersections have different charges under the massless U(1)

symmetry and therefore we expect no recombination for these loci in the F-theory lift. In

this case we need 13 base sections in order to fully describe a charge 6 model at weak

coupling: s6,L,R, q1,2,3, r1,...,4 and w1,2,3. We claim that these will be the sκ sections

describing the charge 6 F-theory model.

5.3 Explicit examples with charge 5 and 6

We now proceed to construct explicit 6 dimensional charge 5 and charge 6 models in

perturbative type IIB. We choose the two-dimensional base manifold to be B = P2, with

homogeneous coordinates [x1, x2, x3]. The double cover CY two-fold is described by ξ2 = b2,

where b2 is a section of O(6) (L = K̄P2 = O(3)). Hence the O7-plane is in the class

[O7] = 3H. We choose also the line bundle LL = K̄P2 , so that we have LR = K̄P2 as well.

This means that the classes of s6, sL, sR are

[s6] = [sL] = [sR] = 3H, (5.7)

i.e. they are homogeneous polynomials of degree 3 in the homogeneous coordinates xi.
19

These polynomials can be taken independent of each other.20

19This choice is the only one that allows to satisfy the D7-brane tadpole, with the chosen base manifold.
20The maximal number of independent polynomials of degree 3 in three variables is equal to 10.
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(β, ν) (1, 2) (0, 3)

11 36 + 3β 39 36

12 36 + 6β + 24ν + 4βν 98 108

13 9 + 6ν 21 27

14 54 + 9β + β2 64 54

15 3β 3 0

Table 9. Hypermultiplet multiplicities for the charged matter in the two explicit charge 5 models

constructed in the double cover K3 over P2.

The CY X is a K3 surface and the orientifold involution is one of the Nikulin involution

with k = 0. In the present example, the fixed point locus ξ = 0 is connected and has genus

g =
1

2
(2− χ) =

1

2

(
2−

∫
O7
c1(O7)

)
=

1

2

(
2 +

∫
X

9H2

)
= 10 . (5.8)

The only involution compatible with g = 10 and k = 0, according to Nikulin, is (r, a, δ) =

(1, 1, 1). Accordingly we have only one even two-cycle (as we expect from b2(P2) = 1).

Since b2(K3) = 22, we have several odd divisor classes. Choosing b2 =
s26
4 − sLsR, we

have restricted the complex structure in a way to make algebraic two image two-cycles in

different homology classes (without generating singularities in K3).

Charge 5 model. Let us consider first the model with charge 5. In order to work out

the homology classes of the brane stacks D71/D7′1, D72/D7′2 and D7inv we notice that the

choice of LL implies that the divisor class for the sections ti in (5.3) are all equal to each

other, [t1] = . . . = [t5] = βH with β a positive integer number. As regard the invariant

brane locus (3.31) we have [w1] = [w2] ≡ νH and [w3] = (2ν − 3)H. Effectiveness of these

divisor classes implies that ν is an integer greater or equal than two. The classes of the

weak coupling discriminant loci are therefore given by:

[PD71 ] = 3H , (5.9)

[PD72 ] = 12H + 2[t1] = 2(6 + β)H , (5.10)

[PD7inv ] = 6H + [w3] = (3 + 2ν)H . (5.11)

D7-tadpole cancellation implies that

[PD71 ] + [PD72 ] + [PD7inv ] = 8[O7] , (5.12)

conversely

3 + 2(6 + β) + (3 + 2ν) = 8 · 3 i.e. β + ν = 3 . (5.13)

and therefore the only two possibilities for (β, ν) are (1, 2) and (0, 3). The matter multi-

plicities for these states are given in table 9.

The type IIB analogous of the Nèron-Tate height pairing that enters the anomaly

cancellation in 6D (see appendix B) is given by

− b = [3 + 32(6 + β)]H . (5.14)
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(λ, ρ, ν) (1, 0, 2) (0, 1, 2) (0, 0, 3)

11 54 + 9λ+ 6ρ+ 2λρ 63 60 54

12 27 + 18ν + 6ρ+ 4νρ 63 77 81

13 18 + 6λ+ 12ν + 4λν 56 42 54

14 27 + 6ρ+ ρ2 27 34 27

15 9λ+ 6ρ+ 2λρ 9 6 0

16 9 + 3λ+ λ2 13 9 9

Table 10. Hypermultiplet multiplicities for the charged matter in the three explicit charge 6

models.

Charge 6 model. We now choose a D7-brane configuration realizing Qmax = 6. We

have three stacks of branes D71/D7′1, D72/D7′2 and D7inv, as described in section 5.2.

