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Abstract

In this thesis, we present the results obtained during the PhD, concerning the
radiation-mediated processes between atoms or molecules, such as the dispersion
and the resonance interaction, the resonance energy transfer between atoms or
molecules, in the presence of external environments, in the framework of quantum
electrodynamics. The effect of external environments, or of non-equilibrium initial
conditions, on radiation-mediated processes, and the possibility to manipulate and
control such processes through external actions, has been widely investigated in
recent literature from both a theoretical and experimental point of view. These
investigations and research subjects have inspired the research work presented in
this thesis.

Firstly, the resonance exchange of energy between two atoms placed inside a
perfectly conductor cylindrical waveguide is considered. We find that the space
dependence of the energy transfer rate and its magnitude are deeply modified if
the atomic transition frequency is below the waveguide lower cut-off frequency; the
possibility to change the energy transfer rate by changing the cylinder radius, is
shown. In the same physical system, the resonance interaction energy between two
entangled atoms is investigated. We find that the interaction is slightly modified if
the atoms are in the near zone, becoming more and more suppressed approaching
the intermediate zone, leading to a complete inhibition in the far-zone limit. In
addition to the possibility to modify the interaction by changing the waveguide
radius, we also show that the resonance force can change its character due to
the waveguide, from repulsive to attractive, when the atoms have dipole moments
orthogonal to the guide axis.

Next, a dynamical situation for the resonance interaction energy is considered.
We investigate the time-dependent resonance interaction between two entangled
atoms in the free space, starting from a nonequilibrium condition, during the dy-
namical atomic self-dressing process. We show that the interaction energy vanishes
when the atoms are outside the light-cone of each other, in agreement with the
relativistic causality, whereas it instantaneously settles to its static value after
the causality time. We also analyse the time-dependent electric energy density in
the space around the two correlated atoms, showing a suppression or an enhance-
ment, if the system is prepared in the antisymmetric (subradiant) or symmetric
(superradiant) state.

Finally, we consider the dispersion interaction (van der Waals and Casimir-
Polder) between two ground-state hydrogen atoms, interacting with the electro-
magnetic field in the vacuum state, in the presence of external static electric fields.
We show that the presence of the external field strongly modifies the dispersion
force between the atoms both in the near and far zone, changing its space depen-
dence, its magnitude and even its attractive/repulsive character. Our new find-



ings clearly show the possibility to control the interatomic dispersion interactions
through external actions.
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Introduction

The main topic of this PhD thesis concerns with the study of radiation-mediated
processes between atoms or molecules in the presence of external environments,
in the framework of quantum electrodynamics. Specifically, we have considered
the following quantum radiative processes between neutral atoms, molecules or
macroscopic bodies arising from their common interaction with the quantum elec-
tromagnetic field: the dispersion interaction (van der Waals and Casimir-Polder),
the resonance interaction and the resonance energy transfer process. These pro-
cesses have been investigated when the quantum emitters are in the presence of
external environments and the field is in its vacuum state, in which every possible
mode is occupied by zero photons. We have also studied the dynamical resonance
interaction energy between two entangled atoms, starting from a nonequilibrium
condition.

Called by Julian Schwinger "one of the least intuitive consequences of quantum
electrodynamics", Casimir dispersion forces are ubiquitous interactions between
neutral atoms, molecules or among unpolarized and unmagnetized macroscopic
bodies, mediated by the quantum electromagnetic field. They are deeply related
to the existence of the vacuum field fluctuations of the electromagnetic field, and to
the exchange of virtual photons between the atoms. In spite of their small intensity,
the dispersion forces, such as the van der Waals interaction, the Casimir-Polder
interaction and the Casimir interaction, are turned to be extremely important
in many areas of science, from fundamental and solid-state physics, to quantum
chemistry, biology and even in cosmology and in engineering. In fact, aside from
its importance as a quantum fundamental interaction between any two neutral
bodies, and more generally as a consequence of quantized fields, the Casimir force
may take an increasingly practical importance. One reason was initially recognized
by Feynman in 1959 in a talk on the physics involved in making micromachines:
there is the problem that materials stick together by the molecular (van der Waals)
attraction. In more recent years, their crucial role in the development of micro-
and nano-electromechanical devices have been widely taken into account and in-
vestigated, and considerable efforts are now devoted to controlling these forces,
also in relation to the problem of "stiction".
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The resonance force is a quantum interaction between two atoms or molecules,
one excited and the other in its ground-state, prepared in a symmetrical or anti-
symmetrical entangled state. The main contribution to the resonance interaction is
due to the exchange of a real photon between the two quantum emitters, and thus
it is generally much larger than the van der Waals interaction between ground-state
atoms, and comparable with the Casimir-Polder force between a ground-state atom
and a macroscopic body. Despite its remarkable strength, this force has not been
yet experimentally detected directly because several difficulties emerge, mainly
that the atomic system must be prepared and maintained in an entangled state
for a sufficiently long time. The spontaneous decay of the excited atom and all
the perturbations due to the interactions with the environment, are the main fac-
tors that destroy the quantum correlation of the atomic state, making extremely
difficult to detect such force.

Last but not the least, the resonance energy transfer between atoms, molecules
or chromophores is one of the most simple and fundamental physical phenomenon
in nature. It is the exchange of energy, typically electronic, between two quantum
emitters, one excited (donor) and the other in its ground state (acceptor), interact-
ing with the quantum electromagnetic field. The transfer of energy between a pair
of entities such as atoms, molecules or even nano-structures plays an extremely
important role in several areas of science: from fundamental physics, optics and
photophysics, to quantum chemistry and especially in biophysics, with promising
applications in nano-photonics, ranging from photovoltaics to bio-medical sensing.
In the photosynthesis, in particular, the excitation energy is absorbed by pigments
in the photosynthetic antennae and subsequently transferred to a reaction center
by a series of hops between other chomophores units. In living organisms which
perform photosynthesis, it has been found that the light-harvesting efficiency is
indeed above 99%; although this process has been investigated extensively over
many decades, there exist open questions regarding the underlying mechanisms
leading to this remarkably high efficiency.

The common denominator of the radiation-mediated processes previously out-
lined is that they arise from the interaction between matter and the quantum
electromagnetic field, even if the field is in the vacuum state. A fundamental
and astonishing consequence of the field quantization is the existence of electro-
magnetic field fluctuations even in the vacuum state, where all possible modes are
occupied by zero photons, and the system is at zero temperature. The vacuum field
fluctuations are strictly related to virtual photons, each carries an energy equal to
~ω/2, that cannot be converted to other forms of energy. In spite of this, the vir-
tual photons can be seen as responsible for a range of physically observable effects,
such as the Lamb shift of atomic energy levels in the free-space, the spontaneous
decay of an excited atom, the Casimir effect, and the modification of the electron
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magnetic moment. The interaction between virtual photons and the matter, such
as atoms or molecules, leads also to observable radiation-mediated processes, such
as the dispersion interaction between atoms or between atoms and macroscopic
bodies, the resonance interaction between correlated atoms or molecules, as well
as the resonance energy transfer between molecules, which are investigated in the
thesis.

The normal modes of the quantum electromagnetic field strongly depend on
the boundary conditions set by macroscopic bodies or, in general, by external en-
vironments. They dictate, for instance, if the wavevectors are continuous (as in
the free space or in the presence of a single mirror) or discrete (as inside a cavity);
in other words, the environment dictates the shape of the virtual and real photons
that can exist. Therefore, since the presence of boundaries changes the density of
states and the dispersion relation of the quantum field, it must also have an effect
on the radiation-mediated processes considered. The dispersion and resonance in-
teractions, as well as the resonance energy transfer, can be dramatically modified
by means of an external environment, leading to deep changes of their strength and
their dependence on the system’s parameters. Structured environments, such as a
cavity, a photonic crystal or a waveguide, can lead to an enhancement or a sup-
pression of the dispersion and resonance interaction between atoms or molecules,
modifying their dependence from the relevant parameters, e.g. the interatomic dis-
tance. They can even change the character of the dispersion force, turning them
from attractive to repulsive and vice versa, as we find in this thesis. Likewise, the
rate of the energy transfer process between quantum emitters can be controlled
by means of external environments: it can be increased or suppressed, and it is
even possible to activate the exchange of energy among the atoms by changing
the structured environment or some system’s parameters, e.g. the frequency of
an oscillating mirror, nearby. The interest and ability to manipulate and con-
trol quantum interactions between atoms, has greatly increased during the last
years. In fact, understanding how radiation-mediated processes can be modified
and controlled through a macroscopic environment, offers not only the possibility
to explore new fundamental aspects of the light-matter interaction, but also rep-
resents a fundamental goal in different fields of science, ranging from fundamental
and atomic-molecular physics to chemistry and biology, and it could be important
for the development of new technologies.

This thesis work is organized as follows. The first Chapter is devoted to an
introduction to the radiation-mediated processes considered: the dispersion and
the resonance interaction, and the resonance energy transfer between atoms. Such
processes are considered both when the atoms are in the empty space and when
they are in the presence of specific external environments: changes due to the
presence of an external environment are widely discussed. Particular attention
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will be given to the physical nature of these processes, strictly related to vacuum
field fluctuations, and to the interaction between atoms/molecules and virtual
photons.

In the second Chapter, the basic framework of the macroscopic quantum elec-
trodynamics is outlined. One of the main advantage of this formalism is that it
allows to approach and analyse quantum forces, due to the electromagnetic field,
when quantum emitters are in the presence of a linear magneto-dielectric medium,
whose geometrical and structural properties are totally included in the electro-
magnetic Green’s tensor expression.

In the third Chapter, we present our original work on the resonance exchange
of energy between two atoms or molecules when they are in the presence of a
magneto-dielectric medium, in particular a cylindrical waveguide made of a perfect
conductor. Firstly, an analytical expression for the energy transfer amplitude
between two atoms near a generic linear medium is obtained, in terms of the
Green’s tensor; then, this expression is used to investigate the transfer of energy
between the atoms when they are placed on the axis of a perfectly conducting
cylindrical waveguide. The energy transfer process will be thoroughly analysed as
a function of the relevant parameters of the system, such as the atomic distance,
the waveguide radius and the atomic dipoles orientation, highlighting significant
possibilities to manipulate the transfer of energy through external actions.

In the fourth Chapter, we present our original work on the resonance interac-
tion energy between two correlated atoms in the presence of external environments
or in a nonequilibrium condition. This Chapter is divided in two parts, where dif-
ferent aspects of the resonance interaction are investigated. In the first part, the
time-dependent resonance interaction energy between two entangled atoms, start-
ing from a nonequilibrium condition and interacting with the quantum vacuum,
is analysed in great detail, during the self-dressing process of the system. We
show how the interaction deeply changes when the atoms are inside or outside
the light-cone of each other, and how its causal behaviour is closely related to the
contribution of virtual photons. Also, we investigate in detail the time-dependent
electric energy density around the atoms, showing a sort of a constructive or
destructive interference depending if the atoms are prepared in the symmetric
(superradiant) or antisymmetric (subradiant) entangled state. An experimental
proposal to probe our findings is also suggested. The second part of the Chapter
is devoted to investigate the effects of a structured environment on the resonance
interaction energy between two entangled atoms. After obtaining the analytical
expression for the resonance interaction, valid in the presence of a generic linear
magneto-dielectric medium, the specific case of atoms inside a perfectly conduct-
ing cylindrical waveguide is considered; the interaction energy is analysed as a
function of the interatomic distance and the waveguide radius, for atomic dipoles
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both parallel and orthogonal to the guide axis. Our results clearly show the pos-
sibility to modify the magnitude and the distance dependence of the resonance
interaction energy through the waveguide, even changing its character, turning it
from repulsive to attractive.

In the last Chapter, we present our original results on the dispersion interaction
between two hydrogen atoms, interacting with the quantum electromagnetic field
in the vacuum state, in the presence of an external static electric field, both in
the nonretarded and in the retarded Casimir-Polder regime. We consider in detail
specific geometrical configurations of the atoms with respect to the external field,
and/or the relative orientation of the fields acting on the two atoms. We find that
the dispersion interaction changes its dependence from the interatomic distance,
decreasing slower with the distance, compared to the case of unperturbed atoms.
We show the possibility to totally control the magnitude and the character of the
force, turning it from attractive to repulsive, or even make it vanishing, exploiting
the external static fields. These results are also physically interpreted in terms
of dipole moments induced by the external fields on the atoms. By a numerical
estimate of the field-modified dispersion interaction, we show that at typical inter-
atomic distances, such a control can be obtained for values of the external fields
that can be currently achieved in the laboratory, and sufficiently weak that they
can be taken into account perturbatively.
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Chapter 1

Radiation-mediated processes

Quantum electrodynamics is one of the most accurate and successful theories
so far known in physics used, in general, for calculating the interaction of the
quantum electromagnetic field with particles, atoms and molecules. It also allows
to calculate the interaction between atoms or molecules mediated by the electro-
magnetic radiation field. In applications so far made, its theoretical predictions
are in excellent agreement with experimental results.

This Chapter provides all the basic information necessary for the radiation-
mediated processes investigated in the thesis. It is organized as follows: the
first Section is devoted to a brief introduction to the quantum electromagnetic
field, paying particular attention to the existence of the zero-point field energy
and vacuum field fluctuations. The matter-field interaction Hamiltonian and the
radiation-mediated interactions, such as dispersion and resonance interactions, as
well as the resonance energy transfer process, are introduced. These processes rep-
resent the core issues of our works. Central to all the investigations of the thesis
is the study of such processes between atoms or molecules when they are in the
presence of external environments, in the framework of quantum electrodynamics.

In Sections 1.2 and 1.3, a theoretical and experimental dissertation about dis-
persion forces between atoms or molecules is considered, respectively. We will
consider in great detail the dispersion interactions, such as the van der Waals, the
Casimir-Polder and the Casimir interactions, between quantum emitters (atoms,
molecules or quantum dots) or macroscopic bodies, when they are placed in the
free space, at zero temperature. In particular we shall highlight the case in which
the radiation field is in its vacuum state, thus there are not real photon in any
field mode, which means that the processes we consider arise from the interaction
between matter and vacuum field fluctuations. Finally, some of the most rele-
vant and pioneering experimental results regarding dispersion interactions are also
discussed.

In Sec. 1.4, the resonance interaction between two correlated identical atoms
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in the free space and interacting with the quantum vacuum, is introduced; the
calculation of the vacuum resonance dipole-dipole interaction tensor is performed
in detail and the results are discussed.

In Sec.1.5, the rate of the energy transfer between two quantum emitters, such
as atoms, molecules or nano-structures, is considered. The main features of the
Förster theory is outlined, and a unified theory of the resonance energy transfer is
given, using the molecular quantum electrodynamics description. We also retrace
the main steps of the calculation of the resonance energy transfer amplitude be-
tween two atoms, one excited and the other in its ground state, in the free space
and interacting with the vacuum field.

In the last Section 1.6, the effects of external environments on radiation-
mediated processes, for example the dispersion and the resonance interaction, as
well as the resonance energy transfer process, are discussed. A striking feature
of radiation-mediated processes is that they are significantly affected by the pres-
ence of external environments, which change the photon density of states and the
dispersion relation of the radiation field. Structured environments, such as a cav-
ity, a waveguide or a photonic crystal, as well as dynamical situations under non
equilibrium conditions, strongly modify quantum interactions and the resonance
exchange of energy between atoms or molecules. The amazing possibility to ma-
nipulate and control radiation-mediated processes through external environments,
changing their magnitude, their behaviour, in particular their spatial dependence,
and even the attractive or repulsive character of radiation-mediated forces, will be
thoroughly investigated and represents the main goal of this thesis.

1.1 The quantum vacuum and the matter-field
interaction

From Quantum Electrodynamics (QED) we know that the electromagnetic field
in the free space can be seen as an infinity superposition of uncoupled quantum
harmonic oscillators, one for each field mode of wavevector k and polarization λ
of the radiation field [1–3]. The particles associated to the field quantization are
bosons, called photons, and the electromagnetic field Hamiltonian in the free space
and in the Coulomb gauge is given by the well-known expression

HF =
∑
kλ

~ωk

(
a†kλakλ + 1

2

)
, (1.1)

where ωk = c|k| and the sum is performed over all possible wavevectors k and
the two independent polarizations λ = 1, 2. a†kλ and akλ are the familiar bosonic
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creation and annihilation operators satisfying the following commutation rules

[akλ, a
†
k′λ′ ] = δλλ′δkk′ , (1.2)

[akλ, ak′λ′ ] = [a†kλ, a
†
k′λ′ ] = 0, (1.3)

which create or destruct photons in the field mode (k, λ). The quantum transverse
electric field and the magnetic field operators in the Heisenberg picture and in the
Coulomb gauge ∇ ·A(r, t) = 0 [3, 4], are given by

E⊥(r, t) = i
∑
k,λ

√
~ωk

2ε0V
êkλ

(
akλ(t)eik·r − a†kλ(t)e−ik·r

)
(1.4)

B(r, t) = i
∑
k,λ

√
~ωk

2ε0c2V

(
akλ(t)eik·r − a†kλ(t)e−ik·r

)
k̂× êkλ, (1.5)

where êkλ are polarization unit vectors, assumed real, V is the quantization vol-
ume, and since we are in the free space the dispersion relation is ωk = ck. One
of the most fascinating consequence of the quantum theory of the electromagnetic
field is the existence of the zero-point fluctuations [5]. When the electromagnetic
field is in its ground state |0〉, where there are no photons in any field mode, the
fields have quantum fluctuations around their average value zero, that is

〈0|E⊥(r, t) |0〉 = 0, 〈0|B(r, t) |0〉 = 0, (1.6)
〈0|E2

⊥(r, t) |0〉 6= 0, 〈0|B2(r, t) |0〉 6= 0. (1.7)

Vacuum field fluctuations are directly related to the field energy density and, in
the particular case for which the field is in the vacuum state, they are related to
the zero-point energy given by

E0 =
∑
kλ

~ωk

2 . (1.8)

The zero-point energy and the vacuum field fluctuations are a direct consequence
of the non-commutativity, at equal time, of the transverse electric and magnetic
field operators, given by

[E⊥m(r, t), Bn(r′, t)] = −4πi ~ c εmnl
∂

∂rl
δ(r− r′), (1.9)

where εmnl is the totally antisymmetric symbol and the Einstein convention on
repeated indices has been used [1, 5]. Owing to the commutation relation (1.9),
electric and magnetic fields give rise to field fluctuations around their average
value, that exist also in the vacuum state of the radiation field, and they are called
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vacuum field fluctuations. The modern view of vacuum is then closely related to
the zero-point energy and to the vacuum field fluctuations, that are ubiquitous [5].

In the zero-point energy expression (1.8), a sum over all allowed field modes is
involved. The allowed modes and the dispersion relation depend on the presence of
matter and boundary conditions; macroscopic magneto-dielectric or metallic bod-
ies, atoms, molecules or matter in general, can significantly modify the dispersion
relation and the density of states of the electromagnetic field. This means that also
the zero-point energy, as well as vacuum fluctuations, depend on the presence of
boundaries, and can be significantly affected by the external environments [1, 5–7].
Moreover, we wish to point out that, although the strength of these fluctuations
diverges, their difference between two different configurations of the system is usu-
ally finite, and represent the origin of many physical phenomena of great interest
in many areas of science, experimentally measured with high precision. One of
the most famous effects, related to vacuum field fluctuations, is the Casimir force.
It is a tiny force between two macroscopic neutral bodies in the vacuum space,
theoretically predicted by Casimir in 1948 for the case of two parallel perfectly
conducting plates [8]. Vacuum field fluctuations are also affected by the presence
of atoms and molecules and are responsible for a range of physically observable
effects of great importance, such as the Lamb shift of atomic energy levels, the
spontaneous decay of an excited atom, the modification of the electron magnetic
moment, as well as the van der Waals interaction between two atoms or molecules
and the Casimir-Polder force among an atom and a metal or dielectric body [1, 6].
The number of research papers claiming some relation to the Casimir force and to
vacuum field fluctuations is countless and the topics are very different, capturing
the interests of scientists from cosmology to atomic physics, from chemistry to
quantum field theory, and from biology to mathematics.

One of the most relevant triumph of the quantum electrodynamics theory is its
application to the study of molecular and atomic interactions, including retarda-
tion effects [3, 6, 9]. In QED, the matter-radiation interaction Hamiltonian, in the
Coulomb gauge and in the multipolar coupling scheme, can be written as [5, 9]

Hi = −µ · E(r), (1.10)

where we have used E(r) rather than D⊥(r) because, outside of the atoms, the
transverse displacement field coincides with the total (transverse plus longitudi-
nal) electric field. µ is the electric dipole moment operator of the atom, and the
interaction Hamiltonian (1.10) was obtained within the dipole-dipole approxima-
tion: this means that the relevant wavelengths of the radiation field emitted or
absorbed by the atom is very large compared to the atomic dimension: there-
fore it is possible to neglect the spatial variation of the electric field across atoms
or molecules. The interaction Hamiltonian (1.10) takes into account both radia-
tive and electrostatic contributions to intermolecular interactions, preserving the
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causality [10]. This is the reason why the multipolar coupling scheme is much
more convenient than the minimal coupling one, in order to calculate intermolec-
ular radiation-mediated interactions, for example the dispersion and resonance
interaction. Typical Feynman diagrams for quantum-electrodynamics interactions
in the multipolar coupling scheme are shown in Fig. 1.1. The graph (i) shows a

Figure 1.1: Feynman diagrams for radiation-mediated interactions of atoms or
molecules in the multipolar coupling scheme [11].

typical Lamb shift interaction: the atom interacts with the radiation field, emit-
ting and re-absorbing a virtual photon. Since the corresponding matrix element
is independent of the atomic separation, and there is not a photon exchange of
photons between the atoms, this process does not lead to an interatomic interac-
tion, but only to an energy level shift. On the contrary, in diagrams (ii-iv) there
is an exchange of photons between the atoms, leading to a force between them.
We stress that in each Feynman diagram the energy is conserved only between the
initial and final states of the interacting system, but energy conservation may be
violated for intermediate states [11].

For the purpose of the thesis, we shall now focus our attention to the following
radiation-mediated processes: the interatomic dispersion and resonance interac-
tions, and the resonance exchange of energy between atoms or molecules.

1.2 Dispersion interactions
Dispersion interactions are quantum interactions between neutral atoms, molecules

or quantum dots or even macroscopic unpolarised and unmagnetised bodies, due
to their common interaction with the quantum electromagnetic field. In the last
years, there has been a great interest for them in many areas of science, from both
a theoretical and experimental point of view; they also play a fundamental role
in many different fields of physics, as well as in chemistry, biology and cosmology.
From an experimental and engineering point of view, the study and the control
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of dispersion interactions is very important in micro- and nano- electromechanical
systems (M.E.M.S. and N.E.M.S.) for which, owing to their small size and close
distances, tiny dispersion forces becomes relevant [12].

Dispersion forces between neutral atoms or molecules were known even before
the birth of quantum physics. From a classical point of view, can be explained in
terms of atomic electric-dipole fluctuations: dipole fluctuations of one atom induce
an electric dipole moment on the other atom, leading to an interaction between
them. This interaction depends on the interatomic distance r as r−6, corresponding
to the van der Waals interaction. Early studies exploiting quantum perturbative
calculations were performed by Eisenschits and London in 1930, confirming pre-
vious results obtained from van der Waals just in the short-range limit, so when
the interatomic separation is much smaller than the relevant atomic transition
wavelengths [13]. Nevertheless, a complete calculation of the interaction potential
between two neutral atoms in their ground state, using quantum field theory, was
first performed by Casimir and Polder in 1948 [14]. Taking into account retar-
dation effects due to the finite speed of propagation of light, they found that the
dispersion energy behaves as r−7 when the atoms are in the far zone (Casimir-
Polder regime), that is when the interatomic distance is much larger than the
atomic transition wavelength, and as r−6 when they are in the near zone limit
(van der Waals regime). Therefore the van der Waals result is fully recovered in
the short-range limit, and the dispersion interaction is essentially a radiationless
interaction between fluctuating atomic dipoles, and the radiative contributions,
due to the finite speed of propagation of light, can be neglected.

According to the microscopic versus macroscopic nature of the interacting sys-
tems, we may distinguish three types of dispersion forces [15], as shown in Fig. 1.2
: van der Waals forces are interactions between two microscopic neutral quantum
emitters, such as atoms, molecules or quantum dots; the Casimir-Polder force is
an interaction between an atom and a macroscopic body, such as for example the
interaction between an atom and a plate or a sphere; finally the Casimir effect
is a force acting between two macroscopic neutral, unpolarised and unmagnetised
bodies, like the force between two parallel metallic plates predicted by Casimir in
1948 [8].
Afterwards, we will go through the calculations in more detail of the van der Waals
interaction between two neutral atoms in the free space, the Casimir-Polder in-
teraction between a ground-state atom and a perfectly conducting wall, and the
Casimir force between two parallel perfectly conducting plates [16, 17].

1.2.1 Van derWaals interaction between two neutral atoms
Van der Waals (vdW) forces are long-range interactions between neutral atoms

or molecules, mediated by the quantum electromagnetic field [12]. We assume
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Figure 1.2: Different dispersion interactions: (i) van der Waals interaction; (ii)
Casimir-Polder interaction; (iii) Casimir interaction [15].

that atoms do not have permanent electric dipole moments, and we will neglect
contributions to the interaction due to higher-order electric multipole moments
and magnetic multipoles. Van der Waals forces are tiny ubiquitous interaction:
their small strength, e.g. with respect to the Coulomb interactions, is due to
the fact that they are usually fourth-order interactions in the atom-field coupling.
When the atoms are in their ground state the vdW force is always attractive and
it is due to the exchange of a pair of virtual photons between the atoms. It can be
repulsive if the atoms are in excited states: in this case real photons can contribute
to the dispersion energy, leading to a change of the character of the interaction,
from attractive to repulsive.

We consider two identical neutral atoms, labelled A and B, both in their elec-
tronic ground state, placed in the free space and interacting with the quantum
electromagnetic field in its vacuum state [9, 11]. For simplicity, we model the
atoms as two two-level systems. The Hamiltonian for the system in the multipolar
coupling scheme, in the Coulomb gauge and within the dipole approximation, is

H = Hat +Hrad +Hi (1.11)

where Hat = HA + HB is the total atomic Hamiltonian of both atoms A and B,
and Hrad is the radiation field Hamiltonian in the free space given by Eq. (1.1).
Hi is the interaction Hamiltonian

Hi = −µA · E(rA)− µB · E(rB), (1.12)

where we used E(r) instead of D⊥(r) because, outside atoms and in the free
space, the transverse displacement field coincides with the total (transverse plus
longitudinal) electric field. µα is the electric dipole moment operator of the α-
atom, placed in rα, with α = A,B. We wish to point out that the coupling
Hamiltonian (1.12) takes into account the retardation effects due to the finite
speed of light, and the electrostatic limit is recovered at short atomic distances,
where retardation effects can be neglected. The unperturbed state of the system
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is

|ψ0〉 = |EA
0 , E

B
0 , 0〉 , (1.13)

where both atoms are in their ground state, with energy EA(B)
0 , and the radiation

field is in the vacuum state |0〉. Since the initial state of the system coincides
with the final state, the leading contributions to the dispersion interaction are at
the fourth-order in the interaction Hamiltonian Hi, corresponding to two photons
exchange between the atoms. Therefore, in the multipolar formalism, the dis-
persion interaction is viewed as arising from the exchange of two virtual photons
between the atoms. By using fourth-order time-independent perturbation theory,
the dispersion energy shift is given by

∆E = −
∑

I,II,III

〈ψ0|Hi |III〉 〈III|Hi |II〉 〈II|Hi |I〉 〈I|Hi |ψ0〉
(EIII − E0)(EII − E0)(EI − E0)

+
∑
I,II

〈ψ0|Hi |II〉 〈II|Hi |ψ0〉 〈ψ0|Hi |I〉 〈I|Hi |ψ0〉
(EI − E0)2(EII − E0) , (1.14)

where the second term in (1.14) is due to the normalization of the wavefunction.
This term can be omitted since it does not yield a distance-dependent energy
shift for nonpolar molecules [9, 11]. The sums, in expression (1.14), run over all
possible intermediate states, with energies Eα (with α = I, II, III), that link the
unperturbed state |ψ0〉 via the coupling HamiltonianHi (see Eq. 1.12). All possible
intermediate states that can contribute to the energy shift (1.14) are illustrated
in Fig. 1.3, using time-ordered diagrams. The states |r〉 and |s〉 are the excited
states of the atom A and B, respectively. For example, in diagram (i) the various
unperturbed states are

|ψ0〉 = |EA
0 , E

B
0 , 0〉 ,

|I〉 = |EA
r , E

B
0 , 1kλ〉 ,

|II〉 = |EA
0 , E

B
0 , 1kλ, 1k′λ′〉 ,

|III〉 = |EA
0 , E

B
s , 1kλ〉 ,

(1.15)

where the field state |1kλ〉 represent one photon in the field mode (k, λ). The



Dispersion interactions 9

Figure 1.3: Twelve time-ordered diagrams used for the calculation of ground-
state dispersion potential: they represent all the possible intermediate states that
contribute to van der Waals dispersion interaction [11]

matrix elements related to the first diagram in Fig. 1.3 are

〈ψ0|Hi |III〉 = −i
√

~ck
2ε0V

(êkλ)p(µ0s
B )p eik·rB (1.16)

〈III|Hi |II〉 = −i
√

~ck′
2ε0V

(êk′λ′)l(µs0B )l eik
′·rB (1.17)

〈II|Hi |I〉 = i

√
~ck

2ε0V
(êkλ)i(µ0r

A )i e−ik·rA (1.18)

〈I|Hi |ψ0〉 = i

√
~ck′
2ε0V

(êk′λ′)j(µr0A )j e−ik
′·rA , (1.19)
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where (µ0s
B )p = 〈ψ0| (µB)p |s〉 is the matrix element between the ground and the

excited state of the p-component of electric dipole moment of atom B. êkλ are
polarization unit vectors with λ = 1, 2, assumed real. Therefore the total contri-
bution from diagram (i) to the energy shift is

−
∑
k,k′

∑
λ,λ′

∑
r,s

 ~ck
2ε0V

 ~ck′

2ε0V

(êkλ)i(êk′λ′)j(êkλ)l(êk′λ′)p(µ0r
A )i(µr0A )j(µs0B )l(µ0s

B )p

× ei(k+k′)·r

(Es0 + ~ck)(~ck + ~ck′)(Er0 + ~ck′) ,

(1.20)

where r = rB − rA is the interatomic distance.
The contributions related to the other diagrams in Fig. 1.3 are evaluated in a
similar manner. Therefore the total van der Waals energy shift is

∆E = −
∑
k,k′

∑
λ,λ′

∑
r,s

 ~ck
2ε0V

 ~ck′

2ε0V

(êkλ)i(êk′λ′)j(êkλ)l(êk′λ′)p

(µ0r
A )i(µr0A )j(µs0B )l(µ0s

B )pei(k+k′)·r
xii∑
a=i

D−1
a , (1.21)

where Da are the energy denominators listed in Table 1.1.

