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Abstract: The fundamental challenge in fighting cancer is the development of protective agents
able to interfere with the classical pathways of malignant transformation, such as extracellular
matrix remodeling, epithelial–mesenchymal transition and, alteration of protein homeostasis. In
the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell
transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties
with promising potential for the development of therapeutic drugs for the treatment of cancer as well
as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor
for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated,
in particular, with cancer development and progression, and for this reason, we investigated the
ability of curcumin to affect HSP60 expression, localization, and post-translational modifications
using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the
HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h,
and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent
manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a
decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM
of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in
the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was
able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its
folding activity and the secretion in the media led to the supposition that curcumin might interfere
with cancer progression with a protective mechanism involving the chaperonin.

Keywords: brain tumors; molecular chaperones; heat shock proteins; HSP60; extracellular HSP60;
post-translational modifications; protein folding

1. Introduction

Central nervous system (CNS) tumors are a heterogeneous group of neoplasms with poor prognosis
and resistance to therapeutics [1]. During malignant transformation, cancer cells with accumulating
genetic and epigenetic abnormalities undergo alteration in protein homeostasis and induction of
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proteotoxic stress, including dysregulation of the protein translation and protein folding machinery [2–4].
These pathways include the dysregulation of proteins involved in the chaperoning system (CS), such
as Heat Shock Proteins (HSPs), that are strictly involved in tumorigenesis [5,6]. Human brain tumors
also express high levels of many chaperone proteins/HSPs [1,7]. Among these proteins, HSP60 may
be a means by which tumor cells can support their high-rate protein synthesis. They can exploit
this multifaceted protein to escape from the antitumor immune responses [8–10]. This chaperonin is
described classically as machinery, with the co-chaperone HSP10, for the folding of other proteins,
and it is highly expressed in brain tumors [11–14]. HSP60 plays either pro-apoptotic or pro-survival
functions in a tumor-dependent fashion, and recently it was found that one factor contributing to
the multifaceted roles of this chaperonin is its regulation via post-translational modifications (PTMs).
For example, it has been demonstrated that HSP60 nitration induces the decrease in ATP-hydrolysis
activity, inhibiting the capacity of the chaperonin to fold its preferential substrates [15]. Moreover,
HSP60 ubiquitination was associated with necrosis in stress-induced monocyte necrosis with an
unclear role [16]. The role of HSP60 in tumorigenesis and progression of brain tumors is still poorly
understood. The research aimed at the discovery of HSP60 inhibitors may be attractive and can
lead to finding anticancer agents’ adjuvants in combination with chemotherapy, thus to reduce both
the adverse effects and drug resistance as well as increase the effective targeting of cancerous cells.
In this field, curcumin, which is a polyphenolic compound found in turmeric, with anti-inflammatory,
antioxidant, and anti-aggregation properties, has been extensively studied for its neuroprotective
effects [17–19]. Curcumin has numerous molecular targets, and its anti-tumoral mechanisms of
action, including cellular proliferation, apoptosis, autophagy, angiogenesis, immune-modulation,
invasion, and metastasis, have been widely studied [20]. Nevertheless, little is still known about
its role in ameliorating the stress in cancer and its impact on the components of CS, which are the
main regulators of cellular stress. On the other hand, the therapeutic benefits of curcumin, which is
known to interfere with protein aggregation in neurodegenerative diseases, appear to be multifactorial
and associated with the regulation of transcription factors functioning, or linked with the activity of
different proteins [17–20]. Curcumin and several natural derived-products have been shown to regulate
many members of HSPs. These compounds show a significant inhibitory activity of HSP60-induced
cell proliferation [21,22]. Therefore, these data encourage the idea that the polyphenolic structure
of curcumin might be a recognition motif for HSP60′s binding [22]. Here, we reported the study
of the effects of curcumin on HSP60 levels, PTMs, and folding activity using a neuroblastoma cell
line. The study aimed to better understand the mechanism at the base of the protection from cellular
stress driven by curcumin in a model of tumorigenesis in which HSP60 seems to play a pivotal role.
The results obtained showed that curcumin affected the HSP60 levels reducing HSP60 nitration and
ubiquitination, favoring its folding activity. These findings are promising to give answers to the opened
questions: (i) should curcumin be used as adjuvants in the treatment of brain tumors? (ii) Should
HSP60 be a target for curcumin or for curcumin derivatives in the future to be used in the struggle
against their devastating effects?

