
UNIVERSITÀ DEGLI STUDI DI PALERMO
Dottorato Scienze Agrarie Forestali e Ambientali

Dipartimento Scienze Agrarie, Alimentari e Forestali

Settore Scientifico Disciplinare AGR/03

INVESTIGATION OF BIOTIC STRESS RESPONSES IN FRUIT

TREE CROPS USING META-ANALYTICAL TECHNIQUES

IL DOTTORE IL COORDINATORE

BIPIN BALAN CH.MO PROF. VINCENZO BAGARELLO

IL TUTOR CO TUTOR

CH.MO PROF. TIZIANO CARUSO CH.MO PROF. FEDERICO MARTINELLI

CICLO XXXII

ANNO CONSEGUIMENTO TITOLO 2020



Table of Contents

State of art …...………………………………………………………….......…………6

Experiment 1……..…………………….…...………………………….......……..…10

Transcriptomic responses to biotic stresses inMalus x domestica: a meta-analysis

study.………………………….……………………....................................……..…10

1. Introduction ………………………………………………...................….……..…10

2. Materials and methods ……………………………………..………….....…..……21

2.1 Search strategy of published study identification and selection for meta-

analysis …………………………………………………………........….……21

2.2 Extraction and annotation of differentially expressed genes ………..…....23

2.3 Gene enrichment analysis ……………………………………….......……23

2.4 Functional analysis…………………………………..……….......….……23

2.5 Protein-protein interaction network……………………..……….……..…25

3. Results……...…………………………………….....................................……...…27

3.1 Meta-analysis of transcriptome data ……………………….........……..…27

3.2 Gene ontology analysis …………………………………………….…..…28

3.3 Gene set enrichment analysis …………………………………....……..…32

3.4 Metabolism overview ………………………………………………….…34

3.5 Hormone-related pathways ……………………………………...……..…35

3.6 Detoxifying pathways and secondary metabolism ……………...…..……36

3.7 Transcription factors and defense stress-related genes ……………...……38

3.8 Commonly regulated genes among biotic stresses ………………...…..…41



3.9 Inferred protein-protein interaction network analysis ……………...….…42

4. Discussion ……………………………………………..............................……..…44

5. Conclusions ……………………………………………............................…..……51

6. References ……………………………………………..............................…..……51

Experiment 2………………………………….……………..........................………61

Gaining Insight into Exclusive and Common Transcriptomic Features Linked

with Biotic Stress Responses inMalus x domestica………………………….....…61

1. Introduction ……………………………………………............................……..…61

2. Materials and methods ……………………………………………...........……..…63

2.1 Search strategy of published study identification for meta-analysis …..…63

2.2 Differentially expressed gene selection and annotation ……………….…64

2.3 Gene enrichment analysis ……………………………………………...…67

2.4 Functional analysis …………………………………………….............…68

2.5 Protein-protein interaction network ……………………………..……..…70

3. Results ……………………………………………....................................…..……72

3.1 Gene set enrichment analysis ………………………………………..……73

3.2 Biological process enrichment analysis ……………………………..……75

3.3 Hormone-related pathways …………………………………….....………76

3.4 Secondary metabolism ……………………………………………………77

3.5 Protein targeting and transcription factors …………………………..……78

3.6 Protein-protein interaction network analysis …………………………..…80



4. Discussion ……………………………………………..............................…..……81

5. Conclusions ……………………………………………............................…..……85

6. References ……………………………………………..............................…..……86

Experiment 3……….………………………………………........................…..……92

Identifying Host Molecular Features Strongly Linked With Responses to

Huanglongbing Disease in Citrus sinensis Leaves.……………………...…………92

1. Introduction …………………………………………….......……………….…..…92

2. Materials and methods ……………………………………………...........……..…95

2.1 Search Strategy to Identify Published Studies for Bioinformatic

Analysis…………………………………………………………………….…95

2.2 Bioinformatic Analysis of Raw Data …………………………………..…96

2.3 Differentially Expressed Gene Selection ……………………………....…97

2.4 Splice Analysis ……………………………………………..........….……97

2.5 Gene Enrichment and Functional Analysis ……………………...….……97

2.6 Protein–Protein Interaction Network ………………………………..……98

3. Results ……………………………………………....................................…..……98

3.1 Workflow, Bioinformatics Analysis, and Venn Diagrams ………...…..…98

3.2 Gene Set- and Pathway-Enrichment Analysis …………………..………101

3.3 Molecular Responses to Huanglongbing Disease …………………….…103

3.3.1 Metabolism Overview ….……..………………………….……103

3.3.2 Hormone Overview ……………………………………………104

3.3.3 Transcription Factors ………………………………………..…105



3.3.4 Biotic Stress Responses …………………………………..……106

3.3.5 Genes Commonly Involved in HLB Response Between

Datasets…………………………………………………….…………107

3.4 Molecular Mechanisms of HLB Tolerance ……………………...…...…108

3.4.1 Hormone Overview ……………………………………………109

3.4.2 Transcription Factors ………………………………………..…110

3.4.3 Biotic Stress Responses …………………………………..……110

3.4.4 Large Enzyme Families ……………………………………..…111

3.5 Protein–Protein Network Analysis ……………………………….......…112

3.6 Splice Analysis ……………………………………………..........…...…114

4. Discussion ……………………………………………..............................………118

5. Conclusions ……………………………………………............................………122

6. References ……………………………………………..............................………123

General Conclusion……………………………………………..................………128

Appendix……………………………………………...................................….……131

1. TrimSeq.pl …………………………………………….............................………131

2. CheckAfterAdapterTrimming.pl ………………………………………....………133

3. ExtractDEGs.pl ……………………………………………………..........………136

Acknowledgements……………………………………………...................………147



State of art

In the past decade, Next Generation Sequencing (NGS) methods have been widely adopted

over Sanger sequencing referred to as “first-generation” sequencing due to their dropping

costs and ability to sequence DNA at an unprecedented speed. The huge amounts of data

generated by NGS have extended our understanding of structural and functional genomics

through the concepts of “omics” providing new insight into the workings and meaning of

genetic conservation and diversity of living things. NGS technologies can be applied for

multiple applications such as Sequencing the Whole-Exome (WES) to identify the genetic

variants, whole transcriptome sequencing (RNA-seq) which helps to understand the

expression of transcripts , Targeted (TS) or candidate gene sequencing to sequence only the

genomic regions of interest to identify variants, and Methylation Sequencing (MeS) or

Bisulfite Sequencing to investigate epigenetic modification, which plays a pivotal role in

regulating the gene expression. In the area of plant research, NGS technologies have become

crucial tools for assembly of crop reference genomes, transcriptome sequencing for the study

of gene expression, whole-genome molecular marker development, and identification of

markers in known-function genes.

RNA sequencing (RNA-Seq) uses the capabilities of high-throughput sequencing methods to

provide higher coverage and greater resolution of the dynamic nature of the transcriptome

and the opportunity to elucidate different physiological and pathological conditions. This

technology consists of converting RNA molecules to a library of cDNA fragments with

adaptors, these fragments are sequenced, and the resulting reads are either aligned to a

reference genome (if available), or assembled de novo followed by transcript quantification.

Global gene expression profiling using RNA-Seq technologies has been widely used to study

biological and cellular responses due to oxidative stress responses in plants. Since the number

of such transcriptome studies is growing, it is very significant to have a comprehensive

analysis by integrating multiple studies to identify robust gene expression signatures that

would be subtle in individual studies.

Initially developed by medical researchers to synthesize data from multiple clinical trials,

systematic literature review and meta-analysis are increasingly popular in the area of

agricultural sciences. During the 1920s and 1930s, British statistician Ronald Fisher worked



at the Agricultural Research Station in Rothamstead and in his 1935 textbook; he gives an

example of the appropriate analysis of multiple studies in agriculture. Meta-analysis

technique has been applied in numerous fields for example, psychology, law, management,

education, medicine, and even policy formulation. Across various fields, meta-analysis has

been used to examine (a) the strength of relationship between two variables (b) the effective-

ness of treatments or interventions (c) the accuracy of theories (d) the validity of measuring

instruments (e) the validity of procedures and (f) the presence of moderation effects. Meta-

analysis facilitates to derogate or decimate potential biases associated with individual studies

and to improve statistical power to enable detection of subtle but biologically meaningful

variations through increased sample sizes.

The main objective my PhD projects was to perform a comprehensive study of the

application of meta-analytical techniques to analyze gene expression data pertaining to biotic

stress in different fruit tree crops in order to detect the strongly associated genes, pathways

and gene set categories. Identifying key information in transcriptomic data is very important,

especially when the “omic” study deals with plant responses to stresses in field conditions

where a high number of variables and disturbing factors may affect the analysis. A wide

range of biotic stress due to fungi, bacteria, and virus adversely affect plant growth and

productivity worldwide. There were individual transcriptome studies based on individual

pathogen attack on different crops, which lacks the significance of identifying the potential

genes, which are vulnerable for any biotic stress. The proper understanding of plant stress

response mechanisms under various stresses can draw a better view for improving worldwide

food production.

In my first meta-analysis study, the objective was to identify specific and common molecular

responses between different transcriptomic data related to fungi, virus and bacteria attacks in

Malus x domestica. In this study, the transcriptomic datasets in Malus x domestica were

collected from published literatures and divided into three groups, according to the pathogen

type as a) responses to fungal pathogens, b) virus and c) bacteria (Erwinia amylovora). Data

were dissected using an integrated approach of pathway- and gene- set enrichment analysis,

Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction

network. In summary, my meta-analysis study provides a better understanding of the Malus x

domestica transcriptome responses to different biotic stress conditions; and I anticipate that

these insights will assist in the development of genetic resistance and acute therapeutic



strategies. This work would be an example for next meta-analysis works aiming at identifying

specific common molecular features linked with biotic stress responses in other speciality

crops.

In my second project, my focus was to obtain normalized differentially expressed genes in

Malus x domestica and report only the key genes, which are only regulated by biotic stress.

To achieve my aim, I considered the following steps which helped me to increase the

specificity of study, which were a) download row data from the literature for analysis b) use

single bioinformatics pipeline for data analysis, c) use reference genome downloaded from

single source (NCBI), and d) remove the genes which plays role in tree development and also

affected by biotic stress. So, my main focus was to conduct raw data analysis by developing a

bioinformatics pipeline by using the reference genome from a single source. Thus, I searched

in literature, curated and manually collected 12 transcriptomic works in Malus x domestica in

order to identify which key genes, proteins, gene categories are involved in general plant

pathological conditions and those features linked with exclusive biotic stress responses.

Those genes that are only related to molecular responses to pathogen attacks and linked with

other plant physiological processes were identified. A pipeline composed by pathway and

gene set enrichment analysis, protein-protein interaction networks and gene visualization

tools were employed. This study represents a preliminary curated meta-analysis of apple

transcriptomic responses to biotic stresses.

After my second project, I got an opportunity to spend one year in abroad university in

Prof.Abhaya M Dandekar’s lab at University of California, Davis and continued my research.

Prof. Dandekar’s research was mainly focused on understanding the effects of

Huanglongbing (HLB) disease in Citrus sinensis and published several articles related to this

topic. So, in my third project, I decided to investigate the biotic stress response in Citrus

sinensis by using the meta-analysis pipeline, which was developed in my second study. In

this study, my main attention was to identify genes commonly modulated between studies

and genes, pathways and gene set categories strongly associated with the Huanglongbing

(HLB) disease in Citrus sinensis. Bioinformatic analysis of previously published RNA-Seq

studies on HLB response and tolerance in Citrus sinensis leaf tissues was performed. The

expression data of four datasets present in NCBI were analyzed using a single transcriptome

analysis pipeline, following with Gene set enrichment analysis and protein–protein

interaction (PPI) to identify the different gene categories affected by HLB disease. In addition,



I updated my pipeline to report the alternative splicing events like exon skipping, intron

retention, alternative donor and acceptor splice sites, which aid the investigation on

correlations between differences in AS patterns and functional/structural features of genes

due to the pathogen attack.



Experiment 1

Transcriptomic responses to biotic stresses inMalus x domestica: a meta-analysis study.

DOI : https://doi.org/10.1038/s41598-018-19348-4

1. Introduction
Apple (Malus x domestica Borkh) is one of the most important cultivated tree fruit crops in

temperate climates. It is an important source of energy, vitamins and minerals in human diet.

Unfortunately, this crop is severely affected by diseases mainly caused by fungi (Yin et al.,

2016; Zhu et al., 2017; Shin et al., 2016; Wang et al., 2019), bacteria (Kamber et al., 2016;

Silva et al., 2019; Singh et al., 2019) and viruses (Chen et al., 2014) with a consequent drastic

reduction in fruit quantity and quality that threatens grower’s profit (Fig. 1.1).

The fire blight disease caused by Erwinia amylovora (E. amylovora) is a global invasive

threat for apple and pear production which affects blossoms, fruits, shoots, and branches and

under optimal conditions, it can destroy an entire orchard in a single growing season.

Alternaria blotch disease of apple, caused by the Alternaria alternata apple pathotype

(AAAP), is one of the most serious fungal diseases affecting apples globally, especially in

East Asia (Zhu et al., 2017). This disease affects apple tree growth and production via the

infection of leaves, young shoots, and fruits and leads to marked declines in tree vigor.

Another major constraint of apple cultivation is the apple scab, a fungal disease caused by

Venturia inaequalis, which can lead to important crop losses if not properly controlled. In

East Asia and China, Marssonina apple blotch caused by the fungus Marssonina coronaria is

one of the most prevalent apple diseases. Valsa canker caused by the necrotrophic

ascomycete Valsa mali is a destructive disease on apple in eastern Asia. The pathogen causes

extensive necrotic lesions on apple trunks, and even death to the whole tree. Apple replant

disease (ARD) is caused by a complex of soilborne necrotrophic fungi (Cylindrocarpon and

Rhizoctonia) and oomycetes (Phytophthora and Pythium), and at times it can be aggravated

by the lesion nematode Pratylenchus penetrans. The virus infections such as Apple stem

grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV) and Apple stem pitting

virus (ASPV) usually do not induce visible disease symptoms in the infected trees and fruits,

although the infection eventually does lead to significant reduction in fruit yield and quality

(Chen et al., 2014). Soil metagenomic study explored the associations of nematodes and

microbes in Apple replant disease (ARD) (Kanfra et al., 2018). Many studies have recently

https://doi.org/10.1038/s41598-018-19348-4
https://en.wikipedia.org/wiki/Orchard


investigated host global gene expression changes in plant-pathogen interactions to understand

the molecular basis of various apple diseases. In response to stress, plant physiology and

transcriptomes undergo changes in alarm, resistance, exhaustion, and regeneration phases.

Since different tissues and developmental stages present different resistances to stress,

transcriptome profiling of different tissues, strains, and developmental stages under various

environmental stress conditions could provide insights into the molecular mechanisms as how

plants respond to stress (Li et al., 2014).

Figure 1.1– Apple diseases caused by fungi, virus and bacteria. (a) Apple leaves infected

with fire blight, (b) Lesions caused by alternaria fungus on diseased apple leaf, (c) Apple

scab disease on apples fruits, (d) Marssonina leaf blotch spots and leaf yellowing on apple

leaf, (e) Damage to apple caused by V. mali. Green arrows indicate the position of canker

lesions that are stripped artificially, (f) Apple cultivar 'Hongro' mixed infection with Apple

stem pitting virus, Apple chlorotic leafspot virus, and Apple stem grooving virus, showing

chlorosis along the leaf veins.



Plant diseases enforce significant crop losses in agriculture, horticulture and forestry. Genetic

resistances to pathogens represent a large proportion of traits required by breeding programs.

Plants have evolved sophisticated resistance mechanisms to pathogens (fungal, bacterial, viral

or nematodes) which can be responsible for heavy crop losses (Gallois et al., 2018). Once

pathogens overcome mechanical barriers to infection, plant receptors initiate signaling

pathways driving the expression of defense response genes. Plant immune systems rely on

their ability to recognize enemy molecules, execute cell signaling, and respond defensively

through pathways involving many genes and their products. In summary, plant resistant

mechanism can be classified as resistance associated with pathogen recognition, followed by

defense induction and resistance by the loss-of-susceptibility affecting plant factors on which

the pathogen relies for infection. Identification of resistance genes is useful in gene

transformation as well as benefit in marker-assisted selection for introgression in

conventional plant breeding. Quantitative trait locus (QTL) mapping is a highly effective

approach for analyzing genetically complex forms of plant disease resistance (Brekketet et al.,

2019; Shen et al., 2019). QTL can decrease pathogen traits related to infection efficiency or

can modulate the efficiency of major-effect resistance genes (Pilet-Nayel et al., 2017; Nelson

et al., 2018).

Plant resistance genes (R) defend against an invading pathogen by detecting the

corresponding pathogen avirulence factors (Avr), which are often secreted effector proteins.

These mechanisms are known as Effector Triggered Immunity or ETI (Jones and Dangl 2006)

which functions most often in the plant cell cytoplasm, either, acting directly by detecting

pathogen virulence-factors called effectors, or acting indirectly by monitoring host proteins

that have been altered by effector activity. The resistance process is mediated by diverse

group of mostly intracellular R proteins that are encoded by a few to hundreds of R genes that

are present typically in clusters in every plant genome. The Nucleotide Binding Domains and

Leucine-Rich Repeats (NB-LRR) factors are encoded by large families of genes and are

associated with resistance to all kinds of pathogens and pests affecting plants (oomycetes,

fungi, bacteria, insects, and nematodes, etc.) (Jones and Dangl 2006; de Ronde et al., 2014).

Modern biotechnology tools, such as tissue culture and genetic engineering, offer an

alternative to conventional breeding in order to generate new cultivars with enhanced

agronomic and nutritional characteristics (Sabbadini et al., 2019). In recent years, sequence-

specific genome editing technologies were found to be useful tools for crop improvement and



clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated

protein9 (Cas9) (Bhaya et al., 2011) is the newest and most widely used genome editing

technology for the study of the function of genes and for the development of mutant lines

with enhanced tolerance to biotic and abiotic stresses, herbicide resistance or improved yield.

In the last decades, transgenic crops have been developed and genetic modifcation has been

performed to confer resistance against insects, bacteria, virus and fungi diseases (Limera et

al., 2017; Moradpour et al., 2020). The CRISPR/Cas9-mediated genome editing technology

has opened a new opportunity for rapid development of disease resistant crop varieties by

either stacking of disease resistant (R) gene(s) or disruption/deletion of susceptibility genes

(Rojas-Vásquez et al., 2020; Haque et al., 2018; ).

In plant-pathogen interactions, epigenetic mechanisms has gained interest during the last

years. Recent studies link DNA methylation and demethylation as well as chromatin

remodeling by posttranslational histone modifications, including acetylation, methylation,

and ubiquitination, to changes in the expression levels of defense genes upon pathogen

challenge (Marone et al., 2013; Zhu et al., 2016). Genome-wide analysis (GWA) of changes

in host plant DNA methylation and histone modification linked with alterations in gene

expression during several plant-microbe interactions is likely to provide a better

understanding of epigenetic regulation in plant defense. Similar analyses of pathogen

genomes and transcriptomes will illuminate epigenetic modifications that assist pathogen

virulence and environmental adaptation (Zhu et al., 2016). Recent advanements in high-

throughput sequencing technologies make such analyses now possible.

RNA sequencing (RNA-Seq) is a revolutionary tool that has been used extensively for the

discovery of plant biotic stress genes, molecular patterns that are consistently associated with

pathogen infection, molecular signal that if early detected can help to speed the diagnosis. .

RNA-Seq can quantify gene/isoform expression levels at a higher resolution than microarray

technology and provide coding-transcript profiling as well as long noncoding RNA (lncRNA)

profiling. Initial gene expression studies relied on low-throughput methods, such as northern

blots and quantitative polymerase chain reaction (qPCR) that are limited to measuring single

transcripts. Over the last two decades, methods have evolved to enable genome-wide

quantification of gene expression, or better known as transcriptomics. The first

transcriptomics studies were performed using hybridization-based microarray technologies,

which provide a high throughput option at relatively low cost. However, these methods have



several limitations: the requirement for a priori knowledge of the sequences being

interrogated; problematic cross-hybridization artifacts in the analysis of highly similar

sequences; and limited ability to accurately quantify lowly expressed and very highly

expressed genes (Kukurba et al. 2015). The development of high-throughput next-generation

sequencing (NGS) has revolutionized transcriptomics by enabling RNA analysis through the

sequencing of complementary DNA (cDNA). This method, termed RNA sequencing (RNA-

Seq), has distinct advantages over previous approaches and has revolutionized our

understanding of the complex and dynamic nature of the transcriptome. RNA-Seq provides a

more detailed and quantitative view of gene expression, alternative splicing, and allele-

specific expression. Recent advances in the RNA-Seq workflow, from sample preparation to

sequencing platforms to bioinformatic data analysis, has enabled deep profiling of the

transcriptome and the opportunity to elucidate different physiological and pathological

conditions (Kukurba et al. 2015; Griffith et al., 2015). In a typical RNA-Seq experiment, a

sample of RNA is converted to a library of cDNA fragments and then sequenced on a high-

throughput commercially available platform, such as Illumina’ s Genome Analyzer, Helicos

BioSciences ’ HeliScope, Applied Biosystems ’ SOLiD, Pacifi c Biosciences ’ SMRT or

Roche ’ s 454 Life Sciences sequencing systems. The RNA-seq method typically consists of

identification of suitable biological samples (and replicates), isolation of total RNA,

enrichment of nonribosomal RNAs, conversion of RNA to cDNA, construction of a fragment

library, sequencing on a high-throughput sequencing platform, generation of single or paired-

end reads of 30–300 base pairs in length, alignment or assembly of these reads, and

downstream analysis.

The first step in transcriptome sequencing is the isolation of RNA from a biological sample.

To ensure a successful RNA-Seq experiment, the RNA should be of sufficient quality to

produce a library for sequencing where the quality of RNA is typically measured using an

Agilent Bioanalyzer, which produces an RNA Integrity Number (RIN) between 1 and 10 with

10 being the highest quality samples showing the least degradation (Kukurba et al. 2015).

Following RNA isolation, the next step in transcriptome sequencing is the creation of an

RNA-Seq library, which can vary by the selection of RNA species and between Next

Generation Sequencing (NGS) platforms. The construction of sequencing libraries principally

involves isolating the desired RNA molecules, reverse-transcribing the RNA to cDNA,

fragmenting or amplifying randomly primed cDNA molecules, and ligating sequencing



adaptors. The efficient removal of rRNA is critical for successful transcriptome profiling,

many protocols focus on enriching for mRNA molecules before library construction by

selecting for polyadenylated (poly-A) RNAs. In this approach, the 3′ poly-A tail of mRNA

molecules is targeted using poly-T oligos that are covalently attached to a given substrate

(e.g., magnetic beads). Alternatively, researchers can selectively deplete rRNA using

commercially available kits, such as RiboMinus (Life Technologies) or RiboZero (Epicentre).