We notice that the choice we made on LL also implies that [q1] = [q2] = [q3] ≡ λH,

[r1] = [r2] = [r3] = [r4] ≡ ρH, [w1] = [w2] ≡ νH and [w3] = (2ν − 3)H, with λ, ρ, ν ∈ N
and ν ≥ 2. Hence, considering the equations (5.5), (5.6) and (3.31) we obtain

[PD71 ] = 6H + 2[q1] = 2(3 + λ)H , (5.15)

[PD72 ] = 9H + 2[r1] = (9 + 2ρ)H , (5.16)

[PD7inv ] = 6H + [w3] = (3 + 2ν)H . (5.17)

D7-tadpole cancellation implies that

[PD71 ] + [PD72 ] + [PD7inv ] = 8[O7] (5.18)

that means

2(3 + λ) + (9 + 2ρ) + (3 + 2ν) = 8 · 3 i.e. λ+ ρ+ ν = 3 . (5.19)

Since ν ≥ 2, the only possibilities for (λ, ρ, ν) are (1, 0, 2), (0, 1, 2) or (0, 0, 3). Each of these

choices produces an explicit smooth model in type IIB with one massless U(1) and matter

with charges 1, 2, 3, 4, 5, 6. The matter multiplicities for these states are given in table 10.

The type IIB analogous of the Nèron-Tate height pairing (see appendix B) for this

model is given by

− b = [8(3 + λ) + 9(3 + 2ρ)]H . (5.20)

Recall once again that all anomalies are canceled for these models.

5.4 Models with incomplete spectra beyond charge 6

In the models we constructed so far, we have demanded that all charges between 1 and a

given maximum charge Qmax appear in the spectrum. As we said, since one can have at

most six intersections with the D7-brane configuration studied so far, the maximum charge

is six. However the bound a + b ≤ 8, derived by the effectiveness of the divisor classes,

allows in principle higher charges.
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a b κ D71 ∩D7′1 D72 ∩D7′2 D71 ∩D7′2 D71 ∩D72

5 1 2 5 1 3 2

7 1 2 7 1 4 3

5 3 2 5 3 4 1

Table 11. U(1) charges for the incomplete models with no invariant brane.

a b κ D71 ∩D72 D71 ∩D7′2 D71 ∩D7′1 D72 ∩D7′2 D71 ∩D7inv D72 ∩D7inv

3 1 1 2 4 6 2 3 1

4 1 1 3 5 8 2 4 1

5 1 1 4 6 10 2 5 1

Table 12. U(1) charges for the incomplete models with invariant brane.

Take for example the case of two U(1) branes without an invariant brane. As discussed

around equation (3.38) this system is bounded by the constraint a + b ≤ 8 and hence we

will have additional options beyond the ones indicated in section 3.4: these are going to

have only four types of massless charged matter. The possibilities are shown in table 11

where we can see that a model with charge 7 is possible.

A similar analysis can be done for the cases in which the invariant brane is present.

In that case one would be able to get maximum charge 10.

We find no consistency conditions that would prevent these models in type IIB, even

though the absence of some charge in the spectrum sounds odd in light of F-theory con-

structions. To realize generic models with Qmax > 6 and with all charges up to Qmax, one

needs to increase the number of (massive U(1)) D7-brane stacks.

5.5 Lifting type IIB models to F-theory

As we have seen for the charge 3 and charge 4 models, once one has the F-theory Weierstrass

model, taking Sen’s weak coupling limit permits us to get the corresponding intersecting

brane configuration in perturbative type IIB string theory. Unfortunately, the converse, i.e.

finding the F-theory lift of a given intersecting brane configuration, is not as straightforward

as applying the Sen limit.

As we have seen in section 3.1, an F-theory model is characterized by a number of

sections sκ of suitable line bundles on B. The Weierstrass model (after a proper shift in x)

can be written as

y2 = x3 + b2x
2 + 2b4x+ b6 (5.21)

with f and g written in terms of b2, b4 and b6 (see (3.3)). The sections b2, b4 and b6 are

functions of sκ. The Sen limit consists in letting the sκ properly scale with ε and then

taking the limit ε → 0. In doing so the bi will have a leading term b0i in an ε expansion.

The D7-brane locus in type IIB is given by

∆E =
(
b04
)2 − b02b06 . (5.22)
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If one were to start with the intersecting brane configuration in type IIB, the starting point

would be this weak coupling discriminant, that could be reconstructed once we know the

algebraic expressions for the brane loci in a double cover Calabi Yau threefold. Then we

see that from this expression we can get the leading terms b0i , but we get no information

about the subleading contributions. Hence it is not straightforward to determine f and g

of the Weierstrass model. The structure of the subleading terms (i.e. the full form of f

and g) is important in determining the configuration, i.e. the gauge group and the matter

content of the F-theory model. Taking an arbitrary value of such subleading contributions

would lead generically to a model with no gauge group and no matter spectrum.