2. Results

2.1. Curcumin Inhibits Cell Proliferation

The anti-proliferative effects of curcumin on human neuroblastoma cells (LAN-5) were analyzed
by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] assay (Figure 1A). Cells were
treated by increasing concentrations of curcumin (from 0 to 200 µM) for 24 h. A dose-dependent
decrease in LAN-5 neuroblastoma cell viability was observed. In particular, the percentage of viable cells
decreased significantly when cells were treated with 3.125 µM of curcumin as compared to untreated
cells. The growth inhibition index was calculated between 25 and 50 µM (37.5 µM) of curcumin.
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Flow cytometry results showed that the percentage of apoptosis of LAN-5 cells treated with
curcumin was higher than those of the untreated group in a dose-dependent manner (Figure 1B,
p < 0.05).
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Figure 1. Effects of curcumin on cell proliferation (A) MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) test analysis. LAN-5 cell viability treated with different curcumin
doses (1.5–200 µM) for 24 h using MTT assay. Vertical axis percentage of cell viability; horizontal axis,
the concentration of curcumin in micrometers. A dose-dependent decrease in LAN-5 cell viability was
observed (growth 50% index = 37.5 µM). * p < 0.05 vs. untreated cells (UT). (B) Representative flow
cytometry graphs are shown for control cells (CTRL, cells treated with dimethyl sulfoxide, DMSO) and
for UT and treated with 6, 12.5, and 25 µM of curcumin (P.I.: propidium iodide). The histograms are
representative of three independent experiments and show the effect of different doses of curcumin on
LAN-5 apoptosis (* p < 0.0001 vs. UT; ** p = 0.04 vs. UT).

2.2. HSP60 Expression after Curcumin Treatments

Curcumin effect on HSP60 expression was studied. Western blot analysis showed a dose-dependent
decrease in HSP60 levels after 24 h of curcumin treatments. In particular, a significant decrease in
HSP60 levels was observed after the treatment with 25 µM of curcumin (Figure 2A). These data were
confirmed by immunofluorescence. As shown in the inset of the figures, Hsp60 was localized in
cellular compartments, resembling mitochondria, and seems not to change this cellular distribution
after treatments (Figure 2, inset). Then, it might be reasonable to hypothesize a reduction of the
mitochondrial pool protein (Figure 2B). Moreover, HSP60 mRNA expression demonstrated a significant
reduction at low concentrations (6 and 12.5 µM) while at 25 µM, HSP60 mRNA levels were increased
(Figure 2C). Interestingly, despite the increase in HSP60 mRNA levels observed, there was no increase
in HSP60 protein levels. For this reason, we investigated HSP60 PTMs that can be involved in its
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degradation pathway and cell death. Thus, we first investigated whether curcumin promotes HSP60
ubiquitination, and we observed that ubiquitinated HSP60 levels were lower following treatment
with 25 µM of curcumin as compared to untreated cells (Figure 3A; p < 0.05). At this point, the fact
that HSP60 is not ubiquitinated prompted us to investigate whether curcumin may promote different
post-translational changes, recently investigated by our research group in another cancer in vitro
model. Since the role of S-nitrosylation has been widely studied in cancer, we evaluated the effects of
curcumin on the HSP60 S-nitrosylation level. A significant decrease in the levels of nitrated HSP60 was
observed after the incubation with 25 µM of curcumin for 24 h compared to untreated cells (Figure 3A;
p < 0.05).
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Figure 2. Effect of curcumin treatment on HSP60 expression level (A) Representative Western blots and
graph of densitometry of the corresponding bands for HSP60 protein expression level in UT, 6 µM, 12.5
µM, and 25 µM of curcumin. β-actin was used as an internal control (* Different than UT, 6 µM, and
12.5 µM, p < 0.01). Statistical analysis was performed using ANOVA analysis of variance followed by
a Bonferroni post-hoc test. Experiments were performed in quadruplicate. (B) Immunofluorescence
images confirming the data (Bar: 30 µm). The chaperonin seems to be confined to mitochondria. The
insets were obtained using the NIH Image J 1.40 analysis program (National Institutes of Health,
Bethesda, MD, USA). (C) Representative graph showing real-time PCR analysis of HSPD1, (heat shock
protein family D, HSP60 member 1) gene expression. The data were normalized to reference genes
according to the Livak Method (2-∆∆Ct). (* Different than UT p < 0.05).