Universal to all RNA-Seq preparation methods is the conversion of RNA into cDNA because

most sequencing technologies require DNA libraries. Most protocols for cDNA synthesis

create libraries that were uniformly derived from each cDNA strand, thus representing the

parent mRNA strand and its complement. In this conventional approach, the strand

orientation of the original RNA is lost as the sequencing reads derived from each cDNA

strand are indistinguishable in an effort to maximize efficiency of reverse transcription.

Another consideration for constructing cost-effective RNA-Seq libraries is assaying multiple

indexed samples in a single sequencing lane. The large number of reads that can be generated

per sequencing run (e.g., a single lane of an Illumina HiSeq 2500 generates up to 750 million

paired-end reads) permits the analysis of increasingly complex samples. The introduction of

unique 6-bp indices, also known as “barcodes,” to each RNA-Seq library enables the pooling

and sequencing of multiple samples in the same sequencing reaction because the barcodes

identify which sample the read originated from. The selection of a sequencing platform is

important and dependent on the experimental goals. Currently, several NGS platforms are

commercially available and other platforms are under active technological development. The

majority of high-throughput sequencing platforms use a sequencing-by-synthesis method to

sequence tens of millions of sequence clusters in parallel. In recent years, the sequencing

industry has been dominated by Illumina, which applies an ensemble-based (i.e. sequencing

many identical copies of a DNA molecule) sequencing-by-synthesis approach.



Figure 1.2– Overview of RNASeq library preparation (Kukurba et al. 2015)

The conventional bioinformatics pipeline for RNA-Seq data includes generating FASTQ-

format files contains reads sequenced from an NGS platform, aligning these reads to an

annotated reference genome, and quantifying expression of genes. The initial step of RNA-

Seq data analysis pipeline is the quality check of the raw sequence data output from

sequencing. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is a tool,

which can process FASTQ files and summarize the Quality reports of the reads in figures and

tables. The main parameters need to be checked during the Qualify check are a) Base quality

score distribution b) Sequence quality score distribution c) Average base content per read d)

GC distribution in the reads e) PCR amplification issue and f) Over-represented sequences.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


According to the quality report from FASTQC, the low quality bases from the reads will be

removed. Average Q30 (Phred value) score was used as a cutoff to remove low quality bases.

Also, if there any specific bias observed in base composition, those bases can also be

trimmed. Another recurring problem in Illumina sequencing is adapter contamination in reads,

were adapters can be present partially or completely within the read. There are a plenty of

bioinformatics tools available for the adapter removal from fastq reads where the popular

tools are Cutadapt (Martin M., 2011) and Trimmomatic (Bolger et al., 2014). The pre-

processed reads with read length >=30 bases can be considered for the mapping to reference

genome, since the reads less than 30 bases doesn’t make any influence in alignment process.

Mapping RNA-Seq reads to the reference genome is a very challenging task because many

reads may map across the splice junctions and only a "splicing-aware" aligner can only

recognize it and map properly. The more commonly used RNA-Seq alignment tools include

GSNAP (http://research-pub.gene.com/gmap/), MapSplice

(http://www.netlab.uky.edu/p/bioinfo/MapSplice), RUM (http://www.cbil.upenn.edu/RUM/),

STAR (https://github.com/alexdobin/STAR), TopHat

(https://ccb.jhu.edu/software/tophat/index.shtml) and HISAT

(https://ccb.jhu.edu/software/hisat2/index.shtml). Each aligner has different advantages in

terms of performance, speed, and memory utilization. Selecting the best aligner to use

depends on these metrics and the overall objectives of the RNA-Seq study. A reference

genome with sequences derived from exon–exon splice junctions acquired from known gene

annotations is required for the mapping programs, which can be downloaded from various

sources like National Center for Biotechnology Information (NCBI;

https://www.ncbi.nlm.nih.gov/), Ensembl (http://ensemblgenomes.org/), Phytozome

(https://phytozome.jgi.doe.gov/pz/portal.html) etc. Some tools require to generate index files

using the fasta file of the genome, which helps to speed up the read mapping. After alignment,

the SAM (Sequence Alignment/Map format file is a TAB-delimited text format consisting of

a header section, which is optional, and an alignment section) files of each samples will be

generated. The SAM files can be converted to BAM (binary format of SAM, and were using

for most of the downstream analysis) files using the tool samtools

(http://samtools.sourceforge.net/). The R package CummeRbund

(https://www.bioconductor.org/packages/release/bioc/html/cummeRbund.html) has the

possibility to represent the transcripts (RNA-Seq reads) mapped to the reference genome

http://research-pub.gene.com/gmap/
http://www.netlab.uky.edu/p/bioinfo/MapSplice
http://www.cbil.upenn.edu/RUM/
https://github.com/alexdobin/STAR
https://ccb.jhu.edu/software/tophat/index.shtml
https://ccb.jhu.edu/software/hisat2/index.shtml
https://www.ncbi.nlm.nih.gov/
http://ensemblgenomes.org/
https://phytozome.jgi.doe.gov/pz/portal.html
http://samtools.sourceforge.net/
https://www.bioconductor.org/packages/release/bioc/html/cummeRbund.html


(together with transcript abundances). The Integrative Genomics Viewer (IGV;

https://www.broadinstitute.org/igv/) is a high-performance visualization tool for interactive

exploration of large, integrated genomic datasets, which helps to zoom in to the region of

interest in the gene/transctipt. The complete bioinformatics workflow for the RNA-Seq

analysis is given in Fig. 1.3.

After RNA-Seq reads are aligned, the mapped reads can be assembled into transcripts. The

majority of computational programs infer transcript models from the accumulation of read

alignments to the reference genome. Computational tools such as Cufflinks (http://cole-

trapnell-lab.github.io/cufflinks/), FluxCapacitor (https://omictools.com/the-flux-capacitor-

tool), and MISO (https://miso.readthedocs.io/en/fastmiso/), quantify expression by counting

the number of reads that map to full-length transcripts. Alternative approaches, such as

HTSeq (https://htseq.readthedocs.io/en/release_0.11.1/count.html), can quantify expression

without assembling transcripts by counting the number of reads that map to an exon. To

accurately estimate gene expression, read counts must be normalized to correct for systematic

variability, such as library fragment size, sequence composition bias, and read depth. To

account for these sources of variability, the reads per kilobase of transcripts per million

mapped reads (RPKM) metric normalizes a transcript’s read count by both the gene length

and the total number of mapped reads in the sample. For paired end-reads, a metric that

normalizes for sources of variances in transcript quantification is the paired fragments per

kilobase of transcript per million mapped reads (FPKM) metric, which accounts for the

dependency between paired-end reads in the RPKM estimate.

https://www.broadinstitute.org/igv/
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
https://omictools.com/the-flux-capacitor-tool
https://omictools.com/the-flux-capacitor-tool
https://miso.readthedocs.io/en/fastmiso/
https://htseq.readthedocs.io/en/release_0.11.1/count.html


Figure 1.3– RNA-Seq analysis flow chart (Griffith et al., 2015).

To detect differential expression, a variety of statistical methods have been designed

specifically for RNA-Seq data. A popular tool to detect differential expression is Cuffdiff

(http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/), which is part of the Tuxedo suite of

tools (Bowtie, Tophat, and Cufflinks) developed to analyze RNA-Seq data. In addition to

Cuffdiff, several other packages support testing differential expression, including baySeq

(https://omictools.com/bayseq-tool), DESeq

(https://bioconductor.org/packages/release/bioc/html/DESeq.html), DEGseq

http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/
https://omictools.com/bayseq-tool
https://bioconductor.org/packages/release/bioc/html/DESeq.html


(https://bioconductor.org/packages/release/bioc/html/DEGseq.html), and edgeR

(https://bioconductor.org/packages/release/bioc/html/edgeR.html). Replicates in RNA-Seq

experiments are crucial for measuring variability and improving estimations for the model

parameters.

In recent years, RNA sequencing and analysis using Next Generation Sequencing (NGS)

methods have enabled to understand the gene expression pertaining to plant biotic and abiotic

stress conditions in both quantitative and qualitative manner (Martinelli et al., 2015; Muleo et

al., 2016). In each study, the large quantity of obtained data makes very difficult the analysis

and the identification of the role of each gene in the molecular networks. False positive

results often occur due to the RNA-Seq method that needs validation with other quantitative

gene expression methods. In addition, there are some genes, which can be expressed in any

physiological condition, which makes the conclusions often weak. The large number of

transcriptomic works published in plants requires more meta-analysis studies that would

identify common and specific features in relation of the high number of objective studies

performed at different developmental and environmental conditions. This is due to several

reasons. First, transcript amounts are highly affected by changing environmental conditions

and a high number of variables such as timing, environmental factors and experimental

conditions, tissues and their developmental stages, genotypes, finely modulates gene

expression. Secondly, transcriptomic studies are often performed only one time with no

repetition. Field studies are usually conducted only in one season leading to unreliable results

affected by a high number of environmental disturbing factors. Third, few replicates

(frequently only three) are usually considered due to the high costs of “omic” analysis. More

biological replicates would be really useful to reduce environmental confounding variability.

Finally, transcriptomic studies should be integrated with proteomics and metabolomics

performed on the same samples of the same study in order to clarify post-transcriptional and

post-transductional regulation mechanisms.

Transcriptomic studies are usually conducted in a singular time, they do not provide any

repetition across different seasons and frequently they are performed in field conditions

where environmental variability is high and disturbing factors are frequently present. The

identification of up- or down-regulated genes is often not enough to draw meaningful

biological conclusions because it is hard to identify which gene plays a key role in specific

signaling networks in host responses (Yin et al., 2016). This issue leads to high difficulties in

https://bioconductor.org/packages/release/bioc/html/DEGseq.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html


deriving conclusive models for understanding disease symptomatology. For these reasons,

more meta-analysis is needed in order to validate singular transcriptomic works with other

similar studies performed with the same research purposes. A Meta-analysis of transcriptomic

data will identify commonalities and differences between differentially regulated gene lists

and will allow screen which genes are key players in gene-gene and protein-protein

interaction networks. These analyses will allow delivering important information on how a

specific environmental factor affects plant molecular responses and how plants activate

general stress responses to environmental stresses (Rest et al., 2016; Cohen et al., 2019). An

early “stress condition” in plants is similar to the “inflammatory response” occurring in

animals in response to pathogen-associated factors. The identification of common genes

between different biotic stress will allow to gain insight into these general responses and help

the diagnosis of an early “stress state” of the plants. These analyses help in monitoring

stressed plants to start early specific management procedures for each disease or disorder.

The activation of common responses to different biotic stresses may precede the onset of

symptoms, where more physiological changes lead to specific phenotypic changes and

peculiar metabolic dysfunctions (Gambino et al., 2012; Dandekar et al., 2010). Indeed, there

is a strong need for compelling cases in order to generalize results across studies performed

in the same crop and determine the most reliable and meaningful information linked with

agronomic factors such as biotic stress responses.

In this meta-analysis study, I considered all transcriptomic data related to biotic stresses in

Malus x domestica, which are already published. The aim to determine which genes,

pathways, gene set categories and predicted protein-protein interaction networks may play

key roles in specific responses to pathogen infections.

2. Materials and methods

2.1 Search strategy of published study identification and selection for meta-analysis

As a first step, all published transcriptomic studies in Malus x domestica were searched and

collected from Scopus (https://www.scopus.com/search/form.uri?display=basic) and PubMed

(https://www.ncbi.nlm.nih.gov/pubmed/) before March 2017, using the combination of

keywords ‘Transcriptomics” and “malus” or ‘Transcriptomics” and “apple” in computer-

https://www.scopus.com/search/form.uri?display=basic
https://www.ncbi.nlm.nih.gov/pubmed/


based searches. The RNA-Seq studies pertaining to biotic stress on Malus x domestica were

selected and classified into three groups a) Fungal pathogens (Yin et al., 2016; Zhu et al.,

2017; Shin et al., 2016; Gusberti et al., 2013; Xu et al., 2015), b) ASGV (Chen et al., 2014)

and c) E. amylovora (Kamber et al., 2016) based on the pathogen type. The list of

differentially regulated genes, obtained from the selected seven published transcriptomic

articles in Malus x domestica were given in Table 2.1. Only genes reported in the main text

and supplementary files of these articles were considered in this meta-analysis.

Article Objective Pathogen
Species

Pathoge
n Tissue

DEGs
Group

Up Down

Gusberti et
al., 2013

Resistance to
Venturia

Venturia
inaequalis Fungi Leaf 112 100

Fungal
Pathog
en

Yin et al.,
2016

Resistance to
Valsa mali Valsa mali Fungi Twig 14 15

Xu et al.,
2015

Response to
Marssonina
coronaria
inoculation

Marssonina
coronaria Fungi Leaf 58 32

Zhu et al.,
2017

Response to
Alternaria
alternata

Alternaria
alternate Fungi Leaf 2,108 1,746

Shin et al.,
2016

Response to
Pythium
ultimum

Pythium
ultimum Fungi Root 63 19

Chen et al.,
2014

Apple stem
grooving
virus

Apple stem
grooving
virus

Virus Shoot 184 136 ASGV

Kamber et
al., 2016

Responses to
Erwinia
amylovora

Erwinia
amylovora Bacteria Flower 640 183 E. amy

lovora

Table2.1 - Transcriptomic studies dealing with biotic stress responses in Malus x domestica
used for meta-analysis. Number of up-regulated and down-regulated genes was indicated for
each study.



2.2 Extraction and annotation of differentially expressed genes

The up- and down-regulated genes and the fold change information were extracted from the

supplementary tables of the articles. The genes with fold change and p-value cutoffs (log2

FC > 1 or log2 FC < −1; p-value < 0.05) were only selected in order to strengthen the

accuracy of the analysis and normalization; except one article where the fold change is not

given (Yin et al., 2016). All the Malus x domestica gene ids were based on the Phytozome

database (https://phytozome.jgi.doe.gov/pz/portal.html) and were mapped to the

corresponding Arabidopsis id, using the annotation file downloaded from Phytozome. The

data extraction and mapping were done by in-house Perl scripts. During the analysis, the 5

fungi datasets were merged in to one single file in order to analyze the entire list of fungal

pathogen-regulated genes in Malus x domestica. This operation was not needed for viral and

bacterial responses since only one transcriptomic study was available for both types of

pathogens.

2.3 Gene enrichment analysis

The metabolic overview, hormone regulation, large enzyme families, transcription factors

and biotic stress gene categories of the three groups were visualized using MapMan (Thimm

et al., 2004) with the Malus x domestica mapping file downloaded from MapMan web site

(http://mapman.gabipd.org/). The PageMan (Usadel et al., 2006) analysis plugin of MapMan

was used to visualize differences among metabolic pathways using Wilcoxon tests, no

correction, and an over-representation analysis (ORA) cutoff value of 3.

2.4 Functional analysis

Gene ontology analysis was performed using the Database for Annotation, Visualization and

Integrated Discovery (DAVID) Web server (https://david.ncifcrf.gov/) (Huang et al., 2009),

based on the homologous TAIR IDs. The gene ontology information of each group was

extracted from the DAVID results using in-house Perl script. The top biological process,

cellular component and molecular function in each biotic stresses were given in Table 2.2-2.8.

https://phytozome.jgi.doe.gov/pz/portal.html
https://david.ncifcrf.gov/


GO ID GO Term Count pval Fold
Enrichment FDR

GO:0046686 response to cadmium ion 48 1.46E-
06 2.121201697 2.39E-03

GO:0009651 response to salt stress 61 1.86E-
06 1.904808445 3.03E-03

GO:0009414 response to water
deprivation 47 7.98E-

09 2.546012252 1.30E-05

GO:0006979 response to oxidative stress 42 3.61E-
06 2.181338859 5.89E-03

GO:0009611 response to wounding 35 2.95E-
07 2.658164187 4.83E-04

GO:0009738 abscisic acid-activated
signaling pathway 31 1.28E-

05 2.402668845 2.09E-02

GO:0010200 response to chitin 25 6.06E-
06 2.84089513 0.00990221

4

Table 2.2–Top up-regulated GO-terms involved in biological process due to fungal

pathogens.

GO ID GO Term Count pval Fold
Enrichment FDR

GO:0055114 oxidation-reduction
process 130 1.40E-12 1.891394281 2.22E-09

GO:0015979 Photosynthesis 56 7.69E-35 7.852343703 1.22E-31
GO:0009409 response to cold 43 3.46E-09 2.782836092 5.50E-06
GO:0009735 response to cytokinin 42 8.22E-16 4.441079635 1.23E-12
GO:0009658 chloroplast organization 36 5.97E-17 5.572920502 1.78E-13
GO:0009416 response to light stimulus 30 1.22E-07 3.087832725 1.93E-04
GO:0045454 cell redox homeostasis 28 2.48E-08 3.495559455 3.95E-05

GO:0015995 chlorophyll biosynthetic
process 25 1.36E-20 11.5181062 2.16E-17

GO:0006633 fatty acid biosynthetic
process 23 6.12E-07 3.477028308 9.73E-04

GO:0034599 cellular response to
oxidative stress 17 1.06E-07 5.13995489 1.68E-04

Table 2.3–Top down-regulated GO-terms involved in biological process due to fungal

pathogens.



Group Up/Do
wn GO ID GO Term Count pval Fold

Enrichment FDR

ASGV
Down GO:0009611 response to

wounding 12 1.39E-
09 13.27997128 1.74E-06

Up GO:0010200 response to
chitin 9 5.71E-

07 12.5181203 7.15E-04

F. amy
lovora Up

GO:0009611 response to
wounding

17 7.30E-
07

4.703323163 0.001076
14

GO:0009753 response to
jasmonic
acid

13 2.79E-
05

4.588045635 0.041175
655

Table 2.4–The GO-terms involved in cellular component due to ASGV and E. amylovora.

2.5 Protein-protein interaction network

The protein-protein interaction network (PPI) information based on both experiment

(ppi(exp).v5.03) and integrated prediction based (ppi(pred).v5.03) were downloaded from

AtPID (Arabidopsis thaliana Protein Interactome Database;

http://www.megabionet.org/atpid/webfile/) (Li et al., 2011). The top 100 genes for each

group were selected based on the PPI count and were considered for the PPI network analysis.

PPI network was constructed based on the protein interaction information retrieved from

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, http://string-db.org/)

(Szklarczyk et al., 2015), an online protein-protein interaction database curated from

literature and predicted associations from systemic genome comparisons.

GO ID GO Term Count Pval Fold
Enrichment FDR

GO:0005737 Cytoplasm 406 3.92E-22 1.552745723 5.18E-19
GO:0005886 plasma membrane 307 2.59E-10 1.397717233 3.43E-07
GO:0005829 Cytosol 278 1.12E-31 2.029262462 1.47E-28
GO:0005774 vacuolar membrane 62 8.34E-07 1.949594354 1.10E-03
GO:0005730 Nucleolus 51 3.82E-06 2.008370186 5.04E-03
GO:0022626 cytosolic ribosome 29 3.01E-05 2.395991037 3.97E-02

Table 2.5–Top up-regulated GO-terms involved in cellular component due to fungal

pathogens.

http://www.megabionet.org/atpid/webfile/
http://string-db.org/


GO ID GO Term Count Pval Fold
Enrichment FDR

GO:0009507 chloroplast 601 2.70E-187 3.283461623 3.38E-184
GO:0009570 chloroplast stroma 213 3.84E-120 6.869866176 4.81E-117
GO:0009941 chloroplast envelope 196 1.56E-119 7.602179097 1.95E-116

GO:0009535 chloroplast thylakoid
membrane 174 2.54E-120 9.004025039 3.18E-117

GO:0016020 membrane 153 1.47E-12 1.79318546 1.85E-09
GO:0009534 chloroplast thylakoid 123 2.95E-107 12.57534029 3.70E-104
GO:0009579 thylakoid 111 8.55E-90 11.34847783 1.07E-86
GO:0048046 apoplast 69 2.71E-15 2.941738042 3.34E-12
GO:0009536 plastid 44 1.38E-10 3.058383225 1.73E-07
GO:0010287 plastoglobule 39 1.69E-30 10.95179229 2.12E-27

Table 2.6– Top down-regulated GO-terms involved in cellular component due to fungal

pathogens.

Group Up/D
own GO ID GO Term Count pval Fold

Enrichment FDR

ASGV Up GO:0005634 nucleus 77 1.59E-
05 1.475106349 0.015619

2

E. amy
lovora Down

GO:0048046 apoplast 17 3.00E-
09 6.923060729 3.20E-06

GO:0005618 cell wall 15 1.29E-
06 5.132040816 1.37E-03

GO:0009535
chloroplast
thylakoid
membrane

12 5.74E-
06 5.931479115 6.14E-03

GO:0009579 thylakoid 10 8.78E-
07 9.765825243 9.38E-04

GO:0009523 photosystem
II 5 4.49E-

05 25.147 4.79E-02

GO:0009522 photosystem
I 5 2.33E-

05 29.58470588 2.49E-02

Table 2.7– Top regulated GO-terms involved in cellular component due to ASGV and E.

amylovora.



Group Up/Do
wn GO ID GO Term Count pval

Fold
Enric
hment

FDR

Fungal
Pathog
ens

Up
GO:0030170 pyridoxal phosphate

binding 22 2.07E
-05

2.8691
94496

0.0320
63107

GO:0005515 protein binding 188 6.38E
-08

1.4574
42683

9.86E-
05

Down

GO:0046872 metal ion binding 125 9.22E
-07

1.5406
38048

0.0014
0215

GO:0031409 pigment binding 11 2.16E
-08

10.368
34734

3.29E-
05

GO:0019843 rRNA binding 27 1.13E
-08

3.7373
50884

1.72E-
05

GO:0016671

oxidoreductase
activity, acting on a
sulfur group of
donors, disulfide as
acceptor

12 8.42E
-06

5.3983
95722

0.0128
01046

GO:0016491 oxidoreductase
activity 46 2.17E

-07
2.3287
19723

3.29E-
04

GO:0016168 chlorophyll binding 15 1.30E
-09

8.0246
42289

1.97E-
06

GO:0008266 poly(U) RNA binding 8 2.40E
-05

8.3343
65325

0.0365
56976

ASGV Up GO:0003700
transcription factor
activity, sequence-
specific DNA binding

25 2.94E
-06

2.8548
6699

0.0032
86404

F. amy
lovora Down GO:0016168 chlorophyll binding 5 3.89E

-05
25.847
79516

0.0453
07927

Table 2.8– Top regulated GO-terms involved in cellular component due to the pathogens.