As an example of this issue, consider a model with a pair of brane/image-brane in the

same homology class together with an invariant brane. The corresponding weak coupling

discriminant is then

∆E = (c3 − ξb)(c3 + ξb)

(
c2

1

4
− ξ2c0

)
(5.23)

and the CY equation is ξ2 = c2, i.e. one has

b2 = c2 , b04 =
c1c3

2
, b06 = c0c

2
3 − b2c0c2 +

b2c2
1

4
. (5.24)

This is the weak coupling limit of an F-theory model, where, in order to have the right

scaling of b2,4,6, one makes c3 and b scale as ε (while the other ci’s do not scale). One may

then naively associate with this type IIB configuration the Weierstrass model

y2 = x3 + b2x
2 + b04x+ b06 . (5.25)

After a bit of work one can realize that this model has no extra section and hence it

does not have any massless U(1) symmetry. Only if we take b4 = b04 + b2c0
2 (i.e. adding a

subleading term, scaling as ε2), we get an F-theory model with the same gauge group and

matter spectrum as the one we started with in perturbtive type IIB (and that is connected

to that one by means of the Sen limit [36]). This F-theory model is the Morrison-Park

model with charge 2 states as shown in [36].

The type IIB configurations contemplated in this paper are much more involved than

the Morrison-Park model and therefore there are further complications in guessing how

to go away from the Sen limit, while maintaining the same gauge group and matter spec-

trum.We aim to work on it in a future project.

6 Conclusions and future directions

In this paper we have faced the problem of constructing 6D F-theory models with U(1)

gauge group and matter fields with high charge. These models typically have massless states

with integral charges from 1 to a maximal value Qmax. Our approach was to construct

these models in the type IIB perturbative limit of F-theory. If a model with high charge

exists in type IIB, it must have a consistent F-theory lift.

We have worked out a method to easily construct type IIB models with high charge.

We verified that for Qmax = 3, 4 these are exactly what one obtains by taking the Sen
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weak coupling limit of the existing F-theory models with Qmax = 3, 4. We then described

type IIB models with Qmax = 5, 6. We have built explicit examples, where the base

manifold B is P2. These are consistent string theory models exhibiting a massless U(1)

symmetry with massless hypermultiplets with charges up to five and six. This proves

therefore that massless states with U(1) charges as high as six are part of the 6D string

theory landscape. Unfortunately, while it is relatively easy to go from an F-theory model

to its weak coupling limit, it is not straightforward to lift a type IIB model to F-theory.

Nevertheless, the knowledge of what should be its Sen limit, can help towards the realization

of the corresponding model in F-theory. We plan to approach this issue in the future.

So far we have explored only models with Qmax ≤ 6. This has been realized by two

pairs of U(1) D7 brane/image-brane: one combination of the two U(1) gets a mass by

eating a C2 axion, while the orthogonal combination remains massless. To obtain higher

charges one needs to generalize the construction presented in this paper, adding more D7-

branes with massive U(1)’s and allowing more C2 axions to be eaten by the massive gauge

bosons, i.e. h1,1
−,eff > 1 in the notation of section 3.3. Algebraically one can realize it by

a more specific form of b2 that admits more than two inequivalent matrix factorizations.

This will lead, without any obstruction, to models with Qmax > 6. It would be nice to see

if there is an upper bound for Qmax in type IIB. In [33], it was shown that models with

U(1) symmetries with higher charges can in principle be obtained from models with exotic

non-Abelian matter by means of Higgsing. Along the same line, it has been shown that

SU(N) models with exotic matter could lead, upon Higgsing to U(1) models with charges

Q ≤ 21 in six dimensions. It would be nice to find a similar bound in type IIB U(1) models

(even though with different techniques, as for example three-index antysymmetric states

are not realized in perturbative type IIB).

Another way to obtain models with high U(1) charge is to consider models with gauge

symmetry U(1)n. As the number of U(1)’s increases, the number of charged massless fields

increases as well. Higgsing models with multiple U(1)’s could lead to single U(1) models

with higher charges. For example, the U(1)×U(1) model of [63] has multiplets with charges

(−1, 1) and (−2,−2) among others. A vev in (−1, 1) makes the field (−2,−2) to pick a

charge 4 along the diagonal massless U(1) [34]. This Higgsing can be done in type IIB as

well as in F-theory. Understanding which deformations realize the Higgsing may be easier

in type IIB in some cases. Applying then the same deformation to F-theory models may

lead to the desired high charge realizations.

One may apply the same reasoning to models with discrete symmetry. F-theory mod-

els exhibiting only discrete symmetries are described by genus one fibrations. In this paper

we have considered the Z3 model of [16] and applied the weak coupling limit, obtaining a

Z3 model in type IIB, realized by a pair of brane/image-brane with massive U(1) and an

invariant brane. It was easy to see under which deformation the brane/image-brane sys-

tem splits into the two brane/image-brane system realizing the Qmax = 4 model. Applying

the same deformation to the corresponding Z3 F-theory model, we were able to straight-

forwardly obtain the Qmax = 4 F-theory model of [34]. This method can in principle be

applied to obtain a charge Qmax > 4 model in F-theory. Models with discrete symmetries

Z4 [8] and Zn with n ≤ 5 [64] are already present in literature.
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A Divisors of order 4 in s6, sL, sR

Here we provide the explicit matrix form of A4 and B4:

A4 =



s4
L − s6s3L

2 − s2L(−s26+2sLsR)
2

s6sL(−s26+3sLsR)
2

s46−4s26sLsR+2s2Ls
2
R

2

−1
2s6s

3
L s3

LsR − s6s2LsR
2 − sLsR(−s26+2sLsR)

2
s6sR(−s26+3sLsR)

2

− s2L(−s26+2sLsR)
2 − s6s2LsR

2 s2
Ls

2
R − s6sLs

2
R

2 − s2R(−s26+2sLsR)
2

s6sL(−s26+3sLsR)
2 − sLsR(−s26+2sLsR)

2 − s6sLs
2
R

2 sLs
3
R − s6s3R

2

s46−4s26sLsR+2s2Ls
2
R

2
s6sR(−s26+3sLsR)

2 − s2R(−s26+2sLsR)
2 − s6s3R

2 s4
R


,

(A.1)

and

B3 =


0 −s3

L s6s
2
L −s2

6sL + s2
LsR s3

6 − 2s6sLsR
s3
L 0 −s2

LsR s6sLsR −s2
6sR + sLs

2
R

−s6s
2
L s2

LsR 0 −sLs2
R s6s

2
R

s2
6sL − s2

LsR −s6sLsR sLs
2
R 0 −s3

R

−s3
6 + 2s6sLsR s2

6sR − sLs2
R −s6s

2
R s3

R 0

 . (A.2)

Again A4 = I4 · B3 with

I4 =


s6/2 sL 0 0 0

−sR/2 0 sL/2 0 0

0 −sR/2 0 sL/2 0

0 0 −sR/2 0 sL/2

0 0 0 −sR −s6/2

 , (A.3)

B Anomaly cancelation in 6D models

In section 3.5 we computed the number of charged and neutral hypermultiplets. We dis-

tinguish the two cases with and without invariant brane:

• If there is the invariant brane, then

H = 14 +
K̄

2
+

(
a+ b+ 1

2

)2

[sL]2 − 1

2

(
a+ b+ 1

2

)
[sL] · K̄ (B.1)

+([x1] + [y1] + [w2]) ·
(

[x1] + [y1] + [w2] + 2

(
a+ b+ 1

2

)
[sL]− K̄

2

)
.
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The tadpole cancellation condition

[DD71 ] + [DD7′1
] + [DD72 ] + [DD7′2

] + [DD7inv ] = 8[O7] (B.2)

constrain the classes [x1], [y1] and [w2]:

[x1] + [y1] + [w2] = 4K̄ −
(
a+ b+ 1

2

)
[sL] . (B.3)

Plugging (B.3) into (B.1) one obtains H = 14 + 29
2 K̄

2.

• When there is no invariant brane we have

H = 14 +
K̄

2
+

(
a+ b

2

)2

[sL]2 − 1

2

(
a+ b

2

)
[sL] · K̄ (B.4)

+([x1] + [y1]) ·
(

[x1] + [y1] + 2

(
a+ b

2

)
[sL]− K̄

2

)
.

The D7-tadpole cancellation condition gives

[x1] + [y1] = 4K̄ −
(
a+ b

2

)
[sL] (B.5)

and we obtain H = 14 + 29
2 K̄

2.

In both cases this matches with the anomaly cancellation condition H = V + 273 − 29T .

Remember that in our setup V = 2 where one vector multiplet is massless, while the other

gets a mass by eating one (axionic) hypermultiplet. The total number H that we computed

includes such eaten hypermultiplet. If we count only massless hypermultiplets we should

substract 1 from both sides of the anomaly cancellation condition, and the match will be

still valid.

Next we consider the mixed U(1) gravitational anomaly as well as the pure U(1)

anomaly. The corresponding anomaly cancellation conditions read

− 1

6

∑
Q

nQQ
2 =

1

2
a · b , (B.6)

and
1

3

∑
Q

nQQ
4 =

1

2
b · b , (B.7)

with

a = K̄ and b = −a
2([D71] + [D7′1]) + b2([D72] + [D7′2])

κ2
, (B.8)

where b for example can be derived from the CS couplings
∫
D7i

C4∧Fi∧Fi. These conditions

are analogous to the ones we typically have in F-theory setups with a slight difference in

a factor 1/2 on the right hand side of eqs. (B.6) and (B.7) due to the fact that we are

computing intersections on the double cover manifold X instead of the F-theory base B

(while on the left hand side we are summing only on the projected spectrum: for example
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we are not counting both states from D71∩D72 and states from D7′1∩D7′2). The divisor b

is the analogous of the Nèron-Tate height pairing −π(σ(S1) · σ(S1)) [65], with σ(S1) being

the Shioda map of the section S1 associated to the massless U(1) symmetry, i.e. the extra

section in addition to zero section S0.

Again we consider two different cases depending on whether the invariant brane is

present or not.