2.3. HSP60 Is Released in the Extracellular Environment after Curcumin Treatment

Previous observations have shown that HSP60 is released by cancer cells in the extracellular
microenvironment, where it can affect the properties of the tumor microenvironment [23–26]. To further
investigate and explain the decreased HPS60 protein levels despite the increase in HSP60 mRNA levels,
we detected the HSP60 levels in cell supernatant by an enzyme-linked immunoadsorbent assay (ELISA)
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assay. The extracellular HSP60 levels were increased when cells were treated with 25 µM of curcumin
(Figure 3B).
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Figure 3. Effects of curcumin treatment on HSP60 post-translational modification and localization (A)
25 µM of curcumin does not promote HSP60 ubiquitination and nitrosylation after 24 h of treatment.
(B) HSP60 levels in cells supernatant, detected by enzyme-linked immunoadsorbent assay (ELISA).
The difference between HSP60 levels in cells supernatant after 24 h of treatment (25 µM of curcumin)
versus untreated cells was significant (* p < 0.001).

2.4. Curcumin Increases HSP60 Folding Activity

The effects of curcumin on HSP60 folding activity was evaluated by conducting an in vitro
assay in the presence or absence of 25 µM of curcumin. Luminescence data were reported as average
luminescence (relative light units) (Figure 4A) and as a percentage of the refolding (Figure 4B) measured
from three independent experiments. The refolding activity of HSP60 in the presence of 25 µM of
curcumin was compared to the control and other conditions (respectively, no heat-shocked substrate;
without curcumin; HSP10 Solution; HSP60 Solution). We investigated whether the binding of curcumin
to the HSP60/HSP10 complex has any consequences for its folding activity. After 30 min of incubation
with Luciferin reagent, we did not observe any significant changes in refolding activity between
conditions used. Instead, after 60 min of reaction, the substrate was refolded more effectively in the
presence of curcumin (Figure 4). According to the characteristic function of HSP60, its protein-folding
process occurs in cooperation with the co-chaperonin HSP10, as demonstrated by the assay. In fact,
we observed an inhibition of HSP60 chaperone activity in the absence of HSP10 (Figure 4). These data
demonstrated that curcumin increased the folding activity of HSP60/HSP10 complex, most probably
stabilizing the complex by interacting with the folding site of the protein and promoting the folding
activity (Figure 4). Furthermore, the association with the co-chaperone HSP10 to HSP60 subunits helps
promote the refolding of the substrate (Figure 4) [8].
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Figure 4. Folding test: At indicated times 30–60 min, aliquots were taken from each of the reactions and
added to assay wells containing 50 µL of Luciferin reagent. Luminescence measurements were taken
using a GloMax® 96 Microplate Luminometer (Promega Corporation, Madison, WI, USA) (Substrate:
Glow-Fold™ Substrate Protein). (A) The graph shows the average of three independent experiments.
The folding test demonstrated that curcumin (25 µM) significantly promoted the refolding activity of
HSP60/HSP10 complex after 60 min of reaction (* p < 0.01 vs. Substrate + HSP60/HSP10 + ATP, Substrate
+ HSP60 + ATP + 25 µM curcumin, Substrate + HSP10 + ATP + 25 µM curcumin, and Substrate
only; no heat shock treatment). Furthermore, the test showed that curcumin had no effects on the
activity of the complexes, which were not present, respectively, HSP10 and HSP60. After 30 min of
reaction, we observed no significant changes in folding activity in the presence of curcumin (Substrate
+ HSP60/HSP10 + ATP + 25 µM curcumin) and in the absence of HSP10 (Substrate + HSP60 + ATP
+ 25 µM curcumin) or HSP60 (Substrate + HSP10 + ATP + 25 µM curcumin), when compared with
the reaction without curcumin (Substrate + HSP60/HSP10 + ATP, at 30 min). (B) The graph shows
the percentage of the refolding in all conditions used, compared with the luciferase activity in the
presence of the substrate not heated (Substrate only; no heat shock treatment), considered 100% of
activity. (* p < 0.01 vs. Substrate + HSP60/HSP10 + ATP, Substrate + HSP60 + ATP + 25 µM curcumin,
Substrate + HSP10 + ATP + 25 µM curcumin, and Substrate only; no heat shock treatment).

