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ABSTRACT 

 

Improvements in the design, fabrication, and performance of astronomical detectors has ushered 

in the so-called era of multi messenger astrophysics, in which several different signals 

(electromagnetic waves, gravitational waves, neutrinos, cosmic rays) are processed to obtain detailed 

descriptions of their sources. 

Soft x-ray instrumentation has been  developed in the last decades and used on board numerous 

space missions. This has allowed a deep understanding of several physical phenomena taking place 

in astrophysical sources of different scales from normal stars to galaxy clusters and huge black holes. 

On the other hand, imaging and spectral capabilities in the the hard x-rays are still lagging behind 

with high potentials of discovery area. 

Modern cryogenic microcalorimeters have two orders of magnitude or more better energy 

resolution with respect to CCD detectors at the same energy in the whole X-ray band. This significant 

improvement will permit important progress in high energy astrophysics thanks to the data that will 

be provided by future missions adopting this detector technology such as the ESA L2 mission Athena 

[1], the JAXA/NASA mission XRISM [2], both under development, or the NASA LYNX mission 

presently under investigation [3]. The JAXA/NASA mission Hitomi [4], launched in 2016 and failed 

before starting normal operation, has already given a hint of the high potential of such detectors [5]. 

Due to their very high sensitivity, X-ray cryogenic microcalorimeters need to be shielded from 

out of band radiation by the use of efficient thin filters. 

These microcalorimeters work by measuring the temperature increase caused by a photon that 

hits an X-ray absorber. In neutron transmutation doped germanium (NTD Ge) devices the temperature 

increase in the absorber is measured by a semiconductor thermometer made of germanium doped by 

the neutron transmutation doping technique. They are characterized by relatively low specific heat 

and low sensitivity to external magnetic fields. These characteristics make them promising detectors 

for hard X-ray detectors for space and laboratory applications. 

Research groups of the the X-ray Astronomy Calibration and Testing (XACT) Laboratory of the 

Osservatorio Astronomico di Palermo – Istituto Nazionale di Astrofisica (INAF-OAPA), and of the 

Dipartimento di Fisica e Chimica “Emilio Segrè” (DiFC) of the Università di Palermo have already 

developed experience related to the design, fabrication and testing of NTD Ge microcalorimeters [6, 

7, 8, 9]. Furthermore, the research group has participated for many years in the design and 

development of filters for x-ray detectors in different space missions [10, 11, 12, 13]. 

This thesis concerns the development of materials and technologies for high energy 

microcalorimeters. In particular its aim is to design and fabricate thick bismuth absorbers for NTD 

germanium microcalorimeter arrays to extend their detection band toward hard X-ray energies. Filters 

for shielding microcalorimeters from different background radiation arriving on the detectors were 

also studied. 

The design and fabrication of thick bismuth absorbers for hard x-rays detection (20 keV ≤ E ≤ 

100 keV) is part of an ongoing effort to develop arrays of NTD Ge microcalorimeters by planar 

technologies for astrophysical applications. One potential application of such detectors is in the high 

spectral resolution (∆E ~ 50 eV) investigation of the hard X-ray emission from the solar corona, 

which is the goal of a stratospheric balloon borne experiment concept named MIcrocalorimeters 

STratospheric ExpeRiment for solar hard X rays (MISTERX) presently under study at INAF-OAPA.  
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The characterization activity of filters for microcalorimeters in also related to the implementation 

of the European Space Agency high energy mission named Athena (Advanced Telescopes for High 

Energy Astrophysics). 

This thesis describes the design, fabrication, and characterization of the bismuth absorbers, as 

well as the characterization of filters for Athena. 

Chapter one summarizes the working principles of NTD Ge microcalorimeters and their 

applications. Chapter 2 describes the design of the bismuth absorber array on suitable substrates. 

Chapter 3 focuses on the electroplating process for the bismuth layer deposition, with details about 

the design and fabrication of the microlithographic mask for the array patterning, and about the 

development of the microlithographic process for the array fabrication on the chosen substrates. The 

fabrication of 4 x 4 absorber arrays is also described. Chapter 4 reports on the characterization activity 

of deposited bismuth layers by different techniques; their morphology was investigated by scanning 

electron microscopy. The electrochemical impedance spectroscopy technique was used to increase 

grown layer quality. Fabricated arrays were also characterized. Chapter 5 describes the 

characterization activity for different filter prototype samples developed for Athena. Mechanical 

robustness, radio frequency attenuation and radiation damage caused by protons were evaluated. 

Radiation damage effects at different doses were in particular investigated on silicon nitride filters by 

scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-Vis-IR spectroscopy and 

x-ray attenuation measurements. 

Details on both technical detector requirements and different sensor types are given in the 

Appendix. 
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INTRODUCTION 
 

The first x-ray observation was performed in 1946, when the American astronomer Herbert 

Friedmann of Navy Research Laboratories looked at the Sun using a recovered V2 rocket [14]. In the 

years since, x-ray astronomy has become a very important research field. Many x-ray observatories 

have been launched in the outer part of terrestrial atmosphere and in space, both on balloons and on 

sophisticated satellites, like XMM-Newton and Chandra [15, 16, 17]. The development of x-ray 

observations, together with efforts in -ray detection, gave origin to modern High Energy 

Astrophysics that explores the hot and energetic part of the Universe. 

X-ray emission has been detected through high energy space exploration in: nearly all stars across 

the Hertzsprung-Russell diagram, binary systems, compact objects including black holes, supernova 

remnants, galaxy clusters and active galactic nuclei [15]. X-rays are produced by many phenomena, 

such as electronic transitions, Compton scattering, bremsstrahlung, black body radiation. Elemental 

composition, density, temperature and other environmental characteristics of the emitter can be 

evaluated by spectral analysis [18]. It was ascertained that x-ray emissions by stars influence their 

disk evolution, planet formation and planetary atmospheres [15]. 

The high performance achieved by X-ray devices in the last fifty years has contributed to the 

advancement of Multi-Messenger Astrophysics, in which signals of different type coming from the 

same source are observed, analyzed, and interpreted together [19, 20]. The signals include 

electromagnetic waves, neutrinos, cosmic rays, and gravitational waves.  

An example that shows the importance of Multi-Messenger Astrophysics is GW17087, a 

gravitational wave observed by LIGO and VIRGO, followed by a gamma-ray burst 1.7s after. The 

electromagnetic follow-up campaign found an astronomical transient eleven hours after the 

gravitational wave signal, and that was observed from radio to x-ray wavelengths for weeks. This 

was not the first observed neutron star merger event, but it had the best quality data, making it the 

strongest evidence so far that short gamma-ray bursts are caused by neutron star mergers. [21].  

CCDs are the most commonly used x-ray detectors in recent high energy missions. Cryogenic 

microcalorimeters measure the temperature increase when they absorb photons, and they outperform 

CCD detectors’ energy resolution by two orders of magnitude or more [22]. 

Cryogenic microcalorimeters have been developed for or are currently planned for the following 

space missions: 

 

• ASTRO-H (Hitomi) [23], developed by JAXA and NASA with the collaboration of many 

international space institutions; it was equipped with four instruments. One of which, the 

Soft X-ray Spectrometer (SXS), employed a 32 channel microcalorimeter array whose 

resolution is less than 7 eV in the 0.3 ÷ 12 keV band; Hitomi was launched on February 17, 

2016 but unfortunately the mission failed before entering into normal operation. During the 

early in flight calibration, as the planned measurement were stopped by the mission failure, 

several useful information could be obtained with the Dewar still in thermal equilibrium. 

The SXS energy resolution was tested by an on board x-ray source. Emissions by two pulsar 

wind nebulae allowed to better measure the gate valve beryllium window thickness. The 

data collected during that phase confirmed expected SXS performances and proved the high 

potential of the x-ray microcalorimeter spectrometer technology [24]. 
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• the X-ray imaging and spectroscopy mission (XRISM) [25], a joint JAXA/NASA 

collaborative mission, in which ESA also participates Its payload consists of two 

instruments, one of which, called Resolve, is a soft x-ray spectrometer, that includes an x-

ray microcalorimeter array providing 5 ÷ 7 eV resolution in the 0.3 ÷ 12 keV band. 

XRISM’s launch is scheduled for the end of 2021. 

 

• The Advanced Telescope for High-Energy Astrophysics (Athena) [26] is the second Large 

(L2) astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science 

Programme to address the Hot and Energetic Universe science theme [27]. Athena will orbit 

the second Lagrange point of the Sun-Earth system (L2) and its launch is scheduled  around 

2030. It will be equipped with a 12 m focal length grazing incidence X-ray telescope based 

on the innovative Silicon Pore Optics technology, capable of providing 1.4 m2 effective 

area at 1 keV with an angular resolution of 5 arcsec full width at half maximum (FWHM) 

over a large field of view (> 40 arcmin diameter)[28, 29]. The telescope will be mounted 

on a moveable platform which will allow both focus adjustment and tilt to point the X-ray 

beam on one of the two focal plane instruments: the X-Ray Integral Field Unit (X-IFU) [30, 

31], an array of micro-calorimeters, and the Wide Field Imager (WFI), a large array of 

depleted field effect transistor (DEPFET) pixels[32, 33]. The X-IFU, based on an array of 

3840 transition edge sensors (TES) microcalorimeters, will provide integral field 

spectroscopy in the range of 0.2-12 keV with an energy resolution of 2.5 eV FWHM up to 

7 keV, and 5 arcsec half energy width (HEW) spatial resolution over a field of view of 5 

arc minute equivalent diameter [30, 31].  

 

• the Lynx X-ray observatory [34], a sophisticated soft x-ray observatory under development 

by NASA, employing a high performance microcalorimeter array with less than 3 eV 

resolution in the 0.2 ÷ 7 keV band; subarrays will also provide energy resolution up to 0.3 

eV. 

 

The main sources of noise for x-ray cryogenic microcalorimeters are: 

 

• infrared radiation emitted by warm walls of the cryogenic Dewar in which they are 

mounted contributing to the photon shot noise (signals caused by random photons arriving 

on the sensor) on the full detector array. This perturbation causes a noise equivalent power 

(NEP) that reduces the energy resolution of detectors [35]; 

• visible and ultraviolet radiation emitted by space sources;  

• RF electromagnetic radiation due to the onboard telemetry system and electronics;  

• particles with energies of a few MeV or more, such as protons, light and heavy ions, atoms, 

electrons emitted by energetic phenomena like solar flares or of galactic and extragalactic 

origins [36]. Cosmic galactic radiation (GCR) consisting of ions originating inside the 

Milky Way that had all electrons stripped and move at relativistic speeds, has to be 

mentioned due to their high energy content [37]; 

• molecular contamination due to particles trapped inside the microcalorimeter Dewar or 

desorbed by the spacecraft surfaces. 
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Filters are necessary to minimize the effects of noise. Ideal filters shield the sensors from all the 

noise sources mentioned above, while at the same time permitting x-rays to reach the detector. 

However, filters themselves produce photon shot noise by irradiation, but if they are well designed 

their contribution to energy resolution degradation is negligible [35]. 

Notice that high energy particles (E > 100 keV) can’t be blocked by such filters and have to be 

rejected or identified by other means, like the anticoincidence detector. 

While noise components are strongly attenuated by filters, the x-ray signal intensity reaching the 

detector will also be slightly reduced. The filters need to be designed to carefully balance their noise 

blocking power and the x-ray transmission. 

Such filters have already been deployed in the microcalorimeter based observation instrument of 

the Hitomi space mission [38]. 

 

X-ray sensors for astrophysics 

Since the discovery of x-rays, many devices to detect high energy photons have been developed 

[39, 40, 41, 42, 43]. In the years since, the progress in the fabrication technology has allowed the 

design and fabrication of several types of devices. The improvements in energy and spatial resolution, 

quantum efficiency, and detection rate that have been achieved over the years [39, 40] made them 

suitable for use in satellite instruments. 

Gas detectors [39], the first invented x-ray sensors, are very easy to fabricate, but they have very 

poor energy resolution (about 1 keV at 6 - 8 keV energy). Similarly, scintillators [40] are characterized 

by some keV resolution at 50 – 60 keV radiation energy. Microchannel plates [40] have poor (0.05 – 

0.1) quantum efficiency in the soft x-ray band, and CCD count rates are less than 100 Hz [42]. On 

the other hand, microcalorimeters [44, 45, 46] have very high energy resolutions, e.g 3.1 eV at 6 keV 

[47], but also higher sensitivity, quantum efficiency, and higher count rates (up to 300 – 500 cps). 

 

Microcalorimeter detectors 

When microcalorimeter detectors are hit by a photon, they absorb its energy and heat up. The 

change in temperature is measured by the change of some parameter of the system whose relationship 

to temperature is known such that the incident photon energy can be inferred.  

The structure of a generic microcalorimeter is depicted in Figure 1. 

The absorber is made of high Z (atomic number) materials, like tin, bismuth, or gold, in order to 

have a high stopping power for x-ray photons, and is the part of the microcalorimeter that absorbs the 

photon energy 𝐸 and heats up. The absorber is placed in contact with the thermometer (e.g. doped 

semiconductor thermistor, transition edge superconducting film, superconducting inductors), in order 

to measure the temperature increase Δ𝑇 with respect to the operating temperature T0. If the heat 

capacities of the absorber and the thermometer are Ca and Ct respectively, the resulting Δ𝑇 is: 

 

 𝛥𝑇 =
𝐸

𝐶𝑎+𝐶𝑡
=

𝐸

𝐶𝑡𝑜𝑡
      (0.1) 

 

Both elements operate at cryogenic temperatures (20 – 50 mK) as both heat capacities assume 

very low values (e.g. Cbismuth = 2.38.10-15 J.K-1 @ 100 mK) in this range and thermal noise is small, 

allowing the detection of single photons. 
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After a photon is detected, a weak thermal link permits heat transfer from the thermometer to the 

thermal sink, also kept at a cryogenic temperature (T<100 mK). Once the thermometer has cooled 

back to its equilibrium temperature the microcalorimeter is ready to measure the energy of another 

photon. The thermal time constant  of this process is: 

 

 𝜏 =
𝐶𝑡𝑜𝑡

𝐺
       (0.2) 

 

in which G is the heat conductance of the weak thermal link. The detector is read by an electronic 

circuit based on a very low noise, high gain input amplifier. 

Several types of microcalorimeters exist based on specific physical phenomena and structures 

including: 

 

1) neutron transmutation doped germanium (NTD Ge); 

2) transition edge sensors (TESs); 

3) metallic magnetic microcalorimeters (MMCs); 

4) thermal kinetic inductance detectors (TKIDs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The energy resolution limit of a microcalorimeter is given by [48]: 

 

𝛥𝐸𝐹𝑊𝐻𝑀 ≅ 2.355𝜉√𝑘𝐵𝑇0
2𝐶𝑡𝑜𝑡    (0.3) 

 

in which kB is the Boltzmann constant and 𝜉 depends on the sensitivity of the thermal sensor used 

in the specific microcalorimeter technology, and is usually of order one. 

 

• Neutron transmutation doped germanium (NTD Ge) microcalorimeters 

NTD Ge microcalorimeters are based on the measurement of the temperature increase in the 

absorber by a semiconductor thermometer [45] made of NTD Ge. This heating is due to the x-ray 

photon absorption, mainly by photoelectric effect and related thermalization caused by the electron 

to phonon energy conversion. 

Absorber 

Thermometer 

Thermal sink 
Fig. 0.1 

X-ray photon 

Doped semiconductor thermistor; 

transition edge superconducting film; 

superconducting inductors 

Weak thermal link 

T < 100 mK 

High Z material (tin, bismuth, etc.) 

Figure 1 - Schematic of a generic microcalorimeter. 
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NTD Ge microcalorimeter energy resolutions (FWHM) are 3.1 eV @ 6 keV [47] and 50 eV @ 

60 keV [49]. 

 

• Transition edge sensors (TESs) 

Transition edge sensor microcalorimeters [46] have the same structure of NTD Ge ones, with the 

absorber placed on top of the thermometer. In this case the thermometer is made of a superconducting 

thin film operating at the phase transition temperature.  

When the x-ray photon hits the absorber, the temperature increase causes a transition to the non-

superconducting state of the thin film; the temperature increase is given by (0.1) and the thermal time 

constant by (0.2). In order to be read out, TES microcalorimeters are inductively coupled to low noise 

superconducting quantum interference device (SQUID) amplifiers. 

The thin film is usually made of a metal bilayer (Ti/Au, Mo/Au, etc.) with a total thickness of 

ten to a hundred nanometers, whose transition temperature is in the range 50 to 200mK. The resistance 

at temperatures above its transition temperature is around a few milliohms. 

The TES energy resolution is around 1.6 eV FWHM @ 5.9 keV [50]; up to now they have been 

planned for soft X-ray photon detection (e.g. Athena X-IFU instrument). 

 

• Metallic magnetic microcalorimeters (MMCs) 

Metallic magnetic microcalorimeters [51] are made of an absorber in contact with a magnetic 

sensor, made of a gold or silver film doped with paramagnetic erbium. The detector works below 50 

mK; a small magnetic field is applied so that Zeman levels of erbium are split and unevenly occupied. 

When an x-ray photon is absorbed and the system heats up, erbium spins are excited into the 

higher energy state and the magnetization varies; this change can be read out by a SQUID amplifier. 

A weak thermal link transfers heat from the absorber to the sink. 

An important advantage of this type of microcalorimeter is the nearly linear response, apart from 

a small quadratic dependence of both heat capacity and susceptibility by the temperature [52]. 

The energy resolution of MMCs can be as high as 1.58 eV @ 5.9 keV [51] and better than 40 eV 

FWHM @ 60 keV [52]. 

 

• Thermal kinetic inductance detectors (TKIDs) 

These devices [53] are based on the same working principle as microwave kinetic inductance 

detectors (MKIDs) [43], where the frequency change of a resonator is measured to detect incident 

photons. The x-ray absorber is connected to the resonator so that heat produced by photon absorption 

breaks Cooper pairs in the superconducting inductor, and as a consequence the resonator frequency 

changes. [54]. Their energy resolution (about 10 eV @ 6 keV [53]) is less than that of NTD Ge and 

TES, but TKIDs have the same great advantage of MKIDs of frequency domain multiplexing for 

reading out very large (thousands of pixels) microcalorimeter arrays [43]. 

 

Microcalorimeter filters 

As mentioned above, filters are necessary to shield the detectors from noise, while at the same 

time allowing signals to come through. 

A series of five filters made of a polyimide membrane coated with an aluminum layer and, for 

three of them, supported by a silicon mesh, was used in the 36 pixel array of the Hitomi X-ray 
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Calorimeter Spectrometer (XCS) of the Soft X-ray Spectrometer (SXS) instrument [38]. These filters 

shield from UV and longer wavelength radiation.  

Filters made of 90 nm polyimide coated with 80 nm aluminum were used to implement the same 

filtering structure in ASTRO-E and in Suzaku (ASTRO-E2) [55]. 

Both the X-IFU and WFI instruments of Athena are currently being designed with filters made 

of polyimide films coated with thin aluminum layers; polyimide films are glued to metallic meshes 

with hexagonal cells, and the whole structure is then fixed to a metallic frame. 

In particular, a polyimide-based five filter series, in which a very thin layer (45 nanometers) of 

this polymer is covered with one- or both side 30 nm thickness aluminum films and supported by a 

stainless steel 40 ÷ 80 m thick mesh, is being developed for the X-IFU, and their design is still 

ongoing [56, 57]. 

The Resolve instrument of XRISM [58] employs the same filters of SXS; in this case 

transmission specifications are 5.10-3 and 5.10-4 for visible and infrared radiation (3 ÷ 25 m), 

respectively, for the two thinner filters, and 5.10-5 and 1.10-4 for visible and infrared radiation, 

respectively for the three thicker, mesh supported ones. 

A more complex filtering structure is being designed for the LYNX mission, in which a series of 

six filters will be used: four made of a polyimide membrane coated with a thin aluminum layer and 

supported by silicon meshes, and two are waveguide cut-off filters; they don’t use thin films [59]. 

Another type of filter, developed by AMETEK (Finland), is presently under consideration for 

their possible use for future space missions; they are made of a thin silicon nitride (Si3N4) layer whose 

thickness is between 20 and  40 nm and covered on one or both sides by thin (10 ÷ 15 nm) aluminum 

films and attached to a silicon mesh. 