• If there is an invariant brane, one can actually verify that

− 1

6

∑
Q

nQQ
2 =

1

2
K̄ ·

(
−ab(a+ b)[sL] + 2a2[x1] + 2b2[y1]

κ2

)
, (B.9)

and
1

3

∑
Q

nQQ
4 =

1

2

(
−ab(a+ b)[sL] + 2a2[x1] + 2b2[y1]

κ2

)2

, (B.10)

where we have used the expression for the massless U(1) charge provided in 3.14 and

table 1. We can then identify the IIB version of the Nèron-Tate height pairing as

−b =
a2([D71] + [D7′1]) + b2([D72] + [D7′2])

κ2
=
ab(a+ b)[sL] + 2a2[x1] + 2b2[y1]

κ2
.

(B.11)

• If there is no invariant brane in the setup, the anomaly expressions we get are

the following

− 1

6

∑
Q

nQQ
2 =

1

2
K̄ ·

(
−8b2K̄ + (a2 − b2)(b[sL] + 2[x1])

κ2

)
, (B.12)

and
1

3

∑
Q

nQQ
4 =

1

2

(
−8b2K̄ + (a2 − b2)(b[sL] + 2[x1])

κ2

)2

. (B.13)

Hence, the type IIB version of the Nèron-Tate height pairing is given by

−b =
a2([D71] + [D7′1]) + b2([D72] + [D7′2])

κ2
=

8b2K̄ + (a2 − b2)(b[sL] + 2[x1])

κ2
,

(B.14)

where we have used the D7 tadpole cancellation condition B.5.

C Matching charged loci in charge 3 (II) model

We now apply the limit to the F-theory matter loci of the charge 3 (II) model. Let us first

compute the expressions for the brane and image brane loci in the Calabi-Yau X. Using the

replacements: (sL, s6, sR) = (s5, s6, s7), (p1, p2) = (s9, s8), (r1, r2, r3, r4) = (s4, s3, s2, s1),
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the ideals can be obtained from eqs. (2.17) and (2.30). We obtain the following prime

decomposition for the divisors of interest

D71 ≡ {2s7s8 − 2ξs9 − s6s9, 2ξs8 − s6s8 + 2s5s9} , (C.1)

D7′1 ≡ {2s7s8 + 2ξs9 − s6s9, 2ξs8 + s6s8 − 2s5s9} . (C.2)

and

D7′2 ≡ {2ξs4s
2
6 − s4s

3
6 − 2ξs4s5s7 − 2ξs3s6s7 + 3s4s5s6s7 + s3s

2
6s7 + 2ξs2s

2
7 − 2s3s5s

2
7

− s2s6s
2
7 + 2s1s

3
7, 2ξs4s5s6 − s4s5s

2
6 − 2ξs3s5s7 + 2s4s

2
5s7 + s3s5s6s7

+ 2ξs1s
2
7 − 2s2s5s

2
7 + s1s6s

2
7, 2ξs4s

2
5 − s4s

2
5s6 − 2ξs2s5s7 + 2s3s

2
5s7 (C.3)

+ 2ξs1s6s7 − s2s5s6s7 + s1s
2
6s7 − 2s1s5s

2
7, 2ξs3s

2
5 − 2s4s

3
5 − 2ξs2s5s6

+ s3s
2
5s6 + 2ξs1s

2
6 − s2s5s

2
6 + s1s

3
6 − 2ξs1s5s7 + 2s2s

2
5s7 − 3s1s5s6s7} ,

D72 ≡ {2ξs4s
2
6 + s4s

3
6 − 2ξs4s5s7 − 2ξs3s6s7 − 3s4s5s6s7 − s3s

2
6s7 + 2ξs2s

2
7 + 2s3s5s

2
7

+ s2s6s
2
7 − 2s1s

3
7, 2ξs4s5s6 + s4s5s

2
6 − 2ξs3s5s7 − 2s4s

2
5s7 − s3s5s6s7

+ 2ξs1s
2
7 + 2s2s5s

2
7 − s1s6s

2
7, 2ξs4s

2
5 + s4s

2
5s6 − 2ξs2s5s7 − 2s3s

2
5s7 (C.4)

+ 2ξs1s6s7 + s2s5s6s7 − s1s
2
6s7 + 2s1s5s

2
7, 2ξs3s

2
5 + 2s4s

3
5 − 2ξs2s5s6

− s3s
2
5s6 + 2ξs1s

2
6 + s2s5s

2
6 − s1s

3
6 − 2ξs1s5s7 − 2s2s

2
5s7 + 3s1s5s6s7} .

Remember that in type IIB we have charge 3 states at D71 ∩ D7′1 \ D71 ∩ O7, charge 2

states at D71 ∩D7′2 and charge 1 states at D71 ∩D72 and D72 ∩D7′2 \D72 ∩O7.

Let us see how we obtain these loci by applying the Sen limit, that in this case is given

by (4.12), i.e. s1,2,3,4 scales as ε1.

• The charge 3 states live at the locus

V (I(3)) := {s8 = s9 = 0} . (C.5)

In the Sen limit, s8,9 do not scale with ε. In fact, we obtain the same locus in

type IIB. Because of the identification (s9, s8) = (p1, p2), one sees that this locus is

exactly when the brane and its image intersect away from the orientifold locus (fixed

locus of the involution), see (2.18). Hence we find agreement with what predicted in

table 3.