3. Discussion

In this study, we investigated the anticancer properties of curcumin in a neuroblastoma cell line
with a focus on HSP60. The results show that curcumin is cytotoxic in the human neuroblastoma cell line
through the induction of apoptosis. This effect could be associated with the reduction in intracellular
HSP60 levels and its release in the extracellular space. Moreover, it is well known that curcumin
presents an anti-aggregation effect in a different class of proteins by modulating their conformational
stability and unfolding/folding pathways [27]. Concerning the effect on HSP60, we found that curcumin
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can increase this folding activity, which is central in the control protein homeostasis and the regulation
of proteotoxic stress in cancer [28].

Curcumin has been shown to have various properties in human cells, such as antioxidant [29],
anti-inflammatory [30], antimicrobial [31], and anticancer properties [32–34]. Curcuma longa, the plant
from which curcumin is extracted, has been traditionally used in Asian countries as a medical herb
for the care of several pathologies and has been widely used to prevent neurodegenerative diseases.
Curcumin may be considered a neuroprotective agent because of its ability to modulate many molecular
targets, such as transcription factors, inflammatory cytokines, kinases, growth factors, and antioxidant
systems. Several studies have highlighted that curcumin appears to be responsible for the improvement
of neuroprotective actions via the inhibition of oxidative damage [35] and mediating the reduction of
microglial inflammation [36].

The growing interest in therapeutic uses of curcumin on neurological diseases [37] may open
new insight on the elucidation of its biological effects on neuronal cell models. Curcumin is known
to decrease neuroinflammation and enhance microglial phagocytosis [38]. In neurodegenerative
disorders, in which the protein aggregation of misfolded proteins is implicated, curcumin increases the
induction of HSPs [39]. Moreover, curcumin can inhibit reactive oxygen species (ROS) formation and
trigger mitochondrial protection and anti-apoptotic mechanisms [36,40]. Many investigations have
been done in the attempt to use chaperones for the corrections of protein misfolding and treatment of
human diseases [41]. Among HSPs, HSP60 has been shown to be involved in brain tumors [1,42–44],
and preclinical in vitro and in vivo data have shown that curcumin may be an effective treatment for
brain tumors [17]. Nevertheless, it remains to be explored what the effect of curcumin on HSP60′s
expression and/or function is. Therefore, a detailed investigation of the curcumin-HSP60 relationship on
neuronal cells is fundamental for the further development of curcumin-based treatment or perspective
curcumin-like drugs.

We started the biochemical characterization by assessing the toxicity profile on our cellular model
using the MTT test. Despite the well-known curcumin cytotoxicity [45], cell death was evidenced at
relatively high doses (>50 µM), allowing the selection of lower doses as test conditions for subsequent
analysis. Our results demonstrate, in agreement with previous results [46–49], that curcumin induces
apoptosis in human neuroblastoma cells in a dose-dependent manner, as detected by Annexin V/PI
test. Considering the effect of curcumin on HSP60 expression, the reduction of the expression at higher
doses is noteworthy, while the HSP60 mRNA expression decreased after lower doses treatment but
consistently increased after 24 h at 25 µM. These divergent data suggest that the low levels of the
HSP60 protein in curcumin-treated cells are due to post-transcriptional processes and subsequent
HSP60 degradation and/or extracellular releasing and do not involve gene expression downregulation.