 

Research framework of this thesis 

The topics discussed in this thesis concern two research activities that are currently under 

development at the X-ray Astronomy Calibration and Testing (XACT) Laboratory of the Osservatorio 

Astronomico di Palermo – Istituto Nazionale di Astrofisica (INAF-OAPA), and at the Dipartimento 

di Fisica e Chimica “Emilio Segrè” (DiFC) of the Università di Palermo, namely:  

1) development of cryogenic microcalorimeter detector; 

2) development of filters for x-ray detectors in space missions. 

The first activity concerns, in particular, the design and fabrication of hard X-ray (20 keV ≤ E ≤ 

100 keV) neutron transmutation doped germanium (NTD Ge) microcalorimeter arrays by planar 

technology. This work will be based on the experience of the INAF-OAPA and DiFC research groups 

on the use of NTD Ge microcalorimeters for soft X-ray detection, and technology developments 

towards planar array fabrication [6, 7, 8, 9]. 

These microcalorimeter arrays are mainly aimed at astrophysical applications, and they are 

baselined for the stratospheric balloon borne experiment concept MISTERX presently under study at 

INAF-OAPA aimed at observing hard X-rays from the solar corona in the 20÷100 keV energy band, 

with an energy resolution of about ∆E=50 eV. 

During solar flares, hard X-rays are emitted in the hot (well above 10 MK) plasma, due to the 

impact with the star surface of relativistic electrons guided by the magnetic field. However, this 

standard model is not able to explain some recent data [60] provided by the Reuven Hamaty high 

energy solar spectroscopic imager (RHESSI) [61] mission, that for about 16 years observed these 

events using nine high purity germanium crystal (HPGe) detectors with about 1 keV energy 
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resolution. This spectral resolution, achieved also in other smaller balloon-borne experiments, is 

appropriate to constrain the general features of the non-thermal component of the solar emission, e.g. 

the slope of the power law, but does not discern any deviation from the envelope trend, nor resolve 

any possible spectral line, which might come from highly ionized heavy elements. 

Single flare energy has a broad distribution: very energetic flares are rare events, whilst lower 

energy ones are more frequent. The flaring process analysis is very scientifically relevant, due to the 

influence that magnetic storms caused by flares have on Earth, and because advances in plasma 

physics that can be obtained by the understanding of flare behavior. Many studies are currently 

ongoing on solar flare analysis in the hard X-ray band, in particular to better understand the related 

electronic transport [60, 62]. 

The MISTERX experiment will improve the spectral energy resolution to 50 eV, greatly 

benefitting the solar flare observations. This improvement will be allowed by the use of hard X-ray 

NTD Ge microcalorimeter arrays currently under development at INAF-OAPa. The high cadence and 

high energy resolution of the MISTERX experiment will allow the investigation of impulsive 

magnetic reconnection and heating mechanisms in the solar corona and accurate diagnostics of 

thermal and non-thermal emission. One advantage will be the automatic cut-off of the softer 

overwhelming thermal emission, complementing observations, e.g., NuSTAR [63], thus allowing 

exclusive detection of the highest temperature components and details of the non-thermal ones. 

The second research activity described in this work is related to filter development for the Athena 

mission. The research group at INAF-OAPa and DiFC I collaborated with is responsible for the 

design, development and characterization of the filters for both of the Athena instruments, namely 

the X-IFU and WFI. Besides the efforts for Athena, new filters based on silicon nitride have been 

investigated within an ESA R&D contract. 
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Chapter 1 

 

NEUTRON TRANSMUTATION DOPED  

GERMANIUM MICROCALORIMETERS 

 

 

1.1 Neutron transmutation doped germanium (NTD-Ge) 

Doped semiconductors are well suited to fabricate low temperature thermometers due to their 

very sensitive resisitivity dependence on temperature and low noise at cryogenic temperatures; in 

particular, doped germanium allows very high sensitivities compared to silicon due to its smaller 

bandgap. 

Doped crystals grown by the Czochralski method do not present a very homogeneous doping 

atom concentration as this parameter depends on the effective segregation coefficient and the impurity 

concentration in the liquid phase [64]. Doping inhomogeneities of the crystal on micron–to–

millimeter scale, may result both in the radial and longitudinal directions. This implies that the 

electrical conduction in such materials is locally dependent on the doping concentration, making these 

crystals unsuitable for low temperature thermistors. 

The best technique to produce very homogeneous doping in semiconductors is neutron 

transmutation doping (NTD) [65], that consists in exposing semiconductor crystals to a neutron flux 

in a nuclear reactor. This technique is based on the transmutation of semiconductor isotopes when 

they capture slow (thermal, whose energy is about 0.025 eV) neutrons. Several nuclear reactions can 

take place depending on the isotopic distribution of the irradiated material. 

This method was used for both silicon and germanium, in fact, power electronic devices (e.g. 

rectifier diodes) also need very homogeneously doped semiconductors. 

The starting nuclear reaction is [65]: 

 

𝛷𝜎𝑖 𝑁𝑧
𝐴 = 𝑁𝑧

𝐴+1       (1.1) 

 

where: 

 

 Φ is the neutron irradiation dose; 

 𝜎𝑖 is the thermal neutrons capture cross section for the i-isotope; 

 𝑁𝑧
𝐴  is the initial reaction specie concentration; 

 𝑁𝑧
𝐴+1  is the final reaction product concentration; 

z is the nuclear charge; 

 𝐴 is the nuclear mass. 

 

The capture cross section generally depends on the neutron energy E as: 

 

𝜎𝑖~𝐸−0.5      (1.2) 

for E up to about 104 eV. 
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When produced isotopes, with increased mass number, are unstable they decay with their half-

life time i; 𝛽 decay (one neutron emits an electron and transforms itself in a proton) produces 

elements with increased atomic number 𝑧 + 1, whilst K-capture (the nucleus capture a K-shell 

electron of the same atom) originates decreased atomic number 𝑧 − 1 elements; in formulas: 

 

𝑁𝑧
𝐴+1 − 𝛽 → 𝑁𝑧+1

𝐴+1       (1.3) 
 

𝑁𝑧
𝐴+1 − 𝐾 − 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 → 𝑁𝑧−1

𝐴+1      (1.4) 

 

When the semiconductor is germanium, three different elements are formed: gallium (Ga), 

arsenic (As), and selenium (Se), according to the following reactions, starting from the active isotopes 

𝐺𝑒32
70 , 𝐺𝑒32

74  and 𝐺𝑒32
76 : 

 

𝐺𝑒 + 𝑛32
70 = 𝐺𝑒 − 𝐾 − 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 →32

71 𝐺𝑎31
71      (1.5) 

 

𝐺𝑒 + 𝑛32
74 = 𝐺𝑒 − 𝛽 →32

75 𝐴𝑠33
75      (1.6) 

 

𝐺𝑒 + 𝑛32
76 = 𝐺𝑒 − 𝛽 →32

77 𝐴𝑠 − 𝛽 →33
77 𝑆𝑒34

77    (1.7) 

 

Gallium is an acceptor dopant, while arsenic and selenium are donors. Since the former is 

produced in concentration NA, which is greater than the sum (NAS +2NSE , as selenium is a double 

donor) a p-type doping of germanium is obtained. The net doping concentration depends on the 

irradiation fluence. 

The compensation ratio K defined in (1.8) is an important parameter describing the material 

behavior: 

 

𝐾 =
𝑁𝐴𝑆+2𝑁𝑆𝐸

𝑁𝐴
       (1.8) 

 

After the neutron irradiation, a sufficient time must be waited for all unstable isotopes to decay, 

before the doped semiconductor can be safely handled and used. Furthermore, in order to optimize 

the doped crystal quality, a thermal annealing is necessary to remove defects caused by the interaction 

of fast neutrons, present in the irradiation beam, with crystal impurities. Usually, different 

temperature, duration and atmospheric conditions annealing steps are required [65, 66]. 

 

1.2 Microcalorimeter structure and operation 

In an NTD-Ge microcalorimeter the temperature increase caused by the absorption of an x-ray  

photon is measured by a thermistor consisting of a germanium crystal doped with the NTD technique 

previously described with a volume of the order of 104 μm3. The sensitive thermistor (a resistor whose 

resistance varies with temperature) is connected to a suitable electronic read-out circuit, based on a 

very low noise high gain input amplifier, that allows to measure the dynamic resistance which, by 

proper calibration, can be directly correlated to the device temperature and thus to the absorbed 

photon energy.  
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The weak thermal link to the cold bath is needed to cool the detector (absorber+thermometer) to 

the operating temperature (< 100 mK) and thus be ready to detect the next photon. The temperature 

recovery time is tipically of the order of few hundreds of microseconds. 

 

1.2.1 The absorber 

At x-ray energies (0.1÷100 keV) the photoelectric effect is the main photon absorption process 

in high Z materials. The primary photoelectron and secondary electrons interact with the crystal atoms 

initially by further ionization and electrons excitation into bound states, and successively by energy 

transfer from electrons to phonons (thermalization). 

The photoelectric effect cross section at a given photon energy E depends on the absorbing 

material mass attenuation coefficient /(), in which  is its linear attenuation coefficient at energy 

E and  is its density. The larger is /, the more absorbing is the material. 

The mass attenuation coefficient, in the regime dominated by the photoelectric effect, can be 

calculated by [67]: 

 
𝜇

𝜌
= ∑ 𝑤𝑖 (

𝜇

𝜌
)

𝑖
𝑖       (1.9) 

 

(
𝜇

𝜌
)

𝑖
=

(𝜎𝑝𝑒)
𝑖

𝑢𝐴𝑖
                         (1.10) 

 

where: 

 

 𝑤𝑖 is the weight fraction of the ith atomic element in the molecule; 

 (
𝜇

𝜌
)

𝑖
 is the mass attenuation coefficient of the ith atomic element in the molecule; 

 𝜎𝑝𝑒 is the photoelectric cross section of the ith atomic element in the molecule; 

 𝑢 is the atomic mass unit (1.660.10-24 g); 

 𝐴𝑖 is the Atomic mass number of the ith atomic element in the molecule. 

 

The photoelectric cross section depends on photon energy, and on the atomic number Z by [68]: 

 

𝜎𝑝𝑒~
𝑍4

(ℎ𝜈)3              (low energy, h<0.9Eel)  (1.11) 

𝜎𝑝𝑒~
𝑍5

ℎ𝜈
               (high energy, h>0.9Eel)  (1.12) 

In (1.11) and (1.12) Eel= mec
2=511 keV. 

Calculated values of  𝜎𝑝𝑒 for Z=1 to Z=92 and for the energy range 1 ÷ 1500 keV have been 

published by J. H. Scofield [69].  

From equations (1.11) e (1.12) it is evident that high-Z elements have a larger photoelectric cross 

section and thus larger attenuation coefficient. For this reason, absorbers are made of high Z materials 

(tin, gold, bismuth). Table 1.1 reports  / values at E=100 keV [70] for few high Z elements and 

lithium for comparison. 
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Table 1.1 - Mass attenuation coefficient for some selected elements at E=100 keV. 

 

Element Z / [cm2/g] 

Lithium 3 1.289.10-1 

Tin 50 1.676 

Gold 79 5.158 

Bismuth 83 5.739 

 

Heat capacity 

Another important parameter of the absorber is its heat capacity that influences both the energy 

resolution and the time constant. As it is evident from equations (0.3) and (0.2), both the energy 

resolution and the recovery time to the temperature of the cold bath decrease with decreasing heat 

capacity. For this reason, microcalorimeter absorbers should have a low heat capacity C
a
:  

 

𝐶𝑎 = 𝑐𝑝,𝑣𝑑𝑎𝑉𝑎      (1.13) 

 

where: 

cp,v is the specific heat of the material; 

da is the material density; 

Va is the absorber volume. 

 

On the other hand, the heat capacity cannot be arbitrarily small, otherwise, the absorption of an 

x-ray photon can cause an excess temperature rise and thus bring the thermistor and read-out 

electronics in non-linear behavior. Once the absorber material is chosen, the volume is calculated 

based on performance specifications. 

The specific heat has electrons and a phonons contributions depending on the type of material  

(insulator, normal metal, superconducting metal).  

 

Normal metals 

For normal metals, the specific heat is given by the sum of the lattice contribution cph and the 

electronic one ce. The former, according to the Debye model, is related to the total lattice energy, 

given by the sum of all phonon modes, and is expressed by [71]: 

 

𝑐𝑝ℎ = 9𝑅 (
𝑇

𝜃𝐷
)

3

∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2
𝑑𝑥

𝜃𝐷
𝑇

0
     (1.14) 

 

In (1.14) T is the working temperature, R is the gas constant (8.31 J/mol.K) and θD is the Debye 

temperature: 

 

𝜃𝐷 =
ħ𝜈𝑝ℎ

𝑘𝐵
(

3𝑁

4𝜋𝑉
)

1

3
     (1.15) 

 

where: 

ħ is the reduced Plank constant (1.055.10-34 J.s); 
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ph the sound speed in the material; 

kB the Boltzmann constant (1.38.10-23 J.K-1); 

N/V the number density of atoms. 

 

When T << θD we have: 

 

𝑙𝑖𝑚
𝑇→0

𝑐𝑝ℎ =
12𝜋4𝑁𝐴𝑘𝐵

5
(

𝑇

𝜃𝐷
)

3

      (1.16) 

 

with NA the Avogadro number (6.022.10-23).  

 

The electronic contribution ce is related only to electrons whose energy Ee is: 

 

𝐸𝑒 ≥ 𝐸𝐹 − 𝑘𝐵𝑇     (1.17) 

 

in fact, lower energy electrons see their neighbor levels completely filled,  EF is the Fermi energy: 

 

𝐸𝐹 =
ħ

2𝑚𝑒
(

3𝜋2𝑁

𝑉
)

2

3
     (1.18) 

 

in which me is the electron mass (9.109 .10-31 kg). 

According to the free electron gas model, the free electron contribution to the normal metal 

specific heat at temperatures lower than both the Debye and the Fermi ones 𝑇𝐹 = 𝐸𝐹/𝑘𝐵 is [71]: 

 

𝑐𝑒 =
𝜋2𝑁𝐴𝑘𝐵𝑇

2𝑇𝐹
      (1.19) 

 

The total specific heat of normal metals at very low temperatures (T << θD, TF) can thus be written 

as the sum of the two above contributions: 

 

𝑐 = 𝑐𝑝ℎ + 𝑐𝑒 = 𝛼𝑇3 + 𝛾𝑇     (1.20) 

 

in which  and  are constants depending on the material.  Notice that the specific heat decreases with 

temperature, thus, in order to have a low heat capacity, microcalorimeters need to be operated at 

cryogenic temperature (T<100 mK). 

 

 

Superconducting metals 

Superconducting metal specific heat was studied by the Bardeen-Cooper-Schrieffer (BCS) theory 

[72]. This theory states that in a superconductor metal electrons are grouped in pairs, said Cooper 

pairs, that are all related among them; when an electric field is applied at the superconductor, all the 

electrons moves without encountering any resistance, and this electric current exists also after the 

field goes to zero. To stop the current it is necessary to heat the metal until it recoveries its normal 

conduction characteristics, with pairs separating into two electrons.  
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Cooper pairs are formed due to the electron-phonon interaction (the phonon is the collective 

motion of the positively charged crystal lattice). This interaction is a quantum effect. 

Decreasing the metal temperature, superconductivity begins at the transition temperature Tc, 

depending on the material. Different metals that could be used for the absorber fabrication are 

superconductors at cryogenic operating temperatures of NTD Ge microcalorimeters (T<100 mK), as 

demonstrated by Table 1.2; others, like bismuth, remain normal conductors. 

 

Table 1.2 - Transition temperature Tc for different superconductors. 

Metal Tc [K] 

Bi 5.3.10-4 

Os 0.65 

Sn 3.72 

Ta 4.48 

 

In superconductors at temperatures below the transition, the specific heat doesn’t have any 

contribution by electrons, that are bound in Cooper pairs; from BCS theory, then, the expression for 

the specific heat is: 

 

𝑐𝑠 = 𝛾𝑇𝑐𝑎𝑒−
𝑏𝑇𝑐

𝑇       (1.21) 

 

where: 

: is the coefficient of free electrons specific heat (see 1.20) at T > Tc; 

a, b are  material depending constants. 

 

Useful tables reporting specific heats of several solids at low temperatures are collected in [73]. 

 

Thermal conductivity 

Besides specific heat, thermal conductivity is an important property for absorbers, in which heat 

produced by x-ray photons have to be transferred to the thermometer as soon as possible. 

In solids, heat is transported by both phonons and electrons, therefore, the thermal conductivity 

k will be the sum of two contributions [71, 74]: 

 

𝑘 = 𝑘𝑝ℎ + 𝑘𝑒      (1.22) 

 

The electron term is the most important for pure metals, whatever the temperature is, and it’s 

expressed by: 

𝑘𝑒 =
1

3

𝑐𝑒

𝑉𝑚
𝜈𝐹𝑙𝑒     (1.23) 

 

where: 

 

ce is the free electrons specific heat contribution; 

F is the Fermi velocity; 

le is the mean free path of electrons; 

Vm is the molar volume. 
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The Fermi velocity is: 

 

𝜈𝐹 = √
2𝐸𝐹

𝑚𝑒
      (1.24) 

 

and the mean free path of electrons is 𝑙𝑒 = 𝜈𝐹𝜏, with  the mean collision time of electrons. 

The phonon contribution at low temperatures is negligible in pure metals [75], therefore, at very 

low temperatures (T ~ few degrees Kelvin), according to (1.19), (1.22), and (1.23) the thermal 

conductivity is proportional to T ( is nearly constant at such temperatures). 

Superconductor materials have a different behavior depending on their state [71]. If T > Tc the 

metal is in normal state, and k is proportional to T; in the superconducting regime, k is proportional 

to T3 and is much smaller with respect to the normal conduction state. Several values of thermal 

conductivity for different materials at low temperature are reported in [76, 77]. 

 

1.2.2 The thermometer 

The temperature increase of the absorber is measured by the thermometer. In the case of NTD-

Ge thermistor, a suitable electric circuit reads out the resistance variation associated to its heating.  

The semiconductor is doped just below the so called metal-insulator transition (MIT), at which 

the material behavior changes from insulating to metallic [78]; this means there is conduction also at 

T = 0 K, due to the electric transport in the doping atom (impurities) band deriving from the overlap 

among electron wavefunctions. The net doping concentration for this transition is the critical 

concentration Nc, that depends on the semiconductor and its compensation ratio K (1.8). 

At cryogenic temperatures (T << 10 K), when the thermal energy kBT is less than the energy 

difference between adjacent localized states, for near MIT doped (concentration N ≲ Nc) or low purity 

semiconductors, the electric conduction happens according to the variable range hopping (VRH) with 

Coulomb gap (CG) regime [79, 80, 81, 82] inside the hot electron model (HEM) [83, 84]. 

The VRH theory was firstly formulated by Mott [85], that didn’t consider the electron-electron 

interaction in the critical regime, and successively modified by Shklovskii and Efros [86], that 

included the Coulomb interactions with pair sites. 

In VRH, conduction electrons, by interacting with the lattice, receive by phonons the needed 

thermal activation energy to move by hopping, a quantum tunneling effect, from a site to another. 

Hopping is more probable towards sites, not necessarily the nearest neighbors, whose energies are 

within a narrow band around the Fermi level. In VRH the mean hopping distance can be much longer 

than the mean impurity spacing. 

In his theory, Mott assumed a constant density of states g around the Fermi level. An electron 

will attempt to perform hopping at the minimum distance r and with the lowest activation energy 

hop; in polarization absence, it results: 

 

𝑃 ∝ 𝑒
−(

2𝑟

𝜉0
+

∆ℎ𝑜𝑝

𝑘𝐵𝑇
)
      (1.25) 

 

in which 𝜉0is the localization length; the hopping probability P will be maximum at the optimum 

distance r*. 
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The electric conductivity is proportional to P. By calculating the hopping bandwidth and using 

(1.25), Mott deduced the semiconductor resistivity relation (Mott’s law): 

 

𝜌 = 𝜌0𝑒(
𝑇0
𝑇

)

1
4

      (1.26) 

 

where: 

 

T is the absolute temperature; 

 𝜌0, 𝑇0 are parameters depending on thermometer dimensions and doping level.  

