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ON CODIMENSION-1 SUBMANIFOLDS OF THE REAL AND

COMPLEX PROJECTIVE SPACE

BENIAMINO CAPPELLETTI–MONTANO, ANDREA LOI, AND DANIELE ZUDDAS

Abstract. Inspired by the analogous result in the algebraic setting (Theorem 1) we
show (Theorem 2) that the product M × RPn of a closed and orientable topological
manifold M with the n-dimensional real projective space cannot be topologically locally
flat embedded into RPm+n+1 for all even n > m.

1. Introduction

Since the early papers of Whitney ([14]), Hirsch ([8]) and Smale ([12]), the theory of
embeddings focused on the question whether a smooth manifold can be immersed / em-
bedded into a Euclidean space. In particular, there are a number of results concerning the
best immersion or embedding of a projective space of a given dimension into a Euclidean
space, and, on the other hand, topological obstructions to such immersability in some
dimensions have been found (see, for instance, [1], [2], [4], [10], [11]).
In last years the study of immersions has also fascinating interplays with other areas of

mathematics. For instance, determining the smallest immersion dimension of a projective
space into a Euclidean space is related to the study of robot motion planning [5].
Very few is known, so far, about embeddings into a projective space, a part of some

results concerning the analytical and smooth embeddings of CPm into CPn [6] and the
set of regular homotopy classes of codimension-1 immersions into RPn [3].
One of the aims of this paper is a contribution in this direction. Namely, we are inter-

ested in codimension-1 embeddings into a projective space. Our motivation is given by
the following result, in the category of complex manifolds (see next section for the proof).

Theorem 1. LetM be a compact complex manifold of complex dimension m > 1. There
are no holomorphic embeddings of M ×CPn into CPm+n+1 for n > m.

Here we ask if the previous theorem has a topological counterpart, by taking M any
closed, connected, orientable, topological manifold and by considering nonorientable, i.e.
even dimensional, real projective spaces instead of complex projective spaces. The follow-
ing theorem is a result in this direction.

Theorem 2. LetM be a closed, connected, orientable, topological manifold of dimension

m > 1. There are no topologically locally flat embeddings of M ×RPn into RPm+n+1 for

all even n > m.

The paper is organized as follows. In the next section we prove Theorem 1 and Theorem
2. In the last one we show, by some counterexamples, that the above results do not hold
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by taking immersions instead of embeddings, and that the assumptions on the dimension
of M can not be relaxed. Of course the Segre embedding CP1×CP1 → CP3 provides an
example of codimension-1 embedding between projective spaces with m = n, according
to the notation of Theorem 1. However, in view of our results, one can ask if it exhausts
all the embeddings of the product of projective spaces into a projective space. This will
lead us to formulate a general conjecture on embeddings of Grassmannians.

2. Proof of the main results

In order to prove Theorem 1, we recall some basic facts of algebraic geometry, referring
the reader to Section 1 and 2 of Chapter 1 in [7] for details and further results.
Let X be a complex manifold of complex dimension k. Any codimension-1 complex

submanifold V ⊂ X can be seen as a smooth divisor on X . Recall that a divisor D of
X is a locally finite formal linear combination D =

∑
ajVj , where the Vj are irreducible

holomorphic subvarieties of complex dimension n − 1 (equivalently, Vj can be described
locally as zeros of a single holomorphic function). To each divisor D on X (and hence
to any codimension-1 complex submanifold V ⊂ X) we can associate a holomorphic line
bundle L = [V ] on X (see [7, p.132]). A holomorphic line bundle L over a compact
complex manifold X is said to be positive if there exists an integral Kähler form ω on X
representing the first Chern class of L, i.e. c1(L) = [ω], where [ω] ∈ H2

dR(X ;R) denotes
the second de Rham cohomology class of ω. One has the following celebrated theorem.

Lefschetz Hyperplane Theorem. Let X be a compact complex manifold of complex

dimension k and let V be a codimension-1 complex submanifold of X such that the

associated line bundle [V ] is positive. Then, the linear map

Hq(X ;Q) → Hq(V ;Q)

induced by the inclusion V →֒ X is an isomorphism for q 6 k − 2 and injective for

q = k − 1.
We are now ready to prove our main theorems.

Proof of Theorem 1. The proof is by contradiction. Suppose that there is a holomorphic
embedding ϕ : M×CPn → CPm+n+1. Since all the divisors ofCPm+n+1 are multiple of the
hyperplane divisor H = CPm+n ⊂ CPm+n+1, it follows that the holomorphic line bundle
[V ] associated to the complex submanifold V = ϕ(M × CPn) ⊂ CPm+n+1 is positive.
The assumptions m > 1 and n > m together with the Lefschetz hyperplane theorem for
q = 2, yields the equality

b2(M ×CPn) = b2(CPm+n+1)

among the second Betti numbers. Using Künneth’s theorem and the fact that the second
Betti number of the complex projective space is 1, we get

1 + b2(M) = b2(M ×CPn) = b2(CPm+n+1) = 1,

yielding the desired contradiction since b2(M) 6= 0 being M an algebraic manifold. �

Proof of Theorem 2. Suppose, by contradiction, that there is a topologically locally flat
embedding g : M ×RPn → RPm+n+1. We put N = g(M ×RPn) and Py = g({y}×RPn),
where y ∈ M is fixed. Since g is an embedding, we have N ∼= M ×RPn and Py

∼= RPn.
Let p : Sm+n+1 → RPm+n+1 be the universal covering map.