• The charge 2 locus in F-theory is given by

V (I(2)) := {s4s
3
8− s3s

2
8s9 + s2s8s

2
9− s1s

3
9 = s7s

2
8 + s5s

2
9−s6s8s9 = 0}\ V (I(3)) . (C.6)

The two polynomials are homogeneous if ε, hence the locus is not modified by sending

ε → 0. Let us check that this gives the intersection D71 ∩ D7′2. Intersecting the

locus (C.6) with the Calabi-Yau X makes it split into three codimension two ideals.

One of them corresponds to (C.5), that should be removed, while the other two are

mapped to each other under the involution ξ 7→ −ξ. One can show that these are
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exaclty what one obtains from the instersection D71 ∩D72 and D7′1 ∩D7′2. The full

expression reads:21

D71 ∩D72 = {2s7s8 − 2ξs9 − s6s9, 2ξs8 − s6s8 + 2s5s9, s4s
3
8 − s3s

2
8s9 + s2s8s

2
9

− s1s
3
9, 2s4s6s

2
8 − 2s4s5s8s9 − 2s3s6s8s9 + 2ξs2s

2
9 + 2s3s5s

2
9 + s2s6s

2
9

− 2s1s7s9, 2s4s5s
2
8 − 2s3s5s8s9 + 2ξs1s

2
9 + 2s2s5s

2
9 − s1s6s

2
9, 2s4s

2
6s8

− 2ξs4s5s9 − 2ξs3s6s9 − 3s4s5s6s9 − s3s
2
6s9 + 2ξs2s7s9 + 2s3s5s7s9

+ s2s6s7s9 − 2s1s
2
7s9, 2s4s5s6s8 − 2ξs3s5s9 − 2s4s

2
5s9 − s3s5s6s9

+ 2ξs1s7s9 + 2s2s5s7s9 − s1s6s7s9, 2s4s
2
5s8 − 2ξs2s5s9 − 2s3s

2
5s9

+ 2ξs1s6s9 + s2s5s6s9 − s1s
2
6s9 + 2s1s5s7s9, 2ξs4s

2
6 + s4s

3
6 − 2ξs4s5s7

− 2ξs3s6s7 − 3s4s5s6s7 − s3s
2
6s7 + 2ξs2s

2
7 + 2s3s5s

2
7 + s2s6s

2
7 − 2s1s

3
7,

2ξs4s5s6 + s4s5s
2
6 − 2ξs3s5s7 − 2s4s

2
5s7 − s3s5s6s7 + 2ξs1s

2
7 + 2s2s5s

2
7

− s1s6s
2
7, 2ξs4s

2
5 + s4s

2
5s6 − 2ξs2s5s7 − 2s3s

2
5s7 + 2ξs1s6s7 + s2s5s6s7

− s1s
2
6s7 + 2s1s5s

2
7, 2ξs3s

2
5 + 2s4s

3
5 − 2ξs2s5s6 − s3s

2
5s6 + 2ξs1s

2
6

+ s2s5s
2
6 − s1s

3
6 − 2ξs1s5s7 − 2s2s5s7 + 3s1s5s6s7} . (C.7)

• In F-theory, the charge 1 locus is given by

V (I(1)) := {y1 = fz4
1 + 3x2

1 = 0}\ (V (I(2)) ∪ V (I(3))) (C.8)

where x1, y1 and z1 are the section coordinates in the Weierstrass form. These

coordinates, written in terms of the sections si, can be found in equation (B8),

appendix B of [16]. Since their expressions are very long, we will not report them here.

One can first take the expression for y1 and apply the weak coupling limit (4.12) and

show that at leading order in ε y1 takes the form

y1 = ε
1

2
Az2

1 +O(ε2) , (C.9)

with

A = s4s
2
6 − (s4s5 + s3s6)s7 + s2s

2
7)s3

8 − 3(s4s5s6 + s7(−s3s5 + s1s7))s2
8s9

+ 3(s4s
2
5 − s2s5s7 + s1s6s7)s8s

2
9 + (−s3s

2
5 + s2s5s6 − s1s

2
6 + s1s5s7)s3

9

and

z1 = s7s
2
8 + s5s

2
9−s6s8s9 , (C.10)

similarly for fz4
1 + 3x2

1,

fz4
1 + 3x2

1 = ε
1

2
Bz3

1 +O(ε2) , (C.11)

21The primary decomposition forD71 ∩D7′2 includes an additional codimension three piece {s2 = s6 =

s5 = 0} that is absent as we are working in 6D compactifications.
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with

B =s7(−s3s
2
6 + 2s3s5s7 + s2s6s7 − 2s1s

2
7)s3

8 + 3s7(s3s5s6 − 2s2s5s7 + s1s6s7)s2
8s9

+ 3s7(−2s3s
2
5 + s2s5s6 − s1s

2
6 + 2s1s5s7)s8s

2
9 + (s6(s3s

2
5 + s6(−s2s5 + s1s6))

+ s5(2s2s5 − 3s1s6)s7)s3
9 + s4(s6s8 − 2s5s9)((s2

6 − 3s5s7)s2
8 − s5s6s8s9 + s2

5s
2
9) .