 

T0 is called Mott’s characteristic temperature. The average hopping length is: 

 

𝜆 = 𝜉0 (
𝑇0

𝑇
)

1

4
      (1.27) 

 

At very low temperatures, Mott’s law didn’t reproduce experimental data. Pollack [87] 

hypothesized that the density of states at energies Es near the Fermi level reduces according to: 

 

𝑔 = 𝑔(𝐸𝑠, 𝐸𝐹)𝑚     (1.28) 

 

with m  an integer ≥ 0, thus modifying the Mott’s law: 

 

𝜌 = 𝜌0𝑒(
𝑇0
𝑇

)
𝑟

      (1.29) 

 

where 

𝑟 =
𝑚+1

𝑚+4
      (1.30) 

 

If m = 0 the Mott’s law it’s obtained. 

 

Shklovskii  and Efros [88] set m = 2 implying the modified Mott’s law equal to: 

 

𝜌 = 𝜌0𝑒(
𝑇0
𝑇

)

1
2

      (1.31) 

 

In this case, the energy gap in the density of states at the Fermi level is named Coulomb gap [87, 

88]. A more general expression for semiconductor resistivity  in the VRH regime, derived by 

numerous further studies [88, 89, 90], is given by: 

𝜌 = 𝜌0𝑇𝑞𝑒(
𝑇0
𝑇

)
𝑝

     (1.32) 

 

in which q and p are constants taking specific values in different conditions.  
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In the hypothesis of the parabolic shape Coulomb gap in the density of states near the Fermi 

energy [89],  q=0, and p depends on the hopping model, in particular: p = 1/4 for the Mott model [89], 

and p = ½ for the Shklovskii  and Efros model [88].  

For practical NTD Ge microcalorimeters, considering the very low operating temperatures and 

usual net Ga doping (1016 – 1017 cm-3), q = 0 and p = ½ can be assumed, and the  expression for the 

resistivity becomes: 

𝜌 = 𝜌0𝑒(
𝑇0
𝑇

)
𝑜.5

      (1.33) 

 

The exponent p actually depends on the specific NTD Ge crystal used, and best fits of 

experimental data are sometimes obtained by allowing it to vary [82]. 

 

In presence of an applied electric field on the NTD Ge thermistor, the thermometer resistivity 

deviates from the model  (1.33). The discrepancy can be explained by including the hot electron 

model. This model assumes that, at very low temperatures, the thermal coupling between electrons is 

stronger than the electron-lattice one; this is because, at cryogenic temperatures, the number of 

phonons that are able to interact with electrons depends on available states for both phonons and 

electrons, and electron state number reduces with the temperature. 

At very low temperatures electrons can interact so weakly with the lattice that temperature 

exchange is very small; heat diffuses among electrons more rapidly than in the lattice, and the former 

temperature becomes higher than the lattice one. 

So, the thermometer can be modeled as two different systems, the electronic one and the lattice 

system, connected by the thermal conductivity Ge,l (Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 1.1, Ce and Cl indicate the heat capacities of electrons and lattice, respectively; G is the 

thermal conductivity between the lattice and the heat sink. The thermal conductivity Ge,l between the 

electrons and the lattice can be expressed as [84]: 

 

𝐺𝑒,𝑙 = 𝐺0𝑒,𝑙𝑇𝑒
𝛽𝑒     (1.34) 

 

 

Ce 

Cl 

Ge,l 

G 

Heat sink 

Figure 1.1 - Thermal model of a semiconductor thermistor in the hot electron model. 
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where: 

 

Te is the electron temperature; 

 𝐺0𝑒,𝑙, e are constants depending on the specific device. 

 

When the semiconductor is inserted in an electric circuit (Figure 1.2), we can assume that the 

electric bias power P is initially transferred to the electrons and then to the lattice through the heat 

link between the two systems:  

𝐺𝑒,𝑙 =
𝑑𝑃

𝑑𝑇𝑒
      (1.35) 

 

In equilibrium conditions, in which only P is applied and there is no external signal input 

(phonons from the absorber), by substituting (1.34) in (1.35) and solving, we get: 

 

𝑇𝑒
𝛽𝑒+1

− 𝑇𝑙
𝛽𝑒+1

=
𝛽𝑒+1

𝐺0𝑒,𝑙
𝑃     (1.36) 

 

 
 

Figure 1.2 - Bias circuit for the microcalorimeter thermometer. 

 

in which Tl is the lattice temperature, and P depends on Te through the resistance of the thermistor. 

The thermal conductance G between the lattice and the cold bath can also be expressed as: 

 

𝐺 = 𝐺0𝑇𝑙
𝛽

      (1.37) 

 

in which G0 and  are constants. The inverse of G, that is the thermal resistance between the thermistor 

lattice and the heat sink, is called Kapitza resistance Rk [91]: 

 

𝑅𝑘 =
1

𝐺
=

1

𝐺0𝑇
𝑙
𝛽     (1.38) 

 

By developing the same procedure as for (1.36), for Tl holds: 

 

(𝑇𝑙
𝛽+1

− 𝑇𝑠
𝛽+1

) =
𝛽+1

𝐺0
𝑃     (1.39) 

 

in which Ts is the heat sink temperature. 
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By (1.36) and (1.39) both electrons and lattice equilibrium temperatures can be calculated. 

If external heat signals are applied (e.g. detection of a photon by the absorber and associated heat 

transfer to the thermistor), the thermometer temperature changes, and the bias power too (Figure 1.2), 

in fact:  

 

𝑃 = 𝑅(𝑇𝑒)𝐼2 =
𝑉2

𝑅(𝑇𝑒)
     (1.40) 

where: 

 

R(Te) is the thermometer resistance, related to the electron temperature; 

I is the bias current; 

V is the bias voltage. 

 

An important parameter for thermometers is the sensitivity, that is defined as: 

 

𝛼 ≡
𝑇

𝑅

𝑑𝑅

𝑑𝑇
      (1.41) 

 

and expresses how the system responds to temperature change. 

The bias power change P due to thermometer heating is well described through the 

electrothermal feedback (ETF). By solving the circuit in Figure 1.2, and by using (1.41), the 

expression for P can be written: 

 

∆𝑃 = −
𝑃

𝑇𝑒

𝑅−𝑅𝐿

𝑅+𝑅𝐿
𝛼∆𝑇𝑒     (1.42) 

 

it’s worth to be noted P depends on R(Te) and ∆𝑇𝑒. 

By defining the electrothermal feedback thermal conductivity: 

 

𝐺𝐸𝑇𝐹 ≡
𝑃

𝑇𝑒

𝑅−𝑅𝐿

𝑅+𝑅𝐿
𝛼     (1.43) 

 

from (1.42) we can write: 

 

∆𝑃 = −𝐺𝐸𝑇𝐹∆𝑇𝑒     (1.44) 

 

Let’s now consider the almost ideal case in which the absorber is in so tight contact with the 

thermometer that the thermal resistance between them is negligible. 

When external heat signals arrive from the absorber, the thermometer lattice temperature 

increases by Tl; in the most general case, i.e. when the electron heat capacity Ce can’t be neglected, 

solving system equations to evaluate both electron and lattice temperature increases Te and Tl with 

respect to the equilibrium condition become [84]: 

 

𝐶𝑒
𝑑(∆𝑇𝑒)

𝑑𝑇
+ 𝐺𝑒,𝑙(𝑇𝑒)∆𝑇𝑒 = 𝐺𝑒,𝑙(𝑇𝑙)∆𝑇𝑙 − 𝐺𝐸𝑇𝐹∆𝑇𝑒    (1.45) 
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𝐶𝑙
𝑑(∆𝑇𝑙)

𝑑𝑇
+ 𝐺∆𝑇𝑙 = 𝑊 + 𝐺𝑒,𝑙(𝑇𝑒)∆𝑇𝑒 − 𝐺𝑒,𝑙(𝑇𝑙)∆𝑇𝑙    (1.46) 

 

in (1.46) W represents the external signal power. 

If there is a finite thermal conductance Ga between the absorber (with heat capacity Ca) and the 

thermometer, and we can assume that the absorber transfers its heat to the thermometer lattice, the 

related thermal model schematic is reported in Figure 1.3. The correspondent analytical study is 

developed in [84]. 

By measurements performed by several researchers on NTD Ge, the electron-lattice decoupling 

becomes relevant, depending on doping, at temperatures below about 30 mK [92], and in equation 

(1.34) we have e ≈ 5 [93]. In the temperature range 30 – 40 mK the Kapitza thermal resistance is 

more relevant with respect to the electron-phonon one; at temperatures below 30 mK both thermal 

resistances are of the same order of magnitude [94]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy resolution 

The microcalorimeter energy resolution EFWHM is limited by the thermodynamic noise [48, 95]. 

The phonon average energy at the temperature T0 is: 

 

𝐸𝑝ℎ = 𝑘𝐵𝑇0      (1.47) 

 

and the system energy is: 

 

𝐸 = 𝐶𝑡𝑜𝑡𝑇0      (1.48) 

 

Then, the phonon number N results: 

 

𝑁 =
𝐸

𝐸𝑝ℎ
=

𝐶𝑡𝑜𝑡

𝑘𝐵
     (1.49) 

 

G 

Ce 

Cl 

Ge,l 

Heat sink 

Ca 

Ga 

Figure 1.3 - Thermal model schematic with finite thermal conductance Ga 

between the absorber and the thermometer. 
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By assuming phonons obey the Poisson’s distribution, and introducing the Fano factor F (0< 

F<1) to include possible correlation effects among different energy fluctuation causes, the energy 

resolution EFWHM is expressed by: 

 

𝛥𝐸𝐹𝑊𝐻𝑀 ≅ 2.36 𝐸√
𝐹

𝑁
     (1.50) 

 

By substituting (1.49) in (1.50) and rearranging factors we obtain: 

 

𝛥𝐸𝐹𝑊𝐻𝑀 ≅ 2.36 𝜉√𝑘𝐵𝑇0
2𝐶𝑡𝑜𝑡    (1.51) 

 

where 𝜉, with a value of the order of one, depends on the microcalorimeter structure; for practical 

purposes it can be approximated to the unit.  

In cryogenic microcalorimeters featuring few tens eV energy resolution, both Johnson and 1/F 

noises can be neglected [95]. The photon shot noise due to IR radiation from hot surfaces in the 

cryogenic system is also considered negligible since thermal filters are designed to properly minimize 

it. 

1.2.3 The weak thermal link 

In microcalorimeters, it’s necessary to allow thermometer heat disposal after the detection of a 

signal, in order to allow the detector to be prompt to detect another thermal pulse. This is 

accomplished by connecting the detector to a heat sink via a weak thermal link represented by the 

thermal conductance G in Figure 1.3. The heat sink is a system with a large (compared to the rest of 

the microcalorimeter) heat capacity kept at a constant temperature Tsink (in present microcalorimeters 

below 100 mK). The thermal link has to be weak enough to decouple the thermometer from the heat 

sink and to let the former reach its maximum temperature when an external signal is detected, but, on 

the other hand, it has to allow the thermometer to recover its reference state in unperturbed conditions 

in a reasonable time. 

The complete thermal model including the weak thermal link is constituted by (1.45) and (1.46). 

The time constant for the heat transfer is: 

𝜏 =
𝐶𝑡𝑜𝑡

𝐺
      (1.52) 

Typical G and  values for practical microcalorimeters are in the order of 1 nW/K, and 1 ms, 

respectively [48]. 

The weak thermal link in NTD Ge microcalorimeters can be implemented by different technical 

solutions. One consists in placing the thermometer on a thin substrate that is in touch with the heat 

sink on a reduced area [96]; this method can require both microlithographic and microfabrication 

processes. The contact surface and interface define the thermal link conductance. 

A simpler implementation of this technique is to glue the thermometer directly to the thermal 

sink [97]. The thermal conductance value is given by the glue thickness, area and thermal 

conductivity. 

Another technique uses metallic, usually aluminum, wires glued by epoxy resin to the 

thermometer to provide the thermal conductivity towards the cold bath; in this case the wire number, 

length and transverse section set the thermal conductance. 
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1.3 Array readout 

The direct readout of single pixels in M x N arrays is not a practical solution due to the M x N 

signal wires and associated readout circuits required to acquire independent pixel output signals. 

According to the modern technological trend, at high pixel numbers (about 1000 or more [98]) this 

approach would complicate very much the array structure with serious fabrication difficulties, would 

increase the heat load, and severely lift the fabrication costs. 

Multiplexing is the solution to this problem; according to its definition, it consists in the sharing 

of the same transmission channel among different devices. 

Different multiplexing techniques can be applied for the NTD Ge microcalorimeter array 

readout; the most mature and widely deployed one also for TESs microcalorimeters [99] is time 

division multiplexing (TDM), in which each pixel is read by applying a reading signal during a time 

slot, equal for each pixel; the whole array has to be scanned at a reading signal rate able to guarantee 

that each x-ray signal pulse is sampled a large number of times over its duration. In very large arrays 

the TDM reading is executed, e.g., by rows, while columns are read in parallel by using as many 

complete reading channels as many pixels are in a column [99]. 

Another multiplexing solution (called Hydra) was developed for the NASA’s Constellation-X 

mission [100]; this technique allows to increase the focal plane pixel number without increasing the 

number of temperature sensors (TES in this case) and associated power and signal wires. In fact, the 

whole array is divided in groups of N pixels, one of which is a complete device (absorber and 

thermometer), while the others consist only of the absorbers, each of them connected to the 

thermometer of the first pixel by different length metal (Au) paths and thus different thermal 

conductance to the heat sink. With this structure, different current pulse shapes are generated by the 

TES when x-ray photons hit different pixels in the group. This allows to identify the photon arrival 

position. This technique is very demanding in design, and implies relevant fabrication difficulties. 

 

1.4 Present device performances 

The over 30-years research on NTD Ge x-ray microcalorimeters allowed to achieve the design 

and fabrication of very performing devices, mainly, but not only, for astrophysics applications. 

Starting from the early devices [101] up to now, the energy resolution gained more than one order 

of magnitude, and detectors passed from single sensors to arrays to perform imaging.  

Single pixel microcalorimeters with tin absorber fabricated by E. Silver et al. [47] featuring 3.1 

eV FWHM energy resolution @ 6 keV have to be mentioned. Similarly, an energy resolution of about 

50 eV FWHM was measured at energy as high as 60 keV [49, 102]. According to these authors, the 

measured energy resolution was limited by noise in the readout electronics, and the intrinsic capability 

of that device could have been 30 eV at the same energy. 

 Bidimensional NTD-Ge microcalorimeter array prototypes were built by mechanically stacking 

linear arrays, each supported by flying wires, that bring electric signals and constitute the weak 

thermal link to a sapphire substrate connected to the refrigerator cold plate [45]. This approach was 

also proposed for demanding applications, as the Constellation X focal plane [103]. 

More recently, a full planar technology for bidimensional NTD Ge sensor array fabrication was 

proposed, in which all pixels were contemporarily produced on the same substrate by applying well 

established microelectronic planar technology steps [6]. 

As a further example, an array of NTD Ge microcalorimeters was fabricated for X-ray 

spectroscopy applications [104]. Each of the 16 pixels in the array consisted of an NTD Ge thermistor 
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glued to a 300 x 300 x 7 (thickness) m3 tin absorber. The device had 2.5 ÷ 6 eV resolution in the 

energy range 0.2 ÷ 10 keV. The whole spectroscopic system was also composed by the thermoionic 

electron source and an X-ray optics.  

 

Table 1.3 summarizes the state of the art of NTD Ge microcalorimeters. 
 

 

Table 1.3 - State of the art of NTD Ge microcalorimeters 

Type Resolution Reference 

Single pixel 3.1 eV @ 6 keV [47] 

Single pixel 50 eV @ 60 keV [49, 102] 

Array (16 pixels) 2.5 ÷ 6 eV @ 0.2 ÷ 10 keV [104] 

 

 

 

1.5 Main applications 

NTD Ge microcalorimeters have been investigated for several research applications including:  

high energy astrophysics (balloon-borne and satellite-borne mission concepts), laboratory x-ray 

micro-analysis, and particle physics, in particular for the neutrino mass determination and the dark 

matter search. 

In the previous par. 1.3 some examples were provided for the developments related to potential 

applications of NTD-Ge microcalorimeters in high energy astrophysics ([105, 106, 107, 108, 109]), 

and laboratory micro-analysis [104].  In the following paragraphs the use of NTD Ge 

microcalorimeters in particle physics will be addressed. 

 

1.5.1 Neutrino mass determination 

The electron neutrino (indicated with the symbol νe), more simply called neutrino, is a neutral 

lepton, that is a subatomic elementary particle, without electric charge and with spin equal to ½. It 

was firstly theorized by Wolfang Pauli in 1930 to explain the missing energy and momentum in the 

beta decay, and successively it was discovered by Clyde Cowan and Frederick Reines in 1956 [110]. 

In 1998 neutrino oscillations (flavor change) were discovered [111], and this stated almost two 

of the three neutrino flavors (electron, muon and tau) have non-zero mass, whose measurement is a 

very challenging experiment [112]. 

A very promising technique for the neutrino mass evaluation, together its other properties, is the 

neutrino-less double beta decay (DBD) [113]; in fact, by evaluating the neutrino-less DBD life time, 

the neutrino effective mass 〈𝑚𝑣〉 can be calculated and, from this, the absolute mass. 

The DBD [114] is a nuclear phenomenon for which, in a nucleus, two neutrons emit two 

electrons; this reaction can be expressed as: 

 

𝑁𝑧
𝐴 = 𝑁 + 2𝛽𝑧+2

𝐴       (1.53) 
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This reaction can be developed either with the emission of two neutrinos (indicated by 2) or 

without neutrino emission; in this case the phenomenon is said neutrino-less double beta decay and 

it’s indicated by 0. 

The DBD can verify if one of the following conditions are fulfilled: 

 

- the single decay isn’t energetically allowed; 

- the single decay is energetically allowed but strongly inhibited by a large associated spin 

change needed; in this case, the DBD is more probable 

 

Only elements with an even number of protons and neutrons can develop the DBD. Several 

experiments were performed with different isotopes, by using scintillation or ionization detectors, 

with poor energy resolution (4 ÷ 8 keV @ 2 ÷ 2.5 MeV) [115, 116]. The most precise measurement 

previously obtained for the effective neutrino mass is 0.44 eV [116]. 

In order to upgrade results on neutrino mass evaluation, a large experiment, named Cryogenic 

Underground Observatory for Rare Events (CUORE) was implemented. It’s located at Laboratori 

Nazionali del Gran Sasso of the Istituto Nazionale di Fisica Nucleare (INFN), underground 

laboratories built under the Gran Sasso’s massif (near the city of L’Aquila, Italy). 

The CUORE detector consists of 988 TeO2 bolometers, having a total mass of 741 kg, structured 

in 19 towers, each of them composed by 4 columns, arranged in cylindrical configuration; each 

bolometer is made by a 5 x 5 x 5 cm3 TeO2 crystal glued to an NTD Ge thermistor [117]. 

The deployed nuclear reaction is: 

 

𝑇𝑒52
130 = 𝑋𝑒 + 2𝛽54

130      (1.54) 

 

The main advantages of this experiment with respect to previous ones are [96]: 

 

𝑇𝑒52
130  has 34.5% abundance in natural Te thus increasing the experiment sensitivity; 

very low operation temperature (10 mK); 

high energy resolution due to NTD Ge thermistors (𝛥𝐸𝐹𝑊𝐻𝑀 = 7.7 keV @ 2615 keV) [118]. 

 

The experiment construction was completed in August 2016 and first data were acquired in 

spring 2017. The full experiment CUORE was preceded by two smaller experiments, for testing 

purposes: 

 

- CUORICINO, a system built with the same CUORE technology (5 x 5 x 5 cm3 TeO2 crystal with 

a NTD Ge sensors glued to absorbers), but consisting of only 62 bolometers placed in one tower 

only; the total mass was 40.8 kg. CUORICINO acquired data from 2003 to 2008 [119]. 

CUORE-0, derived by CUORICINO, using the same structure implemented for it, but after an 

improvement in the detector fabrication processes; CUORE-0, with a 𝛥𝐸𝐹𝑊𝐻𝑀=4.9 keV @ 2615 keV 

resolution, operated from March 2013 to March 2015 [120]. 
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1.5.2 Dark matter search 

According to most recent theories, the Universe is composed by about 27% dark matter (DM), 

that is non-baryonic, and possibly made of particles like axions or weakly interacting massive 

particles (WIMPS) [121]. 