Table 1.1: Energy denominators Da

Graph Denominator
(i) (Es0 + ~ck)(~ck + ~ck′)(Er0 + ~ck′)
(ii) (Es0 + ~ck′)(~ck + ~ck′)(Er0 + ~ck′)
(iii) (Es0 + ~ck)(Es0 + Er0)(Er0 + ~ck′)
(iv) (Es0 + ~ck)(Es0 + Er0)(Es0 + ~ck′)
(v) (Es0 + ~ck′)(Es0 + Er0 + ~ck + ~ck′)(Er0 + ~ck′)
(vi) (Es0 + ~ck′)(Es0 + Er0 + ~ck + ~ck′)(Er0 + ~ck)
(vii) (Er0 + ~ck)(~ck + ~ck′)(Es0 + ~ck′)
(viii) (Er0 + ~ck)(~ck + ~ck′)(Es0 + ~ck)
(ix) (Er0 + ~ck)(Es0 + Er0)(Es0 + ~ck′)
(x) (Er0 + ~ck)(Es0 + Er0)(Er0 + ~ck′)
(xi) (Er0 + ~ck)(Es0 + Er0 + ~ck + ~ck′)(Es0 + ~ck)
(xii) (Er0 + ~ck)(Es0 + Er0 + ~ck + ~ck′)(Er0 + ~ck′)

The sum over polarizations can be carried out by using the relation∑
λ=1,2

(êkλ)i(êkλ)j = (δij − k̂ik̂j), (1.22)
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since êk1, êk2 and k form a set of mutually perpendicular unit vectors. The energy
denominators from the twelve diagrams may be summed and written as

xii∑
a=i

D−1
a = 4(kr0 + ks0 + k)

~3c3(kr0 + ks0)(kr0 + k)(ks0 + k)

 1
k + k′

− 1
k − k′

, (1.23)

where kr0 and ks0 are the wavevectors associated to the atomic transition between
ground and excited state of atom A and B, respectively. Using the relation (1.22),
(1.23) and taking the continuum limit over the radiation field modes

1
V

∑
k
⇒
∫ d3k

(2π)3 , (1.24)

the total energy shift (1.21) becomes

∆E = − 1
ε2

0~c
∑
r,s

(µ0r
A )i(µr0A )j(µs0B )l(µ0s

B )p
(kr0 + ks0)

∫ ∫ d3k
(2π)3

d3k′

(2π)3kk
′(δip − k̂ik̂p)(δjl − k̂′j k̂′l)

× (kr0 + ks0 + k)
(kr0 + k)(ks0 + k)

 1
k + k′

− 1
k − k′

ei(k+k′)·r. (1.25)

The angular integration can be performed using the convenient relation

1
4π

∫
(δij − k̂ik̂j)eik·rdΩ = ImFij(kr), (1.26)

where Fij(kr) is defined as

Fij(kr) =
(δij − r̂ir̂j)

1
kr

+ (δij − 3r̂ir̂j)
 i

k2r2 −
1

k3r3

eikr. (1.27)

Therefore, we obtain

∆E = − 1
4π4ε2

0~c
∑
r,s

(µ0r
A )i(µr0A )j(µs0B )l(µ0s

B )p
(kr0 + ks0)

∫ ∞
0

∫ ∞
0

dk dk′ Im[Fip(kr)] Im[Fjl(k′r)]

× k3k′3
(kr0 + ks0 + k)

(kr0 + k)(ks0 + k)

 1
k + k′

− 1
k − k′

. (1.28)

Since Im[Fjl(k′r)] is an even function of k′, the limits of the k′-integral in (1.28)
can be extended to −∞ to +∞. Taking the principal value at the pole k = −k′
we get ∫ ∞

−∞

k′3

k + k′
Im[Fjl(k′r)] dk′ = πk3 Re[Fjl(kr)], (1.29)
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so the expression (1.28) can be written as

∆E =− 1
4π3ε2

0~c
∑
r,s

(µ0r
A )i(µr0A )j(µs0B )l(µ0s

B )p
(kr0 + ks0)

×
∫ ∞

0
Im[Fip(kr)] Re[Fjl(kr)] k6 (kr0 + ks0 + k)

(kr0 + k)(ks0 + k)dk. (1.30)

Multiplying the real and imaginary part of the tensor field Fij(kr) in Eq. (1.30),
assuming freely rotating molecules, such that

〈(µ0r
A )i(µr0A )j〉〈(µs0B )l(µ0s

B )p〉 = 1
9δijδpl |µ

0r
A |2 |µ0s

B |2, (1.31)

and the changing integration variable k = iu, after some algebraic calculations, the
familiar van der Waals (or sometimes called Casimir-Polder) potential for isotropic
systems is obtained

∆E =− 1
36π3ε2

0~c
∑
r,s

|µ0r
A |2|µ0s

B |2
∫ ∞

0

kr0ks0
(k2
r0 + u2)(k2

s0 + u2)

×

 1
u2r2 + 2

u3r3 + 5
u4r4 + 6

u5r5 + 3
u6r6

e−2uru6du, (1.32)

which holds for all interatomic distances r beyond the wavefunction overlap region
[9, 11].

Les us now consider the asymptotic behaviour of the Casimir-Polder potential
(1.32) in the limits of large and small interatomic separation. In the near zone,
rk0 � 1, which means that the interatomic separation is much smaller than the
characteristic atomic transition wavelength, e−2ur ≈ 1 and the dominant term in
the square brackets is the one proportional to r−6. Exploiting the integral relation

2
∫ ∞

0

ab

(a2 + u2)(b2 + u2)du = π

a+ b
, a, b > 0, (1.33)

the Casimir-Polder potential in the near zone becomes

∆Enz = − 1
24π2ε2

0r
6

∑
r,s

|µ0r
A |2|µ0s

B |2

Er0 + Es0
, (1.34)

which is the same result obtained by London in 1930 for the dispersion energy,
with the familiar r−6 spatial dependence. As mentioned before, the dispersion in-
teraction in the near zone can be viewed essentially as an electrostatic interaction
between two induced, fluctuating, electric-dipole moments, that occurs instanta-
neously, and thus behaves as r−6.



Dispersion interactions 13

On the other hand, for large interatomic separations, rk0 � 1, in the energy
denominators of (1.32) u2 can be ignored with respect to k2

r0 and k2
s0. Thus, per-

forming the u-integral, the Casimir-Polder potential in the far zone is

∆Efz = − 23~c
64π3ε2

0

αAαB
r7 , (1.35)

in which the static polarizabilities of the atom A and B appear, given by

αA = 2
3
∑
r

|µ0r
A |2

Er0
, αB = 2

3
∑
s

|µ0s
B |2

Es0
. (1.36)

As already mentioned, at large interatomic separation the dispersion potential
changes its space dependence from r−6 to r−7; thus it decreases with the distance
faster than the electrostatic London potential. This result is due to the fact that,
in the far zone limit, the dispersion interaction between two atoms is a radiative
process, that takes into account retardation effects due to the finite propagation
speed of the electromagnetic radiation.

As previously mentioned, being fourth-order interaction in the atom-field cou-
pling, van der Waals interactions are very small with respect to the Coulomb
interaction. A numerical estimation of the vdW dispersion force between two hy-
drogen atoms in the ground-state and in the free space can be easily obtained :
considering atoms placed at a distance of r w 1µm and including only contribu-
tions involving the n = 2 states of the hydrogen atoms, the van der Waals force is
about FvdW ∼ 8 · 10−39N.

1.2.2 The atom-surface Casimir-Polder interaction
Dispersion forces between a polarizable system, such as an atom or a molecule,

and a surface, are known as Casimir-Polder interactions. They have been recently
studied in many physical situations: dielectric and metal surfaces, vacuum state of
the field or at a finite temperature, as well as in dynamical situations, under non
equilibrium conditions [18–24]. In this section we consider only the simple case
of the Casimir-Polder interaction between a ground-state atom and a perfectly
conducting wall, with the radiation field in its vacuum state.
We consider a ground state two-level atom placed at z = r in front of an infinite
perfectly conducting mirror placed in the origin, at z = 0, as shown in Fig. 1.4.
The bulk mirror, treated classically as a boundary condition of the electromag-
netic field, modifies the density of states of the radiation field and the vacuum field
fluctuations, that now, in consequence of the presence of the mirror, depend on
the atom-mirror distance r. The interaction between the atom and the space-
dependent vacuum field fluctuations leads to the atom-surface Casimir-Polder
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Figure 1.4: A two-level ground-state atom placed at a distance r from an infinite
mirror plate, made of a perfect conductor, that extends over the xy plane at z = 0
[18].

force. In order to obtain the situation of an atom in front of a perfectly con-
ducting wall, we first assume that the atom, in its ground state |g〉, is placed
inside a cuboid cavity made of an empty box with perfectly conducting walls of
size L; we consider the case for which the atom is near one of the walls of the
cavity, say the one placed in z = 0, but sufficiently far away from the others walls
so that their effect may be ignored. The normal modes for the electromagnetic
field inside the cuboid cavity of volume V = L3 enclosed by perfectly conducting
walls are [18, 25]

unλ(r) =
√

8
V

cos(πnx
L
x) sin(πny

L
y) sin(πnz

L
z)

sin(πnx
L
x) cos(πny

L
y) sin(πnz

L
z)

sin(πnx
L
x) sin(πny

L
y) cos(πnz

L
z)

 , (1.37)

where the wavevector components take discrete values

k = π

L
(nx, ny, nz) with n = (nx, ny, nz) ∈ N3. (1.38)

Within the dipole approximation and in the multipolar coupling scheme, the in-
teraction Hamiltonian can be written as

Hi = −µ · E(r), (1.39)

where µ is the electric atomic dipole moment operator and

E(r) =
∑
k,λ

i

√
~ωk

2ε0V

(
akλ − a†kλ

)
unλ(r) (1.40)
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is the electric field operator written in terms of the normal field modes inside the
cavity, that takes into account the boundary conditions on the perfectly conducting
walls. For a two-level atom, the dipole moment operator µ can be conveniently
written in terms of pseudospin operators S+ = |e〉 〈g| and S− = |g〉 〈e|, as

µ = µeg(S+ + S−) , (1.41)

where µeg = 〈e|µ |g〉 is the dipole matrix element (assumed real) between the
excited |e〉 and ground |g〉 atomic states. Therefore the interaction Hamiltonian
(1.39) becomes

Hi = −i
∑
k,λ

√
~ωk

2ε0V

(
unλ(r) · µeg

) (
akλ − a†kλ

)
(S+ + S−) (1.42)

that takes into account the absorption and emission of both virtual and real pho-
tons from the dipole. Since we assume that the system is in its unperturbed ground
state |g, 0〉, with the radiation field in the vacuum state and the atom in its ground
state, only virtual absorption and emission processes can occur.
The energy shift of the system can be calculated using the second-order time-
independent perturbation theory [1, 18],

∆E =
∑
I

〈g, 0|Hi |I〉 〈I|Hi |g, 0〉
E0 − EI

, (1.43)

where E0 and EI are energies of the ground and intermediate states, respectively.
The intermediate states that can contribute to the energy shift (1.43) are |I〉 =
|e, 1kλ〉, shown in Fig. 1.5, where one (virtual) photon is emitted in the (k, λ) field
mode and the atom is in its excited state |e〉.

Figure 1.5: Self-energy diagram for the atom-surface interaction; since the vacuum
field fluctuations are space-dependent, the atom-field self-interaction leads to a
space-dependent interaction energy, and thus to a force between the atom and the
surface.
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From Eq. (1.43), using the interaction Hamiltonian (1.42), we obtain

∆E = − 1
2ε0V

∑
k,λ

ωk
ω0 + ωk

|(unλ(r) · µeg)|2 (1.44)

where ω0 = (Ee − Eg)/~ is the atomic transition frequency.
In order to perform the sum over the polarizations we use the general relation

[25]∑
λ

(unλ(r))i(unλ(r′))j = (δij − k̂ik̂j)eik·(r−r
′) − σil(δlj − k̂lk̂j)eik·(r−σr

′) , (1.45)

where σ is the reflection matrix given by

σ =

1 0 0
0 1 0
0 0 −1

 . (1.46)

Here r and r′ are generic positions inside the cuboid cavity, assumed near one wall
but far away from the others. Thus, taking into account only space-dependent
contributions given by the second term of Eq. (1.45) and taking the continuum
limit, we obtain

∆E = 1
2ε0

µegi µ
ge
j σil

∫ dk3

(2π)3
k

k0 + k
(δlj − k̂lk̂j)eik·(r−σr)

= − 1
2ε0

µ̃egi µ
ge
j

∫ dk3

(2π)3
k

k0 + k
(δij − k̂ik̂j)eik·q

= 1
4π2ε0

µ̃egi µ
ge
j (δij∇2 −∇i∇j)

f(k0q)
q

 (1.47)

where µ̃ = −σµ is the image atomic dipole operator beyond the mirror, and the
gradients are taken with respect to q = (r−σr) [25]. We stress that q = |q| = 2r,
where r is the shortest distance to the wall z = 0, and the direction of q is
orthogonal to the wall. Applying the differential operators, the energy shift (1.47)
becomes

∆E =
µ̃egi µ

ge
j

32π2ε0r3

{
(δij − 3r̂ir̂j)

[
f(2k0r) + 2k0r g(2k0r)

]
+(δij − r̂ir̂j)

[
2k0r − (2k0r)2f(2k0r)

]}
, (1.48)

where

f(x) = Ci(x) sin x− si(x) cosx , (1.49)
g(x) = −Ci(x) cosx− si(x) sin x (1.50)
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are the auxiliary functions in terms of the cosine and sine integral functions Ci(x)
and si(x) = Si(x) − π

2 , [26–28]. Eq. (1.48) is the Casimir-Polder potential of one
atom placed in front of a perfectly conducting wall.

In the short-range limit k0r � 1, when the atom-wall distance is much smaller
than the atomic transition wavelength, f(x) → π/2 and g(x) → log(x) when
x→ 0, and therefore the Casimir-Polder potential (1.48) becomes

∆Enz '
µ̃egi µ

ge
j

64πε0r3 (δij − 3r̂ir̂j), (1.51)

showing that the near zone (nonretarded) Casimir-Polder potential scales as r−3.
On the other hand, in the far-zone limit k0r � 1, the asymptotic expansion for
auxiliary functions are

f(x) ∼ 1
x

1− 2!
x2 + 4!

x4 −
6!
x6 + . . .

 (1.52)

g(x) ∼ 1
x2

1− 3!
x2 + 5!

x4 −
7!
x6 + . . .

. (1.53)

and therefore the Casimir-Polder interaction is

∆Efz '
µ̃egi µ

ge
j

16π2ε0k0r4 (δij − 2r̂ir̂j). (1.54)

The last result can be written in terms of the static polarizability of the atom,

α = 2
3
∑
r

|µgr|2

Egr
(1.55)

where the sum is performed on the generic atomic excited states, obtaining

∆Efz = − 3~cα
32π2ε0r4 , (1.56)

scaling as r−4 with the distance.
These results show that for short atom-surface distance (k0r � 1), the attrac-

tive interaction between the atom and the wall behaves as r−3, and it is essentially
instantaneous, since retardation effects can be neglected; in fact, the same result
can be obtained by considering the electrostatic interaction of the atom with its
image on the other side of the wall. On the other hand, in the long-range limit
(k0r � 1), owing to retardation effects, the atom-wall Casimir-Polder potential be-
haves as r−4, rather than r−3. In both cases the atom-wall force is attractive if the
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atom is in its ground state, and in the quasi-static hypothesis, it can be obtained
by taking the derivative of ∆E with respect to r, changed by sign [1, 15, 18, 25].

A numerical estimate of the atom-surface force can be done considering, for
example, a ground-state hydrogen atom placed at r ' 1 µm from a plane mirror: in
this case, considering contributions only involving the n = 2 state of the hydrogen
atom, the Casimir-Polder force is about FCP ∼ 2 · 10−27N.

1.2.3 The Casimir effect
With the expression “Casimir forces” we generally refer to dispersion inter-

actions between two neutral, unpolarized and unmagnetized macroscopic bodies,
mediated by quantum electromagnetic field. These forces are associated with topo-
logical constraints on the radiation field, because the boundary conditions given
by any macroscopic body strongly modifies the density of states, and thus its
zero-point energy and vacuum field fluctuations [15]. Since the value of this en-
ergy depends on the shape and position of the macroscopic objects, a force arises
between them, that is the Casimir force. The existence of this force is a pure quan-
tum effect, arising from the change of the vacuum field fluctuations, and cannot
be predicted by classical electrodynamics. Although the Casimir force is generally
a weak interaction, it is of great interest for both theoretical and experimental
reasons: in fact, it is an ubiquitous force, that becomes more and more relevant
when the size of the physical system is getting smaller and smaller. For these rea-
sons, it plays a fundamental role in many areas of science, from fundamental and
cosmological physics, to chemistry, biology and even engineering, with its applica-
tion in the development of micro- and nano- electromechanical systems (M.E.M.S
and N.E.M.S). The first and most famous prediction of the Casimir effect was
obtained by Casimir in 1948, who found that between two neutral, parallel and
perfectly conducting plates, separated by a distance L at zero temperature, there
is an attractive force per unit area given by [8]

F = − π2~c
240L4 . (1.57)

A generalization of the Casimir effect was obtained by Lifshitz, considering the
interaction force between two dielectric half-spaces separated by a vacuum region
of width d, for finite (equilibrium) temperatures [29]. Later, other Casimir forces
between objects with different shapes and made of different materials, such as
plate-sphere or sphere-sphere, have been calculated [30–32]

We now retrace the main steps of the original calculation of Casimir, in its orig-
inal configuration of two parallel, neutral, metallic plates separated by a distance
L, in the vacuum space, as shown in Fig. 1.6.
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Figure 1.6: The Casimir effect: two parallel metal slabs in the vacuum space, of
area A = LxLy, at distance L.

In order calculate the Casimir force between the plates, we initially assume
the vacuum field modes are enclosed in a cuboid cavity of dimensions (Lx, Ly, L),
where the area of the plates is A = LxLy and L is the distance between them
[1, 17]. To reproduce the physical system of just two metal parallel plates at
distance L, we then take Lx, Ly � L. The normal modes of the electromagnetic
field inside a cuboid cavity are given by (1.37), with dispersion relation given by

ωk = c

√√√√√nxπ
Lx

2

+
nyπ
Ly

2

+
nzπ

L

2

, with (nx, ny, nz) ∈ N. (1.58)

The zero-point field energy can be written as

E0(L) = ~c
2

+∞∑
nxnynzλ

√√√√√nxπ
Lx

2

+
nyπ
Ly

2

+
nzπ

L

2

, (1.59)

where the summation is performed over all frequencies and polarizations. Since
Lx, Ly � L, the electromagnetic field has a continuum spectrum of modes along
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the x and y direction, so

E0(L) =~cLxLy
2π2

∫ +∞

0
dkx

∫ +∞

0
dky

+∞∑
nzλ

√√√√√k2
x + k2

y +
nzπ

L

2

=~cA
2π

∫ +∞

0
dk‖k‖

+∞∑
nz=0

′

√√√√√k2
‖ +

nzπ
L

2

, (1.60)

where, in the last row, we introduce the polar coordinates in the kxky plane, for
which

∫+∞
0 dkx

∫+∞
0 dky = π/2

∫+∞
0 dk‖k‖. We have also performed the sum over

polarizations, which is trivial because the energy of the modes is polarization-
independent, so a factor 2 appears for each nz = 1, 2, 3... except for nz = 0, for
which only one polarization exists. The primed sum in Eq. (1.60) takes into
account this fact.

We wish to point out that the Casimir energy (1.60) diverges, and in particu-
lar contains two different divergences of vacuum QED: the ultra-violet divergence
and the self energy divergence [18]. The former arises because virtual photons of
arbitrarily large energies has been taken into account for the zero-point energy.
Since real metal plates becomes transparent for high-frequency, virtual photons
that exceed the plasma frequency of the metal ωp cease to interact with the plates
and therefore cannot contribute to the Casimir energy (distance dependent) any-
more. To consider this high-frequency transparency, we introduce a cut-off function

e
−λp

√
k2

‖+k2
z , which exponentially suppresses the contribution from virtual photons

with wavelength larger than the plasma wavelength λp = 2πc/ωp.
On the other hand, in order to deal with the self-energy divergence of expression
(1.60), we have to renormalise the Casimir energy as

∆E0(L) = E0(L)− E0(L→ +∞) (1.61)

where E0(L → +∞) is the Casimir self-energy calculated in the limit L → +∞,
that is when the distance between the plates becomes very large; in such a limiting
case, the sum over the field modes, also along the z-direction, approaches a quasi-
continuous spectrum. This energy can be written as

E0(L→ +∞) = ~cAL
2π2

∫ +∞

0
dk‖k‖

∫ +∞

0
dkze

−λp
√
k2

‖+k2
z
√
k2
‖ + k2

z . (1.62)

Therefore the equation (1.61) is the Casimir energy expression, no more divergent,
given by the difference between the vacuum field energy with and without the
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plates. Performing the calculations, we obtain

∆E0(L) = ~cA
2π

∫ +∞

0
dk‖k‖

 +∞∑
nz=0

′
e
−λp

√
k2

‖+(nzπ
L

)2

√√√√√k2
‖ +

nzπ
L

2

(1.63)

−L
π

∫ +∞

0
dkze

−λp
√
k2

‖+k2
z
√
k2
‖ + k2

z

, (1.64)

and using the Euler-Maclaurin formula

+∞∑
nz=0

′
f(n)−

∫ +∞

0
dxf(x) = 1

12f
′(0) + 1

720f
′′′(0) + ... (1.65)

the familiar Casimir energy expression is obtained

∆E0(L) = −~cπ2A

720L3 , (1.66)

that, in the quasi-static regime, yields to the well-known attractive effect (1.57)
between two parallel metal plates predicted by Casimir in 1948, scaling with the
distance as L−3 for the energy, and thus as L−4 for the force. We stress that the
Casimir force (1.57) is a very tiny force: in fact, for example, considering plates
with area A = 1 cm2, separated by a distance L = 10−6 m, the force between
them is about F ∼ 10−7 N . Although this is a very small force, it become relevant
when the size of the system becomes smaller and smaller, as for example, in the
micro- and nano- electromechanical systems. Also, it has been measured with high
precision, how we will discuss in the next section.

1.3 Dispersion forces: experiments
Dispersion interactions, such as the van der Waals, the Casimir-Polder and the

Casimir force, discussed in the previous sections, have been theoretically predicted
and experimentally proved with high precision, although they are quite tiny inter-
actions and therefore very difficult to detect. In following, we present some of the
main ideas for measuring dispersion forces.

One of the first significant experiments about the Casimir force was carried out
by Sparnaay in 1958, performed in the original configuration of two metal parallel
plates proposed by Casimir in 1948 [33]. This experiment did not confirm the
existence of this interaction, owing to large experimental errors, but highlighted
the main experimental difficulties to take a significant measurement of the force
between the plates. The first problem was that the material of the plates had to
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be as pure and smooth as possible, to ensure good conductibility and to avoid any
contact between the slabs during the experiment; keep plates perfectly parallel to
each other involved considerable experimental complications, which increase with
the size of the slabs. Due to these main experimental issues, the Sparnaay’s ex-
periment did not confirm the theoretical predictions of Casimir but, as he said,
neither did contradict them.
In order to overcome the plates parallelism’s problem, some experiments, for exam-
ple that of van Blockland e Overbeek (in 1978) [34], have been performed detecting
the Casimir force between a sphere and a slab, theoretically given by

F = −~cπ3R

360d3 , (1.67)

valid when d� R, where R is the sphere radius and d is the sphere-slab distance.
In this framework a relevant experimental work was performed by Lamoreaux in
1997 [35], that measured the Casimir force between two quartz lenses covered with
copper, one spherical and the other flat, separated by a distance between 0, 6 µ m
and 6 µm. He exploited an electromechanical system based on a torsion pendulum:
the lens is attached to one pendulum arm and the other arm was connected to a
planar capacitor. The Casimir force between the lenses change the capacitance of
the planar capacitor and he was able to measure it, achieving an accuracy of the
order of 5− 10%.
In the 1990s, the modern technology, such as the atomic force microscope (AFM),
has been used to investigate and detect the Casimir force. In 1998, Mohideen and
Roy [36] measured the Casimir force between a polystyrene sphere with diame-
ter of 0, 3 mm, covered with a small layer of gold and aluminium, and a sapphire
plates. The sphere was attached to the AFM cantilever and placed at 0, 1 µm from
the sapphire plate, as shown in Fig. 1.7. The Casimir force between the sphere

Figure 1.7: Polystyrene sphere attached to the AFM cantilever near the sapphire
plate [36].

and the sapphire plate leads to a cantilever deflection that was measured from
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the reflection of a laser beam on a photodiodes matrix; through this experimental
setup, shown in Fig. 1.8, an accuracy of 1% was achieved. Only in 2002 it was

Figure 1.8: Experimental setup used in [36] to measure the sphere-plate Casimir
force through AFM.

possible to check experimentally the Casimir effect in its original configuration
proposed by Casimir himself in 1948, of two perfectly conducting parallel plates.
The experiment, performed by Bressi et al [37], measured the Casimir force be-
tween parallel metallic plates with an accuracy of 15% in a distance range of the
slabs of 0.5− 3 µm.

Regarding van der Waals and Casimir-Polder forces, the experimental situation
becomes even more difficult since microscopic interacting objects are involved. In
fact the control of position, velocity, forces acting on the atoms, is very hard to ob-
tain, and making a direct measurement of these interactions is extremely difficult.
However indirect manifestations of these forces can be found in the measurement of
macroscopic quantities, as for example suggested by van der Waals himself when
he studied the modifications of the equation of state of a gas owing to the van
der Waals interaction between molecules [38]. More accurate measurements of the
van der Waals forces can be performed exploiting scattering experiments. These
experiments can be torn into two main groups: in the former case the scattering of
an atomic beam passing through a stationary gas which serves as target is investi-
gated. In this situation, the van der Waals interactions with the atoms of the gas
deflect the atomic beam and then an attenuation of the beam is detected [39–41].
In the other case, experiments involving two distinct beams which intersect can
be performed: owing to the vdW potential, atoms were scattering in various di-
rections and, detecting the number of atoms as a function of the scattering angle,
it was possible to infer the vdW potential [42, 43].

Casimir-Polder interactions can be experimentally measured in a similar way.
When an atomic beam is directed along a macroscopic body, the Casimir-Polder
force attracts the atoms towards the body, leading to a deflection from their original
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path, as shown in Fig. 1.9. The Casimir-Polder potential can be then inferred by

Figure 1.9: Classical scattering method to measure Casimir-Polder potential [15] .

measuring the deflection angle of the atoms. This idea was first developed for
ground-state atoms interacting with a metallic or dielectric cylinder [44–46].

1.4 Resonance interaction between two entan-
gled atoms in the free space

The resonance interaction, or resonant dipole-dipole interaction (RDDI), is an
interaction between two atoms, molecules or any quantum emitters, one excited
and the other in its ground state, prepared in a symmetric or antisymmetric en-
tangled state, mediated by the quantum electromagnetic field [11]. In this section
we consider the resonance interaction between two identical two-levels atoms, A
and B, interacting with the quantum vacuum, when they are in the free space: the
atomic ground state |g〉 (with energy Eg) and the atomic excited state |e〉 (with
energy Ee) are connected by an electric dipole transition. The physical system is
prepared in a symmetric or antisymmetric entangled state

|ψ〉 = 1√
2

(|gA, eB, 0〉 ± |eA, gB, 0〉) (1.68)

where |0〉 is the vacuum state of the radiation field; the excitation is thus de-
localized between the atoms. As previously done for the dispersion interaction
calculation (see Sec. (1.2)), we consider the matter-field interaction Hamiltonian
in the multipolar coupling scheme and within the dipole approximation

Hi = −µA · E(rA)− µB · E(rB). (1.69)

Since the system is prepared in the unperturbed state (1.68), the resonance in-
teraction ∆E between the atoms is a second-order interaction in the atom-field
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coupling, that can be calculated using the second-order time-independent pertur-
bation theory

∆E =
∑
I

〈ψ|Hi |I〉 〈I|Hi |ψ〉
Eψ − EI

, (1.70)

where |I〉 are all the possible intermediate states that can contribute to the total
energy shift with energy EI . They are in the former

|I1〉 = |gA, gB, 1k′λ′〉 ; |I2〉 = |eA, eB, 1k′λ′〉 , (1.71)

which represent both atoms in their ground state with one photon in the field
mode (k′, λ′), and both atoms in their excited states with one photon in the field
mode (k′, λ′).

The intermediate states (1.71) are depicted in the Feynman diagrams in Fig.
1.10.