3. Results

3.1 Meta-analysis of transcriptome data

The list of the up- and down-regulated genes were finalized and compared these lists in order

to identify common and different regulated genes between the 7 studied research works

dealing with biotic stress responses. The data normalization was done using the same log

Fold change and p-values (log2 FC > 1 or log2 FC < −1; p-value < 0.05).Venn diagrams

showed the numbers of specific and commonly regulated genes between the three types of

biotic stresses in Malus x domestica (Fig. 3.1.1). I observerd that 16 genes were commonly



regulated in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria

(Erwinia amylovora).

Figure 3.2.1–Distribution of up-regulated biological process terms in fungal pathogens

3.2 Gene ontology analysis

Gene Ontology enrichment analysis was conducted to explore other possible functions of the

differentially expressed genes in different biotic stress conditions. Pie charts showing the

distribution of up regulated and down regulated GO-terms in biological processes for each of

the three types of biotic stresses were generated (Fig. 3.2.1 - 3.2.6). It is clear that Apple Stem

Grooving Virus (ASGV) upregulated a higher percentage of GO-terms related to transcription

regulation, response to chitin and phosphorylation. Percentage of up regulated GO-terms

related to ethylene and jasmonic acid defense responses were higher in response to Erwinia

amylovora (E. amylovora) than to fungal pathogens. Oxidation- reduction pathways were

strongly repressed in response to fungal pathogens. In the enrichment analysis, strong

differences were observed between the three types of stresses in relation to repressed GO-

terms. While fungal pathogens inhibited hormone-related genes, photosynthesis, responses to

abiotic stresses, E. amylovora reduced responses to xyloglucan metabolic process, actin,



cellular responses to gravity and lipid transport. Virus infection specifically repressed

jasmonic acid-related GO terms, response to the bacterium and fungal pathogens.

Figure 3.2.1–Distribution of up-regulated biological process terms in fungal pathogens

Figure 3.2.2–Distribution of down-regulated biological process terms in fungal pathogens



Figure 3.2.3–Distribution of up-regulated biological process terms in ASGV

Figure 3.2.4–Distribution of down-regulated biological process terms in ASGV



Figure 3.2.5–Distribution of up-regulated biological process terms in E. amylovora

Figure 3.2.6–Distribution of down-regulated biological process terms in E. amylovora



3.3 Gene set enrichment analysis

Gene enrichment analysis was carried out using pageman (Usadel et al., 2006) to identify any

relationship between the expression and function of differentially expressed genes in different

biotic stress conditions (Fig. 3.3.1). As expected, E. amylovora and fungal pathogens

repressed photosynthesis-related genes such as those involved in photosystem II.

Adenylpyrophosphatase (ATPase), photorespiration, calvin cycle and major CHO

metabolism were significantly inhibited by fungal pathogens while genes encoding electron

carriers were repressed by E. amylovora. Cell wall genes were down-regulated in all the three

datasets. Fungal pathogens up-regulated several gene set categories involved in both primary

and secondary metabolism including amino acids (glutamate, aromatic ones), flavonoids and

isoprenoid mevalonate pathway. PR-proteins and other stress-related proteins were up

regulated by fungal pathogens.

Relating to hormones, brassinosteroids were induced by fungal pathogens while E.

amylovora enhanced ethylene gene set category. Jasmonate was repressed by fungal and viral

infections. Most of the transcription factors were induced by fungal pathogens such as AP2-

EREBP, WRKYs and ARRs. Ubiquitin-mediated degradation was mainly up regulated by

fungal pathogens. Different gene transport-related categories were repressed by different

types of pathogens: transporters in envelope membrane by fungal pathogens while metal

transporters were down-regulated by E. amylovora. Overall, the gene set enrichment analysis

identified additional responses due to various biotic stresses inMalus x domestica.



Figure 3.3.1–Gene set enrichment analysis of the differentially expressed genes of the three

type of stresses: a) Fungal Pathogens b) ASGV and c) E. amylovora. The red color indicates

the up-regulated categories and green indicates down-regulated.



3.4 Metabolism overview

I used the Mapman (Thimm et al., 2004) web-tool to visualize the metabolome changes in

Malus x domestica due to biotic stress by using the transcriptomic data of the seven datasets.

Metabolism overview clearly showed the high number of down-regulated genes by fungal

pathogens involved in light reactions, photorespiration, Calvin cycle, photorespiration and

tetrapyrrole pathways (Fig. 3.4.1). There were several genes commonly related between at

least two of the three types of pathogens such as those genes related to phosynthesis:

cholorophyll binding (LHB1B1, LHCB2.2), photorespiration-related genes (FC1, GUN4),

large and small subunits of Rubisco Protein (RBCL, RBCS), rubisco activase. Several genes

were induced by fungal pathogens involved in TCA cycle, detoxifying mechanisms

(ascorbate and glutathione), gluconeogenesis, starch and fermentation, lipid metabolism. n

contrast, E. amylovora and viruses repressed genes involved in cell wall modifications.

Although three genes (MDP0000188052, MDP0000873573, MDP0000515106

) were commonly regulated by more than one stress, E. amylovora seems to induce specific

expression changes in sugar alcohol metabolism (upregulation of genes MDP0000707567,

MDP0000149907, MDP0000167088 and MDP0000638442

). As far the secondary metabolism concerns, an induction of genes involved in

phenylpropanoids and phenolics were mostly induced by fungal pathogens. Ten genes

involved in terpene pathways were commonly regulated. Degradation of nucleotides was

mostly enhanced by fungal pathogens. In contrast, Mapman displays large gene expression

datasets from different studies in a single metabolic pathway diagram, which help us to easily

identify the key genes and its details in different functional categories (Fig. 3.4.1).



Figure 3.4.1–Mapman metabolism overview of differentially expressed genes divided in 7

categories based on their pattern of expression. The important genes were indicated in the

figure.

3.5 Hormone-related pathways

It is very important to study the plant hormonal responses because the signaling pathways of

different hormones regulate biotic stress responses antagonistically. The Abscisic acid (ABA)

related genes CCD1 (Carotenoid cleavage dioxygenase 1), NCED4 (Nine-cis-

epoxycarotenoid dioxygenase 4), abscisic acid-responsive HVA22 family protein and

HVA22-like protein were up-regulated by Erwinia amylovora. In contrast, the genes ABF3

(Abscisic acid responsive elements-binding factor 3), GRAM domain-containing protein and

GEM (gl2-expression modulator) in ABA were downregulated by bacteria. Three genes

( MDP0000837051, MDP0000746652, MDP0000130173) in saliciylic acid were affected by

all types of pathogenes. I observed that several genes involved in auxin (IAA), benzyl-

adenine (BA), ethylene, jasmonate, saliciylic acid (SA) were commonly affected by all types

of pathogens. Fungal pathogens up-regulated ethylene, benzyl-adenine, salicylic acid while

mainly repressed jasmonate-related genes. Erwinia amylovora up-regulated ethylene and

gibberellin-related (GA) genes while viruses affected some key genes involved in ethylene



and auxins. The results suggest that the hormone-related pathways and consequently their

crosstalk were profoundly affected by all Malus x domestica pathogens (Fig. 3.5.1).

Figure 3.5.1–Hormone-related genes affected by biotic stresses in Malus x domestica. The

important genes were indicated.

3.6 Detoxifying pathways and secondary metabolism

Genes encoding Cytochrome P450 were commonly affected by all three types of pathogens

(Fig.3.6.1). Fungal pathogens induced UDP Glycosyltransferases, Phosphatases, Nitrilases,

Glutathione-S-transferases. In addition to UDP-Glycosyltransferases, viruses mainly

enhanced the expressions of Oxidases and Glutathione-S-transferases. Alcohol

dehydrogenases, Nitrilases, O-Methyltransferases and Peroxidases genes were up-regulated

by Erwinia amylovora. Two genes encoding GDSL-lipases were commonly regulated by all

the three types of pathogens.



Figure 3.6.1–Hormone-related genes affected by biotic stresses in Malus x domestica. The

important genes were indicated.

Clear differences in pattern regulation were observed for fungal pathogens in relation to

secondary metabolism gene categories (Fig.3.6.2). While Phenlypropanoids, Shikimate

pathway, Dihydroflavonols, MVA pathway, Simple phenols were mostly induced, Non-MVA

pathway, Carotenoids were repressed. On the other hand, Erwinia amylovora mostly up-

regulated the genes in Chalcones metabolism and MVA pathway. Overall, I observed that the

biotic stress influenced the secondary metabolites in Malus x domestica, since these are the

compounds which are important for the plant to interact with the environment for adaptation

and defense.



Figure 3.6.2–Secondary metabolism genes affected by the three different biotic stresses. The

key genes were indicated in the figure.

3.7 Transcription factors and defense stress-related genes

The Mapman software (https://mapman.gabipd.org/) were used to understand the influence of

biotic stress in metabolism, hormone regulation, large enzyme families, secondary

metabolism and transcription factors. The transcription factors were drastically affected by

the three types of stresses (Fig.3.7.1). RAP2.3, ERF110, CRF4, four RAP2.4, six AP2

domain-containing transcription factor family proteins, two CEJ1 and one unknown protein

in AP2-EREBP were up-regulated by fungal pathogens. GRAS factors (SCL1, SCL3, RGA1,

SCL13), MADS box (AGL8, AGL24, AGL20, AGL42), C2H2 (MGP, STZ,SEU,STOP1),

Psudo ARR (PRR7, PRR5, PRR1) were enhanced by fungal necrotrophic pathogens. Viruses

specifically induced some key genes encoding two AP2-EREBPs (AP2, TEM1), two C2H2

(RHL41, zinc ion binding), two HB (GL2, BLH3), two trihelix factors (GT2, trihelix DNA-

binding protein). Erwinia amylovora up-regulated specifically MYB factors (MYB42,

MYB15, MYB14, AtMYB111, DNA binding, AtMYB74, MYB33, MYB62) and JUMONJI

(cyclin-like F box, jmjC).

https://mapman.gabipd.org/


Figure 3.7.1–Genes encoding transcription factors and affected by the different categories of

biotic stress. The important genes were indicated.

As expected, WRKYs were mostly induced by all three kinds of biotic attacks (Table 3.1).

WRKY11, WRKY32, WRKY33, WRKY35, WRKY40, WRKY6, WRKY65, WRKY69, WRKY70,

WRKY72, WRKY75 and TTG2 were induced by at least one of the 5 fungal pathogens.

WRKY53, WRKY70 and WRKY35 were enhanced by ASGV. WRKY75, WRKY33 were

specifically induced by E. amylovora.



Malus Gene ID TAIR ID WRKY
Gene

Fungal
Pathogens ASGV E. amylovora

MDP0000794439 AT1G80840 WRKY40 Up Up
MDP0000175240 AT3G56400 WRKY70 Up
MDP0000304113 AT1G29280 WRKY65 Up
MDP0000118810 AT1G29860 WRKY71 Down
MDP0000307516 AT1G80840 WRKY40 Up
MDP0000293456 AT4G30935 WRKY32 Up
MDP0000123467 AT5G13080 WRKY75 Up Up
MDP0000191017 AT4G23810 WRKY53 Up
MDP0000676216 AT3G58710 WRKY69 Up
MDP0000154734 AT5G13080 WRKY75 Up
MDP0000792088 AT5G13080 WRKY75 Up
MDP0000273851 AT5G15130 WRKY72 Up
MDP0000133918 AT1G29280 WRKY65 Up
MDP0000935652 AT1G62300 WRKY6 Up
MDP0000301666 AT1G62300 WRKY6 Up
MDP0000708692 AT2G38470 WRKY33 Up Up
MDP0000935996 AT2G38470 WRKY33 Up
MDP0000177906 AT1G80840 WRKY40 Up Up
MDP0000228304 AT3G56400 WRKY70 Down Up Up
MDP0000514115 AT2G38470 WRKY33 Up
MDP0000507805 AT2G38470 WRKY33 Up
MDP0000272940 AT4G31550 WRKY11 Up
MDP0000202292 AT2G34830 WRKY35 Up
MDP0000169621 AT2G37260 TTG2 Up
MDP0000294489 AT2G34830 WRKY35 Up Up

Table 3.1–List of WRKYs affected by the types of biotic stresses and their pattern of

regulation.

Other genes involved in biotic stress responses were drastically affected by all the three types

of stresses. One gene involved in respiratory burst was commonly regulated (Fig.3.7.2). Four

signaling MLO-like genes were up-regulated by fungal pathogens while one was induced by

E. amylovora and one was commonly regulated between stresses. In general, it is clear that

pathogenesis-related proteins were more induced by fungal pathogens than viruses and E.

amylovora. Fungi-driven up-regulated genes belonged to TIR-NBS-LRR, ATP binding, CC-

NBS-LRR, ADR1-L1, RPP1. Four PR-related genes (MDP0000287351, MDP0000685425,



MDP0000171644, MDP0000635659) were induced only by E. amylovora while only one

disease resistance gene (MDP0000222184) was commonly regulated.

The results demonstrated that most of the transcription factors and defense stress-related

genes were influenced by all types of biotic stresses and also identified the crucial genes

response to each type of biotic stress conditions.

Figure 3.7.2–Biotic stress mapman overview showing genes differentially expressed in the 7

transcriptomic articles and divided in three types of stresses and 7 categories depending on

their trend of expression. The key genes were indicated.

3.8 Commonly regulated genes among biotic stresses

It is very important to find the genes, which are regulated unique to each type of biotic stress

and also commonly regulated by all types of biotic stresses. I found that a total of 322 genes



were commonly affected by at least 2 of the 3 types of biotic stresses. These genes represent

common responses to stresses and might be helpful to characterize general stress responses in

Malus x domestica. A great number of these genes were linked with the repression of

photosynthesis. Eight genes involved in minor CHO metabolism were affected. Terpenes

were affected by all three stresses such as acetyl-coa thiolase2, hydroxyl methylglutaryl coa

reductase 1 (HMG1), farnesyl diphosphate synthase1, lyase – magnesium ion binding, beta-

amyrin. Also MVA pathway was affected by the three stresses as shown by the differential

expression of HMG1, MK, FPS1, ACAT2, Acetyl-CoA (Fig. 3.4.1). Four WRKYs were

commonly regulated by at least 2 of 3 types of pathogens: WRKY40, WRKY75, WRKY33,

WRKY35 and WRKY70 (Table 3.1). This is very significant information to identify the targets

for genetic modification to improve plant resistance to multiple biotic stresses.

3.9 Inferred protein-protein interaction network analysis

To understand the degree of conservation in the protein-protein interaction in Malus x

domestica in different biotic stress conditions, I visualized the network of the 100 top highly

interactive proteins for each of the three types of biotic stresses. Arabidopsis orthologs of the

Malus x domestica pathogen-regulated genes were mapped and the protein-protein

interactions were determined basing a combined file of inferred and validated interactions (Li

et al., 2011). The network was visualized using STRING (Szklarczyk et al., 2015) software

(Version 10.0). A highly dense core of 22–23 highly interactive proteins was observed on the

top of the network of fungal pathogens (Fig. 3.9.1 a). Some well-known proteins players in

biotic stress responses were noticed such as WRKY40, WRKY18 and WRKY6. These

proteins were connected with MPK3 and MPK4. Relating to ASGV infection, MYC2,

GRX480, JAZ1, PCL1, RHL41, WRKY53 were hub proteins of this network. Of them only

MYC2 was also present in other biotic stresses (E. amylovora). Four HSPs were significantly

regulated by virus infections and strictly connected each other (Fig. 3.9.1 b). A small network

composed of four interactive proteins such as RPL2.1, RPL2.2, ATCG00790.1 and

AT1G47670 in ASGV was overlapping with fungal pathogen network. NPR1 was present in

the virus-affected Protein-Protein Interaction (PPI) network together with the well-known

interactive protein GRX480. E. amylovora affected a network connected with five highly

interactive genes such as MYC2, WRKY40, WRKY33, BCB, SYP121 and AT5G46630 (Fig.



3.9.1 c). Some key highly interactive ubiquitin proteins were observed in the network such as

UBQ10. Sixteen E. amylovora proteins regulated at transcriptional level were commonly

present also in at least one of the other stresses. The protein-protein interaction network

analysis helped to minimize the complexity in understanding physical interaction between

proteins due to different biotic stresses.

Figure 3.9.1–Inferred protein-protein interaction network based on Arabidopsis

knowledgebase for the pathogen-regulated genes encoding highly interactive proteins. The

common genes (present in more than one in the three groups (1) Fungal Pathogens, (2)

ASGV and (3) E. amylovora) are highlighted in the red oval shape and also indicated in the

given table. Y-indicates that the gene is present in the group.



4. Discussion

My study highlighted the need of more meta-analysis of transcriptomic studies due to several

reasons. First, transcript amounts are highly affected by changing environmental and

developmental conditions. Secondly, field studies are usually conducted only in one season

leading to unreliable results affected by a high number of environmental disturbing factors.

Third, few replicates (frequently only three) are usually considered due to the high costs of

“omic” analysis. Fourthly, transcriptomic studies should be integrated with proteomics and

metabolomics in order to clarify post-transcriptional and post-transductional regulation

mechanisms. Finally the identification of commonalities between similar independent studies

will identify which gene are more strongly associated with the subject of the study and focus

the functional analysis only on those common findings (Sweeney et al., 2017).

Here I showed data of a meta-analysis of 7 published transcriptomic articles dealing with

biotic stress responses in Malus x domestica. At the moment, in Scopus database, there are 5

articles related to fungal pathogens, one related to virus and one to bacteria (E. amylovora).

The significant downregulation of light reactions in response to both fungal pathogens and E.

amylovora was expected due to the symptomatic stages reported in 6 analyzed articles (Yin et

al., 2016; Zhu et al., 2017; Shin et al., 2016; Kamber et al., 2016; Gusberti et al., 2013; Xu et

al., 2015). These evidences have been previously reported as a typical response clearly shown

not only at phenotypic but also evident in previous gene set enrichment analysis (Martinelli et

al., 2013; Punelli et al., 2016). Carbohydrate metabolism has been frequently shown as a key

pathway affected by biotic stresses responses in plants (Martinelli et al., 2012). Growing

tissues may be seen as a collection of sinks of carbohydrate attracting photosynthates

produced by leaves. A correct mechanism of source-sink relationship allows carbon

allocation during abiotic and biotic stress consequently improves plant performance in harsh

environments (Lo Bianco et al., 2011). The source-sink disruption has been linked with the

early pathogenic mechanisms of diseases in plants (Martinelli et al., 2013; Punelli et al.,

2016). Indeed, I believe that the dysregulation of this pathway at transcriptomic level may be

associated with a general plant stress state. This altered transcript condition may be seen by

growers as a sort of “alarm bell” to help further monitoring actions and the beginning of

management procedures. Sugar alcohols are acyclic polyols produced outside the chloroplast

and they are directly linked with stress responses. Although their role in tolerance to stress



has been more linked with abiotic than biotic stresses, it has been hypothesized that they may

play a key role also in a beneficial modulation of biotic stress responses (Moing et al., 1997).

My meta-analysis pointed out how sugar alcohols may be more involved in responses to

bacterial pathogens.

The repression of detoxifying genes such as those involved in ascorbate and glutathione-S-

transferases mainly observed in response to fungal pathogens is a clear evidence of

pathological status. Recently the over-expression of these genes have been linked with an

increased tolerance to Huanglongbing disease in Citrus sinensis (Martinelli et al., 2016).

Glutathione S-transferases (GSTs) are proteins encoded by a large family of genes and

involved in host defenses against environmental stresses. The transgenic overexpression of a

GST in tobacco drives to an increased resistance to Fusarium oxysporum (Han et al., 2016)

agreeing with my findings that show a significant upregulation of these genes in responses

not only to fungal pathogens but also to ASGV and E. amylovora. Although the role of

glutathione in functioning as protectors during plant abiotic stresses remains to be unclear, a

recent work highlighted its importance as signal of hormones and other protecting molecules

(Cheng et al., 2015).

Interestingly, I observed that polyamine metabolism was repressed by E. amylovora but not

by the five fungal pathogens. It is well-known that these molecules are increasingly

accumulated in response to stresses as well as transcript abundance of genes involved in their

biosynthesis are generally up-regulated. In addition, the transgenic overexpression of these

genes enhanced resistance to stresses and several studies showed their key role in the

modulation of intra-cellular levels of reactive oxygen species (Liu et al., 2015). It is

intriguing why polyamine metabolism resulted to be repressed by E. amylovora. It remains to

be clarified if they might play a key role in the pathogenetic mechanisms of fire blight in

Malus x domestica.

Interestingly E. amylovora significantly repressed the category of Lipid transport and this

may promote the occurrence of the progression of the symptomatology. These proteins are

specific pathogenesis-related proteins involved in plant defense responses (Goyal et al., 2014).

These proteins are involved in the inhibition of pathogen growth (Molina et al., 1993).

A predominant number of AP2/EREBP TFs were up-regulated in comparison to the down-

regulated ones. The five fungal pathogens significantly up-regulated the



APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors

while three of them were induced by the ASGV and three by E. amylovora. Only one was

commonly regulated between two of the three pathogens. This evidence leads us to speculate

that the three kinds of pathogens induce exclusive signaling to activate specific immune

responses and the recent studies reported the involment of AP2/ERF transcription factors in

plant stress response (Li et al., 2020). Their key role in signal transduction of plant hormones

is well-known (Liu et al., 2017). A comprehensive analysis have been conducted in V. fordii

and V. montana and showed how different members may be up- or down-regulated

depending on the two species in response to Fusarium oxysporum (Zhang et al., 2016).

RAV2 was one of these proteins specifically induced by E. amylovora. The constitutive

overexpression of this gene in tomato enhanced ERF5 and PR5 genes increasing the tolerance

to bacterial wilt (Li et al., 2011). Previous works suggest that RAV1 may work as a

transcriptional activator inducing resistance to bacterial infection (Sohn et al., 2006). Taken

together, these findings lead to speculate that RAV genes may be more involved in bacterial

defense than fungal and virus pathogens.

GRAS transcription factors are involved in plant disease resistance (Grimplet et al., 2016).

Interestingly, I noticed five SCL genes that were up-regulated by fungal pathogens but not by

the other two types of pathogens although RGA1 was commonly regulated. GRAS proteins

are repressors of gibberellin signaling due to the presence of the N-terminal region amino

acid sequence DELLA and are considered DELLA proteins (Grimplet et al., 2016). Indeed,

the downregulation of three gibberellin-responsive genes observed by the fungal pathogens

agree with the upregulation of GRAS proteins.

MYB proteins present a repeated numbers of MYB domains that allow them to bind DNA.

They are commonly expressed in plants and regulated by diverse environmental factors.

