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Introduction

One of the fundamental aspects distinguishing human beings is certainly the Language. In fact, the
development of a complex language may be interpreted as symptom of refined intellectual abilities.
A well-structured language allows a better, deeper and unambiguous development of concepts and a
consequent more effective communication. In this sense, the most prestigious and efficient language
elaborated by man is certainly Mathematics which is also the one “spoken by Nature”, as R. P. Feynman
stated. The basic importance of the language for human societies resides in the fact that it is the basis of
a clear communication. It therefore possesses a crucial role within Science, given that scientists must
necessarily communicate unambiguously their results in order to collaborate and progress together in
the knowledge of Nature.

Such an aspect, apparently trivial and obvious, assumes a crucial importance in Quantum Physics,
the theory born in the early 1900s to describe the atomic and, more in general, the microscopic world.
As N. Bohr and W. Heisenberg often underline in their works [1, 2], the greatest paradox of QM
consists in the fact that it cannot do without Classical Physics (CP), although it is a more generalized
theory. CP, in fact, well describes physical systems for which the involved actions are so great that the
quantum nature of the action can be neglected; the laws of CP, indeed, can be derived through the limit
h̄→ 0. The assertion of the two fathers of QM means that, to interpret and to communicate the results
obtained from experiments investigating the microscopic quantum world, we can only use the language
and those specific concepts related to the CP. However this language and such concepts can only result
inadequate, or at least incomplete, to describe the microscopic reality governed by different logic and
laws. This fact is identified as the vulnus, that is, the source of those paradoxes existing in QM.

One of the most striking paradoxes is certainly the “double nature” of both particles and light. Both
of them, depending on the experimental conditions, can either behave as material objects or give rise
to wave phenomena. But the attribution of a “double nature” to a single element of reality may be
interpreted, according to the canons of CP, as a symptom of the incompleteness of the theory. However,
as claimed by Bohr and Heisenberg [1, 2], the descriptive non-univocity depends, actually, on the
application of the ‘classical’ concepts of wave and particle (elaborated within the daily experience and
which therefore belong to to the sphere of CP) to the microscopic reality that obeys laws and logic
that are different and far from the classical ones. In order to solve this basic issue, Bohr introduced
the so-called complementary principle. According to such a principle, mutually exclusive ‘classical’
descriptions must be considered complementary in order to have a complete and exhaustive view of the
reality investigated by QM.

It is important to stress that these “complementary realities” are related to different experimental
conditions and investigation methods. The existence of this interpretative dichotomy stems from the
individuality of quantum phenomena, i.e. from the fact that in QM an event is not infinitely divisible
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as in CP. This is connected to the fact that in QM an objective separation between subject and object
(as in CP) is impossible: the measuring instruments are active part of the phenomenon. This justifies
the circumstance that different results can be obtained with the same equipment and under the same
experimental conditions; such a circumstance gives rise to the intrinsic probabilistic character of QM.

At this point, it should be emphasized that interpretative problems and the emergence of paradoxical
aspects occur only when the description of quantum events is developed in terms of common language,
inevitably involving the use of classical ‘ideas’. The same difficulties do not emerge, instead, within
the mathematical formalism at the basis of QM which presents, rather, a high level of coherence and
elegance. This is witnessed by the equivalence between the different approaches: the one of Hesienberg
based on matrices, the one based on operators of Dirac and the one developed by Schrödinger based
on the concept of wave function. This observation, as mentioned at the beginning, highlights how
the existence of a clear, rigorous and synthetic language, as the mathematical one, is of fundamental
importance in scientific investigations.

One, moreover, may expect that a language possessing transversality and versatility (that is, the
possibility of being able to be used in different contexts), besides the features listed above, might be
even more efficient. Within the quantum formalism, an exemplary language is the spin language. To
date, in fact, the study of theoretical models involving interacting spin dynamical variables embraces
a plethora of various physical scenarios [3, 4, 5, 6, 7, 8, 9, 10, 11]; such an aspect gives to the spin
language a great importance from an applicative point of view. The spin formalism is used to describe,
first, the intrinsic quantum degree of freedom (with no classical analogue) of elementary particles.
It has the characteristics of an angular momentum, such as 1) the possibility of interacting with an
electromagnetic field, as brought to light by the Stern and Gerlach’s experiment in 1922 with Ag atoms;
2) to satisfy the superposition principle; this means that even composite structures such as nuclei, atoms
and molecules show spin degrees of freedom resulting from the addition of the spins of the individual
particles composing them; 3) to interact with other spins generating quantum correlations between
particles or, more generally, between different elements. The in-depth analysis of the properties of
interacting spin models, first of all the seminal Ising and Heisenberg models, allowed to explain and
to forecast, from a theoretical point of view, important magnetic properties of matter and particularly
remarkable phenomena such as quantum phase transitions.

The mathematical spin formalism, however, can potentially be used to describe, more in general, all
those physical systems whose dynamics, under appropriate conditions, can be traced back to that of a
finite N-level system. Although it may seem a purely theoretical expedient, the simplest case of a two-
level system plays a fundamental role in Physics. Many physical scenarios, indeed, under conditions of
experimental interest, reduce to an effective two-level system [9, 12, 13, 14, 15]. Moreover, in recent
decades the interest towards quantum two-level systems has exponentially grown thanks to the idea of
a possible quantum computer and thanks to the emergence of the Quantum Information and Quantum
Computation fields. Any two-level system, effective or not, can be thought, indeed, as a potential qubit
(quantum bit).

To date, among the physical systems referable to actual two-level systems that can be easily experi-
mentally controlled, we find trapped atoms and ions and superconducting circuits. In the first case, the
application of laser beams with appropriate frequencies allows both to generate a dynamic between a
precise pair of energy levels of the atom/ion (generating an effective two-level system), and to generate
interaction between several qubits in such a way that they can be used as a quantum information register
[5, 6]. In the second case, instead, it is the assembly of different circuit elements that allows, under



appropriate experimental conditions, the realization of the so-called superconducting qubits: think of
the Cooper Pair Box or the Transmon Qubit, as charge qubits, or the SQUID, as example of flow qubit
[16, 17]. In this way, circuit architectures at the base of the cQED, succeeding in reproducing the
characteristic dynamics of quantum optical systems (such as, for example, charge qubits coupled to a
coplanar waveguide resonator that acts as a resonant cavity), furnishes perfect candidates of building
blocks for the construction of future quantum computers [18, 19]. In 2019 IBM introduced the IBM Q
System 1, a prototype quantum computer built of 20 superconducting qubits. However, it is important
to underline that a lot of efforts are still necessary to reach the realization of an efficient and well im-
proved quantum computer. The most problematic and difficult aspect to be experimentally managed is
the unavoidable interaction existing between quantum systems and the surrounding environment. The
latter disturbs the dynamics of the system generating dephasing, that is, loss of quantum coherence
[20, 21]. As we know, coherence is the fundamental feature required to exploit quantum phenomena
for applicative and technological purposes.

There exist different approaches to formally and theoretically treat the presence of an environment
influencing the dynamics of a quantum system. Also in this case the spin language results of great
importance. The most profitable approaches for the treatment of such a basic issue are essentially
three. The first one, due to Gorini, Kossakowski, Lindblad and Sudarshan, is aimed at constructing the
master equation, that is, the equation of motion governing the dynamics of the system which results
after tracing out the degrees of freedom of the bath, whose presence and influence is reflected on
the structure of the so called dissipator [22]. The second one is that based on the partial Wigner
transform based on a Monte Carlo numerical approach and which therefore allows to treat very complex
systems in presence of an environment [23]. This approach has been developed, indeed, within the
bio-chemical-physical framework to study the noisy dynamics of macromolecules. The last approach,
instead, due to Feshbach, is focused on the study of a quantum system of finite dimension coupled with
a continuum of states that represents the environment [24]. Feshbach developed a method, based on
projection operators, through which it is possible to derive an effective Hamiltonian dependent only on
the dynamical variables of the system. In such a Hamiltonian the information of the presence of a noisy
environment is present in the form of non-self-adjoint terms.

The characteristic of these non-self-adjoint Hamiltonians, so derived, is to have the possibility of
possessing a spectrum of either real or complex conjugated eigenvalues. The matrices representing
these Hamiltonians are called pseudo-Hermitian matrices [25]. Within this class we find the quasi-
Hermitian matrices characterized by a completely real spectrum, which the famous PT-symmetric ma-
trices (matrices which commute with the PT operator and therefore invariant by inversion of space
and time variables) are part of [26]. The latter proved to be of particular usefulness in studying those
open physical systems whose dynamics can be experimentally manipulated through the introduction of
properly controlled energy-gain and loss mechanisms. The more peculiar physical feature possessed by
these systems is the possibility of exhibiting a phase transition connected with the PT -symmetry break-
ing. Several examples of this kind of systems may be encountered in various fields [11, 27, 28, 29, 30].
The case of optical PT -symmetry systems is particularly interesting since it furnishes an example in
which the formalism of quantum mechanics and in particular the spin language can be useful tools
for investigating the dynamics of classical systems under appropriate experimental conditions. In fact,
optical gain-loss systems consist mainly of coupled waveguides whose dynamics, under the scalar and
paraxial approximation [10], obeys a Schrödinger equation where the time variable is replaced from
the spatial one. In the specific case of two coupled waveguides, for example, the system consists of two



coupled levels and therefore it can be described in terms of dynamical variables of a single spin-1/2.
In this thesis the study of the dynamics of interacting spin systems subjected to the action of clas-

sical external time-dependent fields is reported. The interest towards this kind of models, as explained
above, lies in the fact that they can formally describe the dynamics of (or they may be implemented
through) different physical scenarios of interest: mainly trapped ions/atoms and superconducting cir-
cuits. Moreover, the study of the dynamics of these systems in presence of time-dependent fields is
physically relevant since it allows to understand how it is possible to experimentally operate in order to
be able to control and to guide the time evolution of the same systems for specific applicative purposes.

The resolution of a dynamical problem related to a time-dependent Hamiltonian presents, in general,
greater complications with respect to the one related to a time-independent Hamiltonian. Just think to
the fact that the dynamical problem related to a two-level time-dependent Hamiltonian cannot be solved,
if not formally, in its general form, i.e. when the time dependence of the Hamiltonian parameters is
generic. In literature, in fact, there are no so many scenarios, identified by specific time dependences
of the Hamiltonian parameters, whose related dynamical problem can be exactly solved. Among these
scenarios, the most important examples, which must be counted for the seminal impact they had in
Physics and elsewhere, are: 1) the Rabi model [31, 32] consisting of a spin-1/2 subjected to a static
magnetic field and a rotating one orthogonal to the first. The main physical effect, namely the periodic
oscillations of the system between the two levels (called Rabi oscillations), is at the basis of the well-
known Nuclear Magnetic Resonance (NMR) technique. The latter had and has a fundamental role
not only in Physics for the measurement of the magnetic moment of the nuclei of atoms, but also in
medicine for tissue imaging in order to detect possible tumors. 2) The Landau-Majorana-Stuckelberg-
Zener model [33] consisting in the application of a magnetic field linearly varying over time and an
orthogonal constant one. Its effect is to allow a perfect population inversion in a two-level system
(generalizable to the N-level case) through an adiabatic dynamic. 3) The STIRAP technique [34] that
allows, by sending two laser pulses, an adiabatic transfer of population in a three-level system.

From these examples we see how the investigation of microscopic systems describable by time-
dependent Hamiltonian models is of fundamental importance. It can lead, indeed, to the identification
of exactly solvable models under suitable temporal scenarios and the identification of peculiar physical
phenomena that may be of significant interest under an applicative point of view. In this respect, it is
worth to underline that in recent years we have witnessed the appearance in literature of several methods
aimed at identifying precisely solvable dynamical problems related to two-level time-dependent Hamil-
tonians [35, 36, 37, 38]. The specific interest towards the simplest system of a single qubit, besides for
the physical reasons previously exposed, stems also from the fact that, as shown by the Group Theory,
the solution of the dynamical problem of one spin-J (N-level system) subjected to a time-dependent
magnetic field is traceable back to the solution of the analogous problem related to a spin-1/2 [39, 40].

This latter approach, however, is not valid and generally not applicable to time-dependent Hamilto-
nian models involving interacting qudits systems. In this case, therefore, another type of approach, that
allows to exploit the knowledge of exactly solvable scenarios of single spin-1/2, is necessary. Such an
issue is the research guide line of the Ph.D. work whose results are reported in this thesis.

The first step of our approach towards the exact resolution of the dynamics of interacting spin
systems consists in the analysis of the symmetries of the models under scrutiny. This allows the identi-
fication of constants of motion and therefore of dynamically invariant Hilbert subspaces. In this way, it
is possible to decompose the general dynamical problem into sub-problems defined in smaller Hilbert
spaces and therefore to trace back the resolution of the original problem to the resolution of a set of



independent and relatively simpler dynamical problems. In case of two-dimensional subspaces, we
can describe the dynamics of the system in terms of an effective single spin-1/2 Hamiltonian. Thus,
we can use the exactly solvable time scenarios existing in literature to derive, within that subspace, an
exact solution of the dynamical problem of the interacting spin system. It is important to underline
that the physical meaning of such a procedure emerges only when the time-dependence of the effective
Hamiltonian parameters and the solutions are interpreted in terms of the ‘true’ physical variables of the
interacting spin system. In the case, instead, of subspaces of greater dimension it is always possible
to refer to the solutions valid for single spin-1/2 scenarios if the Hamiltonian related to the subspace
under scrutiny presents a SU(2) symmetry. If this circumstance does not occur, it is always possible
to describe the dynamics of the system within the invariant subspaces in terms of a fictitious system
of interacting spins or in terms of a single spin described by a non-linear effective Hamiltonian. Obvi-
ously, such s case may be difficult to be treated analytically; however, it is interesting to note that such
a dynamical decomposition, in view of a more efficient resolution of the problem, results crucial also
for a numerical approach.

The thesis is organized as follows. In Chapter 1 it has been brought to light the mathematical
difficulties encountered in solving the dynamical problem related to two-level time-dependent Hamil-
tonians. Such a problem, indeed, cannot be analytically solved when the time-dependence of the Hamil-
tonian parameters is generic. However, the Group Theory gives us the formal structure (dependent on
two complex time-dependent functions) of the time evolution operator, solution of the time-dependent
Schrödinger equation. On the basis of such a structure, in Ref. [38] an approach aiming at identi-
fying specific relations between the Hamiltonian parameters in order to make solvable the dynamical
problem, has been proposed. In the first chapter, besides getting new exactly solvable scenarios, we
emphasized the underlying physical meaning of such relations, such as, for example, for the generalized
(time-dependent) resonant Rabi condition.

In Chapter 2 we apply the technique based on the dynamical decomposition, briefly discussed
above, to the case of two interacting qubits subjected to local time-dependent fields. We show that
when the latter linearly vary over time, LMSZ transitions can occur, although an indispensable orthog-
onal field is absent. The possibility of such an effect stems from the presence of the coupling existing
between the two spins which, in the two independent fictitious two-level problems, acts exactly as the
necessary orthogonal field generating the well-known avoided crossing. The applicative interest of
such a physical effect relies on the fact that, as we show, it is possible to generate entangled states of
the two spin-1/2’s by appropriately setting the slope of the ramp field. Moreover, thanks to the dynam-
ical decomposition, we can analytically study the time evolution of the quantum correlations getting
established between the qubits, such as the entanglement and, for some specific initial conditions, the
quantum discord.

In Chapter 3 we consider the same model for two qutrits. Also in this case, we demonstrate the
occurrence of coupling-based LMSZ transitions, from which it is possible to generate entangled state
for the two-qutrit system. In the same chapter we study also two interacting qudits subjected to a ho-
mogeneous field and a system of N spin-qubits subjected to local time-dependent fields and coupled
through N-order interaction terms (interactions involving at the same time all the spins in the system).
Such a type of interactions can be efficiently implemented through the trapped ion [41] and quantum
superconducting circuit [8, 42] technologies. We show how it is possible, thanks to these exotic inter-
actions, to ‘propagate’ to all the spins in the chain the dynamics of a single (ancilla) qubit addressed
through the local application of an external time-dependent field.



In Chapter 4, instead, we prove that the same approach can be successfully exploited for physical
systems living in infinite-dimensional Hilbert spaces. In our case the Hamiltonian model consists in a
quantum harmonic oscillator bi-linearly coupled to a quantum Glauber amplifier (formally described
as a quantum inverted harmonic oscillator) where the Hamiltonian parameters are considered time-
dependent. Also in this case the identification of SU(2)-symmetry subspaces plays a pivotal role in
solving analytically the dynamical problem. The dynamics of the system is moreover compared to
that of the analogous physical system composed by two standard quantum harmonic oscillators. Exact
solutions of the dynamical problem of the latter system can be found too, thanks to the same symmetry-
based dynamical decomposition method.

In Chapter 5 we take into account time-dependent two-dimensional non-Hermitian SU(1,1)-symmetry
matrices. Their physical relevance stems from the fact that they are pseudo-Hermitian matrices and
quasi-Hermitian in precise regions of the parameter space. A subclass of them corresponds moreover
to the well-known PT -symmetric matrices. Our contribution consists in the generalization of the ap-
proach reported in Ref. [38] to such matrices getting, in this way, a method to identify exactly solvable
time scenarios. We show that a possible application of such results can be found in coupled waveguide
systems.

Finally, in the conclusive section we report some final consideration about the work of the thesis
and possible new directions for future further works.



Chapter 1

Schrödinger Equation and Two-Level
Dynamical Systems

1.1 Schrödinger equation
In quantum mechanics a physical system, according to the Dirac formalism, can be mathematically
represented by a ray-vector in a Hilbert space indicated by a ket-state: |Ψ〉. The dynamics of the
physical system is described by the time evolution of its initial state. That is, if the system starts from
the state |Ψ(t0)〉, its state at time t is represented by

|Ψ(t, t0)〉=U(t, t0)|Ψ(t0)〉. (1.1)

Here U(t, t0) represents the time evolution operator responsible of the dynamical evolution of the sys-
tem. Such an operator possesses three main properties. 1) It must be a unitary operator in view of the
probability conservation, that is,

|〈Ψ(t0)|Ψ(t0)〉|2 = |〈Ψ(t, t0)|Ψ(t, t0)〉|2 = 1, (1.2)

which is possible only if
U†(t, t0) =U−1(t, t0), (1.3)

2) It satisfies the so called semigroup property:

U(t2, t0) =U(t2, t1)U(t1, t0), (1.4)

that is, the time evolution of the system from the initial instant t0 to the time instant t2 is equivalent to
propagate the state firstly from t0 to t1 < t2 and then from t1 to t2. 3) Finally, the time evolution operator
must satisfy of course

U(t0, t0) = 1. (1.5)

By considering the infinitesimal time evolution operator U(t + dt, t), it is possible to see [43] that
all the previous requirements are satisfied by the operator:

U(t +dt, t) = 1− i
H
h̄

dt. (1.6)

7
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For such a construction one borrows from classical physics the idea that the Hamiltonian function of a
physical system generates its time evolution.

By exploiting the composition rule, it is easy to get [43]

U(t +dt)−U(t) =−i
H
h̄

dtU(t) (1.7)

that is

ih̄U̇(t) = HU(t), (1.8)

where, for convenience, we put t0 = 0. This is the well known Schrödinger equation for the time
evolution operator, which, for the ket-state |Ψ(t)〉, becomes

ih̄
∂ |Ψ(t)〉

∂ t
= H|Ψ(t)〉. (1.9)

If the Hamiltonian operator does not depend on time, the solution of Eq. (1.8) such that U(0) = 1

is simply

U(t) = exp
{
− i

h̄
Ht
}
. (1.10)

If the Hamiltonian depends on time but possesses the property to commute with itself at different times:
[H(t ′),H(t)] = 0, for any t and t ′, the solution of Eq. (1.8) may be formally written

U(t) = exp
{
− i

h̄

∫ t

0
Hdt

}
. (1.11)

Finally, if the Hamiltonian do not commute at different times, that is, [H(t ′),H(t)] 6= 0, the formal
solution of the Schrödinger equation has been formally written by Dyson as

U(t) = 1+
∞

∑
n=1

(
− i

h̄

)n ∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnH(t1)H(t2) · · ·H(tn), (1.12)

where t1 > t2 > t3 > · · ·> tn.
In this thesis we deal with physical systems represented by time-dependent Hamiltonians non-

commuting at different times. In the following chapter we start by investigating the dynamical problem
of a single two-level system. We present specific solvability conditions for the dynamical problem
as well as the related exact expression of the time evolution operator. In the other chapters we show
how to exploit the knowledge of analytically treatable single qubit scenarios to get exact solutions for
the dynamical problems related to larger and more complex physical systems. Our attention is mainly
focused on interacting spin systems subjected to classical time-dependent fields. A careful analysis of
the symmetries possessed by the Hamiltonian is the key to get both the formal expression of the time
evolution operator and its explicit analytical form for specific exactly solvable scenarios of remarkable
physical interest.
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1.2 The two-level dynamical problem and exact solutions
Searching new exactly solvable time-dependent scenarios of a single spin-1/2 could be very interesting
and worth both from basic and applicative points of view, especially in the quantum control context. To
pursue this target, over the last years, new methods have been developed to face the problem with an
original strategy [35, 36, 37].

1.2.1 Parametric solutions
The su(2) Hamiltonian of a single spin-1/2 subjected to a generic time-dependent magnetic field B(t)≡
[Bx(t),By(t),Bz(t)] may be cast as follows

H(t) = Ω(t)σ̂ z +ωx(t)σ̂ x +ωy(t)σ̂ y =

(
Ω(t) ω(t)
ω∗(t) −Ω(t)

)
, (1.13)

with

Ω(t) =
µBg

2
Bz(t), (1.14a)

ω(t) = ωx− iωy =
µBg

2
[Bx(t)− iBy(t)]≡ |ω(t)|eiφω (t). (1.14b)

Here σ̂ k (k = x,y,z) are the spin-1/2 Pauli matrices and µBg is the magnetic moment associated to the
spin-1/2, g and µB being the appropriate Landé factor and the Bohr magneton, respectively.

We point out that the Hamiltonian in Eq. (1.13) is the general time-dependent operator of any
two-level system, unless an additive time-dependent term proportional to the identity operator 1, which
would not influence the spin-1/2 dynamics since it would trivially result in a time-dependent overall
phase factor in the evolution operator. Of course, depending on the physical system under scrutiny the
physical meaning of the Hamiltonian parameter changes accordingly. Thus, hereafter, the words spin-
1/2 and field are used with general meaning standing for two-level system and controllable external
parameter, respectively.

The entries a(t) ≡ |a(t)|exp{iφa(t)} and b(t) ≡ |b(t)|exp{iφb(t)} of the unitary time evolution
operator

U(t) =
(

a(t) b(t)
−b∗(t) a∗(t)

)
, |a(t)|2 + |b(t)|2 = 1, (1.15)

generated by H(t), must satisfy the problem ih̄U̇(t) = H(t)U(t), U(0) = 1, which originates the fol-
lowing system of linear differential equations

ih̄ ȧ(t) = Ω a(t)−ω b∗(t),

ih̄ ḃ(t) = ω a∗(t)+Ω b(t),
a(0) = 1, b(0) = 0.

(1.16)

It is possible to demonstrate [38] (see Appendix A.1) that if Θ(t) is a complex-valued C1 (continu-
ously differentiable) function of t satisfying the nonlinear integral-differential Cauchy problem

1
2

Θ̇(t)+
|ω(t)|

h̄
sinΘ(t)cot

[2
h̄

∫ t

0
|ω(t ′)|cosΘ(t ′)dt ′

]
=

Ω(t)
h̄

+
φ̇ω(t)

2
, Θ(0) = 0, (1.17)
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then the solutions of the Cauchy problem (1.16) can be represented as follows

a(t) =cos
[

1
h̄

∫ t

0
|ω(t ′)|cos

[
Θ(t ′)

]
dt ′
]
× exp

{
i
(

φω(t)−φω(0)
2

− Θ(t)
2
−R(t)

)}
, (1.18a)

b(t) =sin
[

1
h̄

∫ t

0
|ω(t ′)|cos

[
Θ(t ′)

]
dt ′
]
× exp

{
i
(

φω(t)+φω(0)
2

− Θ(t)
2

+R(t)− π

2

)}
, (1.18b)

with

R(t) =
∫ t

0

|ω(t ′)|sin[Θ(t ′)]

sin
[
2
∫ t ′

0 |ω(t ′′)|cos[Θ(t ′′)]dt ′′
]dt ′. (1.19)

Vice versa, if a(t) and b(t) are solutions of the Cauchy problem (1.16), then the representations given
in Eqs. (1.18) are still valid and Θ(t) satisfies Eqs. (1.17).

Generally speaking, solving Eq. (1.17) is a difficult task. This equation however may be exploited in
a different way, giving rise to a strategy [38] aimed at singling out exactly solvable dynamical problems
represented by Eq. (1.16). Fixing, indeed, at will the function Θ(t) in Eqs. (1.17), that is, Θ(t)
regarded now as a parameter (function) rather than an unknown, determines a link between Ω(t) and
ω(t) under which the corresponding dynamical problem may be exactly solved in view of Eqs. (1.18).
It is important to underline, however, that, depending on the choice of the function Θ(t), it could be
very difficult (if not impossible) sometimes to find analytical expressions of all quantities we need, in
particular for φa(t) and φb(t) because of the presence of the integral R in Eq. (1.19). We emphasize
that if we knew the solution of the Cauchy-like problem given in Eq. (1.17), whatever Ω(t), |ω(t)|
and φ̇ω(t) are, then we would be in condition to solve in general the corresponding Cauchy dynamical
problem expressed by Eqs. (1.16). It is worth noticing however that in the special physical scenario
in which the driving term Ω(t)+ h̄φ̇ω(t)/2 vanishes, the corresponding Cauchy problem admits the
solution Θ(t) = 0, by direct inspection. The physical implication of such a solution will be considered
in detail in the next section.

Another useful way of parametrizing the expressions of a(t) and b(t) is [38]

a(t) =
(

cos[Φ(t)]− i
β√

1+β 2
sin[Φ(t)]

)
exp
{

i
φω(t)

2

}
, (1.20a)

b(t) =
1√

1+β 2
sin[Φ(t)]exp

{
i
(

φω(t)
2
− π

2

)}
, (1.20b)

with

Φ(t) =
√

1+β 2
∫ t

0

|ω(t ′)|
h̄

dt ′, (1.21)

β being an arbitrary real constant number and having put, without loss of generality, φω(0) = 0. In this
case, it is possible to check that they solve the system (1.16) if the following condition holds

Ω(t)
h̄

+
φ̇ω(t)

2
= β
|ω(t)|

h̄
. (1.22)

It is stressed that this last equation does only express the condition under which, whatever β is, the
representations (1.20) satisfy the Cauchy problem (1.16). This means that the real number β plays in
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this case the role of parameter. When Eq. (1.22) cannot be satisfied for any β , of course the solution of
the dynamical problem exists but cannot be represented using Eqs. (1.20). In this case there certainly
exists a function Θ(t) enabling the representation of the solutions by using Eqs. (1.18). Finally, it
is interesting to underline that Eq. (1.17) turns into the simpler condition (1.22) on B(t) under an
appropriate choice of the parameter function Θ(t) [38].

1.2.2 New exactly solvable single qubit time dependent scenarios
Before to start it is useful to report the expression of the two time-dependent parameter functions
a(t) and b(t) when the magnetic fields acting upon the spin 1/2 are constant, that is, ω = const. and
Ω = const.. We have namely

a(t) =
[

cos(νt/h̄)− i
Ω

ν
sin(νt/h̄)

]
eiΦt

b(t) =−i
|ω|
ν

sin(νt/h̄)eiΦt ,

(1.23)

with ν ≡
√

Ω2 + |ω|2 and Φ =−arctan[ωy/ωx].
In the following, instead, we show the practical potentiality of the method proposed in Ref. [38]

and reported in appendix A.1 whose results about the parametric solutions of the two-level dynamical
problem have been previously showed. We report and discuss two novel time-dependent physical
scenarios of the quantum dynamics of a spin-1/2 and the exact solutions of the related dynamical
problem.

First example

Firstly, let us put∫ t

0

|ω(t ′)|
h̄

cosΘ(t ′)dt ′ =
1
2

arcsin
[
tanh(2τ)

]
, τ(t) =

∫ t

0

|ω(t ′)|
h̄

dt ′ (1.24)

With this choice we have

cosΘ(τ) =
1

cosh(2τ)
, sinΘ(τ) = tanh(2τ) (1.25)

from which we derive

Θ̇(τ) = 2
γ

cosh(2τ)
, Θ(τ) = 2arctan[tanh(τ)] (1.26)

and the integral R is trivially integrated to yield

R(τ) = τ. (1.27)

In this instance, the two parameter time-functions a and b result

a(t) =

√
cosh[2τ(t)]+1
2cosh[2τ(t)]

× exp
{

φω(t)−φω(0)
2

− arctan[tanh[τ(t)]]− τ(t)
}

(1.28a)

b(t) =

√
cosh[2τ(t)]−1
2cosh[2τ(t)]

× exp
{

φω(t)+φω(0)
2

− arctan[tanh[τ(t)]]+ τ(t)− π

2

}
. (1.28b)



12 CHAPTER 1. SCHRÖDINGER EQUATION AND TWO-LEVEL DYNAMICAL SYSTEMS

Finally, the condition linking the Hamiltonian parameters reads

Ω(t)+
φ̇ω(t)

2
=

2|ω(t)|
cosh[2τ(t)]

. (1.29)

Considering |ω(t)| = const. and φ̇ω = 0, the plot of Ω/|ω| is shown in Fig. 1.1a as a function of
τ = |ω|t/h̄.
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(b)

Figure 1.1: Plot of Ω(τ)/|ω| according to a) Eq. (1.29) and b) Eq. (1.33).

Second example

Let us consider now ∫ t

0

|ω(t ′)|
h̄

cosΘ(t ′)dt ′ = arcsin
[
tanh(τ)

]
. (1.30)

It is easy to verify that the expressions of cosΘ and sinΘ are the same as those in (1.25) of the previous
case and so also Θ̇ and Θ have the same expressions as those given in (1.26); the only difference lies
in the fact that the mathematical functions depends now on τ instead of on 2τ . What is different is the
value of integral R which, in this case, results

R(τ) =
sinh(τ)

2
(1.31)

This time the two functions defining the time evolution operator read

a(t) =
1

cosh[τ(t)]
× exp

{
φω(t)−φω(0)

2
− arctan[tanh(τ(t)/2)]− sinh[τ(t)]

2

}
, (1.32a)

b(t) = tanh[τ(t)]× exp
{

φω(t)+φω(0)
2

− arctan[tanh(τ(t)/2)]+
sinh[τ(t)]

2
− π

2

}
. (1.32b)

and the relation in Eq. (1.17) becomes

Ω(t)+
φ̇ω(t)

2
=
|ω(t)|

2

[
3

cosh[τ(t)]
− cosh[τ(t)]

]
. (1.33)



1.3. PHYSICAL MEANING OF THE SOLVABILITY CONDITIONS 13

Figure 1.1b shows the behaviour of Ω/|ω| against τ when |ω(t)|= const. and φ̇ω = 0.
It is important to point out that the factor 1/2 (1) multiplying the function arcsin

[
tanh(τ)

]
in Eq.

(1.24) [(1.30)] is crucial for the possibility of exactly getting the integral R. Furthermore, such a
factor has a remarkable consequence in the time-dependence of |a|, |b| and Ω in the first and second
scenarios. We saw, indeed, that the asymptotic (t → ∞) values of |a| and |b| are very different in the
two cases determining a completely different dynamical evolution in time. Finally, as we can see from
Fig. 1.1b, the multiplying factor significantly determines the time trend of the longitudinal component
of magnetic field which must be engineered appropriately to have the exact dynamics we are studying.

1.3 Physical meaning of the solvability conditions

The aim of this subsection is to furnish a direct physical meaning of the solvability conditions in Eqs.
(1.17) and (1.22). We find the physical reason of such conditions within the so called Generalized
Rabi Systems (GRSs) framework. Our investigation introduces, in a very natural way, three different
classes of GRSs wherein Rabi oscillations of maximum amplitude still survive. We succeed indeed
in identifying generalized resonance conditions which are, as in the Rabi scenario, at the origin of the
complete population transfer between the two Zeeman levels of the spin. We bring to light that, even
at resonance, these oscillations might loose its periodic character, significantly differing, thus, from the
sinusoidal behaviour occurring in the Rabi scenario. We also consider time-dependent magnetic fields
giving rise to exactly solvable models not satisfying the resonance condition. In this way, we are able
to write down a special link among all the time-dependent parameters appearing in the Hamiltonian of
the system even if the resonance condition is not met, for which, however, the dynamical problem is
exactly solvable. The departure of the time evolution of the transition probability out of generalized
resonance from the corresponding behaviour in the Rabi scenario is illustrated with the help of two
exemplary cases.

1.3.1 Generalized resonance condition and out of resonance cases

Rabi [31, 32] and Schwinger [44] exactly solved the quantum dynamics of a spin-1/2 in the now called
Rabi scenario, that is, subjected to a static magnetic field B0 along the z-axis and an r.f. magnetic field
rotating in the x-y plane with frequency ωxy, namely

BR(t) = B⊥[cos(ωxyt)c1− sin(ωxyt)c2]+B0c3, (1.34)

c1,c2 and c3 being fixed unit vectors in the laboratory frame. Their seminal papers show that the prob-
ability of transition between the two Zeeman states generated by Bz = B0c3 is dominated by periodic
oscillations reaching maximum amplitude under the so-called resonance condition ∆ = ωxy−ωL = 0.
Here ωL is the spin Larmor frequency. The exact treatment of this basic problem provides the ro-
bust platform for the NMR technology implementation [45]. The recently published special issue on
semiclassical and quantum Rabi models [46] witnesses the evergreen attractiveness of this problem.

The experimental set-up considered by Rabi, as described before, leads to the Hamiltonian model
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(1.13) where

Ω(t) =
µBg

2
B0 ≡Ω0, (1.35a)

|ω(t)|= µBg
2

√
B2

x(t)+B2
y(t) =

µBg
2

B⊥ ≡ |ω0|, (1.35b)

φω(t) = ν0t ≡ φ̇0t. (1.35c)

Then it is characterized by the three time-independent parameters: Ω0, |ω0| and φ̇0. We generalize this
Rabi scenario by making some out of or all these parameters time-dependent: Ω→Ω(t), |ω| → |ω(t)|
and φ̇0t→ φω(t).

Generalizing the approach in Ref. [32], we pass from the laboratory frame to the time-dependent
one tuned with φω(t), where the time-dependent Schrödinger equation for the transformed state,

|ψ(t)〉= exp{iφω(t)σ̂ z/2}|ψ̃(t)〉, (1.36)

is governed by the following effective time-dependent transformed Hamiltonian

HGR(t) =
(

Ω(t)+
h̄
2

φ̇ω(t)
)

σ̂
z + |ω(t)|σ̂ x. (1.37)

We point out that, on the basis of the transformation defined in Eq. (1.36), such a new transformed
Hamiltonian presents a simpler transverse field which depends only on the modulus [|ω(t)|] of the
original one defined in Eq. (1.35). However, the dynamical effects due to the time-dependent phase
[φω(t)] of the original transverse field, stem now from the new redefined longitudinal field.

It is worth noticing its strict similarity with the analogous one got in Ref. [32] where the unitary
transformation is indeed a uniform rotation around the z-axis. In fact, it is enough to make Ω(t),
|ω(t)| and φ̇ω(t) time-independent in HGR (GR stands for Generalized Rabi) to immediately recover
the transformed Hamiltonian got by Rabi [32]. On the basis of this observation it then appears natural
to refer to the following condition

Ω(t)+
h̄
2

φ̇ω(t) = 0, (1.38)

as a generalized resonance condition, in accordance with the corresponding static resonance condition
Ω0 + h̄φ̇0/2 = 0 brought to light by Rabi in Ref. [31]. We underline that the generalized resonance
condition does not lead to a time-independent transformed dynamical problem (as it happens in the
Rabi scenario), but, whatever H is, it easily enables the explicit construction of the time evolution
operator describing the quantum motion of the spin in the laboratory frame. In view of Eq. (1.22), the
entries of such an operator are indeed exactly given by Eqs. (1.20) in the limit β → 0, namely

a(t) =cos
[∫ t

0

|ω|
h̄

dt ′
]

exp
{

i
φω(t)

2

}
, (1.39a)

b(t) =sin
[∫ t

0

|ω|
h̄

dt ′
]

exp
{

i
φω(t)

2
− i

π

2

}
. (1.39b)

By definition, we say to be in generalized out of resonance when the left hand side of Eq. (1.38) is
non-vanishing, namely

Ω(t)
h̄

+
φ̇ω(t)

2
= ∆(t) 6= 0, (1.40)
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where ∆(t) is an arbitrary frequency-dimensioned well-behaved function of time. Let us observe that,
on the basis of the structure of HGR in Eq. (1.37), when ∆(t) is proportional to |ω(t)|, the dynamical
problem may be exactly solved. Indeed, this condition coincides with that expressed by Eq. (1.22)
which in turn enables one to write down exact solutions of the Cauchy problem (1.16) in the form given
by Eqs. (1.20). In the following we report the exact solutions of special non-trivial dynamical problems
both in and out of resonance. Our aim is to illustrate the occurrence of analogies and differences in the
time behaviour of the Rabi transition probability

P−+ (t) = |〈−|U(t)|+〉|2 = |b(t)|2, (1.41)

(σ̂ z|±〉=±|±〉), when the time evolution of the magnetic field acting upon the spin cannot be described
as a perfect precession around the z-axis.

1.3.2 Examples of generalized Rabi models
This subsection is aimed at showing that the Rabi transition probability P−+ (t) = |〈−|U(t)|+〉|2 exhibits
a remarkable sensitivity to possible different choices of the time-dependent magnetic fields under gen-
eral conditions. The following examples are reported to illustrate such behaviour.

Examples of GRSs dynamics under generalized resonance condition

Let us consider, firstly, the generalized resonance condition in Eq. (1.38). We know that, under such a
condition, the time evolution operator is characterized by the time behaviour of its two entries given in
Eq. (1.39), so that the transition probability reads

P−+ (t) = sin2
[∫ t

0

|ω|
h̄

dt ′
]
. (1.42)

It is immediately evident that P−+ (t) exhibits different behaviours: it may be periodic or asymptotic, for
example. Indeed, e.g., setting |ω(t)|= |ω0|sech(|ω0|t/h̄), obtainable by an x-y magnetic field varying
over time as (we remind that φ̇0 is a constant real parameter)

Btr =Bx(t)c1 +By(t)c2 = B⊥ sech(|ω0|t/h̄)[cos
(
φ̇0t
)

c1− sin
(
φ̇0t
)

c2], (1.43)

we get
P−+ (t) = tanh2(|ω0|t/h̄), (1.44)

resulting in a Landau-Zener-like transition, that is an asymptotic aperiodic inversion of population.
Figures 1.2a and 1.2d represent the transverse magnetic field in Eq. (1.43) and the resulting transi-
tion probability in Eq. (1.44), respectively, plotted against the dimensionless time τ ′ = |ω0|t/h̄ with
h̄φ̇0/|ω0|= 10.

However, of course, it is easy to understand that it is possible to make choices either resulting
in a oscillating but not periodic transition probability or exhibiting a periodic behaviour, even if not
coincident with that characterizing the Rabi scenario. If we consider, for example,

|ω(t)|= |ω0|e−γt , (1.45)
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reproducible by engineering the transverse magnetic field as

Btr =Bx(t)c1 +By(t)c2 = B⊥e−γt [cos
(
φ̇0t
)

c1− sin
(
φ̇0t
)

c2], (1.46)

the resulting transition probability yields

P−+ (t) = sin2[α(1− e−γt)], (1.47)

with α = |ω0|/h̄γ . We point out that, for the sake of simplicity, in Eqs. (1.43) and (1.46) we have put
φω(t) = φ̇0t, even if, in general, the expression of the probability in Eq. (1.47) holds whatever φω(t) is,
provided that Eq. (1.38) is satisfied. Figure 1.2b shows the time behaviour of the magnetic field in the
x-y plane, against the dimensionless parameter γt, when α = 9π/2 and φ̇0/γ = 10.
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Figure 1.2: (Color online) a) The normalized magnetic field in Eq. (1.43), parametrically represented
in the x-y plane and the related d) transition probability in Eq. (1.44) as a function of the dimensionless
parameter τ ′ = |ω0|t/h̄ with φ̇0/h̄|ω0| = 10; b) the normalized magnetic field in Eq. (1.46), paramet-
rically represented in the x-y plane and the related e) transition probability in Eq. (1.47) against the
dimensionless parameter γt with |ω0|/h̄γ = 9π/2 and φ̇0/γ = 10; c) the normalized transverse mag-
netic field in Eq. (1.51), parametrically represented in the x-y plane in terms of τ̃ = φ̇0t with A′/B⊥ = 1
and λ = 10φ̇0 and the related f) transition probability in Eq. (1.52) for k = 1 and n = 10 and C = 1.