The preimage Ñ = p−1(N), being a closed codimension-1 locally flat submanifold of

Sm+n+1, is the boundary of a codimension-0 submanifold U ⊂ Sm+n+1. Therefore, Ñ is
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orientable, and since M × RPn is nonorientable because n is even, it follows that Ñ is
connected. We claim that the homomorphism

i∗ : π1(Py) → π1(RPm+n+1) ∼= Z2,

induced by the inclusion i : Py → RPm+n+1, is an isomorphism.
To prove the claim, we consider the monodromy ω : π1(N) → Σ2 of the covering map

given by the restriction p| : Ñ → N , where Σ2 is the symmetric group of two elements.

Consider also the monodromy ω̃ : π1(RPm+n+1) → Σ2 of the covering map p. It is clear
that ω = ω̃ ◦ j∗, where j∗ : π1(N) → π1(RPm+n+1) is the homomorphism induced by the
inclusion j : N → RPm+n+1.
Let a ∈ π1(M) be any element, and let b ∈ π1(RPn) ∼= Z2 be the generator. A loop

in RPn that represents b is orientation-reversing (which means that the parallel trans-
port along this loop reverses the orientation of the tangent space at the base point, or,
equivalently, that the tubular neighborhood of this loop in RPn is a nonorientable mani-
fold). On the other hand, since M is orientable, every loop in M is orientation-preserving
(that is, its tubular neighborhood is orientable). Hence, a loop λ in N that represents
(a, b) ∈ π1(M)× π1(RPn) ∼= π1(N) is orientation-reversing.

Since Ñ is orientable, every lifting λ̃ of λ to Ñ cannot be a loop (otherwise the tubular

neighborhood of λ̃ in Ñ would map homeomorphically to the tubular neighborhood of
λ by p|Ñ , which is impossible because of the nonorientability of the latter). This implies

that ω([λ]) = ω(a, b) is not the identity element of Σ2. In particular, for a = 1, ω(1, b) =
ω̃(j∗(1, b)) = ω̃(i∗(b)) 6= 1, and so i∗(b) 6= 1. Since π1(Py) ∼= Z2, this proves the claim.
Now, we proceed with the proof of the theorem. The homology class of Py in

Hn(RPm+n+1;Z2) ∼= Z2

is equal to zero because Py is disjoint from an isotopic copy of it, say Py′ for y′ 6= y,
while the generator of Hn(RPm+n+1;Z2), that is the homology class of the standard
RPn ⊂ RPm+n+1, has non-zero self-intersection, given that n > m.
Let η ∈ H1(RPm+n+1;Z2) ∼= Z2 be the generator. The fact that i∗ is an isomorphism

between fundamental groups implies that i∗(η) 6= 0 in H1(Py;Z2). Thus, i
∗(η)n 6= 0 in

Hn(Py;Z2). On the other hand, i∗(η)n = i∗(ηn) = 0 because 〈ηn, [Py]〉 = 0, being [Py] = 0
in Hn(RPm+n+1;Z2). Having obtained a contradiction, we conclude the proof. �

Corollary 3. There are no smooth embeddings of M ×RPn into RPm+n+1 for every

smooth, closed, orientable manifold M of dimension m > 1 and for every even n > m.

3. Final remarks

1. The assumption n > m in Theorem 1 cannot be relaxed. For example, CP1×CP1

admits a holomorphic embedding into CP3 by means of the Segre embedding, namely
the map

CP1×CP1 → CP3

([z0, z1], [w0, w1]) 7→ [z0w0, z0w1, z1w0, z1w1].

Nevertheless, we do not know if the hypothesis n > m in Theorem 2 (still assuming n
even) can be dropped (cf. the proof given in the previous section).

2. Let us consider a smooth embedding of S1×RP3 into RP5 constructed as follows. First,
take an embedding ψ : RP3 → R5, whose existence is guaranteed by Wall’s theorem
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[13]; then consider a compact tubular neighborhood T of ψ(RP3) in R5. Since RP3 is
orientable and the embedding is of codimension 2, it is well known [9, Chapter 11] that
the normal bundle of RP3 in R5 is trivial, hence T ∼= D2×RP3, where D2 denotes the
2-dimensional disk. By taking the boundary of T , we then get an embedding of S1×RP3

into R5. Finally, by composing this embedding with the inclusion of R5 into RP5 as an
affine chart one gets a smooth embedding S1 ×RP3 → RP5. Similarly, starting from
a suitable embedding of RP3 into R6 (obtained by composing the previous one with
the standard inclusion R5 ⊂ R6), one can show that there exists a smooth embedding
S2 × RP3 → RP6. These constructions show that the evenness of n in Theorem 2
cannot be avoided.

3. The assumption in Theorem 2 cannot be weakened by considering immersions instead
of embeddings. Indeed, S1 ×RP2 (actually S1 × S for any closed surface S) admits a
smooth immersion into RP4 constructed as follows. Take an embedding ψ : RP2 →֒ R4

and a 2-dimensional plane H disjoint from ψ(RP2); then, the rotation of ψ(RP2)
around H generates an immersed copy of S1 × RP2. By composing this immersion
with the inclusion of R4 into RP4 as an affine chart, one gets the desired immersion.

Notice that the proof of Theorem 1 easily extends by taking complex Grassmanni-
ans instead of projective spaces. Thus, we believe that Theorem 2 can be extended to
nonorientable Grassmannians instead of projective spaces.
Actually, in view of this last observation and the first remark in this section, it makes

sense to formulate the following more general conjecture.

Conjecture. Let Gki(R
ni) denote the Grassmannian of ki-planes in Rni, for ki > 1 and

i ∈ {1, 2, 3}. Then, the only codimension-1 smooth embedding

Gk1(R
n1)×Gk2(R

n2) → Gk3(R
n3)

is the Segre embedding

RP1 ×RP1 → RP3 .
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