The dark matter search is, presently, a very attracting research field in physics, in particular 

oriented towards particles with masses around some GeV/c2. DM particles interact with normal matter 

and loose energy, so they can be detected by ionization, scintillation, semiconductor devices, but it is 

necessary to employ sensors with some tens eV sensitivity. Cryogenic microcalorimeters are most 

suitable detectors, and in particular NTD Ge sensors can be advantageously applied. 

A DM detection system was developed inside the EDELWEISS collaboration [122]. It’s 

composed by a high purity Ge crystal, weighting 33.4 g, on which a 2 x 2 x 0.5 mm3 NTD Ge 

thermometer is glued; the weak thermal link is obtained by gold wires connecting the thermometer to 

the detector copper housing. The detector operates at 17 mK inside a dry dilution cryostat, and the 

detector energy resolution is 17.7 eV, well below the requested threshold. 

 

  



30 
 

Chapter 2 

 

ABSORBER DESIGN FOR HIGH ENERGY  

NTD-GE MICROCALORIMETERS 

 

2.1 Absorbers design methodology 

Energy band, energy resolution, and quantum efficiency are the basic parameters defining the 

microcalorimeter performances.  In addition, the use of arrays allows for imaging capabilities at the 

focal plane of an x-ray astrophysica telescope, whose resolution and field of view depend on the pixel 

size, and number of pixels, respectively.  

The construction of high performance large format NTD-Ge microcalorimer arrays can strongly 

benefit from the use of well consolidated planar microelectronics technology allowing to obtain 

multiple devices with almost equal performances due to parallel development of each process for all 

units in the same substrate. This implies more uniformity, less dimensional tolerances (almost equal 

adhesion between absorber and thermometer), reduced fabrication times and lower costs for complete 

devices compared to one-by-one processed devices. On the contrary, by using previously employed 

micro fabrication techniques, where microcalorimeter arrays are built by assembling discrete 

detectors, absorbers constituted by thin foils are manually glued to the respective thermometer, with 

hardly predictable and reproducible sensor performances. 

In this framework, the main goal of this research activity is the deployment of microlithographic 

thick film deposition processes for the fabrication of absorbers for a prototype NTD-Ge hard x-ray 

microcalorimeter detector (20 ≤ E ≤ 100 keV) for space applications.  

A careful design is preliminarily needed, based on suitable specifications. In this activity, the 

design parameters of hard x-ray NTD Ge microcalorimeter arrays have been derived by both a past 

proposed mission B-MINE [106], and a balloon-borne experiment concept (MISTER-X) for the 

observation of hard x-ray emission from the solar corona. In particular, the following parameters have 

been preliminarily defined: 

 

1) energy band; 

2) energy resolution;  

3) quantum efficiency QE; 

4) pixel size;  

5) array size and fill factor; 

 

Energy band 

The energy band of the absorber will be 20 ≤ E ≤ 80 keV to cover with high spectral resolution 

an unexplored energy region in Astrophysics. The low energy threshold is driven by the spectrum 

accessible with experiments flying on stratospheric balloon, while the high energy threshold is driven 

by technical limitations in focusing x-rays by grazing incidence. This energy range, in particular, 

would allow to record hard x-ray emission from the solar corona as proposed in the MISTER-X 

experiment concept previously discussed. 
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Energy resolution 

In order to maximize the science return in the observation of the hard components of the solar 

corona, as needed by MISTER-X, and to get significantly better performances with respect to 

presently existing hard x-ray detectors for Astrophysics, the goal energy resolution was set to 

∆𝐸𝐹𝑊𝐻𝑀 = 40 eV @ 60 keV. 

 

Quantum efficiency (QE) 

The scientific goal to detect hard x-ray features from the solar corona determines a requirement 

of QE > 0.3 at 60 keV for each single pixel in the array while a lower value can be accepted at higher 

energies. This QE value, quite similar to B-MINE specifications, has been identified as a good 

compromise with the requirement on energy resolution (the higher the mass the higher the thermal 

capacity is and the lower the energy resolution). 

 

Pixel size, array size  

The pixel size, number of pixels and fill factor needed for the MISTER-X concept has to 

guarantee a partial coverage of the solar corona. In this activity, we decided to fabricate only a 

prototype of 4 x 4 absorbers array to develop the technology. Once the fabrication process has been 

developed and optimized it should be possible to scale to a larger number of pixels. 

 

Array fill factor 

In microcalorimeter arrays fabrication, gaps between side pixels have to be minimized to avoid 

photon detection losses. Due to limitations in the technological processes, a suitable gap between 

neighbor pixels is needed to avoid thermal shorts, thus the effective area Sa will be less than the total 

detector area Stot, and the fill factor can be defined as 𝐹𝑓 = 𝑆𝑎/𝑆𝑡𝑜𝑡. To avoid strong reduction in the 

whole microcalorimeter QE we set a requirement of Ff ≥ 80%. 

 

Preliminary absorber design specifications are reported in Table 2.1. 

 

Table 2.1 - Preliminary absorber design specifications 

 

Energy band 20 ≤ E ≤ 100 keV 

ΔEFWHM 40 eV 

QE 0.3 @ 60 keV 

Pixel number 4 x 4 

Ff ≥ 80% 

 

2.2 Material choice 

According to the requirements on energy band and quantum efficiency, only high Z materials can 

be used for absorber fabrication, in fact, the use of light materials would require very large thicknesses 

(hundreds of microns or more), very difficult to fabricate by planar technologies. 
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To identify the best absorber material a detailed analysis was preliminarily performed by 

comparing x-ray absorption characteristics of several materials [123, 124, 125, 126, 127]: bismuth 

(Bi), tantalum (Ta), tin (Sn), osmium (Os). 

As discussed in section 1.2.1, the attenuation law for a monoenergetic photon beam traversing a 

layer of matter is expressed by: 
𝐼

𝐼0
= 𝑒𝑥𝑝 (−

𝜇

𝜌
𝜌𝑡) = 𝑒𝑥𝑝(−𝜇𝑡)    (2.1) 

 

 

Then the quantum efficiency QE can be expressed by: 

 

𝑄𝐸 = 1 − 𝑒𝑥𝑝(−𝜇𝑡).     (2.2) 

 

The layer thickness needed to obtain an assigned quantum efficiency can be calculated by: 

 

𝑡 =
1

𝜇
𝑙𝑛

1

1−𝑄𝐸
       (2.3) 

 

By using values from the NIST standard reference database #126 [127], x-ray absorption 

characteristics for bismuth, tantalum, tin and osmium were evaluated. Figure 2.1 shows the quantum 

efficiencies for photon energies up to 110 keV of a layer 20 μm thick of the above mentioned 

absorbing materials. Figure 2.2 shows the layer thickness needed to obtain a QE = 0.3 for the same 

materials. 

From Figure 2.1 and Figure 2.2, osmium appears the most advantageous material in terms of QE, 

however, with such material it’s very hard to obtain layers of a few microns thickness [128].  

At the high side of the energy band (90 – 100 keV), the required thickness of Tin to obtain QE = 

03 would be > 200 μm which would be hard to produce by deposition processes, according to the 

planar technology. 

Pure rhenium is also difficult to deposit, due to low process efficiency and poor coating quality 

[129], furthermore, it is a very expensive material. 

Gold has also been investigated as absorber material [130], however, being a normal metal, the 

heat capacity at low temperature is very high (Cgold = 7.14 J/K.m3 @ 0.1 K) implying that high energy 

resolution cannot be achieved when a few microns pixel thickness is needed to get high QE.  

Finally, bismuth and tantalum remained as good candidate materials for absorbers fabrication. 

Bismuth was our first choice for the absorber prototype fabrication due to its very low heat 

capacity, high growth thickness by electroplating, and moderate cost [73, 131, 132].  

In Table 2.2 the main physical and chemical bismuth properties are reported [133, 134]. This 

element belongs to the Va group in the Mendeleev table; it’s a brittle, hard and coarsely crystalline 

solid metal, at room temperature, with rhombohedral crystalline structure; it doesn’t tarnish in air at 

room temperature, and is the most diamagnetic among all metals [134]. Bismuth is enough resistant 

to acids: it isn’t attacked by hydrochloric acid (HCl), only slightly by hot sulfuric acid (H2SO4), but 

it dissolves in either pure or diluted nitric acid (HNO3). 

Figure 2.3 shows theoretical QE curves of bismuth absorbers with different thickness in a wide 

energy range, based on X-ray absorption data in [135]. 
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Very interesting is the very low bismuth specific heat at cryogenic temperatures, advantageous 

for microcalorimeter applications (Table 2.2); for comparison that of gold at the same temperature is 

cgold = 7.14 J.K-1.m-3. By calculating the heat capacities for two different absorbers, the first made of 

bismuth and the other one made of gold, with the same surface area of 100 x 100 m2, and the same 

QE = 0.3 at E = 100 keV we get Cbismuth = 2.38.10-15 J.K-1 and Cgold = 2.56.10-13 J.K-1. The gold heat 

capacity is two orders of magnitude greater even if  the thickness of gold is lower than that one of 

Bismuth due to different linear attenuation coefficients, namely  tgold = 35.8 m and tbismuth = 63.8 m.  

 

 

 
 

Figure 2.1 - Quantum efficiency as a function of energy for a 20 μm thick layer of different high Z absorbing 

materials, namely: Bismuth, Tantalum, Tin, and Osmium.  

 

 

 
Figure 2.2 - Layer thicknesses needed to get a QE = 0.3 as a function of photon energy, for four different high Z 

absorbing materials, namely: Bismuth, Tantalum, Tin, and Osmium.  
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Table 2.2 Main physical and chemical properties of bismuth [133, 134] 

 

Property Value 

Atomic number 83 

Atomic weight 208.98 

Density 9,747 g.cm-3 

Melting point 271.3 °C 

Boiling point 1560 °C 

Oxidation states -3, +3, +5 

Specific heat (T=100 mK) 3.74.10-2 J.K-1.m-3 

Heat conductivity     (T=100 mK) 1.32.10-1 W.K-1.m-1 

 

 

 

 

 

 

  
 

Figure 2.3 - Theoretical QE of bismuth absorbers with different thicknesses. 
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2.3 Absorber design 

Based on previously discussed microcalorimeter requirements, we have to determine the pixel 

size for the first investigated absorber material, Bismuth. Figure 2.4 shows the adopted decision flow 

chart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the energy resolution requirement ΔEFWHM = 40 eV (6.4e-18 J), by using equation (0.3), 

that is here reported: 

𝛥𝐸𝐹𝑊𝐻𝑀 ≅ 2.355𝜉√𝑘𝐵𝑇0
2𝐶𝑡𝑜𝑡    (2.4) 

  

in which the coefficient 𝜉 was set equal to 1, the total maximum heat capacity of the detector 

(absorber+thermistor) Ctot was calculated at the operating temperature T0 = 50 mK: 

 

𝐶𝑡𝑜𝑡 =
𝛥𝐸𝐹𝑊𝐻𝑀

2

5.546𝑘𝐵𝑇2
= 2.144 · 10−10 J/K   (2.5) 

 

where kB = 1.381 · 10−23 J/K is the Boltzmann constant. 

 

Then, in order to calculate Cabs, we have conservatively assumed an equal share of the heat 

capacity between absorber and thermistor: 

 

𝐶𝑎𝑏𝑠 = 0.5𝐶𝑡𝑜𝑡 = 1.072 · 10−10  J/K    (2.6) 

 

Pixel size dimensioning by QE and Cabs 

Pixel gap dimensioning by array Ff 

Requirements on energy resolution ΔEFWHM,  

quantum efficiency QE, operating temperature T0 

Calculation of single pixel heat capacity Ctot by ΔEFWHM 

Assign heat capacity for single pixel absorber and thermometer:  

Ctot = Cabs + CT 

Figure 2.4 - Absorber dimensioning process flow chart. 
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In order to determine the absorber volume Vabs from the heat capacity, we need the specific heat:  

 

𝐶𝑎𝑏𝑠 = 𝑐 𝑑𝑎𝑏𝑠𝑉𝑎𝑏𝑠      (2.7) 

 

where: 

 c is the bismuth specific heat; 

 𝑑𝑎𝑏𝑠 = 9.78 gcm-3 is the bismuth density. 

 

Bismuth is a superconducting metal with a transition temperature TC = 5.3 · 10−4 K, therefore, 

at the operating temperature of the absorber (T ~ 50 mK) it behaves as a normal metal and the specific 

heat can be calculated by the Debye – Sommerfeld equation, holding for temperature near 0 K: 

 

𝑐𝑣 = 𝛾𝑇 + 𝛼𝑇3      (2.8) 

 

in which the term γΤ represents the electronic contribution and αT3 is the lattice contribution. For 

bismuth at temperature T ≤ 2 K, the coefficients γ and α take the following values [73]: 

 

𝛾 = 3.2 · 10−7 Jg-1K-2     (2.9) 

𝑎 = 5.66 · 10−6 Jg-1K-4     (2.10) 

 

By substituting (2.9) and (2.10) in (2.8) we get: c = 1.671 · 10−8 J g-1K-1. 

Similarly, the specific heat for NTD Ge at the same temperature can be calculated from data in 

[92]: 𝑐~52.5 · 10−9 JK-2cm-3. 

The absorber volume can be expressed as: 

 

𝑉𝑎𝑏𝑠 = 𝑆ℎ      (2.11) 

 

in which S is the surface area of the absorber, and h its thicknessBy requiring a QE = 0.3 @ 60 keV 

the minimum absorber thickness is h = 60 μm, uming to grow pure crystalline material. 

By (2.7) and (2.11), the surface area can now be calculated: 

 

𝑆 = 1.1 · 107 μm2     (2.12) 

 

In a square array, also pixels are squares with side L: 

 

𝐿 = √𝑆 = 3306 μm     (2.13) 

 

This is the maximum theoretical absorber size to obtain the target energy resolution; but it has to 

be considered an upper limit, due to: 

 

1) absorber fabrication tolerances related to technological process could make bismuth pixels larger 

than designed; 
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2) the 60 μm evaluated thickness could be insufficient to guarantee the requested QE, due to 

imperfections in the grown material; in this case, it would be necessary to increase h, and, with 

the above calculated area, this would raise the heat capacity, reducing the energy resolution; 

3) smaller pixels would allow to increase their number for future large format x-ray imaging arrays 

for astrophysics and laboratory applications. 

 

For these reasons, and considering that the research group of XACT-OAPa and DiFC already 

fabricated microlithographic masks for the thermometer fabrication with similar pitch sizes, we 

choose to initially design square pixels with 200 ≤ 𝐿 < 400 μm.  With this choice, the maximum heat 

capacity of each pixel is: 

𝐶𝑎𝑏𝑠 = 1.6 · 10−12 J/K     (2.14) 

 

Finally, to satisfy the fill factor requirement, we assumed an array pitch pa equal to L * 1.1. The 

resulting fill factor Ff  is: 

 

𝐹𝑓 =
𝐿2

(1.1𝐿)2 = 0.83 = 83%     (2.15) 

 

and the resulting gap between neighbor pixels is: 20 ≤ g ≤ 40 μm. Table 2.3 summarizes the 

design parameters of the first investigated absorber array. 

 

Table 2.3 - Absorber design parameters 

Topology Square pixel 4 x 4 array 

Material Bismuth 

Pixel thickness 60 μm 

Pixel surface area 200 x 200 to about 400 x 400 μm2 

Pixel gap  20 to 40 μm 
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Chapter 3 

 

ABSORBER FABRICATION 

 

 

3.1 Bismuth layer growth techniques 

Pure bismuth and bismuth alloy films have presently several applications, such as thermoelectric 

conversion [136], reference electrode fabrication for heavy metal detection [137] and large magneto-

resistance devices [138]. Several techniques are available to deposit bismuth films: 

 

1) Resistive boat physical vapor deposition (PVD) [139]; 

2) Electron beam PVD [139]; 

3) DC sputtering [140]; 

4) RF sputtering [140]; 

5) Pulsed DC sputtering [141]; 

6) Pulsed laser deposition [142]; 

7) Molecular beam epitaxy (MBE) [143]; 

8) Electroplating [144]. 

 

All these techniques produce bismuth layers with different properties, particularly with respect 

to crystallographic structure and morphology. Techniques 1) to 7), usually characterized by very low 

deposition rates of few nm/s [145], are best suited for thin film deposition (thickness less than 1 m) 

and require complex and expensive equipment. 

On the other hand, electroplating is appropriate to grow very thick (tens of microns) bismuth 

layers in practical times (some hours), and deposited film properties can be controlled by acting on 

different process parameters. 

Since we need to grow thick bismuth layers, electroplating fabrication technology was chosen. 

Basic principles and technical deployment of such technique will be described in the next paragraph. 

 

3.2 The electroplating process 

Electroplating [146] is an electrochemical technology based on the reduction process of metal 

cations from a suitable solution (electrodeposition bath) to metal. 

This process is industrially employed to coat metal elements with another metal with specific 

physical and chemical characteristics for protective and/or decorative purposes: typical examples are 

represented by anti-corrosion coatings of mechanical items and by silver or gold plating of jewelry. 

The schematic description of such process is depicted in Figure 3.1. 

By the application of a suitable electric potential, ions of the plating material travel in the 

electroplating bath, from an electrode called “anode”, in which the oxidation process takes place, to 

the receiving electrode, called “cathode”, constituted by the substrate on which the film has to be 

deposited and on which the reduction process occurs. The metal ions can alternatively be directly 

drawn from the solution, in which case the anode is inert. The cathode is called working electrode 

(WE), and the anode is referred to as counter electrode (CE) or auxiliary electrode (AE). 
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Positive ions going toward the cathode are called cations, and negative ones are said anions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cations travel in the electrolytic bath not only due to the electric field generated by the power 

supply but also by diffusion and convection. 

The negatively charged cathode attracts cations by electrostatic forces, forming a narrow 

positively charged layer, where a strong electrical field is present, in the solution. These two layers 

(the negative charge in the cathode and the positive one in the bath) are called electric double layer, 

and its existence was firstly conjectured by Helmholtz in 1850’s. In this model [147], however, all 

the potential drop near the electrode happens within the extension of an ion radius (outer Helmholtz 

plane, about 5 Å from the cathode surface), and solution ion diffusion, mixing, possibility of surface 

adsorption, and dipole moment interactions are not considered. 

A successive model, developed by Stern, introduced the “outer” or “diffuse” layer, constituted 

by another negative charge layer, less compact than the previous, electrostatically attracted by the 

positive part of the double layer toward the cathode; the outer layer extends itself up to about 50 -

100 Å from the cathode surface. 

When cations arrive very near the cathode, at about 50 – 100 Å distance, they enter the diffuse 

layer, then arrive at the double layer, where they are dehydrated, and undergo the electroreduction. 

In this way adatoms (atoms lying on the surface of crystals) are generated, that diffuse in the cathode 

surface to originate a new material phase (electro-crystallization) to create nucleation sites and growth 

for the specie to be electroplated. 

Electroplating is based on the two Faraday’s laws [148, 149], relating the quantity of matter 

transported in an electrochemical process with the transferred electrical charge, that can be expressed 

as follows: 

 

𝑄 = ∫ 𝑖𝑑𝑡
𝑡

0
      (3.1) 

 

𝑤 =
𝑀𝑄

96500𝑛
      (3.2) 

e
-
 

- + 

e
-

Anode 

(oxidation) 

  
M

+
 

Sample Reference 

M
+
 

Electrodeposition bath 

Cathode 

(reduction) 

V 

Figure 3.1 - Schematic of the electroplating process. 
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in which: 

Q: electrical charge in coulombs; 

i: current in amperes; 

t: time in seconds; 

w: material weight; 

n: number of transferred electrons per atom; 

M: molecular weight of the transported substance. 

 

In (3.2) the Faraday constant 96485,3 (C/mol), usually rounded to 96500, is the electrical charge 

needed to transfer a mole of substance with oxidation state 1 (𝑛 = 1). 

Generally, during an electrochemical deposition, not all the transferred charge is due to moved 

atoms, due to concurrent side reactions. The electrical efficiency ηE is expressed as: 

 

𝜂𝐸 =
𝑄𝑀

𝑄
=

96500𝑛𝑤

𝑀𝑄
      (3.3) 

 

in which QM is the electrical charge related to the main reaction, whilst Q is the total one. 

In electrochemical processes, the liquid bath is an ionic conductor and, besides potential drops at 

electrode/liquid interfaces, the Ohm’s law holds, and the voltage drop V across the electrolyte 

between electrodes is: 

 

𝑉 = 𝑖𝑅      (3.4) 

 

in which R is the electric resistance of the liquid in which both cation and anion current flow. 