The time behaviour of P−+ (t) as given in Eq. (1.47) is reported in Fig. 1.2e for α = 9π/2. We recog-
nize the existence of a transient wherein P−+ (t) exhibits aperiodic oscillations of maximum amplitude
which, after a finite interval of time, turn into a monotonic increase that asymptotically approaches 1.
We emphasize that the number of complete oscillations, preceding the asymptotic behaviour of P−+ (t)
as well as P−+ (∞) itself, are α-dependent. Equation (1.47), indeed, predicts

P−+ (∞) = sin2(α), (1.48)
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which immediately leads to 
P−+ (∞) = 0, α = nπ,

P−+ (∞) = 1, α =
2n+1

2
π,

P−+ (∞) = sin2(α), otherwise.

(1.49)

As our third example, we consider the following modulation of |ω(t)|

|ω(t)|= |ω0|+Acos(λ t), 0 < A < |ω0|, (1.50)

realizable by engineering the transverse magnetic field as

Bx(t) = [B⊥+A′ cos(λ t)]cos(φ̇0t),

By(t) =−[B⊥+A′ cos(λ t)]sin(φ̇0t).
(1.51)

Here λ = nφ̇0 with n ∈ N∗, A = µBgA′/2 and then 0 < A′ < B⊥, in view of Eqs. (1.50) and (1.35). The
transverse field is represented in Fig. 1.2c as a function of the dimensionless time parameter τ̃ = φ̇0t,
once more supposing for simplicity φω(t) = φ̇0t.

In this case, the Rabi’s transition probability results

P−+ (t) = sin2
[
C
(

τ̃ +
k
n

sin(nτ̃)
)]

, (1.52)

with

C =
|ω0|
h̄φ̇0

, k =
A′

B⊥
, τ̃ = φ̇0t, n =

λ

φ̇0
. (1.53)

The behaviour of P−+ (t) in Eq. (1.52) is shown in Fig. 1.2f, having put k = 1, n = 10 and C = 1.
Differently from the previous example, we see that, in this case, the characteristic sinusoidal behaviour
of the Rabi transition probability turns into a periodic population transfer, still of maximum amplitude,
between the two energy levels of the spin. We emphasize that, in view of Eq. (1.42), different time
evolutions of P−+ (t) require different choices of |ω(t)| only, regardless, then, of Ω(t) and φω(t) provided
they are constrained by the generalized resonance condition (1.38). For this reason, in the plots in Fig.
1, we have chosen the simplest case φ̇ω(t) = φ̇0 [implying Ω(t) =−h̄φ̇0/2 by Eq. (1.38)]. Our choices
for |ω(t)|, indeed, are not merely mathematical choices, but they aim at furnishing physical scenarios
in the grasp of the experimentalists. To this end, it is hence important to take care of Ω(t) and φω(t) too.
This consideration explains why we have chosen Ω(t) =−h̄φ̇0/2 and φω(t) = φ̇0t. It is worth noticing
that had we selected different, more complex or also very exotic time-dependences for such parameters,
we would get just a mere mathematical speculation since no physical effects would be present in the
physical quantity under scrutiny, P−+ (t); for the latter, indeed, under the generalized resonance condition
in Eq. (1.38), Ω(t) and φ̇ω(t) are not relevant physical parameters. We stress, however, that distinct
realizations of the resonance condition, keeping the same |ω(t)|, introduce significant changes in the
dynamical behaviour of the GRS with respect to the Rabi system. It is enough to consider, for example,
that

〈+|U†(t)σ̂ x/yU(t)|+〉=∓2h̄|a(t)||b(t)|cos[φa(t)+φb(t)], (1.54)

depend on both φω(t) and |ω(t)|, in view of Eqs. (1.39).
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Examples of GRSs dynamics in generalized out of resonance cases

We analyse now the generalized out of resonance case, defined in Eq. (1.40). Since it appears hopeless
to have an exact closed treatment of the problem in Eq. (1.17) with an arbitrary ∆(t), we confine
ourselves to the following specific forms

h̄∆(t) =

{
β0|ω(t)|,
β (t)|ω(t)|.

(1.55)

In the former case, the solutions a(t) and b(t) of the system in Eq. (1.16) may be cast as reported in
Eqs. (1.20) so that

P−+ (t) =
1

1+β 2
0

sin2
[√

1+β 2
0

∫ t

0

|ω(t ′)|
h̄

dt ′
]
. (1.56)

In the limit β0 → 0 we recover Eq. (1.42) from this equation. Thus, we may compare P−+ (t) in the
resonant and this non-resonant cases when |ω(t)| is fixed in the same way. It is easy to convince
oneself that the main effect of a positive value of the parameter β0 on P−+ (t) is nothing but a scale effect
determined by the ratio 1/(1+β 2

0 ).
We wish now to discuss some exactly solvable scenarios of generalized, out of resonance, Rabi

problems wherein h̄∆(t) = β (t)|ω(t)|. The form of ∆(t) written before naturally emerges when the
independent variable t in Eq. (1.17) is substituted by

τ(t) =
∫ t

0

|ω(t ′)|
h̄

dt ′, (1.57)

and a choice at will of Θ[τ(t)] is performed in accordance with Ref. [38]. We stress however that the
corresponding function β (t) would be functionally dependent on |ω(t)|, that is, we determine β [τ(t)]
once we have chosen |ω(t)|. We emphasize that the fact that the function β (t) is not independent of
the function |ω(t)| does not spoil of interest such a particular procedure. In the following examples we
indeed report two applications of the general strategy here exposed.

Case 1

In this subsection and the following one we will omit the t-dependence in τ(t) to save some writing.
To illustrate the applicability of our parametrization given in Eqs. (1.18) and (1.19), we cannot simply
confine ourselves to assign at will Θ(τ). Indeed, we must overcome the unique analytical difficulty
related to the calculation of R(t) in Eq. (1.19) as previously underlined. In practice, then, what
is demanded is to search specific choices of Θ(τ) such that the integral expressing R(t) becomes
evaluable. The following two examples provide a successful application of such a strategy.

Assuming the solution of the problem (1.17) as

Θ(t) = 2tan−1
(

2τ√
2+4τ2

)
, (1.58)

it is straightforward to show that∫ t

0

|ω(t ′)|
h̄

cos[Θ(t ′)]dt ′ =
1
2

tan−1(2τ). (1.59)
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Equation (1.17) immediately yields

∆(t) =
4(1+ τ2)

(1+4τ2)
√

2+4τ2

|ω(t)|
h̄
≡ β̃ (τ)|ω(t)|= β (t)|ω(t)|. (1.60)

Within such a scenario, the specialized expressions of Eqs. (1.18) result

|a(t)|=

√√
1+4τ2 +1

2
√

1+4τ2
, |b(t)|=

√√
1+4τ2−1

2
√

1+4τ2
, (1.61)

and

φa(t) =
φω(t)−φω(0)

2
− tan−1

(
2τ√

2+4τ2

)
+

i√
2

EllipticE[isinh−1(2τ),1/2], (1.62a)

φb(t) =
φω(t)+φω(0)

2
− tan−1

(
2τ√

2+4τ2

)
− i√

2
EllipticE[isinh−1(2τ),1/2]− π

2
, (1.62b)

with EllipticE(φ ,m) =
∫ φ

0 [1−msin2(θ)]1/2dθ . It is interesting to consider a simple case in which
|ω(t)|= const.= |ω0|. In this instance we have such a situation that P−+ (t) = |b(t)|2 (P+

+ (t) = |a(t)|2)
goes from 0 (1), at t = 0, to 1/2

(
1/2
)
, when t → ∞, as it is seen in Fig. 1.3b: full blue and dashed

red lines, respectively. In Fig. 1.3a we may appreciate the time behaviour of h̄∆(t)/|ω0| related to this
specific physical scenario. This specific out of resonance time-dependent scenario, then, asymptotically
evolves the initial state |+〉 towards an equal-weighted superposition of the two eigenstates of σ̂ z.

Case 2

The second scenario is based on the following assumption

Θ(t) = 2tan−1
(

τ√
2+ τ2

)
, (1.63)

which, notwithstanding its apparent similarity with the previous case given in Eq. (1.58), leads however
to a remarkable different temporal behaviour of the correspondent generalized Rabi system. This time
it results in ∫ t

0

|ω(t ′)|
h̄

cos[Θ(t ′)]dt ′ = tan−1(τ), (1.64)

so that the solutions of (1.16) read

|a(t)|= 1√
1+ τ2

, |b(t)|= τ√
1+ τ2

= |a(t)|τ, (1.65)

and

φa(t) =
φω(t)−φω(0)

2
− tan−1

(
τ√

2+ τ2

)
− 1

2

[
τ
√

2+ τ2

2
+ sinh−1

(
τ√
2

)]
, (1.66a)

φb(t) =
φω(t)+φω(0)

2
− tan−1

(
τ√

2+ τ2

)
+

1
2

[
τ
√

2+ τ2

2
+ sinh−1

(
τ√
2

)]
− π

2
. (1.66b)
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Figure 1.3: (Color online) Time-dependence of the “detuning” h̄∆(τ)/|ω0| = β (τ) against the di-
mensionless time τ = |ω0|t/h̄ related to the example a) 1.60 and c) 1.67; transition probabilities
P+
+ (τ) = |a(τ)|2 (full blue) and P−+ (τ) = |b(τ)|2 (dashed red) for the time-dependent scenario b) 1.61

and d) 1.65.

Finally, the special form of ∆(t) underlying this specific scenario is

∆(t) =
[

2+(1− τ2)(2+ τ2)

2(1+ τ2)
√

2+ τ2

]
|ω(t)|

h̄
. (1.67)

In this case, it is easy to see that if |ω| = const. = |ω0|, P−+ (t) = |b(t)|2 (P+
+ (t) = |a(t)|2) goes from 0

(1) to 1 (0) asymptotically. These behaviours, reproducing the transition probabilities in the Landau-
Zener-like transition probabilities, are illustrated by full blue and dashed red lines, respectively, in Fig.
1.3d.

In this case, the time behaviour of the “detuning” h̄∆(t)/|ω0| is characterized by an asymptotic
linear dependence on t, as shown in Fig. 1.3c. As in the resonant scenario, even here different time-
dependences of the magnetic field may give rise to qualitatively different time evolutions of P−+ (t) with
respect to the Rabi scenario. We emphasize that the scenarios and the formulas reported for the two
examples are valid whatever the time-dependence of |ω(t)| is. Of course, depending on the choice of
|ω(t)| the expressions for β (t) and for a(t) and b(t) could become complicated functions of time, but
the related time-dependent scenario keeps the property to be an exactly solvable case for the spin-1/2
dynamical problem.

As a final remark we want to emphasize that it could be very hard to get analytical expressions for
a(t) and b(t), in Eq. (1.18a) and (1.18b), respectively, depending on the choice of Θ(t) and two of
the three Hamiltonian parameters. Nevertheless, such a bottleneck does not influence our capability to
predict the Rabi transition probability and the expression of ∆(t) in order to know how to engineer the
magnetic fields to get the desired time evolution. Indeed, we would be always able to find accordingly
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the expressions of |a(t)| and |b(t)|. Thus, as a consequence, given |ω(t)|, when Ω(t) and φ̇ω(t) are
chosen in such a way to generate the same detuning ∆(t), the related different physical scenarios share
the same analytical expressions of |a(t)| and |b(t)|. Then all physical observables depending only on
these quantities share the same expressions as well, e.g. P−+ (t) or

〈±|U†(t)σ̂ zU(t)|±〉=±h̄(|a(t)|2−|b(t)|2). (1.68)

1.4 Summary and remarks
The Rabi scenario consists in a spin-1/2 subjected to a time-dependent magnetic field precessing around
the quantization axis (ẑ) [31] and is characterized by three time-independent parameters: Ω0, |ω0| and
φ̇0. Rabi shows that when Ω0 + h̄φ̇0/2 = ∆ = 0 the transverse magnetic field acts as a probe of the
energy separation 2Ω0 due to the longitudinal field alone. The measurable physical quantity revealing
Ω0 is the transition probability P−+ (t) = 〈−|U(t)|+〉 which, at resonance, oscillates between 0 and 1
with frequency now referred to as Rabi frequency.

We have generalized this Rabi scenario by assuming an su(2) general time-dependent Hamiltonian
model where then Ω0, |ω0| and φ̇0 are now replaced with time-dependent counterparts. Along the lines
of the Rabi approach [32], we firstly show that, in the frame moving with the time-dependent angular
frequency φ̇ω(t), the condition Ω(t)+ h̄φ̇ω(t)/2 = ∆(t) = 0 plays the same role of the Rabi resonance
condition in the Rabi scenario. Such an occurrence makes of basic interest a direct comparison between
the Rabi scenario and its generalized version on both time-dependent resonance and out of resonance
(∆(t) 6= 0) cases. To bring to light the occurrence of analogies and differences, we have focussed our
attention on the study of the transition probability P−+ (t) between the two eigenstates of Ŝz.

We have shown that, on resonance, P−+ (t) depends only on the integral of |ω(t)|. Our examples
illustrate that this circumstance determines a transition probability characterized by three possible dif-
ferent regimes: oscillatory (the only one dominating the Rabi scenario), monotonic and mixed which
means an initial oscillatory transient followed by an asymptotic monotonic behaviour.

To capture significant dynamical consequences stemming from the detuning time dependence, we
have constructed exactly solvable problems and analysed the corresponding quantum dynamics of the
spin-1/2. We have thus highlighted that when ∆(t) is proportional to |ω(t)|, the main effect emerging
in the time behaviour of P−+ (t) is a scale effect both in amplitude and in frequency (like in the Rabi
scenario).

We have further investigated two specific exactly solvable scenarios of experimental interest for
which ∆(t)/|ω(t)| varies over time. One of them predicts a Landau-Zener transition, while the other
an equal weighted coherent superposition of the two states of the system. It is important to underline
that our examples illustrate exactly solvable cases where all the dynamical aspects and features of the
spin-1/2 system under scrutiny may be brought to light. We pointed out, however, that when one is
interested in the Rabi transition probability P−+ (t) only, the knowledge of |a(t)| and |b(t)| is enough.
We emphasize that this circumstance leads us to wider and richer classes of physical scenarios, since
we need not to worry about possible analytical difficulties stemming from Eq. (1.19).

We underline that the knowledge of the exactly solvable problems previously reported provide
stimulating ideas for technological applications with single qubit devices. In addition it furnishes ready-
to-use tools for interacting qudits systems (as shown in the following chapters of this thesis), being of
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relevance in several fields from condensed matter physics [4, 47] to quantum information and quantum
computing [21, 48, 49, 50].

The results reported in this chapter have been published in Ref. [51].



Chapter 2

Two Interacting Spin-Qubit Systems

In this chapter we demonstrate how the knowledge of exactly solvable single qubit dynamical problems
can result fundamental to solve more complex dynamical physical situations involving more spins
interacting each other. We start by analysing a system of two interacting spin-qubits subjected to local
time-dependent fields. We show that the exact solution of the LMSZ scenario [33] leads us to disclose
new intriguing physical effects exploitable for interesting experimental physical applications.

2.1 Physical systems

A rigid and localized dimeric structure (simply dimer) consists of a pair of independent distinguishable
quantum subsystems living, by definition, in finite-dimensional Hilbert spaces H1 and H2 and, there-
fore, hereafter referred to as spins Ŝ1 ≡ (Ŝx

1, Ŝ
y
1, Ŝ

z
1) and Ŝ2 ≡ (Ŝx

2, Ŝ
y
2, Ŝ

z
2) respectively, Ŝa

i (i = 1,2; a =

x,y,z) being the operator for the a-cartesian component of Ŝi in the laboratory reference frame. The
dimension of the Hilbert space H = H1⊗H2 of the dimer is (2S1 +1)(2S2 +1), indeed postulating
the absence in the two subsystems as well as in the compound system of classical degrees of freedom
(situation previously described using the adjectives ‘rigid’ and ‘localized’). The physical nature of Ŝi
depends on the particular scenario under scrutiny: it may be the spin of an electron or a nucleus, the
angular momentum of an atom in its ground state or an effective representation of a few-level system
dynamical variable. The Hamiltonian H of the dimer is then a true or effective spin Hamiltonian where
the terms linear in Ŝa

i may (even fictitiously) be interpreted as Zeeman coupling of each of the two
spins with classical, external, generally different and time-dependent effective magnetic fields B1(t)
and B2(t) while the bilinear contributions may be thought of as stemming from the spin-spin interac-
tion [3].

Over the last two decades a great deal of theoretical, experimental and applicative attention has
been devoted to the field of Molecular Magnetic Materials, in particular after the discovery of the so-
called Single Magnet Molecule (SSM), that is a single molecule behaving like a nanosized magnet
associated to an unusual high value (even S = 10 [52]) of the spin in the ground state of the molecule.
It is a matter of fact that as a result of a successful, extraordinary and synergically interdisciplinary
effort aimed at searching and producing SMM in laboratory, in the last few years we have witnessed
a very fast growing of efficient protocols for synthesizing a variety of such molecular magnets with
the added value of possessing a number of constituent paramagnetic ions embodied in the molecule

23
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running from 2 to 10 in different samples [53]. Such important technological advances on the one hand
open very good applicative perspectives in many directions, from the realization of an experimental set
up for testing theoretical prediction concerning qudits-based single purpose quantum computers to the
availability of new materials with magnetic properties tailored on demand to meet specific tasks. On
the other hand the production of crystalline or powder samples made up of molecular magnetic units,
provides an ideal platform to investigate and reveal the emergence of nonclassical signatures in the
quantum dynamics of two or few interacting spins.

The simplest coupled spin system we may conceive consists, of course, of two interacting spin-1/2’s
only in a dimer, isolated from its environment (rest of the sample) degrees of freedom. Some binuclear
copper(II) compounds, e.g. [4, 54], provide a possible scenario of this kind and in the previous ref-
erences the values of the parameters characterizing the spin-spin interaction in such a molecule have
been experimentally determined exploiting electron-paramagnetic resonance techniques. Motivations
to investigate the emergence of quantum signatures in the behaviour of two coupled spins (≥ 1/2) go
beyond the area of magnetic materials. Two spin-1/2 Hamiltonians provide indeed experimentally im-
plementable powerful effective models to capture quantum properties of such systems like two coupled
semiconductor quantum dots [55] or a pair of two neutral cold atoms each nested into two adjacent
sites of an optical lattice made up of an isolated double wells [21]. Spin models provide a successful
language to investigate possible manipulations of the qubits aimed at quantum computing purposes and
quantum information transfer between two spin-qubits [56], encompassing rather different physical
contents like, for example, cavity QED [57, 58], superconductors [59, 60] and trapped ions [61, 62].

2.2 The Hamiltonian model and its formal solution
The most general Hamiltonian model of an isolated dimer hosting two spin-1/2’s may be written as a
bilinear form involving the two sets of operators {Ŝx

1, Ŝ
y
1, Ŝ

z
1, Ŝ

0
1} and {Ŝx

2, Ŝ
y
2, Ŝ

z
2, Ŝ

0
2}, that is,

H = ∑
(i, j)6=(0,0)

γi jŜi
1⊗ Ŝ j

2 (2.1)

where i and j run in the set (x,y,z,0) and the operator Ŝ0
i (i = 1,2) is the identity operator 1i in Hi.

The six real parameters γi0 and γ0 j (i · j 6= 0) are assumed to be generally time dependent while all the
other parameters characterizing the spin-spin coupling are real and time independent. Without further
specific constraints on the 15 parameters γi j (i, j = x,y,z,0), the Hamiltonian possesses no symmetries
and in particular it does not commute with the collective angular momentum operators Ŝ2 = (Ŝ1+ Ŝ2)

2

and/or Ŝz = Ŝz
1 + Ŝz

2. In such a case, even if H is time independent, the four roots of the relative
secular equation, albeit determinable, are rather involved functions of all the 15 parameters and then
are practically not exploitable for extracting physical prediction on the physical system under scrutiny.
Thus, either legitimated by investigations on specific physical situations or motivated by the interest in
studying models possessing, by construction, constants of motion, some constraints on the parameters
γi j have been introduced in the literature, making the Hamiltonian (2.1) less general and at the same time
non trivial and of physical interest. It is enough to quote the main declinations of the three-dimensional
quantum Heisenberg models or the Dzyaloshinskii-Moriya (DM) models [63, 64, 65, 66] in conjugation
or not with simplified contributions to terms describing anisotropy effects in the Hamiltonian.
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The Hamiltonian model (2.1), including all contributions stemming from internal or external cou-
plings of our two spin-1/2 system, may be cast in the following form

H ′ = µB(B1 ·g1 ·S1 +B2 ·g2 ·S2)+S1 ·ΓΓΓ12 ·S2, (2.2)

where g1, g2 and ΓΓΓ12 are appropriate second-order cartesian tensors whose entries are related to the 15
parameters appearing in Eq. (2.1) and µB denotes the Bohr magneton. Equation (2.2) mimics the usual
way of representing the Hamiltonian used in a molecular or nuclear context to describe the coupling of
two true spin-1/2’s. In general we may claim that g1 and g2 include possible corrections to the coupling
terms between each spin and its local time-dependent external magnetic field, while the other term
includes contact term-like couplings as well as anisotropic-like spin-spin couplings.

The model we are going to propose assumes in the laboratory frame that Bi(t)≡ (0,0,Bz
i (t)), and

ΓΓΓ12 =

γxx γxy 0
γyx γyy 0
0 0 γzz

 , gi =

gxx
i gxy

i 0
gyx

i gyy
i 0

0 0 gzz
i

 (2.3)

with (i = 1,2). The structure of gi is, for example, appropriate when the dimer is a binuclear unit
characterized by a C2-symmetry with respect to the ẑ axis [4].

In accordance with our previous assumptions, we investigate the quantum dynamics of the following
time-dependent two spin Hamiltonian model

H = h̄ω1σ̂
z
1 + h̄ω2σ̂

z
2 + γxxσ̂

x
1 σ̂

x
2 + γyyσ̂

y
1 σ̂

y
2 + γzzσ̂

z
1σ̂

z
2 + γxyσ̂

x
1 σ̂

y
2 + γyxσ̂

y
1 σ̂

x
2 , (2.4)

where σ̂ x
i , σ̂

y
i and σ̂

z
i (i = 1,2) are the Pauli matrices related to the respective components of the spin

operator Ŝi as

Ŝi =
h̄
2

σ̂σσ i (2.5)

with σ̂σσ i ≡ (σ̂ x
i , σ̂

y
i , σ̂

z
i ), while

ωi(t) =
µBgzz

i Bz
i (t)

2
. (2.6)

Note that the identity operators 1i are and will mostly be suppressed for notational simplicity.

2.2.1 Symmetry-based dynamical decomposition
Our Hamiltonian does not commute with Ŝ2 and Ŝz but, by construction, it exhibits the following
canonical and symmetry transformation

σ̂
x
i →−σ̂

x
i , σ̂

y
i →−σ̂

y
i , σ̂

z
i → σ̂

z
i , i = 1,2. (2.7)

This fact implies the existence of a unitary time-independent operator accomplishing the transformation
(2.7), which is by construction a constant of motion. This unitary operator is given by ±σ̂

z
1σ̂

z
2, being

the transformation (2.7) nothing but the rotations of π around the ẑ axis with respect to each spin. The
unitary operator accomplishing this transformation is

eiπ Ŝz
1/h̄⊗ eiπ Ŝz

2/h̄ =−σ̂
z
1σ̂

z
2 = cos

(
π

2
Σ̂z

)
, (2.8)
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where Σ̂z ≡ σ̂
z
1 +σ

z
2. Equation (3.7) shows that the constant of motion σ̂

z
1σ̂

z
2 is indeed a Σ̂z-based parity

operator since in correspondence to its integer eigenvalues M = 0,±2, σ̂
z
1σ̂

z
2 has eigenvalues +1 and

−1 respectively.
The existence of this constant of motion implies the existence of two sub-dynamics related to the

two eigenvalues of σ̂
z
1σ̂

z
2. We can extract these two sub-dynamics by considering that the operator

σ̂
z
1σ̂

z
2 has the same spectrum of σ̂

z
2, i.e., the same eigenvalues (±1) with the same twofold degeneracy.

Therefore, there exists a unitary time-independent operator U transforming σ̂
z
1σ̂

z
2 in σ̂

z
2. It can be easily

seen that the unitary and hermitian operator

T =
1
2
[
1+ σ̂

z
1 + σ̂

x
2 − σ̂

z
1σ̂

x
2
]
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.9)

in the standard ordered basis
B = {|++〉, |+−〉, |−+〉, |−−〉}, (2.10)

accomplishes the desired transformation:

T †
σ̂

z
1σ̂

z
2T = T σ̂

z
1σ̂

z
2T = σ̂

z
2. (2.11)

Transforming H into H̃ = T †HT , we get

H̃ =h̄ω1σ̂
z
1 + h̄ω2σ̂

z
1σ̂

z
2 + γzzσ̂

z
2 + γxxσ̂

x
1 − γyyσ̂

x
1 σ̂

z
2 + γxyσ̂

y
1 σ̂

z
2 + γyxσ̂

y
1 . (2.12)

It is easy to check that σ̂
z
2 is a constant of motion of H̃ and that, consequently, H̃ may be represented

as
H̃ = ∑

σ
z
2

H̃σ
z
2

∣∣σ z
2
〉〈

σ
z
2

∣∣= H̃+⊗|+〉〈+| + H̃−⊗|−〉〈−|= H̃+⊕ H̃− (2.13)

where
H̃± =± γzz + h̄Ω±σ̂

z
1 + γ±σ̂

x
1 +Γ±σ̂

y
1 . (2.14)

with
Ω±(t) = ω1(t)±ω2(t), γ± = (γx∓ γy), Γ± =±γxy + γyx (2.15)

This implies the existence of two (σ z
2 =±1) sub-dynamics related to a fictitious spin-1/2 immersed in

different magnetic fields, each one possessing three components with the z one only depending on time.

2.2.2 Time evolution operator
If ω1 and ω2 were time independent, it would be straightforward to find the eigenstates of H̃ as

|ψ̃〉= |φ1i〉σ z
2
⊗|σ z

2〉 (2.16)

(i = 1,2) where |φ1i〉±1 are the two eigenvectors of H̃±, that is the two eigenvectors related to the
sub-dynamics with σ

z
2 =±1. Through the relation

|ψ〉= T |ψ̃〉, (2.17)
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we could in turn find the eigenvectors of H and the time evolution of an arbitrary state of the two spins.
When ω1 and ω2 depend on time, thanks to the fact that the unitary and hermitian operator T is time

independent, we succeed, in view of the structure possessed by H̃ as given by Eq. (2.12), in decoupling
the time-dependent Schrödinger equation into two time-dependent Schrödinger equations of single
spin-1/2. Therefore, we can construct the time-evolution operator of the whole dynamics of the two
interacting spin-1/2’s, starting from the construction of the two time evolution operators of the two
sub-dynamics of single spin-1/2. Indeed, the Cauchy problem for the evolution operator U generated
by H: ih̄ U̇ = H U with U(0) = 1, is easily converted into the following two Cauchy problems related
to the sub-dynamics associated to H̃+ and H̃−

ih̄ ˙̃U± = H̃± Ũ±, Ũ±(0) = 1, (2.18)

where Ũ ≡ T †UT ≡ Ũ+⊗ |+〉〈+| + Ũ−⊗ |−〉〈−|. Thus, if we are able to solve these two single
spin-1/2 time-dependent Schrödinger equations we then can construct

U = T Ũ T † = T Ũ T. (2.19)

The evolution operators generated by H̃± can be formally cast as follows

Ũ± = e∓iγzzt/h̄
(

a± b±
−b∗± a∗±

)
, (2.20)

with |a±|2 + |b±|2 = 1, The formal expression of the time evolution operator of the two interacting
qubit system then reads

U =


a+e−iγzzt/h̄ 0 0 b+e−iγzzt/h̄

0 a−eiγzzt/h̄ b−eiγzzt/h̄ 0
0 −b∗−eiγzzt/h̄ a∗−eiγzzt/h̄ 0

−b∗+e−iγzzt/h̄ 0 0 a∗+e−iγzzt/h̄

 , (2.21)

It is important to point out that if ω1(t) = ω2(t)

H̃− =

(
0 Γ−

Γ∗− 0

)
, (2.22)

with Γ− = (γxx + γyy)− i(±γxy + γyx), and then the related evolution operator reads

Ũ− = ei γzz
h̄ t
(

cos(|Γ−|t/h̄) eiΦ sin(|Γ−|t/h̄)
e−iΦ sin(|Γ−|t/h̄) cos(|Γ−|t/h̄)

)
, (2.23)

where Φ= arctan
(

γxx+γyy
γyx−γxy

)
. In this instance, hence, the whole evolution operator of the initial dynamics

becomes

U =


a+e−iγzzt/h̄ 0 0 b+e−iγzzt/h̄

0 ei γzz
h̄ t cos

( |Γ−|
h̄

t
)

ei(Φ+ γzz
h̄ t) sin

( |Γ−|
h̄

t
)

0

0 e−i(Φ− γzz
h̄ t) sin

( |Γ−|
h̄

t
)

ei γzz
h̄ t cos

( |Γ−|
h̄

t
)

0

−b∗+e−iγzzt/h̄ 0 0 a∗+e−iγzzt/h̄

 . (2.24)
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Of course, the evolution operator has the same form as that given by Eq. (2.21), where the two-by-two
internal block is now completely determined regardless of the way H depends on time. This means
that when ω1(t) = ω2(t) = ω(t) in the Hamiltonian model given in Eq. (2.4), the time evolutions of
|+−〉 and |−+〉 (and so, of every linear combination of these states) are independent of ω(t) and are
characterized by Bohr frequencies related to the coupling constants appearing in H.

It is useful to underline that the condition ω1(t) = ω2(t) is not implied simply by the condition
B1(t) = B2(t) because in general we may have different g-tensors (or factors) for the two spins which
“rule” the coupling with the magnetic field and are responsible for the different effective local magnetic
fields in the two sites, even when B1(t) =B2(t). So, the more general condition implying ω1(t) =ω2(t)
is

B1(t) ·g1 = B2(t) ·g2. (2.25)

To conclude, we emphasize that our analysis shows that, in this context, the knowledge of exactly
solvable dynamical problems of single spin-1/2 plays a crucial role in identifying exactly solvable
scenarios for the two-spin-qubit system. If we determine, indeed, the time-dependence of the effective
fields in the two subdynamics, Ω±(t), for which we are able to solve the related two-level dynamical
problems, we get easily the time dependence of ω1 and ω2 [and that of Bz

1 and Bz
2 through the relation

(2.6)] for which the two-spin-1/2 dynamical problem can be analytically solved, namely

ω1 =
Ω++Ω−

2h̄
, ω2 =

Ω+−Ω−
2h̄

. (2.26)

2.3 Landau-Majorana-Stückelberg-Zener scenario
The Landau-Majorana-Stückelberg-Zener (LMSZ) scenario [33] and the Rabi one [31] represent two
milestones among exactly solvable time-dependent semi-classical models for two-level systems. A
common fundamental property of these two models is the possibility of realizing a full population
inversion in a two-state quantum system. In the former case through an adiabatic passage via a level
crossing, in the second case thanks to the application of a resonant π-pulse.

It is important to underline that the LMSZ scenario, differently from the Rabi case, is an ideal
model. The word “ideal” refers to the fact that it consists in a process characterized by an infinite time
duration resulting, then, practically unrealisable. This fact leads, indeed, to not physical properties such
as, for example, the fact that the energies of the adiabatic states diverge at initial (−∞) and final instant
(+∞). As a consequence, both mathematical and physical problems arise when amplitudes and not only
probabilities are necessary, e.g. when initial states present coherences [68, 67]. In such cases one can
alternatively use either the exact solutions of the finite LMSZ scenario [69] or the Allen-Eberly-Hioe
model [70], the Demkov-Kunike model [71] or other models [72, 73], where no divergency problems
arise and the transition probability is rather simple.

However, despite this circumstance, it is a matter of fact that the LMSZ grasps peculiar dynamical
aspects of a lot of physical systems [74]. This relevant aspect has increased the popularity of the LMSZ
model and several efforts have been done towards its generalization to the case of N-level quantum
systems [67, 75, 76] and total crossing of bare energies [77]. Moreover, its experimental feasibility
gave it a basic role in the area of quantum technology thanks also to the several sophisticated techniques
developed for a precise local manipulation of the state and the dynamics of a single qubit in a chain
[78, 79, 80, 81, 82, 83].
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In such an applicative scenario, as we know, several sources of incoherences can be present [21,
48, 49, 50]: incoherent (mixed) states, relaxation processes (e.g., spontaneous emission) or interaction
with a surrounding environment (e.g., nuclear spin bath). They generate incoherent excitation leading to
departure from a perfect (ideal) population transfer. Therefore, more realistic descriptions of quantum
systems subjected to LMSZ scenario comprising such effects have been proposed [84, 85, 86, 87, 88,
89].

In this respect, the most relevant influence in the dynamics of a spin-qubit primarily stems from
the coupling with its nearest neighbours. Recently the attention has been focused on double interacting
spin-qubit systems subjected to LMSZ scenario [90, 91, 92, 93, 94, 95]. These papers investigate the
coupling effects in the two-spin system dynamics in view of possible experimental techniques and
protocols. Moreover, such systems, under specific conditions, behave effectively as a two-level system
with relevant applicability in quantum information and computation sciences [96]. In the references
cited before, indeed, generation of entangled states [90] or the singlet-triplet transition [79, 91, 92] in
the two-qubit system under the LMSZ scenario have been studied.

With the same objective in mind, that is to characterize physical effects stemming from the coupling
between two spin-qubits subjected to a LMSZ scenario, in this section we study a special case of the
two-spin-1/2 C2-symmetry Hamiltonian model in Eq. (2.4). We consider only the ‘diagonal’ coupling
terms consisting in isotropic or anisotropic exchange interaction. The two spin-1/2’s are moreover
subjected only to a LMSZ ramp with no transverse static field. We show that LMSZ transitions for the
two spin-qubits are still possible thanks to the presence of the coupling, playing the role of an effective
transverse field. Such an effect, we call coupling-assisted LMSZ transition, deserves particular attention
for two reasons. First, it can be exploited to estimate the presence and the relative weight of different
coupling parameters determining the symmetry of the Hamiltonian and then the dynamics of the two
spins. Second, through such an estimation, it is possible to set the slope of the field ramp in such a way
to generate asymptotic maximally entangled states of the two qubits.

We investigate the case in which a LMSZ ramp is applied on either just one or both the spins.
Our following theoretical analysis is based on the possibility of experimentally addressing at will the
spin systems exploiting, for example, the Scanning Tunneling Microscopy (STM). It appears hence
appropriate to furnish a sketch of such a technique. STM proved to be an excellent experimental
technique in controlling the dynamics of spin-qudit systems for two main reasons: 1) the possibility of
building atom by atom atomic-scale structures [97], such as spin chains and nano-magnets [98]; 2) the
possibility of controlling the whole system by addressing a single element (qudit) while it interacts with
the others [98, 99, 100], succeeding in realizing, for example, logic operations [97]. The manipulation
of a single qudit dynamics is performed through the exchange interaction between the atom on the tip
of the scanning tunneling microscope and the target atom in the chain. It is possible to show that such
an interaction is equivalent to a magnetic field applied on the atom we want to manipulate [82, 98]. In
this way, it is easy to guess that a time-dependent distance between the tip and the target atom generates
a time-dependent exchange coupling, giving rise, in turn, to a time-dependent effective magnetic field
on the atom of the chain, as analysed in Ref. [82]. Basing on such an observation, in Ref. [83] the
authors study the spin dynamics and entanglement generation in a spin chain of Co atoms on a surface
of Cu3N/Cu(110). Precisely, they consider a LMSZ ramp along the z direction produced in a time
window of 20ps and a short Gaussian pulse in the x direction (half-width: 10ps).
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2.3.1 Coupling-based collective LMSZ transitions
At the light of the STM experimental scenario, we take into account firstly the case of a LMSZ ramp
applied on the first spin such that

h̄ω1(t) = αt/2, h̄ω2(t) = 0, t ∈ (−∞,∞), (2.27)

where α is related to the velocity of variation of the field, Ḃz ∝ α , and it is considered a positive real
number without loss of generality. Moreover, in this section devoted to the study of the LMSZ scenario,
we put for convenience (but without loss of generality) the two parameters related to the DM interaction
equal to zero, namely γxy = γyx = 0. Let us consider the two spins initialized in the state |−−〉. In this
instance, the subdynamics governed by H+ [see Eq. (2.13)] is characterized by a LMSZ scenario
where the longitudinal (z) magnetic field produces the standard LMSZ ramp h̄Ω+(t) = h̄ω1(t) = αt/2
and the transverse effective magnetic field along the x-direction is given by γ+. It is well-known that
the dynamical problem for such a time-dependent scenario can be analytically solved. The transition
probability of finding the two-spin system in the state |++〉 coincides with the probability of finding
the fictitious spin-1/2 subjected to H+ in its state |+〉 starting from |−〉 and reads [33]

P+ = |〈++ |U+(∞)|−−〉|2 = 1− exp{−2πγ
2
+/h̄α}. (2.28)

If we now, instead, consider the two spins initially prepared in |−+〉, the probability of finding the
two-spin system in the state |+−〉, results

P− = |〈+−|U−(∞)|−+〉|2 = 1− exp{−2πγ
2
−/h̄α}. (2.29)

This time the transition probability is governed by the fictitious magnetic field given by γ−. The effec-
tive longitudinal magnetic field, instead, is the same, namely h̄Ω−(t) = h̄ω1(t) = αt/2. We see that in
both cases, although a constant transverse magnetic field is absent, LMSZ transitions of the two-spin
system are possible thanks to the presence of the coupling between them. It is important to stress that,
for the cases considered before, if γx = γy (isotropic exchange interaction case) we cannot have transi-
tion in the first case, that is in the subdynamics involving |++〉 and |−−〉. In this instance, indeed, P+
happens to be 0 at any time.

Isotropy effects: local LMSZ transition by nonlocal control and state transfer

The symmetry-based dynamical decomposition and the application of the STM LMSZ scenario in each
subdynamics allow us to bring to light peculiar evolutions of physical interest. For example, if we
consider γx 6= γy and the following initial condition

|+〉⊗ |+〉+ |−〉√
2

, (2.30)

the two states |++〉 and |+−〉 evolve independently and applying the LMSZ ramp we have the proba-
bility P = P+P− to find asimptotically the two-spin system in the state

|−〉⊗ |+〉+ |−〉√
2

. (2.31)
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We see, that such a dynamics leaves unaffected the second spin, while it produces a LMSZ transition
only on the first spin. It is also interesting to put in evidence the dynamical evolution of the symmetric
initial condition

|+〉+ |−〉√
2

⊗|+〉. (2.32)

This time, we get the same probability P = P+P− of finding asymptotically the two-spin system in

|+〉+ |−〉√
2

⊗|−〉. (2.33)

This case results less intuitive even though we are reproducing the same dynamics but with interchanged
roles of the two spins. In this instance, in fact, we generate a LMSZ transition only on the second spin
by locally applying the field on the first one. This shows that the coupling between the two spins plays
a key role to achieve a non-local control of the second spin by locally manipulating the first ancilla
qubit.

If we consider, instead, γx = γy = γ/2 we know that the transition |−−〉↔ |++〉 is suppressed. This
means that if we consider as initial conditions the states in Eqs. (2.30) and (2.32), we get asymptotically,
this time, the states

|+〉+ |−〉√
2

⊗|+〉, (2.34a)

|+〉⊗ |+〉+ |−〉√
2

, (2.34b)

respectively, with probability P = 1− exp{−2πγ2/h̄α}. We see that the isotropy properties of the
exchange interaction consistently change the dynamics of the system. When the exchange interaction
is isotropic, indeed, the asymptotic states reached by the initial conditions (2.30) and (2.32) radically
change. In these cases, the resulting physical effect is a state transfer or a state exchange between the
two spin-qubits. Therefore, the different state transitions from the state (2.30) [(2.32)] to the state (2.31)
or (2.34a) [(2.33) or (2.34b)] (different responses of the system under LMSZ ramp) can reveal the level
of isotropy of the exchange interaction.

Coupling parameter estimation

It is interesting noticing that the coupling-based LMSZ transition could be used to estimate the coupling
parameters. By measuring P+ and P− (Eqs. (2.28) and (2.29), respectively) we get an estimation of
γ+ and γ− and then of the two coupling parameters γx and γy. Supposing to know P+ and P−, we have
indeed

γx =
1
2

√
h̄α

2π

[√
log
(

1
1−P−

)
+

√
log
(

1
1−P+

)]
,

γy =
1
2

√
h̄α

2π

[√
log
(

1
1−P−

)
−

√
log
(

1
1−P+

)]
.