We have already observed, in other cancer cell models, the reduction of the HSP60 levels after
the treatment with drugs or cytotoxic compounds that can affect directly and/or indirectly the HSP60
functions. In a mucoepidermoid carcinoma cell line (NCI-H292), we demonstrated that the high levels
of HSP60 caused the inhibition of the pro-caspase 3 (pC3) activation and the resistance to apoptosis.
The treatment with a copper compound with cytotoxic properties induced the decrease in the HSP60
levels, the separation of the complex HSP60/pC3, and consequently, the C3 activation of the caspase
pathway associated with a tumor-cell growth arrest [50]. In addition, we found that the antitumor
agent doxorubicin acted on the NCI-H292 cell line by lowering the levels of intracellular HSP60 and
determining the HSP60 acetylation, which seems to be responsible for the disruption of Hsp60/p53
complex and the activation of replicative senescence, probably via p53-p21 pathway [51]. Our previous
findings reported that high levels of HSP60 may have an anti-apoptotic and cytoprotective role in
cancer [15,50–52]. Compounds that cause the reduction of HSP60 levels may have various effects,
as has already been demonstrated. HSP60 can be tagged by PTMs that can regulate its degradation
and/or secretion [15,23,50,51,53,54]. Thus, we turned our attention to possible PTMs of HSP60 induced
by curcumin. Our results demonstrate that curcumin did not promote HSP60 ubiquitination and,
then we explored the S-nitrosylation. In a previous work [15], we showed that the anti-cancer drug
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Suberoylanilide hydroxamic acid (SAHA), induces HSP60 nitration in mucoepidermoid tumor cells
and we postulated that the nitration may occur in highly conserved Tyr222 and Tyr226 in the apical
domain of HSP60 affecting the substrate binding and interfering with HSP60 folding activity [15,55].
The S-nitrosylation has been studied mainly in tumor cells [56–58] and seems to be a PTM that
contributes to cell proliferation and expansion in glioma [59,60]. Nitrosative stress represents a threat
to the cell folding machinery, and it has been shown that the S-nitrosylation affects different pathways
leading to the inhibition of microglial caspase-3 in glioblastoma and the determination of pro-tumor
events activation [60]. Our results demonstrated that curcumin reduces the HSP60 S-nitrosylation,
confirming its ability to mitigate the effects of oxidative stress and restore proteins’ functions to levels
observed under homeostasis. We also demonstrated that curcumin promotes and improves the folding
activity of HSP60. Indeed, curcumin’s effects can also be related to the direct interaction with this
chaperone, suggesting a positive effect on the HSP60/HSP10 complex or for client protein ligation.
While the possible mode of action of HSP60 inhibitors is well established [61–63], the binding site of
curcumin for HSP60/HSP10 folding machine is unknown, and, to the best of our knowledge, this is the
first case of enhancer of this CS.

At this point, it remains unclear why intracellular HSP60 is low in curcumin-treated cells, and at the
same time, HSP60 expression is not downregulated and, as mentioned above, the HSP60 ubiquitination
seems to be not involved either. Therefore, to explore potential mechanisms underlying the decrease in
the HSP60 intracellular levels in curcumin-treated cells, we evaluated possible extracellular release.
Other groups and we have already shown that HSP60 can be secreted by cells, in particular by
cancer cells via both secretion canonical pathways and via exosomes [15,23,24,26,50,64–67]. In this
work, we demonstrated that HSP60 is secreted by LAN-5 cells after 24 h of treatment with 25 µM of
curcumin. HSP60 has different roles in the extracellular environment in healthy and diseased tissues.
HSP60 has been found on the surface in both normal and tumor cells, where may be implicated in
transmembrane transport and signaling and the immune system activation [10]. The HSP60 secretion is
linked to widespread intercellular communication events with various biologic effects. In brain tumors,
HSP60 is overexpressed [68,69], and its secretion may be a mechanism involved in cell transformation
and in tumor progression, suggesting that HSP60 is a potential therapeutic target for brain tumors
treatment [42].