In an electrochemical process the directly measurable quantities are the cell voltage, that is the 

voltage measurable between WE and CE, and the related current. 

Another important quantity is the electrode potential, defined as the nearly discontinuous 

potential difference, not directly measurable, between the electrode surface and the region in the 

solution adjacent to the electrode itself. 

The electrode potential mainly depends on specie molecules interested by the electronic transfer. 

After above considerations, the potential distribution in the electrochemical cell can be 

represented as in Figure 3.2, where x is the space coordinate for the electrode geometry and V 

represents the electric potential. 

Starting from the cathode, the first potential increase (up to EA) happens when the 

cathode/solution interface is traversed; then there is an iR ramp, due to the solution resistance, and 

another step EB, related to the liquid/anode interface. 

To develop well-controlled processes, it is necessary to precisely measure the applied WE-CE 

current. Moreover, since the deposition reaction is primary governed by the WE potential, a method 

to measure this quantity is needed; this is obtained by placing in the electrochemical cell a third 

electrode, the reference electrode (RE). Generally, this is constituted by a metal probe surrounded by 

a well-known and invariant solution forming a highly reversible electron transfer couple with the 

probe. This is practically obtained by enclosing the probe and the solution in a glass tube with a small 

opening at the lower end, in which a porous membrane prevents this liquid from mixing with the 

electrochemical bath. 
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The RE is not traversed by the process current, so the RE-WE voltage measurement is not 

influenced by voltage drops due to this current, and using the knowledge of the RE potential, it is 

possible to derive the WE potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A typical electrodeposition reaction is: 

 

𝑀1,𝑠𝑜𝑙𝑢𝑡
𝑛+ + 𝑛𝑒− → 𝑀𝑑𝑒𝑝     (3.5) 

 

in which: 

 

𝑀1,𝑠𝑜𝑙𝑢𝑧
𝑛+ : n-valence positive metal ion; 

𝑀𝑑𝑒𝑝: cathode surface deposited metal atom. 

 

The electrode potential E associated with (3.5) in the equilibrium condition, when no current 

passes, is given, related to the Eo potential (standard redox potential) of a reference electrode, by the 

Nernst equation: 

 

𝐸𝑖=0 = 𝐸0 +
𝑅𝑇

𝑛𝐹
𝑙𝑛[𝑀1

𝑛+]     (3.6) 

 

in which: 

R: universal gas constant; 

T: absolute temperature; 

F: Faraday’s constant; 

[𝑀1
𝑛+]: metal ion concentration. 

 

The Nernst equation for the complete electrochemical process is: 

 

𝐸𝑖=0 = 𝐸0 +
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝑀1
𝑛+]

[𝑀2
𝑛+]

     (3.7) 

x 

V 

Cathode Anode 

0 

EA 

EA + iR 

EA + iR + EB 

Reference 

Figure 3.2 - Potential distribution in the electrochemical cell in Figure 3.1 
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in which [𝑀2
𝑛+] is the concentration of the anode reaction product. 

When the current flows, the electrode potential changes with respect to the equilibrium by an 

amount η, called activation overvoltage, which depends by the current itself. 

By applying an increase E to the electrode potential to the advantage of the reduction reaction, 

the resulting current is constituted by the cathodic component, due to the reduction process, and the 

anodic one, given by the oxidation one; both depend exponentially by E. 

To implement an electroplating process, a power supply, a voltmeter to measure the WE-RE 

voltage difference, and a current meter for reading the WE-CE current are required. 

Due to the need of very precise process control, more and more sophisticated instrumentations 

were developed during time. 

Presently, electrodeposition processes are developed by using potentiostats, that are high-

precision, multi-function (potentiometry, galvanometry, impedance spectroscopy, etc.), multichannel 

(they can control more than one cell at a time) instruments, in which the voltage difference between 

the WE and the RE is measured and controlled and the current flowing between the WE and the CE 

is measured. 

 

3.3 Bismuth electroplating 

In order to manufacture thick, high-energy X-ray absorber arrays, it was preliminarily necessary 

to develop a suitable electroplating process. 

Before starting the experimental activity for bismuth electroplating, a wide literature review was 

performed in order to evaluate and compare various processes with respect to experimental conditions 

(chemical compound availability, necessary equipment) and obtainable results. 

Several electroplating recipes were developed by many research teams to obtain high quality 

bismuth layers, whose physical characteristics were best suited to different applications. The most 

interesting processes, representing the current state of the art in bismuth electroplating, are 

summarized in Table 3.1, that includes the most important parameters related to the referenced 

experiments. 

Among them, n.1 and n.2 were chosen for starting the experimental deposition activities because 

of the reported properties of the deposited films. The first step to proceed towards the absorber 

fabrication was the implementation of a suitable bismuth electroplating process, able to produce 

uniform, compact, high thickness layers (60 m or more), as requested by the absorber design. 

By controlling process parameters (applied electric potential, circulating charge, bath 

composition, fluid-dynamic conditions, bath temperature), it is possible to tune the properties of the 

electrodeposited layer such as thickness, composition and morphology. It is noteworthy to mention 

that the choice of the applied potential, according to thermodynamic equilibria of metal/metal cations 

in bath solution, is crucial to avoid side reduction processes that are detrimental for both the 

electrodeposition efficiency and the film quality, in particular in case of hydrogen bubbling. 

Several experiments were executed to explore the parameter space (solution pH, deposition 

voltage, deposition time, bath stirring and temperature); obtained results were compared to define an 

optimized process. 
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Table 3.1- Bismuth electroplating recipes. 

 

N. Bath pH Temperature 

(K) 

Current 

density 

(mA/cm2) 

Other parameters Reference 

1 Bi(NO3)3
.5H2O 

KOH 

Glycerol 

Tartaric acid 

Nitric acid 

≈0.6 298 1 – 5 Magnetic stirring. 

Seed layer 

thicknesses  

20 – 100 nm. 

[150] 

2 Bi(NO3)3
.5H2O 

DMSO 

n.a. 298 0.5 – 5 n.a. [151] 

3 BiOCH3COO 

EDTA-4Na 

CH3COOH 

CH3COONa 

4.1 298 10 - 100 28 kHz sonicated 

bath (smoothed and 

dense films). 

[152] 

4 Bi(NO3)3
.5H2O 

CH3COONa 

Acetic acid 

Nitric acid 

n.a. n.a. n.a. Plating potential ≤0.4 

V. 

[153] 

 

 

Sample preparation 

Electroplating processes were performed using ad-hoc fabricated substrates. Microscope glass 

slides were cleaved in six samples each, with size 25 x 12.5 x 1 mm3. They were cleaned using the 

following procedure, performed in the class 10000 clean room of the INAF-OAPA XACT 

Laboratory: 

 

1) wash with a mild detergent; 

2) rinse with de-ionized water; 

3) degrease in trichloroethylene (TCE) with sonication and successive rinsing with TCE; 

4) immersion in acetone; 

5) wash with DDW (double-distilled water) with a mild detergent; 

6) rinse with DDW; 

7) final rinse with absolute ethanol; 

8) dry with dry nitrogen; 

 

The glass slides were then coated by a double metal layer on their top surface by electron-beam 

thermal evaporation technique using a Varian VT-114 system, operated inside the same clean room 

(Figure 3.3: center: evaporation system; right: control rack). A 20 nm layer of titanium was initially 

deposited, followed by 20 nm of gold to form the final electroplating substrate (Figure 3.4). 

A thick, adhesive copper tape was applied on a small area of the gold coating of the substrates to 

have a robust electric contact to which apply the WE clamp. A narrow, thick Teflon film was wrapped 

around each substrate to define the deposition area (the one not covered by the Teflon) and to protect 

the copper tape from the electrodeposition solution. 

In order to evaluate suitable deposition potential ranges, 20x10x1 mm3 fluorine-doped tin oxide 

(FTO) samples were used, without any additional metal coating; copper tape and Teflon films were 

applied as described. 
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Experimental set-up and electroplating solution 

The electroplating processes were performed at the Electrochemical Material Science Laboratory 

of the Dipartimento di Ingegneria of the Università di Palermo. The experimental setup employed to 

optimize the electroplating process consists of a three electrodes electrochemical cell connected to a 

Bio-Logic SA potentiostat. The WE is the metallic substrate where the bismuth layer is 

electrodeposited, an Ag/AgCl with KCl 3M is the reference electrode, and a DSA (dimensionally 

stable anode) is the CE. The Ag/AgCl reference electrode is constituted by a silver wire, coated with 

a silver chloride layer, immersed in a potassium chloride solution contained in an ampoule with a 

porous layer opening, able to allow the contact between the electrode and the bath solution. The 

electroplating cell is placed on a stirring hot plate.  

 

 
 

Figure 3.3 - Varian VT-114 e-beam evaporation system. 

 

 
 

Figure 3.4 - Electroplating substrate. 
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The compositions of electroplating solution n.1 and n.2 (see Table 3.1) are reported in Table 3.2 

and Table 3.3. 

The first solution requires a very careful preparation; at first glycerol, DDW, tartaric acid and 

bismuth nitrate pentahydrate are mixed in a suitable beaker, in the above order. Then the nitric acid 

is added, and the obtained solution is stirred on the hot plate at 25 – 30 °C; the solution is completed 

with the potassium hydroxide, and it needs some hours stirring at 500 rpm  at the same temperature 

to appear clear and transparent, when is ready to be used. All the reagents are weighted by a laboratory 

scale with 100 g accuracy. In this solution the nitric acid is used to dissolve the bismuth salt in water, 

and potassium hydroxide regulates the solution pH value, as the bismuth deposition happens for 

0<pH≤0.9. Since pH is very sensitive to both small HNO3 and KOH quantity variations, and to the 

environment temperature, it is necessary to check the solution acidity right before starting the 

electroplating processes and, if necessary, to correct it. The pH measurements were performed by a 

Hanna laboratory pH-meter. 

 

Table 3.2 - Acid bismuth electroplating solution (n.1) composition. 

 

 

 

 

 

 

 

 

 

 

Table 3.3 - Bismuth electroplating solution composition containing DMSO (n.2). 

 

Bismuth nitrate pentahydrate Bi(NO3)3
.5H2O 2.5 g Honeywell Fluka 

Dimethyl sulphoxide 

(DMSO) 

(CH3)2SO 55 g Sigma Aldrich 

 

 

The solution n.2, is otherwise very easy to prepare, and no pH control is needed; stirring is 

performed at about 500 rpm at room temperature for 1 – 2 hours. 

 

Preliminary deposition experiments 

a) Electroplating with solution n.1 

To start the experimental study of bismuth electroplating with the solution n.1 (Table 3.2), the 

suitable electrode potential range according to the thermodynamic stability region of bismuth in 

aqueous solution was firstly evaluated by the Pourbaix diagram [154] and then investigated by cyclic 

cyclovoltammetry [155]. 

Pourbaix diagrams plot the stable phases of an aqueous electrochemical system with respect to 

the electric potential and the solution pH. Different lines in Pourbaix diagrams represent redox and 

acid-base reactions, and indicate conditions in which two species have equal activities. 

Bismuth nitrate pentahydrate Bi(NO3)3
.5H2O 3.75 g Honeywell Fluka 

Potassium hydroxide KOH 3.81 g Sigma Aldrich 

Nitric acid HNO3 5.7 ml J. T. Baker 

Glycerol CH2OHCHOHCH2OH 6.25 g Chem Lab 

Tartaric acid HOOC (CHOH)2 COOH 2.5 g Chem Lab 

DDW H2O 50 ml --- 
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Horizontal lines are referred to oxidation of metallic materials, that are independent from the pH; 

vertical lines represent pure acid-base reactions, that are independent from the potential. 

The Pourbaix diagram for bismuth is reported in Figure 3.5. It can be stated that, for pH values 

reported in Table 3.2, bismuth deposition starts at about 0 V. This can be asserted by considering the 

curve n. 9 in the diagram for the Bi3+ + 3e- reaction at the pH values between 0.1 and 0.6, and 

evaluating, using the Pourbaix equations in [154], the potential 𝐸0 = 0.215 + 0.0197 log[𝐵𝑖3+], in 

which the concentration [Bi3+] = 75 g/L for the same solution. As previously mentioned, it is 

important to avoid hydrogen evolution, and this can be obtained by choosing potentials not below the 

“a” dashed line in the diagram. 

Cyclic voltammetry is a potentiodynamic method used in analytical chemistry and industrial 

processes in order to obtain analytical, thermodynamic, kinetic and mechanistic information about 

the chemical system under investigation. The WE potential measured with respect to the reference 

electrode is cyclically scanned in the range from the starting potential to a value called switching 

potential, and the current flowing between the electrodes is continuously measured. The number of 

cycles is a process parameter. 

A cyclic voltammetry was performed using the same Bio-Logic SA potentiostat, in the same 

setup already described; an Au coated sample (as described in Sample preparation) was used as WE. 

The sweep rate was -2 mV/s and the electrode potential was scanned starting from OCP (Open Circuit 

Potential) towards negative potentials. The lower potential was about -0.1 V with respect to the 

Ag/AgCl reference electrode, higher with respect to the reduction potential of H+/H2 (-0.2 V at this 

pH), to avoid the hydrogen evolution. 

The cyclovoltammetry diagram (Figure 3.6) shows that the cathodic current starts at ~ 0 V:  this 

cathodic current can be related to the reduction of Bi3+ to Bi leading to the deposition of bismuth layer 

on gold substrate. This potential is in agreement with that reported in the Pourbaix diagram. 

Several experiments were executed to explore potential range (Figure 3.6), to find the best value 

allowing smooth and compact layer depositions, to study the growth characteristics of large area 

bismuth layers (morphology, composition, adherence to the substrate, geometrical features, 

deposition rate, electrical properties). Explored process parameters are summarized in Table 3.4, 

including, for comparison purposes, also experiments performed with the n.2 solution. 

After the electroplating process, the samples were gently washed in DDW to remove residual 

acid solution and they were let to dry in ambient air. Heating was avoided to prevent excess surface 

oxidation. 

  

b) Electroplating experiments with solution n.2 

The same procedure used for solution n.1 was followed for solution n.2; in order to identify the 

best potential range, a cyclovoltammetry was executed with the following parameters: 

 

- sweep rate: 2 mV/s; 

- starting potential: -1 V; 

- switching potential: +1.5 V 

- cycles: 3. 

 

The WE consisted of fluorine doped tin oxide (FTO); the cyclovoltammetry diagram is shown in 

Figure 3.7. 
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Figure 3.5 - Pourbaix diagram for bismuth [154] 

 
 

 

Figure 3.6 - Three cycle cyclovoltammetry diagram for  

bismuth deposition with the solution n.1. 

 

To deposit bismuth with this solution it was decided to set potentials in the range -0.8÷-0.2 V, 

for which current starts flowing, allowing the bismuth deposition, and hydrogen development is 

avoided. 

Several experiments were performed with different parameters varying in the ranges shown in 

Table 3.4; as previously mentioned, a significant difference with respect to solution n.1 was that pH 

control was not necessary. 
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Table 3.4 - Summary of continuous bismuth layer growth experiments. 

 
 

Solution n. 1 Solution n. 2 

Electroplating voltage range (V) -0.2 ÷ -0.02 -0.8 ÷ -0.2 

Current density (mA/cm2) -21.6 ÷ -4.28 -18.94 ÷ -1.68 

pH range 0.05 ÷ 0.26 NO 

Deposition time (h:min) 0:30 ÷ 6:00 1:10 ÷ 6:15 

Bath heating (°C) YES/NO NO 

Bath stirring YES/NO YES/NO 

 

Some initial simple tests, like optical microscope inspection, scotch test and sample weighting 

by laboratory scale, were performed to have an immediate evidence of basic deposited layer 

characteristics, to evaluate the process quality and the suitability for absorber manufacturing. 

Grown bismuth films were observed with a Leica MZ12 optical microscope in order to evaluate 

features like the uniformity of the layer surface, the eventual presence of cracks and other visible 

defects, and the presence of lateral dendrites. 

 

 

 

Figure 3.7 - Cyclovoltammetry diagram for the solution n.2. 

 

The scotch test is a very simple method that was adopted to verify the grown bismuth layer 

adhesion with the substrate gold surface. Bismuth films have also been characterized with respect to 

their morphological, compositional, electrical properties. This activity will be reported in detail in the 

next chapter 4. 
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Comparison between the two recipes 

A comparison between morphological properties of bismuth layers deposited using the two 

solutions were performed to define the best process for x-ray absorber growth. 

 

a) Solution n.1 

In Figure 3.8 the comparison between some representative depositions, grown with different Es, 

is shown. The deposition time is 30 min and bath was stirred at 300 rpm, without heating. 

Used samples, and relative Es, were: #10-2 (-20 mV) #1K (-50 mV); #1I (-100 mV); #1F (-200 

mV). 

Two main comments can be done: 

 

- as expected, current densities increase (in module) at greater deposition potentials; 

- at fixed voltages Es, each curve has a small negative derivative, and the absolute value of 

the current density grows. This is particularly evident for higher potentials. 

 

The increasing step in the Es =-200 mV curve was due to a sudden vibration of the whole 

deposition system, that probably caused a temporary displacement of the electrodes; after the system 

returned in its static condition the deposition current, through a long transition, returned to its regular 

trend. Constant or slowly decreasing curves indicate a process with a constant deposition rate, 

suggesting that there has not been material detachment or strong current densities due to irregularly 

grown structures. 

 

 
Figure 3.8 - Comparison between different time profile of the current density in electroplating  

processes performed with solution n.1 for different values of Es. 

 

In Figure 3.9 the plot of transferred charge per surface unit versus time is shown; of course, 

charge density is greater for larger Es is, as it is related to the current density by (3.1). 
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The deposited thickness z, in the hypothesis that the electric efficiency of the process 𝜂𝐸 = 1, 

can be also calculated by (see 3.2): 

 

𝑧 =
𝑀𝑄

96500𝑛𝑑𝐴
      (3.8) 

 

in which: 

 

Q: transferred charge; 

A: deposition surface area; 

𝑀 = 208.98 g/mol; 

d: bismuth density (9.78 g/cm3); 

A: deposition surface area; 

and n=3 (number of transferred electrons per atom) for bismuth.  

 

The charge Q is measured by the potentiostat. 

For the same parameter processes, both current and charge values increase with the sample area. 

 

 
 

Figure 3.9 - Transferred charge density for the same processes in Figure 3.8. 

 

Characterization tests showed that bismuth layers produced by solution n.1 have more uniform 

morphology and compactness, together with stronger substrate adhesion, for the following process 

parameters: 

 

• pH in the range 0.1 ÷ 0.26; 

• lower deposition potentials in the tested range (Table 3.4), in particular at V=-20 mV; 

• bath temperature: 25 ÷ 30 °C; 

• bath stirred at 150 ÷ 300 rpm. 
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Deposition current densities in the range 1 ÷ 10 mA/cm2 are acceptable, while higher values 

generally produce less smooth morphologies. 

Several thin films (some micron) were deposited with process duration ranging from 30 min to 

1h 10 min in order to study the growth process; then very thick layers (up to 66 m) were grown for 

times up to 6 h to reach thicknesses requested by the absorber design and to verify the obtained 

morphology and quality. 

Growth rate of about 8 ÷ 10 m/h for Es = -20 mV, and about 20 m/h for Es = -50 mV were 

calculated. 

By observing the morphology of deposited layers, it was deduced that best process temperature 

is 25 °C or little more, up to about 30 °C. 

To evaluate the constancy of the bismuth ion concentration during the deposition, bath ion 

depletion during processes were calculated, resulting in 0.5%/h ion consumption; this allows for long 

depositions (6 ÷ 10 h) to produce very high thickness layers. 

It is worth mentioning that this solution, after several hours without stirring, starts forming a 

white precipitate; in such cases, it was not further used for the electrodeposition and a new solution 

was prepared. 

 

 

b) Solution n.2 

In Figure 3.10 the current density curves with respect to deposition time are shown for the most 

relevant experiments performed with solution n.2. The samples used are 10-1, 12-1, 1C, 2B; the bath 

was neither stirred nor heated. 

 

 
 

Figure 3.10- Current density - deposition time curves for representative  

electroplating processes performed with solution n.2. 
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The transferred charge densities with respect to the deposition time for the same samples are 

shown in Figure 3.11. 