(2.35)

We wish to emphasize that we may estimate the coupling parameters also through the Rabi oscilla-
tions occurring in the two subspaces. Applying, indeed, a constant field ω1 on the first spin, the two
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probabilities P+ and P− become

P+ =
γ2
+

h̄2
ω2

1 + γ2
+

sin2
(√

ω2
1 + γ2

+/h̄2 t
)
,

P− =
γ2
−

h̄2
ω2

1 + γ2
−

sin2
(√

ω2
1 + γ2

−/h̄2 t
)
.

(2.36)

So, by measuring the frequency and the amplitude of the oscillations in the two cases we may get
information about the the relative weights of the coupling parameters.

2.3.2 Entanglement generation through non-adiabatic process
A precise estimation of the coupling parameters is useful also to generate entangled states of the two
spins. By the knowledge of them, indeed, we may set the parameter α in order to get asymptotically
P± = 1/2, generating so an entangled state. If the two spins start from state |−−〉 or |−+〉, they reach
asymptotically the pure state (|++〉+ eiφ |−−〉)/

√
2 in the first case and (|+−〉+ eiφ |−+〉)/

√
2 in the

second case, which are maximally entangled states. The asymptotic curves of the concurrence (the
entanglemnt measure for two spin-1/2’s introduced in Ref. [101]), in fact, when the two-spin system is
initialized in |−−〉 or |−+〉, read respectively

C = 2|c++c−−|= 2
√

P+(1−P+) = 2
√

(1− e−2πβ+)e−2πβ+ (2.37a)

C = 2|c+−c−+|= 2
√

P−(1−P−) = 2
√

(1− e−2πβ−)e−2πβ− (2.37b)

and they exhibit a maximum for β+ = β−= log(2)/2π ≈ 0.11. In the previous expressions we put β+ =
γ2
+/h̄α and β− = γ2

−/h̄α , while c++ and c−− (c+− and c−+) are the asymptotic amplitudes of the states
|++〉 and |−−〉 (|+−〉 and |−+〉), respectively. Therefore, log(2)/2π is exactly the value the LMSZ
parameters β+ ad β− must have to realize the generation of the entangle states (|++〉+ eiφ |−−〉)/

√
2

and (|+−〉+ eiφ |−+〉)/
√

2 when the two spins start from |−−〉 or |−+〉, respectively. Figure 2.1a
reports the two curves for β−/2 = β+ = β .

We may verify this fact by investigating the behaviour of the concurrence in time. To this end, the
exact solutions of the two time-dependent parameters determining the two time evolution operators U+

and U− in Eq. (2.20), related to each subdynamics, are necessary and they reads, namely [69]

a± =
Γ f (1− iβ±)√

2π
×

[Diβ±(
√

2e−iπ/4
τ) D−1+iβ±(

√
2ei3π/4

τi)+Diβ±(
√

2ei3π/4
τ) D−1+iβ±(

√
2e−iπ/4

τi)],

b± =
Γ f (1− iβ±)√

2πβ
eiπ/4×

[−Diβ±(
√

2e−iπ/4
τ) D−1+iβ±(

√
2ei3π/4

τi)+Diβ±(
√

2ei3π/4
τ) D−1+iβ±(

√
2e−iπ/4

τi)].

(2.38)

Γ f is the Gamma function, while Dν(z) are the parabolic cylinder functions [102] and τ =
√

α/h̄ t is
a time dimensionless parameter; τi identify the initial time instant. If the system starts, e.g., from the
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Figure 2.1: (Color online) a) The two curves of the concurrence in Eq. (2.37a) (full blue line) and Eq.
(2.37b) (red dashed line) for β−/2 = β+ = β ; b) Time behaviour of concurrence for the initial
condition |−−〉 and β+ = 0.1 plotted against the dimensionless time τ =

√
α/h̄ t.

state |−−〉 the amplitudes result

c++ = b+, c−− = a∗+, c+− = c−+ = 0, (2.39)

and the related time-behaviour of the concurrence C = 2|b+||a+| for β+ = 0.1 is reported in Fig. 2.1b.
We see, as expected, that such a choice of the LMSZ parameter generate a maximally entangled state
of the two spin-qubits. It is important to point out that, on the basis of Eqs. (2.38), the parameter
β+ determines not only the asymptotic value of the concurrence but also its time behaviour. This
fact is confirmed and can be appreciated by Figs. 2.2a and 2.2b reporting the concurrence against
the dimensionless parameter τ for β+ = 1/2 and β+ = 2, respectively. The physical meaning of the
asymptotic vanishing of C in Fig. 2.2b is that for the specific value of β+ the system evolves quite
adiabatically towards the factorized states |++〉. On the contrary, in Figs. 2.2a the slope of the ramp
induces a non adiabatic evolution towards a coherent not factorizable superposition of |++〉 and |−−〉.
We emphasize, then, that the generation of a maximally entangled coherent superposition state of the
two spin-qubits requires a non-adiabatic process. This circumstance turns out to be reasonable at the
light of the fact that, to this end, we have to generate asymptotically a LMSZ probability equal to 1/2;
an adiabatic LMSZ dynamics, instead, would produce a transition probability reaching asymptotically
the maximum value, 1.

We would get analogous results by studying the LMSZ process when the two spin-qubits start from
the state |−+〉. In this case, only the states |−+〉 and |+−〉would be involved and the LMSZ parameter
determining the different concurrence regimes would be β−. For such initial conditions, then, the ratio
β+/β−, imposing precise relationships between the coupling parameters γx and γy, does not matter.

Such a ratio, conversely, results determinant for other initial conditions, e.g. the one considered in
Eq. (2.31). In this case the amplitudes read

c++ = a+, c−− =−b∗+, c+− = a−, c−+ =−b∗−. (2.40)

In Figs. 2.3a-2.3f we may appreciate the influence of both the ratio β−/β+ and the free parameter β+;
the former influences only qualitatively the behaviour of the concurrence, while the latter both qualita-
tively and quantitatively. This time the concurrence vanishes for high values of β+ too, witnessing an
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Figure 2.2: (Color online) Time behaviour of the concurrence against the dimensionless parameter
τ =

√
α/h̄ t during a LMSZ process when the system starts from the state |−−〉 for a) β+ = 1/2 and

b) β+ = 2. The upper straight curve corresponds to C(τ) = 1.

asymptotic factorized state. For small values of β+, instead, positive values of entanglement even for
large times indicate a superposition of the four standard basis states.

To conclude, we note that the parameters of the applied magnetic field, including the magnetic
field gradient, can be controlled in very wide ranges. For example, the magnetic field gradient can
reach values as large as 150-200 T/m in a microfabricated ion trap [103], which is far beyond what is
needed here. The most important parameter for the feasibility of our scheme is the spin-spin coupling
constant γ . In nuclear magnetic resonance, its values typically vary from 10 Hz to 300 Hz depending
on the molecule [104], which implies that entanglement can be created on the millisecond scale. A
very interesting physical platform, which allows the tuning of the spin-spin coupling in a broad range,
is provided by microwave-driven trapped ions in the presence of a static magnetic-field gradient [103,
105]. The effective spin-spin coupling is proportional to the magnetic-field gradient and can reach the
kHz range. A third example is provided by Rydberg atoms and ions where, due to the huge electric-
dipole moments of the Rydberg states, the effective spin-spin coupling can reach a few MHz [106, 107,
108]. This implies entanglement creation on the sub-microsecond scale.

2.3.3 Effects of classical noise
In experimental physical contexts involving atoms, ions and molecules investigated and manipulated by
application of lasers and fields, the presence of noise in the system stemming from the coupling with a
surrounding environment is unavoidable. Although a lot of technological progresses and experimental
expedients have been developed, it is necessary to introduce such decoherence effects in the theoretical
models for a better understanding and closer description of the experimental scenarios. There exist
different approaches to treat the influence of a thermal bath; one is to consider the presence of classical
noisy fields [86, 109] stemming, e.g., from the presence and the influence of a surrounding nuclear spin
bath [86].

In the last reference the authors study a noisy LMSZ scenario for a N-level system. They take into
account a time-dependent magnetic field η(t) only in the z-direction and characterized by the follow-
ing time correlation function 〈η(t)η(t ′)〉 = 2Gδ (t− t ′). The authors show that the LMSZ transition
probability P+

− for a spin-1/2 to be found in the state |+〉 starting from |−〉, in case of large values of
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Figure 2.3: (Color online) Time behaviour of the concurrence against the dimensionless parameter
τ =

√
α/h̄ t during a LMSZ process when the system starts from the state (|++〉+ |+−〉)/

√
2 for

β−/β+ = 1/2 and a) β+ = 1/2, d) β+ = 2; β−/β+ = 2 and b) β+ = 0.5, e) β+ = 2; β−/β+ = 2 and c)
β+ = 0.1, f) β+ = 10. The upper straight curve corresponds to C(τ) = 1.
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G, changes as

P+
− =

1− exp{−2πg2/h̄α}
2

, (2.41)

where g is the energy contribution due to the coupling of the spin-1/2 with the constant transverse
magnetic field and α is the slope of the longitudinal magnetic field. We see that the value of G, provided
that it is large, does not influence the transition probability. The unique effect of the noisy component
is the loss of coherence. The field indeed cannot generate transitions between the two diabatic states,
being only in the same direction of the quantization axis. In this way the transition probability, as
reasonable, results hindered by the presence of the noise, since, for g2/α � 1, the system reaches at
most the maximally mixed state.

This result is of particular interest in our case since the addition of the noisy component η(t)
leaves completely unaffected the symmetry-based Hamiltonian transformation and the validity of the
dynamics-decoupling procedure. Thus, also in this case, the dynamical problem of the two-qubit system
may be converted into two independent spin-1/2 problems affected by a random fluctuating z-field.
Thus, we may write easily the transition probabilities when the two spins are subjected to a unique
homogeneous field influenced by the noisy component considered before. We have precisely

P+ =
1− exp{−2πγ2

+/h̄α}
2

, ω1(t) = ω2(t) = [αt +η(t)]/4, (2.42)

We underline that the transition probability P− vanishes in case of an unique homogeneous magnetic
field. In the related subdynamics, indeed, the effective field ruling the two-spin dynamics is zero,
namely Ω−(t) = 0. Moreover, for γx = γy we would have no physical effects, since, in such a case, also
P+ would result zero.

Another way to face with the problem of open quantum systems is to use non-Hermitian Hamilto-
nians effectively incorporating the information of the fact that the system they describe is interacting
with a surrounding environment [24, 110, 111, 112, 113]. We may suppose, for example, that the spon-
taneous emission from the up-state to the down-one is negligible and that some mechanism makes the
up-state |+〉 irreversibly decaying out of the system with rate ξ and ξ ′ for the first and second spin-1/2,
respectively. It is well known that we can phenomenologically describe such a scenario by introduc-
ing the non-Hermitian terms iξ σ̂

z
1/2 and iξ ′σ̂ z

2/2 in our Hamiltonian model. Analogously to the case
of a noisy field component, also the introduction of these terms does not alter the symmetry of the
Hamiltonian model. The symmetry-based transformation leads us to two independent non-Hermitian
two-level models. In the same way we may exploit the results got for a single qubit with a decaying
state subjected to the LMSZ scenario [84, 85, 87] and reread them in terms of the two-spin-1/2 lan-
guage. We know that the decaying rate affects only the time-history of the transition probability but
not, surprisingly, its asymptotic value [84]. However, this result is valid for the ideal LMSZ scenario;
considering the more realistic case of a limited time window, it has been demonstrated, indeed, that a
decaying rate-dependence for the population of the up-state arises [85].

2.4 X-States and quantum correlations
Quantum correlations became in the last two decades a field of large interest, due to their crucial role
played in the quantum information science [9, 114]. Much effort and work are presently devoted to
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characterize and quantify the quantum correlations, like entanglement, steering and discord existing in
multipartite quantum states [115]. These quantum correlations are considered useful physical quan-
tum resources with promising applications in quantum information processing and transmission tasks
and protocols. It is well known that quantum entanglement does not describe all the properties of
non-classical nature of the quantum correlations. In this respect, quantum discord has been proposed
as a measure of quantum correlations, beyond entanglement [116, 117], which can also exist in sep-
arable mixed states. The physical understanding of quantum discord constantly advanced and several
operational interpretations to discord have been proposed [118].

It is nowadays possible to realize physical scenarios where quantum coherence turns out to be ro-
bustly protected against detrimental classical and quantum uncontrollable sources. This circumstance
has spurred a growing interest toward the quantum dynamics of closed bipartite physical systems sub-
jected to controllable time dependent external classical fields. When the corresponding Hamiltonian
model is both non trivial and exactly solvable, one might indeed undertake a systematic, hopefully
exact, study of the unitary time evolution of correlations get established in the closed system, not trace-
able back to classical physics.To follow and to interpret, for example, the appearance, time variation
and death at finite time instants of entanglement and quantum discord is of relevance from both a theo-
retical and applicative point of view. On the one hand, such a knowledge may significantly contribute
to highlight the meaning of crucial concepts like non locality and dechoerence and to capture their
connection with properties experimentally exhibited by the system. On the other hand, due to such an
interpretative potentiality, it provides the key to clarify the role of quantum correlations as resources
for quantum technologies.

Quantum discord is defined in Ref. [116] as the difference between the quantum generalizations
of two classical expressions of the mutual information. One knows that any entanglement measure
vanishes for a separable state. This is not the case with quantum discord, which may have non-zero
values for separable states. In Ref. [119] it was shown that states with large amount of discord, and at
the same time separable, are useful in precesses in quantum technology. Therefore, the study of such
states, i.e. separable ones, characterized by non-zero discord, is of great interest in quantum information
theory. In general the analytical formula of quantum discord is difficult to be obtained, since it requires
an extremization procedure. The reason making computing quantum discord so difficult stems from
the fact that the time required for such a target becomes exponentially larger and larger as a function of
the dimension of the Hilbert space of the bipartite system under scrutiny [120]. However, in the case
of continuous variable systems, for example Gaussian states, an explicit formula of quantum discord
was found, if one restricts the set of all quantum measurements to Gaussian ones [121]. On the other
hand, for discrete quantum systems such as for two qubits, the characterization of quantum discord is
more difficult to be made in the general case. For the particular situation of the so-called class of two-
qubit X-states, the quantum discord was evaluated firstly numerically [122], and secondly analytically
[123, 124].

2.4.1 Concurrence and quantum discord for the two-spin model
It is possible to convince oneself that an initial state characterized by an X-structure ρ(0) = ρX [see
Appendix C], under the action of the Hamiltonian (2.4), evolves keeping the X-structure at any time
instant. Thus, preparing our two-spin system in a general X-state, at any subsequent time instant
ρ(t) =U(t)ρ(0)U†(t) is still an X-state, U(t) being the operator defined in Eq. (2.21). Such a property
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exhibited by the X-states ρX(t) is due to the special structure of the time evolution operator which,
in turn, is determined by the symmetry properties of the Hamiltonian. The C2-symmetry with respect
to the z-direction, possessed by the Hamiltonian, indeed, causes the existence of two dynamically
invariant Hilbert subspaces related to the two eigenvalues of the constant of motion σ̂

z
1σ̂

z
2. Thus, every

state which does not mix the two subspaces at the initial time instant, like the X-states, will keep this
property at any following time instant. This fact has relevant implications from a physical point of view:
since we know how to calculate analytically the quantum discord for a generic X-state [see Appendix
C], we are able then to calculate exactly its general time-dependent expression for our model. Such a
general analytical expression will depend on the four parameters a±(t) and b±(t). In case of exactly
scenarios, it means that we have the analytical form of these two parameters, so that we would get an
explicit time-dependent expression of the quantum discord.

The explicit expressions of a±(t) and b±(t) depend on the specific time-dependences of the Hamil-
tonian parameters. Although, as shown before, the dynamical problem of the two spins may be con-
verted into two independent problems of single spin-1/2, we know that we are not able to find the
analytical solution of the time-dependent Schrödinger equation for a spin-1/2 subjected to a generic
time-dependent Hamiltonian (that is for generic time-dependences of the Hamiltonian parameters).
Therefore, the knowledge of specific exactly solvable time-dependent scenarios for a single spin-1/2
becomes crucial. In appendix B, on the basis of the single qubit exactly solvable scenarios (1.29)
and (1.33), we report two exactly solvable time-dependent scenarios for the two spin-1/2’s with the
related analytical expressions of the parameters a±(t) and b±(t). Thus, for such exactly solvable time-
dependent models of the two-spin system we are able to calculate the explicit form of a generic state
and, in particular for an X-state, the explicit time evolution of the quantum discord.

In the folwing we analyse the time-dependendence both of the concurrence and the quantum discord
related to the specific class of initial X-states known as Werner states [125], namely:

ρ
(α)
W =

1−α

4
I⊗ I +α |Ψ−〉〈Ψ−|, (2.43)

where |Ψ−〉 = 1√
2
(|+−〉− |−+〉) is the singlet state and α ∈ [−1

3 ,1] is a real parameter. In order to
investigate the dynamics of the correlations, we use as a measure of entanglement of the two qubits
the concurrence, which was introduced by Wootters [101]. The analytical calculation of the quantum
discord is performed accordingly to the procedure exposed in Appendix C.

If ρ is the density operator of a two-qubit system, then its spin-flipped state is given by ρ ′ =
(σ2⊗σ2)ρ∗ (σ2⊗σ2), where ρ∗ is the complex conjugate of ρ . Let us denote the eigenvalues of the
non-Hermitian matrix ρ ρ ′ by ν1, ν2, ν3, and ν4, in decreasing order. The concurrence is defined by

C(ρ) = max{
√

ν1−
√

ν2−
√

ν3−
√

ν4,0}. (2.44)

The expression of the concurrence of the Werner state (2.43) is [123]:

C(ρW ) = max
{

3α−1
2

,0
}
. (2.45)

For α ∈ (1
3 ,1] the concurrence is greater than zero, which means that the Werner state (2.43) is insepa-

rable. The expression of the concurrence of an arbitrary X state was found in Ref. [126]:

C(ρx) = 2 max{0, |ρ23|−
√

ρ11 ρ44, |ρ14|−
√

ρ22 ρ33} . (2.46)
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Let us define now the state |ξ 〉 of two qubits as follows:

|ξ 〉= µ|+−〉+ν |−+〉, (2.47)

with µ and ν complex parameters satisfying |µ|2 + |ν |2 = 1. We construct a special class of two-qubit
mixed states, which generalizes the Werner state, as follows:

η
(α)
µ,ν =

1−α

4
I⊗ I +α|ξ 〉〈ξ |, (2.48)

where α ∈ [−1
3 ,1]. For µ = 1/

√
2 and ν = −1/

√
2, the state η

(α)
µ,ν becomes the Werner state (2.43).

By using the expression of the concurrence of an X state given by Eq. (2.46), one obtains:

C(η
(α)
µ,ν ) = max{0,g(α,µ)} , (2.49)

with
g(α,µ) = 2|α||µ|

√
1−|µ|2− 1−α

2
. (2.50)

It is possible to verify that for α ∈ [−1
3 ,

1
3 ], one gets g(α,µ) ≤ 0 for any |µ| ∈ [0,1], implying a

vanishing concurrence C(η
(α)
µ,ν ) = 0. For α ∈

(1
3 ,1
]
, instead, the equation g(α,µ) = 0 may be cast in

he following form:

α =
1

1+4|µ|
√

1−|µ|2
. (2.51)

If we represent Eq. (2.51) in the α-|µ|-plane, the curve α(|µ|) distinguishes the region wherein the
Concurrence vanishes from the one where the Concurrence is positive. In other words, Eq. (2.51)
defines in the α-|µ| plane the border between appearance and disappearance of Entanglement between
the two spins within the class of the generalized Werner states ηα

µ,ν . In particular when α ≤ 1/3 the
Concurrence is zero whatever µ is. When, instead, α > 1/3 there always exists an α-dependent interval
[|µ1|, |µ2|] within which the Concurrence is different from zero. In Fig. 2.4 we plot α in terms of |µ|
by using Eq. (2.51) for which the concurrence of the state η

(α)
µ,ν is equal to zero.

We obtain the expression of the concurrence of the state η
(α)
µ,ν :

C(η
(α)
µ,ν ) =


0 for |µ| ∈

[
0, 1

2 −
√

3α2+2α−1
4α

]
2α |µ|

√
1−|µ|2− 1−α

2 for |µ| ∈
(

1
2 −

√
3α2+2α−1

4α
, 1

2 +
√

3α2+2α−1
4α

)
0 for |µ| ∈

[
1
2 +

√
3α2+2α−1

4α
,1
] (2.52)

It is easy to persuade oneself that C(η
(α)
µ,ν ) = C(ρW ) = (3α − 1)/2 under the condition |µ| = 1/

√
2.

This implies, in particular, the invariance of the concurrence of ρW [Eq. (2.43)] when one turns |Ψ−〉
into |Ψ+〉.

It is worth noticing, in addition, that

η
(α)
µ,ν (t) =

1−α

4
I⊗ I +α|ξ (t)〉〈ξ (t)| (2.53)
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Figure 2.4: The plot of α in terms of |µ| by using Eq. (2.51) for which the generalized Werner state
η
(α)
µ,ν is characterized by vanishing concurrence.

where
|ξ (t)〉=U(t)|Ψ−〉= c+−(t)|01〉+ c−+(t)|10〉, (2.54)

with

c+−(t) =
1√
2

exp
(

i
γ33

h̄
t
)
(a−−b−) ; (2.55)

c1−+(t) = − 1√
2

exp
(

i
γ33

h̄
t
) (

a∗−+b∗−
)
. (2.56)

This fact means that the generalized Werner states η
(α)
µ,ν evolve keeping their α-dependent structure.

Hence the time evolution of a generalized Werner state characterized by a particular value of α gener-
ates only “horizontal movements” in the α-|µ| plane in Fig. 2.4. This circumstance implies that, during
its time evolution, a generalized Werner state may enter into or go out the non-zero-Concurrence re-
gion identified in Fig. 2.4. For example, if we consider as initial condition the entangled generalized
Werner state defined by α = µ = 0.5, it may happen that, at a certain time instant, µ becomes less
than ≈ 0.25. In this case, then, a sudden death of Entanglement is exhibited. Of course, if |µ| comes
back to its original value in a finite interval of time, a re-birth of Entanglement would follow a plateaux
of zero-Concurrence. Such a possibility is confirmed by the plots reported in the following where we
compare the Concurrence and the Quantum Discord in time for our two-spin system under the two
exactly solvable time-dependent scenarios (1.3.2) and (1.3.2).

When the applied magnetic fields have the expressions in Eq. (1.3.2), we get

C(ρ(t)) = max
{

0, |α|
√

1− tanh2(2τ−)sin2(2τ−)−
1−α

2

}
. (2.57)

The analytical expression of the concurrence when the magnetic fields vary over time as in Eq. (1.3.2),
becomes instead

C(ρ(t)) = max

{
0, |α|

√
1−4

tanh2(τ−)

cosh2(τ−)
sin2[sinh(τ−)]−

1−α

2

}
. (2.58)
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In both cases we see that for α ∈
[
−1

3 ,
1
3

]
, the concurrence is equal to zero, while the quantum discord

is non-vanishing [see Figs. 2.5 a) and 2.6 a)]. For α ∈
(1

3 ,1
)
, instead, the phenomenon of sudden death

of entanglement followed by revival of entanglement occurs as previously predicted [see Figs. 2.5 b)
and 2.6 b)].
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Figure 2.5: The concurrence (black, solid) and quantum discord (red, dashed) when the state at t = 0
is the Werner state (2.43) in the time-dependent scenario identified by Eq. (B.1) in terms of τ− = |Γ−|

h̄ t
for a) α = 0.25 and b) α = 0.55.
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Figure 2.6: The concurrence (black, solid) and quantum discord (red, dashed) when the state at t = 0
is the Werner state (2.43) in the time-dependent scenario identified by Eq. (B.3) in terms of τ− = |Γ−|

h̄ t
for a) α = 0.25 and b) α = 0.55.

2.5 Summary and remarks
We have considered a physical system of two interacting spin-1/2’s whose coupling comprises the
terms stemming from the anisotropic exchange interaction and the anisotropic Dzyaloshinskii-Moryia
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[63, 64] interaction. Moreover, each of them is subjected to a local time-dependent field. The C2-
symmetry (with respect to the quantization axis ẑ) possessed by the Hamiltonian allowed us to identify
two independent single spin-1/2 sub-problems nested in the quantum dynamics of the two spin-qubits.
This fact gave us the possibility of decomposing the dynamical problem of the two spin-1/2’s into
two independent problems of single spin-1/2. We underline, in addition, that the dynamical reduction
exposed in Sec. 2.2.1 is independent of the time-dependence of the fields.

In this way, considering a LMSZ ramp applied on the two spin-qubits, our system can be regarded as
a four-level system presenting an avoided crossing for each pair of instantaneous eigenenergies related
to the two dynamically invariant subspaces. This aspect turned out to be the key to solve easily and
exactly the dynamical problem, bringing to light several physically relevant aspects.

We have shown that, although a transverse chirp [90] or a constant field is absent, LMSZ transitions
are still possible, precisely from |−−〉 to |++〉 and from |−+〉 to |+−〉 (the two couples of states
spanning the two dynamically invariant Hilbert spaces related to the symmetry Hamiltonian). Such
transitions occur thanks to the presence of the coupling between the spins which plays as effective
static transverse field in each subdynamics.

It is worth noticing that, in our model, the two LMSZ sub-dynamics are ruled either by different
combinations of the externally applied fields (when the local fields are different) or by the same field
(under the STM scenario, that is when one local field is applied on just one spin). In the latter case
we showed the possibility of 1) a non-local control, that is to manipulate the dynamics of one spin by
applying the field on the other one and 2) a state exchange/transfer between the two spins. We brought
to light how such effects are two different replies of the system depending on the isotropy properties of
the exchange interaction.

Concerning the interaction terms, each subdynamics is characterized by different combinations of
the coupling parameters. This aspect has relevant physical consequences since, as showed, by studying
the LMSZ transition probability in the two subspaces, it is possible both to evaluate the presence of
different interaction terms and to estimate their weights in ruling the dynamics of the two-spin system.
We have brought to light how the estimation of the coupling parameters could be of relevant interest
since, through this knowledge, we may set the slope of variation of the LMSZ ramp as to generate
asymptotically entangled states of the two spin-1/2’s. Moreover, we reported the exact time-behaviour
of the entanglement for different initial conditions and we analysed how the coupling parameters can
determine different entanglement regimes and asymptotic values.

In this respect, we underline that in Ref. [90] the authors considered a system of two spin-1/2’s
interacting only through the term σ̂

z
1σ̂

z
2 and subjected to the same magnetic field consisting in a Gaus-

sian pulse uniformly rotating in the x− y plane and a LMSZ ramp in the z direction. They showed
that the coupling between the two spins enhances significantly the probability to drive adiabatically the
two-spin system from the separate state |−−〉 to the entangled state (|+−〉+ |−+〉)/

√
2. In this case

the procedure to generate an entangled state is different from the scenario considered here because of
the different symmetries of the Hamiltonians ruling the two-spin dynamics. Indeed, in Ref. [90] the
Hamiltonian commutes with Ŝ2 and consequently two dynamically invariant Hilbert subspaces exist:
one of dimension three and the other of dimension one. The three-dimensional subspace is spanned
by the states |++〉, (|+−〉+ |−+〉)

√
2 and |−−〉, making possible the preparation of the entangled

state of the two spin-1/2’s by an adiabatic passage when they start from the separate state |−−〉. In
our case, instead, Ŝ2 is not constant while the integral of motion is ŝz

1ŝz
2. The symmetries of the Hamil-

tonian, thus, generate two two-dimensional dynamically invariant Hilbert subspaces: one spanned by
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|++〉 and |−−〉 and the other by |+−〉 and |−+〉. Then, in our case, the transition between the states
considered in the other work is impossible since such states belong to different invariant subspaces.

We have emphasized how our symmetry-based analysis has proved to be useful also to get exact
results when a classical random field component or non-Hermitian terms are considered to take into
account the presence of a surrounding environment interacting with the system. In this case, the dy-
namics decomposition is unaffected by the presence of the noise or the dephasing terms and then we
may apply the results previously reported for a two-level system [84, 85, 86] and reread them in terms
of the two spin-1/2’s.

Finally, we have brought to light the fact that the symmetry properties of the Hamiltonian model
guarantee that an X-density matrix evolves keeping such a structure and, on the other hand, the quan-
tum discord of such a state can be analytically determined. This is why we choose an X-state as initial
condition and in this class we concentrate on generic α-parametric Werner states. Our analysis pre-
dicts in two time-dependent scenarios the presence of sudden death-sudden revival phenomena in the
concurrence when a non-vanishing quantum discord is present.

As conclusive remarks, we wish to stress that the results concerning the LMSZ transitions are valid
not only within the STM scenario, but they are applicable to other physical platforms. Indeed, the local
LMSZ model for a spin-qubit interacting with another neighbouring spin-qubit may be reproduced
also in laser-driven cold atoms in optical lattices where highly-selective individual addressing has been
experimentally demonstrated [127]. Another prominent example is laser-driven ions in a Paul trap
where spatial individual addressing of single ions in an ion chain has been routinely used for many
years [128, 129]. Yet another example is microwave-driven trapped ions in a magnetic-field gradient
where individual addressing with extremely small cross-talk has been achieved in frequency space
[130, 131].

We point out, in addition, that our results concerning the LMSZ dynamics of the two spin-1/2’s are
deeply different from the ones reported in other Refs. [79, 91, 92] where systems of two spin-1/2’s in
a LMSZ framework have been investigated on the basis of an approximate treatment. In these papers,
indeed, the two spin-qubits are not directly coupled, but they interact through a common nuclear spin
bath which they are coupled to. Such a composite system behaves as a two-level system under several
assumptions and to derive the effective single spin-1/2 Hamiltonian requires several approximations.
In Ref. [92], in particular, the effective Hamiltonian describes the coupling between the two-level sys-
tem and a longitudinal time-dependent field which is not a pure LMSZ ramp, presenting a complicated
functional dependence on the original Hamiltonian parameters. There is, in addition, a time-dependent
effective interaction between the two states possessing a complicated functional dependence on the
confinement energy as well as the tunneling and Coulomb energies. Although such an effective Hamil-
tonian goes beyond the standard LMSZ scenario, it may be considered similar to the LMSZ one since
both Hamiltonians describe an adiabatic passage through an anticrossing. In our case, instead, the two
spin-1/2’s are directly coupled, besides being subjected to a random field stemming from the presence
of a spin bath. Furthermore, the effective two-state Hamiltonians governing the two-qubit dynamics
in the two invariant subspaces are easily got without involving any assumption and/or approximation.
The two two-level Hamiltonians, indeed, are derived only on the basis of a transparent mathematical
mapping between the two-qubit states in each subspace and the states of a fictitious spin-1/2. Moreover,
they describe exactly a LMSZ scenario with a standard avoided crossing where the transverse constant
field is effectively reproduced by the coupling existing between the two qubits. The treatment at the
basis of our analysis remarkably has enabled us to explore peculiar dynamical aspects of the system
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under scrutiny, leading, for example, to the exact evolution of the entanglement get established between
the two spins.

We underline, moreover, that our study is not a special case of the one considered in Ref. [94],
where a Lipkin-Meskow-Glick (LMG) interaction model for N spin-qubits subjected to a LMSZ ramp
is considered. The numerical results reported in Ref. [94] are, indeed, based on the mean field approx-
imation. In addition, there is no possibility of considering in the LMG model effects stemming from
the anisotropy between x and y interaction terms.

The results discussed in this chapter have been reported in Refs. [132, 133, 134, 135].



Chapter 3

Interacting Qudits and Qubit Chains

Spin chains offer a priviliged experimental scenario for quantum technology applications thanks to the
possibility of entanglement generation [136, 137, 138] also over long distances [139]. Entanglement,
indeed, is the key resource for quantum information tasks [140] and its manipulation by field applica-
tion [60] is of course of fundamental importance. In this respect, the possibility of realizing a local
application of fields on a single qudit while it interacts with other ones is of basic interest to generate
physical effects in the spin chain by manipulating the single spin dynamics. Through the Scanning
Tunneling Microscopy (STM), for example, it is possible to construct atom by atom a chain of inter-
acting nanomagnets and to manipulate the state of a single spin by applying a local magnetic field on
atomic scale with a STM tip [82, 83, 97, 98, 99, 100, 141].

In this context, a growing interest in qudits - N-level quantum systems - should be emphasized. In-
teracting spin systems with s > 1/2 reveal a rich variety of phenomena in condensed matter and atomic
physics. For example, spin models with higher spin length may exhibit novel topological phases de-
scribed by a hidden order parameter [142]. Moreover, various strongly interacting spin-boson systems
can be mapped onto coupled spin models [143, 144, 145]. Apart from the methods used to solve analyt-
ically various spin-1/2 systems, in general, models with s > 1/2 are highly complex and do not permit
analytical treatment.

Qutrits, and qudits in general, offer numerous advantages over qubits beyond the obvious expo-
nential increase of their Hilbert space. For example, qutrits allow the construction of new types of
quantum protocols [146, 147] and entanglement [148], Bell inequalities resistant to noise [149], larger
violations of nonlocality [150], more secure quantum communication [151, 152], optimization of the
Hilbert space dimensionality vs. control complexity [153], and others. To this end, efficient recipes for
manipulation of qutrits [154, 155] and qudits [156] have been proposed.

In this chapter we show how our approach based on the Hamiltonian symmetry analysis, leading
us to a reduction of the main dynamical problem into easier sub-problems, turns out to be an useful
mathematical tool to treat and solve also more complex interacting spin-qudit systems. Here we report
the results obtained for two interacting qutrits, two interacting qudits and for a large system of N
qubits coupled through unconventional high order interaction terms. Our scope is to furnish detailed
information about the exact dynamics of such spin-chain systems when they are subjected to classical
external time-dependent field and to exploit such a knowledge in order to bring to light relevant physical
applications.

45
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3.1 Two qutrits

3.1.1 The model and its symmetry-based analysis

Analogously to the case of two interacting qubits considered in the previous chapter, here we consider a
system of two interacting spin-1 systems denoted by S1 and S2, respectively living in the Hilbert spaces
H1 and H2, in a physical model described by the Hamiltonian

H = µB(g1Bz
1Ŝz

1 +g2Bz
2Ŝz

2)+ J0Ŝ1 · Ŝ2 + Ŝ1 ·D12 · Ŝ2. (3.1)

The first two terms in Eq. (3.1) describe the interaction of the two spins with two (generally different)
parallel local magnetic fields oriented along the ẑ-axis, Bz

1 and Bz
2, with the assumption of scalar g-

factors, g1 and g2. The third term represents the Heisenberg isotropic exchange interaction of coupling
strength J0, while the last term, through the second-order traceless Cartesian tensor D12, accounts
for symmetric spin-spin anisotropic couplings stemming from the dipole-dipole (d-d) interaction and
anisotropic exchange interaction.

Although we only consider two interacting spin-1 systems, our model covers a broad range of phys-
ical situations. For example, in solid state physics the coupling between two molecules, which in their
ground state possess a total angular momentum (effective spin) S = 1, is described using the Hamil-
tonian model (3.1), with the proviso that spin-orbit effect can be neglected [3]. An optical lattice of
two wells, each containing a single atom of spin 1, provides another possible physical scenario wherein
manipulation of the atom-atom coupling constants is within experimental reach [157]. In addition, the
interaction between nanomagnets with a total spin of 1, which is of great interest in quantum comput-
ing, is described by the Hamiltonian model (3.1) [158]. Recently, it was shown that the interaction
between two separated nitrogen-vacancy centres in diamond can be described by a Heisenberg spin-1
model [159]. Moreover, spin-1 models can be realized in a linear ion crystal by using atomic species
with three metastable levels driven by laser fields [160, 161].

Now, we suppose that our system possesses C2-symmetry with respect to the ẑ direction. In this
case the D12 matrix takes the form

D12 =

dxx dxy 0
dyx dyy 0
0 0 dzz

 (3.2)

and the Hamiltonian (3.1) may be written as

H = h̄ω1Σ̂
z
1 + h̄ω2Σ̂

z
2 + γxΣ̂

x
1Σ̂

x
2 + γyΣ̂

y
1Σ̂

y
2 + γzΣ̂

z
1Σ̂

z
2 + γxyΣ̂

x
1Σ̂

y
2 + γyxΣ̂

y
1Σ̂

x
2, (3.3)

where the Pauli operators Σ̂k
i (i = 1,2; k = x,y,z) for a spin-1 system are related with the spin-1 operator

components as

Ŝx
i =

h̄√
2

Σ̂
x
i , Ŝy

i =
h̄√
2

Σ̂
y
i , Ŝz

i = h̄Σ̂
z
i . (3.4)
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The seven real parameters appearing in Eq. (3.3) are given by

ω1 = µBg1Bz
1, ω2 = µBg2Bz

2,

γx =
h̄2

2
(J0 +dxx), γy =

h̄2

2
(J0 +dyy), γz = h̄2(J0 +dzz),

γxy =
h̄2

2
dxy, γyx =

h̄2

2
dyx. (3.5)

We keep the considerations as general as possible, without the restrictions of a specific physical
situation. Hence hereafter we do not attribute any specific symmetry constraints to the real parameters
appearing in the Hamiltonian model (3.3). In this manner, our model includes several models in the
literature as special cases. These include the XXX (γx = γy = γz), XXZ (γx = γy) and XYZ models
for two qutrits subjected to an inhomogeneous magnetic field, generalized with the inclusion of the
Dzyaloshinskii-Moriya (DM) interaction (γyx = −γxy) [63, 64, 65]. In addition, from our Hamiltonian
model one may easily recover a lot of other models, e.g., the XX and XY models (γz = 0) with (or
not) the contribution derived by the DM interaction and (or not) the presence of a homogeneous or
inhomogeneous magnetic field, recently taken as starting point for investigating the appearance of
thermal entanglement in the system of two interacting qutrits [162, 163, 164].

The following symmetry transformation of H{ ˆ̃
Σ

x
1 =−Σ̂

x
1,

ˆ̃
Σ

y
1 =−Σ̂

y
1,

ˆ̃
Σ

z
1 = Σ̂

z
1,

ˆ̃
Σ

x
2 =−Σ̂

x
2,

ˆ̃
Σ

y
2 =−Σ̂

y
2,

ˆ̃
Σ

z
2 = Σ̂

z
2,

(3.6)

is canonical, such that H → H, which implies the existence of a unitary time-independent operator
accomplishing the transformation given by Eq. (3.6) which, by construction, is a constant of motion.
Because the transformation (3.6) is nothing but a rotation of π around the ẑ-axis of each spin, we can
write the unitary operator accomplishing this transformation as

K̂ = eiπ Ŝz
1/h̄⊗ eiπ Ŝz

2/h̄ = eiπΣ̂
z
1⊗ eiπΣ̂

z
2 = 1−2

[
(Σ̂z

1)
2 +(Σ̂z

2)
2]+4(Σ̂z

1)
2(Σ̂z

2)
2. (3.7)

It is possible to verify that the operator K̂ can be written as

K̂ = cos(πΣ̂
z
tot), (3.8)

with Σ̂
z
tot = Σ̂

z
1 + Σ̂

z
2 being the total spin of the composed system along the z direction. Equation (3.8)

shows that the constant of motion K̂ is indeed a parity operator with respect to the collective Pauli spin
variable Σ̂

z
tot, since in correspondence to its integer eigenvalues M = 2,1,0,−1,−2, K̂ has eigenvalues

+1 and -1 depending on the parity of M.
The existence of this constant of motion subdivides the 9D Hilbert space of the system into two

dynamically invariant and orthogonal subspaces corresponding to the two eigenvalues +1 and -1 of
K̂. The subspace relative to K = 1 (K = −1), and then to even (odd) values of M, will be hereafter
referred to as even- (odd-) parity subspace. As a consequence, there exist a unitary and Hermitian
operator T̂ (consisting in an appropriate reordering of the standard basis states) which transforms H into
H̃ = T̂ †HT̂ , whose matrix form consists of two blocks, one of dimension 4, related to the eigenvalue
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-1 of the new constant of motion ˆ̃K ≡ T̂ †K̂T̂ , and the other of dimension five related to the eigenvalue
+1 of ˆ̃K, representing the two orthogonal sub-dynamics. The new Hamiltonian H̃ can be written as

H̃ = P̂−1H̃P̂−1 + P̂+1H̃P̂+1, (3.9)

where we introduced the hermitian operator P̂−1 (P̂+1) projecting a generic state of the total Hilbert
space H = H1⊗H2 into the K̃-invariant subspace H− (H+) relative to its eigenvalue -1 (+1) such
that P̂−1H̃P̂−1 (P̂+1H̃P̂+1) consists in the upper (lower) block of H̃, or better in a matrix with the same
dimension (9) of H̃ but with non vanishing entries only in the upper (lower) four (five) dimensional
block.