Figure 1.10: Feynman diagrams for the resonance interaction between two atoms
in the multipolar coupling method [11]

We now calculate the matrix element for the intermediate state |I1〉:

〈ψ|Hi |I1〉 = 1√
2
∑
k′λ′

(
〈gA, eB, 0|+ 〈eA, gB, 0|

)
Hi |gA, gB, 1k′λ′〉

= − 1√
2
∑
k′λ′

 〈eB|µB |gB〉 · 〈0|E(rB) |1k′λ′〉+ 〈eA|µA |gA〉 · 〈0|E(rA) |1k′λ′〉


= −i

∑
k′λ′

∑
kλ

 ~ωk

4ε0V

1/2

(êk′λ′)i δkk′δλλ′

[
µegBi e

ik·rB + µegAi e
ik·rA

]

= −i
∑
kλ

 ~ωk

4ε0V

1/2

(êkλ)i
[
µegBi e

ik·rB + µegAi e
ik·rA

]
, (1.72)
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where the Einstein notation for repeated indices has been used. Similarly

〈I1|Hi |ψ〉 = i
∑
kλ

 ~ωk

4ε0V

1/2

(ê∗kλ)j
[
µgeBj e

−ik·rB + µgeAj e
−ik·rA

]
. (1.73)

Therefore, taking into account only the distance-dependent contribution to ∆E,

〈ψ|Hi |I1〉 〈I1|Hi |ψ〉
Eψ − EI1

=
∑
kλ

 ~ωk

4ε0V

µegAi µgeBj (êkλ)i (ê∗kλ)j
[
eik·r+e−ik·r

] 1
~ω0 − ~ω

,
(1.74)

where r = rB − rA is the interatomic distance and ω0 = ck0 is the atomic tran-
sition frequency. In a similar way, we calculate the contribution related to the
intermediate states |I2〉, and obtain the total energy shift as

∆E =
∑
kλ

 ~ωk

4ε0V

µegAi µgeBj (êkλ)i (ê∗kλ)j

eik·r + e−ik·r

~ω0 − ~ω
− eik·r + e−ik·r

~ω0 + ~ω


=
∑

k

 1
2ε0V

µegAi µgeBj (δij − k̂ik̂j)
k2

k2
0 − k2

eik·r + e−ik·r


=
µegAi µ

ge
Bj

16π3ε0

∫ ∞
0

dk
∫
dΩ k4

k2
0 − k2 (δij − k̂ik̂j)

eik·r + e−ik·r

, (1.75)

where, in the second and third row, we have performed the sum over polarization
(1.22) and taken the continuum limit V −→ +∞. Exploiting the relation

τij = 1
4π

∫
dΩ (δij−k̂ik̂j)e±ik·r =

(δij−r̂ir̂j)
sin kr
kr

+(δij−3r̂ir̂j)
(cos kr
k2r2 −

sin kr
k3r3

),
(1.76)

the energy shift becomes

∆E =
µegAi µ

ge
Bj

2π2ε0

∫ ∞
0

dk
k4

k2
0 − k2 τij(kr), (1.77)

where τij(kr) is the expression in the square brackets in Eq. (1.76). To perform
the divergent integral in (1.77), we introduce a convergence factor e−γ|k|, and then
we take the limit γ → 0+. In this way the integral converges and, using the residue
theorem, the resonance energy shift becomes

∆E = µegAi µ
ge
Bj Vij(k0, r), (1.78)
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where

Vij(k0, r) = 1
4πε0r3

(δij − 3r̂ir̂j)(cos k0r + k0r sin k0r)− (δij − r̂ir̂j)k2
0r

2 cos k0r

,
(1.79)

is the retarded interaction potential. Eq. (1.78) represent the resonance interaction
energy between two entangled atoms when they are in the free space with the
radiation field in the vacuum state.

When the atoms are in the near zone, i.e. when the interatomic distance is
much smaller than the atomic transition wavelength (k0r � 1), the resonance
interaction behaves as r−3; essentially, in this range, the interaction can be seen
as an electrostatic interaction between two electric atomic dipoles. On the other
hand, in the far zone limit (k0r � 1), the interaction is mainly a radiative process
owing to the exchange of a real photon between atoms; in this range the resonance
interaction behaves as r−1, thus having a very long range behaviour, and it is spa-
tially oscillating. It is important to point out that, because there is a contribution
of a real photon and it is a second-order effect in the atom-field coupling, the reso-
nance interaction is several orders of magnitude larger than dispersion interactions
between two atoms, which is fourth-order interaction in the atom-field coupling. In
fact, a numerical estimate of the resonance force between two correlated hydrogen
atoms in the free space (taking into account contribution involving only the n = 2
states of the hydrogen atoms), placed at a distance of r ' 1µm, leads to a force
of FR ∼ 3 · 10−19 N, whereas the van der Waals force is about FvdW ∼ 8 · 10−39 N.

Although the resonance force is much larger than van der Waals interaction be-
tween ground-state atoms and comparable to atom-surface Casimir-Polder force,
it has not been yet experimentally detected directly. The main experimental dif-
ficulty is that the system must be prepared and maintained in a correlated state
for a sufficiently long time, in order to measure the resonance interaction force
between the atoms. But the entangled state is a very fragile state since, owing to
the spontaneous emission of excited atoms or perturbations due to any interaction
with the environment, can decay in a factorized state, destroying its correlation.
When the system is in a factorized state, the resonance force becomes a fourth-
order interaction in the atom-field coupling, essentially a van der Waals interaction
between two atoms, one excited and the other in its ground state, much weaker
than the resonance interaction and widely investigated in the literature [15, 47–49].
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1.5 Resonance energy transfer between two atoms
in the free space

From the point of view of molecular quantum electrodynamics, one of the sim-
plest intermolecular interaction, at least conceptually, is the resonant exchange
of energy between two quantum emitters, which may be atoms, molecules, chro-
mophores and others [9, 11, 50–52]. This process corresponds to the resonant
transfer of excitation, typically electronic, from a species D, which is initially
excited and called "donor", to a species A, which is in the ground state, called "ac-
ceptor"; owing to the exchange of energy, the donor D decays to the ground state
and the acceptor A becomes excited, as shown in Fig. 1.11, in which a HOMO-
LUMO (Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular
Orbital) scheme has been used to depict this process.

Figure 1.11: Excitation energy transfer between a donor molecule D and an ac-
ceptor molecule A. A HOMO-LUMO scheme has been used for both molecules. D
is initially in its excited state, in which one electron has been promoted from the
HOMO to the LUMO. In the final state, D is in its ground state and A is excited
[53].

The resonance energy transfer (RET) between any two quantum emitters, me-
diated by the quantum electromagnetic field, can be represented by the following
non-chemical equation

D∗ + A −→ D + A∗,

where the asterisk denotes the localization of excitation energy. Due to its fun-
damental nature, the resonance energy transfer has great relevance in many areas
of physics, as well as in chemistry and biology, where coherent energy transfer
between chromophores is supposed to be related to the very high efficiency in
light-harvesting observed in the photosynthesis process [50–52, 54].

The actual type of energy transfer process between two or more molecules is
mainly determined by two time scales [53]: the intramolecular vibrational relax-
ation time τr, and the transfer time τt. The intramolecular relaxation time is
the time needed to the nuclear vibrations of each molecule to return to thermal
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equilibrium after that the electronic transition takes place. On the other hand,
the transfer time is the time that the energy needs to move from one molecule
to another, neglecting any additional perturbations. It is defined as the inverse
of the characteristic interaction energy between two molecules. Depending on the
relation between these two time scales, different regimes of the RET can be con-
sidered, as shown in Fig. 1.12, where the regimes have been drawn versus the
intramolecular and intermolecular interaction strengths.

Figure 1.12: Schematic representation of different RET
regimes. The strength of intermolecular and in-
tramolecular interactions increase, respectively, along
the horizontal axis and the vertical axis. Förster inco-
herent transfer, for which τr � τt, is typical for region
I whereas coherent transfer, τr � τt, is given in the re-
gion II. The white region III is an intermediate region
for which τr ∼ τt [53].

If τr � τt, the excitation energy can move almost freely from molecule to molecule
and can be considered as delocalized between them. The exciton travels coher-
ently through the molecules aggregate as a quantum mechanical wave packet. In
this case, the intermolecular interactions are much larger with respect to the in-
tramolecular interactions, and can not be treated as a perturbation of the system;
this is the so-called strong-coupling regime, indicated by the grey-region II in Fig.
1.12. On the other hand, if τr � τt, the intermolecular interactions are small with
respect to the intramolecular interactions and therefore the RET can be treated
perturbatively [55]. In this case, owing to the strong intramolecular interactions,
it is impossible to construct a wave function involving different molecules and thus
the transfer of energy is incoherent, just characterized by the probability Pm(t) for
the excitation energy to be on the molecule m at time t. This is the weak-coupling
regime, indicated by the grey-region I in Fig. 1.12. Clearly, there are regions
between the coherent and the incoherent RET type, for which τr ∼ τt. In this
case the motion of energy between molecules is called partially coherent, and is
represented by the white-region III in Fig. 1.12.
We now consider in detail the resonance exchange of energy between two quantum
emitters in the case for which the intermolecular interactions are much smaller with
respect to the intramolecular interactions, so that the resonance energy transfer
can be treated as a perturbation of the system. In this case, the energy transfer
rate between two molecules A and B, can be obtained using the Förster theory.
Within the dipole-dipole approximation, so assuming that the molecular dimen-
sions are much smaller than the intermolecular separations, the energy transfer
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rate is given by the Förster equation [53]

KRET = 1
τA

RF

r

6

, (1.80)

where τA is the mean lifetime for the donor atom A and RF is the Förster ra-
dius, defined as the distance for which the transfer rate is equal to the radiative
decay rate of the donor. The Förster equation shows that the energy transfer
rate between two molecules behaves as r−6 in the weak coupling regime, where
r is the intermolecular distance. It is important to underline that this equation
remains valid for intermolecular separations large enough to avoid any superpo-
sition of electronic molecular orbitals (allowing to neglect exchange interactions)
and much smaller than the relevant molecular transition wavelength, which means
r � λ0. The second hypothesis, r � λ0, means that the energy transfer rate in
the Förster equation (1.80) is due only to the Coulomb electrostatic interaction
between molecules; in this short-range limit the transfer rate does not involve the
exchange of a real photon, so there is not a radiative contribution to the interaction
between the molecules, neglecting retardation effects [55]. For an intermolecular
distance equal or larger than the molecular transition wavelength, the equation
(1.80) is no longer valid because radiative contributions, arising from the exchange
of a real photon, become relevant. A full quantum electrodynamic approach allows
to investigate the resonance energy transfer process for all intermolecular distance,
taking into account both radiative and radiationless contributions [56–59].

We will now outline the well-known quantum calculation for the resonance
energy transfer rate for the simple system of two atoms in the vacuum space, and
in the weak coupling regime [59, 60]. We consider the resonance energy transfer
between two identical two-level atoms, labelled A and B, where the donor atom A is
initially excited and the acceptor atom B is in the ground state, and the radiation
field is in its vacuum state. The atom A can decay and emit a real or virtual
photon, which can be absorbed by atom B. Excitation is thus transferred from
donor to acceptor through the electromagnetic field [56–58, 61]. The Hamiltonian
of the system is

H = H0 +Hi, (1.81)
where

H0 = HA +HB +HF , (1.82)
is the unperturbed Hamiltonian, sum of the atomic Hamiltonians (HA and HB)
and the radiation free-field Hamiltonian (HF ). Hi is the interaction Hamiltonian
that, in the multipolar coupling scheme and within the dipole approximation, can
be written as

Hi = −µA · E(rA)− µB · E(rB). (1.83)
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where µα is the electric dipole moment operator of atom α placed at rα, with α =
A,B. Exploiting the second-order time-dependent perturbation theory, according
to the generalized Fermi golden rule [50, 62], the energy transfer rate between two
atoms in the vacuum space can be written as

Wi→f = 2π
~
| 〈ψi|T |ψf〉 |2δ(Ef − Ei), (1.84)

where |ψi〉 = |eA, gB, 0〉 and |ψf〉 = |gA, eB, 0〉 are respectively the initial and
the final state of the system, with energy Ei and Ef . | gA(B)〉 and | eA(B)〉 are
respectively the ground and excited atomic states, and | 0〉 represents the photon
vacuum state. For simplicity we consider identical atoms, with transition frequency
ω0 = ck0 , placed at a distance r = rA−rB from each other. T is the second-order
transition operator,

T = Hi +Hi
1

Ei −H0 ± iη
Hi, η −→ 0 (1.85)

where H0 and Hi are the unperturbed and interaction Hamiltonians, respectively,
and Ei = Ef is the energy of the initial and final states. The second-order con-
tribution of the transition operator T leads to a resonance exchange of energy
between the atoms, changing both atomic quantum states without alteration of
the state of the radiation field. For this reason, the resonance energy transfer
amplitude is given by

M = 〈ψi|T |ψf〉 =
∑
I

〈ψi|Hi |I〉 〈I|Hi |ψf〉
Ei − EI ± iη

, η −→ 0 (1.86)

where |I〉 are the intermediate states, with energy EI , that can contribute to the
energy transfer process. These states are |eA, gB, 1kλ〉 and |gA, eB, 1kλ〉, and are
the same found in the resonance interaction energy in Sec. (1.4), represented by
Feynman diagrams in Fig. 1.10. Therefore, with similar calculations to those done
for the resonance interaction in Sec. (1.4), we can easily calculate the resonance
energy transfer amplitude as

M =
∑
kλ

 ~ωk

2ε0V

µegAi µgeBj(êkλ)i(ê∗kλ)j

 eik·r

~ω0 − ~ω ± iη
− e−ik·r

~ω0 + ~ω ± iη

 (1.87)

=
 1

16π3ε0

µegAi µgeBj ∫ ∞
0

k(δij − k̂ik̂j)
 eik·r

k0 − k ± iη
− e−ik·r

k0 + k ± iη

d3k, (1.88)

and using the relation

1
4π

∫
dΩ(δij − k̂ik̂j)e±ik·r = 1

k3 (−∇2δij +∇i∇j)
sin kr
r

, (1.89)



32 Radiation-mediated processes

we get

M =
 1

4π2ε0

µegAi µgeBj(−∇2δij +∇i∇j)
∫ ∞

0

 1
k0 − k ± iη

− 1
k0 + k ± iη

sin kr
r

dk,

(1.90)
where the Einstein convention for repeated indices has been used. We point out
that the sum over polarizations relation (see Eq. (1.22)) and the limit to continuous
has been applied to obtain the equation (1.90). Performing the wavevector integral
through residue theorem, the energy transfer amplitude can be written as

M = µegAi µ
ge
Bj V

±
ij (k0, r), (1.91)

where V ±ij (k0, r) is the complex retarded resonant dipole-dipole coupling tensor
defined by

V ±ij (k0, r) = − 1
4πε0

(−∇2δij +∇i∇j)
e±ik0·r

r

= 1
4πε0r3

(δij − 3r̂ir̂j)(1± ik0r)− (δij − r̂ir̂j)k2
0r

2

e∓ik0·r, (1.92)

where the second row is being obtained after application of the differential op-
erators [59]. Both choices of signs appearing in the coupling tensor (1.92) are
permitted, since M is just the probability amplitude for the RET and has no ef-
fect on the transfer rate. In fact, the energy transfer rate KRET between the pair
molecules A−B is obtained by taking the modulus square of the matrix element
(1.91), and using the Fermi golden rule (1.84), leading to

KRET = 2πρf
~

µegAi µ
ge
Bj µ

eg
Ai′ µ

ge
Bj′ V ±ij (k, r) (V ±i′j′(k, r))∗, (1.93)

where ρf is the density of the final states of the acceptor. This result holds for any
orientations of the electric dipole moments. Thus, considering random orientations
of the atomic dipole moments, Eq. (1.93) yields a monotonic distance dependence
of the energy transfer rate [63], proportional to

|M (±) |2= 2 | µA |2| µB |2
9(4πε0r3)2

(
3 + k2

0r
2 + k4

0r
4
)
. (1.94)

This result is valid for all interatomic distances r beyond wavefunction over-
lap, and has a complicated distance dependence, in contrast to the semi-classical
Förster theory that predicts only a r−6 dependence. Indeed, Eq. (1.94) obtained
with the QED formalism, underscores the unification of the radiationless and radia-
tive energy transfer mechanisms, containing three different distance dependencies:
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r−2, r−4 and r−6, related to three distinct regimes, that is the long-, intermediate-
and short-range, respectively [59]. In the near zone, when k0r � 1, that is for
interatomic distance much smaller than the atomic transition wavelength, the first
term of Eq.(1.94) is dominant, leading to

|M (±) |2nz=
| µA |2| µB |2

24π2ε2
0r

6 , (1.95)

yielding the familiar r−6 Förster-type dependence. As expected, in the short-range
limit, we find that the resonance energy transfer rate can be viewed as the radi-
ationless exchange of excitation between the atoms, arising from an electrostatic
dipolar coupling in which the interaction between the pair is instantaneous [9].
On the other hand, when k0r � 1, corresponding to the far zone limit, the main
contribution is given by the last term of Eq. (1.94), yielding

|M (±) |2fz=
| µA |2| µB |2 k2

0
72π2ε2

0r
2 , (1.96)

which exhibits an r−2 scaling with the distance. In the long-range limit the transfer
of energy is a radiative process, where the dominant contribution is due to the
exchange of a real photon between the two atoms. Therefore the exchange of
energy between the pair in this range can be viewed as a result of two separate
events: a spontaneous emission by the donor (excited) atom A, followed by the
absorption of the real photon by the (ground-state) acceptor atom B. We also
stress that the virtual photon contributions to the transfer of energy is still present
but clearly play a minor role compared to the real photon contribution.

1.6 Effects of external environments on radiation-
mediated processes

Since the pioneering work of Purcell, it is known that radiative processes of any
quantum emitter(s), for example the spontaneous emission of one or more atoms,
are affected by the environment [64]. The presence of matter, such as atoms or
molecules, and dynamical or static external environments, such as macroscopic ob-
jects like fixed or moving metallic/dielectric plates as well as cavities, waveguides
or photonic crystals (shown in Fig. 1.13), significantly modify radiation-mediated
processes. In fact, the density of states and the dispersion relation of the radiation
field is deeply changed by the external environments, and this involves changes of
the radiation-mediated processes between quantum emitters.
Dispersion and resonance interactions, as well as the resonance energy transfer pro-
cess, can thus be modified and controlled through external environments [25, 65–
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Figure 1.13: Some examples of static structured environments: a) A cavity; b)
waveguides with different geometries; c) one- two and three-dimensional photonic
crystals.

69], as well as from the presence of neighbouring atoms [70–72], or due to a uni-
formly accelerated motion of the atoms [73, 74]. These effects have attracted great
attention in many different areas of science, ranging from fundamental and atomic-
molecular physics to chemistry, biology and engineering, because it offers the pos-
sibility of controlling dispersion and resonance interactions and the exchange of
energy between quantum emitters, with regard to potential applications.

Being dominant at nanoscale separations, dispersion forces have a significant
role in the interaction with nanostructured materials [75], biological processes
[76, 77] and in applications in micro- and nano-technologies, for example micro-
electromechanical devices [78, 79].

On the other hand, the control of one of the most basic processes in nature,
such as the exchange of energy between atoms, molecules or even nanostructures is
one of the major challenges of quantum electrodynamics and quantum chemistry.
It plays an important role in the photodynamics of multichromophoric assemblies,
and it mediates the storage and migration of energy in photosynthetic systems
[80, 81]. In recent years, many investigations have been concerned with artificial
light harvesting antenna devices [82–88] and nanoemitters, especially spasers [89].
Moreover, the resonance energy transfer process between quantum dots has become
important in bio-inspired applications [90, 91], such as nanosensors [92–97] and
photodynamic therapy [98, 99].

Through external environments, it is possible to enhance or inhibit a radia-
tive process and even change its qualitative behaviour (for example the distance-
dependence) with respect to the free space case. Moreover, regarding dispersion
and resonance interaction between quantum emitters, even the attractive or re-
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pulsive character of the force can be controlled through external actions, as we
will discuss in detail later on. Furthermore, in recent years, many investigations
have concerned with radiative processes in a time-dependent environment under
non-equilibrium conditions: new remarkable and interesting effects arise when the
boundary conditions on the radiation field, or some relevant parameters of the
system, change adiabatically or non-adiabatically in time. [100–102]. This also
yields further and new possibilities for controlling radiation-mediated interactions
between atoms, as well as the energy transfer process with respect to the static
case [103, 104]. Dynamical situations can be obtained if the overall system is in
a non-equilibrium condition, for example when the atoms or molecules are in ex-
cited states or are coupled to thermal baths at different temperatures [105, 106].
Non-equilibrium conditions can be also obtained when the boundary conditions
on the electromagnetic field, or other important parameters of the system, are
time-dependent [101, 107–109]. Examples are quantum emitters are placed inside
a dynamical external environment for which its geometry and/or configuration is
time-dependent, such as a cavity with a moving wall or a time-modulated photonic
crystal. Here below are some recent works where the effect of statical and dynam-
ical external environments on the resonance and the dispersion interactions, and
the resonance energy transfer process, has been investigated. The effect of a struc-
tured environment, in particular a photonic crystal, on the resonance force between
two entangled atoms has been investigated [110–114], showing the possibility to
enhance or suppress the interaction, and even changing its distance dependence.
In [115], the resonance interaction between two entangled atoms placed inside a
photonic crystal has been studied. The dispersion relation for the electromagnetic
field inside a 3-D isotropic photonic crystal is given by

ωk = c

4na arccos
[4n cos(kL) + (1− n)2

(1 + n)2

]
, (1.97)

and showed in Fig. 1.14, where L is the lattice constant and 2a is the thickness of
the dielectric layers of refractive index n, assumed real and frequency-independent,
with vacuum space between them. The atoms, one excited and the other in its

Figure 1.14: Dispersion relation for the electromagnetic field inside a 3-D isotropic
photonic crystal, for which the frequency gap are placed at k = mπ

L
, with m ∈ Z.
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ground state, are prepared in a symmetric entangled state and the atomic transi-
tion frequency is assumed to be near the edge of the photonic band-gap and outside
of it. In this case the resonance force can be enhanced of about three orders of
magnitude with respect that one in the free space,

| FPC
Fvac

|' 103, (1.98)

whereas the spatial-dependence remains unchanged. On the other hand, if the
atomic transition frequency is inside the photonic band-gap, the resonance inter-
action not only is suppressed with respect to the free space one, but also its spatial
behaviour is modified; when the atoms are in the far zone regime, it scales as r−2

rather than r−1, where r is the interatomic distance.
In [116], the dispersion interaction between two atoms inside a perfectly con-

ducting rectangular waveguide has been investigated. The waveguide, showed in
Fig. 1.15, determines a lower cut-off frequency ωc ∼ cπ

a
, where a is the height of

the rectangular waveguide. Assuming that the atomic transition frequency is be-

Figure 1.15: Two atoms inside a perfectly conducting rectangular waveguide [116].

low the waveguide’s lower cut-off frequency, the dispersion interaction between the
atoms decay exponentially with the interatomic distance r, if r is much larger than
the atomic transition wavelength (far-zone regime, r � λ); on the other hand, in
the near zone range r � λ, the interaction is the same as that in the free space.

In [117] the intermolecular energy transfer in the presence of multislab planar
structures and microspheres is studied. In particular when the two molecules
are near a planar interface, the enhancement (inhibition) of energy transfer is
accompanied by inhibition (enhancement) of donor decay; moreover, a change of
the typical spatial-dependence in the free space is obtained.

Regarding radiation-mediated processes in time-dependent environments, the
dynamical Casimir-Polder interaction between an atom and a reflecting plate, af-
ter a non-adiabatic change of some physical parameter of the system, have been
investigated [49, 118–121], as well as the time-dependent Casimir-Polder interac-
tions between two or more atoms, during their self-dressing process [70, 122]. In
[121], for example, the dynamical Casimir-Polder force between an excited atom
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and a perfectly conducting plate, is investigated. The non-equilibrium configura-
tion of the system shows new relevant features compared to the equilibrium case
of a ground-state atom, due to the presence of an atom-field resonance. In fact,
the time-dependent Casimir-Polder interaction exhibits oscillations in time and
space, changing from attractive to repulsive, contrarily to the static case, where
the force is always attractive. Moreover, around and after the round-trip time
t = 2d

c
(d being the atom-wall separation), the dynamical force is much stronger

(some orders of magnitude) than that obtained for a ground-state atom.
The interest of studying systems under non-equilibrium conditions is both the-

oretical and experimental. In many realistic physical situations, systems are in a
non-equilibrium condition, for example the temperatures of the interacting objects
can be different from the environment’s temperature or from each other, or the
objects involved can be in relative motion. On the other hand, it is also a funda-
mental issue to investigate whether and how non-equilibrium initial conditions can
influence the dynamics of a given system, or modify radiation-mediated (resonance
or dispersion) interactions between atoms/molecules during their dynamic evolu-
tion. Another relevant conceptual issue is investigating how the new equilibrium
condition is approached by the system.

The possibility to manipulate and control radiation-mediated interactions and
the resonance energy transfer through external environments is the fundamental
goal of this PhD thesis. In the next chapters we will investigate the resonance and
dispersion interaction, as well as the resonance energy transfer process, both in a
static and dynamical situation, pointing out the possibility to activate or inhibit
such processes as well as to control their strength, their space-dependence, and
even the qualitative character of quantum forces.
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Chapter 2

Macroscopic quantum
electrodynamics

In this Chapter, the theory of macroscopic quantum electrodynamic is outlined,
which represents one of the basic theory for the analysis of radiation-mediated pro-
cesses in external environments considered in the thesis. This technique will be
the basis for part of the original work of this thesis, that will be presented in the
following chapters. Starting from classical electrodynamics in free-space and in
the presence of magneto-dielectric media, we discuss the main steps to construct a
consistent theory of the quantised electromagnetic field in the presence of generic
dispersive and dissipative media, in terms of the electromagnetic Green’s tensor.
This theory will allow to investigate radiation-mediated interactions and resonance
energy transfer process between quantum emitters, that are the main topics of this
thesis, in the presence of an arbitrary linear magneto-dielectric medium, studying
whether and how they can be modified and manipulated through external environ-
ments. The advantage of this formalism is that it contains no assumptions about
the state of the medium or the field, beyond the fact that the macroscopic Maxwell
equations are valid.

This Chapter is organized as follows: in Section 2.1 we first review the basic
concepts of macroscopic classical electrodynamics, starting with the simplest case
of radiation field in the free space, and going on with the more general case in
which a magneto-dielectric medium is present. In Section 2.2 the quantization
of the electromagnetic field in the presence of generic macroscopic dispersive and
dissipative bodies, based on the Green’s tensor, is outlined.
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2.1 Classical electrodynamics in material media
Classical electrodynamics is described by the well-known classical Maxwell

equations for the electromagnetic field which, in the absence of charges and cur-
rents, are

∇ · E = 0,
∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×B = 1
c2
∂E
∂t
,

(2.1)

where E and B are the electric and magnetic field in the free space, functions of
position and time [123]. They are related to the vector potential A and to the
scalar potential φ according to the following relations

E =− ∂A
∂t
−∇φ,

B =∇×A,
(2.2)

that, employing the Coulomb gauge imposed by the condition

∇ ·A = 0, (2.3)

satisfy the Laplace equation
∇2φ = 0, (2.4)

and the Helmholtz equation

∇2A− 1
c2
∂2A
∂t2

= 0. (2.5)

The presence of magneto-dielectric media, usually given by one or more macro-
scopic bodies, significantly modify the electromagnetic field and therefore Maxwell
equations (2.1). A generic medium can be viewed as an ensemble of a very large
number of charged particles, mutually interacting. Since the number of particles
is extremely large, a microscopic description of the system in term of particles
interacting with the radiation field is practically impossible. Fortunately, in most
cases, an effective, macroscopic description of the overall effect of these particles
on the electromagnetic field can be done [15].