Therefore, at weak coupling the locus {y1 = fz4
1 + 3x2

1 = 0} becomes {Az2
1 = Bz3

1 =

0}. Since we have to subtract V (I(2)) ∪ V (I(3)), then z1 6= 0 and we obtain that

the charge one locus is fully captured by {A = B = 0}. Considering the primary

decomposition of this locus in the double cover, one obtains three codimension two

irreducible components: the first one is

D72 ∩D7′2 \D72 ∩O7 = {s4s
2
6 − s4s5s7 − s3s6s7 + s2s

2
7, s4s5s6 − s3s5s7 + s1s

2
7,

s4s
2
5 − s2s5s7 + s1s6s7, s3s

2
5 − s2s5s6 + s1s

2
6 − s1s5s7},

(C.12)

that, as indicated, corresponds to the component of D72∩D7′2 that is away from the

orientifold locus ξ = 0. The other two loci are orientifold image of each other; one of

them is given by the following expression

D71 ∩D7′2 = {2s7s8 − 2ξs9 − s6s9, 2ξs8 − s6s8 + 2s5s9, 2ξs4s
2
6 − s4s

3
6 − 2ξs4s5s7

− 2ξs3s6s7 + 3s4s5s6s7 + s3s
2
6s7 + 2ξs2s

2
7 − 2s3s5s

2
7 − s2s6s

2
7 + 2s1s

3
7,

2ξs4s5s6 − s4s5s
2
6 − 2ξs3s5s7 + 2s4s

2
5s7 + s3s5s6s7 + 2ξs1s

2
7 − 2s2s5s

2
7

+ s1s6s
2
7, 2ξs4s

2
5 − s4s

2
5s6 − 2ξs2s5s7 + 2s3s

2
5s7 + 2ξs1s6s7 − s2s5s6s7

+ s1s
2
6s7 − 2s1s5s

2
7, 2ξs3s

2
5 − 2s4s

3
5 − 2ξs2s5s6 + s3s

2
5s6 + 2ξs1s

2
6

− s2s5s
2
6 + s1s

3
6 − 2ξs1s5s7 + 2s2s

2
5s7 − 3s1s5s6s7}.

(C.13)

We then found that the charge one locus of the F-theory threefold, splits into the

two charge one loci that are expected in the corresponding type IIB model.

D Matching charged loci in charge 4 model

In this appendix we illustrate the matching of the codimension two loci for the charged

matter in F-theory and type IIB. Recalling the identifications (sL, s6, sR) = (s3, s6, s8),

(p1, p2) = (b1, a1), (w1, w2, w3) = (s2, s5, s1) and (q1, q2, q3) = (d2, d1, d0), one can see that

for the discriminant locus ∆1 (see (4.20)) the splitting into brane/image brane is governed

by (4.2). For the discriminant locus ∆2 is an invariant brane (see (3.31)) and similarly for

∆3 that splits in the Calabi-Yau X accoding to (4.3).

• The charge four locus is given by

V (I(4)) := {a1 = b1 = 0} . (D.1)

Note that in this case D71 is described in terms of (p1, p2) = (a1, b1). According

to (2.18), the brane and its image intersect away from the orientifold over the locus
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{a1 = b1 = 0}, so that the charge 4 locus in type IIB corresponds to D71 ∩D7′1, in

accordance with table 2.

• The charge three locus in F-theory is described by the variety

V (I(3)) := {α = β = 0}\ V (I(4)) (D.2)

with α and β given in (4.16). We notice that after taking the scaling a1 → εa1 and

b1 → εb1, the polynomials α and β are homogeneus of degree two in ε and hence

the locus does not suffer modifications at weak coupling.One can show that in the

Calabi-Yau X the ideal I(3) decomposes into three prime ideals: the first one is given

by (D.1) and it should be removed. The remaining two are image to each other under

ξ 7→ −ξ. One of them is equal to the intersection of D71 and D7′2 up to codimension

three loci (the other is its orientifold image):

D71 ∩D7′2 = {2ξb1 − b1s6 + 2a1s8, 2ξa1 − 2b1s3 + a1s6, 2ξd2s6 − d2s
2
6 − 2ξd1s8

+ 2d2s3s8 + d1s6s8 − 2d0s
2
8, b1d2s3 − a1d2s6 − b1d0s8 + a1d1s8,

2ξd2s3 − d2s3s6 − 2ξd0s8 + 2d1s3s8 − d0s6s8, b1d1s3 − a1d2s3

− b1d0s6 + a1d0s8, 2ξd1s
2
3 − 2d2s3 − 2ξd0s6 + d1s3s6 − d0s

2
6

+ 2d0s3s8, b1d
2
0 − a1b1d1 + a2

1d2} . (D.3)