It is worth noticing that the arguments leading to the possibility of representing the Hamiltonian
in accordance with Eq. (3.9) hold their validity even for a more general Hamiltonian model Ĥgen
obtainable from Ĥ adding terms commuting with K̂, e.g., (Σ̂x

1)
2, Σ̂

z
1(Σ̂

y
2)

2 and Σ̂x
1Σ̂

y
1Σ̂

y
2Σ̂x

2,

Hgen = H + terms commuting with K̂. (3.10)

However, we confine ourselves to the Hamiltonian model (3.3) since it is comparatively more accessible
in laboratory and in addition, as we will show in the following sections, it generates interesting quantum
dynamical behaviour.

Putting

Ω+ = ω1 +ω2,

Ω− = ω1−ω2,

γ1 = γx− γy− i(γxy + γyx),

γ2 = γx + γy + i(γxy− γyx), (3.11)

the 4×4 block reads

H̃− ≡


h̄ω1 γ2 γ1 0
γ∗2 h̄ω2 0 γ1
γ∗1 0 −h̄ω2 γ2
0 γ∗1 γ∗2 −h̄ω1

 (3.12)

and the four states of the original standard basis involved in such a subspace are

|e1〉= |10〉, |e2〉= |01〉, |e3〉= |0−1〉, |e4〉= |−10〉. (3.13)

The lower block of ˆ̃H is represented by the 5×5 matrix

H̃+ ≡


h̄Ω++ γz 0 γ1 0 0

0 h̄Ω−− γz γ2 0 0
γ∗1 γ∗2 0 γ2 γ1
0 0 γ∗2 −h̄Ω−− γz 0
0 0 γ∗1 0 −h̄Ω++ γz

 (3.14)

where the five standard basis states spanning this subspace are

|e5〉= |11〉, |e6〉= |1−1〉, |e7〉= |00〉,
|e8〉= |−11〉, |e9〉= |−1−1〉. (3.15)
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Equation (3.9) implies that the quantum dynamics of two qutrits interacting according to the model of
Eq. (3.3) factorizes into an effective spin-3

2 system and an effective spin-2 system.
We note that the mathematical steps leading from Eq. (3.3) to Eq. (3.9) reproduce analogous results

even if we use, mutatis mutandis, the same Hamiltonian model where qudits systematically substitute
the appearing qutrits. Of course the dimensions of the dynamically invariant subspaces existing in the
qudits case strictly depends on the dimension of the qudits Hilbert space. In the next sections we will
show that in the case of the qutrits a further aspect of such reducibility of the quantum dynamics of the
system emerges, leading to physically transparent and far-reaching consequences.

Four-dimensional subdynamics

The eigenvectors of the Hamiltonian H̃− (3.12) may be exactly derived by solving the fourth degree
relative secular equation. The corresponding eigenvalues are

E1 = E1 +E2, E2 = E1−E2, E3 =−E2, E4 =−E1, (3.16)

where

E1 =

√
(h̄Ω+)2

4
+ |γ1|2, E2 =

√
(h̄Ω−)2

4
+ |γ2|2. (3.17a)

The four eigenvalues of H̃−, in view of Eq. (3.16), may be obtained summing elements of the two pairs
{E1,−E1} and {E2,−E2} in all possible ways. This circumstance hints that the quantum dynamics of
the two qutrits restricted to the four dimensional Hilbert subspace generated by |ek〉 with k = 1,2,3,4,
is traceable back to that of two effective non-interacting spin-1

2 systems, respectively described by two
bi-dimensional traceless Hamiltonians H1 and H2 with eigenvalues ±E1 and ±E2.

To verify this intuition we search for a mapping between the two qutrits original basis states in
(3.13) and the two spin-1

2 basis, that is {|++〉, |+−〉, |−+〉, |−−〉}, in accordance to which the generic
eigenstate |ψk〉 of H̃− may be represented as a tensorial product between an eigenstate of H1 and an
eigenstate of H2. Such a mapping consists simply in

|10〉 ↔ |++〉,
|01〉 ↔ |+−〉,

|0−1〉 ↔ |−+〉,
|−10〉 ↔ |−−〉,

(3.18)

where we define the effective spin-1
2 states as σ

z
i |±〉i =±|±〉i with i= 1,2. Indeed, it is straightforward

to show that the sub-dynamics of the two spin-1 systems interacting according to (3.3), related to the
ˆ̃K-invariant subspace of dimension four characterized by the eigenvalue K̃ =−1, may be reinterpreted

as the dynamics of two decoupled effective spin-1
2 systems. Indeed, we can write H̃− as

H̃− = H1⊗12 +11⊗H2, (3.19)

where we define

H1 =
h̄(ω1 +ω2)

2
σ̂

z
1 +(γx− γy)σ̂

x
1 +(γxy + γyx)σ̂

y
1 , (3.20a)

H2 =
h̄(ω1−ω2)

2
σ̂

z
2 +(γx + γy)σ̂

x
2 − (γxy− γyx)σ̂

y
2 . (3.20b)
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The physical interpretation of this sub-dynamics in terms of two spin-1
2 systems is clear and direct: H1

(H2) describes a fictitious spin-1
2 system immersed in an effective magnetic field ~Beff

1 (~Beff
2 ) expressible

as

~Beff
1 =

(
(γx− γy),(γxy + γyx),

h̄µ

2
(g1Bz

1 +g2Bz
2)
)
,

~Beff
2 =

(
(γx + γy),(γyx− γxy),

h̄µ

2
(g1Bz

1−g2Bz
2)
)
, (3.21)

such that we have H̃− = ∑
2
i=1~σi ·~Beff

i .
Since H̃− of Eq. (3.19) describes two decoupled spin-1

2 systems, the eigenvectors of H̃− may be
written in the following factorized form

H̃−→


|ψ11〉⊗ |ψ21〉 → |ψ1〉,
|ψ11〉⊗ |ψ22〉 → |ψ2〉,
|ψ12〉⊗ |ψ21〉 → |ψ3〉,
|ψ12〉⊗ |ψ22〉 → |ψ4〉,

(3.22)

where {|ψ〉11, |ψ〉12} ({|ψ〉21, |ψ〉22}) are the eigenvectors of H1 (H2). The corresponding eigenener-
gies for each state are given by Eq. (3.16).

We emphasize that the two-qutrit systems may be prepared in a state whose evolution is dominated
by one admissible Bohr frequency only exactly mappable in the time evolution of a single spin-1

2 system
subjected to an appropriate magnetic field [see Eq. (3.21)]. In other words, the quantum dynamics of
two qutrits generated by the Hamiltonian (3.3) possesses symmetry properties leading to such a peculiar
dynamical behaviour. We note finally that, since the unitary operator T̂ transforming H into the direct
sum of H− and H+ is independent of time, the demonstration of the fact that the quantum dynamics
induced by H− may be traced back to that of two effective spin-1

2 systems might provide significant
advantages even when H is time-dependent, at least in its 4D dynamically invariant subspace.

Five-dimensional subdynamics

As previously shown, the quantum dynamics of the two coupled spin-1 systems is reducible to two
quantum sub-dynamics, the first one described by Eq. (3.12) and second one by Eq. (3.14). The lucky
mathematical occurrence leading us to trace back the quantum dynamics of the two spin-1 systems to
that of two non interacting spin-1/2 systems in the four dimensional invariant subspace cannot emerge
in the other invariant subspace essentially because its dimension 5 is a prime number. Then, in the
spirit of the previous section, the only observation we may do is that in such five dimensional subspace
the quantum dynamics of the two spin-1 systems may be mapped into that of a spin-2. Unfortunately
the effective (through an appropriate mapping) representation of H̃5 in terms of a spin-2 operators is
very involved appearing strongly non linear and practically impossible to be related to a convincing
physical scenario. This is why we do not proceed further along this direction confining ourselves to
the consideration of particular conditions easily providing the possibility of extracting useful properties
possessed by our model.

The first aspect related to the model deserving attention is that by comparing the reduced matrices
given by Eqs. (3.12) and (3.14) it is possible to note that the parameter γz influences the sub-dynamics
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in the five dimensional dynamically invariant subspace of H only. As a consequence we may choose
specific values of this parameter without modifying the dynamical properties of the system in the four
dimensional dynamically invariant subspace. It is possible to convince oneself that for γz = 0 the
eigensolutions of H̃+ may be exactly found.

Furthermore, it is possible to verify that if we assume{
γx = γy = γ/2
γxy =−γyx = Dz/2

(3.23)

the five dimensional block is reduced into two one dimensional block and a three dimensional one as it
can be appreciated from what follows

H̃+ =


Ω++ γz 0 0 0 0

0 Ω−− γz (γ + iDz) 0 0
0 (γ− iDz) 0 (γ + iDz) 0
0 0 (γ− iDz) −Ω−− γz 0
0 0 0 0 −Ω++ γz

 . (3.24)

The previous specific conditions (3.23) have a clear interesting physical meaning: the first condition
imposes an isotropic XY -exchange interaction while the second one takes into account the antisymmet-
ric exchange or Dzyaloshinskii-Moriya interaction D · (Ŝ1× Ŝ2) with D≡ (0,0,Dz). This model is well
known in literature and was studied in connection with the properties of thermal entanglement [65].

It is interesting to point out, moreover, that, in this instance, the three dimensional block may be
described in terms of the single spin-1 Pauli operators defined in Eq. (3.4) and the related Hamiltonian
precisely reads

H̃3 = γΣ̂
x−DzΣ̂

y +Ω−Σ̂
z− γz(Σ̂

z)2. (3.25)

We see immediately that putting γz = 0 we have a SU(2) three dimensional fictitious sub-dynamics of
a single spin-1 subjected to the effective external magnetic field B1 ≡ (γ,Dz,Ω−), so that we may write
H̃3 = ∑ j B j

1 · Σ̂ j. This observation is particularly significant at the light of the interplay between the new
results obtained for SU(2) bidimensional time-dependent dynamics. In this way, under the conditions
(3.23) and γz = 0, we may study analytically and know exactly the five dimensional sub-dynamics of
the two spin-1 systems also in a time-dependent scenario, more precisely when the two magnetic fields
are time-dependent, i.e. when we have ω1(t) and ω2(t) as considered in the following paragraph.

It is worth to point out, finally, that the conditions (3.23), contrary to the conditions on γz, modify the
dynamics in the four dimensional subspace, too. In this instance, indeed, we obtain a four dimensional
sub-dynamics of the two spin-1’s well described in terms of two decoupled fictitious spin 1/2’s in
which the first spin is subjected to a magnetic field only in the z-direction while the second spin is
immersed in a magnetic field having a direction depending on the coupling parameters of the model. It
can be appreciated and easily verified from Eqs. (3.27) providing conditions (3.23). Therefore under
conditions (3.23) both the sub-dynamics are exactly treatable or in other words the full model may be
exactly solved.

3.1.2 LMSZ scenario
Now, we want to study the two interacting qutrits when they are subjected to time-dependent fields,
ω1(t) and ω2(t). In the following we show that we are able to construct formally the time evolution
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operator for both four- and five-state subdynamics. In particular, we analyse the case in which the
z-magnetic field is a ramp as in the LMSZ scenario [33]. We are interested in revealing intriguing
dynamical effects stemming from the homogeneity or heterogeneity of both the coupling parameters
and the two fields. In addition, we want to exploit our symmetry-based approach to take into account
the influence of a surrounding environment by considering a random fluctuating field component.

To this end we consider the following specialized model of two interacting qutrits subjected to local
time-dependent fields

H = h̄ω1Σ̂
z
1 + h̄ω2Σ̂

z
2 + γxΣ̂

x
1Σ̂

x
2 + γyΣ̂

y
1Σ̂

y
2 + γzΣ̂

z
1Σ̂

z
2. (3.26)

Our scope is to study a Landau-Majorana-Stückelberg-Zener (LMSZ) scenario for the two qutrits and
analyse how the coupling between them and a noisy component of the magnetic field affect their dy-
namics.

In this case the Hamiltonian model of two decoupled fictitious spin-1/2’s describing effectively the
two qutrit dynamics in the four-dimensional Hilbert subspace reads H− = H1⊗ 1̂2 + 1̂1⊗H2, with

H1 =
h̄Ω+

2
σ̂

z
1 + γ−σ̂

x
1 , H2 =

h̄Ω−
2

σ̂
z
2 + γ+σ̂

x
2 . (3.27)

Under the following conditions γz = 0 and γx = γy = γ/2 the five-dimensional block, instead, is decom-
posed in two one-dimensional blocks and a three-dimensional one. In this instance the latter possesses
an su(2) structure and can be written in terms of spin variables of a fictitious spin-1, namely

H3 = γΣ̂
x + h̄Ω−Σ̂

z. (3.28)

We emphasize that the choice γz = 0 is necessary to get an su(2)-symmetry structure of the matrix
within the three-dimensional subspace. This choice, however, does not alter the four-dimensional sub-
dynamics since H1 and H2 in Eq. (3.27) do not depend on γz.

Four-dimensional subdynamics

General solution

We may formally write the time evolution operator U j ( j = 1,2) related to H j, solution of the Schrödinger
equation ih̄U̇ j = H jU j, as follows

U j =

(
a j b j
−b∗j a∗j

)
, (3.29)

where a j and b j are time-dependent Cayley-Klein parameters satisfying |a j|2 + |b j|2 = 1. The time
evolution operator U−, satisfying the Schrödinger equation ih̄U̇− = H−U−, then reads

U− =U1⊗U2 =


a1a2 a1b2 b1a2 b1b2
−a1b∗2 a1a∗2 −b1b∗2 b1a∗2
−b∗1a2 −b∗1b2 a∗1a2 a∗1b2
b∗1b∗2 −b∗1a∗2 −a∗1b∗2 a∗1a∗2

 . (3.30)

The mathematical expressions of a j(t) and b j(t) depend on the time-dependence of the two local mag-
netic fields ω1(t) and ω2(t).
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STM dynamics: non-local control and state transfer

We firstly analyse the case of a single local z-magnetic field Bz(t) applied on the first spin consisting in
a LMSZ ramp, such that

h̄ω1(t) = αt, t ∈ (−∞,∞), (3.31)

where α is considered a positive real number and rules the adiabaticity of the process since Ḃz ∝ α . Let
us consider the case of an excitation present in the system and localized in one of the two qutrits, say
the second spin; in this case the initial state of the two qutrits (fictitious qubits) is |−10〉 (|−−〉). In this
instance, each fictitious spin-1/2 is subjected to a LMSZ scenario with ω1(t) as longitudinal magnetic
field and a constant (effective) transverse magnetic field determined by the coupling parameters [see Eq.
(3.27)]. In this way, the first and second fictitious spin-1/2 have the probability to make the transition
to the up-state, respectively

P1 = 1− exp{−2πβ−}, (3.32)

and
P2 = 1− exp{−2πβ+}, (3.33)

with β± = γ2
±/h̄α . Thus, the joint probability for the two fictitious spin-1/2’s to be found in the state

|++〉, |+−〉 and |−+〉, starting from |−−〉, are respectively

P1P2, P1(1−P2), (1−P1)P2, (3.34)

being nothing but the probability of finding the two qutrits in the state |10〉, |01〉 and |0−1〉, respec-
tively. We know that in the standard LMSZ scenario applied on a single spin-qubit, the transverse field
couples the two levels and is then responsible of the avoided crossing. It is worth noticing that, in our
case, the transverse field role is played by the coupling existing between the two qutrits, as it is clear by
the two Hamiltonians in Eq. (3.27). Hence, we may reproduce adiabatic conditions by appropriately
setting the ratio between the longitudinal fields and the coupling parameters in order to have a full
LMSZ transition of the two fictitious spin-1/2’s. The three probabilities in Eq. (3.34) are reported in
Fig. 3.1 against the parameter β = β+ for β+/β−= 2. In this case we are realizing a local control of the
dynamics of the first qutrit, leaving the other one unaltered. For a complete LMSZ transition, indeed,
the first qutrit accomplishes the LMSZ transition |−1〉 → |1〉, while the second qutrit’s state does not
change.

Analogously, we may consider the excitation initially localized in the first spin-1, so that the two
qutrits start from the state |0−1〉. In this instance the two-qutrit system is asymptotically driven to the
state |01〉 and the probability of the related transition acquires the same expression as the previous one
in Eq. (3.34). It is worth noticing that in this case we generate a LMSZ transition from |−1〉 to |1〉 in
the second spin, by applying a local magnetic field only on the first qutrit which, instead, remains in its
initial state. Such a circumstance, thus, may be identified as the achievement of a non-local control of
the second qutrit.

Another interesting effect to be highlighted is the possibility of realizing a state transfer between the
two qutrits. Indeed, if the two qutrits (fictitious qubits) are initialized in the state |−10〉 (|−−〉) and we
assume γx = γy, the transition probability of the first fictitious spin-1/2 is forbidden, while the second
one passes to |+〉 with probability P = P2. In this way, the two qutrits (fictitious qubits) reach the
state |0−1〉 (|−+〉) having interchanged their initial state. The same effect is present if the two qutrits
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Figure 3.1: (Color online) a) Asymptotic LMSZ probabilities [Eq. (3.34)] of finding the two qutrits in
the state |10〉 (blue dotted line), |01〉 (magenta dot-dashed line), |0−1〉 (red dashed line) and |−10〉
(green full line), when they start from the state |−10〉 for γx 6= γy, β = β+ and β+/β− = 2.

are initially prepared in |10〉 passing to |01〉. In such a case, the transitions between the states of the
two qutrit system in the four dimensional subspace are different since the condition γx = γy introduces
a further symmetry in the model related to the commutation of H with Σ̂

z
tot. This fact generates, in

the subspace under scrutiny, the existence of other two dynamically invariant subspaces related to the
eigenvalues of Σ̂

z
tot. It is easy to verify that, this time the two qutrits starting from |−10〉 (|10〉) can be

asymptotically found only in the state |0−1〉 (|01〉).
At the light of the STM scenario, the physical effects previously discussed and analytically derived

are of relevant interest. They show, indeed, that the presence of the coupling between the two qutrits
allows us to manipulate the dynamics of the whole two-qutrits chain by the application of a single local
magnetic field on one of the two spins, being exactly one of the task of the application of the STM
technique. Moreover, the previous examples brought to light that, by studying the kind of transitions
occurring in the two-qutrit system, we may get information about the coupling parameters determining
the symmetries of the Hamiltonian.

Effects of environment

We wish to show now that the mapping of the two-qutrit dynamics into that of two decoupled spin-1/2’s
in the four-dimensional subspace is useful not only to solve exactly the problem in ideal conditions, but
also to take into account possible external influences due to the action of a surrounding environment,
such as nuclear spin bath. In Ref. [80], for example, it is experimentally demonstrated that decoher-
ence effects in the dynamics of a NV center in diamond (consisting in a three-level system), subjected
to a LSZ interferometer, comes from the dipolar interaction of the system with the surrounding 13C
nuclear spins random fluctuating at room temperature. Analogously to the procedure we adopted for
two interacting qubits, such external influences may be theoretically regarded, for example, as noise
in the magnetic field component. In that case we consider the results reported in Ref. [86] where the
authors study the dynamics of a spin S subjected to a noisy LMSZ scenario. The noisy time-dependent
magnetic field η(t) is considered only in the z direction and characterized by a time correlation function
of the form 〈η(t)η(t ′)〉= 2Γδ (t− t ′). Reference [80] experimentally legitimates such an assumption;
in that case, indeed, the authors shows as the transverse fluctuations can be neglected. In such a way
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the noisy component cannot generates transitions between the different states but it leads only to loss
of coherence. In Ref. [86], the authors show how the LMSZ transition probability is affected by the
presence of such a noisy magnetic field in the case of a spin-1/2, a spin-1 and a spin-3/2. For a spin-1/2
and for large values of Γ we have asymptotically

P+
− =

1− exp{−2πg2/h̄α}
2

, (3.35)

where g is the energy contribution due to the coupling of the spin-1/2 with the constant transverse
magnetic field. We see that the transition probability does not depend on the specific value of Γ,
provided that Γ is large. Moreover, it is important to note that the effect of the noise is to hinder the
transition. Indeed, in the most convenient case, that is for g2/h̄α � 1, the system reaches at most an
equally populated condition of the two states. This is of particular interest for us since we have shown
that the transition of the two qutrits studied before can be reduced to the LMSZ transition of a spin-1/2.
Then, it means that the result previously reported can be exploited in our case to find the corrected
LMSZ transition probability for the two qutrits when the field is affected by a noisy component. For
example, if γx 6= γy, the probability in Eq. (3.34) becomes P1P2/4, reasonably meaning that, under the
effect of noise, we reach an equally populated condition of the four states involved in the subdynamics
under scrutiny. Analogously, if γx = γy, had the two qutrits started form |−10〉 we get the probability
P2/2 of transition to the state |0−1〉, reaching this time an equally populated condition between these
two states.

Such observation is based on the fact that, adding the noisy component η(t) to the field applied
to the first qutrit, nothing changes in the dynamics-decoupling procedure. The Hamiltonian transfor-
mation is completely unaffected since the only difference consists in a redefinition of the longitudinal
field. In this way, what we obtain is an effective z-field for the two fictitious spin-1/2’s supplemented
by a random field component. Thus, also in this case, we may reduce the two-qutrit dynamical problem
into the analysis of the quantum dynamics of two decoupled spin-1/2’s.

In this respect, it is worth pointing out that the argument previously exposed continues to be valid
also when we consider the possibility that the exited states |0〉 and |1〉 of the two qutrits decay irre-
versibly out of the system by some mechanism. Let us suppose that the spontaneous emission from
the exited states to the ground one is negligible and that the two decay rates for the state |0〉 and |1〉
are Γ̃ (Γ̃′) and 2Γ̃ (2Γ̃′), respectively, for the first (second) qutrit. It is easy to see that the analysis of
such a scenario is equivalent, up to add a constant imaginary term, to phenomenologically introduce the
non-Hermitian terms iΓ̃Σ̂

z
1 and iΓ̃′Σ̂z

2 in our Hamiltonian model. Also this time we have a simple redef-
inition of the parameters in front of the operators Σ̂

z
1 and Σ̂

z
2 without altering the symmetries possessed

by the Hamiltonian H. Therefore, in such a case, within the four-dimensional subspace the two-qutrit
dynamics may be described in terms of two decoupled two-level systems subjected to effective external
fields and characterized by decaying states. Several results have been reported for a single qubit with a
decaying state subjected to the LMSZ scenario [84, 85, 87]. Precisely, it has been proved that, on the
one hand, in the standard (ideal) LMSZ scenario, the decay rate influences only its the time-history of
the transition probality but not its asymptotic value [84]; on the other hand, in the more realistic LMSZ
scenario characterized by a limited time-window, the exited state population exhibits a dependence on
the decay rate [85]. We emphasize that even such results allow to make quantitative predictions on the
LMSZ transition probabilities for the system under scrutiny.
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Determination of γs

Now, we want to discuss the possibility of applying local fields on both the qutrits. Let us consider,
firstly, the case

ω1(t) = ω2(t) = αt/2, (3.36)

with t going from −∞ to +∞.
In this case, the Hamiltonians of the two fictitious spin-1/2’s, through which we describe effectively

the dynamics of the two qutrits in the four dimensional subspace, read

H1 = h̄Ω+(t)σ̂ z
1 + γ−σ̂

x
1 , H2 = γ+σ̂

x
2 , (3.37)

with Ω+(t) = αt. We see that the second fictitious spin-1/2 is subjected only to a magnetic field in
the x-direction, while the first one is subjected to standard Landau-Zener scenario. As before, the role
of the external transverse constant field is effectively played by the coupling existing between the two
spins.

We study now the instance in which only one excitation is present in the system, equally shared by
the two qutrits. We consider, then, the entangled state (|−10〉+ |0−1〉)/

√
2 as initial condition. By

the mapping in Eq. (3.18), such a state, rewritten in terms of the two spin-1/2 states, acquires the form

|−〉⊗ |+〉+ |−〉√
2

. (3.38)

It is easy to see that the second spin does not change its state in time since the latter is an eigenvalue
of H2. The first spin, instead, evolves according to the LMSZ dynamics, so that the probability to find
it in the opposite state |+〉 at very large time instants (t → ∞) is P1. Of course, it expresses too the
probability of the two spin-1/2’s to be found in the state |+〉⊗ |+〉+|−〉√

2
. The relevant point is that, in

view of Eq. (3.18), it provides the probability for the two qutrits of reaching the state

|10〉+ |01〉√
2

. (3.39)

Thus, if β−� 1, through the linear ramp we have created an excitation in the system. It is important to
underline that such a transition depends strongly on the coupling parameters between the two qutrits,
since their difference constitute the effective transverse magnetic field entering in the expression of the
LMSZ parameter β−. Indeed, if the two parameters are equal or very close, the transition is forbidden,
while, if they are opposite, the transition probability reaches its maximum efficiency. This suggests us
that, choosing at will α and studying the characteristic time of the transition, we may get information
about the value of γ−.

If we now consider
ω1(t) =−ω2(t) = αt/2 (3.40)

and the two qutrits initially prepared in the state (|−10〉+ |0−1〉)/
√

2, we get a specular dynamics.
That is, the first fictitious spin-1/2, subjected only to a static x-magnetic field (H1 = γ−σ̂ x

1 ), does not
evolve, while the second fictitious spin-1/2 makes a transition from |−〉 to |+〉 (being H2 = h̄αtσ̂ z

2 +
γ+σ̂ x

2 ). Studying such a transition, this time, we get information about γ+ since it rules the characteristic
time of such a transition. Finally, by comparing the two values of γ+ and γ− we may estimate the
original coupling parameters of the two qutrits γx and γy.
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Dark states

We emphasize that, under the conditions γx = γy = γ/2 and ω1(t) = ω2(t) = ω(t)/2 (unique homoge-
neous magnetic field), the following four states

|ψ0
1/2〉=

|10〉± |01〉√
2

, |ψ0
3/4〉=

|−10〉± |0−1〉√
2

(3.41)

result steady states independently of the time dependences of the magnetic field. This may be easily un-
derstood in terms of the two spin-1/2’s. Indeed, the second spin-1/2 is in an eigenstate [(|+〉± |−〉)/

√
2]

of its constant Hamiltonian H2 = γσ̂ x and evolves trivially, only acquiring the phase factor exp{−iγt/h̄};
the first fictitious spin-1/2, instead, (being in the state |±〉) keeps only the phase factor exp{−i

∫ t
0 ω(t)dt}

since its Hamiltonian H1 = h̄ω(t)σ̂ z
1 does not mix the two standard basis states. This means that for

these four states we have ( j = 1 . . .4)

H(t)|ψ0
j 〉= E j(t)|ψ0

j 〉,
E1/2(t) = ω(t)± γ, E3/4(t) =−E2/1(t)

(3.42)

implying

|ψ j(t)〉= exp
{
−i
∫ t

0
dt ′E(t ′)/h̄

}
|ψ0

j 〉. (3.43)

It is easy to see that, considering the time-independent case, such states result to be the eigenstates of the
Hamiltonian (3.3). So, this model, in this specific case, presents a peculiar characteristic consisting in
maintaining its steady states also when the Hamiltonian parameters are time-dependent. A remarkable
consequence of this circumstance is that the following class of states ρ0 = ∑ j p j|ψ0

j 〉〈ψ0
j | (∑ j p j = 1),

comprising e.g. the thermal state (p j = exp{−E j/kBT}, kB and T being the Boltzman constant and the
Temperature, respectively), do not evolve in time, that is

ρ(t) = ∑
j

p j|ψ j(t)〉〈ψ j(t)|= ∑
j

p j|ψ0
j 〉〈ψ0

j |= ρ0. (3.44)

Therefore, any physical observable calculated for such class of states exhibit a constant value in time.
We can call such states ‘dark states’ since, under the conditions written before, they are unaffected by
both the coupling and the longitudinal time-dependent field, also when the latter presents a random
fluctuating behaviour.

Analogously, if we have γx =−γy and ω1(t) =−ω2(t) the four dark states are

|10〉± |0−1〉√
2

,
|01〉± |−10〉√

2
. (3.45)

Finally, we emphasize that the previous results are not restricted to the LMSZ scenario, but they are
valid whatever the time-dependence of the field is.

Entanglement

The negativity, introduced by G. Vidal and R. F. Werner in [165], of a two-qutrit system described by
the density matrix ρ reads [166]

Nρ =
||ρTB||1−1

2
, (3.46)
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where ρTB is the partial transpose of the matrix ρ with respect to the subsystem B. The symbol || · ||1 is
the trace norm which, for a Hermitian matrix, results in the sum of the absolute values of the negative
eigenvalues of ρTB which is Hermitian and such that Tr{ρTB} = 1. The range of values of Nρ is [0,1]
[166] and its calculation is independent of the factorized orthonormal basis in which the matrix ρ is
represented as well as of the subsystem with respect to which we calculate the partial transpose, since
(ρTA)T = ρTB and ||X ||1 = ||XT ||1 for any operator X .

A generic pure state ρ̂ = |Ψ〉〈Ψ| belonging to H−may be expanded as |Ψ〉=∑
4
k=1 ck |ek〉 (∑4

k=1 |ck|2 =
1) in view of Eq. (3.13). The corresponding eigenvalues of ρ̂T2 are

ϒ1 = 1− x, ϒ2 = x, ϒ3 =
√

x(1− x), ϒ4 =−ϒ3, (3.47)

with x = |c1|2 + |c4|2. Therefore, the negativity of a generic pure state can be written as

Nρ̂ =
√

x(1− x), (3.48)

which is well defined (since x∈ [0,1]) and reaches its maximum value N max
ρ̂

= 1/2 at x = 1/2. Thus in
the four dimensional dynamically invariant subspace of Ĥ the negativity exhibited by the two coupled
qutrits in a pure state reaches 1/2 as upper limit. Consequently, the negativity of the two qutrits, since
a generic mixed state ρ̂ = ∑

4
r=1 pr|ψr〉〈ψr| with |ψr〉 in H− and (∑4

r=1 pr = 1, pr ≥ 0), possesses the
same upper bound 1/2 since [165]

Nρ̂

(
∑
r
|ψr〉〈ψr|

)
≤∑

r
prNρ̂(|ψr〉〈ψr|)≤

1
2
. (3.49)

The existence of such an upper limit is directly traceable back to the circumstance, easily demonstra-
ble, that every pure state in H− possesses a Schmidt decomposition with at most two non-vanishing
Schmidt coefficients, namely k1 and k2 expressible as

k1 =
√
|c2|2 + |c3|2, k2 =

√
|c1|2 + |c4|2, k3 = 0. (3.50)

When k1k2 > 0 the Concurrence [C(|ψ〉)] of two qutrits introduced by Cereceda [167] reaches its
maximum value

√
3

2 and since in such a case [166]

C(|ψ〉) =
√

3N (|ψ〉), (3.51)

an upper bound for the Negativity equal to 1
2 emerges in accordance with our previous conclusion. Thus

no pure state in H− exhibits maximum entanglement (C(|ψ〉) = 1).
It’s possible to show that a generic normalized entangled state of the two qutrits in H−, saturating

the negativity at the value Nρ = 1
2 , up to a global phase factor, may be parametrically represented as

|Ψ〉N =
1√
2

[(
cos(θ)|1〉+ eiφ sin(θ)|−1〉

)
1
⊗|0〉2

+eiΦ|0〉1⊗
(

cos(θ ′)|1〉+ eiφ ′ sin(θ ′)|−1〉
)

2

]
. (3.52)

where θ , θ ′, φ , φ ′ and Φ freely run in [0,2π].
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If we now consider as initial condition the two-qutrit state |−10〉, through the exact form of the time
evolution operator in Eq. (3.56), it is easy to verify that

x(t) = |c1(t)|2 + |c4(t)|2 = |a1|2|a2|2 + |b1|2|b2|2 (3.53)

Concerning the LMSZ scenario, at infinite time so we have

x(∞) = P1P2 +(1−P1)(1−P2), (3.54)

where the expressions of P1 and P2 are reported in Eq. (3.32) and (3.33), respectively. If we put
the expression in Eq. (3.54) into Eq. (3.48), we get the asymptotic expression of the Negativity. In
Fig. 3.2a such an expression of the negativity is reported against the LMSZ parameter β = β+, for
β−/β+ = 1/2. We see that two maxima are present and they correspond to the values log(2)/2π ≈
0.11 and log(2)/π ≈ 0.22. It means that, by appropriately setting the parameter β , when the two-
qutrit system start from the state |−10〉, through the LMSZ process we may generate asymptotically
an entangled state of the two spin-qutrits with the maximum level of entanglement possible in such a
subspace. This fact is confirmed by Fig. 3.2b where the time behaviour of the Negativity is reported
against the dimensionless parameter τ =

√
α/h̄ t for β = 0.11. In this case, we used the expression of

x(t) in Eq. (3.53) with the exact solution of the LMSZ dynamical problem [69] reported in Eq. (2.38).
We emphasize that the parameter β , besides the asymptotic value, deeply influences the trend in time
of the Negativity curve, as it can be appreciated by Figs. 3.2c and 3.2d, related to β = 0.5 and β = 2,
respectively.

We stress that it is not possible to get physical information about the entanglement get estab-
lished between the two qutrits by studying correlations emerging between the two fictitious qubits.
Indeed, by the mapping in Eq. (3.18), it is easy to see that entangled states of the two qutrits, such
as (|10〉+ |01〉)/

√
2, correspond to separable states of the two qubits, (|++〉+ |+−〉)/

√
2, and, vice

versa, separable states of the qutrits (|10〉+ |−10〉)/
√

2 correspond to entangled states of the qubit
system, (|++〉+ |−−〉)/

√
2. Such a feature stems from the non-locality of the mapping established

between the two systems. This observation implies that, within the four-dimensional subspace, we can-
not use the Concurrence, but we are obliged to consider another Entanglement measure. This is why
we use Negativity to quantify the Entanglement get established between the two qutrits.

Five-dimensional subdynamics

General solution

We have seen before that the central block of H+ has an su(2) structure and then it is interpretable as
the Hamiltonian of a (fictitious) spin-1 subjected to (fictitious as well) magnetic fields [see Eq. (3.28)].
It is well known that the time evolution operator related to a 3x3 su(2) Hamiltonian may be put in the
following form [40]

U3 =

 a2
3

√
2a3b3 b2

3
−
√

2a3b∗3 |a3|2−|b3|2
√

2a∗3b3
b∗3

2 −
√

2a∗3b∗3 a∗3
2

 , (3.55)

where a3 and b3 are two time-dependent parameters, solution of the analogous dynamical problem for
a single spin-1/2. In other words, a3 and b3 may be found by solving the dynamical problem of a single
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Figure 3.2: (Color online) a) β -dependence of the asymptotic Negativity of the two qutrits [Eqs.
(3.48) and (3.54)] for the initial condition |−10〉. Time behaviour of the Negativity against the
dimensionless parameter τ =

√
α/h̄ t during a LMSZ process when the two-qutrit system starts from

the state |−10〉 for 2β− = β+ and b) β+ = 0.11, c) β+ = 1/2 and d) β+ = 2. The upper straight curve
represents N = 0.5.
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spin-1/2 subjected to the same magnetic field acting upon the fictitious spin-1. Thus, we may formally
write the time evolution operator U+, solution of the Schrödinger equation ih̄U̇+ = H+U+, as follows

U+ =


e−

i
h̄
∫

Ω+ 0 0 0 0
0 a2

3

√
2a3b3 b2

3 0
0 −

√
2a3b∗3 |a3|2−|b3|2

√
2a∗3b3 0

0 b∗3
2 −

√
2a∗3b∗3 a∗3

2 0
0 0 0 0 e

i
h̄
∫

Ω+

 . (3.56)

Dark states

First of all, it is important to underline that also for the five-dimensional subdynamics we have dark
states. Indeed, if the two qutrits are initially prepared in |11〉 or |−1−1〉, independently of the time-
dependence of the z-magnetic field, the two-qutrit system remains in its initial state, also if the magnetic
field component randomly fluctuates remaining along the z-direction. Moreover, if we consider the case
ω1(t) = ω2(t), also a generic state belonging to the three-dimensional subspace, namely

c1|1−1〉+ c2|00〉+ c3|−11〉, (3.57)

is completely unaffected by the presence of time-dependent magnetic fields, since in this instance
Ω−(t) = 0 and the Hamiltonian governing the three-dymensional dynamics is simply H3 = γσ̂ x. Such
states, then, evolves only under the action of the coupling between the two qutrits. It means then that
the three eigenstates of Σ̂x rewritten in terms of two-qutrit states

|ψ0
5 〉=

|1−1〉+
√

2|00〉+ |−11〉
2

,

|ψ0
6 〉=

|1−1〉− |−11〉√
2

|ψ0
7 〉=

|1−1〉−
√

2|00〉+ |−11〉
2

(3.58)

result steady state of the two-qutrit system also when a unique homogeneous time-dependent field is
applied on the two spin-1’s. Consequently, every classical mixture of these three states does not evolve
and every physical quantity related to this state is constant in time. Given that the states in Eq. (3.44)
have the same property under the same conditions (ω1(t) = ω2(t) and γx = γy), we may conclude that,
in this scenario, the thermal state of the system and, more in general, every mixture involving the steady
states |11〉, |−1−1〉 and the ones in Eqs. (3.44) and (3.58), namely

ρ = k1|11〉〈11|+
7

∑
j=1

p j|ψ0
j 〉〈ψ0

j |+ k2|−1−1〉〈−1−1|, (3.59)

such that k1 + k2 +∑ j p j = 1, is a stationary state of the two-qutrit system.
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STM scenario and LMSZ transition probabilities

We investigate now the STM experimental scenario characterized by a single local magnetic field on
the first spin-1, namely ω1(t) = αt, and the two qutrits initialized in the state |1−1〉. In this case
the two-qutrit system behaves effectively like a three-level system (spin-1) subjected to a LMSZ ramp
with an effective constant transverse magnetic field related to the coupling constant γ . For such a time-
dependent scenario, the transition probabilities, from |1−1〉 to the other two states |00〉 and |−11〉,
may be found analytically. Indeed, at the light of the spin-1 - spin-1/2 transition probability relationship
based on the SU(2) group structure, for large time instants, we have

P+1
−1 = P2

3 , P0
−1 = 2P3(1−P3), P−1

−1 = (1−P3)
2, (3.60)

where P3 = (1− e−2πβ ′) and β ′ = 2γ2/h̄α . Also in this case, we appreciate how the coupling between
the two qutrits is responsible of an avoided crossing and a consequent full adiabatic LMSZ transition
for the fictitious spin-1. In the previous expressions we have labelled with -1, 0 and 1 the states |1−1〉,
|00〉 and |−11〉, respectively. The plots of the asymptotic probabilities are reported in Fig. 3.3 against
the coupling-dependent LMSZ parameter β ′. We see that the interplay between the coupling parameter
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Figure 3.3: (Color online) Asymptotic LMSZ probabilities [Eq. (3.60)] of finding the two qutrits in
the state |1−1〉 (blue dot-dashed line), |00〉 (red dashed line) and |−11〉 (green full line), when they
start from the state |−11〉 for γx = γy.

γ and the ramp of the magnetic field α , defining β ′, deeply influences the transition probability. For
high values of the parameter β ′ we get a complete LMSZ transition of both the spins, getting, also this
time, a state transfer between the two qutrits. This means that, measuring the state of the system and
varying the ramp α , we may estimate the parameter γ determining the strength of coupling between the
two qutrits.

Noise effects

We consider now the field along the z axis affected by the random fluctuating contribution as done
before. We may exploit again the results reported in Ref. [86] where the authors solved the dynamical
problem of a noisy ramp in a LMSZ scenario also for a spin-1. In such a case, the transition probabilities
affected by a noisy field component along the z-axis and characterized by the following time-correlation
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function 〈η(t)η(t ′)〉= 2Γδ (t− t ′), become

P+1
−1 =

1
6
(2+ e−3πβ ′−3e−πβ ′),

P0
−1 =

1
3
(1− e−3πβ ′),

P−1
−1 =

1
6
(2+ e−3πβ ′+3e−πβ ′).

(3.61)

Also these expressions, valid for large values of Γ, are independent of the value of the same Γ. We see
that, also this time, the main effect of the noise is to hinder the transition generating at most equally
populated states when β ′� 1. In this way, we brought to light how the symmetry-based analysis of the
model reported in the second sections plays a key role for disclosing the exact quantum dynamics of
the two interacting qutrits subjected to time-dependent magnetic fields, both in ideal and more realistic
conditions.