Les us now consider the situation in which just the bound charges contained in
the magneto-dielectric medium are present, without any other free charges. The



Classical electrodynamics in material media 41

Maxwell equations take the form

∇ · E = ρin
ε0
,

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×B = 1
c2
∂E
∂t

+ µ0jin,

(2.6)

where ρin and jin are, respectively, the internal charge and current density as-
sociated to the bounded particles inside the medium, satisfying the continuity
equation

∇ · jin + ∂ρin
∂t

= 0. (2.7)

Defining the polarization P and the magnetization M of the medium according
to

∇ · P = −ρin (2.8)

jin = ∂P

∂t
+∇×M , (2.9)

we can write down the Gauss and Ampere laws in their well-known form

∇ ·D = 0,

∇×H = ∂D
∂t

,
(2.10)

where the electric displacement field D = ε0E + P and the magnetic excitation
H = B/µ0−M have been introduced. Assuming that the external radiation field
can be regarded as a weak perturbation to the equilibrium position of the charged
particles of the medium and thus its response to the external field is linear and
causal, polarization and magnetization are given by the Langevin equations

P (r, t) = ε0

+∞∫
−∞

dτ
∫
d3r′χ(r, r′, t) ·E(r′, t− τ) + PN(r, t), (2.11)

M (r, t) = 1
µ0

+∞∫
−∞

dτ
∫
d3r′ζ(r, r′, t) ·B(r′, t− τ) +MN(r, t), (2.12)

which show a reactive and a random term. The first reactive terms of the medium
response in (2.11) and (2.12), is linear to the external radiation field, where χ
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and ζ are the retarded electric and magnetic susceptibility tensor of the medium,
respectively. In order to preserve the causality

χ(r, r′, t) = 0, ζ(r, r′, t) = 0, for |r − r′| > ct. (2.13)

The random parts are given by the noise polarization PN(r, t) and noise magneti-
zationMN(r, t), which account for the fluctuations in the medium, related to the
noise charge density and to the noise current density by the following relations

∇ · PN = −ρN (2.14)

jN = ∂PN
∂t

+∇×MN . (2.15)

Assuming that the medium response is local and isotropic, which means that

χ(r, r′, t) = χ(r, t− t′)δ(r − r′)I, (2.16)
ζ(r, r′, t) = ζ(r, t− t′)δ(r − r′)I, (2.17)

the polarization and magnetization expressions become

P (r, t) = ε0

+∞∫
−∞

dτ χ(r, t)E(r, t− τ) + PN(r, t), (2.18)

M(r, t) = 1
µ0

+∞∫
−∞

dτ ζ(r, t)B(r, t− τ) +MN(r, t). (2.19)

Working in the Fourier space, and introducing the Fourier transform of a generic
function f as,

f̂(ω) = 1
2π

+∞∫
−∞

dtf(t)eiωt, (2.20)

and exploiting the convolution theorem, Eqs. (2.18) and (2.19) in the Fourier
space can be written in the simpler form

P̂ (r, ω) = ε0 χ(r, ω)Ê(r, ω) + P̂N(r, ω), (2.21)

M̂ (r, ω) = ζ(r, ω)
µ0

B̂(r, ω) + M̂N(r, ω), (2.22)

where

χ(r, ω) =
+∞∫
−∞

dτχ(r, τ)eiωτ , (2.23)

ζ(r, ω) =
+∞∫
−∞

dτζ(r, τ)eiωτ . (2.24)
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According to the classical statistical fluctuation-dissipation theorem, the fluc-
tuation spectrum of the noise fields is related to the imaginary part of the response
function, and in our case we have

〈∆PN(r, ω)∆P ∗N(r′, ω′)〉cl = kBT

πω
ε0 Imχ(r, ω) δ(r − r′)δ(ω − ω′), (2.25)

〈∆MN(r, ω)∆M ∗
N(r′, ω′)〉cl = kBT

πω

Imζ(r, ω)
µ0

δ(r − r′)δ(ω − ω′). (2.26)

These equations reveal the strict connection between fluctuations and absorption,
owing to the imaginary part of the response function: fluctuations are inevitably
present in any absorbing system at non-zero temperature.
Introducing the electric permittivity and the magnetic permeability of the medium
as

ε(r, ω) = 1 + χ(r, ω) (2.27)

µ(r, ω) = 1
1− ζ(r, ω) , (2.28)

the Maxwell equations, in Fourier space, can be written as

∇ · D̂ = 0
∇ · B̂ = 0,
∇× Ê = iωB̂,
∇× Ĥ = −iωD̂,

(2.29)

where
D̂ = ε0εÊ + P̂N , Ĥ = B̂

µ0µ
− M̂N . (2.30)

In order to construct a solution for the Maxwell equations, despite to the free-space
case where a wave equation for the vector potential A is obtained, it is here more
convenient to formulate a dynamical equation for the electric field E. We find that
the electric field satisfies an inhomogeneous Helmholtz equation

[
∇× 1

µ
∇×−ω

2

c2 ε
]
Ê(r, ω) = iµ0ωĵN(r, ω), (2.31)

with the source term being given by the noise current density [15]. A formal
solution of this equation can be written as

Ê(r, ω) = iωµ0

∫
d3r′G(r, r′, ω) · ĵN(r′, ω), (2.32)
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where G(r, r′, ω) is the electromagnetic Green’s tensor [15, 124–126], solution of
the Helmholtz equation

[
∇× 1

µ
∇×−ω

2

c2 ε
]
G(r, r′, ω) = δ(r − r′), (2.33)

with the boundary condition that

G(r, r′, ω)→ 0 for |r− r′| → ∞. (2.34)

Furthermore it can be shown that G(r, r′, ω) satisfies the Schwarz reflection prin-
ciple

G∗(r, r′, ω) = G(r, r′,−ω∗), (2.35)

the Onsager reciprocity relation

GT (r, r′, ω) = G(r′, r,−ω∗), (2.36)

and the integral relation [127, 128]

∫
d3s

− Imµ(s, ω)
|µ(s, ω)|2

[
∇s ×G(s, r, ω)

]T
·
[
∇s ×G∗(s, r′, ω)

]

+ω
2

c2 Im ε(s, ω) G(r, s, ω) ·G∗(s, r′, ω)
 = ImG(r, r′, ω). (2.37)

From the electric field expression (2.32), the explicit expression for the magnetic
field B in terms of the Green’s tensor can be obtained

B̂(r, ω) = µ0

∫
d3r′ ∇×G(r, r′, ω) · ĵN(r′, ω). (2.38)

Upon expressing the noise current density in terms of noise polarization and mag-
netization via (2.15), the electromagnetic field expressions can be written in the
alternative form

Ê(r, ω) = − 1
ε0

∫
d3r′Gee(r, r′, ω) · P̂N(r′, ω)− Z0

∫
d3r′Gem(r, r′, ω) · M̂N(r′, ω),

(2.39)

B̂(r, ω) = −Z0

∫
d3r′Gme(r, r′, ω) · P̂N(r′, ω)− µ0

∫
d3r′Gmm(r, r′, ω) · M̂N(r′, ω),

(2.40)
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where the vacuum impedance Z0 =
√
µ0/ε0 has been introduced. Here we have

introduced the tensors

Gee(r, r′, ω) = iω

c
G(r, r′, ω)iω

c
, (2.41)

Gem(r, r′, ω) = iω

c
G(r, r′, ω)×∇, (2.42)

Gme(r, r′, ω) = ∇×G(r, r′, ω)iω
c
, (2.43)

Gmm(r, r′, ω) = ∇×G(r, r′, ω)×∇, (2.44)

where Gλλ′ relates the induced electric and magnetic field (for λ = e,m) to their
two possible polarization and magnetization sources (for λ′ = e,m).
The development of the classical electrodynamics in terms of the Green’s ten-
sor is a very useful way to investigate and calculate the electromagnetic field, in
particular when macroscopic media are present in the system. In fact, all the
magneto-dielectric properties of the media are included in the Green’s tensor ex-
pression; thus, the formal solutions given in Eqs. (2.32) and (2.38) for the electric
and magnetic field, represent the radiation field in the presence of a generic macro-
scopic medium, due only to the noise charge and the noise current density, in the
absence of free charges and currents. Therefore the goal of this approach is that
through these equations, knowing the Green tensor expression, we can investigate
the electromagnetic field in presence of any arbitrary magneto-dielectric media.

2.2 Quantum electrodynamics in linear media
The canonical quantization scheme, used to quantise the radiation field in the

free space, cannot be applied to quantise the electromagnetic field in the presence
of generic magneto-dielectric media. In fact, if we naively extend the plane-wave
expansion for the electromagnetic field in the presence of dielectrics, we should
replace the plane-wave solution of the Helmholtz equation eik·r with eink·r, where
n ≡ n(ω) is the refractive index of the medium, which is a complex function
of frequency n(ω) = η(ω) + iκ(ω), that satisfies the Kramers-Kronig dispersion
relations

η(ω) = 1
π
P

+∞∫
−∞

dω′
κ(ω′)
ω′ − ω

, κ(ω) = − 1
π
P

+∞∫
−∞

dω′
η(ω′)
ω′ − ω

. (2.45)

Owing to the inevitable imaginary part of the refractive index, the plane waves
inside the medium are damped, which implies that they do not form a complete
set of orthonormal functions, needed to perform a Fourier decomposition of the
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electromagnetic field. Therefore the canonical quantization procedure in presence
of media leads to a failure; in fact imposing the bosonic commutation rules for
the amplitude operators ak,λ and a†k,λ, the commutation relations for the electric
field operator E(r) and the magnetic field operator B(r) are no longer being ful-
filled; on the other hand, if we postulate the correctness of commutation relations
between the fields, the amplitude operators cannot represent annihilation and cre-
ation operators of photonic modes [15]. The failure of this quantization scheme is
related to the fact that the electromagnetic field is coupled to the dielectric matter,
and can no longer be treated as in the free space, taking into account the presence
of media by means of the refractive index n(ω) only [128].

For these reasons, we shall necessarily consider the electromagnetic field inter-
acting with an absorbing dielectric matter, that can be microscopically depicted
as an atomic system coupled to a reservoir that is responsible for absorption.
Historically the first attempt of quantising the electromagnetic field in absorbing
dielectric media is due to Huttner and Barnett [129, 130]. They consider the radi-
ation field interacting with an homogeneous and isotropic bulk dielectric, in which
an harmonic oscillator, representing the medium polarization, is linearly coupled
to a continuum of harmonic oscillators, standing for the reservoir.

In order to develop a macroscopic quantum theory for the electromagnetic
field in presence of dielectric media, we require that the equations of motion for
the electromagnetic field must be the same as the classical ones, therefore electric
and magnetic field operators must obey Maxwell equations in Fourier space (2.29)
with the constitutive relations (2.30). The electric and magnetic field must also
fulfil the correct commutation relations, and the quantum fluctuations of both
noise fields and radiation fields should satisfy the fluctuation-dissipation theorem.

Since the noise polarization and magnetization fields are now operators, we
must specify their commutation relations. Their expressions shall be such that
quantum averages of noise polarization and noise magnetization vanish, and their
fluctuation spectrum fulfils the fluctuation-dissipation theorem. Expressions for
noise polarization and magnetization operators are

PN(r, ω) = i

√
~ε0

π
Imε(r, ω) fe(r, ω), (2.46)

MN(r, ω) =

√√√√ ~
πµ0

Imµ(r, ω)
|µ(r, ω)|2 fm(r, ω), (2.47)

where f †λ(r, ω) and fλ(r, ω) are creation and annihilation bosonic matter-assisted
operators, respectively, where the subscript λ = (e,m) refers to the electric and
magnetic parts. They represent the combined system of the electromagnetic
field and the magneto-dielectric medium, and describe the collective polariton-like
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bosonic excitation of the body-field system. They satisfy the following bosonic
commutation relations[

fλi(r, ω), f †λ′i′(r′, ω′)
]

= δλλ′ δii′ δ(r− r′)δ(ω − ω′),[
fλi(r, ω), fλ′i′(r′, ω′)

]
=
[
f †λi(r, ω), f †λ′i′(r′, ω′)

]
= 0, (2.48)

and the ground state of the system is defined as

fλ(r, ω) |0〉 = 0 ∀ λ, r, ω. (2.49)

The complete Hilbert space of the matter-field system is given by Fock states
obtained by repeated applications of the creation operator f †λ(r, ω) on the ground
state, from which the general n-quantum Fock state is

|1λ1(r1, ω1) . . .1λn(rn, ωn)〉 = 1√
n!
f †λn(rn, ωn) · · ·f †λ1(r1, ω1) |0〉 . (2.50)

Here, |1λ(r, ω)〉 is the one medium-assisted photon state of the combined system of
radiation field and macroscopic medium. From the above definition of the ground
state, it immediately follows that the creation and annihilation operators have a
vanishing average on the ground state,

〈f †λ(r, ω)〉 = 〈0|f †λ(r, ω) |0〉 = 0, (2.51)
〈fλ(r, ω)〉 = 〈0|fλ(r, ω) |0〉 = 0 (2.52)

and exploiting the bosonic commutation relations, the following results are ob-
tained

〈fλ(r, ω)fλ′(r′, ω′)〉 = 0, (2.53)
〈f †λ(r, ω)f †λ′(r′, ω′)〉 = 0, (2.54)
〈f †λ(r, ω)fλ′(r′, ω′)〉 = 0, (2.55)
〈fλ(r, ω)f †λ′(r′, ω′)〉 = δλλ′δ(r− r′)δ(ω − ω′). (2.56)

The above relations imply that the noise polarization and magnetization, given by
expressions (2.46) and (2.47), have zero ground-state average

〈PN〉 = 0, 〈MN〉 = 0, (2.57)

and satisfy the fluctuation-dissipation theorem,

〈S[∆PN(r, ω)∆P †N(r′, ω′)]〉 = ~ε0

2π Imχ(r, ω)δ(r− r′)δ(ω − ω′), (2.58)

〈S[∆MN(r, ω)∆M †
N(r′, ω′)]〉 = ~

2πµ0
Imζ(r, ω)δ(r− r′)δ(ω − ω′), (2.59)
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as previously requested. Here S[ab] = 1
2(ab + ba) is a symmetrized operator

product.
Having introduced the fundamental dynamical variables of the system and their
commutation relations, the electromagnetic field quantization can be performed
by expressing field operators in terms of f †λ(r, ω) and fλ(r, ω). Similarly to the
classical case, an Helmholtz equation for the electric field operator can be obtained,∇× 1

µ
∇×−ω

2

c2 ε

E = iµ0ωjN , (2.60)

which can be formally solved by means of the Green’s tensor,

E(r, ω) = iωµ0

∫
d3r′G(r, r′, ω) · jN(r′, ω). (2.61)

Exploiting the noise current expression jN(r′, ω) = −iωPN(r, ω) +∇×MN(r, ω),
together with Eqs. (2.46) and (2.47), we obtain the electric field expression in
terms of the Green’s tensor and the bosonic field-matter operators

E(r) =
+∞∫
0

dωE(r, ω) +H.c.

=
+∞∫
0

dω
∑
λ=e,m

∫
d3r′ Gλ(r, r′, ω) · fλ(r′, ω) +H.c. (2.62)

where

Ge(r, r′, ω) = i
ω2

c2

√
~
πε0

Im ε(r′, ω) G(r, r′, ω), (2.63)

Gm(r, r′, ω) = i
ω

c

√√√√ ~
πε0

Imµ(r′, ω)
|µ(r′, ω)|2 [∇′ ×G(r, r′, ω)]T , (2.64)

are respectively the electric and magnetic Green’s tensor components. By means
of Eqs. (2.63) and (2.64), the integral relation (2.37) can be written in the more
compact form,

∑
λ=e,m

∫
d3s Gλ(r, s, ω) ·G∗Tλ (r′, s, ω) = ~µ0

π
ω2 ImGλ(r, r′, ω). (2.65)

Using Eq. (2.62) together with Maxwell equations in the frequency space, the
expression of the magnetic field B in terms of dynamical variables of the system
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can be written as

B(r) =
+∞∫
0

dω B(r, ω) +H.c.

=
+∞∫
0

dω

iω

∑
λ=e,m

∫
d3r′ ∇×Gλ(r, r′, ω) · fλ(r′, ω) +H.c. (2.66)

Exploiting the bosonic commutation relations for f †λ(r, ω) and fλ(r, ω), may be
shown that the new expressions for the electric and magnetic field in terms of field-
matter operators, (2.62) and (2.66), obey the equal-time commutation relations[

E(r),E(r′)
]

=
[
B(r),B(r′)

]
= 0, (2.67)[

E(r),B(r′)
]

= i~
ε0
∇× δ(r − r′), (2.68)

as requested [125, 127, 128, 131]. They also satisfy the fluctuation-dissipation
theorem since the ground-state fluctuation spectrum of the electric field is [15,
125, 127]

〈S[∆E(r, ω)∆E†(r′, ω′)]〉 = ~µ0ω
2

2π ImGλ(r, r′, ω)δ(ω − ω′), (2.69)

where the integral relation (2.65) has been used. Finally, in order to complete the
quantization scheme we need to specify the Hamiltonian of the system in terms of
bosonic field-matter operators, which has the following expression

HF =
∑
λ=e,m

∫
d3r

+∞∫
0

dω ~ω f †λ(r, ω) · fλ(r, ω). (2.70)

In conclusion, the expressions for the quantum electromagnetic field and the
radiation field Hamiltonian in terms of the new bosonic field-matter operators
f †λ(r, ω) and fλ(r, ω) have been obtained, which represent the medium-assisted
quantum electromagnetic field [15]. These expressions can be very useful to in-
vestigate the radiation field in presence of an arbitrary bulk dielectric medium,
since all the information and physical properties of the medium, its material or its
geometry for example, are included in the classical Green tensor expression.

To summarize, the macroscopic QED theory outlined in the present Chapter
fulfils three fundamental requirements: it is compatible with the classical macro-
scopic electrodynamics, fulfilling Maxwell equations; the quantum fluctuations of
both noise and electromagnetic fields obeys the fluctuation-dissipation theorem
and, finally, the radiation field satisfies the correct commutation relations.
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Finally, we conclude this section with a few remarks about the validity and
physical interpretation of the macroscopic QED theory [15]. This theory describes
the quantum electromagnetic field in the presence of an arbitrary linear, causal
magneto-dielectric medium, characterized, respectively, by its permittivity and
permeability ε(r, ω) and µ(r, ω). The validity of this quantization scheme is
strictly related to the assumption that all the space is filled with an absorbing
medium, so that Imε(r, ω) > 0 and Imµ(r, ω) > 0 hold everywhere. This condi-
tion is fundamental to guarantee the convergence of the spatial integrals presented,
for example, in expressions (2.62) and (2.66). In fact, the free-space QED case, for
which Imε(r, ω) = 0 and Imµ(r, ω) = 0, can be obtained from this theory by per-
forming the limits Imε(r, ω)→ 0 and Imµ(r, ω)→ 0, after taking the expectation
values and having calculated all space integrals.



Chapter 3

Resonance energy transfer
between two atoms in external
environments

The resonance energy transfer between two quantum emitters, such as atoms,
molecules, chromophores or macromolecular assemblies, is the exchange of elec-
tronic excitation between them mediated by the quantum electromagnetic field
[60]. The transport of electronic energy from one atom or molecule to another
has significant importance to a number of diverse areas of science, from atomic-
molecular physics to chemistry and biology, above all in biochemical and solid-state
system [50]. It is also supposed that this process is strictly related to the very high
efficiency in light-harvesting observed in photosynthetic systems [51, 52], account-
ing for energy hopping between chlorophyll molecules in the photosynthetic-unit
[132, 133]. More recently the resonance energy transfer between carbon nanotubes
[134–137] and quantum dots [138–140] has been also investigated .

When two molecules are in presence of external environments, the radiation
field can be significantly modified with respect to that in the free space and there-
fore the intermolecular energy transfer can be deeply modified accordingly [117].
This latter effect has attracted much attention, because it offers the possibility to
manipulate and control the exchange of energy between quantum emitters through
external environments, with regard to promising potential applications [141], e.g.,
in high-efficiency light-harvesting systems, photovoltaic [142, 143], optical net-
works and bio-medical sensing [93, 144]. The possibility of controlling the energy
transfer between nanostructured emitters through a reflecting plate or exploiting
laser external fields has been also investigated [145–147]. Many other calculations
of the energy transfer rate have been performed in order to include the effect of
bulk materials [148], microspheres [149] and planar microcavities [150, 151].

In this Chapter we present our original work on the resonance exchange of
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energy between two identical atoms, or any other quantum emitters (for example
quantum dots), placed on the axis of a cylindrical waveguide made of a perfect
conductor [152]. Our purpose is to investigate whether and how the transfer of
energy between two atoms can be manipulated and controlled through a cylindrical
waveguide.

Firstly, we will obtain an analytical expression of the energy transfer ampli-
tude, in terms of the electromagnetic Green’s tensor, when the atoms are in the
presence of a generic linear, dispersive and dissipative magneto-dielectric medium.
Then we use the specific Green’s tensor of the cylindrical waveguide, whose ana-
lytic expression is known, to evaluate numerically the energy transfer amplitude
inside the waveguide in terms of the relevant parameters of the system: the dis-
tance between the atoms and the radius of the waveguide, relative to the atomic
transition wavelength. We shall consider both cases of atomic dipoles parallel and
orthogonal to the guide axis. We explicitly show that the presence of a lower cut-
off frequency inside the waveguide deeply changes the energy transfer amplitude
between the atoms when they are in the far radiative zone. On the other hand, we
find that the influence of the waveguide when the atoms are in the radiationless
near zone, although present, is much less important. We also show the possibil-
ity to strongly modify the transfer of energy between the atoms by varying the
waveguide radius, allowing a control of the energy transfer process by means of
a macroscopic parameter of the system. A transparent physical interpretation of
these results is given.

This Chapter is organized as follows: in Sec. 3.1 we first obtain the inter-
molecular energy transfer amplitude in the presence of an arbitrary dispersing and
absorbing magneto-dielectric medium. To achieve this purpose the macroscopic
QED and the Green tensor formalism, outlined in Chapter 2, is used. In Sec. 3.2
we apply the generic RET expression in terms of the Green’s tensor to the case
of atoms placed inside a perfectly conducting cylindrical waveguide. The energy
transfer process is analysed in detail as a function of the waveguide radius, the
interatomic distance and the atomic dipoles orientation. We shall point out the
possibility to modify and control such process through the macroscopic parame-
ters of the environment. Finally, Sec. 3.3 summarizes our findings and conclusive
remarks.

3.1 Resonance energy transfer in the presence of
magneto-dielectric media

In this section we consider the resonance energy transfer between two atoms
when an arbitrary magneto-dielectric medium is present nearby. In order to achieve
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this purpose, we generalise the quantum approach to the resonance energy transfer,
outlined in Chapter 1, using the macroscopic quantum electrodynamics formalism
and the Green’s tensor (introduced in Chapter 2), that includes all properties of
the macroscopic environment around the system [15, 117, 153].

Les us consider two two-level identical atoms, labelled A and B, placed in a
generic linear magneto-dielectric medium; we assume that the atom A (donor) is in
its excited state, while the atom B (acceptor) is in its ground state, and the whole
system is embedded inside an arbitrary dissipative and dispersive medium. The
radiation field is in its vacuum state, thus every possible mode has zero photons.
The Hamiltonian of the system can be expressed as

H = Ha +Hf +Hi, (3.1)
where Ha and Hf are respectively the unperturbed atomic and field Hamiltonians,
in the presence of the medium, given by

Ha =
∑
n=e,g

EA
n |nA〉 〈nA|+

∑
n=e,g

EB
n |nB〉 〈nB| , (3.2)

Hf =
∑
λ=e,m

∫
d3r

∫ ∞
0
dω ~ω f †λ(r, ω) · fλ(r, ω), (3.3)

where |nA(B)〉 are eigenstates of the atomic Hamiltonian of atom A(B), |e〉 and |g〉
being in particular the atomic excited and ground state, with energy Ee and Eg, re-
spectively. Owing to the presence of the medium, the free-field Hamiltonian (3.3) is
written in terms of the bosonic matter-assisted field operators fλ(r, ω) and f †λ(r, ω)
introduced in Chapter 2. We recall that they represent the medium-assisted elec-
tromagnetic field, and satisfy the following bosonic commutation relations[

fλi(r, ω), f †λ′i′(r′, ω′)
]

= δλλ′δii′δ(r− r′)δ(ω − ω′),[
fλi(r, ω), fλ′i′(r′, ω′)

]
= 0, (3.4)

where the subscript λ = e,m refers to the electric and magnetic parts. Hi is the
interaction Hamiltonian written in the multipolar coupling scheme and within the
dipole approximation

Hi = −µA · E(rA)− µB · E(rB) (3.5)
where rA(B) is the position of the atom A (B) and µA(B) is its atomic electric dipole
moment operator. E(r) is the medium-assisted electric field operator evaluated at
the atomic position r = rA(B), expressed in terms of the Green’s tensor as

E(r) =
∫ ∞

0
dω′ E(r, ω′) +H.c.

=
∑

λ′=e,m

∫
d3r′

∫ ∞
0
dω′ Gλ′(r, r′, ω′) · fλ′(r′, ω′) +H.c., (3.6)
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where

Ge(r, r′, ω′) = i
ω′2

c2

√
~
πε0

Im ε(r′, ω′) G(r, r′, ω′) (3.7)

Gm(r, r′, ω′) = i
ω′

c

√√√√ ~
πε0

Imµ(r′, ω′)
|µ(r′, ω′)|2 [∇′ ×G(r, r′, ω′)]T (3.8)

are respectively the electric and magnetic Green’s tensor components. They satisfy
the following integral relation

∑
λ′=e,m

∫
d3sGλ′(r, s, ω′) ·G∗Tλ′ (r′, s, ω′) = ~µ0

π
ω′2ImGλ(r, r′, ω′). (3.9)

In order to develop our calculation, it is more convenient to write explicitly equa-
tions (3.6) and (3.9) in terms of their components

Ei(r) =
∑

λ′=e,m

∫
d3r′

∫ ∞
0
dω′

∑
l

[
Gλ′il(r, r′, ω′)fλ′l(r′, ω′) +G∗λ′il(r, r′, ω′)f

†
λ′l(r′, ω′)

]
,

(3.10)∑
λ′=e,m

∫
d3s

∑
β

Gλ′iβ(r, s, ω′) G∗λ′jβ(r′, s, ω′) = ~ω′2

πε0c2 ImGij(r, r′, ω′).

(3.11)

where the Einstein notation for repeated indices has been used. As done for the
free-space case, the energy transfer rate between two atoms embedded in a generic
magneto-dielectric medium is given by the generalized Fermi golden rule [50, 62]

Wi→f = 2π
~
| 〈ψi|T |ψf〉 |2δ(Ef − Ei), (3.12)

where |ψi〉 = |eA, gB, 0〉 and |ψf〉 = |gA, eB, 0〉 are respectively the initial and the
final state of the system, with energy Ei and Ef , and the radiation field is in the
vacuum state. T is the transition operator at the second-order in the interaction
Hamiltonian

T = Hi +Hi
1

Ei −H0 ± iη
Hi, (3.13)

where H0 and Hi are the unperturbed and interaction Hamiltonians, respectively,
and Ei = Ef = ~ω0 is the energy of the initial and final state. ω0 = ck0 is the
transition frequency of both atoms, assumed identical. The second-order energy
transfer amplitude can thus be written as

M = 〈ψi|T |ψf〉 =
∑
I

〈ψi|Hi |I〉 〈I|Hi |ψf〉
Ei − EI ± iη

, (3.14)
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where |I〉 are the intermediate states, with energy EI , that can contribute to the
energy transfer process and η → 0+. Taking into account Eq. (3.5), only two
intermediate states contribute to the energy transfer amplitude (3.14),

|I〉1 = |gA, gB,1λ(r, ω)〉 ,
|I〉2 = |eA, eB,1λ(r, ω)〉 , (3.15)

shown in Fig. 3.1, where 1λ(r, ω) is a medium-assisted excitation of the radiation
field.

Figure 3.1: Feynman diagrams for the resonance energy transfer between two
atoms in the multipolar method.

The sum over the intermediate states can be written as a sum over λ = e,m, the
magnetic and electric part, and an integral over space and over frequency, leading
to

M =
∑
λ=e,m

∫
d3r

+∞∫
0

dω

〈eA, gB, 0|Hi |gA, gB,1λ(r, ω)〉 〈gA, gB,1λ(r, ω)|Hi |gA, eB, 0〉
~ω0 − ~ω ± iη

−〈eA, gB, 0|Hi |eA, eB,1λ(r, ω)〉 〈eA, eB,1λ(r, ω)|Hi |gA, eB, 0〉
~ω0 + ~ω ± iη

.
(3.16)

Calculating the matrix elements, for the first term in Eq. (3.16), we obtain

〈eA, gB, 0|Hi |gA, gB,1λ(r, ω)〉 = −〈eA, gB, 0|µA · E(rA) |gA, gB,1λ(r, ω)〉 =∑
i

〈eA, gB, 0|µAi Ei(rA) |gA, gB〉 |1λ(r, ω)〉 =

∑
i

∑
λ′l

∫
d3r′

∫ ∞
0

dω′ 〈eA, gB, 0|µAiGλ′il(rA, r′, ω′)fλ′l(r′, ω) |gA, gB〉 |1λ(r, ω)〉 =∑
ij

〈eA, gB|µAiGλij(rA, r, ω) |gA, gB〉 =
∑
ij

µegAi Gλij(rA, r, ω), (3.17)
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where in the last row we have used the commutation relations for the bosonic
operators fλ(r, ω) and f †λ(r, ω). Here, µegAi = 〈eA|µAi |gB〉 is the matrix element of
the i-component of the dipole moment operator of the atom A between its excited
and ground state. With similar steps, it is possible to calculate the other matrix
elements in Eq. (3.16) related to the intermediate state |I2〉, finally obtaining

M =
∑
λ=e,m

∫
d3r

+∞∫
0

dω
∑
ijk

µegAiGλij(rA, r, ω)G∗λkj(rB, r, ω)µgeBk
~ω0 − ~ω ± iη

−
µgeBkG

∗
λkj(rB, r, ω)Gλij(rA, r, ω)µegAi

~ω0 + ~ω ± iη

. (3.18)

Now, using the integral relation (3.9), the resonance energy transfer amplitude can
be written as

M = 1
πε0c2

∫ ∞
0

dωω2∑
ij

 1
ω0 − ω ± iη

µegAi ImGij(rA, rB, ω) µgeBj


− 1
ω0 + ω ± iη

µegAi ImGij(rB, rA, ω) µgeBj

. (3.19)

Equation (3.19) gives the amplitude probability that the electronic excitation is
transferred from one atom to the other one, when they are placed near a generic
linear magneto-dielectric medium, whose properties are completely included in the
Green’s tensor expression [117, 152]. Therefore, if the Green’s tensor of a particular
physical system is known, it is possible to calculate and investigate the resonance
energy transfer between two atoms inside the structured environment, considered.

It is easily shown that Eq. (3.19) reduces to the well-known free-space RET
amplitude (see Eq. (1.91)) if the atoms are in the free space, without any external
environment. This calculation is discussed in detail in the Appendix A.

3.2 Resonance energy transfer in a conducting
cylindrical waveguide

In this section we specify our calculation of the resonance exchange of energy
between two identical atoms to the case when the atoms are placed inside a per-
fectly conducting cylindrical waveguide of radius R, as shown in Fig. 3.2 [152].
The outer layer of the waveguide is made of a perfect conductor, while the inner
part is empty; the atoms A and B are considered as two two-level system with
eigenstates |e〉 and |g〉 for the excited and ground state, with energy Ee and Eg,
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R

z

e

g

ω
0

A

B

Figure 3.2: The physical system: two identical two-level atoms placed on the axis
of a perfectly conducting cylindrical waveguide of radius R [152].

respectively. ω0 = (Ee − Eg)/~ is the transition frequency for both atoms A and
B. We assume they are placed on the waveguide axis, with z = |rA − rB| being
their distance.