Their role in ABA-response is well-recognized (Ambawat et al., 2013). Interestingly, 8 MYB

proteins were induced only by E. amylovora and not by the other pathogens including

MYB62 and MYB15. Only MYB6 was commonly regulated between 2 of the 3 kind of

pathogens. MYB62 has been linked with phosphate starvation (Devaiah et al., 2009) while

MYB15 was induced by wound and insect herbivores responses (Cheong et al., 2002). From

my analysis, it seems that, at least in Malus x domestica, MYBs are more linked with E.

amylovora than fungal pathogens and AGSV.



Finally, another important category of transcription factors affected by all three types of

pathogens was WRKYs. They are well-known for their key role in response to many different

environmental stresses (Wang et al., 2016). Thirteen WRKYs were up-regulated in response to

fungal pathogens, 3 in response to E. amylovora and 2 to viral infection. The WRKYs that

were commonly regulated between all the biotic stresses are interesting because of their

important role in the modulation of the hormonal cross-talk in response to pathogens. Six of

them were commonly regulated in at least two types of biotic stress including WRKY70 and

WRKY40. Since this gene was highly expressed in plants treated with ethylene (ET) and

salicylic acid (SA) while it was repressed in response to methyl jasmonate (MeJA), its key

role in SA-JA crosstalk has been hypothesized (Wang et al., 2016). This protein showed to

have repressive effect on SA-mediated defense while it contributes to stimulate JA-mediated

responses. WRKY33 was up-regulated by all three types of biotic stress. This gene has been

linked with bacterial infections (Martinelli et al., 2013; Martinelli et al., 2016; AbuQamar et

al., 2016) and it is up-regulated by Trichoderma, a fungal genus that stimulates plant and root

growth and nutrient uptake (Mayo et al., 2016). WRKY53 was up-regulated only by ASGV. It

has been shown that two key genes involved in biotic stress responses, a Ser/Thr receptor

kinase ORK10/LRK10 and an apoplastic peroxidase were targeted by WRKY53 (VanEck et

al., 2014). WRKY75 was enhanced by E. amylovora. Interestingly its transgenic

overexpression allowed improving resistance to Sclerotinia sclerotiorum (Chen et al., 2013).

Interestingly a clear upregulation of ethylene-related genes were observed more in response

to E. amylovora than to the other two biotic stresses. In total, nine 2OG-Fe(II) oxygenases

were up-regulated by bacterial infection. Considering the total number of E. amylovora-

regulated genes, ethylene-related category was highly represented in gene set enrichment

analysis. The upregulation of ERF1 by E. amylovora was expected since this gene has been

linked with the enhancement of JA-responsive genes through ORA59 (Pieterse et al., 2009).

Data related to Jasmonic acid responsive genes were contrasting in response to E. amylovora.

While an allene oxydase synthase gene was induced, two genes (an allene oxide synthase 2

and 4) were repressed. GASA4 was repressed by E. amylovora. This gene is part of a family

of GA-inducible and ABA-repressible genes. It is generally induced by hormones involved in

growth development while it is repressed by stress-related hormones (ABA, JA, and SA),

implying its key role in hormone crosstalk (AbuQamar et al., 2017). Fungal pathogens

predominantly up-regulated the genes involved in ethylene, brassinosteroids and salicylic



acid while jasmonic acid responses were mostly repressed. This was expected since Venturia

inaequalis, one of the studied fungal pathogen, is considered a hemi-biotrophic pathogen.

Relating to responses to ASGV, an upregulation of two auxin responsive genes, AFB3 and

PIN3 were observed. PIN3 is an auxin transporter that plays a key role in root growth and

lateral architecture mediated in the hypocotyl (Rakusova et al., 2016). Although the role of

this gene in pathogen defense responses has to be elucidated, it may be somewhat affected

since exogenous SA showed that mostly repressed Pin-formed (PIN) genes (Armengot et al.,

2016).

Different categories of genes involved in secondary metabolism were selectively regulated by

apple stem grooving virus, fungal pathogens and E. amylovora. While fungal pathogens up-

regulated shikimate pathways, MVA and phenylpropanoids, E. amylovora clearly induced

genes involved in chalcones. In contrast, non-MVA was clearly repressed by fungal

pathogens. MVA pathway is responsible for terpenoid biosynthesis and was commonly

affected by the studied pathogens as shown by the significant regulation of 6 genes.

Terpenoids comprise a series of metabolites with peculiar protection roles to biotic attacks.

Several volatile sesquiterpenes are important chemical signals for the activation of plant

defence mechanisms in response to biotic stresses. The wide range of different terpenoids

present in plants, implied that they should have posed an important role in plant evolution in

response to different ecological plant interactions with both biotic and abiotic aspects.

The expression of genes involved in phenylpropanoid metabolism was clearly induced by

fungal pathogens. They have important protective roles towards both biotic and abiotic

stresses and they are regulated by MYB transcription factors (Liu et al., 2015). Increased

amount of phenylpropanoid transcripts were also associated with Citrus sinensis responses to

Huanglongbing disease (Martinelli et al., 2015). Secondary metabolism genes including

chalcone isomerases were up-regulated by Marssonina coronaria. Three genes were

commonly regulated between stresses while 5 naringenin-chalcone synthase genes were up-

regulated by E. amylovora. Both chalcones and dihydrofavonols were up-regulated by the

fungal pathogens and E. amylovora. These compounds belonged to flavonoids, an important

class of secondary metabolism compounds with protecting functions against fungal infection.

They are categorized into two groups: constitutively expressed and stimulated. The first

category are usually maintained in particular locations and used as signals when pathogen

attacks occur (Treutter, 2006) while the second comprises genes induced during plant-



pathogen interactions. These compounds exercise a protection role thank to their antioxidant

capabilities, cross-linking and inhibition of microbial proteins such as cell wall degradation

enzymes, metal chelation as well as physical barrier against pathogens (Skadhauge et al.,

1997; Beckman, 2000). Interestingly carotenoid genes were repressed by fungal pathogens.

Their protection role in plant resistance to biotic stresses was shown in mutant experiments

that demonstrated their important role in ROS detoxyfication under stress conditions

(Demmig-Adams,B et al., 2014). Results of this meta-analysis suggest that the repression of

these genes in response to apple fungal pathogens might provoke negative effects on the

progression of the disease.

Relating to fungal pathogens, a core of 22–23 highly proteins were clearly observed by the

observation of the overall network. Among these proteins, there were RPL5B, BBC1,

ATARCA. Three WRKYs, WRKY6, WRKY18 and WRKY40 were significantly regulated by

fungal pathogens in Malus x domestica. WRKY18 and WRKY40 proteins formed complexes

and presented DNA binding properties. These WRKYs are involved in pathogen-induced HR

linked with the induction of salicylic acid (SA)–mediated immune responses causing the

progression of the systemic acquired resistance (SAR). WRKY18 and WRKY40 have

common sequences with more than 60% identical amino acids (Xu et al., 2006). WRKY18,

WRKY40, and WRKY60 showed negatively affect resistance to hemibiotrophic pathogens (Xu

et al., 2006). In addition, different WRKYs seems to have contrasting effects on response to

Pseudomonas syringae and to B. cinerea. Indeed, these three WRKY proteins may be

negative regulators of the SA-dependent pathways while they induce JA-mediated pathways.

A mitogen-activated protein kinase 4 (MPK4), inhibitor of SA-dependent resistance (Petersen

et al., 2000), was shown to interact with WRKY25 and WRKY33 implying that their role in

response to necrotrophs might be complex (Andreasson et al., 2005). It seems that resistance

to the fungal pathogens in Malus x domestica was associated with specific expression levels

of these three WRKY genes. Hypersensitive reaction is important for the virulence of the

fungal pathogen B. cinerea (Govrin and Levine, 2000). SA and ET upregulates signalling

pathways antagonistic to each other, but both of them enhance pathogen-induced cell death

(Shirasu et al., 1997). Therefore, it is possible that WRKY genes cause activation or

suppression of diverse signalling mechanisms in response to necrotrophic pathogens

promoting virulence. It is worthy to notice that cooperative bonds with different WRKY

proteins might regulate their activity as transcription factors. Thirteen proteins interactive at



protein-protein level were commonly regulated with the other two biotic stresses and may be

considered a general plant stress state.

MYC2 was differentially regulated by both ASGV and E. amylovora. MYC2 is considered as

a key regulating protein of JA signalling in Arabidopsis (Fernandez-Calvo et al., 2011) since

it interacts with JASMONATE ZIM-domain proteins. Transgenic increased expression of

OsMYC2 stimulated the expression of early JA-responsive genes, inducing bacterial blight

resistance through JA-hypersensitive reaction (Uji et al., 2016). Interestingly, I observed a

protein-protein interaction network shared with the other biotic stresses and consisting of key

proteins such as MYC2, WRKY40, BCB, SYP121. The PPI network showed that WRKY33,

WRKY40 and MYC2 were strictly connected and significantly regulated by E. amylovora.

The expression of WRKY40 was enhanced in response to wounding and infections of

Ralstonia solanacearum. This gene was regulated by salicylic acid, methyl jasmonate,

ethylene (Wang et al., 2014). MYC2 interacts with NPR1 that was also significantly affected

by ASGV. This gene was up-regulated by SA (Ryals et al., 1997) and its subcellular

localization was modulated by redox changes caused by salicylic acid (Mou et al., 2003). It

binds directly to salicylic acid, releasing its transactivation domain and it is regulated by

proteasome-mediated turnover (Spoel et al., 2009).

Interestingly, ASGV modulated the expression of heat shock proteins such as HSP90.1,

HSP176B, HSP17A and HSFA6B. The PPI network showed that these proteins were strictly

interacting with each other. Heat shock proteins were frequently induced in cells of all

organisms in response to heat (Almoguera et al., 1995). Their function is to protect protein

folding since they are able to reduce protein misfolding due to all kind of stresses. HSP90

was involved in signal transduction of plant responses through the interaction of a salicylic

acid-induced protein kinase. HSP90 affects defense responses against pathogens through

specific interactions with other genes, working as a scaffold in protein complexes involved in

signal transduction (Schulze-Lefert, 2004). Along with transcriptomics analysis, the protein-

protein interaction network analysis help us to visualize and identify the key node proteins

which are affected pathogen infections. Thus, the meta-analysis plays a major role in

identifying potential biomarkers for different biotic stress conditions in plants by comparing

different omic data sets pertaining to a specific functional context (AbuQamar et al., 2016).



5. Conclusions

Comparisons of transcriptomic datasets obtained to study different biotic stress in the same

crop allows identifying which genes are specifically involved in disease resistance and which

may be associated with general plant stress conditions. Meta-analyses allow increase in

reliability of transcriptomic data, reducing environmental variability due to a low number of

biological replicates and repeated experiments. In this work, the meta-analysis conducted in

Malus x domestica, highlights the role of WRKYs in the molecular response to biotic stresses

at both transcript and protein-protein interaction levels. Although WRKY40 was involved

response to both fungal pathogens and E. amylovora, its interaction with other different

WRKY may induce specific responses. In response to fungal pathogens, WRKY interacted

with two other pathogen-regulated WRKY6 and WRKY18 while in response to E. amylovora it

interacts with WRKY33. Specific hormones were differentially affected between the three

types of stresses and drives to specific defense responses. Future studies in other crops

investigating similar diseases will allow validate these findings and identify resistance

mechanisms in gene regulatory networks of plant-microbe interactions.
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Experiment 2

Gaining Insight into Exclusive and Common Transcriptomic Features Linked with

Biotic Stress Responses inMalus x domestica.

DOI : https://doi.org/10.3389/fpls.2017.01569

1. Introduction

Apple (Malus x domestica Borkh) is one of the most important fruit crops in the world, which

is having highly nutritional value and is strongly recommended in diet. There are several

constrains which affect the cultivation of the apple trees, which can be classified as biotic

stress and abiotic stress. The infections due to bacteria, fungus, and virus are severely

affecting apple production and threatening grower's profits. Transcriptomic studies have been

conducted in Malus x domestica (Chen et al., 2014; Kamber et al., 2016) as well as in other

crops (Martinelli et al., 2012, 2013; Giovino et al., 2016; Cohen et al., 2019) in order to shed

lights on the complex molecular mechanisms of plant-microbe interactions. The identification

of important proteins with a key role in gene-gene and protein-protein interaction networks is

extremely useful to improve early diagnosis and therapeutic and genetic resistance strategies.

RNA interference (RNAi), relatively new technique, which triggers gene silencing typically

by double-stranded RNA (dsRNA), has become a significant tool to knockdown target genes

in plants as well as in insects (Limera et al., 2017). The first key step towards developing an

efficient RNAi-mediated pest control technique is to find suitable target genes. To develop

RNAi-mediated pest control methods, it is critical to find suitable target genes and

transcriptomes have been reported to be useful genetic resources for high-throughput

screening of RNAi target genes (Khraiwesh et al., 2012; Li et al., 2013). Dual RNA-seq is

another recent promising approach to study molecular mechanisms of interactions between

plant pathogens and their hosts (Kovalchuk et al., 2019).

A comparison of the molecular mechanisms behind different stress conditions allows the

discovery of potential candidate genes involved in specific and exclusive plant biotic stress

responses. It also allows gaining insight into general and common features linked with

disease status. This permits obtaining an early alert of the plant pathological status and

addressing the most sustainable management strategies. Considering that transcriptomic

studies are performed only in one season, often with no biological replications and in one

https://doi.org/10.3389/fpls.2017.01569


specific environment, the importance of performing meta-analysis is getting higher. The

presence, of many transcriptomic studies using different techniques (RNA-seq, microarrays,

cDNA libraries etc.) for each crop, allows gaining insight into common and specific genes,

pathways, and functional gene categories associated with different pathogens and commonly

modulated between environmental stresses. It is known how some genes are affected by

multiple environmental factors, involved in different metabolic, physiological, developmental,

and organ-specific processes. Indeed it is essential to compare transcriptomic data dealing

with multiple research objects in order to determine the pattern of expression of each gene in

different physiological processes. This will help filtering biotic stress responses from

unspecific features related to multiple physiological conditions. In Malus x domestica, several

transcriptomic studies have been conducted to elucidate important plant physiological and

developmental processes such as tree and root architecture, development and morphology,

flavonoid pathway, and fruit physiological disorders (Krost et al., 2013; Mellidou et al., 2014;

Ferrero et al., 2015; Wang et al., 2015; Li et al., 2016).

The identification of commonalities between similar independent studies to study the same

factor would allow identifying which genes are more strongly associated with the subject of

the study and focus the functional analysis only on those common findings. A clear

discordance between different omic levels is usually observed in integrated approaches due to

the fine-tuned molecular mechanisms of gene regulation developed by cells. Transcriptomic

findings often did not closely match with miRNAome, proteome and metabolome data.

Despite these issues, the extreme progress obtained in the development of sophisticated

machines for omic analysis has allowed researchers to generate “omic” data with low budget

requirements. How is it possible to extract the most useful information from the huge amount

of produced data? How complex has to be the experimental design of these studies to obtain

meaningful and trustful information? “Omic” experiments should be considered reliable if

replications in different seasons and environments are performed.

Thus, a meta-analysis of all the transcriptomic studies plays a vital role to select the most

frequent and most significant differentially expressed genes (DEG) among the complete list

of differentially regulated genes.

The aim of this meta-analysis study was to identify key genes and proteins involved in

general plant pathological conditions and those involved in specific and unique pattern of



biotic stress responses in Malus x domestica. A customized pipeline of meta-analysis was

developed, which could be applied to gain insight into similar studies in other crops.

2. Materials and methods

2.1 Search strategy of published study identification for meta-analysis

The published transcriptomic studies in Malus x domestica were identified from Scopus and

PubMed using the combination of keywords “Transcriptomics” and “malus” or

“Transcriptomics” and “apple” in computer-based searches, and were published on or before

March 2017. The identified studies were first divided into two major groups (1) “Biotic

Stress” and (2) “Others”. The studies with the raw data are publically available were only

considered for the “Biotic Stress” group. There were total twelve studies related to the

purpose of meta-analysis where, six articles related with “Biotic Stress” and the rest six

articles in the “Others” group. The raw data of all the “Biotic Stress” group studies were

downloaded and performed RNA-Seq analysis using a single analysis pipeline to obtain the

differentially expressed genes. The common genes present in the two groups were eliminated

during the analysis in order to get more accurate results pertaining to the objective of the

study. According to the type of the pathogen, Biotic Stress studies were further divided into

three groups (a) ASGV, (b) Erwinia amylovora (E. amylovora) (c) Fungal pathogens. Also,

rest of the studies were divided into three groups: (d) “Tree Architecture” (e) “Fruit” (f)

“Root.” The complete work flow of this meta-analysis was given in Fig. 2.1.1.



Figure 2.2.1–Work flow of the meta-analysis of the 12 Malus x domestica transcriptomic

studies. Number of genes (up-regulated and down-regulated) uniquely modulated in biotic

stress-related articles and in the rest of the studies was shown. Functional data mining tools

were indicated.

2.2 Differentially expressed gene selection and annotation

The Malus x domestica genome v1.0 and annotation file were downloaded from Phytozome

(https://phytozome.jgi.doe.gov). The Raw files (SRA format) of the six articles dealing with

biotic stress responses in Malus x domestica were downloaded from NCBI SRA and then

converted to FASTQ format using SRA toolkit version 2.3.5. The article Gusberti et al. (2013)

contains the differential gene expression information related to “Biotic Stress” and “Leaf

development” in Malus x domestica and downloaded the RAW files only for the samples

dealing with “Biotic Stress.” The Raw reads were filtered to obtain high-quality clean reads

by trimming low-quality bases followed by adaptor sequence removal using cutadapt version

1.8.1. The pre-processed reads were mapped to the Malus x domestica genome v1.0 with

HISAT2 version 2.0.5 (Kim et al., 2015) using default parameters. The identification of

differentially expressed genes was performed using Cuffdiff algorithm in Cufflinks version

https://phytozome.jgi.doe.gov


2.2.1 pipeline with default parameters. The up and down regulated gens obtained with fold

change cutoff (log2 FC >1 or log2 FC <−1) and p-value < 0.05 were only considered for the

meta-analysis. The details of the selected articles are given in Table 2.1. The sample

information, SRA IDs and alignment information are given in Table2.2.The sample

comparison plan and the counts of differentially expressed genes obtained are given in

Table2.3.

No Article Objective Tissue
DEGs Pathoge

n
Grou
pUp Down

1 Chen et al.,
2014

Apple stem
grooving virus Shoot 263 404 Virus ASG

V

2 Kamber et
al., 2016

Responses to
Erwinia
amylovora

Flower 147 108 Bacteria
F. am
ylovor
a

3 Yin et al.,
2016

Resistance to
Valsa mali Twig 247 22 Fungi

Funga
l

Patho
gens

4 Zhu et al.,
2017

Response to
Alternaria
alternate

Leaf 358 621 Fungi

5 Shin et al.,
2016

Response to
Pythium ultimum Root 355 923 Fungi

6 Gusberti et
al., 2013

Resistance to
Venturia

Young Leaf 751 567 Fungi
Mature Leaf 244 208 Fungi

Leaf Development Young &
Mature Leaf 1,655 4,089 - Tree

Archit
ecture7 Krost et al.,

2013 Tree architecture Shoot 315 697 -

8 Ferrero et
al., 2015 Fruitlet Abscission Fruit 470 37 -

Fruit9 Mellidou et
al., 2014

Flesh browning
disorder Fruit 44 26 -

10 Wang et al.,
2015 Flavonoid content Fruit 88 25 -

11 Petersen et
al., 2015 Root architecture seed, shoot,

leaf 215 168 -
Root

12 Li et al.,
2016 Root growth Root 63 120 -

Table 2.1–Analyzed articles, objective of the studies, tissue number of up- or down-regulated

genes, and assigned group.



No. Study Sample Name SRA ID
Read

orientatio
n

Total
number of
reads

Alignm
ent %

1 Chen et al.,
2014

Control SRR1089478 Single 7,591,042 76.05%
Infected SRR1089477 Single 7,430,428 85.47%

2 Kamber et
al., 2016

Control ERR1189573 Single 3,553,043 65.45%
Inoculated ERR1189574 Single 12,839,290 59.43%

3 Yin et al.,
2016

Control SRR1917391 Paired 60,300,888 89.07%
Infected SRR1063452 Paired 96,640,082 78.73%

4 Zhu et al.,
2017

0HPI SRR4431586 Single 11,960,715 89.47%
72HPI SRR4431634 Single 12,360,687 84.78%

5 Shin et al.,
2016

0T

SRR1603673
SRR1603674
SRR1603676
SRR1603677
SRR1603678
SRR1603675

Single 21,879,041 86.68%

96M

SRR1603721
SRR1603722
SRR1603723
SRR1603724
SRR1603725

Single 20,000,000 87.00%

6-1 Gusberti et
al., 2013

1.I.96.1_E1 ERR313218 Paired 65,987,624 83.78%
1.I.96.2_E1 ERR313239 Paired 74,738,806 82.20%
1.I.96.3_E1 ERR313221 Paired 83,789,050 80.64%
1.N.96.1_E1 ERR313236 Paired 80,149,630 77.72%
1.N.96.2_E1 ERR313225 Paired 93,291,312 92.30%
1.N.96.3_E1 ERR313238 Paired 94,326,608 88.12%

6-2 Gusberti et
al., 2013

7.I.96.1_E1 ERR313235 Paired 69,912,968 92.10%
7.I.96.2_E1 ERR313219 Paired 90,906,390 88.71%
7.I.96.3_E1 ERR313230 Paired 64,317,912 78.92%
7.N.96.1_E1 ERR313229 Paired 76,635,396 78.88%
7.N.96.2_E1 ERR313233 Paired 75,873,582 85.86%
7.N.96.3_E1 ERR313220 Paired 76,611,594 90.96%

Table 2.2– SRA and alignment information.



Comparison Total
DEGs

Total Up-
regulated
genes

Total Down-
regulated
genes

Control vs. Infected 667 263 404
Control vs. Inoculated 255 147 108
Control vs. Infected 269 247 22
0HPI vs 72HPI 979 358 621
0T vs 96M 1,278 355 923

(1.N.96.1_E1,1.N.96.2_E1,1.N.96.3_E1)
vs.
(1.I.96.1_E1,1.I.96.2_E1,1.I.96.3_E1)

1,318 751 567

(7.N.96.1_E1,7.N.96.2_E1,7.N.96.3_E1)
vs.
(7.I.96.1_E1,7.I.96.2_E1,7.I.96.3_E1)

452 244 208

Table 2.3– Sample comparison plan and total number of DEGs obtained.