Entanglement

In the three-dimensional subspace the Negativity for the general state in Eq. (3.57) reads

N = |c1||c2|+ |c2||c3|+ |c1||c3|. (3.62)

Its time evolution related to the initial condition |−11〉 results

N (t) = |a3||b3|[
√

2+ |a3||b3|], (3.63)

and then asymptotically we get

N (∞) = P3(1−P3)+
√

2P3(1−P3), (3.64)

where P3 is defined after Eqs. (3.60). This quantity reaches its maximum value for P3 = 1/2 and then
for β ′ = log(2)/2π ≈ 0.11 (see Fig. 3.4a). This means that, for such a value of the parameter β ′,
the LMSZ process generates asymptotically an entangled state of the two qutrits with the maximum
available value of Negativity for the initial condition under scrutiny, as confirmed by Fig. 3.4b. We got
the latter figure by putting in Eq. (3.63) the expressions of a+ and b+ (or, equivalently, a− and b−)
in Eqs. (2.38), replacing β+ (β−) with β ′. In the same way we have analysed the time behaviour of
the Negativity for the same initial condition for other two values of the parameter β ′, namely β ′ = 1/2
(Fig. 3.4c) and β ′ = 2 (Fig. 3.4d). Also this time we find that the LMSZ parameter deeply influences
not only the asymptotic value but also the trend in time of the Negativity.

3.1.3 Summary and remarks
In this paragraph we have reported the study of the quantum dynamics of two interacting qutrits sub-
jected to local time-dependent fields. We have taken into account the anisotropic as well as isotropic
Heisenberg interaction. The field applied on just one of the two qutrits or on both the two spin-1’s has
been considered linearly varying on time (LMSZ ramp) along the quantization z-axis. Atomic species
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Figure 3.4: (Color online) a) β ′-dependence of the asymptotic Negativity of the two qutrits [Eqs.
(3.63)] for the initial condition |−11〉. Time behaviour of the Negativity against the dimensionless
parameter τ =

√
α/h̄ t during a LMSZ process when the two-qutrit system starts from the state |−11〉

for b) β ′ = 0.11, c) β ′ = 1/2 and d) β ′ = 2. The upper straight curve represents N = 0.5.

with three metastable levels may be used in a linear ion crystal to realize the interacting spin-1 model
under scrutiny through the application of laser fields [160, 161]. Moreover, a broad range of physical
situations may be covered by such a model: two spin-1’s in a double well optical lattice [157], in-
teracting spin-1 nanomagnets [158] and effective interaction between two separated nitrogen-vacancy
centres in diamond [159].

The dynamical problem has been solved thank to the reduction to two easier problems: one of two
non-interacting fictitious spin-1/2’s and the other of a fictitious three-level system. Such a reduction
relies on the symmetry-based analysis of the Hamiltonian model which is unaffected by the time-
dependences of the applied fields and, more generally, by the time-dependences of all Hamiltonian
parameters. This means that the same analysis may be developed considering other possible time-
dependences of the field leading to exactly solvable problems [35, 36, 37, 38].

The main result is the physical effect we called coupling-driven LMSZ transition. It consists in the
fact that, although a transverse constant field is absent, LMSZ transitions between two-qutrit states are
still possible thanks to the presence of the coupling between the two spin-1’s. Indeed, the fictitious
dynamics of the two decoupled qubits and the one of a fictitious spin-1 are characterized by a LMSZ
longitudinal field and a fictitious constant transverse field stemming from the coupling existing between
the spin-qutrits. This fact implies that, avoided crossings in the two qutrit system are possible thanks
to the presence of such an interaction. A remarkable consequence of this circumstance consists in
the fact that an appropriate ratio between the applied fields and the coupling parameters may result
favourable for performing adiabatic dynamics with consequent full LMSZ transitions of the two spin-1
system. The knowledge of such a physical effect makes it possible to have control on the dynamics of
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the system under scrutiny as well as to get information about the interaction characterizing the same
system. We have brought to light, moreover, how the LMSZ transition probabilities change according
to the (an)isotropy of the coupling terms.

We have showed that the physical relevance of the coupling-driven LMSZ transitions is twofold.
First, by the knowledge of the transition probabilities we may estimate the coupling parameters of the
two-qutrit model. Second, basing on such an estimation, we illustrated that an appropriate and specific
choice of the slope of the LMSZ ramp can generate asymptotically entangled states of the two qutrits.
We have analysed the level of entanglement by studying both the asymptotic Negativity against the
LMSZ parameters and its time evolution. In the latter case, we have used the exact solutions of the
LMSZ dynamical problem [69] and we have investigated the effects of the coupling determining the
LMSZ parameter. We reported how such a parameter, depending on the ratio of the squared coupling
and the slope of the ramp, determines not only the asymptotic value, but also the trend of the Negativity.

Finally, we have discussed also how the LMSZ transition probabilities are modified by the pres-
ence of a noisy field component stemming from the interaction of the the two-qutrit system with a
surrounding environment. Such an analysis is based on the fact that the dynamical reduction is unaf-
fected by the presence of the noise and so, also in this case, we may reduce the two-spin-1 problem
to easier problems whose solutions are known in literature. Following the same philosophy, we have
exposed the possibility of treating exactly the problem also by introducing the environment effects with
non-Hermitian terms in the Hamiltonian model.

It is worth to emphasize that the Hamiltonian model in Eq. (3.3) keeps its symmetry also for two
larger spin systems, that is, for two interacting spins Ĵ1 and Ĵ2. In such a case, it is always possible
to decompose the dynamical problem into two sub-problems related to the two dynamically invariant
subspaces linked to the two eigenvalues (1 and−1) of the constant of motion cos[π(Ĵz

1+ Ĵz
2)]. However,

for larger spin systems, the sub-dynamics could be very difficult to solve due to the high degeneracy
of both eigenvalues. The symmetry-based existence of two dynamically invariant subspaces regardless
of the values of the two spins, indeed, does not represent the successful key of our approach in its
own. What has been reported here, thus, has the merit of explicitly showing that the resolution of the
related dynamical problems cannot be derived simply generalizing technical aspects characterizing the
analogous dynamical problem of two qubits.

The results reported in this first paragraph have been published in Ref. [190, 191]

3.2 Two qudits
An isolated dimeric unit of ions, each one exhibiting an effective spin Ĵ, may be regarded, as a system
of two interacting spins. For some compounds of dimeric units it has been experimentally proven that
neglecting the couplings between spins in neighbouring units is legitimate, implying that the quantum
dynamics of the same compound may be derived from that of a single dimer [4, 54]. Experimental
and theoretical investigations on biradical compounds provide a further example of a physical system
describable in terms of two interacting spins. In a liquid solution a compound of biradicals can be
described by a symmetric spin Hamiltonian model [3]. Research activity involving biradical compound
systems run from high controllable low dimensional quantum magnets realization to the study of Bose-
Einstein condensation phenomena for magnetic excitations [47]. In the area of quantum computing,
finally, spin Hamiltonian models describing the quantum dynamics of two electron spins in a double
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quantum dot [48, 168, 169, 170, 171] or in a double quantum well [21], furnish a theoretical basis for
manipulating two-electron based qubits.

3.2.1 The model and the solution of the dynamical problem
Our physical system consists of two independent, localized and distinguishable spins of different value
and physical nature, in general, represented by their relative spin operators ĵ1 and ĵ2, respectively, with
ĵi ≡ ( jx

i , jy
i , jz

i ) (i = 1,2). By definition [ ĵα
1 , ĵβ

2 ] = 0 (α,β = x,y,z) and ĵi ∧ ĵi = ih̄ĵi. The i-th spin is
subjected to the local external controllable time-dependent magnetic field

Bi(t) = Bx
i (t)cx +By

i (t)cy +Bz
i (t)cz, (3.65)

such that
− γ1B1(t) =−γ2B2(t)≡ΩΩΩ(t), (3.66)

γi = giµ0 being the magnetic moment associated to the i-th spin, with gi the appropriate Landé factor,
and µ0 the appropriate Bohr magneton. We observe that B1(t) and B2(t) are parallel (anti-parallel)
if γ1γ2 > 0 (< 0). Condition (3.66) means that the two spins exhibit the same Zeeman spitting. The
possibility of such a control of the magnetic field acting individually on each spin is in the grasp of
experimentalists as realized in a double quantum dot system [50, 172].

Let us suppose that the two spins are in addition coupled via a ferromagnetic or anti-ferromagnetic
isotropic Heisenberg interaction of strength λ , so that the corresponding Hamiltonian model may be
written down as follows (from now on we set h̄ = 1):

H(t) = H0(t)+HI (3.67)

with

H0(t) =
2

∑
i=1

ΩΩΩ(t) · ĵi, HI =−λ ĵ1 · ĵ2, (3.68)

acting upon the (2 j1 + 1)(2 j2 + 1)-dimensional Hilbert space H of the two spins. We underline that
with respect to the model analysed before for two qubits and two qutrits, here we consider only the
isotropic exchange interaction and all the components of the time-dependent field acting upon the two
qudits.

We emphasize that recent experimental advances in the area of 28Si-based solid state quantum com-
puting makes our Hamiltonian model (3.68) of some help to represent such a physical scenario [172].
In addition biradical compounds in liquid phase provide another interesting experimental situation use-
fully describable making use of our noiseless model [3].

To proceed with the analysis of the model it is useful to rewrite the Hamiltonian in terms of the total
spin angular momentum operator Ĵ = ĵ1 + ĵ2, getting

H(t) = ΩΩΩ(t) · Ĵ− λ

2
Ĵ2

+K (3.69)

where K ≡ λ

2 (ĵ
2
1 + ĵ2

2) is proportional to the identity operator. Equation (3.69) clearly shows that our
time-dependent Hamiltonian H(t) commutes with Ĵ2 = (ĵ1 + ĵ2)

2 and this implies that Tr{ρ(t)Ĵ2} =
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Tr{ρ(0)Ĵ2} at any time instant. Here ρ(t) = U(t)ρ(0)U†(t), U(t) being the unitary time evolution
operator fulfilling the Cauchy problem

iU̇(t) = H(t)U(t) U(0) = 1 (3.70)

and ρ(0) the initial density matrix of the two spins.
The conservation of Ĵ2 leads to the existence of ( j1 + j2)− | j1− j2|+ 1 orthogonal, dynamically

invariant subspaces H ( j) such that

H =
j1+ j2⊕

j=| j1− j2|
H ( j) (3.71)

H ( j) denoting the invariant (2 j+1)-dimensional subspaces of Ĵ2 pertaining to its eigenvalue j( j+1).
The Hamiltonian operator may be written as

H(t) =
j1+ j2⊕

j=| j1− j2|
H( j)(t), (3.72)

and accordingly generates the time evolution operator, solution of the Cauchy problem defined in Eq.
(3.70) in the form

U(t) =
j1+ j2⊕

j=| j1− j2|
U ( j)(t). (3.73)

H( j)(t) is the effective Hamiltonian of the two spins governing their dynamics in the (2 j+1)-dimensional
dynamically invariant subspace H ( j) of H(t), whereas U ( j)(t) is the related time evolution operator,
solution of the (restricted) Cauchy problem

iU̇ ( j)(t) = H( j)(t)U ( j)(t), U ( j)(0) = 1
( j), (3.74)

1
( j) being the identity operator in H ( j).

Since the term K′ ≡ −λ

2 Ĵ2
+K is proportional to 1( j) in H ( j), whatever j is, the effective Hamil-

tonian H( j)(t) governing the dynamics in H ( j) may be written as

H( j)(t) = ΩΩΩ(t) · ĵ+K′, (3.75)

which, formally, is the Hamiltonian of a fictitious spin ĵ, with spin angular momentum j and magnetic
moment γ1, subjected to the time-dependent magnetic field B1(t). Of course, due to Eq. (3.66) and
Eq. (3.75), in this scenario γ1 and B1(t) may be replaced by γ2 and B2(t), respectively. This means
that each effective Hamiltonian H( j)(t) possesses an su(2)-symmetry structure and the related time
evolution operator U ( j)(t) may be expressed [39, 173] in terms of the two time-dependent complex-
valued functions, a = a(t) and b = b(t), entries of the evolution operator

U (1/2)(t) =
(

a b
−b∗ a∗

)
, |a|2 + |b|2 = 1, (3.76)

i.e. the solution of the Liouville-Cauchy problem (3.74) with j = 1/2 and H(1/2) = ΩΩΩ(t) · σ̂σσ

2 . The Pauli
vector is defined as σ̂σσ = σ xc1+σ yc2+σ zc3, σ x, σ y and σ z being the Pauli matrices. The entries of the
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matrix U ( j)(t) in the standard ordered basis of the eigenstates of the third component of the fictitious
spin j: {|m〉,m = j, j−1, . . . ,− j}, may be cast as follows [39] (time dependence is suppressed)

U ( j)
m,m′(a,b) = e−iK′t

∑
µ

C( j)
m,m′a

j+m′−µ(a∗) j−m−µbm−m′+µ(b∗)µ , (3.77)

where [39]

C( j)
m,m′ = (−1)µ

√
( j+m)!( j−m)!( j+m′)!( j−m′)!

µ!( j+m′−µ)!( j−m−µ)!(m−m′+µ)!
. (3.78)

We point out that, whatever m and m′ are, the summation, formally a series generated by µ running
over the positive integer set, is a finite sum, generated by all the values of µ for which the denominator
is finite; negative values of µ are then excluded. It is possible to convince oneself that, defined in this
manner,

∣∣U ( j)
m,m′(a,b)

∣∣2 represents the probability to find the N-level system in the state with z-projection
m when it is initially prepared in the state with z-projection m′. Summing up, Eqs. (3.77) and (3.78)
provide the solution of the Cauchy problem defined by Eq. (3.74) which, in turn and in view of Eq.
(3.73), enables us to write down the exact time evolution operator solution of our main problem as
defined by Eq. (3.70).

We emphasize that the possibility of expressing U(t) in terms of only two time-dependent complex-
valued functions may be traced back to the existence of su(2) structures nested in the Hamiltonian
model given by Eq. (3.68). Such a property is a direct consequence of the symmetries possessed by
the Hamiltonian model and paves the way to the exact determination of the evolution operator U(t)
generated by H.

This approach may be successfully exploited when ΩΩΩ(t) is such to allow the construction of explicit
expression for a(t) and b(t) in a given specific physical situation. For example, when ΩΩΩ(t) coincides
with that considered originally by Rabi [31], we are in condition to construct the explicit form of the
evolution operator [31, 32] generated by the correspondent H given in Eq. (3.68) and as a consequence
to investigate any aspect of the related quantum dynamics. It is thus of relevance that recently other
su(2) time-dependent scenarios have been proposed and exactly solved [35, 36, 37, 38], with application
to interacting spin systems according to approach exposed in this thesis. This circumstance opens the
possibility of applying the approach here reported to several possible other scenarios of experimental
interest, different from the one originally considered by Rabi. The exact knowledge of how two-spin
systems evolve under controllable time-dependent magnetic fields might be exploited to comply, on
demand, with technological needs or experimental requests.

3.2.2 Quantum dynamics
We investigate now possible effects of the exchange interaction HI between ĵ1 and ĵ2 on the quantum
dynamics each spin would experience if λ were absent. Let us denote by |mi〉, mi = ji, ji−1, . . . ,− ji,
a generic eigenstate of ĵz

i (i = 1,2). Suppose our two-spin system prepared in the state | j1, j2〉 ≡
| j1〉| j2〉 belonging to H ( j1+ j2). The probability P− j1,− j2

j1, j2 (t) of finding the compound system in the
state |− j1,− j2〉 ∈H ( j1+ j2) at any time instant may be expressed as

P− j1,− j2
j1, j2 (t) =

∣∣U ( j)
− j, j(a,b)

∣∣2 = ∣∣[−b∗]2 j∣∣2 = |b|4( j1+ j2), (3.79)
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in view of Eq. (3.77), with j = j1 + j2.
This result means that, preparing the two spins in the factorized state | j1, j2〉, the probability of

finding the system in the factorized state |− j1,− j2〉 is equal to the probability we would get when the
same ΩΩΩ(t) is experienced by two non-interacting spins ĵ1 and ĵ2. It is possible to find a physical reason
at the basis of the previous result by bringing to light remarkable features characterizing the quantum
dynamics of our two-spin systems by considering the reduced dynamics of the two subsystems of
interest.

The Liouville-Cauchy problem governing the time evolution of a generic state ρ(0) of the two-spin
system is

iρ̇ = [H,ρ]. (3.80)

In view of Eq. (3.73), its solution ρ(t) = U(t)ρ(0)U†(t) is determined after solving the following
Cauchy problem for a spin 1/2

iU̇ (1/2) = H(1/2)U (1/2), U (1/2)(0) = 1
(1/2), (3.81)

where H(1/2) = ΩΩΩ(t) · ŝ, with ŝ = 1
2 σ̂σσ .

The time evolution of the reduced density matrix of the i-th spin is related to the solution ρ(t) of
the Liouville-Cauchy problem (3.80) as follows

iρ̇i = [Hi,ρi]+Trk 6=i{[HI,ρ]}, (3.82)

where Hi = ΩΩΩ(t) · ĵi, HI is defined in Eq. (3.26) and ρi(t) satisfies the initial condition ρi(0) =
Trk 6=i{ρ(0)}. The symbol Trk 6=i means tracing with respect to “the other spin”. Equation (3.82) clearly
shows that in correspondence to each ρ(t) such that [HI(t),ρ(t)] = 0 at any time instant, the i-th reduced
density operator ρi(t) satisfies the following Cauchy problem

iρ̇i(t) = [Hi,ρi(t)], ρi(0) = Trk 6=i{ρ(0)}. (3.83)

Since both H and HI commute with Ĵ2, it is easy to convince oneself that any density matrix ρ(0), at
any time satisfying [HI(t),ρ(t)] = 0, may be represented in the coupled basis as

[ρ(0)]CB =
j1+ j2⊕

j=| j1− j2|
ρ
( j) (3.84)

ρ( j) being a (2 j+1)-dimensional semi-positive definite matrix such that ρ(0) is a density matrix. As
a consequence, when ρ(0) belongs to the class of initial conditions given by Eq. (3.84), the solution of
the Cauchy problem (3.83) may be written down as follows

ρi(t) =Ui(t)ρi(0)U
†
i (t), (3.85)

where Ui(t) is the unitary operator governing the SU(2) time evolution of the spin ĵi when λ = 0.
In words, the symmetries of the Hamiltonian, under the condition (3.84), guarantee that each spin

subsystem evolves as if the other one were absent, that is undergoing no influence stemming from the
coupling term. It is worthwhile to remark that such a property holds whatever the magnetic field time-
dependence is. At the light of this result we understand better and more deeply the result in Eq. (3.79):
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since the factorized initial state | j1, j2〉 of the compound system belongs to the class of initial conditions
given in Eq. (3.84), then, the joint probability of finding the two spins in the state |− j1,− j2〉 is nothing
but the probability |b|4 j1 of finding the spin j1 in its state |− j1〉 multiplied by the probability |b|4 j2 of
finding the spin j2 in its state |− j2〉.

In addition we recognize that the class of initial states given by Eq. (3.84) collects states being
Interaction Free Evolving (IFE) states, recently reported in literature [174, 175, 176]. By definition
they are pure or mixed states of a binary system evolving in time as if the interaction between the two
subsystems were absent. We point out that, of course, any generic initial condition of the compound
system presenting coherence terms between the different dynamically invariant subspaces of H and Ĵ2

does not manifest such a peculiar dynamical feature since the reduced dynamics of the two spins is
influenced by the existing isotropic Heisenberg coupling between the two spins.

It is finally worthwhile to observe that the initial entanglement between the two spins ĵ1 and ĵ2
in an arbitrary state of the class singled out by Eq. (3.84), does not change in time, whatever the
entanglement measure adopted is. The physical reason may be traced back to the dynamical quenching
of the interaction term stemming, in turn, from constraints on the evolution imposed by the symmetry
properties possessed by our Hamiltonian model (3.26).

3.2.3 Dynamical effects due to the interaction parameter
To bring to light effects witnessing peculiar features in the quantum dynamic of the two coupled spins,
we have to consider initial states generating coherences between different dynamically invariant sub-
spaces of H. To this end, let us consider the (2 j1 + 1)(2 j2 + 1) factorized states of the standard basis
{|m1,m2〉;− j1 ≤ m1 ≤ j1,− j2 ≤ m2 ≤ j2}, ordered as{

| j1, j2〉 ≡ |e1〉, | j1, j2−1〉 ≡ |e2〉, . . . , | j1,− j2〉 ≡ |e2 j2+1〉,

| j1−1, j2〉 ≡ |e2 j2+2〉, | j1−1, j2−1〉 ≡ |e2 j2+3〉, . . . ,

|− j1, j2〉 ≡ |e2 j2(2 j1+1)〉, . . . , |− j1,− j2〉 ≡ |e(2 j1+1)(2 j2+1)〉
}
,

(3.86)

The projections of the factorized state |ψ(0)〉= | j1, j2−1〉 in the two invariant subspaces of Ĵ2, labelled
by ( j1 + j2) and ( j1 + j2−1), do not vanish and then the evolution of |ψ(0)〉 may be expressed as

|ψ(t)〉= ∑
k

Uk2|ek〉 (3.87)

where k runs from 1 to (2 j1 +1)(2 j2 +1) generating the entries Uk2 in the second column of (U)SB, in
accordance with our ordered standard basis.

To reach our goal, it is also important to choose appropriately the physical observable to be inves-
tigated. If we consider, e.g., the third component of the total spin angular momentum of the system
Ĵz = ĵz

1+ ĵz
2, it is easy to verify that it commutes with the isotropic Heisenberg interaction HI =−λ ĵ1 · ĵ2.

Since, in addition, [H0,HI] = 0 at any time instant, then

〈ψ(t)|Ĵz|ψ(t)〉= 〈ψ0(t)|Ĵz|ψ0(t)〉=
= 〈ψ01(t)| ĵz

1|ψ01(t)〉+ 〈ψ02(t)| ĵz
2|ψ02(t)〉

(3.88)
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where |ψ0(t)〉 =U0(t)|ψ(0)〉, |ψ01(t)〉 =U01| j1〉 and |ψ02(t)〉 =U02| j2−1〉, with ĵz
1| j1〉 = j1| j1〉 and

ĵz
2| j2−1〉= ( j2−1)| j2−1〉. In these expressions U0(t) is the unitary evolution operator generated by

H0(t), whereas U0i(t) is that generated by ΩΩΩ · ĵi. Thus, we predict the independence of 〈ψ(t)|Ĵz|ψ(t)〉
from λ , regardless of the specific magnetic field acting upon the two-spin system. It is indeed possible
to convince oneself that

〈Ĵz(t)〉= 0, if j1 = j2 = 1/2 (3.89)

〈Ĵz(t)〉= |a|
2−|b|2

2
, if j1 = 2 j2 = 1 (3.90)

〈Ĵz(t)〉= |a|2−|b|2, if j1 = j2 = 1, (3.91)

In order to predict a visible effect of the coupling between the spins, we calculate the time-dependence
of the mean value of ĵz

1, getting

〈ψ(t)| ĵz
1|ψ(t)〉=

2 j1

∑
i=0

(i+1)(2 j2+1)

∑
k=1+i(2 j2+1)

( j1− i)|Uk2|2, (3.92)

which in the three particular cases under scrutiny, leads respectively to the following explicit expres-
sions

〈 ĵz
1(t)〉=

1
2
(|a|2−|b|2)cos(λ t), (3.93)

〈 ĵz
1(t)〉=

1
9
(|a|2−|b|2)

[
5+4cos(

3λ

2
t)
]
, (3.94)

〈 ĵz
1(t)〉=

1
2

[
|a|2−|b|2 +

(
1−2|a|2|b|2(|a|2−2|b|2)

)
cos(2λ t)

]
, (3.95)

with the short notation 〈 ĵz
1(t)〉= 〈ψ(t)| ĵz

1|ψ(t)〉.
It is remarkable that by measuring the magnetization time-dependence of any one of the two spin

subsystems we may experimentally recover information about the coupling strength, regardless of the
applied magnetic field. This fact, in view of Eqs. (3.93), (3.94) and (3.95), enables us to check experi-
mentally whether a direct interaction between the two spins exists or at least plays a non-negligible role
in the Hamiltonian model describing the two-spin system in a given physical scenario.

3.2.4 Summary and remarks
In this paragraph we have brought to light that the problem of a binary system constituted by two qudits
interacting through isotropic Heisenberg coupling and subjected to a general time-dependent field is
reducible into a set of independent problems of single (fictitious) spin. Such property, being based
on the structural symmetry imposed to the Hamiltonian model, holds whatever the time dependence
of the controllable magnetic field is. This reducibility property, applicable to two quantum spins ĵ1
and ĵ2 of arbitrary magnitudes j1 and j2, represents then a new rather general result exploitable in
several different physical contexts from condensed matter to quantum information, as underlined in the
introductory part.
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We provide ready-to-use SU(2)-based expressions of the unitary time evolution operator in terms
of the two time-dependent complex-valued functions a(t) and b(t). These two functions determine
the joint probability transition of the two spins from an initial state to a final state. It is remarkable
that under appropriate initial conditions the reduced dynamics of each spin keeps unitarity, meaning
that the initial state of the compound system behaves indeed as an IFE state. The time behaviour of
the total magnetization as well as of each individual spin (supposed distinguishable) has been exactly
forecasted. It deserves to be emphasized that, in principle, measurements of such time-dependences
allow to achieve a feedback both on the coupling mechanism and, if confirmed as Heisenberg exchange
interaction, on the coupling constant strength.

We underline that our dynamical reduction procedure is immune from effects stemming from degra-
dation of unitary evolution due to the presence of classical random fields. This circumstance suggests
the possibility to investigate effects stemming from noise, e.g. by adding to the ideal Hamiltonian
model a fast fluctuating Gaussian field selected as a classical field, random both in its direction and
intensity [177, 178].

As last remarks, we point out first that it is straightforward to make use of the approach reported
in this paper to treat successfully the quantum dynamics of the Hamiltonian model given in Eq. (3.68)
when the coupling constant λ is considered time-dependent too. Physical scenarios and experimen-
tal set-ups leading to time-dependent coupling constants between two subsystems have been recently
reported [179]. Secondly, we notice that our approach does not lose its interest even when the ex-
perimental set-up in conjunction with the physical system under scrutiny prevent us from invoking
distinguishability of two equal and interacting spins. In this case our approach still holds its validity
provided we confine ourselves to any permutationally (symmetric or antisymmetric) invariant subspace
H ( j) of the Hilbert space spanned by the eigenstates of the total angular momentum.

The results reported in this paragraph have been published in Ref. [192].

3.3 N interacting-qubit system
One of the attractive aspects in the physics of trapped ions and superconducting circuits stems from
their dual relationship with quantum and semi-classical spin models. On one hand, we may effectively
describe the dynamics of such kind of systems in terms of the language of spin systems. On the
other hand, through these highly controllable technologies [180], we may reproduce and implement
several types of spin interactions. Thus, trapped ions and superconducting circuits provide examples
of quantum simulators of the dynamical behaviour of other quantum systems in accordance with the
original seminal idea of Feynman [181], mathematically reformulated in terms of digital operations
some years later [182].

A fascinating formal aspect of these quantum simulations is the mathematical occurrence of local
N-wise spin-1/2 coupling terms in the Hamiltonian. Here N-wise means that the interaction among the
N spins may be represented as an N-degree homogeneous multilinear polynomial in the 3N dynamical
variables of all the N spins. Such a kind of coupling is of course alien to physical context like nuclear,
atomic, and molecular physics. However, the usefulness of such N-spin Hamiltonian models has been
recently brought to light in the treatment and the study of fermion lattice models where many-body
interactions are present [42]. It is possible to implement many-body interactions of higher than second-
order through both trapped ions techniques [41, 183] and superconducting transmon qubit arrays [8]
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by exploiting collective entangling operations [184, 185]. Their physical and technological importance
stems from the possibility to ease several tasks of quantum information processing. In this manner,
we may drive the generic many-qubit transition |−〉⊗N → |+〉⊗N to prepare multipartite Greenberger-
Horne-Zeilinger (GHZ) states with a single operation and to implement stabilizer operators [108, 186]
with local qubit rotations. This will allow for the implementation of topological codes [187], among
other effects. Finally, the interest of studying higher order interactions may be found also in their
relevance in describing better physical features and dynamical aspects of complex systems [188].

3.3.1 The model and its symmetries
We investigate the properties of a system of N distinguishable spin-1/2’s subject to different magnetic
fields and interacting in accordance to the following specific uniform N-wise interactions,

H =
N

∑
k=1

h̄ωkσ̂
z
k + γx

N⊗
k=1

σ̂
x
k + γy

N⊗
k=1

σ̂
y
k + γz

N⊗
k=1

σ̂
z
k . (3.96)

Here, uniform means that no term mixing different components of different spins, e.g. σ̂ x
1 σ̂

y
2 σ̂

z
3 . . . σ̂

x
N ,

is present in the Hamiltonian where only three “diagonal” terms appear. The coupling constants γx,
γy and γz quantitatively characterize these three terms. σ̂ x, σ̂ y and σ̂ z are the standard Pauli matrices
and h̄ωk is the energy separation induced in the k-th spin by its relative magnetic field. We are able to
exactly diagonalize this model by reducing it into a set of independent problems of single spin-1/2. It is
worthwhile to note that our technique may be applied even when the Hamiltonian parameters are time
dependent. This circumstance provides the key to govern the dynamics of all the spins by manipulating
the time-dependent magnetic field acting upon only one out of the N spins.

The Hamiltonian (3.96) may be exactly diagonalized by means of a chain T of unitary transforma-
tions after which it may be put in the following form (see Appendix D.1). In the case of an odd number
of spins, it reads

H̃ ≡T †HT = h̄

[
ω1+

N

∑
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ωk

k

∏
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z
k′

]
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∏
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]
σ̂

z
1,

(3.97)
whereas for an even number of spins, it assumes the form

H̃ ≡ T †HT = h̄

[
ω1 +

N
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k=2

ωk
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∏
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σ
z
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]
σ̂

z
1 + γxσ̂
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(−1)
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]
σ̂
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N/2

∏
k=1

σ
z
2k. (3.98)

The total unitary operator accomplishing this chained transformations may be written as

T =
1

2N−1

N−2

∏
k=0

[
1+ σ̂

z
N−(k−1)+ σ̂

x
N−k− σ̂

z
N−(k+1)σ̂

x
N−k

]
. (3.99)

We see that the only dynamical variable representing the k-th spin with k 6= 1 in H̃ (even and odd

case), is σ̂
z
k which is constant of motion for H̃ even if

∂

∂ t
H̃ 6= 0. This means that we may treat all the
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σ̂
z
k (k 6= 1) as numbers (+1 or -1) and the string of values of these constants of motion identifies one

specific subspace out of the 2N−1 dynamically invariant Hilbert subspaces (this is the reason why we
left the hat on top the operators). Therefore, treating σ̂

z
k (k 6= 1) as parameters, Eqs. (3.97) and (3.98)

give us 2N−1 effective Hamiltonians of the first spin-1/2. Exploiting the explicit expression of T , the
dynamics generated by each effective Hamiltonian is turned into the dynamics of the N-spin system
which of course will take place in a 2×2 still invariant subspace of H as given by Eq. (3.96).

We remark that, in each of such two-dimensional subspaces, the dynamics involves a specific state
of the standard basis (s.b.), |s.b.〉, and the relative flipped state, that is the one identified by

⊗
k σ̂ x

k |s.b.〉.
Then, we have, for example, subdynamics involving the following couples of states: |+〉⊗(N−m)|−〉⊗m

and |−〉⊗(N−m)|+〉⊗m [σ̂ z
i |±〉 = ±|±〉]. This means, in particular, that the dynamically invariant sub-

space identified by the eigenvalues σ
z
k = 1 (for all possible k 6= 1) involves the two states |+〉⊗N and

|−〉⊗N of the N-spin system. This implies the possibility of easily generating GHZ states of the N-spin
system through this kind of interactions between the spins, as it is well known in literature [8, 108].
Moreover, the added value of this model lies in the application of appropriately engineered (time-
dependent) magnetic fields, in order to govern the transition of the spin system between the two states,
or to manipulate in time the generation of specific superposition states. However, to this end, a time-
dependent analysis of the problem is necessary.

Up to now, we have only considered a time-independent Hamiltonian model. Nevertheless, note that
the same arguments discussed above hold for a time-dependent Hamiltonian as well. The mathemati-
cal reason is that the unitary transformation operator T is independent of the Hamiltonian parameters.
In this way, we are able to break down the time-dependent Schrödinger equation for our N-spin sys-
tem into a set of 2N−1 decoupled time-dependent Schrödinger equations (see Appendix D.2). This
implies that an exactly solvable time-dependent scenario of a spin-1/2 could be an exactly solvable
scenario for our N-spin system dynamics restricted in one of the 2N−1 dynamically invariant Hilbert
subspaces. Therefore, the knowledge of exactly solvable problems of a single spin-1/2 subjected to a
time-dependent magnetic field [31, 33, 35, 36, 37, 38]) becomes strategic.

3.3.2 Controllable quantum dynamics
Let us now consider the following specialized model

H = h̄ω1σ̂
z
1 + γx

⊗
k

σ̂
x
k (3.100)

and the initial condition |ψ(0)〉 = |+〉⊗N (σ̂ z|±〉 = ±|±〉). In this instance, following our previous
symmetry-based analysis, the problem is reduced to the following fictitious single-spin-1/2 problem
H̃ = h̄ω1σ̂

z
1 + γxσ̂ x

1 , regardless of the parity of N. If we now suppose that ω1 varies over time in such a
way to produce a perfect inversion of the fictitious spin or a balanced superposition between the states
|+〉1 and |−〉1, it means that in the language of the N spins we are producing, respectively, a perfect
inversion of all the spins at the same time and a GHZ state of our N-spin system. These two cases are
considered in the figure below where the exact probability transition P−+ (t) of finding the N-spin system
in the state |−〉⊗N starting from |+〉⊗N is reported for two different time-dependences of the magnetic
field acting upon the first spin, against the dimensionless time τ = γxt/h̄. The expressions both of the
magnetic fields (Figs. 3.5a and 3.5c) and the related transition probabilities (solid lines in Figs. 3.5b
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and 3.5d, rspectively) are analytically derived by exactly solving the single-spin-1/2 dynamical problem
[38]. The time-dependences of the fields and the related analytical solution of the dynamical problems
are the ones reported in Secs. 1.2.2 and 1.3.2. Thus, these cases represent exactly solvable time-
dependent scenarios for the dynamics of the N-spin system restricted to the two-dimensional subspace
involving the states |+〉⊗N and |−〉⊗N . Analogously, we may generate Rabi oscillations between the
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Figure 3.5: (Color online) Time dependences of the magnetic field acting upon the first spin of the
chain [a) and c)] with the related time behaviour of the transition probability from |+〉⊗N to |−〉⊗N [b)
and d), respectively]. The first case consists in generating a superposition between the two states; the
second case realizes an inversion of all spins in the system. The constant dashed lines in Figs. b) and
d) represent P−+ = 1/2 and P−+ = 1, respectively.

two states of the N−spin system involved in the subdynamics, by appropriately varying over time the
parameter γx [31]. This means that, through the N-spin model under scrutiny, we may govern the
dynamics of the whole N-spin system by appropriately engineering in time either the magnetic field
acting upon only the first spin (ancilla qubit) or the coupling parameter or both.

3.3.3 Selective interaction-based cooling effect

Now we want to discuss a possible application of experimental interest aiming at attaining a cooling
effect of the whole spin system. It is based on the possibility of selecting the invariant subspace wherein
the N-spin-system dynamics occurs by appropriately varying over time the coupling parameter(s). This
idea was presented for the first time in [189] but developed within another physical context. To this
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end, let us consider the following specialized model

H =
N

∑
k=1

h̄ωkσ̂
z
k + γx(t)

⊗
k

σ̂
x
k + γy(t)

⊗
k

σ̂
y
k , (3.101)

with γx(t) = γ cos(νt) and γy(t) = γ sin(νt) and for an odd number of spins. In this way, in each
subdynamics we have Rabi oscillations between the two involved standard basis states. We know that
these oscillations occur with maximum probability when the oscillation frequency of the (fictitious)
transverse magnetic field (ν), is equal to the characteristic frequency between the two energy levels.
Let us analyse the following conditions: 1) the characteristic frequencies of all spins are much larger
than the coupling constant, ωk� γ/h̄; 2) the oscillation frequency of the coupling constants (ν) matches
the resonant condition in a specific subspace. In these instances, then, we obtain a complete oscillating
behaviour in this ‘selected’ subspace, while in all the other ones the system dynamics is frozen since
the transition probability is negligible.

To be more explicit, let us consider for simplicity three spins and the initial condition involving all
the states characterized by the first spin (ancilla qubit) in the state |+〉. In each subspace the probability
of transition from the effective state |+〉 to the effective state |−〉 reads P−+ (t) = (γ/h̄)2

(γ/h̄)2+∆2
n

sin
(

ωR
2 t
)
,

with ωR =
√

∆2
n +(γ/h̄)2 and ∆n =

[
ω1 +∑

3
k=2 ωk ∏

k
k′=2 σ̂

z
k′
]
+νn. Here n discriminates the different

sub-dynamics and νn =±ν depending on the sub-space, as it is clear by Eq. (3.97). It is easy to verify
that if we assume now, for example, ν = −∑

3
k=1 ωk we have complete oscillations, that is P−+ (t) =

sin
(

ωR
2 t
)
, only in the subspace involving the two states |+〉⊗3 and |−〉⊗3. In the other subspaces,

instead, providing that the condition ωk � γ,∀k is satisfied, the probability of transition is negligible
and the dynamics is frozen, in the sense that the state remains the initial one.

This coupling-based dynamical selectivity turns out to be of particular relevance in the light of the
following application of experimental interest. In the case of three spins under scrutiny, for the sake of
the simplicity, let us take into account the following initial condition

ρ(0) =|+〉〈+|1⊗ [p1|++〉〈++|+
+ p2|+−〉〈+−|+ p3|−+〉〈−+|+ p4|−−〉〈−−|].

(3.102)

At the light of the previous discussion, considering a π-pulse, it is easy to verify that we may write the
state at time t as

ρ(t)≈ p1|−〉〈−|1⊗|−−〉〈−−|+
+ |+〉〈+|1⊗ [p2|+−〉〈+−|+ p3|−+〉〈−+|+ p4|−−〉〈−−|].

(3.103)

Thus, a measurement act on the first spin projecting it in the state |−〉1, has the effect to project all other
spins too into their down-states. Therefore, through an ancilla qubit and the specialized interaction
model under scrutiny leading to a selective coupling, we may produce what we may call a selective-
interaction-based cooling effect of the spin system. It is easy to understand that an analogue result may
be obtained also for a greater odd number of spins.

It is important to stress that the previous procedure and result are not valid in case of an even
number of spins. This is due to the fact that, as we can see in Eq. (3.98), in each subdynamics we have
an effective transverse magnetic field only along the x-direction and then the Rabi scenario with the
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related dynamics cannot be reproduced. However, additional appropriate conditions help to circumvent
the N-parity constraint giving rise even in this case to a similar result of selective-interaction-based
cooling effect. Let us consider, for simplicity, only the coupling in the x-direction, that is the following
further simplification of Eq. (3.96): H(t) = ∑

N
k=1 h̄ωkσ̂

z
k + γx(t)

⊗
k σ̂ x

k . It is possible to see that if ω1
is sufficiently greater than all the other ωk we may use the RWA [43] in each subspace and then, in
this instance, we restore the presence of Rabi oscillations in each subspace. Matching the oscillation
frequency of the coupling constant γx(t) with the characteristic frequency of the subspace involving the
states |+〉⊗N and |−〉⊗N , namely ν = ∑

N
k=1 ωk, we obtain complete oscillations only in such a subspace.

The other sub-dynamics, instead, will be characterized by a frozen dynamics, provided that ωk� γ,∀k.
Therefore, if the system starts from the analogous state written in Eq. (3.102), we achieve also for an
even number of spins the ‘cooling effect’ thanks to the possibility to select a specific subspace in which
the N-spin dynamics takes place. As a last remark it is worth to note that in this last case the result
is based on the RWA, while in the different scenario for an odd number of spins, the result previously
exposed is exact. It is interesting to note that this aspect can be seen also as an N-parity-dependent
physical response of the system.

3.3.4 Summary and remarks
In this paragraph we have exactly solved a time-dependent model of N spin-1/2 systems comprising
highly non-local interactions. First, we have shown that, thanks to non-local N-order interaction terms,
it is possible to reverberate to all the spins in the system the dynamical effects generated in one of
the N spins (ancilla qubit) by the application of a time-dependent magnetic field. This allows us to
generate easily GHZ sates or a contemporary perfect inversion of all the spins. Second, we proposed
a protocol through which we may generate a cooling effect of the whole spin system based on what
we called selective interaction. The latter consists in the possibility to select a specific dynamically
invariant subspace for a non-trivial dynamics of the N-spin system, by appropriately engineering the
time-dependence of the coupling parameters.