Our purpose is to investigate the effects of the presence of the waveguide on the
resonance energy transfer process between the atoms. To achieve this purpose we
will use the analytical expression of the energy transfer amplitude (3.19) in terms
of the Green’s tensor, obtained in the previous section, specifying the specific
Green tensor expression describing the conducting cylindrical waveguide, shown
in Figures 3.2 and 3.3.

Figure 3.3: A cylindrical waveguide with circular cross section.

The analytical expression of the Green’s tensor of a cylindrical waveguide is known
in the literature, and it is given by [126] (see also [67, 154])

G(r, r′, ω) = − 1
k2 δ(r− r′)ẑ ⊗ ẑ +

∑
n,m

cµnMe
onµ(±kµ)M′

e
onµ

(∓kµ)

+cλnNe
onλ(±kλ)N

′
e
onλ

(∓kλ)
 (z ≷ z′), (3.20)
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where M and N are vector cylindrical wave functions given by

Me
omµ(h) =

∓ nJn(µr)
r

sin
cos(nφ) r̂ − ∂Jn(µr)

∂r

cos
sin(nφ) φ̂

eihz, (3.21)

Ne
onλ(h) = 1

k

ih∂Jn(λr)
∂r

cos
sin(nφ) r̂ ∓ ihn

r
Jn(λr) sin

cos(nφ) φ̂

+ λ2Jn(λr) cos
sin(nφ) ẑ

eihz.
(3.22)

Here, µ = qnm/R and λ = pnm/R, with pnm being the m-th root of the n-order
Bessel function (Jn(pnm) = 0), and qnm being the m-th root of the derivative of the
n-order Bessel function ( J ′n(qnm) = 0). λ and µ are the radial components of the
wavevector k (k = ω

c
) of the electric field for, respectively, the traverse magnetic

(TM) and transverse electric (TE) modes inside the waveguide; likewise, kλ and
kµ are the axial components of the wavevector, obeying the following relations

kλ =
√
k2 − λ2, TM modes (3.23)

kµ =
√
k2 − µ2, TE modes. (3.24)

The coefficients cµn and cλn in Eq. (3.20) are normalization factors, given by

cµn = i
(2− δn0)

4πµ2Iµnkµ
, cλn = i

(2− δn0)
4πλ2Iλnkλ

(3.25)

with the overlap integrals

Iλn =
R∫

0

dr rJ2
n(λr) = R2

2 J
′2
n (pnm) (3.26)

Iµn =
R∫

0

dr rJ2
n(µr) = R2

2

(
1− n2

q2
nm

)
J2
n(qnm). (3.27)

Since the atoms are placed on the cylinder’s axis, the Green’s tensor expression
(3.20) can be simplified as [67]

G(r, r′, ω) = i

4π
∑
m

 eikµz

2Iµ1kµ
+ kλe

ikλz

2Iλ1k2

(r̂ ⊗ r̂ + φ̂⊗ φ̂) + λ2eikλz

Iλ0kλk2 ẑ ⊗ ẑ

,
(3.28)
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where the overlap integrals are given by

Iµ1 = R2

2

1− 1
q2

1m

J2
1 (q1m), (3.29)

Iλ1 = R2

4
(
J0(p1m)− J2(p1m)

)2
, (3.30)

Iλ0 = R2

2 J2
1 (p0m). (3.31)

It is important to point out that the presence of the cylindrical waveguide
significantly changes the density of states of the electromagnetic field inside of it;
owing to the boundary conditions on the perfectly conducting shell, the wavevector
radial components assume discrete values and depend on the cylinder radius R,

µ = qnm/R for TE modes, (3.32)
λ = pnm/R for TM modes, (3.33)

which means that only electric field with specific radial components can exist inside
the waveguide. Radial field modes also depend on the waveguide radius R, so they
can be strongly modified by changing the geometry of the system, in particular its
radius. The waveguide determines a lower cut-off frequency for the TE and TM
field modes, given by

(ωmin)TM '
2.4c
R

, (3.34)

(ωmin)TE '
1.8c
R

, (3.35)

where p01 ' 2.4 and q11 ' 1.8 are the smallest roots of the Bessel function and its
derivative, respectively. Therefore only field modes (TE or TM) with frequency
ω > (ωmin)TE(TM) can propagate inside the waveguide; since the cut-off frequency
depends on R−1, it is possible to change and thus control the density of states and
the field modes inside the waveguide, through its radius. This allows to control the
transfer of energy between the atoms by means of a macroscopic parameter of the
system, that is the guide radius. The presence of a lower cut-off frequency, as we
will demonstrate below, has a strong effect on the exchange of energy between the
atoms: if k0R� 1, the atomic transition frequency is smaller than the waveguide
cut-off frequency, ω0 < ωmin, and this means that the waveguide suppresses the
field modes resonant with the atomic transition frequency. Since they cannot
contribute to the exchange of excitation between the atoms, the energy transfer is
significantly suppressed in this regime. Otherwise, when ω0 > ωmin, that is when
k0R & 1, the resonant field modes can contribute to the excitation transfer, and
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we expect that the energy transfer process is much less influenced by the presence
of the waveguide.

It is relevant to point out that in the first regime, ω0 < ωmin, the waveguide
cut-off frequency ωmin becomes the lower limit of the frequency integral in the
RET amplitude expression (3.19); on the other hand, when ω0 > ωmin, the lower
limit of integration can be set to zero because the contribution from resonant field
modes to the energy transfer is much more relevant with respect to any other
contribution from non-resonant field modes. For these reasons, in our research
work we investigate the resonance energy transfer between the atoms in the case
k0R � 1, that is ω0 < ωmin, for which the presence of the cylindrical guide is
expected to be more relevant with respect to the case when ω0 > ωmin.

On this basis, we start from the generic expression for the RET amplitude
obtaining in the previous section, written in terms of the Green’s tensor

M = 1
πε0c2

∫ ∞
ωmin

dω ω2∑
ij

 1
ω0 − ω ± iη

µegAi ImGij(rA, rB, ω) µgeBj


− 1
ω0 + ω

µegAi ImGij(rB, rA, ω) µgeBj

, (3.36)

valid when k0R � 1, as discussed before. In this regime, we wish to point out
that there is not a resonant pole at ω = ω0, right because ω0 < ωmin. Since the
waveguide Green’s tensor (3.28) is symmetric with respect to the exchange of the
atomic positions, ImGij(rA, rB, ω) = ImGij(rB, rA, ω) ∀i, j, ω, the energy transfer
amplitude (3.36) becomes

M = 2
πε0

∑
ij

µegAi µ
ge
Bj

∫ ∞
kmin

dk
k3

k2
0 − k2 ImGij(rA, rB, ω). (3.37)

where kmin = ωmin/c. Since the cylindrical Green’s tensor (3.28) is also diagonal,
the energy transfer amplitude (3.37) can be written as a sum of three independent
terms

M = Mz +Mr +Mφ, (3.38)
where

Mz = (µegA · ẑ)(µgeB · ẑ)
2π2ε0

∑
m

λ2

Iλ0

∫ ∞
kmin

dk
k cos(kλz)

(k2
0 − k2)kλ

, (3.39)

Mr = (µegA · r̂)(µ
ge
B · r̂)

4π2ε0

∑
m

∫ ∞
kmin

dk
k3

k2
0 − k2

cos(kµz)
Iµ1kµ

+ kλ cos(kλz)
Iλ1k2

, (3.40)

Mφ = (µegA · φ̂)(µgeB · φ̂)
4π2ε0

∑
m

∫ ∞
kmin

dk
k3

k2
0 − k2

cos(kµz)
Iµ1kµ

+ kλ cos(kλz)
Iλ1k2

, (3.41)
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and the imaginary part of the cylindrical Green’s tensor (3.28) has been written
explicitly.

Let us now investigate in detail the behaviour of the resonance exchange of
energy between the atoms in the regime Rk0 � 1, as a function of the relevant
parameters of the system: the interatomic distance z =| rA − rB |, the waveg-
uide lower cut-off frequency ωmin, or equivalently the waveguide radius R, and
the orientation of the atomic dipoles relative to the waveguide axis. For symme-
try reasons, we need to consider only the two following cases: axial dipoles (Mz

contribution) and radial dipoles (Mr contribution), relative to the waveguide axis.

3.2.1 Energy transfer amplitude for axial atomic dipole
moments

Les us now first investigate the case when the atoms have electric dipole mo-
ments parallel between each other and oriented along the positive z axis, that is
along the waveguide axis [152]. In the regime Rk0 � 1 we are investigating, the
energy transfer amplitude M (3.38) is given only by the Mz term

Mz = µegAzµ
ge
Bz

2π2ε0

∑
m

λ2

Iλ0

∫ ∞
kmin

dk
k cos(kλz)

(k2
0 − k2)kλ

, (3.42)

because Mr and Mφ contributions vanish (see Eqs. 3.40 and 3.41). The integral
over the wavevector k in (3.42) can be written as∫ ∞

kmin
dk

k cos(kλz)
(k2

0 − k2)kλ
=
∫ ∞
kmin

dk
k cos

(√
k2 − λ2z

)
(k2

0 − k2)
√
k2 − λ2

=
∫ ∞

0
dkλ

cos(kλz)
k2

0 − λ2 − k2
λ

, (3.43)

where, in the last row, a change of variable has been done using kλ =
√
k2 − λ2,

taking into account that λ is constant with respect to the integration variable kλ.
We wish to point out that in the regime Rk0 � 1 there is not a resonant pole at
k = k0 in the k integral, because k0 < kmin. On the other hand the integral in Eq.
(3.43) has poles at the imaginary values kλ = ±i

√
λ2 − k2

0, and using the residue
theorem, we obtain ∫ ∞

0
dkλ

cos(kλz)
k2

0 − λ2 − k2
λ

= −πe
−
√
λ2−k2

0z

2
√
λ2 − k2

0

. (3.44)

Therefore the energy transfer amplitude is

Mz = −µ
eg
Azµ

ge
Bz

4πε0

∑
m

λ2

Iλ0

e−
√
λ2−k2

0z√
λ2 − k2

0

, (3.45)



62 Resonance energy transfer between two atoms in external environments

where the sum on m is over all allowed radial field modesinside the waveguide.
We now briefly show that this series converges. When m → +∞ and thus

pnm, qnm → +∞, the asymptotic expansion of the Bessel functions of the first kind
for large arguments can be used [26–28]

Jn(pnm) '
√

2
πpnm

cos
(
pnm −

nπ

2 −
π

4

)
, (3.46)

and the expansion for large Bessel zeros is given by the McMahon asymptotic
expansion

pnm ' (m+ n

2 −
1
4)π − 4n2 − 1

8(m+ n
2 −

1
4)π + . . . . (3.47)

For large m, only the first term of expansion (3.47) can be considered, leading to

Iλ0 =R
2

2 J2
1 (p0m) ' R2

2
2

πp0m
cos2

(
p0m −

π

2 −
π

4

)

' R2

2π2(m− 1
4) , (3.48)

and
λ = p0m

R
'

(m− 1
4)π

R
, (3.49)

where, in the last row of Eq. (3.48) the cosine squared has been mediated to 1/2.
Thus, for large m, the series becomes

∑
m

λ2

Iλ0

e−
√
λ2−k2

0z√
λ2 − k2

0

'
∑
m

2π4(m− 1
4)3

R3
√
π2(m− 1

4)2 − k2
0R

2
e−
√
π2(m− 1

4 )2−k2
0R

2 z
R . (3.50)

Since m run from one to infinity, this is a non-negative series and we can exploit
the root test to verify its convergence. Performing the root test, we get

lim
m→+∞

m

√√√√√ (m− 1
4)3√

π2(m− 1
4)2 − k2

0R
2
e−
√
π2(m− 1

4 )2−k2
0R

2 z
R

= lim
m→+∞

m

√
m2

π
e−

πmz
R = e−

πz
R , (3.51)

and since the result of the limit is smaller than one, the series converges. Once we
have checked the convergence of the expression (3.45), we have numerically verified
explicitly that a good estimate for the resonance energy transfer amplitude can
be obtained by taking only the first thirty terms of the sum over m. We can now
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investigate the RET amplitude between the two atoms with axial dipoles as a
function of the interatomic distance z and the waveguide lower cut-off frequency
ωmin.

Bearing in mind that Rk0 � 1, that is ω0 < ωmin, we have evaluated numeri-
cally the energy transfer amplitude (3.45) as a function of the atomic separation
z in two different regimes: when the interatomic distance is smaller or larger
than the atomic transition wavelength, that is, respectively, the near zone regime,
z < λ0, and the far zone regime, z > λ0. In our numerical evaluation, we have
chosen the waveguide radius equal to R = 10−8 m, and the atomic transition
wavelength λ0 = 5 · 10−7 m, a typical wavelength value in the visible range of the
electromagnetic spectrum.
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Figure 3.4: Comparison between the energy transfer amplitude M = Mz (axial
dipoles) in the free space (orange dashed line) and in the waveguide (blue solid
line), as a function of the interatomic distance z, for z < λ0 (near-zone). The
numerical values of the parameters are chosen such that λ0 = 5 ·10−7 m, R = 10−8

m, and µegA(B) z = 10−30 C · m.

Fig. 3.4 shows the energy transfer amplitude between two atoms with axial
dipoles, in the near zone, as a function of the interatomic distance z, when they
are placed inside the waveguide (Eq. 3.45), depicted as the blue continuous curve.
It is compared with the near zone resonance energy transfer amplitude between
two axial atomic dipoles in the free space that is given by

(Mz)fs ' −
µegAzµ

ge
Bz

2πε0z3 cos(k0r), for k0z � 1, (3.52)

depicted as the orange dashed line in Fig. 3.4. The plot shows that the behaviour
of the RET inside the waveguide is very similar to that in the free space case.
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In order to better highlight relevant differences, in Fig. 3.5 we plot the ratio
between the energy transfer amplitudes in the waveguide and in the free space,
as a function of z. The plot shows that for z . 1.2 · 10−8 m the two amplitudes
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Figure 3.5: Energy transfer amplitude between atoms with axial dipoles, in the
near zone, normalised to the free-space energy transfer amplitude, as a function
of the interatomic distance z. When z approaches the transition region between
near and far zone (z ∼ λ0), the amplitude in the waveguide becomes more and
more suppressed with respect to the free-space case. The parameters used are
λ0 = 5 · 10−7 m, R = 10−8 m and µegA(B) z = 10−30 C · m.

are essentially the same, while for z & 1.2 · 10−8 m, when the intermediate region
between the near and far zone is approached, the energy transfer amplitude in the
waveguide becomes more and more suppressed. This result is related to the fact
that in the very near zone range, when z � λ0, the interaction between the atoms
is essentially an electrostatic dipole-dipole interaction, that is not significantly
modified by the waveguide. Approaching the intermediate region, z ∼ λ0, the
exchange of energy between the atoms start to become a radiative process and,
since Rk0 � 1, the effect of the waveguide on the amplitude is relevant, leading
to a significant suppression of the resonance energy transfer.

On the contrary, in the far zone limit, for z � λ0 , the plot in Fig. 3.6 shows
that the energy transfer in the waveguide is strongly inhibited with respect to the
free-space case, given by

(Mz)fs ' −
µegAzµ

ge
Bz

2πε0z2 k0 sin(k0r), for k0z ≥ 1. (3.53)

The energy transfer amplitude inside the waveguide does not show the typical
free-space spatial oscillations, and a numerical analysis shows that it is several
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Figure 3.6: Comparison between the energy transfer amplitude M = Mz (axial
dipoles) in the free space (orange continuous line) and in the waveguide (blue solid
line), as a function of the interatomic distance z, for z � λ0 (far-zone). The
numerical values of the parameters are chosen such that λ0 = 5 ·10−7 m, R = 10−8

m, and µegA(B) z = 10−30 C · m.

tens orders of magnitude smaller with respect to the one in the free space:

Mz

(Mz)fs
∼ 10−90 for k0z ≥ 1, (3.54)

meaning that it is virtually zero, totally inhibited by the waveguide, for z > λ0.
The results obtained show that, since in the regime Rk0 � 1 the resonant field

modes are suppressed by the waveguide (ω0 < ωmin), the energy transfer between
the atoms is slightly modified in the very near zone, more and more suppressed
approaching the intermediate region, and totally inhibited (virtually zero) in the
far zone. The completely different effect of the waveguide in the near and in the
far zone is due to the fact that in the near zone the resonance energy transfer is a
radiationless process, mediated by virtual photons, and thus slightly modified by
the external environment, the waveguide in our case. On the contrary, when the
atoms are in the far zone regime, the RET is a radiative process, and the main
contribution is due to the exchange of the resonant real photon between the atoms;
since Rk0 � 1, the waveguide suppresses the exchange of the real photon, leading
to a complete inhibition of the resonance energy transfer process [152].

Let us now investigate the energy transfer amplitude as a function of the waveg-
uide cut-off frequency ωmin ∝ 1

R
, which means as a function of the cylinder radius

R. By decreasing R, the cut-off frequency ωmin increases and thus the gap between
ω0 and ωmin increases too, further suppressing more modes near the resonance
atomic frequency ω0. This involves a further reduction of the energy transfer am-
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plitude between the atoms owing to the decrease of the waveguide radius. Fig. 3.7
shows the numerical results for the energy transfer amplitude when the atoms are
in the near zone, as a function of the waveguide radius R, (blue solid line). The
atomic transition wavelength and the atomic separation are now fixed to specific
values, λ0 = 5 · 10−7 m and z = 10−8 m, respectively. In this regime, when the
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Figure 3.7: The energy transfer amplitude Mz for axial dipoles placed inside the
waveguide in the near zone, z < λ0, as a function of the waveguide radius R
(blue solid line) . The orange horizontal line is the value of the energy transfer
amplitude in the free space. The numerical values of the parameters are z = 10−8

m, λ0 = 5 · 10−7 m and µegA(B) z = 10−30 C · m.

waveguide radius R is increased, and thus the gap between ω0 and ωmin decreases,
the absolute value of the energy transfer amplitude first increases and then settles
to an almost constant value. On the contrary, by decreasing R, the energy transfer
amplitude quickly tends to vanish, as expected, for the reasons mentioned above.
The orange dashed line in the figure is the energy transfer amplitude between
the two atoms in the free space (see Eq. 3.53), calculated for z = 10−8 m and
λ0 = 5 · 10−7 m. Here, the RET amplitude in the far zone limit as a function of R
is not plotted since, as we have previously highlighted, it is essentially zero when
the interatomic distance is larger than the atomic transition wavelength.

These results clearly show that the transfer of energy between the atoms inside
the waveguide can be strongly modified and controlled by varying the waveguide’s
radius R.
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3.2.2 Energy transfer amplitude for radial atomic dipole
moments

We now consider the case of atomic dipole moments along the radial direction,
that is orthogonal to the guide axis, and parallel to each other [152]. In this
case, the energy transfer amplitude M is given only by the term Mr, while the
contributions Mz and Mφ vanish. The analytic expression of the energy transfer
amplitude for radial dipoles, when Rk0 � 1, can be obtained from Eq. (3.40),
after performing the integral over k, yielding

Mr = µegArµ
ge
Br

8πε0

∑
m

− k2
0e
−
√
µ2−k2

0z

Iµ1

√
µ2 − k2

0

+

√
λ2 − k2

0e
−
√
λ2−k2

0z

Iλ1

. (3.55)

As already done for the axial dipoles case, using the root test, we have checked that
the sum over radial field modes in (3.55) converges; a numerical analysis shows
that the first forty terms of the sum give a good numerical estimate of the energy
transfer amplitude, in the range of the parameters we are considering. As in the
case of axial dipoles, we investigate Mr as a function of the interatomic distance
z and the waveguide cut-off frequency ωmin.

Fig. 3.8 shows the energy transfer amplitude as a function of the interatomic
distance z, when the atoms are in the near zone limit, using the same values as
before for the atomic transition wavelength, λ0 = 5 ·10−7 m, and for the waveguide
radius, R = 10−8 m. The orange dashed line is the energy transfer amplitude
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Figure 3.8: The energy transfer amplitude for radial dipoles in the near zone,
z < λ0, as a function of the interatomic distance z. The blue solid line is for atoms
in the waveguide, while the orange dashed line refers to the free-space case. The
parameters used are λ0 = 5 · 10−7 m, R = 10−8 m and µegA(B) z = 10−30 C · m.
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when atomic radial dipoles are in the free space and in the near zone, given by the
following expression

(Mr)fs '
µegAr µ

ge
Br

4πε0z3 cos(k0z). (3.56)

In this regime, the energy transfer amplitude inside the waveguide is reduced
with respect to the free-space case, and this effect results to be much larger with
respect of the previous case of axial dipoles. The reduction of the energy transfer
amplitude significantly grows as the transition region between near and far zone is
approached: as an example, for z = 5 ·10−8 m, Mr is reduced of about three orders
of magnitude with respect to (Mr)fs. In the far zone limit, which means when
z � λ0, our numerical analysis shows that the behaviour of the energy transfer is
very similar to that for axial dipoles case: the waveguide strongly suppresses the
energy transfer process, which is virtually zero.

These results confirm that the energy transfer amplitude is significantly af-
fected by the presence of the waveguide, also when the electric dipole moments
are orthogonal to the cylinder axis. The amplitude is more and more reduced
with respect to the free-space case, when the transition region at z ∼ λ0 is being
reached, and completely suppressed in the far zone. When the atoms are in the
very near zone limit, that is for z ∈ [5 · 10−10 m ; 10−8 m ], the suppression of
the energy transfer is more relevant for radial atomic dipoles than for the axial
dipoles.

We now consider the excitation exchange between the atoms in the near zone,
as a function of the waveguide cut-off frequency ωmin, or equivalently, of the waveg-
uide radius R. Fig. 3.9 shows that the energy transfer amplitude decreases for
decreasing R, as expected because the difference between the atomic transition
frequency ω0 and the waveguide cut-off frequency ωmin increases. In the range
considered, it is always smaller than the energy transfer amplitude in the free
space, given in the figure by the orange dashed line, even if of the same order of
magnitude. The plot clearly shows the possibility to control, through the waveg-
uide radius R, also the exchange of energy between two atomic radial dipoles [152].

3.3 Conclusions
In this Chapter we have presented our original work on the resonance exchange

of energy between two identical atoms, interacting with the quantum electromag-
netic vacuum, placed in a macroscopic environment, such as a perfectly conducting
cylindrical waveguide [152].

Firstly, an analytical expression for the energy transfer amplitude between
two atoms when they are in the presence of a generic external environment has
been introduced: to achieve this purpose the Green’s tensor formalism has been
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Figure 3.9: The energy transfer amplitude Mr for radial dipoles in the near zone
(z < λ0), as a function of the waveguide radius R, for atoms inside a cylindrical
waveguide (blue continuous line). The orange horizontal line represents the value
of the amplitude in the free space. Parameters are z = 10−8 m, λ0 = 5 · 10−7 m
and µegA(B) z = 10−30 C · m.

used. We have then considered the specific case of the energy transfer between
two atoms placed on the axis of a perfectly conducting cylindrical waveguide,
which determines a lower cut-off frequency for the electromagnetic modes inside
it. Both cases of atomic dipole moments parallel and orthogonal to the axis of the
waveguide have been investigated. When the atomic transition frequency is smaller
than the cut-off frequency of the waveguide, we have shown that the presence of
the waveguide can significantly change the energy transfer amplitude, depending
on the distance between the two atoms compared to their transition wavelength
(radiationless near zone or radiative far zone). It has been shown that, when the
atomic transition frequency is smaller than the waveguide lower cut-off frequency,
the energy transfer process is strongly suppressed in the far zone, whereas it is much
less influenced in the intermediate and near zone; this latter effect is much larger for
radial atomic dipoles than for axial dipoles. A physical interpretation of this result
has been given. We have also shown the possibility to strongly manipulate and
control the resonant transfer of energy between the atoms through the waveguide
radius: decreasing the cylinder radius it is possible to suppress or even totally
inhibit the transfer of energy between the atoms. These results show how the
presence of the external environment, the cylindrical waveguide in our case, can
significantly change the radiation-mediated electronic exchange of energy between
the atoms, yielding possibility of controlling it through external actions.
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Chapter 4

Resonance interaction between
two entangled atoms in
non-equilibrium conditions and in
an external environment

The resonance dipole-dipole interaction is a quantum interaction between two
atoms or molecules, one excited and the other in its ground state, prepared in
an entangled state, mediated by the quantum electromagnetic field, as outlined
in Chapter 1. From a quantum electrodynamical point of view, is one of the
simplest and fundamental intermolecular interactions, arising from the exchange
of virtual and real photons between the quantum emitters [11]. In recent years,
many investigations have concerned with the resonant forces between atoms or
molecules, that occur when one or more atoms are in an excited state [155]. In
this case, the interaction can be mediated by the exchange of a real photon and it
can be a very long-range interaction, scaling as r−1 for atoms in the free space.

If the two atoms, one excited and the other in its ground state, are uncorre-
lated, the resonant van der Waals/Casimir-Polder force is a fourth-order process
in the atom-field coupling, and asymptotically scales as r−2: in this case con-
troversial results exist in the literature concerning with the presence or not of
spatial oscillations in the far zone limit[49, 156–158]. A different, albeit related,
phenomenon takes place when two identical atoms, one excited and the other in
the ground state, are prepared in a symmetric or antisymmetric entangled state
[9, 11]. In this case, the excitation is delocalized between them, and the interaction
is a second-order effect in the coupling with the transverse field, asymptotically
scaling as r−1 (far zone limit). Resonance forces are particularly relevant because
they are much more intense than dispersion interactions, for example as van der
Waals/Casimir-Polder interactions both for ground-state and excited atoms, and



72
Resonance interaction between two entangled atoms in non-equilibrium

conditions and in an external environment

almost comparable with the Casimir-Polder interaction between a ground-state
atom and a mirror. From a physical point of view, the resonance interaction is
a second-order effect because the correlated state has non-vanishing unperturbed
dipole-dipole correlations, whereas, for dispersion interactions, correlated dipole
moments must be induced by vacuum field fluctuations [70, 108, 159, 160].
Despite their strength, resonance forces has not been yet observed directly, since
this detection requires that the system be prepared in an entangled state and that
its coherence be preserved over a sufficiently long time: this makes them extremely
difficult to observe. In fact, the correlated state is a very fragile state because the
spontaneous emission or the influence of the environment can destroy its coherent
superposition, eventually leading the system to a factorized state. In this case, the
force between the atoms, one excited and the other in its ground state, becomes
the well-known fourth-order Casimir-Polder interaction.

For these reasons, the possibility of manipulating resonance forces between
quantum emitters through static or time-modulated external environments exper-
imentally achievable (i.e. reflecting mirrors, cavities, waveguides, photonic crys-
tals), have been recently investigated, becoming a fundamental field of research
[115, 116, 145, 152, 161–163]. In fact, exploiting appropriate environments, from
one side it could be possible to preserve the correlated atomic state for a longer
time, and on the other side to enhance the resonance force between the atoms,
allowing to its direct detection. The observation of the resonance force, in par-
ticular in the retarded regime, would be an important confirmation of an effect
due to the quantum coherence of the system. It could be also relevant in different
physical processes and in other fields, such as biology: for example, the possible
fundamental role of resonant interactions in bio-molecular systems has been re-
cently argued [164–166]. An analogous interaction, mediated by the exchange of
an electron in the continuum band of the wire, has been shown for two impurities
(adatoms) embedded in a semiconductor quantum wire [167, 168].

The Chapter introduces our original works on the resonance force between
two correlated atoms and is divided in two main parts, considering two different
relevant aspects of the resonance interaction, i.e. a non-equilibrium condition, and
the presence of an external environment [152, 169].

In the first section of the Chapter, a non-equilibrium condition for the resonance
interaction between two atoms is considered. The time-dependent resonance in-
teraction energy between two identical two-level atoms, during the dynamical self-
dressing process of the system has been first investigated [169]. The two atoms,
one excited state and the other in its ground-state, are initially prepared in a sym-
metric or antisymmetric entangled state, and are in the empty space, interacting
with the electromagnetic field in the vacuum state. Since the initial state of the
system is not an eigenstate of the total Hamiltonian, it evolves in time, and we
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investigate the time-dependent resonance interaction during the dressing process
of the two-atoms-field interacting system. We find that this interaction is equal
to zero when the two atoms are outside the light-cone of each other, in agreement
with the relativistic causality, while it sharply settles to its stationary value after
the causality time t = R/c (R being the interatomic distance). We show that the
behaviour of the time-dependent resonance interaction can be related to an inter-
ference effect between the contributions from rotating and counterrotating terms,
bringing the system to its local equilibrium configuration immediately after the
causality time. The time-dependent electric energy density in the space around
the two correlated atoms has been also investigated, and its behaviour in both
cases of subradiant (symmetrical) and superradiant (antisymmetrical) initial state
is discussed. In particular, we show that for points at the same distance from the
two atoms, the value of the electric energy density is zero for atoms prepared in
the subradiant state, whereas it is doubled with respect to the case of uncorrelated
atoms, if the atoms are in the superradiant superposition. Finally, the possibility
to probe this result through a measurement of the Casimir-Polder force on a third
atom, placed near the two-atom system, is discussed.