Considering its anti-oxidant and anti-inflammatory properties, the perspective use of curcumin
as adjuvant chemotherapy in brain cancer is promising. In this work, we highlighted the effect of
curcumin’s treatment on the apoptosis induction of neuronal cells, showing the possible effect on the
expression and activity of HSP60, a member of chaperones family with growing interest particularly
for its involvement on tumor progression.

4. Materials and Methods

4.1. Cell Culture and Treatments

The human neuroblastoma cells (LAN-5), kindly provided by the National Research Council of
Italy (CNR, Palermo, Italy), were grown in Roswell Park Memorial Institute (RPMI) 1640 with 10%
heat-inactivated fetal calf serum (FCS) and supplemented with 2 mM glutamine, 50 U/mL penicillin,
and 50 mg/streptomycin in a humidified incubator containing 5% CO2 at 37 ◦C. The passage number
of cells used in this study ranged from 12 to 35. Unless otherwise stated, cell culture reagents were
purchased from GIBCO BRL LIFE Technologies (Waltham, MA, USA). Before all the experiments,
8 × 103 cells/well in 96-well-plates and 1 × 106 cells in 25 cm2 flasks were seeded, and confluent cell
monolayers were incubated in a serum-free medium for 24 h. For MTT cells were seeded into 96-well
tissue culture plates, and 8-well chamber slides, respectively. For cytometry analysis, protein and
RNA extraction, cells were seeded into 25 cm2 flasks, and for immunofluorescence assays, cells were
plated onto 8-well microscope chamber slide. One day after seeding, cells were treated for 24 h with
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different concentrations of curcumin (0–200 µM). Curcumin was dissolved in 75% ethanol to a final
concentration of 1 mM. The successive dilutions were carried out using the culture medium.

4.2. Cell Proliferation Assay

The cytotoxic effect was determined by MTT cell viability test. MTT was obtained from Sigma
(Milan, Italy), and the assay was performed as described [15,50]. Briefly, after 24 h of treatments, the
medium containing the compounds was replaced, and MTT was dissolved in fresh medium and added
to the cell cultures at a final concentration of 0.5 mg/mL. Following a 4 h incubation period, cells were
solubilized in 200 µL DMSO/well, and optical density (OD) was measured with a plate reader (Titertek
Multiskan MCC/340, Flow Laboratories, McLean, VA, USA) at 570 nm (630 nm as reference). Cell
viability was expressed as the percentage of the OD value of inhibitor-treated cells compared with
untreated controls, according to the following equation: Viability = (OD SAMPLE/OD CONTROL)
× 100. Each experiment was carried out in duplicate, and three experiments were performed for
the compound.

4.3. Flow Cytometry

The cells were seeded into 25 cm2 flasks at a density of 1 × 106 cells/flask and were treated with
different concentrations of curcumin. A positive control group (DMSO treated cells) was set up. After
24 h of treatment, the cells in each group were collected by centrifugation. The apoptosis was measured
using an Annexin V-FITC Apoptosis Detection Kit (Abcam, Cambridge UK). Five hundred microliters
of 1×binding buffer was used to re-suspend cells, and 5 µL of Annexin V-FITC and 5 µL of PI were
added. Blank control and single staining control groups were set up. Apoptosis was detected using
a BD FACSVerse™ flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). The experiment was
repeated 3 times.

4.4. Western Blotting

Treated and untreated cells were lysed into ice-cold lysis solution containing RIPA buffer,
as previously described [15,50]. Lysates were then spun at 16,000× g for 30 min at 4 ◦C, the supernatant
was recovered, the protein concentration determined, and then stored at −80 ◦C until use. Proteins
were quantified with the Quant-iTTM protein assay kit (Invitrogen Molecular Probes, Eugene, OR,
USA), using the Qubit fluorimeter according to the manufacturer’s instructions (the kit is accurate for
protein concentrations ranging from 12.5 mg/mL to 5 mg/mL).