The key to get such physical results lies on the possibility to solve exactly the dynamics of the
N-spin system by reducing the problem into a set of independent dynamical problems of single spin-
1/2’s. As a final remark, it is worth noticing that this fact, identifiable as a result itself, makes possible
the study of the dynamics of the system also when we consider random fluctuating components of the
magnetic fields [86, 177]. This would permit to analyse possible effects on the dynamics of the N
spins stemming from the coupling with an environment and to consider, then, situations closer to the
experimental ones.

The results reported in this last paragraph have been published in Ref. [193].
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Chapter 4

Beyond Spin Systems

The main scope of this chapter is to show new and wider horizons for the applicability of the method
previously adopted to treat and solve semi-classical spin models and then physical systems living in
finite-dimensional Hilbert spaces. Here, indeed, we analyse the dynamics of two interacting quantum
harmonic oscillators whose Hamiltonian presents time-dependent parameters. Moreover, we compare
this system with the one in which one of the two oscillators is substituted with an inverted quantum
harmonic oscillator, known in literature as Glauber amplifier.

4.1 Glauber amplifier interacting with a quantum oscillator
In 1982 Glauber introduced the idea of quantum amplifier [194, 195] modelled through an inverted
harmonic oscillator, that is, a system whose Hamiltonian may be represented as

− h̄ω(ĉ†ĉ+1/2), (4.1)

where ĉ and ĉ† are bosonic operator satisfying the usual commutation rule [c,c†] = 1. The eigenstates
of the Hamiltonian are [196]

|n〉= (ĉ†)n
√

n!
|0〉 (4.2)

where the null state is defined as ĉ|0〉 = 0. It is important to point out that such a state is not the
ground state of the system and, in particular, that the inverted oscillator does not possess a ground state.
Moreover, it is worth noticing that the role of the operators ĉ and ĉ† is reversed with respect to that of
the standard â and â† operators. Indeed, the operator ĉ†, increasing the number n of excitations, moves
the inverted oscillator system towards lower energy states (and vice versa for ĉ).

In Ref. [194, 195] Glauber studies the thermodynamics of the amplifier system when it interacts
with a bath of standard quantum harmonic oscillators. The same system is analysed in detail in Ref.
[196]. In order to take into account interaction terms preserving the energy of the system, Glauber first
considers the following interaction model: ∑i h̄ωiâ

†
i âi− h̄ωcĉ†ĉ+∑i(kiâiĉ+ k∗i â†

i ĉ†), where âi and â†
i

are the bosonic operators of the i-th standard oscillator. Glauber makes evident the peculiar features
of such a ‘non-standard’ system by making a comparison with the more familiar system comprising a
‘standard’ harmonic oscillator interacting with the bath.

79
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The interest of Glauber in studying such a kind of system stems from fundamental issues concerning
quantum mechanics [194, 195]. Precisely, he proposed the inverted oscillator as a toy-system through
which investigate and explain irreversible processes such as wavefunction collapse and exponential dy-
namics, that is the exponential decaying behaviour of physical quantities. Such observed phenomena,
indeed, as we know, cannot be deduced from dynamical equations and first principles at the basis of
quantum mechanics. They are often described as result of phenomenological coupling with environ-
ment, even if some times this coupling is too small to correctly explain the observed decay rate. The
strategy of Glauber to circumvent the phenomenological approach by introducing the inverted quantum
harmonic oscillator, has the merit to introduce the irreversibility as a product of intrinsic dynamical
processes, avoiding the consideration of a disturbing bath.

The idea of an inverted quantum harmonic oscillator behaving as amplifier is related to the basic
issue concerning the measurement process in quantum mechanics. The measurements act, indeed,
requires to be formally depicted as an amplification process, characterized by a strong irreversibility in
order to avoid paradoxes such as the well-known Schrödinger’s cat. The quantum nature of the Glauber
amplifier, indeed, makes the amplification process both noisy and irreversible in order to prevents the
occurrence of strange undesired phenomena [195].

The inverted harmonic oscillator, of course, is an ideal system impossible to be experimentally
realized. However, what we are interested in are physical systems that, under specific conditions,
behaves in such a way that they can be mathematically described by a quantum Glauber amplifier
interacting with a bath of quantum harmonic oscillators. Two examples of such systems are: 1) a single
atom with huge angular momentum J and subjected to a magnetic field; 2) a set of N two-level atoms
identically coupled to the same field. When the systems start from an eigenstate of Jz (in case of N
spin-1/2 the total component Jz = ∑i jz

i ) with value not to far from J, their superfluorescent emission
dynamics can be well approximated with that of the Glauber system. Correctly speaking, such systems
are non-linear amplifiers, indeed the acceleration of the radiation rate do not continue indefinitely;
however, the dynamical regime related to large values of Jz can be quite accurately described in terms
of linear quantum amplifiers [194, 195].

It is relevant to highlight that the first experimental realization of a Glauber-like system has been
realized in non-linear optics context through shock wave generation [197]. In this case we speak of
Glauber-like amplifier since the system is properly described by the Hamiltonian of a reversed quantum
harmonic oscillator rather than an inverted one: it is characterized by positive kinetic energy and a
neative potential energy (in the Glauber amplifier, instead, both the energy contributions are negative).
The Glauber amplifier presents thus a high potentiality both from a theoretical point of view stimulating
innovative tests to fundamental physical theories and also in the applicative side in designing new
devises as lasers or amplifiers.

In the following paragraphs we study the dynamics of a standard quantum oscillator coupled with
a quantum Glauber amplifier when the Hamiltonian parameters are time-dependent. We are interested
in the interaction terms conserving the number of excitations, rather than the energy of the system.
Through the Jordan-Schwinger map, the oscillator-amplifier dynamical problem, within each dynam-
ically invariant Hilbert space related to a precise excitation number N, is reduced into that of a single
spin of value N/2. In this way, we are able to formally construct the time evolution operator and get
the exact dynamics of the system for specific initial conditions under precise time-dependent scenar-
ios, such as the Rabi [31, 32] and the Landau-Majorana-Stückelberg-Zener [33] ones. We calculate
the mean value of the energy when the system is initially prepared in the generalized NOON state
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(cos(θ)|N0〉+ eiφ sin(θ)|0N〉)/
√

2. Furthermore, following the same spirit of the Glauber’s work, we
compare the dynamics of the quantum oscillator-amplifier system with that of two interacting standard
quantum oscillators described by the analogous time-dependent Hamiltonian model preserving the total
number of excitations. Indeed, also in this case we are able to explicitly write the formal expression
of the time evolution operator and the specific one when precise time-dependent scenarios are consid-
ered. Remarkable differences between the two dynamical systems are brought to light by studying the
transition probability between the states |10〉 and |01〉 and the mean value of the energy for the NOON
state (|10〉+ |01〉)/

√
2.

4.1.1 Hamiltonian model and solution of the dynamical problem
Let us consider a quantum optical system comprising a quantum oscillator interacting with a Glauber
amplifier, namely:

Hho(t) =
Ω(t)

2
(α̂†

α̂− β̂
†
β̂ )+ω(t)α̂†

β̂ +ω
∗(t)β̂ †

α̂, (4.3)

It can be verified that ˆN = α̂†α̂ + β̂ †β̂ is constant of motion of Hho(t) with integer eigenvalues
N = n1 + n2 = 1,2,3, . . . . The infinite Hilbert space, thus, can be subdivided into finite Hilbert sub-
spaces each of which related to a precise number of collective excitations and so of different increasing
dimension. It is worth pointing out that, on the basis of the Jordan-Schwinger map:

Ŝ+ = α̂
†
β̂ , Ŝ− = β̂

†
α̂, Ŝz =

1
2
(α̂†

α̂− β̂
†
β̂ ), (4.4)

the effective Hamiltonian governing the dynamics of the quantum optical system can be mapped in
each dynamically invariant subspace into that of a spin s, namely

Hs(t) = ω(t)Ŝ++ω
∗(t)Ŝ−+Ω(t)Ŝz, (4.5)

where the value of the spin is linked to the number of total excitations by s = N/2. This is the key-
point which allows us to derive the exact analytical expression of the time evolution operator of the two
coupled quantum harmonic oscillator model.

We know [39, 40] that the time evolution operator U1/2 of H1/2 for a spin 1/2 may be written as

U1/2 =

(
a(t) b(t)
−b∗(t) a∗(t)

)
(4.6)

where a ≡ a(t) and b ≡ b(t) are two parameter time-functions, being solutions of the system in Eq.
(1.16) stemming directly from the equation ih̄U̇1/2 = H1/2U1/2.

The time evolution operator Us, solution of the equation iU̇s =HsUs, in the standard ordered basis of
the eigenstates of the third component (ŝz) of the spin s: {|m〉,m = s,s−1, . . . ,−s}, may be written in
terms of the same two parameter time-functions a and b [39, 40] as reported in Eqs. (3.77) and (3.78).
Therefore, this means that by solving the problem for a single spin-1/2 we may derive and construct the
solution for the analogous problem of a generic spin s subjected to the same time-dependent magnetic
field.

We noticed before that the total Hilbert space H of the two quantum harmonic oscillators is di-
vided into dynamically invariant and orthogonal Hilbert subspaces HN related to the different integer
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eigenvalues of the integral of motion ˆN , that is the different values of collective excitations of the
system. We may write so

H =
⊕

N

HN , (4.7)

with N = n1 +n2, and consequently the time evolution operator V of Hho may be cast in the following
form

V =
⊕

N

VN , (4.8)

where VN is a unitary operator responsible of the time evolution of the two harmonic oscillators in the
subspace with N excitations. In this manner it is easy to see that V possesses the property

〈n1,n2|V |m1,m2〉=

{
6= 0, n1 +n2 = m1 +m2

0, n1 +n2 6= m1 +m2
(4.9)

reflecting clearly the orthogonality between the Hilbert subspaces related to different values of total
excitations.

By taking into account the following equality VN =UN/2, on the basis of the J-S mapping, it is easy
to check that the general probability amplitude in the coordinate representation, result

〈x′1,x′2|V |x1,x2〉=
∞

∑
n1,n2,m1,m2=0

〈x′1,x′2|n1,n2〉〈n1,n2|VN |m1,m2〉〈m1,m2|x1,x2〉

=
∞

∑
N=0

N

∑
n,m=0

〈x′1,x′2|n,N−n〉〈n,N−n|UN/2|m,N−m〉〈m,N−m|x1,x2〉,
(4.10)

where we used the completeness relation ∑
∞
n1,n2=0 |n1,n2〉〈n1,n2|= 1, writeable as

∞

∑
N=0

N

∑
n=0
|n,N−n〉〈n,N−n|= 1, (4.11)

with n1 + n2 = N. We see that the final expression in (4.10) is well defined since the general term
〈n,N−n|U (N/2)|m,N−m〉 may be recovered by Eqs. (3.77) and (3.78), while from the basic books of
quantum mechanics it is well known that [43]

〈x|n〉= 1
π1/4
√

2nn!
1

xn+1/2
0

(
x− x2

0
d
dx

)n

exp

{
−1

2

(
x
x0

)2
}
, (4.12)

with x0 =
√

h̄/mω̃ , where m and ω̃ are the mass and the angular frequency of the classical oscillator,
respectively. However, it is important to point out that, although we may write the formal expression of
〈x′1,x′2|V |x1,x2〉, such a formula cannot be practically exploited since in such a case an infinite number
of invariant subspace are involved; the same happens, e.g., for coherent states.
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4.1.2 Time evolution and energy mean value for NOON states
Our analysis results useful when initial conditions involving a finite number of subspaces are consid-
ered. In this respect, let us study the generalized NOON states belonging to the different subspaces,
namely

|Ψθ ,φ
N (0)〉= cos(θ)|N0〉+ eiφ sin(θ)|0N〉, N =,1,2, . . . (4.13)

On the basis of our previous analysis, it is easy to see that the evolved state of the general NOON state
can be formally written as |Ψθ ,φ

N (t)〉=VN |Ψθ ,φ
N (0)〉=UN/2|Ψ

θ ,φ
N (0)〉.

It is possible to persuade oneself that, for a general excitation number N, we have

〈Ψθ ,φ
N (t)| α̂

†α̂− β̂ †β̂

2
|Ψθ ,φ

N (t)〉

=
N
2
(|a|2−|b|2)cos(2θ)+Re[ab∗e−iφ ]sin(2θ)δ1N , (4.14a)

〈Ψθ ,φ
N (t)|α̂β̂

†|Ψθ ,φ
N (t)〉= [〈Ψθ ,φ

N (t)|α̂†
β̂ |Ψθ ,φ

N (t)〉]†

=−Nabcos(2θ)+
a2e−iφ −b2eiφ

2
sin(2θ)δ1N . (4.14b)

From the previous expression it is easy to check that for N ≥ 2 and θ = π/4 the three quantities vanish.
It is worth pointing out that such a circumstance is independent of the specific time-dependence of the
Hamiltonian parameters. This fact means that in the case of the initial condition Ψ

π/4,φ
1 (0) the time

evolution of the mean value of the energy reads

〈Ψπ/4,φ
1 (t)|H(t)|Ψπ/4,φ

1 (t)〉= ΩRe[ab∗e−iφ ]+Re[ω∗(a2e−iφ −b2eiφ )], (4.15)

while the following classes of NOON states

|Ψπ/4,φ
N (0)〉= |N0〉+ eiφ |0N〉√

2
, N ≥ 2, (4.16)

independently of the time-dependent scenario, exhibit a constant vanishing mean value of the energy
in time, that is:

〈Ψπ/4,φ
N (t)|H(t)|Ψπ/4,φ

N (t)〉= 0, (4.17)

where |Ψπ/4,φ
N (t)〉=VN |Ψπ/4,φ

N (0)〉=UN/2|Ψ
π/4,φ
N (0)〉. We underline that such a result is a particular

case due to the coincidence of different factors: the symmetry of the states, the su(2) symmetry of the
dynamics and the specific operators we have taken into account. Indeed, it is possible to verify that if
we consider, in the case N = 2, the state (|20〉+ |11〉+ |02〉)/

√
3, we get a non-vanishing mean value

of the energy. Analogously, if consider the non-linear operators (αβ †)2, (α†β )2, (α̂†α̂− β̂ †β̂ )2/4 and
the initial state |Ψθ ,φ

2 (0)〉 we obtain

〈Ψθ ,φ
2 (t)|(α̂

†α̂− β̂ †β̂ )2

4
|Ψθ ,φ

2 (t)〉= |a|4 + |b|4 +2Re[(ab∗)2e−iφ ]sin(2θ), (4.18a)

〈Ψθ ,φ
2 (t)|(α̂β̂

†)2|Ψθ ,φ
2 (t)〉= [〈Ψθ ,φ

2 (t)|(α̂†
β̂ )2|Ψθ ,φ

2 (t)〉]†

=
(a4e−iφ +b4eiφ )cos(θ)sin(θ)+a2b2

2
, (4.18b)
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which are different from zero also for θ = π/4, so that the mean value of the energy is neither vanishing
nor constant in time. We stress, moreover, that such a calculation shows that correlations between the
inverted and the normal quantum harmonic oscillator are present since the covariances of the operators
under scrutiny result different from zero.

4.1.3 Time evolution under specific scenarios

In this section we analyse specific time-dependent scenarios to show the practical applicability of our
analysis and results previously discussed.

Time-Independent Case

First of all, let us take into account the simplest case, that is when the Hamiltonian parameters are
time-independent: Ω(t) = Ω0 and ω(t) = ω0. Moreover, let us consider, for simplicity, ω0 a real
parameter; such a choice is justified by the fact that a unitary transformation (a rotation with respect to
ẑ) can be always performed in order to make ω a real parameter. In this instance the two time-function
parameters a and b, solving the system in Eq. (1.16), acquire the following form

a(t) =
[

cos(τ)− i
Ω0

2h̄ν
sin(νt)

]
, b(t) =−i

ω0

h̄ν
sin(νt), (4.19)

with h̄ν ≡
√

Ω2
0/4+ω2

0 . In this way we can get explicit analytical expressions for all the formulas we
obtained before. We can calculate, for example, the time evolution of the mean value of the energy.
In Fig. 4.1 we report the θ -dependence of such a quantity when the system is initialized in the state
|Ψθ ,0

1 〉, whose general expression is reported in Eq. (4.15); it is easy to see that in this time scenario,
as expected, the mean value energy is constant in time and depends only on the parameter θ [see Eq.
(4.13)].

1 2 3 4 5 6
Θ

-0.4

-0.2

0.2

0.4

XH�W0\

Figure 4.1: (Color online) Mean value of the energy in Eq. (4.15) scaled with respect to the parameter
Ω(t) = Ω0, with ω(t) = 0.1Ω0 and versus the parameter θ , when the quantum oscillator-amplifier
system starts from the state |Ψθ ,0

1 〉 [Eq. (4.13)].
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Rabi Scenario

Now, we consider the real coupling parameter oscillating in time, namely ω(t) = ω0 cos(ν0t), and
leave the parameter Ω(t) = Ω0 constant. Such a physical scenario, in terms of the spin language, may
be reduced to the well known Rabi model [31, 32]. Precisely, under the conditions ω0/Ω0 � 1 and
ν0 = Ω0/2h̄ (resonance condition), only the rotating terms of the time-dependent transverse field (ω)
are relevant for the dynamics of the system, so that the counter rotating ones can be disregarded. In this
instance, the coupling parameter becomes ω = cos(ν0t)− isin(ν0t). The related dynamical problem
may be exactly solved and the expressions of a and b defining the time-evolution operator, solutions of
(1.16) read

a = cos(kτ
′)e−iτ ′, b =−isin(kτ

′)e−iτ ′, τ
′ = ν0t, k = ω0/Ω0. (4.20)

The time evolution of the mean value of the energy [Eq. (4.15)] when the quantum oscillator-amplifier
system starts from the state |Ψπ/4,0

1 〉 [Eq. (4.13)], is reported in Fig. 4.2a, for ω0/Ω0 = 0.1, with respect
to the dimensionless time τ ′ = ν0t. We see the presence of the typical oscillatory regime of the Rabi
scenario, being

〈Ψπ/4,0
1 |U†HU |Ψπ/4,0

1 〉= ω0 cos(kτ
′). (4.21)

Landau-Majorana-Stückelberg-Zener Scenario

The Landau-Majorana-Stückelberg-Zener (LMSZ) scenario [33] is characterized by a linear longitu-
dinal (in the z direction) ramp, namely, Ω(t) = γ t, with t ∈ (−∞,∞) and a transverse (along the x
direction) constant field, ω = ω∗ = ω0. The LMSZ scenario is an ideal model since it provides for an
infinite duration of the physical procedure. To comply with more physical experimental condition, it is
more appropriate to consider finite values for the initial and final time instants. In this case, the exact
solution of a(t) and b(t) for the system in Eq. (1.16) [69] are reported in Eqs. (2.38).

The plot of the mean value of the energy for the initial condition |Ψπ/4,0
1 〉 in such a scenario is

reported in Fig. 4.2b. We note that the curve is symmetric with respect to the time instant (t = 0) in
which the avoided crossing occurs. This circumstance can be understood by writing the state of the
system at a general time instant t:

U1/2(t)|Ψ
π/4,0
1 〉= (a+b)|10〉+(a+−b∗)|01〉√

2
, (4.22)

and by considering that under the LMSZ scenario a(t) [b(t)] goes from 1 [0] to 0 [1]. Thus, it means that
the system reaches asymptotically the state (|10〉− |01〉)/

√
2 which differs from the initial condition

[(|10〉+ |01〉)/
√

2] only for a relative phase factor.

4.2 Two interacting standard quantum harmonic oscillators
Let us consider now the same model for two standard quantum harmonic oscillators:

H ′ho =
Ω(t)

2
(α̂†

α̂ + β̂
†
β̂ )+ω(t)α̂†

β̂ +ω
∗(t)β̂ †

α̂, (4.23)
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Figure 4.2: (Color online) Mean value of the energy when the oscillator-amplifier [oscillator-oscillator]
system starts from |Ψπ/4,0

1 〉 for a) the Rabi scenario with ω0/Ω0 = 0.1 and b) the LMSZ scenario when
ω2

0/h̄γ = 1. Mean value of the energy when the oscillator-oscillator system starts from |Ψπ/4,0
1 〉 for c)

the Rabi scenario with ω0/Ω0 = ω0/2h̄ν0 = 0.1 and d) the LMSZ scenario when ω2
0/h̄γ = 1.
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It is easy to understand that the total excitation number ˆN = α̂†α̂ + β̂ †β̂ is a constant of motion for
this Hamiltonian too, [H ′(t),N ] = 0. This fact implies that, also this time, we have an infinite number
of dynamical invariant Hilbert subspaces related to the different eigenvalues N = 1,2 . . . of ˆN . It is
possible to persuade oneself that, in this case, the two oscillator dynamical problem may be mapped
within the N +1-dimensional subspace (linked to the eigenvalue N of N ) into a spin-N/2 dynamical
problem related to the following Hamiltonian:

HN =
N
2

Ω(t)1̂+ω(t)Ŝ++ω
∗(t)Ŝ− (4.24)

In this instance, the time evolution operator governing the dynamics within such a subspace can be
written as

VN(t) = exp
{
− i

h̄
N
2

∫ t

0
Ω(t ′)dt ′

}
UN/2(t) (4.25)

with UN/2 defined in Eq. (3.77), where a(t) and b(t) are the solutions of the system of differential
equations originating from the spin-1/2 dynamical problem:

ȧ(t) = iω(t)b∗(t),

ḃ(t) =−iω(t)a∗(t),
a(0) = 1, b(0) = 0,

(4.26)

In the time-independent case, Ω(t) = Ω0 and ω(t) = ω0, the expressions of a(t) and b(t) are

a(t) = cos(ω0 t/h̄), b(t) =−isin(ω0 t/h̄). (4.27)

In the Rabi scenario, that is, when ω(t) = ω0e−iν0t , the two parameter time functions read instead

a(t) = cos(τ̃), b(t) =−i
ω0

h̄νR
sin(τ̃), τ̃ = νR t, νR =

√
ν2

0 +ω2
0/h̄2. (4.28)

In the LMSZ scenario (Ω(t) = γ t, ω = ω∗ = ω0) the expressions of the two time functions are very
similar to those in Eq.(4.29), namely

a(t) = cos(
√

χ/2 τ), b(t) =−isin(
√

χ/2 τ), τ =
√

γ/h̄ t, χ = 2ω
2
0/h̄γ, (4.29)

since Ω(t), in case of two interacting standard oscillators, plays no role in determining a(t) and b(t), as
it is clear from Eq. (4.26).

The time evolution of the mean value of the energy when the two interacting quantum oscillators
are initially prepared in |Ψπ/4,0

1 〉 is reported in Figs. 4.2c and 4.2d for the Rabi and the LMSZ scenario,
respectively, with ω0/Ω0 = ω0/2h̄ν0 = 0.1 in the first case and ω2

0/h̄γ = 1 in the second case. We see
that the Rabi scenario preserves, of course, its qualitative oscillatory regime, although the oscillation is
consistently different presenting a beat effect, since

〈Ψπ/4,0
1 |U†HU |Ψπ/4,0

1 〉= Ω0

2
+ω0 cos(ν0t)

[
cos2(νRt)+

ω2
0

h̄2
ν2

R
sin(νRt)

]
(4.30)
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A drastic change, instead, happens in the LMSZ scenario for which we have

〈Ψπ/4,0
1 |U†HU |Ψπ/4,0

1 〉=
√

h̄γ τ +ω0. (4.31)

This is due to the fact that the dynamics of the two-oscillator system is unaffected by the parameter
Ω(t) which, in the LMSZ framework, is the main parameter driving the time evolution of the system
and realizing the characteristic LMSZ dynamics as it happens for the oscillator-amplifier system.

To appreciate the difference between the dynamics of the two quantum systems even better, let us
consider now the time evolution of the state |N0〉; it is easy to see that

P0N
N0 = 〈0N|N0(t)〉 ≡ 〈0N|VN(t)|N0〉= 〈0N|UN/2(t)|N0〉= |b(t)|2N . (4.32)

We note that in the time-independent case, for the two standard oscillators, P0N
N0 = sin2N(ω0t/h̄) presents

oscillations with maximum amplitude. In the case of an oscillator coupled with a Glauber amplifier, in-
stead, such a transition probability, P0N

N0 = (ω0/h̄ν)2N sin2N(νt), cannot reach, in general, the maximum
value P0N

N0 = 1, unless in the more trivial case Ω0 = 0. The opposite situation occurs in the case of the
Rabi scenario. We have, indeed, P0N

N0 = (ω0/h̄νR)
2N sin2N(τ̃) for two oscillators and P0N

N0 = sin2N(kτ ′)
for the quantum oscillator-amplifier system. This circumstance can be traced back to the fact that the
resonant condition cannot be satisfied in the case of two standard oscillators (Ω0 plays no role in the
dynamics). Finally, we underline that the LMSZ scenario, in case of two standard oscillators, does not
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Figure 4.3: (Color online) Time evolution of the probability P01
10 = 〈01|U1/2(t)|10〉 = |b(t)|2 in the

LMSZ scenario with ω2
0/h̄γ = 1 for a) the oscillator-amplifier system and b) the oscillator-oscillator

system.

generate the typical LMSZ transition probability, but the behaviour of P0N
N0 results sinusoidal in time:

P0N
N0 = sin2N(τ̃). The oscillator-amplifier system, instead, exhibits an asymptotic full transition from
|N0〉 to |0N〉 under adiabatic conditions, that is, when ω0/γ � 1. The two different probabilities for
the LMSZ scenario are reported in Figs. 4.3a and 4.3b in case of N = 1 with ω2

0/h̄γ = 1.

4.3 Summary and remarks
Jordan [198] and Schwinger [199] have shown that the angular momentum operators can be expressed
in terms of quadratic expressions of two bosonic annihilation and creation operators â1, â2 and â†

1,
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â†
2. Such a general statement is known as Jordan-Schwinger map (4.4). Namely, given three N×N-

matrices A, B and C such that [A,B] =C, the three operators Â=∑
N
j,k=1 A jkâ†

j âk, B̂=∑
N
j,k=1 B jkâ†

j âk and

Ĉ = ∑
N
j,k=1C jkâ†

j âk satisfy the commutation relation [Â, B̂] = Ĉ. If matrices A, B and C are 2×2 Pauli
matrices this statement provides possibility to construct all the spin-states with S = 0,1/2,1,3/2, . . .
in terms of two oscillator states |n1,n2〉, where n1 + n2 = 2s+ 1. The original idea was to exploit the
solutions of the non-stationary Schrödinger equation related to two-mode parametric oscillator to map
them into solutions of the Schrödinger equation related to non-stationary Hamiltonians linear in the
generators of the SU(2) group.

In this chapter, instead, we adopted exactly the opposite strategy. Through the Jordan-Schwinger
mathematical trick, within each invariant subspace, it is possible to map the dynamical problem of the
oscillator-amplifier system into that of a single spin- j (the value of j depends on the dimension of the
subspace) characterized by a Hamiltonian linear in the su(2) generators. Thanks to the knowledge of
the formal expression of the SU(2)-group elements (representing the time evolution operators solution
of the dynamical problem of the general single spin- j) we constructed the time evolution operator of the
quantum oscillator-amplifier system. Moreover, on the basis of the knowledge of exact solutions related
to specific time-dependent scenarios, we studied the exact dynamics of the system under such specific
time-dependent models. Following the same approach, we solved and analysed also the dynamics of
two interacting quantum harmonic oscillators, making a comparison between the two systems which
brought to light relevant physical analogies and differences. We emphasize moreover that other exact or
approximated solutions of the single qubit dynamical problem [35, 36, 37, 38, 200] may be exploited to
study the dynamics of the system under different physical conditions with possible useful applications.

Finally, we wish to point out that the same strategy can be used for arbitrarily Hamiltonians present-
ing a linear form in the generators of any Lie algebra. Also these generators, indeed, can be expressed
in terms of bosonic or fermionic creation and annihilation operators as quadratic forms in operators
with time-dependent coefficients. In that case, it results of basic importance the knowledge of exact
solutions of dynamical problems characterized by different symmetries. In this respect, it is interesting
to underline that a solution method for dynamical problems related to su(1,1) Hamiltonians is presented
in the following chapter. Such kind of Hamiltonians are very useful and important to treat and study
open quantum systems living in finite Hilbert spaces and described by pseudo-Hermitian Hamiltonians,
such as PT -symmetry physical systems [11, 27, 28, 29, 30]. Moreover, it is interesting to stress that in
case of infinite dimensional Hilbert spaces, like quantum oscillators and amplifier, the representation of
the SU(1,1) group results unitary and then appropriate to describe coherent dynamics of closed physical
systems.

The results discussed in this chapter have been reported in Ref. [201].
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Chapter 5

Non-Hermitian PT-symmetry su(1,1)
Dynamical Problems

The interest towards the study of non-Hermitian Hamiltonians (NHH) has grown exponentially in the
last decades and it is still growing. This is due not only to the applications they have in many different
fields of physics [110], but also to the relevant role played in understanding and developing fundamental
aspects of Quantum Mechanics.

To appreciate this point it is enough to observe that particular closed systems may often be described
by a non-Hermitian Hamiltonian invariant under the space-time inversion (PT-symmetry), implying a
possible extension of Quantum Mechanics [25, 26]. Many decades ago Feshbach employed for the first
time non-Hermitian Hamiltonians to represent effectively the coupling between a discrete level and a
continuum of states of a given quantum system [24]. Such an approach is still largely adopted nowa-
days to bring to light several physical aspects of open quantum systems [202], as for example phase
transitions and exceptional points [111]. An effective non-Hermitian Hamiltonian is characterized by
a secular equation with real coefficients, giving thus rise to either real or pairs of complex-conjugated
eigenvalues [203]. Such a property guarantees that a non-Hermitian Hamiltonian belongs to the class
of pseudo-Hermitian operators, provided it is diagonalizable and possesses a discrete spectrum [25].
This fact paved a way to significant research on specific non-Hermitian Hamiltonians [204], whose
physical implementations may be found in different contexts, like optical microspiral cavities [205],
microcavities perturbed by particles [206], or modelling the propagation of light in perturbed medium
[207, 208].

We are mainly interested towards dynamical problems of two-level systems described by a time-
dependent pseudo-Hermitian su(1,1) Hamiltonians. Such nonautonomous systems were rarely studied
in the context of pseudo-Hermitian dynamics. As we show, they may be of experimental interest, and
one of our aims is finding special classes of new exactly solvable cases. The reason why we concentrate
mainly on the dynamics of a two-level system stems from the fact that the dynamical problem of an N-
level system characterized by an su(1,1) Hamiltonian may be always traced back to that of a two-level
system [209]. This implies that we may construct the solution of the N-level system by knowing that
of the related two-level system [209]. Furthermore, we know that in conventional quantum mechanics
a variety of complicated quantum-mechanical problems can be reduced to the two-level model [12].
In many contexts, for example nuclear magnetic resonance [13], quantum information processing [9]
and polarization optics [14], essential changes in the system may be described in terms of a two-state
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dynamics. The interest towards su(1,1)-symmetric dynamical problem finds its reasons in the fact that
many physical scenarios exhibit such a kind of symmetry in their Hamiltonian operators. For example,
the dynamics of a N = 2 j+1-level atom in a cascade coupling with a laser beam with time-dependent
intensity and in the resonance condition (vanishing detuning) is characterized by a time-dependent
Hamiltonian embedded in the su(1,1) algebra [209]. Another important su(1,1) physical scenario
may be identified in the treatment of squeezed states of the electromagnetic field and scattering of
projectiles from simple diatomic molecules [15]. All these systems have a group structure resulting in
subdynamics with a su(1,1)-symmetry.

Moreover, a connection between su(1,1)-symmetric and PT -symmetric Hamiltonians can be easily
found. The most general 2x2 null-trace matrix representing a Hamiltonian that meets all the conditions
of PT quantum mechanics has the following form [210](

α iβ
iβ −α

)
, (5.1)

with real α and β . Non-Hermitian matrices of this structure comprise a proper sub-class of the set of all
su(1,1) matrices. An important application of PT -symmetric Hamiltonians is the study and description
of the dynamics of the so-called gain and loss systems [111, 211], which may be encountered and
realized in different physical contexts, exhibiting several interesting properties. In particular, such
systems can undergo a phase transition related to the PT -symmetry breaking [11, 27, 28, 29, 30].
In the cited papers an emphasis is put on how the phase transition may be governed experimentally
by manipulating the gain and loss parameters and how it can be related to the change of the energy
spectrum from a real to a complex one. One may, therefore, ask what happens if the parameter(s)
governing the reality/complexity of the spectrum (and, consequently, the symmetry properties of the
Hamiltonian) are time-dependent. From a theoretical point view several efforts are yet necessary for
a total comprehension and unifying description of dynamics related to time-dependent non-Hermitian
Hamiltonians. Quite recently, proposals and investigations of fundamental issues have been done [212,
213, 214, 215] and important physical aspects concerning time-dependent non-Hermitian Hamiltonians
have been brought to light [68, 112]. However, very few attempts concerning the identification of
classes of exactly solvable scenarios for physical systems described by time-dependent non-Hermitian
Hamiltonians were presented in the literature.

5.1 Exactly solvable time-dependent su(1,1) Hamiltonian models
The SU(1,1) group is not compact and as such it does not have finite-dimensional unitary represen-
tations. Its lowest-dimensional faithful matrix representation consists of the set of all 2× 2 unit-
determinant complex matrices U , satisfying the relation

σ̂
zU†

σ̂
z =U−1, (5.2)

σ̂ x, σ̂ y, σ̂ z being the standard Pauli matrices. Generators of this non-unitary representation (i.e. a basis
of the corresponding representation of the su(1,1) algebra) can be chosen as

K̂0 =
σ̂ z

2
, K̂1 =−i

σ̂ y

2
, K̂2 = i

σ̂ x

2
. (5.3)
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They satisfy the relations [216]

[K̂1, K̂2] =−iK̂0, [K̂1, K̂0] =−iK̂2, [K̂2, K̂0] = iK̂1. (5.4)

A t-dependent (in general, t is a generic parameter) null-trace 2x2 su(1,1) matrix is a linear combination,
with real t-dependent coefficients ω0(t),ω1(t) and ω2(t), of the generators K̂0, K̂1 and K̂2, namely

H(t) = ω0(t)K̂0 +ω1(t)K̂1 +ω2(t)K̂2. (5.5)

In terms of Pauli matrices it can be cast as

H(t) = Ω(t)σ̂ z + iωx(t)σ̂ x− iωy(t)σ̂ y

= Ω(t)σ̂ z−ω(t)σ̂++ω
∗(t)σ̂−,

(5.6)

where, conventionally, σ̂± = (σ̂ x± iσ̂ y)/2 and ω(t) is a complex parameter defined by ω(t) = ωy−
iωx ≡ |ω(t)|eiφω (t), and Ω(t) = ω0(t)/2,ωx(t) = ω2(t)/2,ωy(t) = ω1(t)/2. In this way, in the basis of
σ̂ z, the matrix representation of a general non-Hermitian operator H(t) belonging to the su(1,1) algebra
reads

H(t) =
(

Ω(t) −ω(t)
ω∗(t) −Ω(t)

)
. (5.7)

From Eq. (5.1) we see that the subclass of PT -symmetric su(1,1) Hamiltonians is identified by φω =
±π/2 or equivalently by ωy = 0.

It is important to underline that su(1,1)-symmetric Hamiltonians are pseudo-Hermitian, that is, by
definition [25], there exists at least one non-singular Hermitian matrix η such that

H†(t) = ηH(t)η−1. (5.8)

It is easy to see that the simplest matrix satisfying condition (5.8) is

η = σ̂
z =

(
1 0
0 −1

)
. (5.9)

A diagonalizable operator is pseudo-Hermitian, if and only if its eigenvalues are either real or grouped
in complex-conjugated pairs [25]. This fact is physically relevant, since it turns out to be the feature
possessed by the non-Hermitian Hamiltonians resulting by the procedure provided by Feshbach [24]
to describe effectively a quantum system with a discrete spectrum coupled to a continuum. Pseudo-
Hermitian Hamiltonians, thus, play a very important role in the study of open quantum system [111,
212, 213, 214, 215], especially in description of their particular experimentally detectable physical
aspects [111, 11, 27, 28, 29, 30].

The t-parameter-dependent spectrum of H(t) reads E±(t) =±
√

Ω2(t)−|ω(t)|2, which is real un-
der the condition |ω(t)|2 < Ω2(t). The reality of the spectrum is a sufficient and necessary condition
for H(t) to be quasi-Hermitian [25]; the condition of quasi-Hermiticity consists in the existence of a
positive-definite matrix η+ in the set of the matrices η accomplishing the equality in Eq. (5.8) [25]. It
can be verified that such a matrix reads

η+ =

(
1 −ω(t)/Ω(t)

−ω∗(t)/Ω(t) 1

)
, (5.10)
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which is positive-definite for |ω(t)|2 < Ω2(t). In this case we may identify a new Hilbert space in
which H(t) is Hermitian or, in other words, we may define a new scalar product 〈·|·〉η+ (defining the
new Hilbert space), namely 〈·|η+·〉 (where 〈·|·〉 is the standard Euclidean scalar product), with respect
to which H(t) is Hermitian. However, if the parameter t represents the time, this condition is not
sufficient for our Hamiltonian to describe a closed quantum physical system. In fact, it can be shown,
that a quasi-Hermitian time-dependent Hamiltonian describes a closed quantum system characterized
by a (pseudo-) unitary dynamics only if the positive-definite matrix η+ is time-independent [217]. This
implies that a su(1,1) Hamiltonian (5.7) can describe a closed quantum system only if φω(t) = const.
and Ω(t) and |ω(t)| have the same time-dependence, namely ω(t) = |ω0| f (t) and Ω(t) = Ω0 f (t), with
|ω0|2 < Ω2

0.
For all these reasons, in view of possible dynamical applications of finite dimensional su(1,1)-

symmetry Hamiltonians H(t) in either classical or quantum contexts, we search solutions of the Cauchy
problem (h̄ = 1)

iU̇(t) = H(t)U(t), U(0) = 1, (5.11)

which is the standard equation for the time evolution operator U(t). For a Hermitian Hamiltonian, when
the evolution of a state vector |ψ(t)〉 of the system in question is given by the the Schrödinger equation
i|ψ̇(t)〉 = H(t)|ψ(t)〉, the operator U(t) provides the solution |ψ(t)〉 = U(t)|ψ(0)〉. Correspondingly,
if a state of the system is described by a density matrix ρ(t) evolving according to i ˙ρ(t) = [H(t),ρ(t)],
the evolution is given as ρ(t) =U(t)ρ(0)U†(t).

Since H(t) is an element of the Lie algebra su(1,1), the evolution operator U(t) is an element of
the corresponding Lie group SU(1,1). It can be thus written as an exponential of a (time-dependent)
element X(t) ∈ su(1,1), i.e. U(t) = exp(−iX(t)). To find X(t) for a time dependent H(t), we have,
in general, to evaluate a time-ordered integral. Wei and Norman [218] proposed an alternative way
consisting in representing U(t) in the form of a product of exponentials, each involving a single gen-
erator of the Lie algebra multiplied by a time-dependent coefficient. The resulting equations for these
coefficients depend on the order of exponentials, but one can chose a canonical one that simplifies the
equations maximally for all interesting algebras [219]. In particular, in our case we write the non-
unitary operator U(t) in the form,

U(t)≡ eu1(t)σ̂+
e−u2(t)σ̂ z

eu3(t)σ̂−

=

(
e−u2(t)+u1(t)eu2(t)u3(t) u1(t)eu2(t)

eu2(t)u3(t) eu2(t)

)
,

(5.12)

getting from Eq. (5.11) the following system of differential equations
u̇1(t) = iω(t)−2iΩ(t)u1(t)+ iω∗(t)u2

1(t),
u̇2(t) = iΩ(t)− iω∗(t)u1(t),

u̇3(t) =−iω∗(t)e−u2(t),

(5.13)

to be associated with the initial conditions u j(0) = 0 ( j = 1,2,3). Once the first Riccati equation is
solved, the remaining two can be simply integrated so that the whole su(1,1)-symmetry Hamiltonian
problem may be exactly solved. A similar Riccati equation may be obtained when the analogous
problem for the su(2) case is treated and an interesting interplay between Physics and Mathematics has
recently been reported [200].



5.1. EXACTLY SOLVABLE TIME-DEPENDENT SU(1,1) HAMILTONIAN MODELS 95

Since no general method is available to solve the system (5.13) for arbitrary Ω(t) and ω(t), we look
for specific relations of physical interest between the Hamiltonian entries so that the Riccati equation
under scrutiny can be solved analytically. To this end let us consider the following change of variable

u1(t) = ieiφω (t)Y (t). (5.14)

Plugging this expression into the Riccati equation in Eq. (5.13), we arrive at the following Riccati-
Cauchy problem for the variable Y (t):

Ẏ (t) =−|ω(t)|Y 2(t)− i[2Ω(t)+ φ̇ω(t)]Y (t)+ |ω(t)|, Y (0) = 0. (5.15)

It is quite clear, then, that under the analytical constraint

2Ω(t)+ φ̇ω(t) = 2ν |ω(t)|, (5.16)

with ν a time-independent real non-negative dimensionless parameter, Eq. (5.15) becomes exactly solv-
able.