In the second section of the Chapter, the possibility to modify and control the
resonance interaction energy between two correlated atoms through an external
static environment, specifically a cylindrical waveguide, is investigated [152]. The
results obtained are mathematically partially based on our results for the reso-
nance energy transfer between two atoms in a cylindrical waveguide, presented in
Chapter 3. An analytical expression for the resonance interaction energy between
two quantum emitters in the presence of a generic magneto-dielectric medium
is first obtained, using the electromagnetic Green’s tensor formalism. Then, we
consider the particular case of two entangled atoms inside a perfectly conducting
cylindrical waveguide, and we study the resonance interaction energy as a function
of the atomic distance, the waveguide radius and the atomic dipoles orientation.
We evaluate numerically the resonance interaction in the regime in which the field
modes resonant with the atomic transition frequency are suppressed by the waveg-
uide, explicitly showing a suppression of the resonance interaction with respect to
that in the free space: in the far (radiative) zone, the effect of the waveguide sig-
nificantly modifies the interaction yielding to a total inhibition of the process; on
the other hand, in the near (radiationless) zone the suppression of the interaction
is much less relevant. This is analogous to what we obtained in Chapter 3 for the
resonant energy transfer process between two atoms. We also show that, for the
case of atomic dipole moments orthogonal to the cylinder axis, the waveguide can
even change the character of the resonance force, turning it from repulsive to at-
tractive. Finally, the possibility to strongly manipulate and control the resonance
interaction and force through the waveguide radius is shown.
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The Chapter is structured as follows: in Sec. 4.1 we consider the time-
dependent resonance interaction energy between two entangled identical atoms,
one in the ground state and the other in its excited state, interacting with the
vacuum radiation field, during a non-equilibrium situation, such as the dynami-
cal atomic self-dressing process. We also investigate the time-dependent electric
energy density in the space around the two correlated atoms, in both cases of anti-
symmetric (subradiant) and symmetric (superradiant) states, during the dressing
process of the two-atom system. In Sec. 4.2 we first introduce an analytical ex-
pression for the resonance interaction energy between two correlated atoms, in the
presence of a generic magneto-dielectric medium, in terms of the electromagnetic
Green’s tensor. We will then consider the resonance interaction energy when the
atoms are placed inside a perfectly conducting cylindrical waveguide, studying it
as a function of the relevant parameters of the system, that is atomic dipole ori-
entations, the waveguide radius and the interatomic distance. Finally, Sec. 4.3 is
devoted to our conclusions and final remarks.

4.1 Time-dependent resonance interaction between
two entangled atoms

In this Section, the time-dependent resonance interaction energy between two
identical atoms, during the dynamical self-dressing process of the system is in-
vestigated. We consider two atoms, labelled A and B and modelled as two-level
systems, respectively placed at positions rA and rB in the free space, and interact-
ing with the quantum electromagnetic field in its vacuum state [169]. The atomic
system, with one atom in the excited state and the other in the ground state, is
initially prepared in a correlated symmetric or antisymmetric Dicke state [170],

|φ±〉 = 1√
2
(
|eA, gB〉 ± |gA, eB〉

)
, (4.1)

and the radiation field is in the vacuum state |0〉; the initial state of the system is
thus the bare state

|ψ±〉 = |φ±〉 |0〉 , (4.2)
with energy Eψ = 0. Since the initial state (4.2) is not an eigenstate of the total
Hamiltonian, it will evolve in time according to

|ψ±(t)〉 = e−iHt/~|ψ±〉, (4.3)
where H is the total Hamiltonian of the system. The interaction energy will
therefore be time-dependent, because the system starts from a dynamical non-
equilibrium state, and we shall investigate the dynamical resonance interaction
during the dressing process of the atoms-field interacting system.
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The Hamiltonian of the system in the multipolar coupling scheme, in the
Coulomb gauge and within the dipole approximation, is [6]

H = H0 +Hi (4.4)

where
H0 = ~ω0(SAz + SBz ) +

∑
kj

~ωka†kjakj (4.5)

is the free Hamiltonian, and

Hi = −µA ·E(rA)− µB ·E(rB) (4.6)

is the interaction Hamiltonian. The unperturbed Hamiltonian H0 is the sum of
the atomic and radiation field Hamiltonians. In the expressions above, Sz =
1
2(|e〉〈e| − |g〉〈g|) is the pseudospin atomic operator, |g〉 and |e〉 are the ground
and the excited atomic states with energies ∓~ω0/2, respectively, with ω0 being
the atomic transition frequency. µi = eri is the atomic dipole moment operator
of atom i = A,B, that can be conveniently written as

µi = µegi (Si+ + Si−), (4.7)

where µegi = 〈e | µi | g〉 is the matrix element of the atomic dipole moment
between the states |e〉 and |g〉, assumed real, and S+ and S− being pseudospin
ladder operators. Also, akj (a†kj) is the bosonic annihilation (creation) operator
for photons with wavevector k and polarization j. Finally, E(r, t) is the trans-
verse displacement field operator, that outside the atoms coincides with the total,
longitudinal plus transverse, electric field, written, in c.g.s. unit as

E(r, t) = i
∑
k,j

√
2π~ωk
V

êkj
(
akj(t)eik·r − a†kj(t)e−ik·r

)
(4.8)

where êkj are the polarisation unit vectors of the electromagnetic field, assumed
real. In the case of two-level atoms, the interaction Hamiltonian in (4.6) can be
conveniently rewritten as

Hi(t) = −i
∑
i=A,B

∑
k,j

√
2π~ck
V

(êkj·µegi )
[
akje

ik·ri
(
Si+ + λSi−

)
− a†kje−ik·ri

(
Si− + λSi+

)]
,

(4.9)
where λ = 0, 1 is a parameter that allows to easily identify the role of counterro-
tating terms: for λ = 1 we recover the full Hamiltonian with the counterrotating
terms, while for λ = 0 we get the Hamiltonian in the rotating wave approximation
(RWA). Our purpose is to investigate the time-dependent resonance interaction
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between the atoms, during the dynamical self-dressing process of the system. The
physical situation we are considering is equivalent to switching the atoms-field cou-
pling on at t = 0; after that, the system is not longer in an equilibrium situation,
and it will unitarily evolve starting from its bare state |ψ±〉.

In order to obtain the time-dependent interaction energy, we can follow the
same approach used in [109, 119, 121] for the dynamical atom-surface Casimir-
Polder interaction. Specifically, we first write down the Heisenberg equations for
field and atomic operators, and solve them iteratively at the lowest significant
order; the time-dependent energy shift of the system is then obtained by evaluating
the quantity

∆E(t) = 1
2〈ψ±|H

(2)
i (t)|ψ±〉, (4.10)

where H(2)
i (t) is the interaction Hamiltonian (4.6) in the Heisenberg representation

at the second-order in the coupling with the radiation field, obtained by substitu-
tion of the second-order solution of the Heisenberg equations for atom and field
operators. This method is a direct generalization to time-dependent situations of
the following (time-independent) relation, as obtained by second-order stationary
perturbation theory [171],

∆E = 1
2〈ψD|Hi|ψD〉, (4.11)

where |ψD〉 is the second-order interacting (dressed) state of the system, and Hi

is the interaction Hamiltonian in the Schrödinger representation. It should be
observed that, since time evolution is unitary, the total energy of the system is
conserved during the self-dressing process. In particular, this means that the
average value of the total Hamiltonian H(2)(t) on the initial bare state |ψ±〉 does
not depend on time:

〈ψ±|H(2)(t)|ψ±〉 = 〈ψ±|H(2)
0 (t)|ψ±〉+ 〈ψ±|H(2)

i (t)|ψ±〉 = 0, (4.12)

for any t. Eq. (4.12) can be easily verified by evaluating, at the second-order in the
atom-field coupling, the single contributions to the total energy of the system, that
is the average value of atomic, field and interaction Hamiltonian (in the Heisenberg
representation) on the initial bare state, similarly to the case of the atom-plate
dynamical Casimir-Polder interaction energy investigated in [22]. Nevertheless,
the average value of the interaction Hamiltonian H

(2)
i (t) on the bare-state |ψ±〉,

related to the local interaction energy of the atoms with the field evaluated at
their position, is nonvanishing and depends on time; actually, it gives the time-
dependent resonance interaction energy of our two-atom system.
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Let us first obtain the expressions of field and atomic operators in the Heisen-
berg representation, at the lowest significant order. Starting from the Heisenberg
equation

˙akj = i

~
[H, akj] (4.13)

Ṡi− = i

~
[H,Si−] (4.14)

Ṡi+ = i

~
[H,Si+] (4.15)

and considering that, Ṡi− = (Ṡi+)†, after some algebra, we obtain

akj(t) = akj(0)e−iωkt +
∑
i=A,B

e−ik·rie−iωkt
√

2πωk
~V

[µegi · ekj]

× [Si+(0)F (ω0 + ωk, t) + λSi−(0)F (ωk − ω0, t)], (4.16)

Si−(t) = Si−(0)e−iω0t + 2Siz(0)e−iω0t
∑
kj

√
2πωk
~V

[µegi · ekj]

× [akj(0)eik·riF (ω0 − ωk, t)− λa†kj(0)e−ik·riF (ωk + ω0, t)], (4.17)

Si+(t) = Si+(0)eiω0t + 2Siz(0)eiω0t
∑
kj

√
2πωk
~V

[µegi · ekj]

× [a†kj(0)e−ik·riF ∗(ω0 − ωk, t)− λakj(0)eik·riF ∗(ωk + ω0, t)], (4.18)

with i = (A,B) and where we have defined the function

F (x, t) = eixt − 1
ix

. (4.19)

These equations represent the expansion of the field and atomic operators up to the
first order in the atom-field coupling. Now, using Eqs. (4.16), (4.17) and (4.18) in
the expression (4.9) of Hi(t), and taking only terms up to the second-order in the
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coupling, we obtain the explicit expression of the interaction Hamiltonian H(2)
i (t)

H
(2)
i (t) = −2πi

V

∑
q=A,B

∑
s=A,B

∑
kj
ωk(µegq · ekj)(µegs · ekj)eik·(rq−rs)e−iωkt

×
(
Sq+(0)eiω0t + λSq−(0)e−iω0t

)(
Ss−(0)F (ωk − ω0, t) + λSs+(0)F (ωk + ω0, t)

)
− 4πi

V

∑
q=A,B

∑
kj

∑
k′j′

√
ωkωk′(µegq · ekj)(µgeq · ek′j′)Sqz(0)akj(0)ei(k·rq−ωkt)

×
[
a†k′j′(0)e−ik′·rq

(
F ∗(ω0 − ωk′ , t)eiω0t − λ2F (ω0 + ωk′ , t)e−iω0t

)
− λak′j′(0)eik′·rq

(
F ∗(ω0 + ωk′ , t)eiω0t − F (ω0 − ωk′ , t)e−iω0t

)]
+ h.c. (4.20)

In order to evaluate the time-dependent resonance interaction energy using Eq.
(4.10), we must calculate the average value of (4.20) on the correlated states |ψ±〉.
We take into account only terms depending on the interatomic distance R =
rA−rB, which are the only ones relevant for the dynamical interatomic interaction
energy, from which, in a quasi-static approach, the resonance force can be obtained
by taking the negative derivative with respect to the atomic separation. The
distance-independent terms just give single-atom energy shifts that are irrelevant
for the interaction energy. After some algebra, the time-dependent resonance
interaction energy is obtained

∆E(t) = 1
2〈ψ±|H

(2)
i (t)|ψ±〉 = ∓i πc2V

∑
q,s=A,B

(q 6=s)

∑
k,j
k(µegq · ekj)(µges · ekj)

×

eik·(rq−rs)(F ∗(ωk − ω0, t) + λ2F ∗(ωk + ω0, t)
)+ c.c. , (4.21)

where the upper and lower signs refer to the symmetric and antisymmetric entan-
gled state, respectively, and in the summation over q and s we must take q 6= s.
In the continuum limit, ∑k → V/(2π)3 ∫ d3k, performing the polarization sum us-
ing ∑j(ekj)l(ekj)m = δlm − k̂lk̂m (where l,m = x, y, z), the angular integration
yields

∫
dΩk(δlm − k̂lk̂m)e±ik·R = 4π

k3 (−δlm∇2 +∇l∇m)R sin(kR)
R

, (4.22)

where the differential operators FR
lm = (−δ`m∇2 + ∇l∇m)R act on the variable
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R = |R|. Therefore, the time-dependent resonance interaction becomes

∆E(t) =∓ c

π
(µegA )l(µegB )mFR

lm

1
R

+∞∫
0

dk sin(kR)

×

1− cos(ck − ω0)t
ck − ω0

+ λ2 1− cos(ck + ω0)t
ck + ω0

, (4.23)

where the Einstein convention for repeated indices has been used [169].
The time-dependent resonance interaction energy (4.23) is given by two dif-

ferent terms: a time-independent contribution, that is the same obtained in the
static case [115, 161], and a term explicitly depending on time, related to the
time-dependent self-dressing of the entangled two-atom system. We also note that,
contrary to the stationary case where a resonant pole at ck = ω0 appears, related
to the emission of a real photon from the excited atom, in the present case there
are no poles in (4.23); therefore, there is not ambiguity in circumventing the pole
in the frequency integration. This observation could be relevant also in connec-
tion with controversial results in the literature concerning with the long-distance
behaviour (with space oscillations or not) of the dispersion Casimir-Polder inter-
action between an excited- and a ground-state atom [122, 156, 158]. We should
however point out that the perturbative approach used is valid only for times much
smaller than the lifetime of the excited atom, that, for an optical transition of the
hydrogen atom, is of the order of 10−8 s.

In order to obtain the explicit expression of the dynamical resonance interaction
energy, we now evaluate the integral over k in (4.23). Since it is possible to show
that the time-dependent integrals diverge on the light-cone, when R = ct, we shall
perform the calculation of the integral by considering separately two different time
regions: for t < R/c and t > R/c, that is before and after the causality time. As
discussed in [119, 121], these divergences are related to the assumption of point-
like field sources, as well as to our bare-state initial condition [107–109]. Similar
divergences appear during the time-dependent self-dressing of a single initially
bare source [172], as well as in the field energy densities nearby a reflecting mirror
[160, 173, 174] or a point-like field source [175, 176].

For t < R/c, we obtain

∆E(t) =± 1− λ2

2π (µegA )l(µegB )mFR
lm

1
R

 sin(k0R)
2Ci[k0R]− Ci[k0(R− ct)]

− Ci[k0(R + ct)]
− cos(k0R)

2si[k0R]− si[k0(R− ct)]− si[k0(R + ct)]
,

(4.24)
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while for t > R/c we have

∆E(t) =∓ (µegA )l(µegB )mFR
lm

1
R

cos(k0R)

± 1− λ2

2π (µegA )l(µegB )mFR
lm

1
R

[
sin(k0R)

(
2Ci[k0R]− Ci[k0(ct−R)]

− Ci[k0(ct+R)]
)
− cos(k0R)

(
2si[k0R] + si[k0(ct−R)]− si[k0(ct+R)]

)]
,

(4.25)

where the cosine and sine integral functions Ci(x) and si(x) = Si(x) − π
2 have

been introduced [26–28]. Equations (4.24) and (4.25) give the dynamical reso-
nance interaction energy during the self-dressing process of the two-atom system
before and after the causality time t = R/c, respectively. It is important to
point out that for λ = 0, that is when the RWA is used and only the rotating
terms of the Hamiltonian contribute to the dynamical resonance interaction, the
time-dependent interaction energy is different from zero even before the causality
time t = R/c. Therefore in the RWA the causality is violated, since the atoms
could interact even before the causality time. On the contrary, if we also include
the contribution from virtual photons given by the counterrotating terms in the
Hamiltonian, that is if we set λ = 1, from (4.24) and (4.25) we immediately obtain

∆E(t) = ∓(µegA )l(µegB )mFR
lm

cos(k0R)
R

θ(ct−R), (4.26)

where θ(x) is the Heaviside step function. Therefore the causal behaviour is fully
recovered. The Eq. (4.26) clearly shows that the contribution of virtual photons
given by the counterrotating terms is essential to ensure the causal behaviour of
the dynamical resonance interaction energy, similarly to the case of two ground-
state atoms [172] or in the Fermi problem [177]. Applying the differential operator
FR
lm, and performing the derivatives with respect to R in (4.26), we get

∆E(t) = ±(µegA )l(µegB )mVlm(k0, R)θ(ct−R), (4.27)

where Vlm(k0, R) is the potential tensor

Vlm(k0, R) = 1
R3

(δlm − 3R̂lR̂m)(cos(k0R) + k0R sin(k0R))

−(δlm − R̂lR̂m)k2
0R

2 cos(k0R)
. (4.28)
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From Eq. (4.27) it is clear that there is not interaction between the atoms before
time t = R/c. After this time, the dynamical resonance interaction instantaneously
settles to its stationary value and thus an observer measuring the resonance force
on one atom, for example atom A, will detect the full value of the stationary force
immediately after the causality time t = R/c [169]. Mathematically, the instan-
taneous change of the interaction is related to the fact that the time-dependent
contributions, related to the dynamical dressing process of the two atoms, cancel
with each other, and thus the system approaches to its local equilibrium config-
uration immediately after the causality time R/c, as we will show later. From a
physical point of view, this sharp change of the time-dependent resonance interac-
tion energy at t = R/c is related to the assumption of point-like atoms, inherent
in the dipole approximation, and to the bare initial state assumption.

This peculiar behaviour of the resonance interaction energy can be mathe-
matically understood by performing explicitly the calculation of the integrals in
(4.23). For λ = 1, that is taking into account also the counterrotating terms in the
Hamiltonian, the two integrals can be easily performed by considering separately
time-independent and time-dependent contributions. For the time-independent
terms, we have

I1 = P

∫ ∞
0

dk sin(kR)
( 1
ck − ω0

+ 1
ck + ω0

)
= P

∫ ∞
−∞

dk
sin(kR)
ck + ω0

, (4.29)

where P denotes the principal value, and in the first integral we have performed
the variable change k → −k. This integral has a pole in k = −k0 = −ω0/c and,
using the residue theorem, we obtain

I1 = π

c
cos(k0R). (4.30)

The time-dependent integral can be similarly evaluated, obtaining

I2(t) = P

∫ ∞
0

dk sin(kR)
(

cos[(ck − ω0)t]
ck − ω0

+ cos[(ck + ω0)t]
ck + ω0

)

= P

∫ ∞
−∞

dk
sin(kR)
ck + ω0

cos[(ck + ω0)t] = π

c
cos(k0R)θ(R− ct). (4.31)

These results clearly show that the time-dependent resonance interaction energy,
depending from I1 − I2, vanishes for t < R/c, while it is nonvanishing and time-
independent for t > R/c. The system thus sharply approaches its equilibrium
configuration at the causality time R/c, as we have already pointed out. This be-
haviour is clearly illustrated in figures (4.1) and (4.2), which show the contributions
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to the dynamical resonance interaction energy from the rotating and counterro-
tating terms in the two time intervals, t < R/c and t > R/c, as a function of t.
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Figure 4.1: Plots of the time-dependent contributions to the dynamical resonance
interaction energy as a function of time, for t < R/c. Energy and time are in arbi-
trary units. The interatomic distance is set to R = 20, while c = 1 and k0 = 1; thus
t < R/c means t < 20 . The orange dotted line and the green dashed line represent
the time-dependent contributions from rotating (δERWA(t)) and counterrotating
(δECR(t)) terms, respectively. The blue solid line is the total dynamical resonance
interaction energy before the causality time. Both contributions diverge on the
light cone t = R/c.

Fig. 4.1 shows the time-dependent contributions to the dynamical resonance
interaction energy as a function of time, before the causality time. These contri-
butions are related to the rotating and counterrotating terms, labelled respectively
by δERWA(t) and δECR(t), and are represented by the orange dotted line and the
green dashed line, while the total resonance interaction is given by the blue solid
line. This plot points out that the two contributions δERWA(t) and δECR(t) oscil-
late in time out of phase and that their sum, that is the total resonance interaction,
vanishes at all times for t < R/c. This means that the two atoms do not interact
before the time t = R/c, preserving the causality, as expected. On the other hand,
Fig. 4.2 shows that, after the causality time, time-dependent contributions cancel
out each other, and what remains is time-independent, coinciding with the static
value of the resonance interaction energy between two atoms in free space. The
two inserts are enlargements showing the presence of time oscillations of both con-
tributions soon after the causality time. These results suggest that the peculiar
sharp behaviour of the dynamical resonance interaction is owing to an interference



Time-dependent resonance interaction between two entangled atoms 83

δE(t)

δEC-R

20 24 28 32

-0.01

0.

0.01

20 24 28 32

-0.74
-0.73
-0.72 δERWA

20 22 24 26 28 30 32

-1.5

-1.0

-0.5

0.0

0.5

1.0

t [a.u.]

δ
E
(t
)
[a
.u
.]

Figure 4.2: Plots of the time-dependent contributions, δERWA(t) and δECR(t), to
the dynamical resonance interaction energy as a function of time, for t > R/c.
Energy and time are in arbitrary units. Parameters are R = 20, c = 1 and
k0 = 1; thus t > 20 . The orange dotted line and the green dashed line represent
the time-dependent contributions from rotating (δERWA(t)) and counterrotating
(δECR(t)) terms, respectively. The blue solid line is the total dynamical resonance
interaction energy after the causality time. Both contributions diverge on the light
cone t = R/c.

effect between the virtual-photon and the real-photon contributions; these photons
are generated by the two atoms during their dynamical self-dressing process [169].

As mentioned before, our results are valid for times shorter than the decay time
of the atomic excited state, that is typically of the order of 10−8 s. For typical
values of the atomic parameters µ ' 10−29 Cm, k0 ' 107 m−1, and for an inter-
atomic distance of R ' 10−6 m, the resonance force between the two atoms is of
the order of F ' 10−21 N, which is several orders of magnitude larger than the dis-
persion Casimir-Polder interaction energy between ground-state atoms, that can
be measured directly [178], and comparable with the atom-surface Casimir-Polder
interaction, for which many measurements exist [179]. But even so, the resonance
interaction energy, and the consequent interatomic force, is very difficult to ob-
serve directly, since it requires that the system be prepared and maintained in an
entangled state for a sufficiently long time, as previously mentioned. The coher-
ent superposition of the entangled state can be easily destroyed by spontaneous
emission and interactions with the environment. Very recently, the possibility to
control decoherence effects through a structured environment, such as a photonic
crystal, has been explored [115, 161], thus suggesting possible experimental setups
to observe such interaction for atoms placed inside a structured environment.
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In order to gain further physical evidences of the processes involved during the
dynamical dressing, in the next section we shall investigate the time-dependent
electric field energy density during the self-dressing of the two-atom system.

4.1.1 Time-dependent electric energy density around the
two entangled atoms

The time-dependent electric energy density near the two-atom system, for both
the symmetric and antisymmetric entangled state, is now evaluated in order to
further investigate the time-dependent self-dressing process of the system [169]. It
can be written as

〈ψ±|Hel(r, t)|ψ±〉 = 1
8π 〈ψ±|E

2(r, t)|ψ±〉 , (4.32)

where Hel(r, t) is the electric energy density and the electric field operator is in
the Heisenberg representation. Up to the second order in the atom-field coupling,
the equation (4.32) can be written as

1
8π 〈ψ±|E

2(r, t)|ψ±〉 = 1
8π 〈ψ±|

(
E(0)(r, t) ·E(0)(r, t) +E(1)(r, t) ·E(1)(r, t)

+E(0)(r, t) ·E(2)(r, t) +E(2)(r, t) ·E(0)(r, t)
)
|ψ±〉,
(4.33)

where the superscript indicates the perturbative order. In order to calculate the
electric energy density (4.33), we need to solve the Heisenberg equation for the
field operators; iterative solution for the field annihilation operator at the leading
order, gives

a
(0)
kj (t) = a

(0)
kj (0)e−iωkt (4.34)

a
(1)
kj (t) =

√
2πωk
V ~

∑
q=A,B

[
(µegq · ekj)e−i(k·rq−ωkt)

(
Sq+(0)F (ω0 + ωk, t)

+Sq−(0)F (ωk − ω0, t)
)]

, (4.35)
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a
(2)
kj (t) = − 4π

~V
∑

q=A,B
Sqz(0)e−i(k·rq−ωkt)

∑
k′j′

√
ωkωk′(µegq · ekj)(µgeq · ek′j′)

× i

ak′j′(0)eik′·rq

iF (ωk − ωk′ , t)
 1
ω0 + ωk

+ 1
ω0 − ωk′

− 1
ω0 + ωk′

F (ω0 + ωk, t)

− 1
ω0 − ωk′

F ∗(ω0 − ωk, t)
− a†k′j′(0)e−ik′·rq

F (ωk + ωk′ , t)
 1
ω0 − ωk′

+ 1
ω0 + ωk′


− 1
ω0 − ωk′

F (ω0 + ωk, t)−
1

ω0 + ωk′
F ∗(ω0 − ωk, t)

 . (4.36)

Since second-order field operators, expressed by Eq. (4.36), depend on SAz (0)
and SBz (0), the contribution related to 〈ψ±|E(2)(r, t) · E(0)(r, t)|ψ±〉 in (4.33)
vanishes, being 〈ψ±|SA,Bz (0)|ψ±〉 = 0. The only nonvanishing term comes from
〈ψ±|E(1)(r, t) ·E(1)(r, t)|ψ±〉 and, in order to evaluate it, we first substitute (4.35)
into the electric field expression (4.8), obtaining

E(1)(r, t) = i
2π
V

∑
q=A,B

∑
kj
ωk(µegq · ekj)

×

eik·(r−rq)e−iωkt
(
Sq+(0)F (ω0 + ωk, t) + Sq−(0)F (ωk − ω0, t)

)ekj + h.c. ,

(4.37)

that is the electric field operator expression up to the first order in the coupling
with the radiation field.
The time-dependent electric energy density will be obtained by substitution of
(4.37) into (4.33), disregarding the bare space-uniform vacuum field contributions
coming from the 0-th order term. After some algebra, involving polarization sum
and integration over k, we finally obtain that the electric energy density can be
written as a sum of three distinct terms

〈ψ±|Hel(r, t)|ψ±〉 = 〈ψ±|HA
el(r, t)|ψ±〉+ 〈ψ±|HB

el(r, t)|ψ±〉+ 〈ψ±|HAB
el (r, t)|ψ±〉,

(4.38)
where

〈ψ±|HA
el(r, t)|ψ±〉 = 1

8π<
(µegA )m(µgeA )nFRA

lm

eik0RA

RA

FRA
ln

e−ik0RA

RA

θ(ct−RA) ,

(4.39)
〈ψ±|HB

el(r, t)|ψ±〉 = 〈ψ±|HA
el(r, t)|ψ±〉 with A� B , (4.40)
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〈ψ±|HAB
el (r, t)|ψ±〉 =± 1

8π<
(µegA )m(µgeB )nFRA

lm

eik0RA

RA

FRB
ln

e−ik0RB

RB

+ c.c.


× θ(ct−RA)θ(ct−RB) . (4.41)

Here, RA(B) = r − rA(B) is the distance between a generic observation point
r, where the electric energy density is evaluated, and the atom A(B), and the
+/− sign refers to the superradiant/subradiant correlated state of the system.
Therefore, the time-dependent electric energy density emitted by atoms A and
B, expressed in Eq. (4.38) is given by the sum of two main contributions. The
first contribution, given by equations (4.39) and (4.40), is related to the retarded
electric field emitted by each atom, and it is causal, due to the presence of the
Heaviside step function. This contribution vanishes if the observation point r is
outside the causality sphere of both atoms A and B, that is if RA, RB > ct, as
expected. On the other hand, the second main contribution, given by Eq. (4.41),
is a sort of interference term, related to the electric field radiated by the overall
two-atom system. Inspection of (4.39)-(4.41) clearly shows that if the observation
point r is outside the light-cone of both atoms, the total electric energy density
(4.38) vanishes. On the other hand, if point r is inside the causality sphere of
only one atom, for example if RA < ct but RB > ct, then the electric energy
density in r is only related to the presence of atom A: this is compatible with
relativistic causality, of course. Yet, interesting results are obtained if point r is
inside the causality sphere of both atoms A and B. In this case, all terms in (4.38)
contribute to the time-dependent electric energy density. In particular, assuming
atoms with identical dipole moments, and for distances such that RA = RB < ct,
we find that the electric energy density emitted by the two-atom system during
the self-dressing process is doubled, with respect to the single-atom case, when
the atoms are in the superradiant-state, while it vanishes in the subradiant state.
This result is due to the presence of the interference term in (4.38), and clearly
shows that the superradiant or subradiant behaviour of the two-atom system can
be understood, as far as the electric field energy density is concerned with, in terms
of an interference effect between the electric energy densities emitted by the atoms
[169].

Finally, we wish to point out that these results related to the time-dependent
electric energy density could be experimentally investigated by measuring the re-
tarded Casimir-Polder interaction energy on an appropriate polarizable body with
static polarizability α. As it is known, in the far-zone limit, that is when the
distance is larger than relevant wavelengths associated to the atomic transitions,
the Casimir-Polder energy on a body with static polarizability α can be written
as

∆E = −1
2α〈E

2(r)〉, (4.42)
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where the electric field operator E(r) is evaluated at the position of the polarizable
body; thus the interaction energy is strictly related to the electric energy density.
Therefore we could investigate the dispersion force on a third atom C due to the
interaction with the two other atoms A and B, located at some distance from C,
and prepared in an entangled symmetric or antisymmetric state, as shown in Fig.
(4.3). From Eq. (4.42), the atom C feels a force that is directly related to the

Figure 4.3: Sketch of the hypothetical physical system proposed to investigate the
subradiant and superradiant behaviour of the two-atom entangled system. Atoms
A and B are prepared in an entangled symmetric or antisymmetric state, and C is
an appropriate polarizable body.

local electric field energy density generated at its position by the two entangled
atoms A and B. In particular, assuming that the distance of atom C from A and
B is such that | rC−rA |=| rC−rB |, the force acting on C will be enhanced if the
two atoms are prepared in a correlated symmetric (superradiant) state, while it is
zero if the atoms are prepared in a antisymmetric (subradiant) state, even if the
atom C is inside the light-cone of both atoms A and B [169]. Thus, the subradiant
or superradiant behaviour of the two-atom system is strictly related to the field
energy density, and it could be experimentally probed through a measurement of
the Casimir-Polder interaction on a third atom.

4.2 Resonance interaction between two atoms in
the presence of a generic magneto-dielectric
medium

In this Section the resonance interaction energy between two atoms, one excited
and the other in its ground state, prepared in an entangled state and in the presence
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of an arbitrary magneto-dielectric medium is studied [152]. Our purpose is to
investigate whether and how the resonance force can be modified by the presence
of the structured environment and, if it is possible to control its strength and its
character, exploiting the external parameters of the environment. Manipulate the
resonance interaction through external environments could be also experimentally
relevant in order to suggest an experimental setup able to detect this interaction
: e.g., a suitable macroscopic body could reduce the environment’s influences and
the atomic spontaneous emission (that destroys the correlation of the entangled
atomic state), and even enhance the resonance interaction energy between the
atoms, allowing to detect it.