• The charge two locus is given by the following expression

V (I(2)) := {t = ẑ = 0}\ V (I(4)) ∪ V (I(3)) (D.4)

where t and ẑ are given in equations (4.17) and (4.15) respectively. In this case, the

scalings with ε change the locus. Note that upon scaling t and ẑ take the follow-

ing form

t = ε4βA+O(ε5) , ẑ = ε4βB +O(ε5) , (D.5)

with

A = 2a1b1(d1s3 − d0s6)s8 + a2
1s8(−d2s3 + d0s8)

+ b21(d2s
2
3 − d1s3s6 + d0s

2
6 − d0s3s8) , (D.6)

and

B = b21(d1s3 − d0s6) + 2a1b1(−d2s3 + d0s8) + a2
1(d2s6 − d1s8) , (D.7)

therefore at weak coupling, the charge 2 ideal becomes {βA, βB}. This ideal de-

composes into three codimension 2 ideals when intersected with the type IIB CY X.

The first one corresponds to the intersection of D72 and its image away from the

orientifold locus:

D72 ∩D7′2\D72 ∩O7 = {d2s6 − d1s8, d2s3 − d0s8, d1s3 − d0s6} , (D.8)
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as expected for brane/image-brane wrapping a divisor of order 2 in s6,L,R, see (2.25).

The remaining two ideals are mapped to each other under the orientifold involution.

One can show that one of these ideals corresponds to

D71 ∩D7inv = {2ξb1 − b1s6 + 2a1s8, 2ξa1 − 2b1s3 + a1s6, 2ξd2s6 − d2s
2
6

− 2ξd1s8 + 2d2s3s8 + d1s6s8 − 2d0s
2
8, b1d2s3 − a1d2s6 − b1d0s8

+ a1d1s8, 2ξd2s3 − d2s3s6 − 2ξd0s8 + 2d1s3s8 − d0s6s8, b1d1s3

− a1d2s3 − b1d0s6 + a1d0s8, 2ξd1s3 − 2d2s
2
3 − 2ξd0s6 + d1s3s6

− d0s
2
6 + 2d0s3s8, b

2
1d0 − a1b1d1 + a2

1d2} . (D.9)

Hence, the splitting of the F-theory matter locus coincides with the expectations

from the type IIB side (see table 2).

• The charge one locus is written as

V (I(1)) := {ŷ = fẑ4 + 3x̂2 = 0}\ V (I(4)) ∪ V (I(3)) ∪ (V (I(2)) (D.10)

in terms of the coordinates [x̂ : ŷ : ẑ] for the section in the Weierstrass polynomial.

The expressions for these, in terms of the base sections a1, b1 si, di, are very long and

can be found in a Mathematica notebook (Charge4Model.nb) as part of the ancillary

files of the arXiv post22 of ref. [34]. Following an analogous procedure as the one

outlined in this and in the previous appendix one can apply the weak coupling limit

to this locus and find that it splits in type IIB to the intersections D72 ∩ D72 and

D72 ∩D7inv.
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[50] L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4,

N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].

[51] E. Poppitz, On the one loop Fayet-Iliopoulos term in chiral four-dimensional type-I orbifolds,

Nucl. Phys. B 542 (1999) 31 [hep-th/9810010] [INSPIRE].

[52] G. Aldazabal et al., D = 4 chiral string compactifications from intersecting branes, J. Math.

Phys. 42 (2001) 3103 [hep-th/0011073] [INSPIRE].

[53] E. Plauschinn, The generalized Green-Schwarz mechanism for type IIB orientifolds with D3-

and D7-branes, JHEP 05 (2009) 062 [arXiv:0811.2804] [INSPIRE].

[54] T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, On fluxed instantons and moduli

stabilisation in IIB orientifolds and F-theory, Phys. Rev. D 84 (2011) 066001

[arXiv:1105.3193] [INSPIRE].

[55] T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, Massive abelian gauge symmetries and

fluxes in F-theory, JHEP 12 (2011) 004 [arXiv:1107.3842] [INSPIRE].

[56] A.P. Braun, A. Collinucci and R. Valandro, Hypercharge flux in F-theory and the stable Sen

limit, JHEP 07 (2014) 121 [arXiv:1402.4096] [INSPIRE].

[57] J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145

[hep-th/0304042] [INSPIRE].

[58] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D

83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[59] A.P. Braun, S. Gerigk, A. Hebecker and H. Triendl, D7-brane moduli vs. F-theory cycles in

elliptically fibred threefolds, Nucl. Phys. B 836 (2010) 1 [arXiv:0912.1596] [INSPIRE].

[60] V.V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, in the

proceedings of the International Congress of Mathematicians (ICM 1986), August 3–11,

Berkeley, U.S.A. (1986).

[61] A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02

(2009) 005 [arXiv:0805.1573] [INSPIRE].

[62] A.P. Braun, A. Hebecker and H. Triendl, D7-brane motion from M-theory cycles and

obstructions in the weak coupling limit, Nucl. Phys. B 800 (2008) 298 [arXiv:0801.2163]

[INSPIRE].
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