It is possible to adopt a different point of view to examine in depth the meaning of Eq. (5.16) if we
consider the evolution of a state vector |ψ(t)〉 of the system. To this end, inspired by the seminal paper
[32], we transform |ψ(t)〉 from the old basis to |ψ̃(t)〉 in a new basis,

|ψ(t)〉= exp{iφω(t)σ̂ z/2}|ψ̃(t)〉, (5.17)

getting the following new time-dependent Schrödinger equation

i| ˙̃ψ(t)〉= He f f (t)|ψ̃(t)〉, (5.18)

with

He f f (t) =
[

Ω(t)+
φ̇ω(t)

2

]
σ̂

z− i|ω(t)|σ̂ y. (5.19)

From this expression it is clear why the relation (5.16) is a solvability condition for our problem. Indeed,
the corresponding Schrödinger equation

i| ˙̃ψ(t)〉= |ω(t)| [2νσ̂
z− iσ̂ y] |ψ̃(t)〉, (5.20)

may be easily solved, even if the effective Hamiltonian is time-dependent.
The solution Yν(t) of the particular Riccati equation, related to a specific value of ν , reads

Yν(t) =

√
ν2−1 tan[

√
ν2−1 χ(t)]− iν tan2[

√
ν2−1 χ(t)]

ν2 sec2[
√

ν2−1 χ(t)]−1
, (5.21)

where the time-dependent positive function χ(t) is defined as

χ(t) =
∫ t

0
|ω(τ)|dτ. (5.22)
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We may identify different classes and related different solutions depending on the value of the
parameter ν . The case ν > 1 defines the trigonometric regime with solution Y t

ν(t) in the form (5.21).
For 0 < ν < 1 the solution Yν(t) is in the hyperbolic regime having the form

Y h
ν (t) =

√
1−ν2 tanh[

√
1−ν2 χ(t)]− iν tanh2[

√
1−ν2 χ(t)]

1−ν2 sech2[
√

1−ν2 χ(t)]
. (5.23)

The case ν = 1 defines the rational regime with

Y r
ν (t) =

χ(t)− iχ2(t)
χ2(t)+1

. (5.24)

Finally, for ν = 0 we have a real solution,

Y0(t) = tanh [χ(t)] . (5.25)

In this way, through Eq. (5.14), we may construct the time evolution operator of Eq. (5.12) for our
exactly solvable scenario. To this end, it is important to point out that the SU(1,1) group elements
and then the time evolution operators generated by the Hamiltonians in Eq. (5.7) depend on only two
complex parameters. Indeed, the Caley-Klein parametrization for the SU(1,1) group elements reads

U(t) =
(

a(t) b(t)
b∗(t) a∗(t)

)
, (5.26)

with |a(t)|2−|b(t)|2 = 1. Comparing this form with the one given in Eq. (5.12) it is easy to derive the
following relations

u1 =
b
a∗

, u2 = log(a∗), u3 =
b∗

a∗
, (5.27)

allowing us to simplify the matrix representation of the time evolution operator in terms of the u js
parameters as follows:

U(t) =
(

exp[u∗2(t)] u1(t)exp[u2(t)]
u∗1(t)exp[u∗2(t)] exp[u2(t)]

)
, (5.28)

with eu∗2(t)eu2(t)(1− |u1(t)|2) = 1. We see that in this case the expressions of the entries are easily
readable and symmetric. Moreover, only two out of the three initial parameters appear. Then, the
evolution operator for our general exactly solvable scenario may be written down as

Uν(t) =
(

exp[rν(t)]exp[−isν(t)] |Yν(t)|exp[rν(t)]exp [i(sν(t)+yν(t))]
|Yν(t)|exp[rν(t)]exp [−i(sν(t)+yν(t))] exp[rν(t)]exp[isν(t)]

)
,

(5.29)
with

rν(t) =
∫ t

0
|ω(τ)|Re[Yν(τ)]dτ, (5.30a)

sν(t) =
∫ t

0
Ω(τ)dτ +

∫ t

0
|ω(τ)| Im[Yν(τ)]dτ, (5.30b)

yν(t) =
π

2
+2ν

∫ t

0
|ω(τ)|dτ−2

∫ t

0
Ω(τ)dτ +ϕν(t), (5.30c)

ϕν(t) =−arctan

[
ν tan[

√
ν2−1χ(t)]√
ν2−1

]
. (5.30d)
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Finally, it is easy to verify that the following identity

det[Uν(t)] = exp[2rν(t)]
(
1−|Yν(t)|2

)
= 1, (5.31)

is fulfilled at any time instant t for arbitrary ν .

5.2 Non-Hermitian quantum mechanics issues
In what follows we aim at exploring the applicability of our results in a quantum dynamical context. We
underline that such an objective is not trivial since in the non-Hermitian Hamiltonian-based quantum
dynamics conceptual difficulties in the physical interpretation of the mathematical results, may occur.

5.2.1 Trace and positivity preserving non-linear equation of motion
In the two-dimensional su(1,1) case, in contrast to the su(2) one, the complex entries a(t) and b(t)
appearing in the operator U(t), [the solution of the Cauchy problem (5.11)] lack they usual physical
meaning. Indeed, in the su(2) case we interpret |a(t)|2 and |b(t)|2 as probabilities, while for the su(1,1)
case, considered in this paper, |a(t)|2 ≥ 1 since |a(t)|2−|b(t)|2 = 1 and, consequently, U(t) cannot be
identified as the unitary time evolution generator of a closed Hamiltonian system. This is intrinsically
related to the dynamics generated by a su(1,1) finite-dimensional Hamiltonian. Indeed, as already
mentioned earlier, only the infinite dimensional representations of SU(1,1) may be unitary.

A direct consequence of the non-unitarity of U(t) obscuring the physical interpretation of the math-
ematical results we get from the study of the Cauchy problem (5.11), is that the Schrödinger-type time
evolution of a density matrix ρ ′(t) =U(t)ρ ′(0)U†(t) does not preserve the trace of ρ ′. To recover the
necessary normalization condition at any time instant, following the approach introduced in Ref. [212],
we put

ρ(t) =
ρ ′(t)

Tr{ρ ′(t)}
, (5.32)

where ρ ′(t) =U(t)ρ ′(0)U†(t) and U̇(t) =−iH(t)U(t).
This choice leads to a “new dynamics”, that is, to a new Liouville-von Neumann equation governing

the dynamics of our system, obtained by differentiating Eq. (5.32), namely

ρ̇(t) =−i[H0(t),ρ(t)]−{Γ(t),ρ(t)}+2ρ(t)Tr{ρ(t)Γ(t)}, (5.33)

where we put
H(t) = H0(t)− iΓ(t), (5.34)

with H†
0 (t) = H0(t) and Γ†(t) = Γ(t). In fact, it is easy to check that the general su(1,1) Hamiltonian

of the form (5.7), may be written in this way with

H0(t) = Ω(t)σ̂ z, Γ(t) =−ωx(t)σ̂ x +ωy(t)σ̂ y, (5.35)

and ω(t)≡ ωy(t)− iωx(t)≡ |ω(t)|eiφ̇ω (t).
From a physical point of view, Eq.(5.33) possesses interesting properties [215] which make it a valid

candidate to describe the quantum dynamics of physical systems characterized by a non-Hermitian
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Hamiltonian like PT -symmetric systems [29, 30]. The three most important properties to be pointed
out are: 1) a pure state remain pure at any time, while the purity of a mixed state, in general, changes
in time; 2) the trace and positivity are preserved at any time since the new equation was constructed ad
hoc to satisfy this condition in order to recover the concept of probability and a statistical interpretation
of the quantum dynamics related to Hermitian Hamiltonians; 3) the general solution of Eq. (5.33) reads,
of course,

ρ(t) =
U(t)ρ ′(0)U†(t)

Tr{U(t)ρ ′(0)U†(t)}
, (5.36)

where U(t) is the (non-unitary) operator satisfying Eq. (5.11). Thus the solution of the non-linear
problem (5.33) is traced back to solve our original problem (5.11). This circumstance means that,
through the procedure exposed in Sec. 5.1, we are able to solve the generalized Liouville-von Neumann
non-linear equation (5.33) for the class of time-dependent scenarios identified by the relation (5.16),
whose time evolution operator Uν(t) is reported in Eq. (5.29).

5.2.2 Semigroups of nonlinear positivity and trace preserving maps

Equation (5.33) was constructed, to some extent, ad hoc, merely postulating a way of keeping the
proper normalization of the density matrix during the whole evolution. However, one can argue that the
form of an evolution equation is dictated by the fact that it should describe a one-parameter positivity
preserving semigroup modeling time evolution of the density matrix of a quantum system. Let us
consider a general, positivity preserving map,

φt(ρ) =U(t)ρU†(t). (5.37)

When U(t) is a one-parameter semigroup U(s+ t) =U(s)U(t), then a reasonable demand is that φt(ρ)
has the semigroup property, i.e. φs ◦φt = φs+t . This means that evolution for time 0 to s+ t is composed
from the evolution from 0 to t followed by the evolution from t to t + s.

Let us now consider the following map,

φ̂t(ρ) =
φt(ρ)

Tr(φt(ρ))
. (5.38)

Such a map φ̂t happens also to describe a reasonable quantum evolution. It is clearly positivity- and
trace-preserving and, moreover, has the semigroup property φ̂s ◦ φ̂t = φ̂s+t . Indeed [220],

φ̂s ◦ φ̂t(ρ) = φ̂s

(
φt(ρ)

Tr(φt(ρ))

)
=

φs

(
φt(ρ)

Tr(φt(ρ))

)
Tr
(

φs

(
φt(ρ)

Tr(φt(ρ))

))
=

1
Tr(φt(ρ))

φs (φt(ρ))

Tr
(

1
Tr(φt(ρ))

φs (φt(ρ))
) φs (φt(ρ))

Tr(φs (φt(ρ)))

=
φs+t(ρ)

Tr(φs+t(ρ))
= φ̂s+t(ρ), (5.39)
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from the linearity of φt and the trace. Moreover,

φ̂t(αρ) = φ̂t(ρ). (5.40)

The transition from the map (5.37) to the map (5.32) that preserves the semigroup property can be
generalized as follows. Let f be an arbitrary scalar function, f : P → R

+, from the cone of positive
operators P into positive reals R+. Then the map,

φ̃t(ρ) = f
(
φ̂t(ρ)

)
φ̂t(ρ), (5.41)

has also the semigroup property. Indeed, using (5.40), we get,

φ̃s ◦ φ̃t(ρ) = φ̃s(φ̃t(ρ)) = φ̃s
(

f (φ̂t(ρ))φ̂t(ρ)
)

= f
(
φ̂s
(

f (φ̂t(ρ))φ̂t(ρ)
))

φ̂s
(

f (φ̂t(ρ))φ̂t(ρ)
)

= f
(
φ̂s(φ̂t(ρ))

)
φ̂s(φ̂t(ρ)) = f (φ̂s+t(ρ)) φ̂s+t(ρ)

= φ̃s+t(ρ), (5.42)

Obviously, the above reasoning does not eliminate other generalizations of (5.38) preserving the semi-
group property, but if we restrict (5.41) to the subspace D(H ) of all density matrices upon the Hilbert
space H of the system, we must have f = 1, since at t = 0, φ̃t=0(ρ) = ρ = f (ρ)ρ whatever ρ is.
Therefore, Eq.(5.32) itself is less ad hoc than it seems and in addition it derives from the same dynam-
ical map generating the von Neumann-Liouville equation when H = H†.

5.2.3 Quantum dynamics of a su(1,1) “Rabi” scenario
In order to appreciate better the physical aspects of the generalized Liouville-von Neumann non-linear
equation (5.33), we want to study now the “Rabi” scenario for the case of su(1,1) Hamiltonians and
to point out differences and analogies with the su(2) case by bringing to light intriguing dynamical
aspects. We know that the ‘standard’ Rabi scenario describes a spin-1/2 subjected to a time-dependent
magnetic field precessing around the ẑ-axis. The matrix representation of a general su(2) Hamiltonian
may written as

H̃(t) = Ω̃(t)σ̂ z + ω̃x(t)σ̂ x + ω̃y(t)σ̂ y =

(
Ω̃(t) ω̃(t)
ω̃∗(t) −Ω̃(t)

)
, (5.43)

with ω̃(t)≡ ω̃x(t)− iω̃y(t)≡ |ω̃(t)|eiφω̃ (t) and where σ̂ k (k = x,y,z) are the Pauli matrices represented
in the eigenbasis {|±〉} of σ̂ z: σ̂ z|±〉=±|±〉. It is easy to see that the consideration of a magnetic field
precessing around the ẑ-axis amounts to consider the three parameters Ω̃, |ω̃| and φ̇ω̃ time independent.
Further, the well known Rabi’s resonance condition, ensuring a complete periodic population transfer
between the two states |+〉 and |−〉, acquires the form Ω̃+ φ̇ω̃/2 = 0. From Sec. 1.3.1 we know
that, also when the three parameters are time-dependent, the so-called generalized Rabi’s resonance
condition Ω̃(t)+ φ̇ω̃(t)/2 = 0 is a necessary condition to obtain periodic oscillations with maximum
amplitude.

We see from (5.35) that we may interpret the su(1,1) Hamiltonian as a Rabi problem with a complex
transverse magnetic field. Analogously to the su(2) case, we may define the Rabi-like scenario for a
su(1,1) dynamical problem the case in which the three parameters Ω, |ω| and φ̇ω are time independent.
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Thus, the related solution for the quantum dynamics is given by Eqs. (5.29), (5.30a), (5.30b) and
(5.30c) with Ω(τ) = Ω0, |ω(τ)|= |ω0| and φ̇ω(t) = φ̇ 0

ω .
Let us now study the time behavior of the Rabi’s transition probability P−+ (t), that is the probability

to find the system in the state |−〉 at time t when it is initialized at time t = 0 in the state |+〉. Starting
thus form the initial state ρ(0) = ρ ′(0) = |+〉〈+| and employing the non-linear equation of motion
(5.36) discussed before with the non-unitary operator U(t) given by (5.29), we obtain for P−+ (t) =
ρ22(t),

P−+ (t) =
|b(t)|2

|a(t)|2 + |b(t)|2
=
|Yν(t)|2

1+ |Yν(t)|2
. (5.44)

In Figs. 5.2b and 5.1b we depict the transition probability P−+ , against the dimensionless time τ = |ω0|t
for different values of the parameter ν . This is done in the case of a Rabi-like scenario, which amounts,
as explained before, to considering the two parameters Ω and |ω|, defining the operator U(t) by Eqs.
(5.29), (5.30a), (5.30b) and (5.30c), as independent of time.
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Figure 5.1: (Color online) a) Time dependence of the transition probability P−+ as a function of
τ = |ω0|t, for different values of ν : ν = 0;0.7;1;2;5 correspond to the up-full blue, dashed green,
dotted red, dot-dashed magenta and down-full brown curve, respectively; b) The plot illustrates
(ν = 2;1.2;1.01;1→ dotted blue, dashed green, dot-dashed magenta, full red) the passage of P−+ (τ)
from the oscillatory regime to the plateau regime.

We note that we have oscillations when ν ≥ 1 of decreasing amplitude and period as long as ν

increases; for 0 ≤ ν < 1, instead, an asymptotic regime appears. This constitutes a deep difference
between the Rabi scenario in the su(2) and in the su(1,1) case. In the former, the behaviour of the
transition probability P−+ (t) is always oscillatory in time and different values of ν are related to different
amplitudes of the oscillations. In the latter, instead, two kinds of time behaviour appear depending on
the value of the parameter ν , with 1 as value of separation between the two regimes. It is important
to highlight at this point that the existence of the two regimes, in general, is not related to the reality
or complexity of the Hamiltonian spectrum. The latter, indeed, concerning the “Rabi” scenario we are

analysing, is t-independent, the eigenvalues take the values ±
√

Ω2
0−|ω0|2, and within the solvability
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condition (5.16), they are real if (without loosing generality that Ω0 > 0)

ν > 1+
φ̇ 0

ω

Ω0
. (5.45)

We see, then, that only if φ̇ 0
ω = 0, the ν-dependent transition between the two dynamical regimes

coincides with the passage from a real to a complex spectrum. This happens to be the case for the
generic su(1,1) 2x2 PT -symmetry matrix in Eq. (5.1) for which φω(t) = π/2, or for a t-independent
su(1,1) matrix. Conversely, if φ̇ 0

ω 6= 0, two possible interesting cases arise. Namely, if φ̇ 0
ω < 0 it means

that the transition between the two dynamical regimes (ν > 1 → ν < 1) occurs while the spectrum
keeps its reality, since, in this case, 1+ φ̇ 0

ω/Ω0 < 1. On the other hand, if φ̇ 0
ω > 0, there is a range

of values of ν , namely 1 < ν < 1+ φ̇ 0
ω/Ω0, for which the spectrum becomes complex without any

appreciable evidence in the dynamical behavior of the system.
As a last remark we want to highlight a common feature of the su(2) and the su(1,1) cases. Note

that the Rabi-like resonance condition Ω+ φ̇ω/2 = 0 amounts to putting ν = 0 and the related up-full
blue curve in Fig. 5.2b is the top limit one. We know that in the su(2) case this condition ensures the
complete periodic population transfer between the two levels of the system, that is oscillations with
maximum amplitude. Therefore, also in the su(1,1) case, the scenario related to the Rabi’s resonance
condition is the one with the maximum value for the transition probability at any time. However, it is
important to note that in the su(1,1) case the transition probability, defined according to the framework
delineated in Refs. [212] and [215], cannot overcome the value of 1/2, meaning that, in this instance,
we cannot have the complete population transfer.

5.3 Analytically solvable 2×2 PT -symmetry dynamics
This paragraph deals with physical systems living in a two-dimensional Hilbert space and describable
by 2×2 time-dependent quasi-Hermitian PT -symmetry matrices. The PT -symmetry two-level model
describes a general sink-source or gain-loss system. It proves to be very useful for the comprehen-
sion of basic theoretical concepts [221] and of many experimental results, e.g. [28] and [29]. Other
physical systems, e.g. coupled waveguides [11, 207, 224], are exactly described by a two-dimensional
PT -symmetry Hamiltonian; in such cases, like in other photonic structures [10], the dynamics of the
physical system is governed by a Schrödinger-like equation where the time variable is substituted with
the spatial one (the propagation direction).

The matrix representation of a sink-source system may be cast as follows

H̃ =

(
−ir sinθ γ

γ ir sinθ

)
, (5.46)

where r and θ are real parameters. The diagonal entry describes the energy time evolution in the sink-
source [221]. The off-diagonal parameter γ may be interpreted as the coupling existing between the
one-state sink and the one-state source [221] and in the present work is thought to be time-dependent.

It has been highlighted [221] that this two-box model is able to capture in its parameter space the
passage from a condition where the exchange of energy between the two boxes takes place enabling the
system to reach equilibrium to the opposite physical situation. The existence of such a radical change
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has been experimentally realized by parametrically changing the coupling constant γ [11, 28, 29, 221,
224] and may be interpreted as an evidence of the transition from unbroken to broken PT -symmetry
phase.

In the following we concentrate in time-dependent PT -symmetry Hamiltonian problems. To this
end we introduce a prescribed time-variation of the coupling constant γ . Investigating this kind of
problems may find applications whenever one is interested in controlling a gain-loss physical system,
representable by the Hamiltonian (5.46). To find the time-evolution operator generated by H̃(t) is, gen-
erally speaking, a challenging problem strongly dependent on the off-diagonal time-dependent element.
For this reason we search a general mathematical protocol providing examples of time-dependent cou-
pling parameters leading to the prediction of the exact quantum dynamics of the corresponding physical
system. To this end, in the following, we strategically construct a tool aimed at solving the general dy-
namical problem generated by the class of 2×2 quasi-Hermitian su(1,1) Hamiltonians. This procedure
is immediately exploitable for treating dynamical problems characterized by PT -symmetry since they
constitute a sub-class of the more general class of bi-dimensional su(1,1) dynamical problems.

The approach we use is analogous to the one reported in Ref. [38] aimed at individuating exactly
solvable two-dimensional su(2) dynamical problems. On the basis of the result [38] and taking account
of the ‘affinity’ existing between the SU(2) and the SU(1,1) symmetry-groups (both are sub-groups of
the more general SL(2,C) group), we extend the constructive method, successful for su(2) problems,
to the su(1,1) case (see Appendix A.2). Thus, what is reported in the following possesses a twofold
interest. We identify classes of exactly solvable dynamical problems governed by time-dependent bi-
dimensional su(1,1) Hamiltonians, which is physically relevant in its own within the framework of
pseudo- and quasi-Hermitian matrices. Moreover, through this general procedure, we get analytically
solvable PT -symmetry dynamics with direct physical meaning thanks to the application to the general
sink-source model and the gain-loss wave-guide scenarios.

5.3.1 Parametric solutions of the su(1,1) dynamical problem

It is important to observe that the dynamical problem described by Eq. (5.33) can be reduced to the
solution of the Schrödinger equation iU̇ = HU , giving rise to a system of linear differential equations
which may be put in the form (hereafter we omit the explicit time-dependences, if not necessary)

Ω = i[ȧa∗− ḃb∗], ω = i[−ȧb+ ḃa]. (5.47)

Following the approach reported in Ref. [38], with appropriate changes to the class of 2× 2 su(1,1)
matrices (see Appendix A.2), the two entries a and b defining the time evolution matrix U in Eq. (5.26)
may be represented as follows

a = cosh [Λθ ]exp
[

i
(

φω(t)−φω(0)
2

− Θ

2
−R

)]
, (5.48a)

b =−isinh [Λθ ]exp
[

i
(

φω(t)+φω(0)
2

− Θ

2
+R

)]
, (5.48b)
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where

Λθ =
∫ t

0
|ω|cos [Θ] dt ′, (5.49a)

R =
∫ t

0

|ω|sin[Θ]

sinh [2Λθ ]
dt ′. (5.49b)

Θ is an arbitrary, real, time-dependent function such that Θ(0) = 0 and Ω and ω appearing in H are
related through the following relation

Θ̇+2 |ω|sin[Θ]coth [2Λθ ] = 2Ω+ φ̇ω . (5.50)

Equation (5.50) practically serves as a recipe in the sense that, choosing at will the function Θ (Θ(0) =
0), it determines Ω (ω) in terms of Θ and ω (Ω) making the dynamical problem (5.47) exactly solvable.

Such a recipe may be even and easily exploited in the treatment of the dynamical problem generated
by the Hamiltonian given by Eq. (5.46). The already discussed link between the PT Hamiltonian in Eq.
(5.1) and the su(1,1) one in Eq. (5.46), in view of Eq. (5.50), provides indeed a possible time variation
of the parameter γ , under the constraint |r sinθ |= const.

We emphasize also that Eqs. (5.48) and (5.50) are parametric solutions of the Schrödinger equation
and this means that they are valid and may be reinterpreted also for problems whose dynamics is ruled
by a Schrödinger-like equation. In guided wave optics, for example, a space-dependent Schrödinger
equation appears, as shown in Refs. [11, 224]; in such a case the space variable represents the propa-
gation direction of the waves in the guides and a space-dependent coupling may be reached by varying
the distance between the guides [10]. Thus, e.g. for the physical systems studied in Refs. [11, 224],
we may interpret Eq. (5.50) as a prescription how to vary over space the coupling between the guides
in such a way to have an exactly solvable system of space-dependent differential equations for the am-
plitudes of the waves propagating in the guides. Given an initial condition of the amplitudes, the latter
may be written at a certain space point in terms of the solutions in Eqs. (5.48), provided that the time
variable is appropriately substituted by the spatial one.

5.3.2 Exact PT-symmetry examples
In the following examples we consider PT -symmetry cases, that is, we set φω = π/2.

Example 1

If we choose such a parameter Θ that, given |ω|, satisfies∫ t

0
|ω|cos[Θ] dt ′ =

1
2

arcsinh [κ] , κ = 2
∫ t

0
|ω|dt ′, (5.51)

from Eqs. (5.48) we get

a =

√√
1+κ2 +1

2
exp
[
−i
(

Θ

2
+R

)]
, (5.52a)

b =

√√
1+κ2−1

2
exp
[
−i
(

Θ

2
−R

)]
, (5.52b)
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where

R =
arcsinh[κ]

2
. (5.53)

In this instance, we actually have Θ = arctan [κ] and the relation between the Hamiltonian parameters
reads

Ω =
|ω|
2

[
2+

1
1+κ2

]
. (5.54)

In the framework of gain-loss models we may interpret this relation as a prescription how to vary
over time the coupling parameter γ in Eq. (5.46) between the sink and the source in such a way that the
dynamical problem is solved by Eqs. (5.52). Supposing |r sinθ |= const. (in this case 0 < θ < π/2, in
view of the choice φω = π/2; for π/2 < θ < π we have to set φω = −π/2), we may write Eq. (5.54)
as

γ(τ) =
|r sinθ |

2

[
2+

1
1+ τ2

]
, (5.55)

with τ = r sin(θ) t. The parameter γ is plotted in Fig. 5.2a as a function of the dimensionless parameter
τ .

If we suppose our system initially prepared in the state ρ0 = |−〉〈−|, the probability of finding it in
the opposite state, according to Eq. (5.36), is

P+
− = ρ11 =

|b|2

1+2|b|2
, (5.56)

where ρ11 is the (1,1)-element of the matrix ρ =Uρ0U†/Tr{Uρ0U†}, solution of the equation (5.33).
The plot of P+

− is reported in Fig. 5.2b against the dimensionless time τ . We note that the value
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Figure 5.2: (Color online) a) Time evolution of the coupling parameter γ in Eq. (5.55) as a function of
τ = r sin(θ) t; b) Time dependence of the transition probability P+

− in Eq. (5.56) (for |b| in Eq.
(5.52b)) as a function of τ = r sin(θ) t. The upper line corresponds to P+

− = 1/2.

reached asymptotically by the transition probability is 1/2. By Eq. (5.56) we see, indeed, that 1/2 is the
maximum value reachable by the transition probability, precisely when |b| � 1.
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A direct physical application of current interest my be found in the framework of coupled wave
guides. In Ref. [11], for example, a PT -symmetry physical scenario of optical beam propagation is
investigated. Under appropriate conditions, the optical-field dynamics of the two coupled wave-guides
is described by the following space-dependent Schrödinger-like equation

i
d
dz

(
E1
E2

)
=

(
iε −γ

−γ −iε

)(
E1
E2

)
, (5.57)

where E1,2 are the field amplitudes in the first and the second guide, respectively, ε is the effective gain
coefficient, γ is the coupling constant and z represents the one-dimensional location of the signals in
the guides. In our case, we suppose a spatial configuration of the wave-guides such that the coupling
parameter exhibits a spatial-dependence γ ≡ γ(z) (reachable by varying the distance between he guides
[10]). It is easy to see that, if we apply a unitary transformation accomplishing σ̂z → σ̂x, σ̂x →−σ̂z
and σ̂y→ σ̂y, the PT -symmetry ‘Hamiltonian’ governing the dynamics of the optical system becomes
of the form (5.46). Then, in this instance, Eq. (5.54) reads

γ(ε,z) =
ε

2

[
2+

1
1+(ε z)2

]
, (5.58)

giving us a prescription how to spatially vary the coupling parameter between the two guides (in terms
of the constant gain parameter), so that the system (5.57) may be analytically solved. In such a case
the probability P−+ represents the possibility to transfer the signal in the second wave-guide when it is
initially injected in the first one. The space-dependence of the coupling parameter we are discussing
has, then, the effect of asymptotically transferring half part of the initial optical signal from the first
channel to the second one.

Example 2

By choosing, instead, Θ such that ∫ t

0
|ω|cos[Θ] dt ′ = arcsinh [κ/2] , (5.59)

it is easy to verify that we get

R =
1
2

arctan[κ/2]. (5.60)

In this case we have

a =

√
1+

κ2

4
exp
[
−i
(

Θ

2
+R

)]
, (5.61a)

b =
κ

2
exp
[
−i
(

Θ

2
−R

)]
, (5.61b)

and the necessary condition that the Hamiltonian parameters must satisfy results in

Ω = |ω|. (5.62)
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We see that this second choice turns out to be a trivial case. However, two interesting observations
may be developed. First, it is worth noticing that, developing the same calculation within the frame-
work of su(1,1) matrices, Eq. (5.62) becomes 2Ω+ φ̇ω = 2 |ω|, which, in turn, is a particular case of
the more general solvability condition reported in Eq. (5.16). It is possible to show that, within the
class of su(1,1) matrices, this more general relation may be derived through our approach as reported
in Appendix A.2.1. Second, the last example shows how a slight change in the choice of the function
Θ might lead us to a significantly different scenario and then to a substantially different dynamics of
the physical system. Then, this fact underlines the potentiality of the method [38], here proposed for
su(1,1) matrices, in identifying exactly solvable scenarios of possible experimental interest.

Before closing this section, we emphasize that in the examples discussed before we were able to find
the closed form of all the necessary quantities in order to solve the dynamical problem. However, if we
were interested only in specific physical observables, it might happen that we are requested to find the
explicit form of only few quantities. For example, if we were interested in the study of the transition
probability P+

− or in the knowledge of

〈σ̂ z〉= Tr{ρσ̂
z}=−1/(|a|2 + |b|2), (5.63a)

〈σ̂ x〉=

√
κ2

1+κ2 cos[φω(t)−Θ(t)−π/2], (5.63b)

for ρ(0) = |−〉〈−|, it is sufficient to analytically write the expression of |a| and |b| (Θ is chosen at will).
In this way, we are not obliged to solve analytically the expression of the integral R [Eq. (5.49b)]
involved in the exponentials in Eqs. (5.52b) and (5.61b), which results in some cases very hard to
solve. Thus, this fact means that, concentrating only on specific physical quantities, the choices of Θ

we may perform and then the classes of exactly solvable models we may identify become wider and
wider. For example, if we choose |ω| = |ω0|cos2(τ) and Θ = τ with τ = |ω0| t, although we made
relatively simple choices, we are not able to find the analytical expression of the integral R in Eq.
(5.49b). However, we may derive the exact form of the transition probability P+

− in Eq. (5.56) plotted
in Fig. 5.3a and, through Eq. (5.50), we may write the exact time-dependence of Ω plotted in Fig. 5.3b
for φ̇ω = 0.

5.4 Summary and remarks
In this chapter we have first identified a non-trivial class of su(1,1) time-dependent Hamiltonian models
for which exact solutions of the “dynamical” problem: iU̇(t) = H(t)U(t), may be provided. Secondly,
we have constructed step by step a reasonable frame within which the knowledge of the non-unitary
solution of the above mentioned equation may be legitimately exploited as a source for generating the
time evolution of a generic initial state of the system represented by H(t). Here “legitimately” means
that the new dynamical equation for ρ introduced in [212], rests on the introduction of a good simple
dynamical map generating the standard von Neumann-Liouville equation when the system is described
by a Hermitian Hamiltonian.

Exploiting this new point of view, we have treated the dynamics of an su(1,1) “Rabi” system gen-
erating results interpretable within the quantum context. We have evaluated analytically the transition
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Figure 5.3: (Color online) Time dependence of a) the transition probability P+
− and b) the parameter Ω

against the dimensionless time τ = |ω0|t for |ω|= |ω0|cos2(τ), Θ = τ and φ̇ω = 0.

probability P−+ (t) under three different regimes, evidencing remarkable differences of the time behavior
exhibited by the same probabilities in the Rabi su(2) problem. In addition, we have clarified that the
passage from a ν-regime to another one is governed by a condition on this parameter that does not co-
incide with the one ruling the transition from a real (time-independent) energy spectrum to a complex
one. This result makes evident that such a coincidence might at most be only a particular case (φ̇ω = 0)
of a wider scenario, where a direct link between the regime transition and the change in the spectrum
of the Hamiltonian does not generally occur.

Moreover, get inspired by previous results in other contexts [38], we have developed a protocol
through which we found a parametrization for the solutions of the dynamical problem related to two-
dimensional time-dependent quasi-Hermitian su(1,1) Hamiltonians. Such a result turns out to be of
physical interest at the light of the fact that 2× 2 PT -symmetry Hamiltonians, describing sink-source
or gain-loss systems [221], are a special sub-class of the su(1,1) matrices.

This fact has allowed us to interpret transparently the solvability condition [Eq. (5.50)] of the
dynamical problem from a physical point of view. Such a relation may be read as the prescription
how to vary over time the coupling between the sink and the source in order to controllably drive the
dynamics of the whole gain-loss system. Moreover, we have brought to light also the relevance of
the result in guided wave optics scenarios [10, 11, 207, 224]. In such cases, the dynamical problem
is converted in a space-dependent one obeying to a space-dependent Schrödinger-like equation. Thus,
provided that the time variable is substituted with the spatial one, our solutions keep their validity. We
emphasize that, as a byproduct, we then get prescriptions on how to vary the coupling (space distance)
between the wave-guides as to have an analytically solvable model.

Our analytical results might furnish new experimentally stimulating and physically realizable sce-
narios. In this respect, we are confident in such a possibility, by taking account, for example, of time-
dependent exactly solvable models reproduced through coupled waveguides systems. The Landau-
Majorana-Stuckelberg-Zener dynamics and the STIRAP process as showed in [10] are two of such
examples.

Finally, we emphasize that the parametrized solutions of a 2× 2 su(1,1) dynamical problem here
reported possess a more general value. Indeed, as it happens in the su(2) dynamical case, a higher
dimensional su(1,1) dynamical problem may be reduced to the 2×2 one and its solution may be written
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in terms of the two parameters a and b defining the Cayley-Klein parametrization of the evolution
operator in Eq. (5.26) [209].

The results discussed in this chapter have been published in Refs. [222, 223].



Conclusions

Since its appearing Quantum Mechanics (QM) has provoked animated interpretative debates which
have highlighted its profound philosophical implications. QM, in fact, with its basic principles has
revolutionized Physics and the whole Science in both its ontological and epistemological aspects. The
greatest innovation lies in the lost of the most important characteristic of the fundamental hard science:
the determinism. QM is a non-deterministic but causal theory. The non-deterministic character stems
from the fact that QM does not predict ‘what is’ or ‘what happens’, but only what can be observed
with a certain probability once the experimental conditions are fixed. The Schrödinger equation, that
is the fundamental equation of motion governing the dynamics of quantum physical systems, instead,
introduces into the theory the aspect of mechanical causation. This causality, however, characterizes
the evolution of the state of the quantum system in its Hilbert space and not in the real one, that is
in the space of probability amplitudes and not in the actual physical one. In this respect, Heisenberg
emphasized that QM has revived the concept of potentia [2], born with the Aristotelian philosophy:
QM foresees the tendencies, that is the probabilities of the different scenarios that can arise from the
evolution and the observation (measurement process) of a quantum physical system.

It is important to emphasize that the concept of probability in QM, however, is not related (only) to
the epistemological uncertainties stemming from the operational limits in carrying out an experiment,
as it is the case for Classical Physics (CP). It has a deeper character because it directly enters into
the definition of the state of a quantum system. This shocking difference on the ontological level
between QM and CP is what has always left perplexed one of the most important scientist of all times,
Albert Einstein. In this respect, he clearly claimed the famous sentence: “God does not play dice” to
externalize all his disagreement with such a drastic principle change. Einstein did not agree and did not
accept that the object of scientific knowledge could be characterized by an intrinsic uncertainty. This
uncertainty, that gives rise to the probabilistic character of QM, is intimately connected to the fact that
the ontological definition of the object of study is affected by the circumstance that in QM an objective
division between subject and object is not possible. As Heisenberg says, QM has lost that utopian ideal
(typical of CP) consisting in the fundamental principle of the Cartesian philosophy that characterized
the whole Science until the early 1900s: the separation between (God,) I and World. Heisenberg says
precisely [2] “The mechanics of Newton and all the other parts of classical physics constructed after
its model started from the assumption that one can describe the world without speaking about God or
ourselves. This possibility soon seemed almost a necessary condition for natural science in general.”;
and he continues: “[. . . ] in the Copenhagen interpretation of quantum theory we can indeed proceed
without mentioning ourselves as individuals, but we cannot disregard the fact that natural science is
formed by men. Natural science does not simply describe and explain nature; it is a part of the interplay
between nature and ourselves; it describes nature as exposed to our method of questioning. This was
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a possibility of which Descartes could not have thought, but it makes the sharp separation between the
world and the I impossible.”. Concerning such a question, to sustain the Heisenberg’s thesis, C. F. F.
von Weizsäcker said indeed: “Nature is earlier than man, but man is earlier than natural science” [2].
What we do is Science, being our understanding of Nature in relation to our methods and approaches.
In order to succinctly and elegantly summarize this concept, N. Bohr referred to the old adage according
to which “we are both actors and audience in the great drama of life”[1, 2].

The indetermination in the definition of the state of a quantum system to which we refer is that, for
example, we have in the so-called coherent superpositions of quantum states. This type of states, in bi-
partite or multipartite systems, gives rise to the phenomenon of entanglement consisting in a correlation
of quantum nature getting established between the subsystems. The peculiarity of the entanglement lies
in the fact that two related subsystems can continue to “feel” each other even at very large distances.
In fact, the measurement of the state of one of the two systems, causing its collapse, will immediately
cause as well the collapse of the other subsystem in entanglement with the first one. Even this further
aspect left Einstein totally unsatisfied, who, in this regard, spoke of “spooky action at distance”. Ein-
stein was the first to bring to light the physical relevance of these states; he, however, tried to exploit
them to demonstrate the incompleteness of quantum theory to sustain the famous idea of the ‘hidden
variables theory’. Later, however, it was demonstrated that it is not possible to exchange information
through the entanglement making signals travel above the speed of light, in accordance with the princi-
ple of relativity. Furthermore, thanks to the Bell’s inequality, theoretically predicted in 1964 [225] and
experimentally verified in 2015 through a loophole-free experiment [226], the descriptive completeness
of quantum theory was confirmed, against the possibility of a ‘wider’ theory based on the existence of
hidden local variables.

It is worth noticing that the development of sophisticated nano-technologies has been fundamental
to verify and to deeply understand the basic principles of quantum theory, previously briefly discussed.
To date, in fact, it is possible to measure with great accuracy the quantum states of physical systems,
highlighting non-classical effects such as quantum interference as predicted by the theory. Further-
more, thanks to the development of increasingly accurate techniques for the coherent manipulation of
quantum systems, it has been possible to generate overlaps of states such as ‘Schroedinger cat’ states
[227] and thus, for multipartite systems, to generate entangled states [228].

In this sense, the physical scenarios consisting of trapped ions and atoms, nuclear and electronic
spins in condensed matter and superconducting circuits based on the well-known Josephson junctions,
have been and still are of fundamental importance. The great importance of these physical systems
stems also from their versatility and controllability which makes them the most promising candidates as
building blocks for the realization of possible future quantum computers. Indeed, these systems show
their full potentiality as quantum simulators, that is, as systems capable of simulating the quantum
dynamics of other quantum physical systems: the brilliant idea introduced for the first time by R. P.
Feynman [181]. Using these technologies, for example, in N.I.S.T. laboratories were realized for the
first time entangled states between quasi-classical states of harmonic oscillators and atomic states [228];
at the University of Innsbruck the “Cirac-Zoller C-Not” quantum gate was instead implemented [229];
finally, in both centres it was possible to achieve the teleportation of quantum states [230, 231].

The relevance of the work reported in this thesis with the scenarios described above lies in the
fact that such physical systems are modelled, that is, formally described and mathematically treated,
through the formalism of the spin variables. Trapped ions and atoms and superconducting circuits, in
fact, under appropriate experimental conditions, actually behave as N-level (qudit) interacting systems.
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In this thesis work, in addition to studying the effects of the interaction between effective qudits, it
has been reported the analysis of the dynamics of these systems when they are subjected to the external
action of time-dependent classical electromagnetic fields too. The theoretical study of such interacting
spin systems, embracing a great variety of physical scenarios and possibilities of realization, allows,
therefore, both to investigate basic aspects of quantum theory and to study and predict physical effects
turning out to be relevant from an applicative point of view within information sciences and quantum
computing.