We consider two identical two-levels atoms, one excited and the other in its
ground state, labelled A and B, with transition frequency ω0 = ck0, interacting
with the quantum vacuum. The system is prepared in a correlated symmetric or
antisymmetric state, given by

|ψ±〉 = 1√
2
(
|eA, gB, 0〉 ± |gA, eB, 0〉

)
, (4.43)

where |e〉 and |g〉 are the excited and ground atomic state, respectively, and the
radiation field is in the vacuum state |0〉; in this case the excitation is delocalized
between the atoms. The Hamiltonian of the system in the multipolar coupling
scheme, within the dipole approximation, is [6]

H = H0 +Hi (4.44)
where

H0 = ~ω0(SAz + SBz ) +
∑
λ=e,m

∫
d3r

+∞∫
0

dω ~ω f †λ(r, ω) · fλ(r, ω), (4.45)

is the free Hamiltonian, and
Hi = −µA ·E(rA)− µB ·E(rB) (4.46)

is the interaction Hamiltonian. The unperturbed Hamiltonian is the sum of atomic
and radiation field Hamiltonians: the first is written in terms of pseudo-spin opera-
tors Sz of the two atoms, whereas the second is given in terms of medium-assisted
field operators f †λ and fλ, describing the field inside a generic medium. Here
µA(B) is the electric dipole moment operator of the atom A(B) placed in rA(B),
and E(rA(B)) is the medium-assisted electric field operator evaluated at atomic
positions and given by

E(r) =
∫ ∞

0
dωE(r, ω) +H.c.

=
∑
λ=e,m

∫
d3r′

∫ ∞
0
dω Gλ(r, r′, ω) · fλ(r′, ω) +H.c., (4.47)
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where G(r, r′, ω) is the electromagnetic Green’s tensor, introduced in Chapter 2
(see Eq. (2.62)). The resonance interaction energy between the entangled atoms,
owing to the atom-field interaction, is given by [11]

∆E± = P
∑
I

〈ψ±|Hi |I〉 〈I|Hi |ψ±〉
~ω0 − EI

, (4.48)

where P indicates the principal value. Here |I〉 are the intermediate states, with
energies EI that contribute to the resonance interaction; these states are

|I〉1 = |gA, gB,1λ(r, ω)〉 ,
|I〉2 = |eA, eB,1λ(r, ω)〉 , (4.49)

where 1λ(r, ω) is a medium-assisted excitation of the radiation field.
Following a calculation similar to that done in Chapter 3 for the resonance

energy transfer amplitude (3.19), a general expression for the resonance interaction
energy between the two entangled atoms in terms of the Green’s tensor of a generic
environment is obtained,

∆E± = ± ~
2πε0c2P

∫ ∞
0

dωω2∑
ij

 1
~ω0 − ~ω

×

µegAi ImGij(rA, rB, ω)µgeBj + µegBi ImGij(rB, rA, ω)µgeAj


− 1

~ω0 + ~ω

µgeBi ImGij(rB, rA, ω)µegAj + µgeAi ImGij(rA, rB, ω)µegBj

. (4.50)

In this expression we have neglected the single-atom energy terms since, being
space independent, do not contribute to the interatomic force. The (+) or (-) sign
in Eq. (4.50) is related to the symmetrical or anti-symmetrical entangled state
of the system, respectively, and the resulting interatomic force is then obtained
by taking the derivative of (4.50) with respect to the interatomic distance r =|
rA − rB |, changed of sign (quasi-static approach). We stress that Eq. (4.50) is
an analytical expression of the resonance interaction between the two entangled
atoms in the presence of a generic magneto-dielectric medium of arbitrary shape
and material: all geometrical and structural properties of the environment are
included in the Green’s tensor expression [152]. If the atoms are in the free space,
Eq. (4.50) reduces to the well-known resonance interaction expression in the free
space (Eq. 1.78), as shown in detail in Appendix A.

In the next Section we will use the expression (4.50) to investigate the resonance
interaction in the particular case of a cylindrical waveguide made of a perfect
conductor.
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4.2.1 Resonance interaction between two atoms inside a
conducting cylindrical waveguide

The resonance dipole-dipole interaction between two entangled atoms placed
on the axis of a perfectly conducting cylindrical waveguide is now investigated.
Our purpose is to study how and whether the strength and the character of the
resonance force between the atoms is modified by the presence of the cylindrical
waveguide, investigating it as a function of the atomic separation z, the waveguide
radius R, and as a function of the atomic dipole moments direction [152]. In
order to achieve this purpose we use the analytical expression for the resonance
interaction (4.50) and the well-known cylindrical Green tensor expression, already
used in Chapter 3 to study the resonance energy transfer process inside a cylindrical
waveguide. We recall that, if the atoms are placed on the cylinder axis, the Green’s
tensor is given by

G(r, r′, ω) = i

4π
∑
m

 eikµz

2Iµ1kµ
+ kλe

ikλz

2Iλ1k2

(r̂ ⊗ r̂ + φ̂ ⊗ φ̂) + λ2eikλz

Iλ0kλk2 ẑ ⊗ ẑ

,
(4.51)

with the same notation and remarks done in Chapter 3.
Although we are considering the same physical system discussed in Chapter 3,

it is relevant to point out that we are investigating different albeit related physical
processes: the resonance interaction energy in this Section and the resonant energy
transfer in Chapter 3. The first is a quantum interaction between two correlated
atoms, one excited and the other in the ground state, arising from the exchange
of a real or virtual photon between them; it eventually yields a force between
the atoms that, in a quasi-static approach, is obtained from the derivative of the
interaction energy with respect to the interatomic distance, changed of sign. On
the other hand, the resonance energy transfer, as widely discussed in Chapter 3, is
an exchange of electronic excitation between two atoms mediated by the quantum
electromagnetic field; the atomic system, initially prepared in a factorized state
|eA, gB〉 evolves to a different final state |gA, eB〉, owing to the exchange of energy.

We now consider the resonance interaction between the two atoms when Rk0 �
1, which means that the atomic transition frequency is below the waveguide cut-
off frequency ω0 < ωmin. In this case the radiation field modes resonant with
the atomic transition frequency are suppressed by the waveguide, and do not
contribute to the resonance interaction energy (similarly to the case of the energy
transfer process discussed in Chapter 3). Since the cylindrical electromagnetic
Green’s tensor (4.51) is symmetric for exchange of the positions of the atoms, the
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resonance interaction (4.50) can be written as

∆E± = ± 2
πε0

∑
ij

µegAi µ
ge
Bj P

∫ ∞
kmin

dk
k3

k2
0 − k2 ImGij(rA, rB, ω), (4.52)

where (+) and (−) sign refers to the symmetric or antisymmetric atomic entangled
state, respectively.

It is now fundamental to note that the resonance interaction expression (4.52)
coincides in modulus with the energy transfer amplitude (3.37), obtained in Chap-
ter 3. Since we are assuming that k0 < kmin, the resonant pole at k = k0 is absent
and thus the principal value in (4.52), and the prescriptions in (3.37) around the
pole, do not play any role. For these reasons, all results obtained in the previous
Chapter related to the energy transfer amplitude, (3.39), (3.40) and (3.41), when
the atomic transition frequency is below the waveguide lower cut-off frequency,
can be easily extended to the resonance interaction energy between two correlated
atoms.
We investigate the resonance interaction energy as a function of the interatomic
distance z and the waveguide cut-off frequency ωmin. For the sake of complete-
ness, we show again these plots when both atoms have dipole moments parallel or
perpendicular with respect to the waveguide axis. When the atoms are prepared
in a symmetrical entangled state and have atomic dipole moments parallel to the
guide axis and between each other, the resonance interaction is given by

∆E+ = −µ
eg
Azµ

ge
Bz

4πε0

∑
m

λ2

Iλ0

e−
√
λ2−k2

0z√
λ2 − k2

0

. (4.53)

We have already demonstrated in Chapter 3 that the sum over the radial field
modes converges. The plots in Fig. 4.4 show the Eq. (4.53), as a function of the
interatomic distance z (Fig. 4.4a ) and the waveguide radius R (Fig. 4.4b). The
atoms are in the near zone range, z < λ0, which means that the interatomic dis-
tance is smaller than the atomic transition wavelength, and the cylindrical waveg-
uide radius R is such that Rk0 � 1, which means that the waveguide suppresses
the field mode resonant with the atomic transition frequency. Fig. 4.4a shows that
the interaction has essentially the same dependence from the distance as in the
free space case. Approaching the transition region between near and far zone, the
resonance interaction becomes more and more suppressed with respect to the free
space case. Fig. 4.4b shows that the resonance interaction quickly tends to vanish
by decreasing R, whereas when R is increased, first increases (in absolute value)
and then settles to an almost constant value.

In the far zone limit, z > λ0, a numerical analysis shows that the resonance
interaction is totally inhibited by the waveguide with respect to the free space
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Figure 4.4: Resonance interaction between two atoms with axial dipole moments
when z < λ0 (near-zone limit), as a function of the interatomic distance z (4.4a),
and as a function of the waveguide radius R (4.4b), when Rk0 � 1, that is when
ω0 < ωmin. The blue solid line is the resonance interaction inside the cylindrical
waveguide, whereas the orange dashed line is that in the free space. The numerical
values of the parameters are λ0 = 5 · 10−7 m, and µegA/B z = 10−30 C · m.

case by several orders of magnitude; e.g. when z = 10−6 m the ratio between
the resonance interaction in the waveguide and in the free space is ∆E+/∆E0 ∼
10−84, that is virtually zero. This emphasizes a completely different effect of the
waveguide in the near and in the far zone.

The results obtained above show that, since in the regime Rk0 � 1 the field
modes resonant with the atomic transition frequency ω0 are suppressed by the
waveguide, the resonance interaction shall be suppressed too. In the very near
zone, being essentially an electrostatic interaction between two correlated dipoles,
the resonance interaction is slightly affected by the waveguide; whereas, approach-
ing the intermediate region, it becomes an interaction dominated by radiative
processes, and becoming more and more suppressed by the waveguide, and lead-
ing to a totally inhibition in the far zone. We have also shown that it is possible to
modify and control the resonance interaction energy between the atoms through
the waveguide’s radius R. This result can be explained by taking into account
that the lower cut-off frequency of the waveguide is strictly related to the waveg-
uide radius R, ωmin ∝ R−1; therefore by decreasing R, the cut-off frequency ωmin
increases and the gap between ω0 and ωmin increases too. This involves a further
reduction of the number of field modes near the resonant frequency ω0 that can
contribute to the resonance interaction energy, thus leading to further reduction of
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the interaction itself. In the limiting case, when the waveguide radius approaches
zero, the resonance interaction vanishes, as expected.

We now consider the case of atoms having dipole moments along the radial
direction, that is orthogonal to the waveguide axis, and parallel to each other. As
before, the atomic system is prepared in the symmetrical entangled state. Likewise
the case of axial dipoles, the resonance interaction expression, when Rk0 � 1,
coincides with that of the resonance energy transfer amplitude (3.55), given by

∆E+ = µegArµ
ge
Br

8πε0

∑
m

− k2
0e
−
√
µ2−k2

0z

Iµ1

√
µ2 − k2

0

+

√
λ2 − k2

0e
−
√
λ2−k2

0z

Iλ1

. (4.54)

For this reason, the same remarks and results previously obtained can be easily
extended to the resonance interaction energy between two correlated atoms inside
the waveguide.

Nevertheless, a brand-new, interesting aspect emerges when we investigate the
resonance interaction between two radial dipoles inside the waveguide as a function
of the interatomic distance z, in the near zone limit. Fig. (4.5) shows the ratio
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Figure 4.5: Resonance interaction energy between atoms with radial dipoles as
a function of the interatomic distance z, normalised to the free space interaction
∆E0. The atoms are in a symmetric entangled state and in the near zone. When
z approaches the transition region between the near and the far zone (z ∼ λ0),
the resonance interaction becomes more and more suppressed with respect to the
free-space interaction. We also point out that the resonance interaction changes
its character, from repulsive to attractive for interatomic separation larger than
z & 2.9 · 10−8m. The parameters used are λ0 = 5 · 10−7 m, R = 10−8 m and
degA/B z = 10−30 C · m.

between the resonance interaction energy between two radial dipoles inside the
waveguide (∆E+) and in the free space (∆E0) as a function of the interatomic
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distance z. The resonance interaction energy ∆E0, in the free space and in the
near zone limit, is

∆E0 = µegArµ
eg
br

4πε0z3 cos(k0z). (4.55)

One of the most relevant effects to highlight is that the waveguide changes the
character of the resonance interaction, from repulsive to attractive, for interatomic
distance larger than z & 2.9 · 10−8 m. We point out that the resonance interaction
between radial dipoles in the free space and in the near zone regime (4.55) is al-
ways repulsive but, if the atoms are inside the cylindrical waveguide, the resonance
interaction changes its character, becoming attractive [152]. Furthermore, in this
range the interaction is reduced by a factor of the order of 10−3, compared to
the free-space case. We stress that this reduction is much more significant in the
present configuration of the system, compared to the axial dipoles case. Therefore,
these results show that when the atoms have atomic dipole moments orthogonal
to the cylinder axis, the presence of the conducting waveguide influences the res-
onance interaction more deeply; in addition to a suppression of its strength, a
change of its character, from repulsive to attractive, is obtained. In the far zone
limit, analogously to the case for which the atoms have axial dipole moments, the
resonance interaction is strongly suppressed by the waveguide and it is virtually
zero.

Similar considerations hold for the case of atoms prepared in the antisymmetric
entangled state; in this situation the resonance interaction energy is the same
obtained for the symmetric entangled state, except for a change of sign (see Eq.
(4.52)).

4.3 Conclusions
In this Chapter we have presented our original results on the resonance inter-

action energy between two identical correlated atoms, prepared in a symmetrical
or antisymmetrical Bell-type state: two different physical situations have been
considered in detail, highlighting different and interesting aspects of the resonance
force.

In the first Section, the time-dependent resonance interaction energy during the
dynamical self-dressing process of the two atoms has been considered, starting from
a nonequilibrium configuration (bare state). We have shown that the resonance
interaction vanishes when the two atoms are outside the light-cone of each other,
while it settles to its stationary value immediately after the causality time t = R/c.
We have related these findings to a sort of interference between the contributions
of real and virtual processes occurring during the time evolution of the system. We
have also discussed the time-dependent electric energy density in the space around
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the two entangled atoms, both for subradiant (antisymmetrical) and superradiant
(symmetrical) states, and pointed out that its behaviour is due to interference
effects of the field emitted by the two atoms. Finally, we have also suggested
that our results concerning the time-dependent electric energy density for the two
entangled atoms, can be experimentally probed through a measure of the Casimir-
Polder force on a third atom located in the vicinity of the two entangled atoms.

In the second Section, the effect of a perfectly conducting cylindrical waveguide
on the resonance interaction between two entangled atoms has been investigated.
We have first introduced an analytical expression for the resonance interaction en-
ergy between two correlated atoms in the presence of a generic magneto-dielectric
medium, using the electromagnetic Green tensor formalism. We have then consid-
ered the resonance interaction in the specific case of two entangled atoms placed on
the axis of a perfectly conducting cylindrical waveguide, which determines a lower
cut-off frequency for the radiation field modes inside it. We have shown that, when
the atomic transition frequency is smaller than the waveguide cut-off frequency,
the resonance interaction between the atoms is strongly modified by the presence
of the waveguide. We have investigated the interaction both for atomic dipole
moments parallel and orthogonal to the cylinder axis; in both cases the resonance
interaction is deeply suppressed if the atoms are in the radiative far zone, while
it is much less modified if they are in the radiationless near zone. We have also
stressed that it is possible to modify and control the strength of the interaction
through external actions, specifically by changing the cylinder radius. Finally, we
have shown that in the near zone, for radial atomic dipole moments, it is possible
to change even the character of the resonance force, turning it from repulsive to
attractive (symmetric state). These results point out how the presence of a struc-
tured environment, such as the conducting waveguide, allows to manipulate and
control the strength and even the character of the resonance interaction energy
between two entangled atoms.
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Chapter 5

Dispersion interaction between
two hydrogen atoms in a static
electric field

The van der Waals/Casimir-Polder force is a dispersion interaction between
neutral, unpolarised and unmagnetised atoms, molecules or any quantum emitters,
mediated by the quantum electromagnetic field [9, 11, 12], as discussed in Chapter
1. In the absence of any external electromagnetic field applied on the atomic
system, the Casimir-Polder interaction between two ground-state atoms is a fourth-
order effect in the coupling with the quantum radiation field [5, 6, 8]. This is
equivalent to the exchange of a pair of virtual photons between them. For this
reason, the Casimir-Polder force is an ubiquitous interaction between any pair of
quantum emitters, existing even between neutral atoms, and it is usually a very
weak interaction, several orders of magnitude smaller than Coulomb interactions.
When the atoms are in their ground-state, the interaction is always attractive,
behaves as r−6 in the nonretarded near zone [13] and as r−7 in the retarded far
zone regime [14], being r the interatomic distance. This behaviour is related
to the fact that in the near zone regime the dispersion interaction is essentially a
radiationless process, whereas, in the far zone limit, the process becomes radiative,
taking into account the finite speed of light propagation [1, 5, 18]. Although its
small strength, the dispersion interactions have great relevance in many areas of
physics, and also several applications in biology [52, 166], chemistry [180] and
nano-technologies [79, 181, 182].

A striking property of the Casimir-Polder interaction, and related effects, is
that it can be strongly modified by an external environment [65], such as for
example a cavity or a conducting wall [25, 66, 183], a waveguide [67, 116, 184, 185],
or a photonic band-gap material.

In recent years, the possibility of manipulating van der Waals interactions
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between atoms through external optical fields has been investigated in the liter-
ature, specifically modifications of the dispersion interaction due to the applied
field, and changes of its distance dependence [106, 186, 187]. Modifications of the
atom-surface Casimir-Polder force have been recently considered too. In [188],
for example, it is shown that near-resonant light can significantly modify atom-
surface van der Waals/Casimir-Polder interactions in the nonretarded regime; in
particular, near-resonant laser light with an intensity of 5 W/cm2 is predicted
to double the interaction strength for sodium atoms, and possible experiments
to detect this effect are discussed. Very recently, it has been also shown that
the Casimir-Polder interaction between a ground-state atom and a non-dispersive
surface, in the presence of an external quantum field, has similar features of the
Casimir-Polder potential between excited atoms [189], leading to the possibility of
a repulsive Casimir-Polder force [190];

In this Chapter we present our original work on the van der Waals/Casimir-
Polder interaction between two ground-state hydrogen atoms in the free space and
at zero temperature, subjected to an external static electric field. Our purpose
is to investigate whether and how the dispersion interaction is modified by the
external field and if it should be exploited to tailor and control the interatomic
force [191]. Main point is that, due to the presence of the external field, the atoms
become polarized, with correlated dipole moments; we find that the dispersion
interaction between the atoms is strongly modified by the external field, even for
a reasonable field strength experimentally achievable in the laboratory. We in-
vestigate both cases when the atoms are in the nonretarded and in the retarded
Casimir-Polder regime. We consider in detail different configurations of the sys-
tem, according to the relative direction of the homogeneous electric fields acting on
the two atoms, specifically parallel and antiparallel between each other, as well as
parallel and orthogonal orientation of the interatomic distance with respect to the
direction of the external field. We find that the space dependence of the disper-
sion interaction between the atoms changes, decreasing slower with the distance:
the field-modified Casimir-Polder interaction behaves as r−3 and r−4 in the near
and far zone respectively, rather than the well-known r−6 and r−7 behaviour for
unperturbed atoms. We also show that it is possible to significantly modify and
control its magnitude and even its character, turning it from attractive to repulsive
and vice versa, through external fields with a strength that can be easily reached
in current experiments. We also find that, given a specific distance between the
atoms, choosing external fields with an appropriate strength and direction, the dis-
persion force between the atoms can be totally cancelled. These new findings show
the possibility to deeply control the strength, the spatial dependence and even the
character of the dispersion interaction between the atoms or molecules through
an external static electric field. A clear physical interpretation of these results is
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discussed, as well a numerical estimate of the effect and its observability for values
of the electric field that can be currently obtained in the laboratory. These results
could be relevant also for a possible direct measurement of dispersion interactions
between atoms, in particular in the retarded Casimir-Polder regime, as well as for
macroscopic properties of gases of neutral atoms or molecules interacting through
long-range van der Waals dispersion interactions.

This Chapter is organized as follows: in Sec. 5.1 the theory is developed
within the framework of quantum electrodynamics and a general expression for
the dispersion interaction between two hydrogen atoms in the presence of static
external electric fields is obtained. In Sec. 5.2, we consider two specific geometric
configurations of the atomic system with respect to the external fields: interatomic
distance orthogonal and parallel with respect to the external field directions. We
show the possibility to modify the magnitude, the spatial dependence and even
the character of the dispersion interaction through external electric fields. Finally,
Sec. 5.3 is devoted to our conclusions and final remarks.

5.1 The field-modified dispersion interaction
We consider the dispersion interaction between two hydrogen atoms, labelled

A and B, interacting with the quantum electromagnetic field in the vacuum state,
in the presence of external static and uniform electric fields [191]. E and E ′ are
respectively the external classical fields acting on atoms A and B, and they are
assumed uniform over the atomic dimensions. We assume that atom A is placed
at the origin r = 0, and r is the distance between the two atoms. The system is
prepared in its unperturbed ground state,

|ψ0〉 =| φA100, φ
B
100〉 | 0kλ〉, (5.1)

where | φn`m〉 is an hydrogen states with the quantum numbers n, `,m (principal
quantum number, orbital quantum number, and magnetic quantum number). The
electromagnetic field is in its vacuum state | 0kλ〉. The energy of the state (5.1) is
E0 = 2E1, where E1 = −~2/2ma2

0 is the unperturbed energy of the ground state
of the hydrogen atom, and a0 = 0.53 Å is the Bohr’s radius.

The Hamiltonian of the system is

H = H0 + VA + VB +HA
i +HB

i , (5.2)

where H0 = HA + HB + HF is the unperturbed Hamiltonian, sum of the atomic
Hamiltonians, HA and HB, and the transverse field Hamiltonian HF ; VA(B) and
H
A(B)
i are, respectively, the interaction Hamiltonians of atom A(B) related to the
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external classical field and to the radiation field. In the multipolar coupling scheme
and within the dipole approximation, they are given by

VA = −µA · E VB = −µB · E ′, (5.3)
HA
i = −µA · E(0) HB

i = −µB · E(r), (5.4)

where µA(B) is the dipole moment operator of atom A(B), and

E(r) = i
∑
kλ

√
~ck

2V ε0
êkλ

(
akλe

ik·r − a†kλe−ik·r
)

(5.5)

is the transverse displacement field operator, that, outside the atomic positions,
coincides with the total (transverse plus longitudinal) electric field operator [5, 11].

In the absence of the external static classical electric field, the dispersion in-
teraction between the two atoms is due to the exchange of two virtual photons
between them, and it is a fourth-order effect in the coupling with the quantum
radiation field [5, 6, 8]. From a physical point of view, this is because vacuum
field fluctuations must induce and correlate dipole moments in the atoms (this
accounts two orders in the atom-field coupling), and, afterwards, the correlated
induced dipoles yield a nonvanishing interaction energy (accounting two more or-
ders in the coupling constant) [192]. In the present case, where the atoms are
embedded in a static electric field, the situation for the component of the disper-
sion interaction related to the external field, changes: i) the external electric fields
polarize both atoms, that acquire a permanent electric dipole moment and also
correlate them: this is a first order process in the coupling with the external field,
for each atom; ii) then, the induced permanent dipole moments interact through
the transverse field, exchanging one virtual photon, thus a second-order process in
the coupling with the transverse field; iii) so, even though the interaction energy is
still a fourth-order effect, proportional to the fourth power of the electron charge
q, a factor q2 is related to the interaction with the external classical field and
proportional to their intensity, while another factor q2 is related to the interaction
with the quantum transverse field. Therefore, the interatomic potential is due to
the exchange of just one virtual photon, similarly to the atom-wall Casimir-Polder
interaction [15] or the resonance interaction between identical entangled atoms,
one excited and the other in the ground state, discussed in Chapter 4 [11, 161].

We assume that external classical fields can be treated as a small perturbation
of the system, thereby leading to a correction of the unperturbed ground state
(5.1), and a Stark energy shift, that can be obtained through time-independent
perturbation theory. Now, we first obtain the corrected ground state at second
order in the coupling with the external field, and then, in order to obtain the
interatomic dispersion interaction, we evaluate the distance-dependent part of the
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energy shift due to the interaction with the quantum transverse field. As previously
mentioned, we will find that this energy shift starts from the second order in the
coupling with the transverse radiation field. We assume that both fields E and E ′
are along the z axis, directed in the positive or negative direction. For simplicity,
in our evaluation we include only the contribution from atomic intermediate states
with principal quantum number n = 2. Using the time-independent perturbation
theory, the perturbed ground state, at the second order in the coupling with the
external static field, is

| ψ〉 =
{ [

1− γ2(E2 + E′
2)
]
| φA100, φ

B
100〉

−
√

2γ
(
E | φA210, φ

B
100〉+ E′ | φA100, φ

B
210〉

)
+ γ2

2EE′ | φA210, φ
B
210〉 −

1√
2

3
2

6

×
(
E2 | φA200, φ

B
100〉+ E′

2 | φA100, φ
B
200〉

)] }
| 0kλ〉, (5.6)

where γ = 29qa0/(36E1), E1 is the unperturbed energy of the ground state of the
hydrogen atom, a0 the Bohr’s radius, and | 0kλ〉 the photon vacuum. The state
(5.6) is the ground state of the system corrected up to the second-order in the
coupling between atoms and the external fields E and E ′. The second-order Stark
energy shift, owing to the external fields, is given by

E(2) =
∑
I

〈ψ0| (VA + VB) |I〉 〈I| (VA + VB) |ψ0〉
E0 − EI

=3
2γ

2E1(E2 + E′2) (5.7)

where E0 is the energy of the unperturbed state (5.1) and |I〉 are intermediate
states, |φA100, φ

B
210, 0kλ〉 and |φA210, φ

B
100, 0kλ〉, that contribute to the energy shift (5.7).

Therefore the energy of the perturbed state (5.6), corrected up to the second order
in the coupling with external fields, is

Eψ = 2E1 + 3
2γ

2E1(E2 + E′2). (5.8)

This quantity is negative since E1 < 0. Since we have assumed that the external
fields can be treated perturbatively with respect to the atomic energies of the
system, their intensities must be such that the second order energy correction in
Eq. (5.8), should be much smaller than the unperturbed energy of the system;
that is

3
2γ

2E1(E2 + E′2)� 2E1. (5.9)
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Assuming external fields with the same intensities E = E′, a numerical estimation
of (5.9) relation yields

E� 3 · 1011 V/m. (5.10)
The relation (5.10) establishes possible external electric field intensities that can
be exploited in our system, in order to calculate the field-assisted dispersion inter-
action between the hydrogen atoms using a perturbative approach.

Les us now consider the energy correction to the state (5.6) due to the interac-
tion between the atoms and the quantum transverse radiation field given by (5.4).
The second-order energy correction is

∆E =
∑
I

〈ψ| (HA
i +HB

i ) |I〉 〈I| (HA
i +HB

i ) |ψ〉
Eψ − EI

, (5.11)

where Eψ is the energy of the perturbed state (5.8). Since we are interested to
the dispersion force between the two atoms, we need to evaluate only the part of
the shift (5.11) that depends on the interatomic distance, and thus only terms of
∆E containing both HA

I and HB
I are relevant [191]. Thus, neglecting atomic self-

interaction terms, that do not contribute to the interatomic potential, we obtain

∆E =
∑
I

〈ψ|HA
i |I〉 〈I|HB

i |ψ〉
Eψ − EI

+
∑
I

〈ψ|HB
i |I〉 〈I|HA

i |ψ〉
Eψ − EI

= 2
∑
I

〈ψ|HA
i |I〉 〈I|HB

i |ψ〉
Eψ − EI

(5.12)

where |I〉 are all possible intermediate states, with energy EI , that contribute to
the energy shift (5.12). These states are eigenstates of H0 + VA + VB and, in
our approximation that takes into account only atomic excited states with prin-
cipal quantum number n = 2, with a fourfold degeneracy and a unperturbed
energy E2 = E1/4, we must consider that these states are degenerate. Thus, using
degenerate-state perturbation theory, the intermediate states at zeroth-order in
the coupling with the external static fields, are

|I〉 = 1
2

(
|φA210〉 ± |φA200〉

)(
|φB210〉 ± |φB200〉

)
| 1kλ〉 (5.13)

where | 1kλ〉 represents a one-photon state with wavevector k and polarization
λ = 1, 2. From intermediate states (5.13), considering only fourth-order terms in
the electron charge that lead to a distance-dependent energy shift, we easily find
that the only relevant intermediate states are in the form | φA210, φ

B
210, 1kλ〉, with

energy EI = 2E2+~ωk. It can be easily shown that first or higher-order corrections
of the intermediate states |I〉 lead to the distance-dependent contributions to the
energy shift contributions that are at an order higher than the fourth in the electron
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charge, and thus we can neglect them. Also, we point out that, since the energy
shift (5.12) is an overall fourth-order effect, two orders in the quantum transverse
fields and two orders in the external static fields, the energies Eψ and EI in the
denominator of (5.12) are given just by the unperturbed energies, without the
second-order Stark-shift correction (5.7).