 

 
Figure 3.11 - Transferred charge density - process time curves for samples in Figure 3.10. 

 

With this solution, the best results related to morphology and film adhesion were obtained with 

the following parameters: 

 

• deposition potentials in the range -0.5 ÷ -0.2 V; 

• bath temperature: 25 ÷ 30 °C; 

• absence of stirring. 

 

The main features of bismuth layers deposited using solution n.2 are the following: 

 

- surfaces have coarser aspects with respect to samples grown with the other solution; 

- deposited bismuth contains more percentage of other elements (in particular C and O) with 

respect to the metal deposited with solution n.1, as revealed by EDX analysis (as detailed in 

chapter 4); 

- very long (some mm) and thick dendrites are present, in particular for |𝐸𝑠| ≤  −0.5 𝑉. 

 

The last point implies that solution n. 2 cannot be used for array fabrication, as thermal short 

circuits, connecting neighbor pixels, would be produced. The acid solution (solution n. 1) was then 

chosen to fabricate bismuth absorbers, and baseline process conditions were fixed as reported in the 

Table 3.5. 

 

Table 3.5 - Best bismuth layer growth process parameters. 

 

Solution n.1 

pH Es (mV) Stirring (rpm) Bath temperature (°C) 

0.1 ÷ 0.26 -50 ÷ -20 150 ÷ 300 25 ÷ 30 
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After having selected the process, a continuous, large, 60 m thick film was deposited [156] as 

a demonstrator for very thick absorber array manufacturing. 

The substrate was of the same type used in the previous experiments (glass slide/20 nm Ti/ 20 

nm Au), as well as the equipment. To have a very smooth deposition a low potential (Es = -20 mV) 

was chosen; considering the achieved deposition rates, the necessary electroplating time was 

estimated to be 6 h to obtain a layer of bismuth about 60 m thick. 

The solution n.1 was prepared at about 25 °C (room temperature), by the previously described 

procedure. Its acidity was measured and resulted a pH = 0.13. The copper adhesive tape and the 

Teflon tape were applied as previously described. 

The substrate was then weighted using the precision scale, before the deposition, and its weight 

resulted: Wb = 0.7342 g. 

The electroplating proceeded regularly and smoothly for all its duration; the starting and ending 

currents were Is = -3.5 mA and -5.8 mA, respectively; the total transferred charge, as measured by the 

potentiostat, was Qt = -31.76 mAh. 

The current density with respect to deposition time for this process is shown in Figure 3.12. 

 

 
Figure 3.12- Current density - deposition time curve for the 60 m layer deposition. 

 

After the process end the sample was gently rinsed with DDW and let to dry at room temperature; 

then it was weighted again, still with copper and Teflon coatings: Wa = 0.8070 g. 

The absorber was then characterized, and the results will be described in the next chapter. 

 

3.4 Absorber array microlithographic mask fabrication 

After that the deposition of very thick bismuth layers was demonstrated, the efforts were aimed 

at producing absorber arrays. 

Bismuth patterned growth was obtained by masking the substrate with a photosensitive dielectric 

(photoresist) with patterned openings. The electroplating deposition in this configuration happens 

exclusively in correspondence with the openings, where the substrate gold is exposed and 

electroplating current can flow. 

Firstly, in order to reach such result, the microlithographic process [157] to obtain the necessary 

patterns by the photomask lithography [157] had to be developed. 
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In the photomask lithography technique, an optical mask1 is used to transfer the mask itself to a 

substrate coated with photoresist, making use of a suitable light beam. The whole procedure is 

detailed in Appendix A3. 

In order to develop a suitable microlithographic process for absorber fabrication [6, 7], the MA-

P1225 positive photoresist was chosen due to its thickness – spinning speed diagram: a 3000 rpm 

speed for 30 s nominally produces a 2.5 m thick film; the relatively thick walls help to confine the 

bismuth growth during the initial phase of the deposition. 

In the XACT microtechnology laboratory clean room, the whole microlithographic process was 

developed by using a 3” x 3” iron dioxide coated glass mask with several test patterns, each of them 

characterized by different shape (square, circle and triangle), sizes, tilting and gaps; the procedure 

described below was followed with the parameters reported in Table 3.6: 

 

a) Photoresist coating 

Samples prepared as in par. 3.4 were coated with a 2 m thick MA-P1225 undiluted photoresist layer 

with a Kemat Technology KW 4A spin coater at 2000 rpm (Table 3.6) for 60 s; A visual inspection 

confirmed the absence of pinholes. 

 

b) Photoresist baking 

Coated samples were baked in oven at 90 °C for 10 minutes in air. 

 

c) Photoresist exposure 

The photoresist exposure was performed using a Suss MA6 mask aligner in hard contact mode at 10 

mW/cm2 UV intensity for 30 s (Table 3.6).  

 

d) Photoresist development 

Photoresist was developed with MAD 331 developer at room temperature for 60 s.; samples were 

gently washed with deionized water and blown dry with nitrogen. 

 

Table 3.6 - Best patterning parameters. 

 

Parameter Value 

Spinning speed 2000 rpm 

Exposure intensity 10 mW/cm2 

Exposure time 30 s 

Development time 60 s 

 

The photoresist surface resulted regular and without pinholes; pattern elements showed well-

defined shape, with correct sizes, and vertical photoresist walls; upper corners resulted slightly 

rounded. 

 To proceed towards the bismuth absorber array fabrication, a layout was designed containing 

different 4x4 array patterns, each of them with 400 m pitch, whose different pad sizes and gaps 

range in the range 200x200 m2 to 375x375 m2, and 200 m to 25 m, respectively. 

 
1 An optical mask is a glass or quartz plate coated with an UV opaque layer, such as chromium or iron dioxide, etched 

according to a pattern; it is transparent to the UV radiation in these etched areas and opaque everywhere else. 
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Different patterns were designed according to the array design requirements (see chapter 2). The 

Arrays with different gaps were designed specifically to evaluate the minimum separation compatible 

with the bismuth lateral growth, in order to maximize the detector quantum efficiencies due to the 

array fill factor. Some auxiliary patterns were also added: a large 1 mm x 1 mm square to allow the 

deposited bismuth layer thickness measurement by optical microprofilometry, several long rectangles 

with different width and four circles to evaluate the uniformity and symmetry of bismuth growth.  

The pattern was transferred to a 3” x 3” glass plate coated with iron dioxide by direct laser writing 

at Dipartimento di Ingegneria of the Università di Palermo, with the following procedure. 

 

At first the mask plate was cleaned following a multi-step procedure: 

 

- degrease in trichloroethilene (TCE); 

- rinse in acetone; 

- final rinse with absolute ethanol. 

 

Then a microlithographic procedure, very similar to that reported in Par. 4.6, was executed with 

the addition of a further step for iron oxide chemical etching. The complete procedure is described 

below for sake of clarity: 

 

a) spin coating with MA-P1225 photoresist using a Kemat Technology KW 4A spin coater at 

4000 rpm for 60 s; 

b) photoresist baking in oven at T = 90 °C for 5 min; 

c) photoresist patterning by high-resolution direct laser writing; 

d) photoresist developing with ma-D 331 developer for 1 min at room temperature and 

successive rinsing in deionized water; 

e) iron dioxide wet etching, performed with a solution based on iron (II) chloride. 

 

The optical inspection of the whole layout evidenced the correct opening of all designed features. 

A microscope photo of the patterned mask is shown in Figure 3.13. 

 

3.5 Absorber array fabrication 

Substrates prepared as in par. 3.4 were employed for the bismuth array fabrication. 

The previously described test mask was specifically designed to study high thickness bismuth 

growth in small areas, and in particular: 

 

- to evaluate both shape and area stability during accretion of bismuth; 

- to estimate the bismuth layer morphology for different thicknesses; 

- to estimate the growth uniformity of single structures related to the overall pattern. 

 

The test mask patterns were transferred on substrates using the same microlithographic process 

described in Par. 4.6, points a) to d) of the list. The samples where then inspected with the optical 

microscope to check for defects in photoresist patterns. 
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Figure 3.13 - Optical microscope photo of the patterned photolithographic mask. 

 

The electroplating was then performed with the same equipment reported in par. 3.5 using the 

solution n. 1 at pH = 0.12, with the process parameters reported in Table 3.7. 

 

Table 3.7 - Bismuth electroplating parameters for samples with the test patterns. 

 

Sample Poterntial 

Es (mV) 

Deposition 

time (hh:mm) 

Bath stirring 

(rpm) 

Bath heating 

(°C) 

2D -50 1 300 NO 

2K -50  1 150 NO 

 

After the deposition, each sample was gently rinsed with DDW and let to dry at room 

temperature. 

The current - time diagram for the electroplating of sample 2D is shown in Figure 3.14; in this 

case, it wasn’t possible to normalize with respect to deposited area due to the high number of features 

and their different enlargement with respect to the pattern size caused by the lateral growth of bismuth 

structures. Current values are lower than those shown in Figure 3.12, due to the reduced deposition 

area of all patterned features with respect to the large surface of the sample considered in that picture. 

The regularity of the current trend and the low noise of the curve indicate the good process 

quality. 

Both optical microscope and SEM observations on growth structures evidenced that their surface 

areas increase with the layer height, and the stirring speed influences their shapes. 

A low magnification SEM photo of some structures grown in sample 2D is reported in Figure 

3.15. 

After these preliminary tests, absorber array were fabricated in accordance with the design described 

in chapter 2. Array patterns recorded in the mask were transferred on substrates following the 

previously described microlithographic process; the optical inspection evidenced no defects in the 

produced samples. The electroplating process was then performed using the solution n.1. All samples, 

after the deposition, were gently rinsed with DDW and let to dry at room temperature. 
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Figure 3.14 - Current - time diagram for 2D sample. 

 

Several samples were produced in order to study array characteristics as a function of the 

electroplating parameters; Table 3.8 reports a list of the most relevant experiments and the relative 

parameters. It was not possible to evaluate the area for 1H, 2G and 2F samples due to bismuth lateral 

growth. 

 An optical microscope image of the sample 2F absorber array is reported in Figure 3.16; the 

pixel size is about 360 x 360 m2, the gaps are ~40 m wide. 

 

Table 3.8 - Process parameters for the most relevant experiments on bismuth array electroplating. 

 

Sample Solution pH Area 

(cm2) 

Potential 

Es (V) 

Deposition 

time (hh:mm) 

Bath stirring 

(rpm) 

Bath heating 

(°C) 

10-2 n.1 0.13 1.1 -0.02 6 300 NO 

1H n.1 0.16 --- -0.05 3 300 NO 

2G n.1 0.15 --- -0.05 1 150 NO 

2F n.1 0.15 --- -0.1  1 300 NO 

10-1 n.2 n.a. 0.91 -0.2 1:10 300 NO 

2B n.2 n.a. 0.787 -0.5 3 NO NO 

 

The picture demonstrates a quite good geometrical layout of the 4x4 bismuth absorber array. In 

the next chapter 4 the characterization of fabricated arrays is described. 

 

3.6 Samples for Electrochemical Impedence Spectroscopy (EIS) 

In order to better characterize the electrodeposition process with solution n. 1 the electrochemical 

impedance spectroscopy technique was employed.  

To allow the development of this experimental activity, the sample 2A, with the same structure 

used for the other substrates for the electroplating process, was employed; Sample and bath 

parameters for the sample 2A EIS are described in Table 3.9. 
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Figure 3.15 - Low magnification SEM photo of some  

3D bismuth structures grown in 2D sample (Table 3.7). 

 

 

 
 

Figure 3.16 - Sample 2F, electroplated bismuth absorber array. 

 

 

Table 3.9 - Sample and bath parameters for 2A EIS sample. 

 

Sample Solution pH Area 

(cm2) 

Potential 

Es (V) 

Bath stirring 

(rpm) 

Bath heating 

(°C) 

2A n.1 0,17 1,56 -0.05 300 NO 

 

Details on the technique theory and obtained results will be given in chapter 4. 

 

 

  

500 m 

400 m 
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Chapter 4.  
 

ABSORBER CHARACTERIZATION 

 

4.1 Scanning electron microscope observation 

Several samples were examined by SEM (scanning electron microscopy) at both high- and low- 

magnification, to analyze the bismuth layer morphology, the geometry and size of the grown crystals, 

the presence of microscopic defects. In addition the thickness was measured. 

Measurements were performed at Dipartimento di Ingegneria of the Università di Palermo using  

two  a Phenom ProX and a FEI Quanta 200. 

Several SEM images of grown bismuth samples, both continuous layers and arrays, are shown 

in par. 4.6. 

 

4.2 Energy dispersive X-ray spectroscopy 

Energy dispersive X-ray spectroscopy (EDX or EDS) [158] is a chemical analytical technique 

based on X-ray emission by sample surface atoms when irradiated  by electron beams. This technique 

is usually implemented in SEMs. 

An electron in the inner shell of an atom can be extracted when hit by another electron with 

sufficient energy. An electron in an outer shell occupies the hole left in the inner shell and emits an 

x-ray photon whose energy is equal to the difference between the two energy levels.This energy is a 

signature of the chemical element and a study of the emitted X-rays and the measurement of the ratio 

between intensities provides information on the elemental composition of a material sample. The 

technique can be applied to very small volumes (some m3). 

Aim of these tests was to obtain information on the deposited layer composition and on the 

presence of byproducts of the deposition process. Results will be shown in par 4.6. 

 

 

4.3 Electrical bismuth layer characterization 

We used a four point probe method to characterize the electrical properties of the bismuth layer. 

A test current is injected through pins A and B and the voltage drop is measured between pins A’ and 

B’ using a high input impedance voltmeter, as represented in Figure 4.1. 

According to Ohm’s law the resistivity is: 
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Figure 4.1 - Four point probe method theoretical schematic. 

 

𝜌 =
𝑆𝑉𝑚

𝐿𝐼
     (4.1) 

 

where L is the distance between A1 and B1, Vm  is the measured voltage drop, 𝑆 = 𝑎𝑡 (𝑎, 𝑡 ≪ 𝐿) is 

the cross section of the layer; a and t are the sample width and thickness, respectively. In practical 

measurements all the four probes are placed on the same side of the sample (generally fabricated on 

a substrate), and they are equally spaced from each other; still, usually the sample dimensions don’t 

satisfy the condition 𝑎 ≪ 𝐿. 

In this case, including also the current spreading, the resistivity can be calculated by [159]: 

 

𝜌 =
2𝜋𝐿𝑉𝑚

𝐼
      (4.2) 

 

This formula requires spacings among side-by-side measurement tips (A-A1, A1-B1, B1-B) is 

equal for all couples; (4.2) is most precise when sample dimensions are very large (ideally →∞), and 

each probe is distant from the sample boundaries by an amount not too small (e.g. some millimeters). 

The advantages of this method are: 

 

- the low influence of probe contact resistances on measurements; 

-  the easy implementation;  

 

For practical applications, in which above conditions are not generally fully verified, the method 

can still be used by introducing a correction factor f depending on specific cases as in (4.3); details 

on its evaluation are reported in [159]. 

 

𝜌 =
2𝜋𝐿𝑉𝑚

𝐼
𝑓      (4.3) 

For thin layers and if t < L/2 the correction factor results: 𝑓 = (
1

2𝑙𝑛2
)

𝑡

𝐿
 [159]. 
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4.4  Electrochemical impedance spectroscopy for bismuth layers 

The electrochemical impedance spectroscopy (EIS) is an efficient, non-intrusive technique able 

to provide kinetic information on electrochemical processes [160]. 

It’s based on the perturbation by small amplitude sine voltage waves of the d.c. potential 

difference applied to the electrochemical cell WE and CE. Varying the frequency of the perturbing 

signal allows to build an impedance spectrum of the system and to study phenomena occurring at 

different frequencies. 

It’s also possible to develop electric equivalent circuits for different processes [160, 161]. Their 

schematic components are related to phenomena providing information on the growth mechanism, as 

non faradaic current due to double layer charging/discharging, current flowing in the solution, 

faradaic current due to charge transfer, adsorption, diffusion that take place during the process itself.  

Different electrochemical processes can be modeled by electrical equivalent schematics. 

In the general process, the double layer (par. 3.2) is electrically represented by the parallel of the 

double layer capacitor and the faradic impedance, whose structure depends on the reaction nature 

(Figure 4.2); if 𝑍̅ = 1/𝑌̅ is the double layer impedance, in which 𝑌̅ is the electrical admittance, 𝑍𝑓
̅̅ ̅ =

1/𝑌𝑓̅ is the faradic impedance, and Cdl is the double layer capacitance, it results: 

 

𝑌̅ = 𝑌𝑓̅ + 𝑖𝜔𝐶𝑑𝑙     (4.4) 

 

 
 

Figure 4.2 - Double layer equivalent circuit. 

 

The solution between the WE and the RE is schematized by a resistor Rs,  in series with the  

double layer impedance; the complete impedance (Figure 4.3) expression for the generic 

electrochemical reaction between the WE and the RE is: 

 

𝑍̅𝑡𝑜𝑡 = 𝑅𝑠 +
1

𝑌̅𝑓+𝑖𝜔𝐶𝑑𝑙
      (4.5) 

 

 
 

Figure 4.3 - Solution between the WE and the RE equivalent  

electric schematic in the general process. 

 

If the reaction is a simple electron transfer without any diffusion or adsorption, the faradic 

impedance is represented by a resistance Rct (charge transfer resistor) i.e. a differential resistance 

related to the slope of the current-potential curve at the measurement steady state potential. 
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Substituting 𝐺𝑐𝑡 = 𝑅𝑐𝑡
−1, the impedance expression becomes: 

 

𝑍̅𝑡𝑜𝑡 = 𝑅𝑠 +
1

𝐺𝑐𝑡+𝑖𝜔𝐶𝑑𝑙
     (4.6) 

 

and the equivalent circuit, including the solution resistance Rs, is shown in Figure 4.4. 

In the case of a one-step reaction with diffusion the faradic impedance is the series of two 

different components: the charge transfer resistor Rct and the Warburg impedance 𝑍̅𝑊, related to the 

diffusion. 

 

 
 

Figure 4.4 - Equivalent circuit for a simple electron transfer reaction  

(simplified Randles equivalent circuit). 

 

In this case the impedance expression is given by (4.7) with 𝑌̅𝑓 =
1

𝑅𝑐𝑡+ 𝑍̅𝑊
, and the complete 

equivalent network (Randles equivalent circuit) is shown in Figure 4.5. 

 

𝑍̅𝑡𝑜𝑡 = 𝑅𝑠 +
1

𝑌̅𝑓+𝑖𝜔𝐶𝑑𝑙
      (4.7) 

 

 Figure 4.6 is the equivalent circuit of a one step reaction with absorption. The faradic impedance 

is constituted by the series of the charge transfer resistor and the capacitor C: 

 

 
Figure 4.5 - Randles equivalent circuit for the one-step reaction with diffusion. 

𝑌̅𝑓 =
1

𝑅𝑐𝑡+ (𝑖𝜔𝐶)−1      (4.8) 

 

𝑍̅𝑡𝑜𝑡 = 𝑅𝑠 +
1

𝑌̅𝑓+𝑖𝜔𝐶𝑑𝑙
      (4.9) 

 

The related electric equivalent schematic is reported in Figure 4.6. 

A more general case is represented by a process constituted by a one step reaction with both 

adsorption and diffusion; the complete expression of the faradic impedance is: 

 

Z̅f =
1

Y̅f
= Rct +  Z̅W +

1

iωC
     (4.10) 
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Figure 4.6 - Equivalent electric schematic for the one-step reaction with absorption. 

 

in which: 

𝑍̅𝑊: Warburg impedance; 

C: absorption capacitance, 

 

and the impedance 𝑍̅𝑡𝑜𝑡 is given by (4.5) in which 𝑌̅𝑓 is the reciprocal of (4.10); the related electrical 

equivalent model is shown  in Figure 4.7. 

The bismuth electroplating using solution n.1 is a reaction described by Figure 4.7 model. 

 

 

 
 

Figure 4.7 - Electrical equivalent schematic of the one step reaction 

with both adsorption and diffusion. 

 

Impedances of all the above equivalent networks can be graphically represented using  Bode’s  

and Nyquist’s plots. 

The first show the impedance module |𝑍|̅̅ ̅̅  logarithm with respect to the frequency logarithm , and 

the impedance phase ⊲ 𝑍 with respect to the frequency logarithm respectively. 