The up and down regulated gens with fold change cutoff (log2 FC >1 or log2 FC <−1) and p-

value < 0.05 were collected from the rest six articles dealing with transcriptomic studies in

Malus x domestica other than “Biotic Stress” (Table 2.1).

All the differentially expressed gene ids were annotated using the Malus x domestica genome

v1.0 mapping file downloaded from the Phytozome database (https://phytozome.jgi.doe.gov).

The common and unique genes among different groups were identified. The common genes

present in “Biotic Stress” and “Other” groups were eliminated from “Biotic Stress” gene list

and were considered for the rest of the analysis. I wrote custom made perl scripts for the

selection of gens and mapping.

2.3 Gene enrichment analysis

I used MapMan (Thimm et al., 2004) with the Malus x domestica mapping file

(Mdomestica_196.txt) (http://mapman.gabipd.org/) to map the gene ids and visualize the

metabolic overview, hormone regulation, transcription factors, and protein targeting of the

Biotic stress gene sets (a) ASGV, (b) E. amylovora, (c) Fungal Pathogens.

https://phytozome.jgi.doe.gov


The PageMan (Usadel et al., 2006) analysis plugin of MapMan was used to visualize

differences among metabolic pathways using Wilcoxon tests, no correction, and an over-

representation analysis (ORA) cutoff value of 3. I considered all the differentially expressed

genes present in all 6 gene sets for the PageMan analysis: (a) ASGV (b) E. amylovora (c)

Fungal Pathogens (d) Tree Architecture (e) Fruit (f) Root.

2.4 Functional analysis

All the homologous TAIR IDs of the Biotic Stress genes were searched against the Database

for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 (Huang et al.,

2009) Web server (https://david.ncifcrf.gov/). The unique list of TAIR IDs for each group

were collected and used for the DAVID pathway analysis. The gene ontology information

related to Biological process were extracted (FDR cutoff = 0.05) from the DAVID result

(Table 2.4).

https://david.ncifcrf.gov/


Group Up/D
own GO ID GO Term Cou

nt pval
Fold
Enrich
ment

FDR

Fungal
Pathog
ens

Down GO:0006355
regulation of
transcription, DNA-
templated

90 1.95E-
05

1.55585
2518 1.69E-03

Down GO:0015979 Photosynthesis 15 2.49E-
05

3.98170
4692 3.79E-02

Down GO:0007018 microtubule-based
movement 12 1.11E-

06
6.86844
0594 3.79E-02

Tree
Archit
ecture

Up GO:0055114 oxidation-reduction
process 64 1.46E-

05
1.75231
7802 2.97E-02

Down GO:0006511
ubiquitin-dependent
protein catabolic
process

50 3.99E-
08

2.31222
4705 1.65E-03

Down GO:0006886 intracellular protein
transport 40 9.92E-

07
2.31941
2969 6.99E-03

Down GO:0042254 ribosome biogenesis 31 6.76E-
06

2.44314
2217 1.56E-02

Down GO:0000027 ribosomal large
subunit assembly 14 4.95E-

06
4.47646
703

0.007321
2

Down GO:0000059 protein import into
nucleus, docking 11 4.41E-

06
5.86204
0158 6.62E-05

Down GO:0018279
protein N-linked
glycosylation via
asparagine

8 4.21E-
06

8.95293
4059 1.12E-02

Up GO:0015996 chlorophyll
catabolic process 6 1.02E-

05
18.2076
7717 2.22E-02

Root

Down GO:0009734 auxin-activated
signaling pathway 11 1.31E-

08
12.7499
3734 1.09E-02

Up GO:0009734 auxin-activated
signaling pathway 9 8.24E-

06
8.76268
4211 8.22E-03

Down GO:0007169

transmembrane
receptor protein
tyrosine kinase
signaling pathway

8 1.92E-
06

13.5523
8095 1.62E-05

Table 2.4– Significantly regulated biological processes in the analyzed transcriptomic studies

(FDR < 0.05).



2.5 Protein-protein interaction network

Individual data annotation and analysis were performed using NetworkAnalyst (Xia et al.,

2014), a web-based tool for protein–protein interaction network analysis and visual

exploration. The unique list of homologous TAIR IDs of each “Biotic Stress” groups were

uploaded and mapped against the STRING interactome database with default parameters

(confident score cutoff = 900 and with experimental evidence) provided in NetworkAnalyst. I

selected “Minimum Network” to simplify the network and to study the key connectivities.

The common genes present in the three biotic stress groups (a) ASGV, (b) E. amylovora, (c)

Fungal pathogens were highlighted in Figure 2.5.1. The genes present in each biotic stress

groups and the common genes among them were highlighted separately in Figure2.5.2

andFigure 2.5.3.

Figure 2.5.1–Protein-protein interaction network analysis predicted in Malus x domestica

based on Arabidopsis knowledgebase. Proteins encoded by transcriptionally modulated genes

were shown in different color basing on the type of pathogens. Proteins encoded by genes

commonly modulated by 2 of 3 types of pathogens were shown in red.



Figure 2.5.2–Proteins encoded by transcriptionally modulated genes were shown in different

color basing on the type of pathogens. The commonly modulated (2 of 3 type of pathogens)

genes were shown in red.

Figure 2.5.3–Protein-protein interaction network analysis predicted in Malus x domestica

based on Arabidopsis knowledgebase. Proteins encoded by transcriptionally modulated genes

were shown in different color basing on the type of pathogens.



3. Results

In this study, I collected a total 12 transcriptomic studies published in Malus x domestica in

Pubmed and Scopus databases and compared the significantly regulated genes in each of

these research subjects (p-value < 0.05, log2 FC >1 or log2 FC <−1).

Article details, titles, analyzed tissues, and numbers of up- and down-regulated genes were

listed in Table 2.1. The first six articles deal with biotic stress responses (Apple stem

grooving virus, E. amylovora, and fungal pathogens) (Gusberti et al., 2013; Chen et al., 2014;

Kamber et al., 2016; Shin et al., 2016; Yin et al., 2016; Zhu et al., 2017). The other six

studies were dealing with the understanding of molecular mechanisms of fruitlet abscission,

flesh browning disorder (physiopathological fruit disorder), flavonoid biosynthesis in fruit,

tree and root architecture, growth and morphology (Krost et al., 2013; Mellidou et al., 2014;

Ferrero et al., 2015; Petersen et al., 2015; Wang et al., 2015; Li et al., 2016). One study was

divided in three datasets: responses to Venturia inaequalis in young and mature leafs and

gene expression involved in leaf development (Gusberti et al., 2013). Although great data

variability was observed between the different studies regarding the number of significantly

regulated genes, a strict p-value cut-off was kept in order to increase data reliability. The

developed meta-analysis workflow was shown in Figure 2.2.1. Total 13,230 genes were

analyzed: 5,215 were up-regulated, 8,015 were down-regulated. Biotic stress-related works

significantly regulated 5,218 while the rest of articles related to fruit processes, tree and root

architecture and leaf development affected the expression of 8,012 genes. A part of these

genes were commonly modulated (3,130). Among the two main categories (biotic stress and

“others”), I independently analyzed subgroups of studies. Biotic stress was divided in

responses to Apple Stem Grooving Virus, E. amylovora and fungal pathogens. The “others”

group was divided in fruit processes, root and tree architecture. All these transcriptomic

analysis were functionally mined with an integrated approach composed by gene set

enrichment analysis (Pageman; Usadel et al., 2006), pathway and gene ontology analysis

(DAVID; Huang et al., 2009), gene visualization (MAPMAN; Thimm et al., 2004), network

analysis (NetworkAnalyst; Xia et al., 2014).



3.1 Gene set enrichment analysis

Gene set enrichment analysis showed that photosynthesis was repressed at transcriptional

level in two biotic stress-related studies while it was enhanced during leaf growth and

development. The gene categories related to primary metabolism such as photosynthetic light

reactions, Calvin cycle, major carbohydrate metabolism were expressed in Tree architecture.

Trehalose pathway induction was linked with modifications on Malus x domestica tree

architecture. RNA processing was more generally expressed by E. amylovora while these

genes were not affected in response to other biotic stresses. Indeed, Alternaria alternata

drives more the upregulation of genes involved in hormone metabolism ethylene, biotic stress,

and protein degradation signaling compared to the other pathogens whereas it repress protein

synthesis. As expected, root architecture was highly linked with the induction of auxin

signaling and responsive genes as previously reported (Overvoorde et al., 2010).

Different hormone categories were linked with specific research subjects. Gibberellin-related

pathways were inhibited by the attack of Pythium ultimum. Apple stem grooving virus mainly

repressed jasmonic acid-mediated responses. Gene encoding key players in biotic stress

responses was linked with modifications of shoot architecture as well as with attacks of A.

alternata, E. amylovora, and Venturia. Abiotic stress-related genes were up-regulated by tree

architecture modifications while an increase of induced genes involved in redox detoxifying

pathways (ascorbate, glutathione-s-transferase, thioredoxin,) and biodegradation of

xenobiotics were related to leaf development.

The different categories of transcription factors were exclusively linked to different studies.

Basic helix-loop-helix transcription factors were expressed by P. ultimum, Zn C2-CO-like

was enhanced by leaf development and Zn C2-DOF was inhibited in fruits. MADS-box,

SNF7, and MYB-related were also induced by leaf development processes. Homeobox

transcription factor family proteins were more down-regulated by Valsa mali infections. The

bZIP transcription factor family proteins were more expressed in Root.

It is worthy to notice that different receptor kynases were involved in different physiological

processes: receptor kinases were mostly repressed in fruit architecture changes. In protein

synthesis, process expressed more in virus as well as P. ultimum infections. Protein

degradation repression was linked to shoot development. Leucine rich repeat XI repression

was linked with root development. DUF26 category upregulation was clearly linked to tree



architecture. Aminoacid transport induction was associated only with root architecture

processes. As expected, major transport related (sugar, nitrate, sulfate, phosphate, and

nucleotides transport) genes were induced by leaf development processes.

The aim of this work was to focus on the biotic stress responses in order to identify genes

related to general mechanisms of plant responses to biotic attacks and genes specifically

modulated by different types of pathogens (virus, bacteria, and fungal pathogens). Indeed, I

visualize only those significantly regulated genes in each of the three pathogen groups

eliminating those genes that were also affected by other physiological processes and related

to unspecific plant responses. Although the list of fungal pathogen-regulated genes were

higher than the other two types of pathogens and this may disturb the meta-analysis it is clear

that specific pathogens and some gene categories were specific for each pathogen.

Anthranilate N-hydroxycinnamoyl flavonoid related genes were more induced by ASGV.

Alcohol-dehydrogenases flavonoid-related genes, nucleotide-related genes were more

induced fungal pathogens. AGSV repressed few specific genes involved in phenylpropanoids,

aminoacids primary metabolism (TCA, lipids, carbohydrates) (Figure 3.1.1). A low amount

of genes were commonly modulated by the different stresses. They were involved in

photosynthesis, minor CHO, and phenylpropanoid pathways.



Figure 3.1.1– Mapman overview of biotic stress-related genes in response to apple stem

grooving virus (ASGV), Erwinia amylovora, fungal pathogens and commonly regulated in at

least 2 of 3 types of pathogens. Only those genes that were uniquely modulated by biotic

stress were indicated. Those affected in at least one of the rest of the transcriptomic studies

were eliminated.

3.2 Biological process enrichment analysis

DAVID software was used to identify which gene ontologies (biological process, cellular

component, molecular function) were significantly affected by six groups of transcriptomic

works (responses to apple stem grooving virus, E. amylovora and fungal pathogens, fruit

responses, root morphology, and architecture and tree architecture). Related to biological

processes, only responses to fungal pathogens, tree architecture and root responses showed

significantly modulated biological processes (FDR < 0.05). Fungal pathogens repressed

DNA-templated transcription regulation, photosynthesis, and microtubule-based movement



while tree architecture repressed ubiquitin-dependent protein catabolic process, intracellular

protein transport, protein N-linked glycosylation via asparagine, protein import into nucleus,

docking, ribosomal large subunit assembly and ribosome biogenesis (Table 2.4). The

chlorophyll catabolic process and oxidation-reduction process showed more expression in

Tree architecture studies. In root, transcriptomic studies showed a significant up and down

regulation in auxin-activated signaling pathway and showed inhibition of transmembrane

receptor protein tyrosine kinase signaling pathway.

3.3 Hormone-related pathways

Infection of fungal pathogens enhanced expression of isoforms of ILR1, ATB2, and has

opposite effects on the expression of different aldo/keto reductase (Figure 3.3.1). Two key

brassinosteroid genes were down-regulated by fungal pathogens and two were commonly

modulated between different biotic stresses. Several genes involved in ethylene biosynthesis

and signaling were enhanced by fungal pathogens such as oxidoreductase 2OG-Fe (II)

oxygenases and ERF1. Many ethylene-related genes were commonly regulated by different

biotic stress studies. Jasmonic acid-related genes were mostly repressed by apple stem

grooving virus (OPDA reductase3, allene oxide synthase). E. amylovora enhanced the

expression of a gene involved in salicylic acid response. Interestingly gibberellin-related and

ARA-related genes were mostly repressed by fungal pathogens although four key GA-related

genes were commonly modulated between different biotic stresses.



Figure 3.3.1–Gene expression changes involved in hormone-related pathways in response to

Apple stem grooving virus, Erwinia amylovora, fungal pathogens, and commonly modulated

in at least 2 of the 3 types of pathogens. Some key genes were indicated.

3.4 Secondary metabolism

The expression of genes involved in secondary metabolism was peculiarly modulated by the

different analyzed transcriptomic studies (Figure 3.4.1). Leaf development up-regulated some

genes of the non-MVA pathway (CLA1, ISPF, CSB3), it repressed other genes such as a zinc

ion binding, a GGPS1, some 2-dehydro-3-deoxyphosphoheptonate aldolases and a shikimate

synthase. On the other hand, transferases, a hydroxycinnamoyl-coa shikimate transferase, and

a cinnamyl-alcohol dehydrogenase were enhanced by fungal pathogens. E. amylovora

induced a chalcone synthase. Several genes involved in dehydroflavonol and carotenoid

pathways were up-regulated during leaf development.



Figure 3.4.1–Genes significantly regulated in biotic stress responses and involved in

secondary metabolism and grouped based on exclusively or commonly expression in

response to the three types of pathogen attacks.

3.5 Protein targeting and transcription factors

Few key genes involved in secretary pathways differentially affected by the different biotic

stresses (Figure 3.5.1). Nuclear transport factor 2 and VPS28-1 (vacuolar protein sorting-

associated protein) were repressed by fungal pathogens while a signal peptidase subunit

family protein was induced by E. amylovora. Specific transcriptomic changes were observed



in relation to different types of pathogens. Fungal pathogens mostly inhibited MYB-related

genes as well WRKYs and TCP transcription factors. Apple stem grooving virus inhibited

seven genes encoding bHLH and two WRKY members while it induced two trihelix

members (Figure 3.5.2). E. amylovora induced one gene encoding bHLH and repressed one

C2C2-CO-like gene.

Figure 3.5.1–Gene expression changes involved in targeting-related genes in response to

Apple stem grooving virus, Erwinia amylovora, fungal pathogens, and commonly modulated

in at least 2 of the 3 types of pathogens.



Figure 3.5.2–Significantly regulated transcription factor genes in response to Apple stem

grooving virus, Erwinia amylovora, fungal pathogens, and commonly modulated in at least 2

of the 3 types of pathogens. Only few key TF categories were shown. Some key genes were

also indicated.

3.6 Protein-protein interaction network analysis

A protein-protein interaction (PPI) network analysis was predicted in Malus x domestica

based on Arabidopsis knowledgebase (Figure 2.5.1, Figure 2.5.2 and Figure 2.5.3). The list of

biotic stress-related genes was determined. Those genes which were significantly affected in

response to the three types of pathogens but not in the rest of transcriptomic studies were

considered. Those biotic stress-related genes that showed to be modulated by other

physiological processes were eliminated and considered to be unspecific. At the end, only the

PPI network of the biotic stress-related genes and their partners were shown. The aim of this

analysis was to identify some small interactive networks specific to each pathogens. GPA1,

LPAT4 and XLG1 were closely connected and involved fungal pathogen responses (Figure

2.5.3). The protein network contain 28 proteins present in both ASGV and fungal pathogens,

11 proteins common between E. amylovora and fungal pathogens and one protein (BAS) in



common between ASGV and E. amylovora. WRKY40 protein is the only one protein present

in the network, which is present in all three biotic stress groups (Figure 2.5.1).

4. Discussion

The large number of transcriptomic works published in plants really requires more meta-

analysis studies that would identify common and specific features (genes, gene categories,

pathways) linked with the different object of studies (plant developmental, agronomic, and

environmental responses). Plant transcriptomic data are highly variable depending of

different environmental conditions and gene expression is finely modulated by a high number

of variables such as timing, genotypic differences, environmental factors and experimental

conditions, tissues and their developmental stages. Here, I compared 12 transcriptomic

studies in Malus x domestica in order to deliver functional genomic information linked with

common or exclusive molecular responses to specific types of biotic stresses. In order to

identify only those features related to biotic stresses, I also used RNA-seq data related to

other apple physiological processes. The aim was to perform a comparison analysis among

transcriptomic datasets clarifying the role of key genes previously identified and shade lights

on the different crosstalk played by important biological molecules such as hormones.

Different transcriptomic studies are generally performed using different transcriptomic

platforms and using different experimental design. In order to compare them, it is necessary

to use at least the same bioinformatic pipeline. Meta-analysis in Malus x domestica is

important to create a database of curated transcriptomic data that could be used also by the

scientific community working on other crop species.

The repression of photosynthetic pathways at transcriptomic level in response to biotic

stresses is a feature widely seen in previous transcriptomic studies (Martinelli et al., 2012,

2013). My meta-analysis study showed that, among biotic stresses, fungal pathogens strongly

inhibited primary metabolism genes. This evidence agrees with data obtained with imaging

methodologies that analyzed chlorophyll and multicolor fluorescence. These published data

demonstrated their possible application in improving early detection of infections of virus,

bacteria, and fungi (Barón et al., 2016). The transcriptomic data of the meta-analysis related

to secondary metabolism confirmed findings obtained with imaging methodologies. The

integration of different techniques is essential to drive pre-symptomatic stress detection. The



reduction of photosynthesis has been observed in virus-infected leaves at symptomatic level

(Pérez-Bueno et al., 2006; Pineda et al., 2010) and even before symptoms appears (Chaerle et

al., 2007). Interestingly, the integrated use of imaging and statistical analysis was used to

determine infections of P. syringae in Arabidopsis before symptoms were visible (Berger et

al., 2007). Fluorescence signals were also increased in sugar beet infected by powdery

mildew and authors concluded that fluorescence indices could be considered as good indices

of stress conditions (Leufen et al., 2014). Significant changes in photosynthetic activities

linked with fungi infections are also spatially and temporally determined (Barón et al., 2016).

Infections of bean leaves by rust fungi have been linked with changes in fluorescence

induction kinetics (Peterson and Aylor, 1995).

Experimental algorithms have been developed to determine differences between affected and

unaffected plants treated with phytotoxins of Alternaria brassicae (Soukupova et al., 2003).

The use of molecular and phenotypic stress indicators would allowing manage pathogenesis

and guiding effective management procedures of biotic stresses in plants. These techniques

highlighted the role of pathogen in repressing photosynthetic performance and affect

secondary metabolism. Indeed, this let me to speculate that the integration of meta-analysis of

transcriptomic works with the data obtained by techniques of chlorophyll measurements may

improve both field and greenhouse management of plant diseases. A complementary use of

molecular, remote sensing, and volatile sensor devices have shown to efficiently contribute in

the early diagnosis of plant diseases and disorders (Dandekar et al., 2010). The use of these

innovative integrated approaches represents the new frontier of plant pathology (Martinelli et

al., 2015).

Auxins are considered the most regulator hormones of plant development (Taylor-Teeples et

al., 2016). Lateral root development is one of the most well-known organogenesis process

mediated by auxins. Auxin Response Factor (ARF) transcription factors are known to be key

players in the auxin-mediated regulation of root development. Indeed, ARFs have been found

be repressed by the interactions with (Aux/IAAs) repressor proteins and the corepressor

Topless. Proteins of the TIR1/AFBs bind auxins in a complex with the Aux/IAAs controlling

phyllotaxy. AFB5, TIR1, F-box were up-regulated on grafted apple and linked to root growth

(Li et al., 2016) and they were not involved in the other studied physiological processes in

Malus x domestica. This evidence highlighted their exclusive role in root development and

growth. My meta-analysis found out that, among the 12 analyzed Malus x domestica studies,



root development processes uniquely induced GRAM-domain proteins. The GRAM domain

has a length of 70 amino acids that is usually present in membrane-associated proteins and in

glucosyltransferases (Doerks et al., 2000). Although some functions of these proteins remain

unclear, the function of this domain seems to be linked with membrane-associated processes

such as intracellular binding signaling pathways (Doerks et al., 2000).

Transcriptomic responses to E. amylovora (Kamber et al., 2016) showed that this pathogen is

more linked with gibberellin response than the other studies as shown by the upregulation of

four 2OG-Fe(II) oxygenase, GA2OX6 and the repression of others (GASA4 and unknown

genes). The role of gibberellins in response to fire blight has been previously reported

(Maxson and Jones, 2002). Indeed apple trees were treated with prohexadione calcium

(Apogee) and trinexapac-ethyl (Palisade) well-known inhibitors of gibberellin biosynthesis.

This work was showed to be effective in enhance resistance to E. amylovora (Maxson and

Jones, 2002). This effect was mediated by a reduction of tree growth. However, in the meta-

analysis, I observed more GA-related genes modulated by fungal pathogens instead of E.

amylovora. More studies are needed to define the role of gibberellins in plant responses to E.

amylovora.

Interestingly jasmonic acid-mediated responses were generally repressed by leaf development

process (Gusberti et al., 2013; Noir et al., 2013) and apple stem grooving virus infections

(Chen et al., 2014). This latter evidence was expected since viruses are considered

hemibiotrophic pathogen. Jasmonic acid (JA) and ethylene (ET) are critical for inducing

immediate and effective responses against necrotrophs (Glazebrook, 2005) and they are

usually repressed by Salicylic acid-mediated responses (Pieterse et al., 2009). My meta-

analysis highlighted that A. alternata infections showed to downregulate LOX2 in a peculiar

way (Zhu et al., 2017). LOX2, requires the expression of the F-box protein COI1

(CORONATINE INSENSITIVE1) that forms a ternary complex with JAZ repressor proteins

(Zander et al., 2010). This let me to speculate that this might be detrimental for the infected

Malus x domestica tree.