The distance-dependent energy shift can be then written as

∆E(r) =
∑
kλ

4
2E1 − (E2 + ~ωk)

2γ2EE′

× 〈φA210, φ
B
100, 0kλ|HB

i |φA210, φ
B
210, 1kλ〉 〈φA210, φ

B
210, 1kλ|HA

i |φA100, φ
B
210, 0kλ〉

= −
∑
kλ

8γ2EE′

2(E2 − E1) + ~ωk
〈φB100, 0kλ|HB

i |φB210, 1kλ〉 〈φA210, 1kλ|HA
i |φA100, 0kλ〉

= −4γ2 EE′

V ε0

∑
kλ

k

k0 + k
(µegA · ekλ) (µgeB · ekλ) eik·r , (5.14)

where in the last row, the relations

〈φB100, 0kλ|HB
i |φB210, 1kλ〉 = i

√
~ck

2V ε0
(µgeB · ekλ) eik·rB , (5.15)

〈φA210, 1kλ|HA
i |φA100, 0kλ〉 =− i

√
~ck

2V ε0
(µegA · ekλ) e−ik·rA (5.16)

have been used. Here r = rB − rA is the interatomic distance and k0 = 2 |
E2 − E1 | /(~c) = 3 | E1 | /(2~c) is related to the wavevector associated to the
transition between the ground and the first excited level of the hydrogen atom.
The quantities µegA(B) are matrix elements of the atomic dipole moment operator
between states | e〉 =| φ210〉 and | g〉 =| φ100〉; these vectors are induced by the
external electric fields and are oriented along the z axis, that is the same direction
of the static fields acting on the atoms.

Performing the polarization sum, ∑λ(êkλ)i(ê∗kλ)j = δij − k̂ik̂j, the continuum
limit, ∑k → V/(2π)3 ∫ dkk2 ∫ dΩ, and using the relation

∫
dΩ (δij − k̂ik̂j) eik·r = 4π Im

 1
k3

(
−∇2δij +∇i∇j

)
eikr

r

 , (5.17)

after some algebraic calculations involving angular and frequency integrations,
equation (5.14) becomes

∆E = − 2γ2

π2ε0
EE′(µegA )i(µgeB )j

(
−∇2δij +∇i∇j

)
f(k0r)
r

. (5.18)
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where the Einstein convention of repeated indices has been used. Here, the differ-
ential operators act on the variable r, and we introduce the auxiliary functions

f(x) = Ci(x) sin(x) +
(
π

2 − Si(x)
)

cos(x), (5.19)

g(x) = −Ci(x) cos(x) +
(
π

2 − Si(x)
)

sin(x), (5.20)

with Si(x) and Ci(x) being the sine and cosine integral functions [26–28]. Applying
the differential operators, knowing that

df(x)
dx

= −g(x) ,
dg(x)
dx

= f(x)− 1
x
, (5.21)

the expression (5.18) becomes

∆E = − 2γ2

π2ε0
EE′(µegA )i(µgeB )j

1
r

(δij − 3r̂ir̂j)
f(k0r)

(k0r)2 + g(k0r)
k0r


−(δij − r̂ir̂j)

[
f(k0r)−

1
k0r

]. (5.22)

The expression (5.22) gives the field-assisted dispersion interaction between the
two atoms, for a general configuration of the atoms with respect to the external
electric fields, directed along z-axis [191]. Contrarily to the dispersion interaction
between nonpolarized atoms or molecules in the vacuum, that is a fourth-order
process in the coupling with the radiation field, involving the exchange of two
virtual photons, the dispersion interaction (5.22) is a second-order quantity in the
coupling with the radiation field, involving the exchange of one virtual photon
between the atoms. However, it contains also a second-order coupling with the
external fields, and thus it is an overall fourth-order process in the electron charge
q. We wish also to point out that this interaction is proportional to the external
fields intensities E and E′ applied to the atoms; this is a relevant result because it
is possible to modify and control the strength of the dispersion interaction between
the atoms, and even its attractive/repulsive character through external fields, as
we will discuss in great detail in the next Section.

It should also be noted that the field-assisted contribution obtained in Eq.
(5.22) must of course be added up to the usual, unperturbed van der Waals/Casimir-
Polder interaction energy between ground-state nonpolar atoms or molecules. In
the next Section we compare these two contribution to the dispersion force, in-
vestigating for which geometrical configurations and external field strength, the
field-assisted dispersion force becomes comparable, or even larger, than the unper-
turbed van der Waals interaction.
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We will now investigate the total dispersion interaction between two hydrogen
atoms, focusing on two specific and relevant geometrical configurations of the
system: interatomic distance aligned perpendicularly or parallel to the direction
of the external field.

5.2 Atoms aligned perpendicularly and parallel
to the external field

We now consider two different geometrical configurations of the atoms with
respect to the external static fields: in the first case the interatomic distance is
perpendicular to the external fields, and in the second case the atomic separation
is parallel to the external fields. These two specific geometrical configurations of
the system are shown in Fig. 5.1, where we have assumed for simplicity that the
atoms are subjected to the same external fields E = E ′ [191]. The induced atomic
dipoles, depicted in Fig. 5.1 by the red arrows on the atoms, have clearly the same
direction of the external field.

x

zz

x

EE

r

A

B

A B
r

(b)(a)

Figure 5.1: Two hydrogen atoms in free space in the presence of an external
static electric field E along the z-direction, acting on the atoms: (a) atoms aligned
perpendicularly to the direction of the external field; (b) atoms aligned in the same
direction of the external field. In the case shown in the Figure, the fields acting
on atoms A and B have the same direction, and the red arrows at the position of
the atoms indicate the direction of the induced dipole moments [191].

For convenience, we have defined the quantity

β = 2γ2k2
0

π2ε0
µegA µ

ge
B = 232q4a4

0
320π2ε0~2c2 = 9k2

0
4π2ε0

α2, (5.23)

where, in the first equality, we have used the fact that the two atoms are identical
and that µegA(B) = 〈φ210 | qr | φ100〉 = 215/23−5qa0ẑ. α = 2µ2/[3(E2 − E1)] is the
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static polarizability of the atoms, k0 is double the wavevector associated to the
atomic transition between the ground and the first excited level of the hydrogen
atom, and it was defined in the previous section as k0 = 3 | E1 | /(2~c).

When the atoms are aligned perpendicularly with respect to the direction of
the external field, panel a) in Fig. 5.1, the dispersion interaction (5.22) becomes

∆E⊥(r) = βEE′
1
r

[
f(k0r)

(
1

(k0r)2 − 1
)

+ g(k0r)
k0r

+ 1
k0r

]
. (5.24)

In order to investigate the near and far zone limits of the field-assisted disper-
sion interaction (5.24), we use the expansions of the auxiliary function f(x) and
g(x) for small and large arguments [26, 27]. For x� 1, we have

f(x) ∼π2 +
(
γ + ln(x)− 1

)
x− · · · , (5.25)

g(x) ∼− γ − ln(x) + πx

2 + · · · , (5.26)

where γ is the Euler-Mascheroni constant. On the other hand, the asymptotic
expansions for x� 1, are

f(x) ∼1
x

1− 2!
x2 + 4!

x4 −
6!
x6 + · · ·

, (5.27)

g(x) ∼ 1
x2

1− 3!
x2 + 5!

x4 −
7!
x6 + · · ·

. (5.28)

Therefore, the dispersion interaction (5.24) can be conveniently approximated
when the atoms are in the near zone, that is when k0r � 1, and when they are in
the far zone, k0r � 1, yielding

∆E⊥(r) = βEE′
1
k2

0
×


π

2r3 for k0r � 1

4
k0r4 for k0r � 1.

(5.29)

Similarly, in panel b) of Fig. 5.1, when the atoms are aligned in the same direction
of the external field, we have

∆E‖(r) = −2βEE′1
r

[
f(k0r)
(k0r)2 + g(k0r)

k0r

]
, (5.30)

and the near and far zone approximations are

∆E‖(r) = −βEE′ 1
k2

0
×


π
r3 for k0r � 1

4
k0r4 for k0r � 1.

(5.31)
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Equations (5.29) and (5.31) represent the field-assisted dispersion interaction
contributions in the near- and in the far-zone regime, respectively when the atoms
are aligned perpendicularly and parallel to the external field [191]. As mentioned
before, when the external electric fields are present, the total interaction energy
between the atoms is the sum of two contributions: the unperturbed van der
Waals/Casimir-Polder interaction ∆EvdW and the field-assisted dispersion inter-
action ∆E, as

∆Et = ∆EvdW + ∆E. (5.32)

The unperturbed van der Waals/Casimir-Polder dispersion interaction energy scales
as r−6 in the near zone and as r−7 in the far zone, and it is given by [9, 11, 12, 15,
193]

∆EvdW (r) =


− 3

64π2ε20
Ēα2 1

r6 for k0r � 1

− 23~c
64π3ε20

α2 1
r7 for k0r � 1,

(5.33)

where Ē is an average excitation energy of the atoms, and α their static polarizabil-
ity. Both equations (5.29) and (5.31) show that the component of the dispersion
interaction dependent from the external field decreases as r−3 in the near zone,
and as r−4 in the far zone. Thus it decreases with the distance between the atoms
quite slower than the unperturbed van der Waals interaction: as r−3 in the near
zone, and r−4 in the far zone, rather than r−6 and r−7 of the usual dispersion
interaction. It should be also noted that its space dependence is the same of the
Casimir-Polder interaction between a ground state atom and a perfectly reflecting
wall [18, 25]. The same distance scaling of the two processes is related to the fact
that they are both due to the exchange of just one virtual photon.

It should be noted that the sign of the field-dependent interaction contribu-
tion, determining its attractive or repulsive character, can be different with re-
spect to the unperturbed one, and is related to the geometric configuration and
the relative orientation of the electric fields acting on the two atoms. Our re-
sults (5.24),(5.29),(5.30),(5.31) show that the change due to external fields, when
E and E′ are parallel between each other, is positive in the perpendicular configu-
ration (a), thus yielding a repulsive contribution, while it is negative in the parallel
configuration (b), thus yielding an attractive contribution. All these noteworthy
features can be understood on a simple physical basis in terms of the interaction
between the dipole moments induced in the atoms: as it is evident from Fig. 5.1, in
the perpendicular case (panel (a)) the dipole-dipole interaction yields a repulsive
force on the dipoles, while in the parallel case (panel (b)) it yields an attractive
force. The situation is reversed if the the electric fields acting on the two atoms
have an opposite direction, of course: in such a case E and E′ have opposite sign,
and the field-assisted interaction is attractive in the perpendicular configuration
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and repulsive in the parallel case. This can be physically understood in terms of
the dipole moments that the external fields induce in both atoms (see Fig. 5.1).
On the other hand, the van der Waals/Casimir-Polder interaction between two
ground-state atoms, in the absence of an external field, as given by Eq. (5.33), is
always attractive. Thus our findings show that we can even modify the charac-
ter of the dispersion interaction between the atoms, turning it from attractive to
repulsive, exploiting external static electric fields.

We only mention that a similar physical picture explains the atom-surface
Casimir-Polder dispersion interaction for a ground-state atom near a perfectly re-
flecting plate, in terms of the interaction of the instantaneous atomic dipole with
its image dipole, reflected by the surface. Also in this case, the two instantaneous
dipole moments (of the atom and of the image atom) are correlated: the compo-
nents parallel to the surface point in opposite directions, while the perpendicu-
lar components point to the same direction. This eventually yields, for isotropic
atoms, the attractive atom-surface Casimir-Polder potential, due to exchange of
one virtual photon, scaling as r−3 in the near zone and as r−4 in the far zone
[102, 194]. Also, in the resonance interaction between two entangled atoms, one
excited and the other in the ground state, too, the system has correlated dipole
moments in the unperturbed state [5, 161], and the interaction energy is due to
the exchange of just one photon. Apparently, this interaction also could have some
analogy with the field-assisted dispersion interaction here investigated; however,
we wish to point out that the resonance interaction has a different scaling with
the distance, r−3 in the near zone and r−1 in the far zone, essentially due to the
possibility of exchange of a real photon between the atoms (in the present case the
exchanged photons are always virtual).

We now discuss in more detail the relevant aspects concerning the possibility to
modify and control the field-assisted dispersion force, in particular its magnitude
and its attractive/repulsive character, with respect to the unperturbed van der
Waals interaction. We compare numerically the field-dependent contribution to the
dispersion interaction with the usual dispersion interaction for unperturbed atoms,
when they are placed at a typical distance from each other, choosing r = 10−6 m.
Taking into account that the transition wavevector between the ground and the
first excited level of the hydrogen atom is k0 ' 5 · 107 m−1, we have that k0r � 1,
thus the atoms are in the far zone regime. From the second row of (5.29) and
(5.31), we then obtain

δE⊥ ' 1.67 · 10−36 EE′ eV/(V/m)2,

δE‖ ' −1.67 · 10−36 EE′ eV/(V/m)2. (5.34)

These numerical values should be compared with the usual dispersion interac-
tion between two unperturbed ground-state hydrogen atoms, given in Eq. (5.33).
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For consistency, in the numerical evaluation of ∆EvdW , we have included only
contributions involving the n = 2 states of the hydrogen atoms. At the same
interatomic distance used above, r = 10−6 m, we have

∆EvdW ' −7.4 · 10−27 eV (5.35)

A direct comparison of (5.34) with (5.35) shows that, at the distance consid-
ered, the component of the dispersion interaction due to the external electric field is
of the same order of the usual dispersion interaction for field strengths of the order
of E = E′ ' 105 V/m. Such an intensity is well within the reach of static electric
fields that can currently be obtained in the laboratory [195–200], and within, by
several orders of magnitude, the strength limit imposed by our perturbative treat-
ment of the external fields, given in Eq. (5.10). At larger interatomic distances,
and with the same strength of the electric field, the field-modified interaction can
outmatch the unperturbed interaction energy by several orders of magnitude. On
the contrary, at shorter interatomic distances, our results (5.24), (5.29), (5.30),
(5.31) show that higher external field intensities are required in order to make
the field-assisted interaction comparable with the unperturbed one: of the order
of 106 V/m for r ∼ 100 nm, and of the order of 108 V/m for r ∼ 10 nm (both in
near zone regime). Submicrometrical distances, as those we are considering, are a
typical distance between the parts of MEMS and NEMS, where Casimir dispersion
interactions become relevant [79]. All these remarks indicate a realistic possibility
to observe the new effects we have discussed [191].

We also point out that, in the configurations yielding a repulsive field-assisted
component of the dispersion force, choosing specific distances between the two
atoms, it is possible to "turn off" the total dispersion interaction between the atoms.
In fact, the external fields can be appropriately calibrated in order to make the
total dispersion interatomic force vanishing, even if the equilibrium interatomic
distance turns out to be an unstable point. In principal, this could in principle
have also some relevance in applications where Casimir forces are important, for
example to contrast stiction in micro-electromechanical systems.

Our new results clearly show how an external static electric field can signifi-
cantly affect the dispersion interaction between two ground-state atoms, allowing
to change its space-dependence, and its attractive/repulsive character. They show
that, for reasonable intensities of the external field and a typical interatomic dis-
tance, the field-modified interaction can become even larger than the unperturbed
van der Waals/Casimir-Polder interaction, and this could be a striking help for a
direct detection of such interactions, in particular in the retarded Casimir-Polder
regime. Moreover, for appropriate geometric configurations of the atoms with re-
spect to the field, and/or appropriate relative direction (parallel or antiparallel) of
the external fields acting on the two atoms, the overall dispersion interaction, usu-
ally attractive, can be turned to become repulsive. As shown by Eqs. (5.29) and
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(5.31), this can be achieved when the external electric fields acting on the atoms
are parallel to each other and the atoms are aligned in a direction perpendicular
to the external field, or when the external electric fields are antiparallel to each
other and the atoms are aligned parallel to the field.

5.3 Conclusions
In this Chapter we have considered the dispersion interaction (van der Waals

and Casimir-Polder) between two ground-state hydrogen atoms subjected to an
external static electric field, and shown that the external field can be exploited
to strongly modify the intensity, the distance dependence, and the character (at-
tractive/repulsive) of the force. We have considered in detail two specific relevant
geometrical configurations of the two atoms with respect to the direction of the
external field: in the first case the interatomic distance is aligned perpendicularly
with respect to the external field, whereas in the second case it is parallel with
respect to the field.

We have found that the field-assisted dispersion interaction decreases slower
with the distance (as r−3 and r−4 in the near and far zone, respectively) compared
to the unperturbed dispersion interaction. We have also shown that, for appro-
priate geometrical configurations of the atoms with respect to the field, and/or
appropriate relative direction (parallel or antiparallel) of the external fields acting
on the two atoms, it is possible to change the character of the overall dispersion
force, usually attractive, to become repulsive. We have also estimated numeri-
cally the intensity of the field-modified component of the force, and compared it
with the van der Waals/Casimir-Polder force for unperturbed atoms, both in the
nonretarded and in the Casimir-Polder retarded regime.

Our new findings show that, with a strength of the external field currently
achieved in the laboratory, and sufficiently weak that can be taken into account
perturbatively, the force can be controlled and tailored through external fields;
the possibility of obtaining a significant increase, or reversing it from attractive to
repulsive, or even making it to vanish, according to the geometrical configuration
and/or the relative orientation of the electric fields acting on the two atoms, has
been shown. We have also stressed possible relevance of these effects for applica-
tions where Casimir interactions are relevant.



Conclusions

The main subject of this thesis has been the study of the radiation-mediated
processes between quantum emitters, such as atoms or molecules, when they are
in the presence of an external environment, in the framework of quantum electro-
dynamics. In particular, we have investigated the dispersion and the resonance
interaction between atoms, and the intermolecular resonance energy transfer pro-
cess. The presence of the external environment changes the dispersion relation for
the field modes, as well as the photon density of states: this determines a change
of all radiative processes with respect to the free-space case. Radiation-mediated
processes have been widely investigated in the recent literature when the quantum
emitters, interacting with the electromagnetic field in the vacuum state, are in the
presence of structured/external environments, such as a cavity, a reflecting mirror
or a dielectric slab, a waveguide or a photonic crystal. The radiation-mediated
processes are in general significantly affected by the geometry of the system, the
boundary conditions, external optical fields, and the magneto-dielectric properties
of the objects involved. The resulting possibility to manipulate and control such
processes through external actions has a great relevance from both a theoretical
and experimental points of view, as well as applications to nanotechnologies, and
has significantly inspired the original research project reported in this thesis.

The first two Chapters of the thesis contain introductory material and results,
that have been used in the next three Chapters, that contain the original results of
our work. The first Chapter gives an introduction to the dispersion and resonance
interactions between atoms, and to the resonance energy transfer process between
atoms or molecules. The second Chapter introduces the formalism of macroscopic
quantum electrodynamics, where all properties of the environment are embedded
in the electromagnetic Green’s tensor.

In Chapter 3, we have investigated the resonance exchange of energy between
two atoms or molecules, one excited and the other in its ground state, interacting
with the quantum electromagnetic field in the vacuum state, and in the presence
of an external environment. Specifically, we have investigated the resonance en-
ergy transfer process for two atoms placed on the axis of a perfectly conducting
cylindrical waveguide, when the atomic transition frequency is below the waveg-
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uide lower cut-off frequency. We have considered the transfer of energy both for
atomic dipoles parallel and orthogonal to the guide axis; we show that it is slightly
modified if the atoms are in the very near zone of each other, becoming more and
more suppressed approaching the intermediate zone, and totally inhibited in the
far-zone limit. Our original results show that it is possible to modify and con-
trol the resonance energy transfer rate by changing the waveguide radius: when
it increases, the amplitude of the process increases too, while, on the contrary,
decreasing the radius, the energy transfer is reduced, and this effect is much more
evident in the far (radiative) zone. A clear physical interpretation of these findings
has been also discussed.

In Chapter 4, we have presented our original work on the resonance interaction
between two atoms, one excited and the other in its ground state, prepared in a
symmetrical or antisymmetrical entangled state, interacting with the electromag-
netic field in its vacuum state. We have considered the resonance force in two
different physical cases: i)a dynamical non-equilibrium situation; ii) in the pres-
ence of a structured environment. In the first case, the time-dependent resonance
interaction energy between two entangled atoms, during the atomic dynamical
self-dressing process, has been investigated. We have shown that the interaction
energy vanishes when the atoms are outside the light-cone of each other, while it
settles instantaneously to its stationary value after the causality time, in agree-
ment with the relativistic causality. We have shown that this behaviour is due to a
sort of interference between real and virtual processes. We have also investigated
the time-dependent electric energy density around the two atoms. We have found
that, for points inside the light-cone of both atoms, the electric energy density can
be enhanced or reduced, depending if the system is initially prepared in a sym-
metrical or antisymmetrical entangled state, respectively. This behaviour is due
to the interference effects of the field emitted by the two atoms, and we have also
suggested an experimental setup to probe this result. In the second case, the effect
of a structured environment on the resonance interaction between two entangled
atoms has been investigated. We have considered the resonance force between two
entangled atoms inside a cylindrical waveguide made of a perfect conductor, when
the atomic transition frequency is below the waveguide cut-off frequency. We have
considered two relevant geometrical configurations of the system: atomic dipole
moments parallel and orthogonal to the guide axis. In both configurations, we
have shown that the interaction is deeply modified and suppressed in the far-zone
limit, while it is much less influenced by the waveguide if the atoms are in the
near zone. This is coherent with our results for the energy transfer between atoms
in a waveguide, presented in Chapter 3. When the atoms have radial dipole mo-
ments, we have also found that the waveguide, not only reduces the interaction
energy with respect to that in the free space, but also changes the character of
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the resonance force, turning it from repulsive to attractive (symmetrical entangled
state). Finally, we have shown that it is possible to control the resonance interac-
tion between the atoms by changing the waveguide radius: the interaction can be
strongly suppressed by reducing the guide’s radius. The physical meaning of all
these results has been discussed in detail.

Finally, in Chapter 5, we have reported our original work on the dispersion
interaction between two ground-state hydrogen atoms, interacting with the quan-
tum vacuum and subjected to external static electric fields. We have shown that
the presence of the external field strongly modifies the dispersion interaction be-
tween the atoms, changing its space dependence and its magnitude, both in the
nonretarded and in the retarded Casimir-Polder regime. We have found that the
field-assisted dispersion interaction, in both near and far zone, decreases with the
interatomic distance slower than the dispersion interaction of unperturbed atoms.
Also, we have found that, for specific geometrical configurations of the two atoms
with respect to the external field and/or the relative orientation of the fields acting
on the two atoms, it is possible to change the character of the dispersion force,
turning it from attractive to repulsive, or even make it vanishing. We have also
pointed out that these new findings can be obtained with a strength of the external
fields currently achieved in the laboratory: this is a crucial point, making possible
an experimental verification of our theoretical predictions. Thus, it is possible to
significantly control the magnitude, the space dependence and even the charac-
ter of the dispersion interaction between two hydrogen atoms through external
fields with a reasonable strength, easily attainable experimentally, and that can
be treated perturbatively.

Our results, for the physical systems considered, clearly show the possibility to
modify and control radiation-mediated processes, such as the dispersion and the
resonance interaction, as well as the resonance energy transfer process, exploiting
an appropriate external environment.
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Appendix A: Resonance energy
transfer and resonance interaction
in the free-space limit

In Chapters 3 and 4 we have obtained analytical expressions for the resonance
energy transfer amplitude and for the resonance interaction between two iden-
tical two-level atoms, using the Green’s tensor formalism [15]. We recall these
expressions, given by

M = 1
πε0c2

∫ ∞
0

dωω2∑
ij

 1
ω0 − ω ± iη

degAiImGij(rA, rB, ω)dgeBj


− 1
ω0 + ω ± iη

degAiImGij(rB, rA, ω)dgeBj

, (5.36)

and

∆E± = ± ~
2πε0c2P

∫ ∞
0

dωω2∑
ij

 1
~ω0 − ~ω

×

degAiImGij(rA, rB, ω)dgeBj + degBiImGij(rB, rA, ω)dgeAj


− 1

~ω0 + ~ω

dgeBiImGij(rB, rA, ω)degAj + dgeAiImGij(rA, rB, ω)degBj

. (5.37)

Eqs. (5.36) and (5.37) are, respectively, the resonance energy transfer amplitude
M and the resonance interaction energy ∆E±, when the atoms are in the presence
of a generic linear magneto-dielectric environment, whose properties are included
in the electromagnetic Green’s tensor expression [117].

The purpose of this Appendix is to demonstrate that Eqs. (5.36) and (5.37)
reduce to the corresponding well-known free-space expressions when the atoms
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free-space limit

are placed in an empty space, without any external environments. To achieve this
purpose, the free-space electromagnetic Green’s tensor will be used. The free-space
Green’s tensor, solution of the homogeneous Helmholtz equation,[

∇×∇×−k2
]
G0(r, r′, ω) = δ(r − r′), (5.38)

is

G0(r, r′, ω) = − c2

3ω2δ(ρ)− c2eiωρ/c

4πω2ρ3


1− iωρ

c
−
(
ωρ

c

)2
I

−

3− 3iωρ
c
−
(
ωρ

c

)2
eρ ⊗ eρ

, (5.39)

where
k2 = ω2

c2 . (5.40)

Here ρ = r − r′ is the distance between the two points r and r′, with modulus
ρ = |ρ| and unit vector eρ = ρ/ρ. The Green’s tensor (5.39) is symmetric with
respect to the exchange of positions r ←→ r′, that is

G0(r, r′, ω) = G0(r′, r, ω). (5.41)

This means that, in the cases we are considering, the Green tensor expression is
symmetric with respect to the exchange of the atomic positions. Therefore Eqs.
(5.36) and (5.37) can be written as

M = 1
πε0

∑
ij

degAid
ge
Bj

∫ ∞
0
dk k2

 1
k0 − k + iη

− 1
k0 + k + iη

ImG0
ij(rA, rB, ω),

(5.42)
and

∆E± = ± 2
πε0

∑
ij

degAid
ge
BjP

∫ ∞
0
dk

k3

k2
0 − k2 ImG0

ij(rA, rB, ω). (5.43)

The imaginary part of the free-space Green’s tensor (5.39) is

ImG0
ij(r, r′, ω) = − 1

4πk2ρ3

[
(δij − 3ρ̂iρ̂i)(sin kρ− kρ cos kρ)

−(δij − ρ̂iρ̂i)k2ρ2 sin kρ
]
. (5.44)

Therefore, the energy transfer amplitude and the resonance interaction between
two atoms in the free space, can be obtained substituting Eq. (5.44) into Eqs.
(5.42) and (5.43).
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Firstly, the energy transfer amplitude (5.42), becomes

M = − 1
4π2ε0ρ3

∑
ij

degAid
ge
Bj

∫ ∞
0
dk

 1
k0 − k + iη

− 1
k0 + k + iη


×
[
(δij − 3ρ̂iρ̂i)(sin kρ− kρ cos kρ)− (δij − ρ̂iρ̂i)k2ρ2 sin kρ

]
, (5.45)

where ρ = |rA − rB| represents the interatomic distance. The first integral over k
can be conveniently rewritten as

∫ ∞
0
dk

 1
k0 − k + iη

− 1
k0 + k + iη

(δij − 3ρ̂iρ̂i) sin kρ

= (δij − 3ρ̂iρ̂i)
 ∫ ∞

0
dk

sin kρ
k0 − k + iη

−
∫ ∞

0
dk

sin kρ
k0 + k + iη


= (δij − 3ρ̂iρ̂i)

 ∫ ∞
0
dk

sin kρ
k0 − k + iη

+
∫ 0

−∞
dk

sin kρ
k0 − k + iη


= (δij − 3ρ̂iρ̂i)

∫ ∞
−∞
dk

sin kρ
k0 − k + iη

, (5.46)

where in the third row we have done a change of variable k −→ −k in the second
integral. The final integral over k in (5.46) can be performed using the residue
theorem, leading to

(δij − 3ρ̂iρ̂i)
∫ ∞
−∞
dk

sin kρ
k0 − k + iη

= −(δij − 3ρ̂iρ̂i) π eik0ρ. (5.47)

The others integrals in (5.45) are done with similar calculations, leading to

M =
∑
ij

degAid
ge
Bj

4πε0ρ3

[
(δij − 3ρ̂iρ̂j)(1− ik0ρ)− (δij − ρ̂iρ̂j)k2

0ρ
2
]
eik0·ρ, (5.48)

that is the well-known resonance energy transfer amplitude when the atoms are in
the free space (1.91), as expected [9, 50].

Let us now consider the resonance interaction expression (5.43) that, substi-
tuting the imaginary part of the free-space Green’s tensor (5.44), becomes

∆E± = ∓ 1
2π2ε0ρ3

∑
ij

degAid
ge
BjP

∫ ∞
0
dk

k

k2
0 − k2[

(δij − 3ρ̂iρ̂i)(sin kρ− kρ cos kρ)− (δij − ρ̂iρ̂i)k2ρ2 sin kρ
]
. (5.49)
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free-space limit

In Eq. (5.49), the first integral over k, can be conveniently rewritten as

(δij − 3ρ̂iρ̂i)P
∫ ∞

0
dk

k

k2
0 − k2 sin kρ

= 1
2i(δij − 3ρ̂iρ̂i)P

∫ ∞
−∞
dk

k eikρ

k2
0 − k2 , (5.50)

where in the second row the fact that integrand functions are even has been used.
By the residue theorem, the integral becomes

1
2i(δij − 3ρ̂iρ̂i)P

∫ ∞
−∞
dk

k eikρ

k2
0 − k2 = −(δij − 3ρ̂iρ̂i)

π cos kρ
2 . (5.51)

In a similar manner, the others two integrals arising from (5.49) may be evaluated,
so that

∆E = ±
∑
ij

degAi d
ge
Bj

4πε0ρ3

(δij − 3ρ̂iρ̂j)(cos kρ+ kρ sin kρ)− (δij − ρ̂iρ̂j)k2ρ2 cos kρ
,

(5.52)
that is the resonance interaction between two correlated atoms in the free space,
obtained in Chapter 1.

Thus, analytical expressions (5.36) and (5.37), written in terms of the elec-
tromagnetic Green’s tensor, reduce to the well-known resonance energy transfer
amplitude (5.48) and resonance interaction (5.52) in the free space, when there
are no external environments in the physical system.
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