Western blotting analyses of cell lysates were performed as previously described [51]. Briefly, 20 µg
of proteins from cell lysates were added to 4×Laemmli buffer and heated for 5 min at 95 ◦C. Proteins
were resolved by 12% SDS-PAGE along with a molecular weight marker (Bio-RAD laboratories, Milan,
Italy). Proteins were then transferred to nitrocellulose membranes. After transfer, all membranes
were stained with Ponceau S to verify the quality of transfer and loading similarity. Before applying
antibodies (Table 1), the membranes were blocked with 5% BSA and probed for 12 h with the specific
antibody, followed by incubation with horseradish peroxidase-conjugated second antibody. Blots were
detected using the Supersignal West Femto, according to the manufacturer’s instructions (Pierce Thermo
Scientific, Waltham, MA, USA), and chemiluminescent signals were recorded with the ChemiDoc XRS
imager (Bio-RAD Laboratories, Milan, Italy). Densitometric analysis of blots was performed using the
NIH Image J 1.40 analysis program (National Institutes of Health, Bethesda, MD, USA).
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Table 1. Primary antibodies used for Western blot, immunofluorescence, and immunoprecipitation
analyses.

Method Antigen Type and Source Clone Supplier Catalogue No. Dilution

WB,
IF HSP60 Mouse

monoclonal LK-1 Sigma–Aldrich H-4149 1:1000, 1:100

WB β-actin Mouse
monoclonal C-4 Santa Cruz

Biotechnology AC-15 1:3000

WB ubiquitin Mouse
monoclonal P4D1 Santa Cruz

Biotechnology sc-8017 1:1000

WB 3-nitrotyrosine 39B6 Abcam ab-61392 1:1000

IP Protein A
PLUS-Agarose

Mouse
monoclonal

Santa Cruz
Biotechnology sc-2003 20 µL

Abbreviation: WB, Western blot analysis; IF, immunofluorescence, IP, immunoprecipitation.

4.5. Real-Time Quantitative PCR (qPCR)

Total cellular RNA was isolated from cell cultures using TRIzol® REAGENT (Sigma–Aldrich,
Milan, Italy), according to the manufacturer’s instructions. RNA (12 ng) was retro-transcribed
using the ImProm-II Reverse Transcriptase Kit (Promega Corporation, Madison, WI, USA) to obtain
cDNA, which was amplified using the GoTaq qPCR Master Mix (Promega Corporation, Madison,
WI, USA) as previously described [70]. The mRNA levels were normalized to the levels obtained
for hypoxanthine phosphoribosyltransferase 1 (HPRT1), for beta-glucuronidase (GUSB) and for
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which primers sequences are indicated in
Table 2. Changes in the transcript level were calculated using the 2−∆∆Ct method [71].

Table 2. Forward and reverse primers used for quantitative real-time PCR (qRT-PCR).

Primer Forward Reverse

GUSB 5’-ACCACCCCTACCACCTATATC-3’ 5’-ATCCAGTAGTTCACCAGCCC-3’
GAPDH 5’-GAAACCCATCACCATCTTCC-3’ 5’-TCCACGACATACTCAGCAC-3
HPRT1 5’-TGTCATGAAGGAGATGGGAG-3’ 5’-ATCCAGCAGGTCAGCAAAG-3’

HSPD1 var1 5’-GAGTAGAGGCGGAGGGAG-3’ 5’-AGTGAGATGAGGAGCCAGTA-3’

Abbreviation: GUSB, beta-glucuronidase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HPRT1,
hypoxanthine phosphoribosyltransferase 1; HSPD1 (heat shock protein family D, Hsp60 member 1).

4.6. Immunofluorescence

Immunofluorescence was performed as described before [52]. Cells were fixed with ice-cold
methanol for 30 min, washed in phosphate buffer solution (PBS), pH 7.4, and were incubated with
the unmasking solution (trisodium citrate 10 mM, 0.05% Tween 20) for 10 min at room temperature
(RT). Then, the cells were incubated with the blocking solution (3% albumin bovine serum in PBS)
for 30 min at RT and with HSP60 primary antibodies, overnight at 4 ◦C. The next day, the cells were
incubated with fluorescent secondary antibodies mouse IgG antibody conjugated with Texas Red
(Sigma–Aldrich, Milan, Italy) diluted 1:200 for 1 h, at RT. The nuclei were counterstained with Hoechst
33,342 (Sigma–Aldrich, Milan, Italy) for 15 min at RT. Finally, all slides were mounted with coverslips
using a drop of PBS, and then imaging was performed using a Leica DM5000 upright fluorescence
microscope (Leica Microsystems, Heidelberg, Germany).