Two genes were commonly modulated by different biotic stresses agreeing with published

literature confirming the important role of brassinosteroid in hormonal crosstalk in plants in

responses to biotic stresses. Brassinosteroids have been known to be important player of

biotic and abiotic stresses, although their mechanisms are still not well-elucidated. A



homeodomain transcription factor OsBIHD1 is known to be involved in biotic and abiotic

stress responses. The overexpression of this gene or its deficiency modulated the expression

of several brassinosteroid-related genes causing brassinosteroid insensitivity (Liu et al., 2017).

Indeed, the function of this gene seems to modulate the trade-off between resistance and

growth by regulating brassinosteroid-ethylene pathway (Liu et al., 2017). In addition, it is

worthy to notice that a squalene monoxygenase and squalene epoxidase3 were induced

exclusively by Pythium infections among the 13 analyzed studies. In contrast, a key positive

regulator was repressed by apple stem grooving virus. These data agreed with previous data

that showed how the silencing of a N. benthamiana squalene synthase, an important player of

phytosterol biosynthesis, counteracted non-host resistance of Pseudomonas syringae and

Xanthomonas campestris, increasing the growth of the host pathogen P. syringae pv tabaci

by enhancing nutrient efflux into the apoplast. In addition, squalene epoxidase was induced in

Calendula tropicalis by Aspergillus niger and this was linked with enhanced ginsenosides

biosynthesis.

Extracting the data published by Gusberti et al. (2013) and dividing them in two datasets (one

related to Venturia infection and one related to leaf development), I observed an increased

expression of detoxifying pathways when leaves are developing and this implies that

chemical defense pathways are induced during ontogenetic development against xenobiotic

agents. As far as it concerns, different ontogenetic, development, and physiological process

activated specific classes of transcription factors. This evidence could be helpful in

elucidating the diverse gene regulatory networks modulating plant responses to different

pathogen attacks. This will allow the development of specific strategy of genetic resistance to

different pathogens.

The meta-analysis showed that 12 genes encoding WRKYs were commonly modulated

between different biotic stresses. Their modulation would be important to create genotypes

resistant to the presence of multiple pathogens. Fungal pathogens mostly repressed WRKY

genes implying that there might be a mechanism of repression of beneficial plant biotic-

related genes. WRKYs represent a large family of transcription factors mostly found in plants

with a key role in stress signaling among the several role where they are involved (Jiang et al.,

2017). More than 100 and almost 200 WRKY superfamily members were discovered in

Glycine max and Oryza sativa, (Rushton et al., 2010; Fan et al., 2015). Their expression is

typically up-regulated in plants when they are subjected to a great variety of stresses and they



are activated by stress signals such as salicylic acid (SA) or other molecules. Their expression

is rapid, transient and it is tissue-specific (Jiang et al., 2017). The identification of specific

WRKYs modulated by different pathogens and abiotic factors would allow addressing the

genetic improvement to develop genotypes resistant to agronomical limiting factors. The

complex network of protein-protein interactions may be visualized using software such as

bioconductor package of R, Graphviz, Cytoscape. The main aim of this analysis was to

identify which highly interactive proteins are specifically or commonly modulated by each

kind of the considered biotic stresses. Among them, I pointed my attention of WRKYs such as

WRKY18, WRKY33, and WRKY40. Interestingly, the PPI network showed that WRKY40 was

affected by all three kind of biotic stresses. Physical and functional interactions have been

reported between WRKY18, WRKY40, and WRKY60 in response to pathogen infection in

Arabidopsis thaliana (Xu et al., 2006). The PPI network analysis confirmed the important

role played by the interaction between WRKY18 and WRKY40 since these two genes were

shown to be affected by both E. amylovora and fungal pathogens. It is well-known that these

two WRKYs play an important role in PAMP-triggered basal defense (Pandey et al., 2010; Bai

et al., 2018; Chen et al., 2019). These two WRKYs negatively affect EDS1 and PAD4, but

positively up-regulated some key JA-signaling genes.

5. Conclusions

My meta-analysis was effective in confirming the effects of fungal pathogen attacks on

reduction photosynthesis at transcriptomic level highlighting the importance of integrating

different molecular, imaging and high-throughput platforms in early diagnose of plant stress

status. In addition, it showed how specific hormones and transcription factor classes play

specific roles in plant signaling responses to different pathogens. The PPI network

highlighted the role of terpenoids in the response to pathogen attacks in Malus x domestica.

The integrated meta-analysis approach and pipeline could be employed in comparing

transcriptomic studies and deciphering common and exclusive features in the gene regulatory

networks of other crop species.
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Experiment 3

Identifying Host Molecular Features Strongly Linked With Responses to

Huanglongbing Disease in Citrus sinensis Leaves.

DOI : https://doi.org/10.3389/fpls.2018.00277

1. Introduction

Citrus huanglongbing (HLB), called citrus greening disease, a destructive disease of citrus

that represents a major threat to the world citrus industry and is slowly invading new citrus

growing areas (Dala-Paula et al., 2018). HLB, whose name in Chinese means "yellowd ragon

disease", was first reported from southern China in 1919 and is now known to occur in next

to 40 different Asian, African, Oceanian, South and North American countries (Bove, 2006).

Even though Citrus huanglongbing (HLB), caused by Candidatus Liberibacter spp, is not yet

present in the Mediterranean basin, this devastating disease is threatening the very survival of

citrus in most parts of the world. As management of HLB would be difficult in the

Mediterranean area, in particular because of the small size of most citrus orchards, all efforts

should be concentrated towards preventing HLB entrance and spread in the area (Duran-Vila

et al., 2014).

The disease causes yellow color of young shoots and the leaves show blotchy mottling,

yellow veins and mineral deficiency symptoms, like that induced by zinc in particular. Fruits

are lopsided, with color inversion and aborted seeds (Fig. 1.1). So far, seed transmission of

HLB has not been demonstrated. Eventually, affected trees decline and become

uneconomical. Since the initial discovery of HLB in Florida in 2005, the disease has affected

most citrus-producing areas, causing the loss of about 100,000 acres of citrus, at a cost of

approximately $3.6 billion in lost revenues and 6600 jobs (Alvarez et al., 2016; Ferrarezi et

al., 2019). Currently, it is estimated that Las has infected over 95% of the mature trees in

commercial citrus groves in Florida.

Control of HLB requires quarantine, clean stock, and certification programs in order to

produce healthy plants and prevent movement of infected nursery stock. The psyllid vectors

must be controlled. In areas where HLB is not already established, a three pronged approach

to control is effective: regular surveys to identify early symptoms on trees which are then

removed; control of the psyllid vector by survey and pesticide application; and use of clean

https://doi.org/10.3389/fpls.2018.00277


plant material for replanting (Bové, 2006). Detection of the bacterium associated with HLB is

by PCR or real-time PCR. Testing psyllids for the presence of the bacterium associated with

HLB by real-time PCR has proven to provide an earlier warning of the presence of the

disease in an area where HLB is not already established (Manjunath et al., 2008).

Figure 1.1–Oranges with HLB are afflicted with a green color.

The pathogenetic mechanisms of Huanglongbing (HLB) disease remain unclear. The disease

is caused by a phloem-limited bacterium, Candidatus liberibacter asiaticus (CaLas),

transmitted by psyllids (Rao et al., 2019). The pathogen has three subspecies: americanus,

africanus, and asiaticus. The first two subspecies infect Citrus sinensis in South America and

Africa, respectively, while the asiaticus subspecies is widespread in North America and Asia.

The pathogen is closely related to Rhyzobiaceae and has biotrophic behavior. The caused

disease is the most threatening in Citrus sinensis worldwide and leads to tree death in few

years, reduced tree growth, yellowing of leaves and malformed, unmarketable fruits

characterized by small seeds, high acidity, small size, and altered ripening dynamics.

Although genomic sequences have been determined (Duan et al., 2009; Tyler et al., 2009)

and putative toxins have been isolated, the toxic molecules are not the only cause of disease

symptoms. Previous -omic approaches have provided insight into the molecular mechanisms

provoking symptoms. The first studies conducted through microarrays highlighted



upregulation of genes involved in carbohydrate biosynthesis and metabolism, particularly

those involved in starch pathways, such as AGPase and starch synthase (Albrecht and

Bowman, 2008; Kim et al., 2009). Repression of photosynthesis and other primary metabolic

pathways was also observed. RNA-Seq studies on different sink and source organs showed

that sink-source tissue relationships were severely modified by the disease (Martinelli et al.,

2012, 2013). Upregulation of glucose-phosphate-transporter2 was considered a key factor

driving starch accumulation in infected leaves, a common symptom of the disease. CaLas-

infected fruits remained green and photosynthesizing, while the mature leaves had decreased

photosynthesis and yellowing due to starch accumulation, causing inversion of the usual

relationship between developing fruit and mature leaves (Martinelli et al., 2015). Another

important factor causing symptoms was reduced expression of genes encoding heat shock

proteins (i.e., HSP82). The products of these genes protect protein folding and function

during stress conditions. These genes help maintain normal function of key proteins,

especially in phloem and leaves, maintaining correct function of proteins involved in primary

metabolism. A third devastating effect of the pathogen is modified hormonal cross-talk. The

pathogen induced upregulation of key genes involved in jasmonic acid-mediated responses in

leaves (lox1, lox2, and lox3), probably in response to insect attacks. In addition, the salicylic

acid-mediated response was more highly induced in fruits than in leaves, although fruits are

not commonly the place of infection. Finally, induction of abscissic acid and auxin genes

(HVA22C, SAUR-like, and UGT71B6) should counteract the action of salicylic acid responses,

helping the pathogen grow and develop. Proteomic approaches performed to study

pathogenetic mechanisms of the disease confirmed these findings, highlighting

downregulation of photosynthesis-related proteins and modification of transport,

carbohydrate metabolism, hormone biosynthesis, metabolism and xenobiotic responses. At

the proteomic level, proteins involved in detoxification of oxidative stresses (glutathione S-

transferases and nitrilases), in cell wall modification and pathogenesis-related processes were

most effective in promoting Citrus sinensis tolerance (Martinelli et al., 2016).

Studies of the transcriptome, proteome, and metabolome led to design of new translational

genomic tools to speed diagnosis and develop short- and long-term therapeutic and genetic

resistance strategies (Dandekar et al., 2010; Ibáñez et al., 2014). Newly developed sensor

devices that capture early-induced molecules produced by infected leaves and fruits could

distinguish recently infected, still-asymptomatic trees from severely symptomatic ones



(Aksenov et al., 2014). This approach might be extended and applied to other specialty crops

(Martinelli et al., 2016). Diagnostic methods focusing on host responses are highly desirable

as a complement to traditional approaches targeting the pathogen, as the latter can seldom

detect the pathogen before visual symptoms occur.

The -omic approaches do have weaknesses: low reliability and scarce or (often) absent

experimental repetition. They are performed in different environments and seasons on trees

grown under different agronomic conditions. There is an urgent need to perform duplicate

field studies due to the many environmental variables that affect gene expression. The timing

of disease progression from infection to tree death has also led to contradictory conclusions.

Some of the issues can be addressed using meta-analysis to compare differentially regulated

genes and affected pathways among different studies using the same bioinformatic methods

(Rawat et al., 2015).

The aim of this study was to perform a bioinformatic analysis of previously published RNA-

Seq studies on leaves of CaLas-infected Citrus sinensis using the same pipeline. In this study,

I analyzed the raw datasets using the most-updated bioinformatic pipeline and an integrated

functional data mining approach to identify common molecular patterns that were

consistently linked with pathogen infection. Even while limited by the available stress-

responsive transcriptome data, real trends were identifed, indicating it is possible to design

experiments in less well-studied plant systems to use with my approach. It is also possible to

expand my analysis approach to investigate the stress responses of other plants.

2. Materials and methods

2.1 Search Strategy to Identify Published Studies for Bioinformatic Analysis

The published RNA-Seq studies in Citrus sinensis related to HLB response and tolerance in

leaf tissues were searched using Scopus and PubMed. I found three studies published on or

before May 2017 (Martinelli et al., 2013; Fu et al., 2016; Wang et al., 2016). The first RNA-

Seq study was divided into two datasets for young and mature leaves (Martinelli et al., 2013).

The second study was performed under controlled conditions using artificial infection of

young leaves (Fu et al., 2016). The third work (Wang et al., 2016) compared Citrus sinensis

tolerance mechanisms with the list of HLB-regulated genes in common between the previous



two studies. I first analyzed the three transcriptomic datasets related to HLB-response. The

next step was to identify the genes related to tolerance that were present in the three datasets

dealing with HLB response. The raw data from the four datasets were downloaded and

performed using the meta-analysis bioinformatics pipeline as described (Figure 2.1.1).

Figure 2.1.1–Meta-analysis workflow of the four RNA-Seq data dealing with Huanglongbing

(HLB) response and tolerance in leaf tissues. Functional data mining tools were provided.

2.2 Bioinformatic Analysis of Raw Data

The Citrus sinensis v1.1 and annotation file were downloaded from Phytozome

(https://phytozome.jgi.doe.gov). The SRA files of the three articles were downloaded from

NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) and then converted to FASTQ format using

https://phytozome.jgi.doe.gov/
https://www.ncbi.nlm.nih.gov/sra


SRAToolkit version 2.3.5. The raw reads were filtered to obtain high-quality clean reads by

trimming low-quality bases followed by adaptor sequence removal using cutadapt version

1.8.1. The pre-processed reads were mapped to the Citrus sinensis genome v1.1 with

HISAT2 version 2.0.5 (Kim et al., 2015) using default parameters. The identification of

differentially expressed genes was performed using Cuffdiff algorithm in Cufflinks version

2.2.1 pipeline with default parameters (default false discovery rate, FDR is 0.05).

2.3 Differentially Expressed Gene Selection

The up- and down-regulated genes with fold change cutoff (log2 FC > 1 or log2 FC < -1) and

p-value <0.05 were identified from the selected articles. Citrus sinensis gene ids were

mapped to corresponding TAIR IDs using the mapping file downloaded from the Phytozome

database (https://phytozome.jgi.doe.gov/pz/portal.html). The common and unique

differentially HLB-regulated genes among different studies were identified. A custom made

in-house Perl script was employed for gene selection and mapping.

2.4 Splice Analysis

The alternative splicing events of each samples were predicted by the ASTALAVISTA

program (Foissac and Sammeth, 2007) (http://astalavista.sammeth.net/) on the web server3

using the GTF files generated by Cufflinks. Differential splicing analysis was done using

MISO version 0.5.34 (Katz et al., 2010) (https://miso.readthedocs.io/en/fastmiso/) and

rMATS version 4.0.15 (Shen et al., 2012) (http://rnaseq-mats.sourceforge.net/) using the

default options. The Sashimi plots were generated in order to get the quantitative

visualization of the aligned RNA-Seq reads which enables quantitative comparison of exon

usage across the control and treated samples.

2.5 Gene Enrichment and Functional Analysis

MapMan (Thimm et al., 2004) was used with the Citrus sinensis mapping file

(http://mapman.gabipd.org/mapmanstore) to map the gene ids and visualize the metabolic

overview, large enzyme families, hormone-related genes, transcription factors and biotic-

https://phytozome.jgi.doe.gov/pz/portal.html
http://astalavista.sammeth.net/
https://miso.readthedocs.io/en/fastmiso/
http://rnaseq-mats.sourceforge.net/
http://mapman.gabipd.org/mapmanstore


stress related genes in all four transcriptomic datasets. PageMan (Usadel et al., 2006) analysis

was used for gene set enrichment analysis and to visualize differences among metabolic

pathways using Wilcoxon tests, no correction, and an over-representation analysis (ORA)

cutoff value of 1.

Pathway enrichment analysis using gene ontologies was conducted using Database for

Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/)

(Huang et al., 2009). The complete DAVID pathway search results were provided. The gene

ontology information related to Biological process was downloaded from the DAVID results

(FDR cutoff = 0.05).

2.6 Protein–Protein Interaction Network

Individual data annotation and analysis were performed using NetworkAnalyst (Xia et al.,

2014) (https://www.networkanalyst.ca/), a web-based tool to visualize protein–protein

network analysis. The homologous TAIR IDs were uploaded and mapped against the

STRING interactome database using default parameters provided in NetworkAnalyst. I

selected ‘Minimum Network’ to simplify the network and highlight key connections. First, I

performed network analysis between the two transcriptomic datasets using the same tissue

(young leaves). Next, I compared the common HLB-regulated genes (Martinelli et al., 2013;

Fu et al., 2016) with those linked to tolerance (Wang et al., 2016).

3. Results

3.1 Workflow, Bioinformatics Analysis, and Venn Diagrams

Twelve RNA-Seq raw datasets from three published articles were analyzed using a

bioinformatic and functional data mining pipeline (Figure 2.1.1 and Table 3.1). The first

study had two pairwise comparisons between apparently healthy and symptomatic young and

mature leaf samples (Martinelli et al., 2013). Trees grew in the same orchard and were both

infected by CaLas. Raw data submitted to NCBI were re-analyzed. Over 46 – 68 million

reads were obtained from the four samples with an alignment percentage of 72.95 – 82.29%.

The second study used a single pairwise comparison between healthy and infected leaf

https://david.ncifcrf.gov/
https://www.networkanalyst.ca/


samples (Fu et al., 2016). The number of reads from the control sample was much less than

that from the infected one, although alignment percentages were similar. This may reduce the

depth of the transcriptomic analysis. The third study compared susceptible and tolerant Citrus

sinensis genotypes to identify which genes were related to molecular mechanisms of

tolerance in leaves (Wang et al., 2016). Three biological replicates were used and 72–118

million reads were obtained, with 73.42–82.44% alignment.

Article SRR ID
Orginal
Sample
Name

Sample
Tissue

Given
Sample
Name

Total Reads Alignme
nt %

Martinelli
et al., 2013

SRR867442
SRR867443 ML+AH Mature

Leaves
Control-A 68,263,920 81.69%

SRR867431 ML+SY Infected-A 62,503,214 72.95%
SRR867426 YL+AH Young

Leaves
Control-B 64,186,912 82.29%

SRR867431 YL+SY Infected-B 46,296,354 81.20%

Fu et al.,
2016

SRR3032893 Healthy (H) Young
Leaves

Control-C 8,523,448 86.76%

SRR3032892 CaLas-
B232 Infected-C 94,569,124 86.87%

Wang et
al., 2016

SRR2224205 R19T23

Young
Leaves

Susceptible
106,189,916 78.84%

SRR2224296 R19T24 118,300,964 75.65%
SRR2224411 R20T24 101,835,958 75.13%
SRR2224421 R20T17

Tolerant
112,832,326 73.42%

SRR2224429 R19T17 72,491,540 82.44%
SRR2224406 R20T18 102,457,842 77.78%

Table 3.1– Analyzed articles, SRA Ids, tissue, Read count, and alignment information.

Total 939 significantly CaLas-regulated genes were identified in mature leaves from the first

study: 516 up-regulated and 423 down-regulated from apparently healthy samples (Table 3.2).

In young leaves, 924 genes were significantly affected: 430 up-regulated and 494 down-

regulated. In the third dataset, there were fewer repressed genes than CaLas-up-regulated

ones. The molecular study addressing the understanding of tolerance highlighted 3,469

significantly regulated genes: 1,712 up-regulated and 1,757 down-regulated in tolerant

genotypes compared to susceptible ones.



Comparison
Control-A

vs.
Infected-A

Control-B
vs. Infected-

B

Control-C
vs. Infected-

C

Susceptible
vs. Tolerant

Total Genes 939 924 792 3,469
Up-regulated Genes 516 430 707 1,712
Down-regulated Genes 423 494 85 1,757

Table 3.2– The count of up- and down- regulated genes in each study is given.

Only 16 genes were commonly modulated between the three transcriptomic leaf datasets and

14 were commonly modulated in all four transcriptomic works (Figure 3.1.1). Between

young and mature leaves infected in the field, 115 genes were commonly modulated by HLB.

Five hundred fifteen were significantly regulated in young leaves and 511 in mature leaves.

Six hundred twenty-nine genes linked with HLB tolerance were also modulated in the three

leaf datasets.



Figure 3.1.1–Venn diagram indicating number of HLB-regulated genes commonly

modulated between the four datasets and specifically induced by HLB in each of the four

RNA-Seq datasets.

3.2 Gene Set- and Pathway-Enrichment Analysis

In naturally HLB-infected mature leaves, no biological processes related to defense

mechanisms were induced (Sample Name A). In young leaves, some key gene-ontologies

were over-repressed in infected young leaves: defense response to bacterium, lipid oxidation,

oxylipin biosynthesis, and response to salicylic acid (Sample Name B) (Table 3.3). In

artificially infected young leaves (Sample Name C), other gene set categories were affected

such as jasmonic acid biosynthesis, plant-type hypersensitive response, and response to

wounding.



Comparison Up/D
own GO ID GO Term Cou

nt pval
Fold
Enrich
ment

FDR

Control-A vs.
Infected-A

Up GO:0080167 response to
karrikin

12 1.22
E-05

5.48823
1804

1.74E-
02

Control-B vs.
Infected-B

Down GO:0015979 photosynthesis 20 1.56
E-11

7.61651
8445

2.28E-
08

Down GO:0009658 chloroplast
organization

12 2.65
E-05

5.04518
1818

3.88E-
02

Down GO:0034599 cellular response
to oxidative
stress

9 2.72
E-05

7.39040
3054

3.99E-
02

Down GO:0009773 photosynthetic
electron transport
in photosystem I

6 8.79
E-06

19.7077
4148

1.29E-
02

Control-C vs.
Infected-C

Up GO:0006952 defense response 40 3.00
E-07

2.49347
9536

4.46E-
04

Up GO:0009611 response to
wounding

30 8.86
E-15

6.18357
8647

1.32E-
11

Up GO:0042742 defense response
to bacterium

21 1.51
E-05

3.12091
4875

2.24E-
02

Up GO:0009751 response to
salicylic acid

15 2.65
E-05

3.96945
8551

3.93E-
02

Up GO:0009626 plant-type
hypersensitive
response

11 1.17
E-05

6.09723
1378

0.0173
99625

Up GO:0031408 oxylipin
biosynthetic
process

8 1.16
E-06

13.6725
7945

1.73E-
03

Up GO:0009695 jasmonic acid
biosynthetic
process

7 2.40
E-05

11.4849
6674

3.55E-
02

Up GO:0034440 lipid oxidation 5 4.99
E-06

34.1814
4863

7.40E-
03

Down GO:0009408 response to heat 7 2.46
E-05

11.9019
3015

0.0305
97268

Table 3.3– Significantly regulated biological processes in the analyzed transcriptomic studies

(FDR < 0.05).