This thesis work is basically focused on showing how it is possible to exploit the knowledge of exact
solutions of the dynamical problem of a two-level system to obtain exactly solvable scenarios for more
complex systems of interacting spin-qudits subjected to classical time-dependent fields. If we want
to summarize in very few words the method we have used, we could borrow the famous Latin motto
‘divide et impera’. The study of the models we consider starts from the analysis of the symmetries
possessed by the Hamiltonian operator that allows the identification of invariant Hilbert subspaces.
Within each subspace we describe the dynamics of the original system under scrutiny in terms of
fictitious spin variables. For example, in case of subspaces within which the fictitious Hamiltonian is
characterized by a SU(2) symmetry, we can describe the problem in terms of a single spin J (whose
value depends on the size of the subspace). Thanks to the Group Theory, we can formally write the
structure of the time evolution operator in terms of the solutions of the analogous problem relative to
a single spin-1/2 [39, 173]. In this way, we can take advantage of the knowledge of exactly solvable
single-qubit scenarios to solve the original problem (concerning many interacting spins) within the
subspace under scrutiny. Our approach, therefore, consists in decomposing the original dynamical
problem into independent dynamical sub-problems rewritten in terms of fictitious variables, in order to
make it analytically treatable and solvable.

We showed how this approach allows to obtain analytical results in the case of two qubits (Chapter
2), two qutrit (Section 3.1), two qudits (Section 3.2) and N qubits (section 3.3), interacting with each
other and subjected to local or uniform time-dependent fields.

In the first two cases we have highlighted the possibility of obtaining coupling-based LMSZ tran-
sitions by applying only a longitudinal field linearly varying over time (the coupling plays the role of
a fictitious transverse field that generates the avoided crossing). An application of interest that exploits
such a physical effect consists in generating entangled states of the spins by suitably setting the slope
variation of the field. It is curious that it is required a non-adiabatic dynamic, that is a sufficiently fast
variation of the field, for the generation of these entangled states.

In the third case, instead, it is interesting to see how the symmetry of both the coupling (isotropic
exchange) and the field (homogeneous) gives rise to subspaces all characterized by SU(2) symmetry.
This circumstance, in addition to making the dynamical problem solvable for certain temporal scenar-
ios, made it possible to identify classes of IFE states [174, 175, 176]. Such states are types of initial
conditions for which the two qudits evolve over time in a completely independent manner, i.e., as if the
other spin with which they are coupled were not present.

In the latter case, the peculiar characteristic of the considered model is the presence of N-order in-
teraction terms, i.e., interactions that simultaneously involve all the spins present in the system. These
interactions, although far from the standard physical contexts (nuclear, atomic and molecular), can be
easily reproduced through quantum simulation technologies such as trapped ions [41] and supercon-
ducting circuits composed of interacting transom qubits [8]. We have shown how these systems can
be of relevant interest for applications. In fact, thanks to this type of interactions, it is possible, for
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example, to propagate the dynamics of a single spin, manipulated through the application of a time-
dependent local field, to all the other spins of the chain.

We have also shown that the dynamical decomposition technique can be very useful for exactly
solving the dynamics of systems living infinite-dimensional Hilbert spaces. Indeed, we have solved
and compared (Chapter 4) the exact dynamics of a system composed of a quantum harmonic oscillator
and a Glauber amplifier (inverted quantum harmonic oscillator) with that of the analogous system
composed of two standard quantum harmonic oscillators.

Finally, the resolutive approach [38] used in the first chapter to identify new temporal scenarios of
interest for a single qubit, has been exploited for the identification of time-dependent two-dimensional
non-Hermitian su(1,1)-symmetric Hamiltonians for which it is possible to solve the related dynamical
problem. In this case, the dynamics of the system is based on a non-linear equation of motion which
generalizes the Liouville-von Neumann equation to the case of non-Hermitian Hamiltonians. We have
highlighted how the study of su(1,1)-symmetry matrices finds an interesting application in the context
of PT -symmetric Hamiltonians, being used to describe gain-loss open quantum systems such as, for
example, coupled waveguide systems [10, 11].

In conclusion, it is important to underline that, in the analysed interacting spin models, we have
taken into account the presence of an environment by considering noisy components of the field [177].
We have shown that, even in presence of these components varying randomly over time, it is possible,
in some cases, to carry out the dynamical decomposition and solve the original problem in terms of
relatively simpler problems. A possible perspective of the work reported in this thesis could consist in
considering the spin systems coupled to one or more baths of harmonic oscillators. Also in this case it
might be possible to identify fictitious dynamical sub-problems consisting of one or more interacting
spins which in turn interact with (fictitious) baths. In this way, however, an exact resolution may be
difficult to obtain. A possibility could consist in the numerical approach based on the quantum-classical
Liouville-von Neuman equation, derivable through the partial Wigner transform [23]. In this case, the
dynamical decomposition, in addition to identifying the physical properties of the system, would always
be a useful tool also to make the numerical resolution procedure more efficient. Through this analysis
it would be possible, therefore, to foresee undesired effects stemming from the coupling of the system
with the environment so as to be able to minimize them in the experimental phase or perhaps to take
advantage by exploiting them depending on the application tasks.



Appendix A

Parametric solutions of 2x2 dynamical
problems

A.1 Solution approach of Ref. [38] for su(2) Hamitonians
The matrix representation of the general 2× 2 su(2) Hamiltonian describing a spin-1/2 subjected to a
time-dependent magnetic field may be cast in the following form

H =

(
Ω(t) ω(t)
−ω∗(t) −Ω(t)

)
(A.1)

up to a constant term having no physical relevance. The unitary operator solution of the Schrödinger
equation ih̄U̇(t) = H(t)U(t) can be formally put as

U =

(
a b
−b∗ a∗

)
(A.2)

where a and b are two complex valued time-dependent functions satisfying |a|2 + |b|2 = 1. By the
Schrödinger equation we get the following system of linear differential equations:

ih̄ȧ = Ωa−ωb∗,

ih̄ḃ = ωa∗+Ωb,
a(0) = 1, b(0) = 0.

(A.3)

In accordance with the traditional procedure of resolution of a linear system of differential equations
of the first order, one seeks the second-order linear non-autonomous differential equation in a(t) or
b(t). Unfortunately, the resulting equation even if linear, cannot be solved unless some special links
among its variable coefficients are given. The approach reported in [38], successfully reaches the
objective of providing a useful strategy for “constructing” solvable SU(2) problems, togehther their
exact solutions. The method consists in introducing an auxiliary function X(t) enabling the explicit
analytical representation of both a(t) and b(t) at the cost of precisely defining the specific Hamiltonian
of the exactly solvable SU(2) problem within the same resolution protocol. In other words one may
claim that X(t) generates too the peculiar link between the time dependent components of the applied
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magnetic field from the consistent construction of part of the solution. It is worthy to emphasize that,
generally speaking, if such a link were given at will, there would be no certainty of being able to exactly
solve the corresponding dynamical problem, for example starting from equations (A.3). Thus, the merit
of the approach under scrutiny is just that of furnishing a self-consistent recipe to single out solvable
SU(2) problems and to solve them.

Let us analyse in detail the above described method. Rewriting the Schrödinger equation as H(t) =
ih̄U̇(t)U†(t) we get the following system of linear differential equations:{

Ω(t) = ih̄[ȧ(t)a∗(t)+ ḃ(t)b∗(t)]

ω(t) = ih̄[a(t)ḃ(t)− ȧ(t)b(t)]
. (A.4)

Under the following conditions

U(0) = 1 o a(0) = 1, b(0) = 0 (A.5)

the second equation can be expressed in terms of b

b =−i
a
h̄

∫ t

0

ω

a2 (A.6)

and the first one can be written as

ȧ =−
(

i
h̄

Ω+
ẊX∗

h̄2 + |X |2

)
a, (A.7)

where we used the expressions

b(t) =
1
h̄

aX and ω(t) = a2Ẋ , (A.8)

with
X ≡

∫ t

0

ω

a2 (A.9)

being an auxiliary arbitrary function which can be chosen at will. In this way, the solution of the
differential equation for a reads

a(t) =
h̄

(h̄2 + |X |2)1/2
exp

{
− i

h̄

∫ t

0
Ω(t ′)dt ′− i

∫ t

0

J [ẊX∗]
h̄2 + |X |2

}
. (A.10)

Thus, prescribing the longitudinal component of the magnetic field and choosing at will the auxil-
iary function X we may construct both the other Hamiltonian parameter ω and the parameters of the
related time evolution operator. In this way, as explained before, the protocol enables in singling out
time-dependent Hamiltonians for which we are able to solve the related dynamical problem and to
explicitly construct the time-evolutio. operator.

It is possible to see that the following link between the Hamiltonian parameters

Ω

h̄
+

φ̇ω

2
=
|ω|
c

(A.11)
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with the related solutions

a(t) =
(

cos[Φ(t)]− i
1√

1+ c2
sin[Φ(t)]

)
exp
{

i
φω(t)

2

}
, (A.12a)

b(t) =
c√

1+ c2
sin[Φ(t)]exp

{
i
(

φω(t)
2
− π

2

)}
, (A.12b)

where

Φ(t) =

√
1+ c2

c

∫ t

0

|ω(t ′)|
h̄

dt ′, (A.13)

can be derived by choosing
X = csin(φ)eiφ . (A.14)

By considering instead a general complex-valued X function we get the most general relation

1
2

Θ̇(t)+
|ω(t)|

h̄
sinΘ(t)cot

[2
h̄

∫ t

0
|ω(t ′)|cosΘ(t ′)dt ′

]
=

Ω(t)
h̄

+
φ̇ω(t)

2
, (A.15)

and the solutions of the dynamical problem

a(t) =cos
[

1
h̄

∫ t

0
|ω(t ′)|cos

[
Θ(t ′)

]
dt ′
]
× exp

{
i
(

φω(t)−φω(0)
2

− Θ(t)
2
−R(t)

)}
, (A.16a)

b(t) =sin
[

1
h̄

∫ t

0
|ω(t ′)|cos

[
Θ(t ′)

]
dt ′
]
× exp

{
i
(

φω(t)+φω(0)
2

− Θ(t)
2

+R(t)− π

2

)}
, (A.16b)

with

R(t) =
∫ t

0

|ω(t ′)|sin[Θ(t ′)]

sin
[
2
∫ t ′

0 |ω(t ′′)|cos[Θ(t ′′)]dt ′′
]dt ′. (A.17)

A.2 Solution approach for su(1,1) dynamical problems
In the following we apply the method reported in ref. [38] to the class of 2× 2 su(1,1) matrices. The
Schrödinger equation iU̇ = HU , with H and U defined in Eq. (5.7) and (5.26), respectively, gives rise
to a system of linear differential equations which may be put in the form

Ω = i[ȧa∗− ḃb∗], ω = i[−ȧb+ ḃa]. (A.18)

Let us introduce the following function

X =
∫ t

0

ω

a2 dt ′. (A.19)

By such a position and by the second equation in (A.18), we may write respectively

ω = a2Ẋ , b =−iaX . (A.20)
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Thus, the relation which the two functions a and b have to satisfy reads |a|2[1− |X |2] = 1, implying
|X |2 ≤ 1. In this way, the first equation in (5.47) becomes a closed integral-differential equation for a,
namely

ȧ =

(
−iΩ+

ẊX∗

1−|X |2

)
a, (A.21)

which is solved to yield

a =
1

[1−|X |2]1/2 exp
[
−i
∫ t

0
Ω dt ′+ i

∫ t

0

Im[ẊX∗]
1−|X |2

dt ′
]
. (A.22)

Let us consider an arbitrary complex function X in the form

X = Aexp[iφ ], A(0) = 0, (A.23)

with φ and A real functions of time. The latter must satisfy the condition A2 ≤ 1 due to the condition
|X |2 ≤ 1. The function φ̇(t) has to satisfy

φ̇ =
Ȧ
A

tan [Θ] , (A.24)

where Θ is a real function of time t, defined by

Θ = φω +φ +2
∫ t

0
Ω dt ′−2

∫ t

0

φ̇

1−A2 dt ′−2φ(0). (A.25)

By Eq. (A.24) we derive

Ȧ2 + φ̇
2A2 = Ȧ2(1+ tan2[Θ]) = |ω|2(1−|X |2), (A.26)

implying

A = tanh [Λθ ] , φ̇ =
2 |ω|sin[Θ]

sinh [2Λθ ]
, (A.27)

with
Λθ =

∫ t

0
|ω|cos [Θ] dt ′, (A.28)

so that we have to put sin[Θ(0)] = 0, which is assured by assuming φω(0) = φ(0), if we want to keep
parameters well behaved. We see that the function A in Eq. (A.27) satisfies the condition A2 ≤ 1. From
the equations in (A.27) we find that Θ must satisfy the following integral-differential equation

Θ̇+2 |ω|sin[Θ]coth [2Λθ ] = 2Ω+ φ̇ω . (A.29)

The solutions a and b may be written as

a = cosh [Λθ ]exp
[

i
(

φω(t)−φω(0)
2

− Θ

2
−R

)]
, (A.30a)

b =−isinh [Λθ ]exp
[

i
(

φω(t)+φω(0)
2

− Θ

2
+R

)]
, (A.30b)

with

R =
∫ t

0

|ω|sin[Θ]

sinh [2Λθ ]
dt ′, (A.31)

and putting Θ(0) = 0.
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A.2.1 Special Case
To recover the solvability condition Ω(t)+ φ̇ω(t)/2 = ν |ω(t)|, let us assume the function X as

Xν = ν
−1 sinφν exp

[
i(φν +φ

0
ω)
]
, φν(0) = 0, (A.32)

with φ 0
ω = const., and then it is necessary that sin2

φν(t)< ν2. Under this assumption and according to
the general theory, the transverse field has to be put

ω =
νφ̇ν

ν2− sin2
φν

× exp
{
−2i

∫ t

0
Ω dt ′+2i

∫ t

0

ν2φ̇ν

ν2− sin2
φν

dt ′+ iφ 0
ω

}
. (A.33)

Assuming ν and φ̇ positive we may write

|ω|= νφ̇ν

ν2− sin2
φν

, (A.34)

and from Eq. (A.33) it is possible to derive

2Ω+ φ̇ω = 2ν |ω| , (A.35)

being nothing but the relation we were looking for, got through an other approach in Sec. 5.1 where its
physical reason has been brought to light. This relation is valid for the dynamical regimes ν < 1 and
ν ≥ 1 with ν > 0 and the consistency of the procedure leads to the following expression for φν

φν = arctan
[

ν√
ν2−1

tan
(√

ν2−1
∫ t

0
|ω| dt ′

)]
. (A.36)

For this case the solutions aν and bν can be constructed and acquire different expressions depending
on the value of ν . In the regime ν > 1, we get

aν =

[
cos(Λν)− i

ν√
ν2−1

sin(Λν)

]
exp
{

i
φω(t)−φ 0

ω

2

}
, (A.37a)

bν =
−isin(Λν)√

ν2−1
exp
{

i
φω(t)+φ 0

ω

2

}
, (A.37b)

while, in the regime 0≤ ν < 1, we have

aν =

[
cosh(Λ′ν)− i

ν√
1−ν2

sinh(Λ′ν)
]

exp
{

i
φω(t)−φ 0

ω

2

}
, (A.38a)

bν =−i
sinh [Λ′ν(t)]√

1−ν2
exp
{

i
φω(t)+φ 0

ω

2

}
, (A.38b)

with
Λν =

√
ν2−1

∫ t

0
|ω| dt ′, Λ

′
ν =

√
1−ν2

∫ t

0
|ω| dt ′. (A.39)
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Appendix B

Two-qubits exactly solvable time-dependent
scenarios

If we choose the two magnetic fields acting upon the two spin-1/2’s as follows

h̄ω1/2(t) =
|Γ+|

cosh(2τ+)
± |Γ−|

cosh(2τ−)
(B.1)

the solutions for the entries of the time evolution operator (2.21) are

|a+(t)|=

√
cosh(2τ+)+1
2cosh(2τ+)

, |b+(t)|=

√
cosh(2τ+)−1
2cosh(2τ+)

,

φ
+
a (t) =−arctan[tanh(τ+)]− τ+ φ

+
b (t) = φΓ+− arctan[tanh(τ+)]+ τ+−

π

2

|a−(t)|=

√
cosh(2τ−)+1
2cosh(2τ−)

, |b−(t)|=

√
cosh(2τ−)−1
2cosh(2τ−)

,

φ
−
a (t) =−arctan[tanh(τ−)]− τ− φ

−
b (t) = φΓ−− arctan[tanh(τ−)]+ τ−−

π

2
.

(B.2)

If, instead, the two local magnetic fields change in time as

h̄ω1/2(t) =
|Γ+|

cosh(2τ+)
± |Γ−|

4

[
3

cosh(τ−)
− cosh(τ−)

]
, (B.3)

the solutions, in this case, read

|a+(t)|=

√
cosh(2τ+)+1
2cosh(2τ+)

, |b+(t)|=

√
cosh(2τ+)−1
2cosh(2τ+)

,

φ
+
a (t) =−arctan[tanh(τ+)]− τ+ φ

+
b (t) = φΓ+− arctan[tanh(τ+)]+ τ+−

π

2

|a−(t)|=
1

cosh(τ−)
, |b−(t)|= tanh(τ−)

φ
−
a (t) =−arctan

[
tanh

(
τ−
2

)]
− 1

2
sinh(τ−), φ

−
b (t) = φΓ−− arctan

[
tanh

(
τ−
2

)]
+

1
2

sinh(τ−)−
π

2
.

(B.4)
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In the previous expressions we put

τ± =
|Γ±|

h̄
t, |Γ±|=

√
(γxx∓ γyy)2 +(±γxy + γyx)2, φΓ± =−arctan

[
±γxy + γyx

γxx∓ γyy

]
. (B.5)

In the previous formulas, τ+ and τ− are scaled dimensionless times acting as independent variables;
φΓ+ and φΓ− are true parameters strictly related to the microscopic model. In our calculations we
consider γxx = γyy = βγxy = βγyx = c with β = 2; we get |Γ+|= c = |Γ−|/2 and φΓ+ =−π/2, φΓ− = 0
and then τ− = 2τ+.

It is worth emphasizing that other two possible exactly solvable scenarios may be constructed,
namely when the magnetic fields are

h̄ω1/2(t) =
|Γ+|

4

[
3

cosh(τ+)
− cosh(τ+)

]
± |Γ−|

cosh(2τ−)
,

h̄ω1/2(t) =
|Γ+|

4

[
3

cosh(τ+)
− cosh(τ+)

]
± |Γ−|

4

[
3

cosh(τ−)
− cosh(τ−)

]
.

(B.6)



Appendix C

Quantum Discord for two-qubit X-states

C.1 Quantum Discord
The main feature of the quantum world, discriminating it from the classical one, is the possibility of
representing a pure state as superposition of pure states. Indeed, while a quantum state of a bipar-
tite system is not necessarily writeable as a tensor product of two independent pure states of the two
subsystems, a pure state of a classical bipartite system turns out to be always factorizable since the su-
perposition principle does not hold in this context [114]. This crucial difference leads to the following
remarkable physical consequences. 1) Contrary to what happens in classical Physics, the knowledge
that a non-factorizable state of a quantum bipartite system is pure does not lead to pure states of the
two subsystems. 2) Non-factorizable states of a quantum bipartite system lead to non-locality effects
christened by Schrödinger as entanglement.

Quantum entanglement represents one of the most important resources in quantum information
[9, 115]. At the same time, there exist quantum correlations, different from entanglement, with potential
applications in quantum information tasks, for instance quantum nonlocality without entanglement
[115]. Likewise, it was shown that there exist separable states which can produce a speeding of some
protocols, in comparison to the classical states [119].

Such a kind of nonlocal correlation, introduced by Ollivier and Zurek [116, 117], is quantum dis-
cord, that received a lot of attention in the recent years [117, 123]. Quantum discord is defined as
the difference between two different quantum analogues of classically equivalent expressions of the
quantum mutual information, which is a measure of all correlations in a quantum state. In a bipartite
state discord measures the total quantum correlations, without restricting to entanglement. Discord
coincides with the entropy of entanglement for pure entangled states. Some mixed separable states can
have non-zero discord, so that it is considered to represent a characteristic of the quantumness of such
separable states.

The measure of the total correlations in a bipartite system AB is given by the quantum mutual
information [232]

I (ρAB) = S(ρA)+S(ρB)−S(ρAB). (C.1)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neuman entropy. ρAB represents the density operator of the
compound system A+B, whilst ρA(B) = TrB(A)(ρ

AB) is the reduced density matrix of the subsystem
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A (B). Quantum discord was determined [117] by using a measurement-based conditional density
operator in order to generalize the classical mutual information. The considered von Neumann-type
measurement consists of one-dimensional local projectors summing to identity. The quantum mutual
information corresponding to the quantum conditional entropy associated to a measurement

S(ρ|Bk) = ∑
k

pkS(ρk), (C.2)

is given by [117]

I (ρ|Bk) = S(ρA)−S(ρ|Bk). (C.3)

Here Bk is the set of the projectors which perform the measurement on the subsystem B and pk =
Tr(I⊗Bk)ρ(I⊗Bk) is the measurement probability for the kth projector. We may write, indeed, the
conditional density operator ρk, denoting the reduced density operator of subsystem A after the local
measurements and which is associated with the measurement outcome k, in the following form (I
denotes the identity operator on the subsystem A):

ρk =
1
pk
(I⊗Bk)ρ(I⊗Bk). (C.4)

Quantum discord is interpreted as a measure of quantum correlations since it is defined by the
difference between the mutual information I (ρ) and the classical correlations C (ρ)

D(ρ) = I (ρ)−C (ρ). (C.5)

The measure of bipartite classical correlations C (ρ) = supBk
I (ρ|Bk) (sup is taken over all possible

von Neumann local measurements Bk) represents the quantum mutual information induced by mea-
surement.

When a bipartite system is in a pure state, entanglement and quantum discord give the same infor-
mation on quantum correlations, while in a mixed state there might be quantum correlations - discord,
even if the two subsystems are not entangled. Quantum discord has the peculiarity to be strictly related
to the subsystem under measurement to investigate the existence of quantum correlations. This means
that for a bipartite system composed by two subsystems A and B, we speak of quantum discord with
respect to the subsystem A, DA, and B, DB. It is useful to remind that quantum discord is zero for a
general state of a bipartite system, DB(ρAB) = 0, if and only if the state can be written as

ρAB = ∑
i

piρ
i
A⊗|i〉〈i|B, ∑

i
pi = 1, pi ≥ 0, (C.6)

that is if there exist an orthonormal basis for the subsystem with respect to which we calculate the
quantum discord (B in this case) such that its state results diagonal.

The difficulty in calculating quantum discord consists in the complexity of the maximization pro-
cedure for computing the classical correlations, due to the fact that maximization has to be performed
over all possible von Neumann measurements on party B. Analytical expressions for classical correla-
tions and quantum discord are known for two-qubit Bell diagonal state and for some kinds of two-qubit
X states [123].
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C.2 X-states: Fano parametrization and analytical discord
The Bloch generalization of the density operator of a qubit to the case of two-qubit systems is given by
the parametrization introduced by Fano [233]. The general expression of a two-qubit density operator
acting in the Hilbert space HA⊗HB is [233, 234]:

ρ =
1
4

(
I⊗ I + r ·σσσ ⊗ I + I⊗ s ·σσσ +

3

∑
m,n=1

tmnσm⊗σn

)
, (C.7)

where σ j, with j = 1, 2, 3 are the Pauli operators. Eq. (C.7) represents the Fano parametrization of ρ .
The vectors r and s are real, their expressions being r j = Tr(ρσ j⊗ I) and s j = Tr(ρI⊗σ j). In addition,
the matrix T defined by tmn is also a real matrix, with tmn = Tr(ρσm⊗σn), where m and n = 1, 2, 3.

Let us briefly discuss the transformation of a two-qubit density operator under a local unitary trans-
formation. One knows that for any unitary transformation U there is a unique rotation O such that:

U n ·σσσU† = (On) ·σσσ . (C.8)

Let us denote by ρ̃ the transformed density operator obtained by applying a local unitary transformation
UA⊗UB:

ρ̃ =UA⊗UBρU†
A⊗U†

B. (C.9)

Hence, the parameters r, s, and T transform as [234]:

r̃ = OA r; s̃ = OB s, (C.10)
T̃ = OA T OT

B , (C.11)

where OA and OB are related to UA and UB, respectively, through Eq. (C.8).
A generic X-state of a system of two spin-1/2’s, A and B, may be cast in the following form

ρX =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (C.12)

The unit trace and positivity conditions read ∑
4
i=1 ρii = 1, ρ11ρ44 > |ρ14|2 and ρ22ρ33 > |ρ23|2, assuming

in general ρ14 = |ρ14|eiφ14 and ρ23 = |ρ23|eiφ23 . The Fano parametrization of an X state is given by:

rx : 0,0,r;
sx : 0,0,s; (C.13)

Tx =

 t11 t12 0
t21 t22 0
0 0 t33

 .

The link between the general form of the X state (C.12) and its Fano parametrization (C.13) is given by
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[?]:

r = ρ11 +ρ22−ρ33−ρ44,

s = ρ11−ρ22 +ρ33−ρ44,

T11 = 2Re[ρ23 +ρ14],

T22 = 2Re[ρ23−ρ14],

T33 = ρ11−ρ22−ρ33 +ρ44,

T12 = 2Im[ρ23−ρ14]

T21 = −2Im[ρ23 +ρ14].

One can diagonalize T by applying two rotations OA and OB along the Ox3-axis, associated to the
following local unitary operation, according to Eqs. (C.8) and (C.11) [235]:

UA⊗UB = e−i(ϕ14+ϕ23)σ3/4⊗ e−i(ϕ14−ϕ23)σ3/4. (C.14)

This transformation leads to the canonical form of a general X state, i.e. ρcan
x = UA⊗UBρxU†

A ⊗U†
B

[235]:

ρ
can
x =


ρ11 0 0 |ρ14|
0 ρ22 |ρ23| 0
0 |ρ32| ρ33 0
|ρ41| 0 0 ρ44

 . (C.15)

Accordingly, the Fano parametrization of the canonical form of the X state (C.15) is given by T =
diag(c1,c2,c3):

rcan = r = ρ11 +ρ22−ρ33−ρ44,

scan = s = ρ11−ρ22 +ρ33−ρ44,

c1 = T can
11 = 2(|ρ23|+ |ρ14|), (C.16)

c2 = T can
22 = 2(|ρ23|− |ρ14|),

c3 = T can
33 = T33 = ρ11−ρ22−ρ33 +ρ44.

Therefore, the canonical form of the Fano parametrization of the density operator of an X state is given
by:

ρ
can
x =

1
4

(
I⊗ I + rσ3⊗ I + sI⊗σ3 +

3

∑
j=1

c jσ j⊗σ j

)
. (C.17)

Thus, it is possible to parametrize the generic X-state just with five parameters in the following way

ρX =
1
4


1+ r+ s+ c3 0 0 c1− c2

0 1+ r− s− c3 c1 + c2 0
0 c1 + c2 1− r+ s− c3 0

c1− c2 0 0 1− r− s+ c3

 . (C.18)

We underline that if r=s=0, ρ becomes the Bell diagonal state.
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As a measure of entanglement we shall use Wootter’s concurrence (entanglement of formation
[101] is a monotonically increasing function of the concurrence), which can be calculated by using the
eigenvalues of ρρ̃ , where ρ̃ = σ y⊗σ yρ∗σ y⊗σ y. The eigenvalues of ρρ̃ for the state (C.18) are

λ1 =
1

16
(c1− c2−

√
(1+ c3)2− (r+ s)2)2, λ2 =

1
16

(c1− c2 +
√
(1+ c3)2− (r+ s)2)2,

λ3 =
1

16
(c1 + c2−

√
(1− c3)2− (r− s)2)2, λ4 =

1
16

(c1 + c2 +
√
(1− c3)2− (r− s)2)2

and the concurrence is given by

C(ρ) = max{2max{
√

λ1,
√

λ2,
√

λ3,
√

λ4}−
√

λ1−
√

λ2−
√

λ3−
√

λ4,0}. (C.19)

For fixed r and s, the previous states and their corresponding concurrence depend on three parameters.
For two-qubit X-states with density matrices of the form (C.18), the quantum discord can be com-

puted analytically according to the procedure elaborated in Refs. [123, 124], and shortly described in
the following. The quantum mutual information can be expressed in the form

I (ρ) = S(ρA)+S(ρB)+u+ log2 u++u− log2 u−+ v+ log2 v++ v− log2 v−, (C.20)

with

S(ρA) = 1+ f (r), S(ρB) = 1+ f (s), f (t) =−1− t
2

log2(1− t)− 1+ t
2

log2(1+ t), 0≤ t ≤ 1
(C.21)

and

u± =
1
4
[1− c3±

√
(r− s)2 +(c1 + c2)2], v± =

1
4
[1+ c3±

√
(r+ s)2 +(c1− c2)2]. (C.22)

being the two eigenvalues of ρX in Eq. (C.18). After performing the von Neumann measurement Bi,
i = 0,1 for the subsystem B, one obtains the ensemble {ρi, pi} and then the classical correlations C (ρ)
can be evaluated by

C (ρ) = sup
Bi

I (ρ|Bi) = S(ρA)−min
Bi

S(ρ|Bi), (C.23)

where
S(ρ|Bi) = p0S(ρ0)+ p1S(ρ1). (C.24)

According to Refs. [123, 124] the minimum of the quantum conditional entropy (C.24) has to be taken
over the following expressions:

S1 =−
1+ r+ s+ c3

4
log2

1+ r+ s+ c3

2(1+ s)
− 1− r+ s− c3

4
log2

1− r+ s− c3

2(1+ s)

−1+ r− s− c3

4
log2

1+ r− s− c3

2(1− s)
− 1− r− s+ c3

4
log2

1− r− s+ c3

2(1− s)
, (C.25)

S2 = 1+ f (
√

r2 + c2
1), S3 = 1+ f (

√
r2 + c2

2). (C.26)
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Finally, Li [124] formulated the following
Theorem: For any state ρ of the form (C.18), the classical correlations of ρ are given by

C (ρ) = S(ρA)−min{S1,S2,S3}, (C.27)

where S1,S2,S3 are defined in Eqs. (C.25) and (C.26), respectively. The quantum discord is then given
by

D(ρ) = I (ρ)−C (ρ), (C.28)

with I (ρ) given by Eq. (C.20). The same results are obtained by generalizing von Neumann measure-
ments to POVM [123].



Appendix D

Exact treatment of the N-qubit model

D.1 Transformation procedure
Let us consider the following N-spin model

H =
N

∑
k=1

h̄ωkσ̂
z
k + γx

N⊗
k=1

σ̂
x
k + γy

N⊗
k=1

σ̂
y
k + γz

N⊗
k=1

σ̂
z
k , (D.1)

describing N distinguishable spins subjected, in general, to different magnetic fields and interacting
between them only through N-wise interaction terms, that is each interaction term involves all the
N-spins at the same time. σ̂ x, σ̂ y and σ̂ z are the standard Pauli matrices.

This model may be exactly diagonalized by a process consisting in a chain of unitary transforma-
tions. To this end it is useful to start by considering the easiest case of two interacting spin 1/2’s. In
this instance the Hamiltonian reads

H2 = h̄ω1σ̂
z
1 + h̄ω2σ̂

z
2 + γxσ̂

x
1 σ̂

x
2 + γyσ̂

y
1 σ̂

y
2 + γzσ̂

z
1σ̂

z
2 (D.2)

and it is possible to verify that [H2, σ̂
z
1σ̂

z
2] = 0. Transforming H2 through the following unitary and

hermitian operator (1 is the identity operator in the four dimensional Hilbert subspace)

T12 =
1
2
[
1+ σ̂

z
1 + σ̂

x
2 − σ̂

z
1σ̂

x
2
]
, (D.3)

we get
T †

12H2T12 = H̃2 = h̄
(
ω1 +ω2σ̂

z
2
)

σ̂
z
1 + γxσ̂

x
1 − γyσ̂

z
2σ̂

x
1 + γzσ

z
2. (D.4)

It is easy to see that σ̂
z
2 is constant of motion for H̃ and thus it may be treated as a parameter (= ±1),

rewriting
H̃σ

z
2
= h̄

(
ω1 +ω2σ

z
2
)

σ̂
z
1 +
(
γx− γyσ

z
2
)

σ̂
x
1 + γzσ

z
2. (D.5)

This means that we have got two Hamiltonians of single spin-1/2, each one related to one of the two
eigenvalues of σ̂

z
2, ±1. So, in this manner, we have reduced the two-interacting-spin problem into

two independent single-spin-1/2 problems, easier to be solved. Furthermore, it is worth to underline
that each single-spin-1/2 Hamiltonian governs the dynamics of our two-spin system in one of the two
dynamically invariant Hilbert subspace related to the two eigenvalue of σ̂

z
2.
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If we now consider the case of three spins, the Hamiltonian (D.1) reads

H3 = h̄ω1σ̂
z
1 + h̄ω2σ̂

z
2 + h̄ω3σ̂

z
3 + γxσ̂

x
1 σ̂

x
2 σ̂

x
3 + γyσ̂

y
1 σ̂

y
2 σ̂

y
3 + γzσ̂

z
1σ̂

z
2σ̂

z
3. (D.6)

Now, it is possible to convince oneself that σ̂
z
2σ̂

z
3 is constant of motion and then if we apply the proce-

dure previously used to the two spins 2 and 3 in H3, we get the following new Hamiltonian

T †
23H3T23 =H̃3 = h̄ω1σ̂

z
1 + h̄

(
ω2 +ω3σ

z
3
)

σ̂
z
2 + γxσ̂

x
1 σ̂

x
2 − γyσ

z
3σ̂

y
1 σ̂

x
2 + γzσ

z
3σ̂

z
1, (D.7)

where σ
z
3 (integral of motion) appears as parameter and so we have two different Hamiltonians of two

interacting spin 1/2’s. This time the unitary and hermitian operator accomplishing the transformation
is

T23 =
1
2
[
1+ σ̂

z
2 + σ̂

x
3 − σ̂

z
2σ̂

x
3
]
, (D.8)

in accordance with the form of T12. It is immediate, at this point, to understand that we may apply one
more time the same procedure for H̃3, using the operator written in Eq. (D.3) since σ̂

z
1σ̂

z
2 is constant of

motion for H̃3. Thus, we get

T †
12H̃3T12 = T †

123H3T123 =
˜̃H3 = h̄

(
ω1 +ω2σ

z
2 +ω3σ

z
2σ

z
3
)

σ̂
z
1 + γxσ̂

x
1 − γyσ

z
3σ̂

y
1 + γzσ

z
3σ̂

z
1, (D.9)

where we put T123 = T23T12. In this case we have two parameters, σ
z
2 and σ

z
3, and so we have four

Hamiltonians of single spin-1/2 governing the dynamics of the three spin system in each of the four
dynamically invariant subspaces related to the four pairs of the eigenvalues of the two constant of
motion σ̂

z
1σ̂

z
2 and σ̂

z
2σ̂

z
3. Therefore, also in this case, we have reduced the initial dynamical problem of

three interacting spins into independent problems of a single spin-1/2.
Basing on this last result we understand that, for the case of N spins, if we apply the procedure

previously exposed for three spins, to the last three spins, we obtain a new Hamiltonian characterized
by the same structure of the original one with the parameters redefined and depending only on the
first N− 2 spins (the last two spins appear as parameter). One can imagine to iterate this procedure
for each spin-triplet until the Hamiltonian is completely reduced to that of a single spin 1/2. More
precisely, it means that if we had, e.g., ten spins we could consider firstly the spin-triplet (8 9 10) and
diagonalize the Hamiltonian with respect to these three spins, obtaining a new Hamiltonian depending
on the dynamical variables of the spin 8 and those of the other spins not involved in the transformation;
the spins 9 and 10 would appear only through σ

z
9 and σ

z
10 having the role of parameters. At this point

we should proceed by considering the spin-triplets (6 7 8), (4 5 6) and so on, diagonalizing every time
with respect to the spin-triplet under consideration until we get a final Hamiltonian depending only on
one spin-1/2, actually the first spin for the example taken into account. It is important to underline that
in the case of odd number of spins, through this technique, we get directly a final Hamiltonian of a
single spin-1/2, while for an even number of spin we get firstly a Hamiltonian of two spins which can
be treated analogously to get the final one depending on just one spin.

It is appropriate to define and make clear what we intend for “diagonalize with respect to a spin-
triplet”. Considering the generic spin-triplet (i, j, k) (with i < j < k), diagonalizing with respect the
three spins i, j and k means to transform the Hamiltonian through the following operator

Ti jk =
1
4

[
1+ σ̂

z
j + σ̂

x
k − σ̂

z
j σ̂

x
k

][
1+ σ̂

z
i + σ̂

x
j − σ̂

z
i σ̂

x
j
]

(D.10)
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acting only upon the dynamical variables of the three spins under consideration. As shown and ex-
plained before, this transformation leaves the Hamiltonian dependent on the dynamical variables of the
first spin of the triplet (i-th spin) and on those of all the other spins not affected by the transformation.
The spins j and k appears only with σ̂

z
j and σ̂

z
k which, being constant of motion, may be treated as

parameters and substituted with their eigenvalues in the expression of the transformed Hamiltonian.
It is useful now to observe what are the effects on the Hamiltonian after a diagonalization with

respect to a spin-triplet:

• a -1 factor appears in the interaction term in γy;

• the σ z operator (parameter) of the last spin in the triplet appears in the interaction terms in γy and
γz;

• the Pauli spin operators (σ̂ x, σ̂ y and σ̂ z) of the first spin of the triplet under consideration remain
unchanged in each relative interaction term (γx, γy and γz).

We observe also that, from Eqs. (D.4) and (D.9), it is easy to conjecture the general form of the factor
multiplying σ̂

z
1 and depending on the ωk parameters, namely

ω1 +
N

∑
k=2

ωk

k

∏
k′=2

σ
z
k′. (D.11)

For, we are able, via an induction procedure, to write the argued form of the final single-spin-1/2
Hamiltonian. In the case of an odd number of spins it reads

H̃ = h̄

[
ω1+

N

∑
k=2

ωk

k

∏
k′=2

σ
z
k′

]
σ̂

z
1+γxσ̂

x
1 +

[
(−1)

N−1
2 γy

(N−1)/2

∏
k=1

σ
z
2k+1

]
σ̂

y
1 +

[
γz

(N−1)/2

∏
k=1

σ
z
2k+1

]
σ̂

z
1, (D.12)

whereas for an even number of spins we have

H̃ = h̄

[
ω1 +

N

∑
k=2

ωk

k

∏
k′=2

σ
z
k′

]
σ̂

z
1 + γxσ̂

x
1 +

[
(−1)

N
2 γy

N/2

∏
k=1

σ
z
2k

]
σ̂

x
1 + γz

N/2

∏
k=1

σ
z
2k. (D.13)

It is of relevance to underline that (N−1)/2 and N/2, appearing respectively in Eq. (D.12) and (D.13),
are the numbers of transformations to be applied to the original Hamiltonian in Eq. (D.1) to get the
final ones. The total unitary operator accomplishing this chained transformations may be written as

T =
1

2N−1

N−2

∏
k=0

[
1+ σ̂

z
N−(k−1)+ σ̂

x
N−k− σ̂

z
N−(k+1)σ̂

x
N−k

]
. (D.14)

D.2 Eigenvectors and breaking down of the Schrödinger equation
To understand the eigenvectors structure, let us consider, for the sake of simplicity, the simplest case of
two spin-1/2’s. By Eqs. (D.4) and (D.5), it is easy to understand that we may write the eigenvectors of
H̃ as follows

|ψ̃i j〉= |φi j〉⊗ |σ z
2 = i〉 (D.15)
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with i = ±1, j = 1,2, |σ z
2 = 1〉 = (1,0)T and |σ z

2 =−1〉 = (0,1)T . In the previous expressions, |φ1i〉
(|φ−1i〉) are the two eigenvectors of H̃+1 (H̃−1). Finally, the eigenvectors of H are easily derived by the
relation

T ˜|ψi j〉= |ψi〉. (D.16)

If the Hamiltonian H is time-dependent, we have to study the time-dependent Schrödinger equation,
namely

ih̄|ψ̇(t)〉= H(t)|ψ(t)〉. (D.17)

Since ∂

∂ t T = 0, it is easy to verify that we may write

ih̄| ˙̃ψ(t)〉= H̃(t)|ψ̃(t)〉. (D.18)

By writing a general initial condition as follows

|ψ̃(0)〉=


a
b
c
d

=

(
a
c

)
⊗
(

1
0

)
+

(
b
d

)
⊗
(

0
1

)
, (D.19)

since [H̃(t),σ z
2] = 0, we may write the evolved state at time t as

|ψ̃(t)〉=


a(t)
b(t)
c(t)
d(t)

=

(
a(t)
c(t)

)
⊗
(

1
0

)
+

(
b(t)
d(t)

)
⊗
(

0
1

)
=

= |φ̃1〉1⊗|σ z
2 = 1〉2 + |φ̃−1〉1⊗|σ z

2 =−1〉2

(D.20)

where |φ̃±1〉1 satisfy the following dynamical problems

ih̄| ˙̃φ±1(t)〉= H̃±1(t)|φ̃±1(t)〉 (D.21)

being nothing but two independent single spin-1/2 time-dependent Schrödinger equations.
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