The Nyquist’s diagram represents the impedance imaginary part 𝐼𝑚(𝑍̅) as a function of the real 

part 𝑅𝑒(𝑍̅) and the frequency (or angular frequency) as a parameter. In electrochemistry  −𝐼𝑚(𝑍̅) is 

usually plotted in the Nyquist’s diagram. 

The various components represented in the equivalent electrical circuits can be identified 

analyzing the Bode diagram. Horizontal lines are related to resistors, lines with slope  -1 (-45° angle) 

are due to capacitors, and lines with slope  -0.5 (-26.56°) are related to the Warburg component, 

representing the diffusion process. 

A typical amplitude Bode’s plot for a general electrochemical process with involved several 

phenomena is shown in Figure 4.8 where lines indicated by 1, 2 and 3 represent, respectively, an 

absorption, a diffusion, and the double layer capacity. 

Some component values in above equivalent circuits can be directly evaluated by Nyquist’s 

diagrams; an example is reported in Figure 4.9 for the simple electron transfer reaction (see Figure 

4.4.). 
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Figure 4.8 - Typical module Bode’s plot for a general electrochemical process. 

 

 

The Rs value is given by the left intercept of the semi-circumference (ideally 𝜔 → ∞) with 𝑅𝑒(𝑍̅) 

axis, while the semi-circumference diameter is Rct. 

For more complex reactions Nyquist’s diagrams are more complicated; in general the semi-

circumference is substituted by a less than 180° arc that, at low frequencies, instead of approaching 

the 𝑅𝑒(𝑍̅) axis, is connected to a straight line with a positive slope, and |𝐼𝑚(𝑍̅)| increases when 𝜔 →

0; or, in other processes, more than one arc can appear in the diagram. 

In such circumstances electrical component values can be evaluated by plotting the Nyquist’s 

diagram by experimental data, then by recognizing different feature composing it, and obtaining the 

related information by each of them. 

The other component values in equivalent circuits can be then calculated by analytical 

expressions; for example, measured 𝑍̅𝑡𝑜𝑡 = 𝑍̅𝑡𝑜𝑡
∗  at 𝜔 = 𝜔 ∗, and evaluating Rs and Rct from(4.6) the 

double layer capacitance Cdl can be obtained. 

 

 
Figure 4.9 - Evaluation of Rs and Rct values by Nyquist’s diagram. 
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The bismuth sample characterization by the EIS technique was performed at the Electrochemical 

Material Science Laboratory of the Dipartimento di Ingegneria of the Università di Palermo using a 

Parstat 2263 potentiostat in the three electrode configuration. 

 

4.5  Other absorber characterization methods 

For x-rays absorption purposes the height and profile of the layer are of great importance. The 

height must be uniform all over the detector to ensure a space uniform performance. In order to 

measure the layer height and uniformity we employed the following techniques: 

 

- sample weighting before and after deposition; 

- confocal sensor microprofilometer measurements. 

 

 

1) Sample weighting before and after deposition 

Substrates coated with both the copper and the teflon film were weighted with a precision 

(100g) scale before electroplating; after electroplating, rinsed with bidistilled water and dried at 

room temperature a second weight measurement was done to evaluate the amount Pdep of deposited 

material. 

This allows to evaluate the bismuth layer thickness independently of the electrical efficiency of 

the process: 

 

𝑧𝜂 =
𝑃𝑑𝑒𝑝

𝑑𝐴
      (4.11) 

 

where: 

d: bismuth density (9.78 gcm-3); 

A: deposition area. 

 

The deposited thickness z, in the hypothesis that the electric efficiency of the process 𝜂𝐸 = 1, 

can be also calculated by (see (3.2): 

𝑧 =
𝑀𝑄

96500𝑛𝑑𝐴
      (4.12) 

 

in which 𝑀 = 208.98 gmol-1 and n=3 (number of transferred electrons per interested atom) for 

bismuth. The charge Q is measured by the potentiostat and therefore the electrical efficiency of the 

process can also be calculated: 

 

𝜂𝐸 =
𝑧𝜂

𝑧
      (4.13) 

 

2) Confocal sensor microprofilometer measurements 

Another, more precise, technique to evaluate deposited layer heights is based on the use of an 

optical microprofilometer, shown in Figure 4.1 (schematic) and in Figure 4.11 (photos). 

The equipment, installed in the XACT laboratory class 1000 clean room, finalized to x-ray 

equipment and components assembling, testing and storage, is constituted by: 
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- the variable pressure, static pressurization system (Figure 4.10 and Figure 4.11a); 

- the optical, contactless confocal sensor Micro-Epsilon ConfocalDT IFS2405-10 (Figure 4.10 and 

A in Figure 4.11b) with Micro-Epsilon IFC 2421 controller; 

- the computer-controlled, motorized x-y-z micropositioning system (B in Figure 4.11); 

- the control computer (C in Figure 4.11). 

 

Also, a proprietary developed post-elaboration software allows to refer all measurement to a 

reference plan and to reduce noise by smoothing curves. 

All constituent parts will be now briefly described. 

 

 

 
 

Figure 4.10 – Schematic of the optical microprofilometer. 

 

 

      
a)      b) 

Figure 4.11 - Optical microprofilometer system at XACT INAF-OAPa laboratory; a) static pressurization system;  

b) confocal sensor (A), micropositioning system (B), and control computer (C). Sensor controller, computer-to-motor 

interfaces and power supplies are at the left of B. 

 

B 

A 

C 
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Optical, contactless confocal sensor Micro-Epsilon ConfocalDT IFS2405-10 with Micro-Epsilon 

IFC 2421 controller [162, 163]. 

This system is based on a high precision distance sensor and it was developed for both static and 

dynamic surface profile evaluation. The confocal sensor receives LED emitted white light in the 

controller by a multimode core optical fiber, and its optical lenses focus the different chromatic light 

components at different distances on the measuring surface. Reflected light components are sent, by 

the same optical path (lenses plus fiber), to the controller, in which the related spectral analysis in 

executed, and obtained data are processed to calculate distances from the sensor to the sampled 

surface points, allowing profile reconstruction. 

Main Confocal DT IFS2405-10 sensor technical features are reported in Table 4.1. 

 

Table 4.1 - Main ConfocalDT IFS2405-10 sensor technical features. 

Measuring range 10 mm 

Probe optical resolution 60 nm 

Light spot diameter 16 m 

Sampling rate Up to 6.5 kHz 

 

The block schematic of the controller is reported in Figure 4.12 [162]. 

The system firmware in the controller allows setting several parameters (e.g. measurement 

configuration, exposure time, signal quality), in order to optimize measurement results with respect 

to the analyzed surface (diffusing or reflecting, roughness degree, etc.). 

 

 
 

Figure 4.12 - Block schematic of the IFC 2421 controller [162]. 

 

Computer-controlled, motorized x-y-z micropositioning system 

The sensor is mounted on a proprietary motorized x-y-z micropositioning system (Figure 4.13) 

needed both to set the measuring starting point and to scan surface in one or two dimensions to obtain 

its height or roughness 1D or 2D profile. 
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Figure 4.13 - Detail of the computer controlled, motorized  

x-y-z micropositioning system; A: sample holder. 

 

 

4.6 Absorber characterization 

Bismuth layers grown by  solutions n.1 and n.2 exhibited very different features (morphologies, 

thicknesses, defects), so the characterization using the  described techniques was needed to evaluate 

their properties and features, and to define the best fabrication processes, as described in chapter 3. 

The acid solution produced best results and was therefore selected. In the following we will firstly  

show two characterizations of samples produced using the solution n.2 to demonstrate the correctness  

of our choice, and then both planar and array absorber characterization will be reported. 

 

Solution n.2 sample characterization examples 

 

Sample 2B 

The process parameters for this sample are reported in Table 4.2. The deposition area is defined 

by the manually placed Teflon film, so it is different for each sample. 

 

Table 4.2 - Sample 2B process parameters. 

 

Sample Area 

(cm2) 

Potential 

Es (V) 

Deposition 

time (hh:mm) 

Bath stirring 

(rpm) 

Bath heating 

(°C) 

2B 0.787 -0.5 3 NO NO 

 

The optical microscope observations show a uniform surface, almost defectless, dark colored, 

and with about uniform height (at the observation scale); several side dendrites along borders were 

grown. 

The scotch test evidenced no material picking, so indicating very good layer adherence to the 

substrate. 

The initial (before the electroplating) and final sample weight (with both copper and Teflon 

films) were wb = 0.7948 g and wa = 0.8378 g; the deposited bismuth weight resulted Pdep=0.043 g; 

but it was not possible to calculate the layer height by (4.1) due to the long  dendrites, bringing enough 

mass out of the layer. 

Then SEM observations and EDX analysis were performed. 

A 
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In Figure 4.14 SEM images of the sample surface, both at low (a) and high (b) magnification are 

reported. 

 

    
a)     b) 

Figure 4.14 - Low (a) and high (b) magnification SEM photos of the 2B sample surface. 

The surface is generally uniform, but bismuth typical crystals are not evident. 

The EDX analysis graphic is shown in Figure 4.15. 

 

 
 

Figure 4.15 - EDX analysis for the 2B sample. 

 

In this sample  elements other than bismuth are present. Bismuth is present at 70.18% level in 

weight (bismuth has a high atomic mass), but carbon and oxygen are present with high atomic 

percentages. Probably this is the reason for the surface morphology shown in Figure 4.14. 

 

Sample 10-1 

The experimental parameters for this process are reported in Table 4.3. 

The optical microscope observation showed a non-uniform bismuth layer. 

 

Table 4.3 - Sample 10-1 process parameters. 

Sample Area 

(cm2) 

Potential 

Es (V) 

Deposition 

time (hh:mm) 

Bath stirring 

(rpm) 

Bath heating 

(°C) 

10-1 0.91 -0.2 1:10 300 NO 

 

10 m 30 m 
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After the process the weight increased by 0,011 g, corresponding to an approximate 12 m layer 

height (overestimated since about 1 mm dendrites are present on the sides) The dendrites are smaller 

than in 2B sample because of lower deposition potential and shorter process time are.  

The SEM observations evidenced many small vacancies, approximately round with some micron 

diameter, or with rectangular shape, whose length was about 5-6 m. This can be observed in Figure 

4.16 a and b. Small crystal structures are generally present. 

The EDX analysis showed a large oxygen presence, reducing the bismuth quality (Figure 4.17). 

These two examples synthetize the general characteristics of samples processed with solution 

n.2. This bismuth layers contain more spurious elements, as shown by EDX examination, with respect 

to solution n.1 process. Vacancies often appear in the film and lateral dendrites (also some millimeter 

long) are evident. The size of the dendrites increases with deposition potential and time. No dendrite 

are present in samples grown with the other process. 

 

    
a)                      b) 

Figure 4.16 –SEM micrographs of two different areas of sample 10-1 surface (a, b);  

several vacancies are evident. 

 

The low bismuth quality and lateral dendrites, that would cause thermal shorts between array 

pixels, of layers produced by solution n.2 depositions made it non suitable to produce the needed 

bismuth absorber arrays. 

 

Very thick bismuth layer (absorber fabrication test) characterization 

The large area, very thick bismuth layer, fabricated as a test for absorber production, fabricated 

by the electroplating process with solution n.1 (par. 3.3), observed at the optical microscope, 

evidenced a fair, uniform and defect-free surface, without dendrites. 

 

10 m 10 m 
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Figure 4.17 - EDX analysis for the 10-1 sample. 

 

The process parameters are described in detail in the par. 3.3. During the deposition the current 

density curve with respect to time (Figure 3.12) evidenced some noise. 

The initial and final weights of the sample (with both copper and teflon films) were Wb = 0.7342 

g and Wa = 0.8070 g; the deposited bismuth weigh was Pdep = 0.0728 g. Assuming the nominal 

bismuth density, the thickness is about 67 m. 

The electroplating process resulted in more than 88% efficiency. The four point method 

characterization evidenced a resistivity  of about 1.5.10-5 .m; this value is higher than the 1.15.10-6 

.m of pure crystalline material, probably due to the presence of several crystal phases. SEM 

observations evidenced a strongly polycrystalline structure without vacancies (Figure 4.18a,b), thus 

confirming our hypothesis. The bismuth crystal structure is well visible in Figure 4.18b. 

The absorber lateral view, used to estimate the layer thickness, is shown in Figure 4.18c. The 

66.7 m value measured confirms the thickness estimated by the layer weight. 

The EDX analysis results are reported in Figure 4.19 and show a contaminant free deposition at 

the instrument sensitivity level apart the two main peaks, secondary bismuth peaks can be observed.  

 

       
            a)    b)      c) 

Figure 4.18 - Electroplated large area bismuth absorber SEM micrographs:  

low magnification (a); high magnification (b); lateral view with about 67 m 

 measured thickness evidenced (c). 

 

Absorber array characterization 

Process parameters for most representative absorber array fabrication are reported in Table 4.2. 

The optical microscope observations (Figure 4.) evidenced what follows [164]: 

66.7 m 

100 m 10 m 30 m 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- electroplating voltage influences bismuth morphology; lower (in absolute value) voltages (e.g. -

50 mV) produce smoother surfaces with respect to higher voltage (e.g. -100mV); 

- about 10% enlargement on each side was estimated for each bismuth pixel with respect to the 

related mask layout; this is due to the lateral deposition during the metal accretion. This 

enlargement depends also on the process time; 

- the deposition time influences also the pixel stacking during growth: the 3h deposition (Figure 

4.20b) produced also the smallest lateral dendrite formation; 

- the stirring speed influences also the pixel growth as it can be seen comparing Figure 4.20a and 

c, related to processes  at 150rpm and 300rpm respectively. In Figure 4.20a pixels are almost 

square with right, slightly rounded, angles, but there is less uniformity in lateral growth; in Figure 

4.20c upper row pixels (in the picture) show increased shape deformation near the upper-left 

corner, probably due to the bath stirring. 

 

       
a)    b)         c)  

Figure 4.20 - Optical microscope photos of 4x4 bismuth arrays; a) -50mV, 1h, 150rpm  

(sample 2G); b) -50mV, 3h, 300rpm (sample 1H); c) 100mV, 1h, 300rpm (sample 2F);  

the pixel size is about 360x360m2; about 40m gaps in c). 
 

The calculated fill factor for Figure 4.20c array was about 81%. 

400 m 400 m 400 m 

Figure 4.19 - EDX analysis of the large area bismuth absorber. 
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Using the optical microprofilometer the large area square (auxiliary feature) heights in the array 

mask pattern (bottom right square in Figure 4.1) for Table 3.8 samples were measured. Since all the 

features in each pattern grew during the same process their thicknesses can be considered the same. 

 The surface profile acquired for the 2G sample large square, after the mathematical smoothing, 

is reported in Figure 4.21 as an example. 

The wide amplitude noise, evidenced in the plot oscillations, is due both to the high surface 

roughness and to irregular reflections by the crystals. The average height value is about 42 m. 

The 1H and 2F sample thicknesses resulted 55 m and 15 m respectively; the sample 1H 

thickness is about 60 m, as specified for the high energy x-ray absorber array. This demonstrates 

the feasibility of microcalorimeters specified in the MISTERX project. 

Absorber array characteristics can be optimized. In particular: 

 

- evaluating the pixel size increase with their height the array fill factor can be increased; 

- stirring the solution more uniformly the array pixel shape and size turn out more regular; 

- using a much thicker photoresist to pattern the arrays prevents the growth of lateral dendrites . 

 
Figure 4.21 - Optical profilometer large square surface profile for the 2G sample. 

 

4.7 Electrochemical Impedance Spectroscopy characterization 

In order to study the kinetic of electrodeposition process with solution n.1, EIS spectra have been 

recorded at three different times during the electrodeposition at -0.05 V vs. Ag/AgCl with frequency 

ranging between 100 mHz and 1 MHz at each time. 

EIS spectra were recorded at t = 0 min soon after the start of electrodeposition and at t = 10 min, 

t = 20 min and t = 30 min (end of electrodeposition). In Figure 4.22 and Figure 4.23 the EIS spectra 

for 2A sample in the Bode’s plot representation are shown. Figure 4.22 clearly shows the decreasing 

of impedance module in low frequency region by increasing the deposition time. This can be 

explained by considering that a reduction of charge transfer resistance occurs. Modeling with a one 

time constant equivalent circuit R(RQ) it is possible to estimate a reduction of the charge transfer 

resistance from ~ 200 ·cm2 to ~ 30 ·cm2. This can be explained by considering a change in the 

kinetic of electrodeposition process since at low deposition time the bismuth is electrodeposited on 

gold substrate while at high deposition time the bismuth is electrodeposited on growing bismuth layer. 

According to this, a reduction of the kinetic constant k0 to take into account the activation energy for 
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the electrodeposition process must be considered. The charge transfer resistance is a function of the 

kinetic constant k0. 

It is also evident that the phase angle values move to lower values by increasing the deposition 

time (Figure 4.23). This can be explained by considering that by increasing the bismuth layer 

thickness the metallic behavior of the electrode increases. Consequently, a reduction of the phase 

angle toward zero (pure resistive behavior) occurs. The equivalent circuit R(RQ) shows a reduction 

of the series resistance from ~ 18 ·cm2 to ~ 4 ·cm2. The series resistance accounts for the 

electrolyte resistance and for electrode resistance. By assuming that the electrolyte resistance doesn’t 

change during the electrodeposition time, the reduction of series resistance is probably the 

consequence of a reduction of the electrode resistance due to the growth of a bismuth layer thicker 

than the thin gold substrate. 

 

 

 
Figure 4.22 - Bode’s module plot for 2A sample (EIS parameters in the text). 
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Figure 4.23 - Bode’s phase plot for 2A sample (EIS parameters in the text). 

 

4.8 Conclusions 

The characterization of fabricated samples of bismuth deposited layers and absorber arrays was 

performed by different techniques. Some guidelines in order to optimize growth processes to fabricate 

absorber arrays for hard x-ray microcalorimeters were set. 

Lower (in absolute value) electroplating voltages (50 mV) produce smoother surfaces with 

respect to higher ones .  

About 10% enlargement for each side of each pixel with respect to the mask pattern dimensions 

was estimated, due to lateral bismuth deposition. This value depends on the deposition time.  

The order in pixel growth depends on deposition time.  High values (several hours) tend to 

produce small lateral dendrites .  

The stirring speed influences the pixel growth by deforming their surface shape. 

In order to optimize the array fabrication, the following rules must be applied: 

 

- the array fill factor must be optimized by evaluating pixel enlargement due to their lateral 

growth in array pattern design, so to minimize gaps; 

- speed and uniform stirring must be set properly to fabricate arrays with shape and size 

pixels within the specified parameters 

- photoresist to define the pixel pattern must be thick enough to prevent heat shorts between 

adjacent pixels. 

 

The electrochemical impedance spectroscopy technique was also applied to characterize the 

electroplating process, to trim process parameters and to produce better quality bismuth layers. 
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Presently, further EIS data analysis is ongoing, to best characterize and optimize the bismuth 

deposition process. A new electroplating cell is under fabrication, allowing more accurate control of 

deposition parameters and soft stirring by recirculation of the solution, in order to avoid side tilting 

effects during the pixel growth. 
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Chapter 5 

 

CHARACTERIZATION OF FILTERS FOR MICROCALORIMETERS 

5.1 Scope of the activity 

Cryogenic x-ray detectors require suitable filters to be shielded by several perturbative both 

external and internal factors: radio-frequency (RF), microwave (MW), infrared (IR), visible (Vis), 

ultraviolet (UV) radiation, and molecular contamination originating inside the spacecraft. The warm 

surfaces inside the detector cooling system constitute a thermal load for microcalorimeters; mainly 

IR radiation, Vis, UV radiation is emitted by different space bodies and constitutes a relevant optical 

load; RF is generated by onboard telemetry systems and electronics. Moreover, secondary electrons 

and low energy ions generated by the impact of energetic (from few keV to hundreds of Mev) cosmic 

particles with the spacecraft may hit the microcalorimeters depositing an amount of energy in their 

sensitivity range, thus producing a signal similar to X-ray photons. Filters may partially scatter such 

low energy particles and thus play a role in the total detected background events. 

Furthermore, thermal filters have to be characterized by very high transmission in the X-ray band, 

to avoid signal loss; still, they have to resist to both the strong mechanical stress and the very intense 

acoustic waves produced by the spacecraft launch. 