3.3 Molecular Responses to Huanglongbing Disease

3.3.1 Metabolism Overview

MapMan metabolism overview highlighted that HLB disease highly repressed photosynthesis

in mature leaves and somewhat in young leaves (Figure3.3.1.1). Upregulation of starch and

sucrose metabolism was shown by the induction of key genes encoding beta-amylase6,

glucan phosphorylase in mature leaves, and phosphoglucan water dikinase in young leaves at

32 weeks after infection (w.a.i.). A contrasting expression pattern was observed for different

genes from the same pathway. Some genes were up-regulated and others were repressed in

primary metabolic pathways such as glycolysis, oxidative phosphate phosphorylation,

fermentation, photorespiration, and tetrapyrrole. Trehalose-6-phosphate phosphatase and

myo-inositol oxygenase were up-regulated in young leaves after artificial infection while

aldo/keto reductase and 1,3–beta glucan synthase were induced in mature leaves. Cell wall-

related genes were highly affected in all three gene expression datasets. UDP-D-glucuronate-

4-epimerase6, pectate lyase, RD22 nutrient reservoir, and pectin methylesterase were

enhanced in young leaves at 32 w.a.i. Genes up-regulated in young CaLas-infected leaves

included UDP-glucose/UDP-galactose, 4-epimerase5, cellulose synthase, and the glycoside

hydrolase 28 family. Lipid-related genes were particularly affected in immature leaves:

choline kinase, glycerol-3-phosphate acyl transferase, and SUR4 membrane protein. Amino

acid metabolism genes were mostly up-regulated in young leaves at 32 w.a.i.: shikimate

dehydrogenase, chorismate mutase, and homoserine dehydrogenase. Genes involved in amino

acid biosynthesis were more induced in young leaves (L-asparaginase, alanine-glyoxylate

aminotransferase, and enoyl-CoA hydratase).

Terpene-related genes encoding myrcene synthase, beta-amyrin synthase, and terpene

synthase 21 were enhanced in young leaves 32 w.a.i., while homogentisate phytyltransferase

1 was repressed. Genes encoding chalcone and stilbene synthase and isoflavone reductase

were up-regulated in young leaves, while two methyltransferase family 2 proteins were

induced in mature leaves.



Figure 3.3.1.1–MapMan overview of three transcriptomic datasets related to HLB response.

Up- and down-regulated genes in the three pairwise comparisons were shown. Common

HLB-regulated genes between at least 2 of 3 pairwise comparisons were also shown.

Key genes involved in sucrose and starch metabolism were induced by CaLas in multiple

studies. However, the same gene isoforms were not always affected. In mature leaves of

naturally infected field trees, invertase1 and invertase2 were up-regulated while beta-

fructosidase4 was commonly modulated by different studies. Starch branching enzyme2,

glucan phosphorylase, and beta-amylase6 were induced in mature leaves (Martinelli et al.,

2013), while a phosphoglucan water dikinase was enhanced in young leaves after artificial

infection (Fu et al., 2016).

3.3.2 Hormone Overview

Comparison between datasets showed that hormone crosstalk was severely modified by

CaLas infection. Jasmonic acid-mediated response was highly induced in young leaves at 32

w.a.i.: lox1, lox2, and lox3 genes were up-regulated (Figure 3.3.2.1). S-

adenosylmethyltransferase was affected by HLB in multiple datasets. However, the induction

of genes involved in auxin and abscissic acid synthesis might counteract the beneficial effects

of this gene. Abscissic acid-response up-regulated genes included GRAM-domain containing



protein and benzodiazepine receptor-related, while auxin-related genes induced in young

leaves included IAA-alanine resistant3, IAA-amino acid conjugate hydrolase, aldo/keto

reductase, and AILP1. In contrast, Fe(II) oxygenase, senescence-related gene1, and ethylene

response factor1, all involved in ethylene response, were induced in concert with the GID1

gene involved in gibberellin signaling. In young leaves, some key up-regulated genes were

involved with auxins (NGA1), ethylene (flavonol synthase, ethylene-response-element-

binding protein), and gibberellin (GASA proteins).

Figure 3.3.2.1–Genes linked with HLB tolerance and encoding transcription factors,

enzymes, proteins involved in hormone-related pathways. Those genes commonly modulated

between this dataset and the 3 related to HLB-response were shown

3.3.3 Transcription Factors

Huanglongbing induced key genes encoding AP2-EREBPs such as SHN1, CRF1, and two

AP2 domain-containing transcription factors in young leaves after artificial infection (Fu et

al., 2016), another AP2 domain protein and a WRI1 in mature leaves and an ERE-BP in

young leaves of symptomatic field trees (Figure 3.3.3.1). Other transcription factor categories

induced by HLB were HB (Homeobox), MYBs, C2H2, pseudo ARR, and GRAS. HB TFs were

induced in young leaves 32 w.a.i., including HB40, HAT9, HB17, and KNAT7. Two MYBs

were enhanced in mature leaves (MYB82 and MYB116). Genes encoding C2H2 transcription



factors up-regulated in young leaves 31 w.a.i. included STZ, zinc finger protein 7 and ZAT10

(Fu et al., 2016). Genes encoding pseudo ARR were also induced: PRR3, PRR5, and PRR7.

Figure 3.3.3.1–HLB-regulated genes encoding transcription factors. Up- and down-regulated

genes in the three pairwise comparisons were shown. Common HLB-regulated genes

between at least 2 of 3 pairwise comparisons were also shown.

WRKY transcription factors are involved in biotic stress responses. Several members of this

family were induced by the three RNA-Seq datasets. WRKY60, WRKY70, WRKY40, and

WRKY33 were up-regulated in young leaves 32 w.a.i. WRKY31 was induced in mature

CaLas-infected leaves, while WRKY2, WRKY47, WRKY42, and WRKY7 were enhanced in

young leaves of field trees. Only WRKY48 was commonly modulated by CaLas in two of the

three datasets.

3.3.4 Biotic Stress Responses

Genes encoding glutathione S-transferases such as GST7 and GST25 were generally up-

regulated by HLB disease in young leaves after artificial infection and in mature CaLas-

infected leaves (Figure 3.3.4.1). Heme-binding was induced in young leaves, peroxidases

were up-regulated in mature leaves and two peroxidases were enhanced in artificially infected

immature leaves. Genes encoding cell wall modification and restructuring such as GAE6,



PRP4, XTR6, RD22, and pectate lyase were up-regulated in young leaves after artificial

infection. UGE5, CSLG2, RGP2, glycoside hydrolase family 28 proteins, and expansin4 were

induced in young leaves.

Seven pathogenesis-related proteins were up-regulated in immature leaves (Fu et al., 2016).

A transmembrane signaling receptor involved in the SAR response, EDS1, was up-regulated

in immature leaves after artificial infection (Fu et al., 2016), but not after natural infection

(Martinelli et al., 2013).

Figure 3.3.4.1–HLB-regulated genes involved in biotic stress responses. HLB-regulated

genes in the three pairwise comparisons and commonly modulated between two of the three

pairwise comparisons were shown.

3.3.5 Genes Commonly Involved in HLB Response Between Datasets

Genes with the same altered pattern of expression in more than one experiment were

identified. More genes involved in primary than secondary metabolism were observed. The

category of genes that was most commonly modulated in published transcriptomic datasets

was cell wall modification and restructuring (Figure3.3.1.1). These genes were: CESA8,

pectinesterase, expansin8, expansin beta 3.1, and pectate lyase. Some other genes linked with

more than one transcriptomic study were related to lipids such as brassinosteroid

sulfotransferase, myzus persicae-induced lipase 1, and mitochondrial acyl carrier protein 3.



Among genes affecting hormonal crosstalk, an S-adenosylmethionine-dependent

methyltransferase was up-regulated in multiple transcriptomic datasets. Other key genes

involved in biotic stress responses were affected in both young and mature leaves: WRKY48,

peroxidase, and F-box family protein. In starch and sucrose metabolism, an invertase was

modulated by HLB in multiple studies. Among transcription factors, genes encoding

phytochrome interacting 3-like 1, MYB transcription factor, and IAA14 were clearly and

specifically linked to HLB response.

3.4 Molecular Mechanisms of HLB Tolerance

The comparison between susceptible and tolerant species highlighted that many more genes

involved in photosynthesis and the Calvin cycle were repressed by HLB in susceptible than in

tolerant plants (Figure3.4.1). However, there were very few genes in common between the

HLB response and tolerance datasets. Tolerant genotypes showed downregulation of genes

encoding chlorophyll binding, oxygen-evolving complex-related, thylakoid luminal 20 kDa

protein, and two ferredoxin-related proteins. Photosystem II reaction PSB28 protein was

commonly repressed. In the tolerant genotype, there was a repression of genes involved in

tetrapyrrole (NADH-ubiquinone oxidoreductase 20 kDa subunit, alternative, NADH

dehydrogenase, ubiquinonl-cytochrome C reductase complex 14 kDa, cytochrome c oxidase,

and ATP synthase) and the TCA cycle (LTA2, succinyl-CoA ligase, and malate

dehydrogenase). In comparison to HLB response, there were more repressed genes involved

in call wall modification such as 4 pectinesterases, PME1, and PME3. There was also

decreased transcript abundance of genes involved in cellulose synthesis, cellulases and beta-

1,4’glucanases, poligalacturonases, cell wall precursor synthesis, fatty acid synthesis and

fatty acid elongation. Genes involved in starch degradation were up-regulated, including

alpha-amylase2, beta-amylase8, glycoside hydrolase, and starch excess4. Sucrose

biosynthesis was enhanced (sucrose-phosphate-synthase, sucrose-phosphate1, and

transferase). Secondary metabolism genes involved in terpenes and phenylpropanoids were

induced: homogentisate phytyltransferase1, amino_oxidase, carotenoid isomerase,

cycloartenol synthase, O-methyltransferase2, and isoflavone-7-O-methyltransferase9. More

up-regulated genes involved in flavonoid synthesis than in phenylpropanoid synthesis were



observed: O-methyltransferase, oxidoreductase, isoflavone reductase, and pinoresinol

reductase. More genes involved in amino acid metabolism than biosynthesis were repressed.

Figure 3.4.1–Mapman overview showing differentially regulated genes between susceptible

and tolerant genotypes. Genes commonly modulated between this dataset and the three

related to HLB response are shown.

3.4.1 Hormone Overview

Repression of brassinosteroids and salicylic and jasmonic acid-mediated responses were more

linked with tolerance than HLB response. The following genes were down-regulated: steroid



5-alpha-reductase, sterol methyl tranferase2, C-8 sterol isomerase, C-5 sterol desaturase,

BR1-EMS-suppressor, lipoxygenase, electron carrier, and allene oxide synthase

(Figure3.3.2.1). Several genes involved in ethylene-related pathways were up-regulated:

oxidoreductase, 2-oxoglutarate-dependent dioxygenase, ACS6 and ACS12, HLS1, and

ERF104. Several ethylene-related genes were commonly modulated by HLB in the two types

of datasets (oxidoreductase, gibberellin-2-beta-dioxygenase, ethylene-regulated nuclear

protein, and universal stress protein). A similar number of genes involved in auxin-related

pathways were up- or down-regulated. While some GA-related genes were up-regulated in

response, others involved in the same hormone pathways were repressed: GASA4,

gibberellin-responsive protein, and GASA protein.

3.4.2 Transcription Factors

More MYBs were up-regulated in the tolerant genotype: MYB59, MYB55, MYB15, MYB30,

MYB73, and MYB52 (Figure3.3.4.1). Other transcription factor categories were induced,

including MADS (AGL7, AGL22, and AGL42), B3 DNA binding protein (VRN1), histone

ATse (ADA2B, HAF01, and HAC12), C2C2-CO-like (COL9 and zinc finger B-box type), and

homeobox (HB-1, HB-7, and HAT9). There were many genes involved in chromatin structure

remodeling that were commonly modulated by both response and tolerance: histone4, HTA7,

histone H3.2, HMGA, and HTA5.

3.4.3 Biotic Stress Responses

In addition to the differentially regulated genes previously mentioned, tolerance was linked

with downregulation of genes involved in cellulose and cell wall precursor synthesis such as

UDP-glucuronate decarboxylase, UDO-6-glucose-6-dehydrogenase, GDP-mannose 4,6,-

dehydratase, rhamnose biosynthesis 1, and cellulose synthase like C4 and D3. Several beta-

glucanases were also repressed (Figure 3.4.3.1). Twenty-one pathogenesis proteins were

induced in tolerant genotypes encoding TIR-NBS-LRR proteins. Detoxifying pathways were

up-regulated as shown by the induction of several glutathione S-transferases (GSTU19, GST8,

GSTU19, GST-TAU20, and GST14). Several genes were commonly modulated in HLB



response datasets and the tolerance one: phloem protein 2 A5 (R genes), GSTU7 (detoxifying

pathways), TGA1 (bZIP), AIL5, and TINY2 (AP2-EBEPB transcription factors).

Figure 3.4.3.1–Biotic stress response genes showing differentially regulated genes between

susceptible and tolerant genotypes. Genes commonly modulated between this dataset and the

three related to HLB response are shown.

3.4.4 Large Enzyme Families

Among the large enzyme families, upregulation of glutathione S-transferases was linked with

tolerance, as were oxidases (copper amine oxidase, NADP-dependent oxidoreductase, flavin-

containing monooxygenase, and CTF2A). Genes involved in cytochrome P450-related

reactions were more up-regulated than down-regulated in tolerant genotypes than in



susceptible ones. There was general repression of glucosidases, beta-1,3-glucan hydrolases,

GDSL-lipases, and nitrilases. Several key genes belonging to large enzyme families were

commonly regulated between tolerance and response: FAD-binding domain containing

protein, glucose-methanol-choline, MES17, and two peroxidases.

3.5 Protein–Protein Network Analysis

Protein–protein interaction (PPI) network analysis based on an Arabidopsis knowledgebase

compaired two pairwise comparisons performed on the same type of leaf tissue (young

leaves): one related to HLB response (dataset B) and one linked with HLB tolerance (dataset

D) (Figure 3.5.1). Four highly interactive proteins encoded by genes commonly regulated

between the two datasets were identified: UBQ4, CYCD1-1, RPS19A, and STP1. A second

PPI network analysis was performed to identify proteins commonly modulated by HLB in the

three HLB-response datasets A, B, and C and HLB tolerance dataset D (Figure 3.5.2). Only a

CSD2 protein was commonly present in the four pairwise comparisons. The comparison

between the three leaf RNA-Seq datasets involved in HLB response showed that three heat

shock proteins (HSP70-5, HSFB1, and HSP25.3) were encoded by genes that were

significantly regulated in all three datasets.



Figure 3.5.1–Protein–protein network analysis based on Arabidopsis knowledge base. Genes

commonly modulated between datasets from Martinelli et al. (2013) (HLB response) and

Wang et al. (2016) (HLB tolerance) are indicated. Genes present only in the comparison

between healthy and infected in young leaves are also indicated (dataset B; Martinelli et al.,

2013). Genes present in the comparison between susceptible vs. tolerant genotype are shown

(Wang et al., 2016).



Figure 3.5.2–Genes commonly modulated between the three RNA-Seq datasets related to

HLB response and all four datasets.

3.6 Splice Analysis

The online tool ASTALAVISTA3 predicted the splice events intron retention (IR),

alternative splice donor (AD), alternative splice acceptor (AA), exon skipping (ES), and the

combination of the above mentioned splice mechanisms from the eight samples. I observed

that the splice event IR is the most abundant type (28.5–43.4%), followed by AA (16.1–

29.1%), AD (8.3–13.6%) (Figure 3.6.1 and Supplementary Table S5). A considerable amount

of the combination of splice events (classified as”Other Events,” 18.7–31.6%) were also

observed from all the samples.



Figure 3.6.1–Distribution of the predicted splice events by ASTALAVISTA online tool for

each sample. The splice categories are intron retention (IR), alternative splice donor (AD),

alternative splice acceptor (AA), exon skipping (ES) and the combination of the above

mentioned splice mechanisms (Other Events).

The complete AS events (AS landscapes) identified in this study can be downloaded from the

link https://drive.google.com/drive/folders/1oorwtZmEcwSAs1n6x4g_fEGS-

HOrxIbK?usp=sharing.

The data contain the information of exon-intron structure of the AS events, chromosomal

coordinates, the IDs of the transcripts, involved in the given AS event. For the exon-intron

structure of the AS event, ES is indicated by 1–2∧,0, alternative donor (AD) by 1∧,2∧,

alternative acceptor (AA) by 1-,2- and IR by 1∧2-,08.

The differential regulations of alternative spliced forms of the commonly modulated genes

between the four datasets were observed in response to HLB. The quantitative visualization

of splice junction of the genes showing significant psi score difference was done using

“sashimi_plot” program in MISO (Mixture of Isoforms) tool

(https://miso.readthedocs.io/en/fastmiso/) along with uninfected sample as sashimi plot. The

sashimi plot shows the number of reads corresponding to specific exon–exon junctions was

labeled for each junction. I observed higher bayes factor for the splice event

‘orange1.1g023621m.g.v1.1’ in all datasets except “Control-C vs. Infected-C”, which showed

https://drive.google.com/drive/folders/1oorwtZmEcwSAs1n6x4g_fEGS-HOrxIbK?usp=sharing.
https://drive.google.com/drive/folders/1oorwtZmEcwSAs1n6x4g_fEGS-HOrxIbK?usp=sharing.
https://miso.readthedocs.io/en/fastmiso/


that the isoform is more likely to be differentially expressed (Supplementary Table S5).

Exon-skipping events found for the splice event ‘orange1.1g010747m.g.v1.1’ in samples

‘Control-A’ and ‘Control-C’. The splicing event ‘orange1.1g021628m.g.v1.1’ was not

detected in the control sample ‘Control-C.’

The MISO differential expression result files for each comparison were given below.

1) Control-A vs. Infected-A:

https://drive.google.com/open?id=1caFTINtMPt2YAcS8IP7hNTRPpxsIBbk4

2) Control-B vs. Infected-B:

https://drive.google.com/open?id=1g6PLt8sG3_RRs0LlZ8BwDNibczYvCSzs

3) Control-C vs. Infected-C:

https://drive.google.com/open?id=1rW1o7JIifvE2Z00KS8z7cljb0k_tV6Uq

4) Susceptible vs. Tolerant:

https://drive.google.com/open?id=17EhM6q96uDBrcO4wpij5xA96cKardt-x

Multivariate analysis of transcript splicing (MATS; http://rnaseq-mats.sourceforge.net/)

provides a statistical framework that determines the junction counts supporting the inclusion

or the exclusion of specific splice events in Treated sample against Control. I ran MATS for

all four comparisons and extracted the AS events only for the common genes. Only one gene

‘orange1.1g023621m.g.v1.1’ reported AS event alternative 5′ splice site (A5SS) in the

rMATS results of all four comparisons (Figure 3.6.2) and reported a skipped exon (SE) AS

event only in the comparison “Susceptible vs. Tolerant.”

https://drive.google.com/open?id=1caFTINtMPt2YAcS8IP7hNTRPpxsIBbk4
https://drive.google.com/open?id=1g6PLt8sG3_RRs0LlZ8BwDNibczYvCSzs
https://drive.google.com/open?id=1rW1o7JIifvE2Z00KS8z7cljb0k_tV6Uq
https://drive.google.com/open?id=17EhM6q96uDBrcO4wpij5xA96cKardt-x
http://rnaseq-mats.sourceforge.net/


Figure 3.6.2–Splice event ‘Orange1.1g023621m.g.v1.1’. The Sashimi plots of the splice

event Orange1.1g023621m.g.v1.1 in all four datasets were plotted.



The rMATS result files for each comparison were given below.

1) Control-A vs. Infected-A:

https://drive.google.com/open?id=1j-1JaOolzZAiqCbBYoj8Fq8UYGF23V4q

2) Control-B vs. Infected-B:

https://drive.google.com/open?id=1Yy-zF_g3gq09Hd15cC6vYUtB2A9ik523

3) Control-C vs. Infected-C:

https://drive.google.com/open?id=1QEQvoZZ4qGRCLpBKhvXh-yVnUoBHJXxd

4) Susceptible vs. Tolerant:

https://drive.google.com/open?id=1Rvqbx7KF5-LDVN5APZw9qvU-bk4MXkuy

4. Discussion

The aim of this work was to identify genes and pathways commonly modulated by HLB

disease in different published RNA-Seq datasets examining leaf tissues and tolerance

mechanisms. The high variability in transcriptomic data requires more bioinformatic analysis.

Most transcriptomic studies on HLB response were performed in only one season and using

different agronomic, developmental and physiological conditions, weakening data reliability.

My work compared all available RNA-Seq datasets related to HLB responses in Citrus

sinensis leaf tissues. First, I compared three transcriptomic datasets performed on leaves

infected by CaLas and then I sought common findings between these three studies and one

examining HLB tolerance.

Although repression of photosynthesis and upregulation of starch and sucrose-related genes

were observed in all three leaf datasets, few genes were commonly regulated. These data

agreed with published findings that genes involved in photosynthetic reactions are generally

down-regulated by HLB disease (Albrecht and Bowman, 2008; Kim et al., 2009; Martinelli et

al., 2013). The comparison between the study on artificial infections (Fu et al., 2016) and that

performed under field conditions (Martinelli et al., 2013) showed that different genes may

have contrasting expression trends in the same tissue, young leaves. This implies that

experimental conditions may drastically affect data, leading to contrasting conclusions.

The present study showed how different variables (developmental, agronomic and

physiological conditions and infection method) affect expression of key genes in primary

https://drive.google.com/open?id=1j-1JaOolzZAiqCbBYoj8Fq8UYGF23V4q
https://drive.google.com/open?id=1Yy-zF_g3gq09Hd15cC6vYUtB2A9ik523
https://drive.google.com/open?id=1QEQvoZZ4qGRCLpBKhvXh-yVnUoBHJXxd
https://drive.google.com/open?id=1Rvqbx7KF5-LDVN5APZw9qvU-bk4MXkuy


metabolism. Some common features between the three transcriptomic datasets involved cell

wall modifications. Six genes involved in cell wall-related pathways were commonly

modulated by HLB in all three leaf datasets. I speculate that these genes may affect plant

signaling responses to CaLas infection because of the role played by cell wall restructuring in

sensing pathogen infections (Corwin and Kliebenstein, 2017).

Sugar and starch metabolism has been linked to a possible pathogenetic mechanism of CaLas

(Martinelli and Dandekar, 2017; Rao et al., 2019). The induction of genes involved in sucrose

degradation (invertase), starch biosynthesis (starch branching enzyme and starch synthase),

and starch degradation (amyl-amylase, beta-amylase, and phosphoglucan water dikinase)

were clearly induced by HLB in leaves (Albrecht and Bowman, 2008; Martinelli et al., 2013).

Starch accumulation is a clear symptom of HLB progression in leaves (Bove, 2006).