4.7. Immunoprecipitation Analysis

To detect HSP60 post-translational modifications, immunoprecipitation was performed as
previously described [15]. Briefly, 5 µg of anti-HSP60 antibody per 500 µg of total cell lysate
was incubated overnight at 4 ◦C with gentle rotation. Antibody/protein complexes were then
immunoprecipitated with antibodies linked to Protein-G/A Sepharose beads. Nonspecifically bound
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proteins were removed by repeated washings with isotonic lysis buffer. Immunoprecipitated proteins
were resolved by 12% SDS-PAGE using primary antibodies against ubiquitin and 3-nitrotyrosine.

4.8. Enzyme-Linked Immunoadsorbent Assay Test

Enzyme-linked immunoadsorbent assay (ELISA) was performed as described [71,72] using
a commercial human HSP60 ELISA kit (StressMarq, Biosciences Inc., Victoria, BC, Canada) and
absorbance was measured at 450 nm in a microplate photometric reader (GDV, Milan, Italy).

4.9. Folding Test

The folding test was conducted using the HSP60/HSP10 Glow-FoldTM Protein Refolding kit
(Boston Biochem, Cambridge, MA, USA) following the manufacturer’s instructions. Briefly, for the test
conditions, we prepared reactions using, 10X Reaction Buffer, 5X HSP60 Solution, 10X HSP10 Solution,
10X Mg2+-ATP solution, 10X Glow-Fold™ Substrate Protein, and 25 µM of curcumin. For control
conditions, we omitted, respectively, curcumin, HSP10 Solution, HSP60 Solution, and we included
a positive control in which the Glow-Fold™ Substrate Protein was not denatured. The Glow-Fold™
Substrate Protein was denatured through heat shock (for 7 min at 45 ◦C). Refolding reactions were
conducted at 30 ◦C for 30 min and 60 min, and the luminescence was measured by the addition of
Luciferin Reagent, using a luminescence capable plate reader GloMax® 96 Microplate Luminometer
(Promega Corporation, Madison, WI, USA), within 1 min of mixing. Luminescence data were reported
as relative luminescent values (relative light unit) of refolding activity, measured for the positive control
(Glow-Fold™. Substrate protein no heat-shock, at time = 0) and for reaction conditions (at time = 30 min
and 60 min). In addition, data were reported as the percentage of activity when compared with the
luciferase activity in the presence of the substrate not heated (positive control), considered 100% of
activity. Experiments were performed in triplicate.

4.10. Statistical Analysis

Data are presented as the mean ± S.D. of triplicate determinations. Comparisons between groups
were performed using the statistical software package GraphPad PrismTM 4.0 software (GraphPad
PrismTM Software Inc, San Diego, CA, USA), and SigmaPlot11 (Systat Software Inc., San Jose, CA,
USA) with the unpaired samples Student’s t-test and one-way ANOVA analyses. A p-value < 0.05 was
considered statistically significant.

5. Conclusions

In conclusion, HSP60 is a chaperonin with an active role in proliferation and neoplastic
transformation. The HSP60 levels are increased in a number of tumors, in which it may act in
different manner and may be found not only at intracellular level, but also extracellularly and in
circulation [5,6,9,10]. In the present study, we found that curcumin induces the cell death by apoptosis
in a neuroblastoma cell line and modify levels and biochemical characteristics of HSP60. In fact,
after treatment with 25 µM of curcumin the HSP60 intracellular levels were reduced, whereas the
extracellular levels were increased. Furthermore, curcumin is able to increase the refolding activity of
the chaperone system HSP60/HSP10. The beneficial effect of curcumin requires further elucidation,
and our findings may be helpful in to design anti-cancer therapeutic strategies, using curcumin and
exploiting its influence on HSP60.
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