Unfortunately, my work found no HLB-induced gene involved in starch metabolism that was

commonly modulated in different datasets. Only a beta-fructosidase involved in sucrose

degradation was commonly modulated by HLB in the three datasets, perhaps due to the many

differences in physiological, developmental, environmental, and agronomic conditions

between the two studies (Martinelli et al., 2013; Fu et al., 2016). These findings confirmed

the difficulty in finding common, specific host biomarkers to complement traditional

diagnostic approaches relying on pathogen detection. Further works on RNA-Seq studies will

demonstrate whether key markers can identify natural CaLas infections under field conditions.

Among all the hormone categories, only S-adenosylmethionine-dependent methyltransferase

was commonly modulated by HLB in at least two of the three leaf datasets. Although more

genes involved in hormonal crosstalk were expected be commonly regulated among studies,

this evidence highlighted that SAR responses were activated in leaf tissues: an expected

result, since CaLas is a biotrophic pathogen. The upregulation of several genes involved in

jasmonic-mediated responses (lox1, lox2, and lox3) confirmed that typical defense responses

against necrotrophic pathogens are induced by CaLas infection. A possible pathogenetic

mechanism of CaLas is its modulation of hormonal-mediated defense responses for its own

benefit (Martinelli et al., 2012, 2013; Martinelli and Dandekar, 2017; Rao et al., 2019).

Although MYC2, a gene involved in jasmonic acid inhibition of salicylic acid responses, was

not altered in any dataset, this present work confirmed a possible role for jasmonic acid in

counteracting SAR responses in CaLas-infected leaves (Kazan and Manners, 2013).

Abscissic acid and auxin genes can negatively affect SAR responses (Pieterse et al., 2009).



Although the upregulation of key genes involved in auxin biosynthesis, metabolism and

response in artificially infected young leaves may inhibit salicylic acid responses, these genes

were not affected in leaves under field conditions. Other auxin genes such as GH3.1, GH3.9,

and GH3.17 were induced (Martinelli et al., 2013). That no commonly regulated genes were

found among the three transcriptomic datasets is another illustration of the high variability of

transcriptomic data taken under different experimental conditions. Data obtained by Fu et al.

(2016) highlighted the induction of two key genes involved in abscissic acid responses

(GRAM domain containing protein and benzodiazepine receptor-related). Another gene,

HVA22, was induced in field-grown young leaves. Taken together, these findings suggest that

abscissic acid-related genes may aid pathogen colonization of the Citrus sinensis plant. The

positive effect of gibberellins on SAR response is well known (Pieterse et al., 2009). Two

genes involved in gibberellin pathways were up-regulated in field-grown mature leaves and

one was induced in young leaves in the same study (Martinelli et al., 2013). Another

hydrolase potentially involved in auxin pathways was induced in immature leaves (Fu et al.,

2016). Taken together, these findings suggest that upregulation of gibberellin-related genes

may compensate for negative effects of ABA and auxin on the SAR response. No gene

involved in brassinosteroid was modulated by HLB in infected leaves. This contradicts

findings that highlight the involvement of brassinosteroid-related genes on biotic stress

responses.

Among transcription factors, HB, AP2EREBP, and Pseudo ARR were mostly induced in the

dataset of Fu et al. (2016) while GRAS and bHLH were up-regulated in leaves analyzed by

Martinelli et al. (2013). This evidence highlighted again how different experimental

conditions affect expression of different key genes involved in CaLas responses. WRKYs are

a family of transcription factors mostly involved in environmental plant stress responses

(Jiang et al., 2016; Balan et al., 2017, 2018). Although only WRKY48 was commonly

regulated between the three transcriptomic leaf datasets, several WRKYs were highly up-

regulated by HLB disease: five genes were induced in artificially infected young leaves, four

in immature field-grown leaves and one in mature field-grown leaves. Because hundreds of

different WRKYs are documented in crops (Rushton et al., 2010; Fan et al., 2015), only one

WRKY may be involved in any specific biotic or abiotic stress. Specific WRKYs are induced

by almost all environmental stresses and their expression is often tissue-specific (Jiang et al.,

2016). However, analysis of this group of transcription factors clearly linked to



environmental stress may help early diagnosis of CaLas infections, when HLB disease is at

an early stage. Although this must be confirmed by further experiments focusing on early

disease stages, plant diagnostic approaches relying on host responses have been proposed

(Ibáñez et al., 2014; Martinelli et al., 2016). This approach may complement traditional

diagnostic methods based on PCR that target the pathogen, but will not replace them. This

approach may be particularly helpful for plant diseases characterized by long incubation

times.

Some genes involved in glutathione S-transferases were HLB-modulated in all three analyzed

leaf datasets. More genes encoding pathogenesis-related proteins were up-regulated in the

datasets of Fu et al. (2016) than in the one obtained by Martinelli et al. (2013). Artificial

infection may induce a stronger response in infected Citrus sinensis than natural infection.

This is also confirmed by the upregulation of EDS1 after artificial, but not natural, infection.

This gene is the receptor for salicylic acid-mediated responses (Parker et al., 1996). From my

analysis, I speculate that the infection method (artificial or natural) deeply affects host

responses to pathogen attack, driving diverse hormone-mediated defense responses.

Protein–protein interaction network analysis was conducted to identify which HLB-

modulated genes play a key role at the PPI level in both HLB response and tolerance. The

identification of three heat shock proteins commonly modulated between the three leaf HLB-

response datasets confirmed their key role in disease progression and symptomatology

(Martinelli et al., 2012, 2013; Martinelli and Dandekar, 2017).

In recent decades, the effective application of genetic engineering and genome editing

technologies have substantially improved the ability to make precise changes in the genomes

and to obtain disease-resistant (bacterial, fungal, and virus) crops (Sun et al., 2019). The

clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome

editing seems to be the most promising strategy to improve crop cultivars without introducing

foreign genes which have the potential to be called non-GMO, can be cultivated and sold

without regulatory monitoring (Jaganathan et al., 2018; Sun et al., 2019). In recent studies,

the use of genome editing to target plant's susceptibility (S) genes for the development of

transgene-free and durable disease-resistant crop varieties. Large-scale compatible as well as

incompatible plant–pathogen interaction transcriptomes followed by comparative

coexpression network analyses may discover such novel, nutritional immunity-related



sensitivity genes (or S genes) and tolerance genes (or T genes) in plants (Zaidi et al., 2018;

Song et al., 2017). Thus a curated transcriptomic database of S genes and T genes in Citrus

sinensis using the comprehensive transcriptome analysis dealing with plant pathogen

interaction will be a fruitful resource for the plant researchers to choose the suitable target

genes for the CRISPR/Cas9-mediated genome editing to create Citrus cultivars that are less

susceptible to HLB.

This bioinformatic analysis highlights how different transcriptomic studies dealing with the

same subject tend to show few commonly regulated genes. This may be due to the high

environmental variability of field studies, leading to large differences in physiological and

environmental conditions. However, identification of common features between studies helps

clarify the role of CaLas in this devastating Citrus sinensis disease.

5. Conclusions

The present study deals with meta-analysis of transcriptomic studies related to

Huanglongbing (HLB) response and tolerance in Citrus leaf tissues. It was found that several

WRKY transcription factos were regulated and WRKY48 was commonly modulated by

CaLas in two of the three datasets. The genes encoding glutathione S-transferases such as

GST7 and GST25 were upregulated and many genes involved in chromatin structure

remodeling were commonly modulated. These responses helps the plant to recover the

homeostatic state, which was disturbed due to CaLas infection. Gene co-expression network

analysis confirmed a possible role for heat shock proteins by revealing the existence of highly

inter-correlated stress-specific and consensus modules.

Altogether, the results from my study shows that different transcriptomic studies dealing with

the same subject tend to show few commonly regulated genes, which may due to the high

environmental variability of field studies, leading to large differences in physiological and

environmental conditions. More works will be useful once more RNA-Seq datasets are

available. A new bioinformatic analysis comparing microarray and RNA-Seq data is highly

desirable such as previously performed in Citrus sinensis (Martinelli et al., 2015).
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General Conclusion

In a meta-analysis, the selection of candidate differentially expressed genes by the

comparison of samples from individual studies was significant, before combining the data

across studies. The overlapping of lists of differentially expressed genes may lead to

potentially biased conclusions because of two reasons. First, the genes with the same pattern

of expression in the majority of samples, but failed to surpass the minimum threshold in a

few samples may not be detected with this approach. Second, the genes that may exhibit

differential expression in more than one experiment may not reach differential expression

when all the data across experiments is considered because the variation across experiments

is higher than the variation within the experiment. More research into the application of meta-

analysis to RNA-Seq studies remains necessary to help in identifying the most effective

approach for the varying gene expression scenarios.

Meta-analyses allow an increase in reliability of transcriptomic data, reducing environmental

variability due to a low number of biological replicates and repeated experiments. My first

meta-analysis work conducted in Malus x domestica, highlights the role of WRKYs in the

molecular response to biotic stresses at both transcript and protein-protein interaction levels.

Although WRKY40 was involved response to both fungal pathogens and E. amylovora, its

interaction with other different WRKY may induce specific responses. In response to fungal

pathogens, WRKY interacted with two other pathogen-regulated WRKY6 and WRKY18 while

in response to E. amylovora it interacts with WRKY33. Specific hormones were differentially

affected between the three types of stresses and drives to specific defense responses. Future

studies in other crops investigating similar diseases will allow validate these findings and

identify resistance mechanisms in gene regulatory networks of plant-microbe interactions.

In the second meta-analysis, I collected 12 transcriptomic works in Malus x domestica in

order to identify which key genes, proteins, gene categories are involved in general plant

pathological conditions and those features linked with exclusive biotic stress responses.

Different transcriptomic studies are generally performed using different transcriptomic

platforms and using different experimental design. In order to compare them, it is necessary

to use at least the same bioinformatic pipeline. A pipeline composed by pathway and gene set

enrichment analysis, protein-protein interaction networks and gene visualization tools were

employed. Those genes that are only related to molecular responses to pathogen attacks and



those linked with other plant physiological processes were identified. Gene set enrichment

analysis pointed out that photosynthesis was inhibited by Erwinia amylovora and fungal

pathogens. Different hormonal crosstalk was linked with responses to different pathogens.

Gibberellin-related pathways, ABA-related were mostly repressed by fungal pathogens.

Relating to transcription factors, genes encoding MYBs and WRKY2 were down-regulated

by fungal pathogens and 12 WRKYs were commonly regulated by different biotic stresses.

The protein-protein interaction analysis discovered the presence of several proteins affected

by more than one biotic stress including a WRKY40 and some highly interactive proteins

such as heat shock proteins. This study represents a first preliminary curated meta-analysis of

apple transcriptomic responses to biotic stresses.

In my final meta-analysis, I collected the raw data related to transcriptome studies dealing

with Huanglongbing disease in Citrus sinensis. After the transcriptome analysis using the

developed pipeline, I identified only 16 HLB-regulated genes which were commonly

identified between the three leaf datasets. Among them were key genes encoding proteins

involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta

3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four

datasets. Gene set enrichment analysis showed some different gene categories affected by

HLB disease. Although sucrose and starch metabolism was highly linked with disease

symptoms, different genes were significantly regulated depending on leaf growth and

infection stages and experimental conditions. Histone-related transcription factors were

highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with

the induction of proteins involved in detoxification. Protein-protein interaction (PPI) network

analysis confirmed a possible role for heat shock proteins in curbing disease progression.

Classification of samples into groups according to source, behaviors, treatments, and stages

based on gene expression profiles is an important step in the meta-analysis on transcriptome

studies because it will diminish the biases associated with individual studies. The re-analysis

using an updated bioinformatics pipeline plays a crucial role in the data normalization of the

list of differentially expressed genes. There is a high possibility to detect new genes using re-

analysis due to a) updated bioinformatics tools minimize the errors b) usage of the updated

reference genome, which results in the high alignment percentage of reads and in turn results

more differentially expressed genes. In contrast, it helps us to identify robust classifier genes

that overcome the limitations of previous approaches. A curated transcriptomic database will



be a fruitful resource for the plant researchers to understand the transcriptomic changes due to

different stress condition in plants. This comprehensive meta-analysis study is a preliminary

step for the creation of such a curated database in future.

I present my work as a pilot project : meta-analysis of diverse transcriptomic data sets is a

well-grounded and robust approach to develop hypotheses for how plants respond to biotic

stress in general. The analysis I describe enables researchers to investigate stress responses in

other plants even with limited stress-responsive transcriptome data, with multiple tissue types

and few replicated per treatment.



Appendix

1. TrimSeq.pl

Purpose: This perl script trim ‘N” bases from 5’ and 3’ end of the input fastq files.

To execute: perl TrimSeq.pl Input.fastq 10 5

(Trim 10 bases from 5’ end and 5 bases from 3’ end of the fastq file ‘Input.fastq’)

Perl Script:

#!/usr/bin/perl -w

use strict;

# Receiving input parameters #

my $infile = $ARGV[0];

my $start = $ARGV[1];

my $end = $ARGV[2];

chomp ( $infile,, $start,$end);

my $fileName = (split'\.',((split'\/',$infile,999)[-1]),999)[0];

my $ResultFile = "Trimmed_$fileName.fastq";

# If the fastq file is compressed#

if ($infile =~ /\.gz$/)

{

open(IN,"gunzip -c $infile |") or die "can't open $infile for reading";

}

else



my $lineNo = 0;

open OUT,">$ResultFile" or die "Can't open $ResultFile for writing\n";

while(<IN>)

{

chomp;

next if(/^\s*$/);

$lineNo++;

if( ($lineNo%2 == 0 ) || ($lineNo%4 == 0 ) )

{

my $TrimmedSeq = reverse(unpack("x$end A*",reverse(unpack("x$start

A*",$_))));

print OUT "$TrimmedSeq\n";

}

else

{

print OUT "$_\n";

}

}

close IN;

close OUT;

print "Trimming of File : $fileName is completed !!\n";

exit;



2. CheckAfterAdapterTrimming.pl

Purpose: This perl script will remove the reads having length less than 30 bases after the

adapter trimming is done. The bases with length less than 30 bases won’t influence the

influende in alignment to the reference genome. The script will work only for the paired end

data

To execute: perl CheckAfterAdapterTrimming.pl Adaptertrimmed_R1.fastq

Adaptertrimmed_R2.fastq Preprocessed_R1.fastq Preprocessed_R2.fastq

(The input fastq files are ‘Adaptertrimmed_R1.fastq’ and ‘Adaptertrimmed_R2.fastq’ and the

result files will be ‘Preprocessed_R1.fastq’ and ‘Preprocessed_R2.fastq’)

Perl Script:

#!/usr/bin/perl -w

use strict;

#Receiving input fastq files (paired end) #

open(INFP1,"<$ARGV[0]");

open(INFP2,"<$ARGV[1]");

# Openingoutput fastq files (pass output file names) #

open(OUTFP1,">$ARGV[2]");

open(OUTFP2,">$ARGV[3]");



my $Problems = 0;

while(my $r1_1=<INFP1>) {

my $r1_2=<INFP1>; my $r1_3=<INFP1>; my $r1_4=<INFP1>;

my $r2_1=<INFP2>; my $r2_2=<INFP2>; my $r2_3=<INFP2>; my $r2_4=<INFP2>;

chomp($r1_1,$r1_2,$r1_3,$r1_4);

chomp($r2_1,$r2_2,$r2_3,$r2_4);

my @a1 = split(" ",$r1_1);

my @a2 = split(" ",$r2_1);

if($a1[0] eq $a2[0] && length($r1_2) >= 30 && length($r2_2) >= 30) {

print OUTFP1 "$r1_1\n$r1_2\n$r1_3\n$r1_4\n";

print OUTFP2 "$r2_1\n$r2_2\n$r2_3\n$r2_4\n";

}

elsif($a1[0] ne $a2[0]) {

print "Problem\n";

$Problems++;



exit;

}

}

close(INFP1);

close(INFP2);

close(OUTFP1);

close(OUTFP2);

if($Problems == 0)

{

unlink $ARGV[0];

unlink $ARGV[1];

}



2. ExtractDEGs.pl

Purpose: The script will extract the up- and down-regulated genes from cuffdiff comparison

result files. In the script, the user should edit the input samples and can change the p-val

cutoff. The result files will be the separate up- and down-regulated files and a fuke contain

the statistics.

To execute: perl ExtractDEGs.pl PATH_TO_CUFFDIFF_RESULT_FOLDER

(please provide the full path to cuffdiff result folder)

Perl Script:

my @InputFolders = qw($ARGV[0]); # cuffdiff result folder path #

my $cutoff = '0.05';

my %Samples = qw(sampleshortname1 sample1 sampleshortname2 sample2

sampleshortname3 sample3);

my %SampleMapping = ();

my %Stat = ();



foreach my $eachTypes(keys %Samples)

{

foreach my $samples(keys %Samples)

{

if($eachTypes ne $samples)

{

$SampleMapping{$eachTypes}{$samples} =

"$Samples{$eachTypes}\_$Samples{$samples}";

}

}

}

my $ResultFolder = 'Results'.$cutoff;

my $StatResult = 'Sample_Regulation_Statistics_".$cutoff.".txt';

unless(-d $ResultFolder)

{

mkdir $ResultFolder;

}



foreach my $eachFolder(@InputFolders)

{

my $SeqType = 'All';

my $ResultFolder1 = "$ResultFolder\/$SeqType";

unless(-d $ResultFolder1)

{

mkdir $ResultFolder1;

}

foreach my $eachFiles(glob("$eachFolder/*_*.diff"))

{

my $type = (split'\_',((split'\/',$eachFiles,999)[-1]),999)[-2];

if(($type eq 'isoform') || ($type eq 'gene') )

{

my $ResultFolder2 = "$ResultFolder1\/$type";

unless(-d $ResultFolder2)

{

mkdir $ResultFolder2;

}



&ParseFile($eachFiles,$type,$SeqType,$ResultFolder2,\%SampleMapping,\%Stat);

}

}

}

open OUT,">$StatResult" or die "Can't open $StatResult for writing\n";

print OUT "TYPE\tCONTROL\tSAMPLE\tUP REGULATED\tDOWN

REGULATED\tTOTAL\n";

foreach my $eachtypes(keys %Stat)

{

foreach my $samplecompare(sort{$a cmp $b;} keys %{$Stat{$eachtypes}})

{

my ($S1,$S2) = split'\_',$samplecompare,999;



my $upCount = 0;

my $downCount = 0;

my $totalCount = 0;

$upCount = $Stat{$eachtypes}{$samplecompare}{'UP'}

if(defined($Stat{$eachtypes}{$samplecompare}{'UP'}));

$downCount = $Stat{$eachtypes}{$samplecompare}{'DOWN'}

if(defined($Stat{$eachtypes}{$samplecompare}{'DOWN'}));

$totalCount = $Stat{$eachtypes}{$samplecompare}{'TOTAL'}

if(defined($Stat{$eachtypes}{$samplecompare}{'TOTAL'}));

print OUT "$eachtypes\t$S1\t$S2\t$upCount\t$downCount\t$totalCount\n";

}

}

close OUT;

sub ParseFile

{

my $InputFile = shift;

my $type = shift;

my $SeqType = shift;

my $ResFolder = shift;

my $RefSampleMapping = shift;

my $RefStat = shift;

my $FileHeader = '';



#print "$InputFile\t$type\t$SeqType\t$ResFolder\n";

my %ExpressionInfo = ();

open IN,"<$InputFile" or die "Can't open $InputFile for reading\n";

while(<IN>)

{

chomp;

next if(/^\s*$/);

if(/^\s*test_id.*/)

{

$FileHeader = $_;

next;

}

my @data = split"\t",$_,999;

if(defined($$RefSampleMapping{$data[4]}{$data[5]}))

{

if( ( ($data[7]>=1) && ($data[8]>=1)) && ($data[11]<=0.05)) # Checking

P-Value #

{

if(defined($ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'TOTAL'}{$data[1]

}))



{

$ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'TOTAL'}{$data[1]}.="\n$_";

}

else

{

$ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'TOTAL'}{$data[1]} = $_;

}

if($data[8]>$data[7]) # UP Regulated Gene/isoform #

{

if(defined($ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'UP'}{$data[1]}))

{

$ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'UP'}{$data[1]}.="\n$_";

}

else

{

$ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'UP'}{$data[1]} = $_;

}

}



if($data[8]<$data[7]) # DOWN Regulated Gene/isoform #

{

if(defined($ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'DOWN'}{$data[1]

}))

{

$ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'DOWN'}{$data[1]}.="\n$_";

}

else

{

$ExpressionInfo{$$RefSampleMapping{$data[4]}{$data[5]}}{'DOWN'}{$data[1]} = $_;

}

}

}

}

}

close IN;



# Writing To Files #

foreach my $sampleComparison(keys %ExpressionInfo)

{

my $ResFolder1 = "$ResFolder\/$sampleComparison";

unless(-d $ResFolder1)

{

mkdir $ResFolder1;

}

foreach my $regulationType(keys %{$ExpressionInfo{$sampleComparison}})

{

my $ResultFile = "$ResFolder1\/$sampleComparison\_$regulationType.txt";

my $dataType = (split'\/',$ResultFile,999)[2];

my $ResultFile1 =

"$ResFolder1/$sampleComparison\_$regulationType\_$dataType\_exp_filtered.diff";

print

"$sampleComparison\t$regulationType\t\t$ResultFile\t$sampleComparison\t<$ResultFile1>

\n";

open OUT,">$ResultFile" or die "Can't open $ResultFile for writing\n";

open OUT1,">$ResultFile1" or die "Can't open $ResultFile1 for writing\n";

print OUT1 "$FileHeader\tRegulation\n";

my $count = 0;



foreach my $Genes(sort{$a cmp $b;} keys

%{$ExpressionInfo{$sampleComparison}{$regulationType}})

{

$count++;

print OUT "$Genes\n";

foreach my

$filedata(split'\n',$ExpressionInfo{$sampleComparison}{$regulationType}{$Genes})

{

my @data5 = split"\t",$filedata,999;

$data5[4] = $Samples{$data5[4]} if(defined($data5[4]));

$data5[5] = $Samples{$data5[5]} if(defined($data5[5]));

my $infos = join"\t",@data5;

my $regtype1 = 'NA';

if(defined($ExpressionInfo{$sampleComparison}{'UP'}{$Genes}))

{

$regtype1 = 'Up';

}

elsif(defined($ExpressionInfo{$sampleComparison}{'DOWN'}{$Genes}))

{

$regtype1 = 'Down';

}



print OUT1 "$infos\t$regtype1\n";

}

}

close OUT;

close OUT1;

$$RefStat{$type}{$sampleComparison}{$regulationType} = $count;

}

}

}
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