Another detrimental effect for thermal filters is due to the molecular contamination, produced by 

the particles in the surrounding chambers sticking on them and thus causing a reduction of the low 

energy X-ray sensitivity. 

The characterization of microcalorimeter filters is aimed to evaluate most physical (mechanical, 

acoustic, thermal, electromagnetic, X-ray transmission) features of these devices, to verify the 

compliance of fabricated items with flight requirements. In particular, related to Athena mission, 

specifications are set by the ESA standards [165]. 

As a complementary activity for microcalorimeter design and fabrication, a thermal filter 

characterization activity was performed, related to two different device types: 

 

- Athena X-IFU baseline thermal filters based on thin polyimide; 

- Filters based on thin silicon nitride (Si3N4) membranes, investigated as a possible alternative 

to polyimide ones both for Athena and other future high-energy space missions. 

 

Athena X-IFU baseline filters 

The X-IFU microcalorimeters will operate at a temperature close to 100 mK inside a 

sophisticated multi-stages detector cooling system (DCS). To allow the X-ray photons, focused by 

the large area Athena telescope, to reach the X-IFU detector at the focal plane, windows have to be 

opened on the cryostat thermal and structural shields. Thermal filters (TF) need to be mounted on 

such shields to attenuate the radiative heat load from warm surfaces, but they are required to be highly 

transparent in the X-ray energy range of interest. For this reason, the TFs need to be very thin and 

made of light materials, but at the same time they have to be resistant enough to withstand severe 

launch stresses and space environment radiations [13, 57].  

The TFs, beside protecting the detector from IR radiative load, have to protect the detector from 

molecular contamination and attenuate radio frequency (RF) generated from the spacecraft telemetry 

and onboard electronics. The TFs also contribute together with an optical blocking filter (OBF), 

mounted on a filter wheel, to reduce the optical load from bright UV/Vis astrophysical sources [166]  
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Athena X-IFU baseline filters [167, 168, 169] are made of a thin (45 nm) polyimide membrane, 

coated by a 30 nm aluminum layer; the membrane is glued to a hexagonal mesh, made by SAE 304 

stainless steel for all filters except for the coldest one operating at 50 mK, that is the temperature of 

the detector array. For the coldest filter, the niobium has been currently the selected material for the 

mesh to avoid any residual magnetic field that may affect the TES sensors and SQUID amplifiers. 

Stainless steel meshes are also plated with a 5 m gold layer to fully absorb fluorescent iron emission 

lines due to background particle collisions. The complete structure is then fixed to a suitable metallic 

frame. 

Polyimide, mainly commercially sold with the trademark KAPTON® [170], is a polymer 

developed by DuPont industries whose chemical name is poly (4,4'-oxydiphenylene-

pyromellitimide), and its chemical formula is given in Figure 5.1. 

 

 
 

Figure 5.1 - KAPTON chemical formula. 

 

The polyimide is used very advantageously in space applications [171, 172] due to its high 

performing characteristics [173]. In particular, this material shows a very high mechanical resistance 

in a wide temperature range (-269 ÷ 400 °C) [173] and a high X-ray transmission [174]. 

SAE 304 stainless steel is an austenitic Cr-Ni alloy, characterized by 200 GPa Young modulus 

[169], very suitable for mesh fabrication able to fully satisfy the specification on filter mechanical 

features (see below in this par.). Niobium is a soft and ductile metal, with 103 GPa Young modulus 

[169], that has no spontaneous magnetic properties. For this reason, the mesh of the coldest filter, 

close to the detector, will be fabricated using niobium, so the static magnetic field application on the 

latter is avoided [168]. 

The location of the thermal filters with respect to the focal plane and their associated diameter 

following the X-ray beam aperture from the telescope and the modulated X-ray calibration sources 

have been subject to repeated design change during the mission development phase A. Here, I discuss, 

the design of the filters presented to ESA at the Instrument Preliminary Requirement Review at the 

end of phase A. Such Athena X-IFU baseline filters have a circular shape, with clear aperture 

diameters ranging from 26 to 100 mm; their hexagonal meshes have different pitches, ranging from 

2 to 5 mm, with rectangular wire cross-sections, whose dimensions are 30 mm (width) x 60 mm 

(thickness) for the 26 mm and 56 mm diameter filters, and 65 mm (width) x 130 mm (thickness) for 

the larger diameters ones. In Figure 5.2 the photo of a sample filter with a 30 mm diameter is reported. 

A set of five filters, named by the operating temperature in Kelvin as TF0 (operating at 0.05 K), 

TF2, TF30, TF100, TF300, with 26, 56, 76, 88, and 100 mm diameter, respectively, mounted as a 

stack, will constitute the complete thermal filter assembly for the X-IFU system. In particular, the 

filters TF0 and TF2 are part of the Focal Plane Assembly (FPA) while the larger and outer filters are 

part of the so-called Aperture Cylinder (AC) of the Dewar (Figure 5.3). The X-ray transmission values 
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at specific photon energies of the stack, including molecular contamination, according to the X-IFU 

scientific requirements is reported in Table 5.1. 

Related to IR attenuation required by the filter stack, there are mainly two design specifications: 

 

- the radiation heat load on the cold stage from warm surfaces has to be at least two orders of 

magnitude less than the sum of the conductive contribution and the dissipated sensor bias 

power; 

- the photon shot noise contribution at the detector resolution has to be less than 0.2 eV FWHM. 

 

About RF attenuation, the specification requires that both TF2 and TF300 filters, that are installed 

in related Faraday cages, have to attenuate the RF radiation at least 30 dB in the range 30 MHz ÷ 18 

GHz. 

 

   
 

Figure 5.2 - Photo of an Athena X-IFU demonstration filter sample with 30 mm aperture diameter. The thin film is 

polyimide 45 nm thick coated with 30 nm of Al, and the hexagonal mesh with 5 mm pitch is SS plated with gold.  

Mesh wires have a section of 65 m (width) x 130 m (thickness) 

 

 

Furthermore, the specification on mechanical features demands filters to resist: 

 

- to the differential pressure load of 1 mbar; 

- to mechanical vibrations at the launch; 

- to a reasonable number of thermal cycles. 

 

Frame 

Mesh 

Polyimide 
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Figure 5.3 - X-IFU detector cooling system (DCS) schematic,  

showing the thermal filters and the aperture cylinder. 

 

 

Table 5.1 - X-ray transmission values at different energies of the whole X-IFU thermal filter stack, 

including molecular contamination, according to the scientific requirements. 

 

Energy (keV) Transmission 

0.35 0.21 

1 0.76 

7 0.9 

9.5 0.9 

 

Here, reported filter specifications and structure have to be considered as referred at the present 

work time, since they will be optimized changes during the Athena design development. 

 

Silicon nitride filters 

Silicon nitride filters are being developed as a possible alternative with respect to polyimide ones 

for future space missions. 

Silicon nitride is a crystalline material that can have three different crystallographic phases, most 

common of which, -Si3N4 and -Si3N4, have trigonal and hexagonal structures, respectively. It is 

highly mechanically resistant in a wide temperature range, and has 310 GPa Young modulus [175]. 

Such filters are made of a thin (40 – 150 nm thickness) Si3N4 membrane coated with 15 ÷ 30 nm 

aluminum layers on one or both sides; two filter series were fabricated by AMETEK (Finland), 

according to the following structures: 

 

C2 series - 15 nm Al/40nm Si3N4/15 nm Al 

C3 series - 10 nm Al/20nm Si3N4/10 nm Al 

 



81 
 

In many samples the membrane is also supported by a silicon mesh. Filters are mounted in TO8 

frames, as depicted in Figure 5.4. 

 

 
 

Figure 5.4 - C2-1 filter mounted on a TO8 frame. The clean aperture of the filter is 8 mm. 

 

The filter characterization activity performed so far has been mainly aimed towards the 

mechanical and electromagnetic property evaluation for Athena X-IFU baseline filters, while it 

concerned radiation damage effects for Si3N4 filters. In the next paragraphs, the performed 

characterization activity will be described in detail. 

 

5.2 Mechanical characterization of X-IFU filters 

The mechanical characterization of two TF0 and TF2 representative filters was carried out to 

evaluate both the filter deformation under 1 mbar static pressure and the stress causing the maximum 

deformation before filter failure; The tests also allow comparing the expected performances of the 

theoretical design with the experimental results. 

This activity was performed by using an optical microprofilometer installed in a class 10000 

cleanroom at the INAF-OAPa XACT laboratory (Figure 4.10 chap. 4). This system was described in 

detail in paragraph 4.5; for this application, the static sample pressurization system (Figure 4.11a) 

was employed. 

 

Samples 

The tested filters, named Athena-01-3-11-Rev-A4-Exception Nb (sample n.1) and Athena-01-3-

11-Rev-A4 D57 S/N #2 (sample n.2), both with 57 mm internal diameter, are made of polypropylene 

stretched foil (Basf Novolen 1302L) whose thickness is 600 nm, coated with a 40 nm thick titanium 

layer; the polymer is supported by a SS 304 honeycomb mesh with 97% nominal transmission, with 

a different geometry for the two samples, as described in Table 5.2. 

 

Table 5.2 - Mesh features for samples n.1 and n. 2. 

 

Sample Mesh material Mesh pitch 

 (mm) 

Arm section (thickness x width) 

(m2) 

N.1 Niobium 2  50 x 30 

N.2 Stainless steel AISI 304 2 60 x 30 
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First, these two samples were employed to develop the static pressure characterization procedure 

for Athena filters, as these ones are very delicate and expensive. 

 

Test procedure 

In order to perform static pressure tests, a suitable preliminary procedure as to be followed: 

 

1) Sample mounting on the sample holder. 

The optical profilometer can test circular, up to 100 mm internal diameter filters, and smaller, 

hexagonal shaped ones; in order to apply the test pressure, they are mounted on ad hoc filter 

holders, placed on the x-y-z micro-positioning system, in which the pressure sealing is 

guaranteed by an o-rings. 

Before starting tests, it’s necessary to install the right holder, to clean the o-ring removing any 

dust particles, and to fix the filter to test to the holder by proper screws. 

 

2) Pressurization system water filling. 

The pressurization system operates by providing air pressure according to the water level 

difference in the two A and B arms when the exit pipe is closed (Figure 5.5). The pressure 

resolution is 0.1 mbar, given by the 1 mm minimum water level difference that can be read. 

To perform tests, we initially decide the pressure to apply and slowly pour water to obtain the 

related level difference (1 mm of water difference corresponds to 0.1 mBar of pressure). 

Then the filter sealing to the holder has to be checked by observing the membrane deformation 

for several seconds. In case of pressure leak, the filter must be unmounted and checked 

together with the sample hoder and o-ring before mounting it again.  

 

 
Figure 5.5 - Optical profilometer pressurization system. 

 

3) Optical profilometer parameter setting. 

The different system parameters have to be set to obtain the best results; in particular, as filters 

have a highly reflecting surface, “reflecting surface” mode has to be chosen; also, translation 

speed has to be set as a compromise between test resolution and time; a good value is 1 mm/s. 

 

 

 

A B 
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4) Measurement start sample positioning. 

By the G-code sender module installed in the control computer, the micro-positioning system 

has to be actuated so the sample is placed with the laser spot hitting the measurement start 

point.  

 

5) Laser spot focusing. 

Before starting measurements, the laser spot has to be focused by using the manual 

displacement control (z axis) of the laser holder. 

 

6) Sample positioning at a measurement stabilization point. 

To reduce measurement errors it’s useful to begin both micro-positioning system actuation 

and data acquisition before the real measurement starting point, in particular to reduce 

mechanics tolerances. So, sample has to be placed in a suitable position according to previous 

considerations with respect to the laser spot by G code commands. 

 

7) Measurement line programing. 

By G code commands it’s possible to decide the profile acquisition path for a simple line scan; 

by repeating measurements in different lines a complete data array for each filter can be 

obtained. 

 

8) Measurement execution. 

To perform profile measurements, data acquisition by the micro-profilometer software 

interface has to be started soon after the micro-positioning system actuation; the height data 

are automatically acquired and stored until the end of the programmed path. 

 

During acquisitions it’s useful to check no pressure failure happens; in this case the profile 

acquisition has to be repeated after having mounted again the filter. 

 

Static pressure tests on samples 

The two interested samples were tested at static pressures in the range 1 ÷ 10 mbar; the surface 

profiles were acquired along the filter diameters [176]. 

In Figure 5.6 the deformation profiles of filters n.1 and n.2 under 9 mbar pressure are reported. 

The different profiles of Figure. 5.6 are due to different Young modules for the two filter meshes 

(105 GPa for Nb, 210 GPa for AISI 304) and different mesh thicknesses (50 m and 60 m 

respectively); this causes a greater deformation for sample n.1. Vertical bars are given by mesh arms, 

and their periodicity in the mesh is verified; the arms appear as segments due to their width with 

respect to the measurement scale. The spikes are produced by the different laser reflections of the 

mesh arms and the titanium layer coating the polyimide membrane when it passes on one arm edge, 

as the laser spot is 16 m size, about half-width of the arms. 

These measurement results allow to state the developed procedure for static pressure tests on 

Athena, such procedure may be used for the testing prototype filters for the next characterization. 



84 
 

 
Figure 5.6 - Deformation profiles of filters n.1 (left panel) and n.2 (riight panel) under 9 mbar static pressure. 

 

 

5.3 Radio frequency shielding of X-IFU filters 

The aim of this activity is to evaluate the shielding effectiveness, or RF attenuation, of TF2 and 

TF300 filters, to verify if they satisfy the Athena RF attenuation specifications (par. 6.1). 

At this purpose, three different waveguide setups are used [177], performing experiments in the 

lower frequency band (0.5 ÷ 3 GHz) at the OAPa-XACT laboratory, and in the upper one (2 ÷ 20 

GHz) at the Dipartimento di Ingegneria of the Università degli Studi di Palermo. 

 

Tested samples 

Radio frequency attenuation tests are performed on ad hoc samples to distinguish the attenuation 

contribution of the thin aluminum layer coating the polyimide foil and the hexagonal mesh. The used 

samples are: 

 

- 100 m thick Adwill D-675 tape coated with different thickness (10 ÷ 40 nm) aluminum layer 

(or  with no metal coating as a reference), mounted on a 100 mm diameter copper ring frame 

(Figure 5.7 left); 

- a copper, hexagonal mesh, fabricated on a FR4 (fiberglass reinforced resin) support; the mesh 

features are: 4 mm pitch; 0.2 mm arm width; 35 m arm thickness. The support is mounted on 

a 100 mm diameter aluminum ring, with 56 mm aperture diameter (Figure 5.7 right). 

 

Several filter structures could be obtained by mounting on the two sides of the same 3 mm thick 

aluminum support the mesh and, time by time, one different thickness aluminum layer. 

 

Test equipment 

For the sample characterization in the low frequency band (0.5 ÷ 3 GHz) a 25 cm diameter 

waveguide, built in house and depicted in Figure 5.8, is used. 

The system is made of a cylindrical metal waveguide which, at one end, is closed with an antenna 

installed at its center, while, on the other side, a sliding wall, that can be manually moved, supports 

another antenna in the same position. By moving this wall, the length of the cavity can be varied to 

excite resonances for different radiation modes at different frequencies in the range of interest. 
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Installed antennas can be coaxial or L-shaped ones. The filter to test is mounted in a suitable holder, 

placed at the middle of the waveguide, but that can be manually translated. 

 

    
 

Figure 5.7 - Radio frequency attenuation test samples; a) Adwill D-675 tape coated with different  

thickness (10 ÷ 40 nm) aluminum layer (or no coating as a reference, on the left); 

b) hexagonal mesh fabricated on a FR4 support (right). 

 

The output is sent to an Agilent N9320B spectrum analyzer, generating also the input radiation, 

to examine output waveforms and to detect excited resonances; transmission curves can also be 

traced. 

Instead the tests in the high frequency band (2 ÷ 20 GHz) are performed using the setup depicted 

in Figure 5.9. 

 

    
 

Figure 5.8 - Low frequency band (0.5 ÷ 3 GHz) test setup:  schematic (left); photo (right). 

 

    
 

Figure 5.9 - High frequency band (2 ÷ 20 GHz) test setup:  schematic (left); photo (right). 
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This setup is based on a 10 cm diameter, metal waveguide whose length is 900 mm, with both 

sides open; the transmitting and receiving antennas are mounted on two aluminum sliding walls that 

can be manually displaced inside the waveguide, to change the internal cavity length. On the lateral 

surfaces of this walls conductive gaskets are mounted to ensure good electrical coupling with the 

waveguide. The cut-off frequencies for this one are 1.76 GHz and 2.29 GHz for TE11 and TM01 

modes, respectively2.  

The antennas of the waveguide are connected to the two ports of a Keysight 5232A PNA-L 

microwave vector network analyzer operating in the frequency range 300 kHz ÷ 20GHz. 

A third system, custom built at OAPa-XACT laboratory, is also available to perform RF 

attenuation measurements in an environment more similar to the two Faraday cages hosting thermal 

filters TF2 and TF300 in the present cryogenic Athena Dewar design. Two RF filters can be 

contemporarily mounted inside this setup. 

The schematic of this system is reported in Figure 5.10; the photo of the setup connected to the 

Agilent N9320B RF generator/spectrum analyzer is shown in Figure 5.11. This system is presently 

deployed for testing filters in the range 0.5 ÷ 3 GHz. 

 

Test activity 

Filter testing was performed according to the mode stirring method, that is based on the excitation 

of several radiation modes in a cavity. Details on this method are reported in [177]. 

 
 

Figure 5.10 - Schematic of the system to perform RF attenuation measurements with TF2 and TF300  

in an environment similar to the present X-IFU cryostat design. 

 

 
2 Transverse magnetic (TM) modes, i.e. electromagnetic waves with the magnetic field laying only on the plane normal 

to the chamber axis (transverse plane), and transverse electric (TE) modes, with electric field only in the transverse 

plane, are numbered with subscripts indicating the number of azimuthal and radial variations. 
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Figure 5.11- Photo of the system sketched in Errore. L'origine riferimento non è stata trovata.. 

 

The mode stirring method allows to statistically evaluate the filter RF attenuation independently 

by the specific mounting environment, by applying several electromagnetic modes to the filters. 

RF attenuation measurements were performed by the frequency stirring mode measuring the 

maximum power transmission through the filter. 

First, only the aluminum coated filters are tested, and measurements with both blank (without 

any filter), only substrate (uncoated tape filter), and close configurations (with a 3 mm thick 

aluminum disk placed as a filter) were executed as references (Figure 5.12). 

 

 
Figure 5.12 - RF attenuation measured for a set of filters with different thickness of aluminum coating  

(without mesh). Superimposed are the measurements performed with closed and open aperture. 

 

In Figure 5.12 the red line represents the transmission of an only tape filter, without aluminum 

coating; this shows that the attenuation contribution of the tape is negligible with respect to the metal 

layer. The black trace, without any filter mounted, describes the attenuation produced by the cavity; 

this reference curve has to be subtracted to the measured transmission in order to obtain the precise 

attenuation for each filter. The grey, highest attenuation line, represents the transmission behavior of 

a 3 mm thick aluminum disk. 
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As the attenuation specification for TF2 and TF300 requires at least 30 dB in the range 30 MHz 

÷ 18 GHz, by Figure 5.12 it can be deduced that, with no mesh, filters with 30 or 40 nm aluminum 

coating, verify the assigned specification above ~ 6 GHz. 

The mesh attenuation contribution was evaluated by further tests performed by mounting in the 

cavity the mesh together with another filter. Obtained results are reported in Figure 5.13, in which 

the RF attenuation of the mesh alone is given by the red trace, neglecting the tape attenuation. It can 

be observed a greater attenuation at frequencies lower than 7 GHz, that, summed to the correspondent 

values given by aluminum coated tape filters, implies that, if the dimensions of the cavity constituted 

by the aperture cylinder and the focal plane assembly are that specified in the present design, the 

combination of an aluminum layer > 30 nm coupled with a metal supporting mesh fulfills the RF 

requirement over the full range 30 MHz ÷ 18 GHz. In fact, frequencies below about 2.5 GHz are cut 

off by the cavity. 

Further measurements will be performed by the third system (Figure 5.10), resembling the 

designed Athena cavity structure, to confirm obtained results. 

 

 
 

Figure 5.13 - Attenuation of the mesh alone (red curve) and together with another aluminized filter. 

 

5.4 Radiation damage 

Radiation damage is the effect (changes in structural, mechanical, electrical, optical, etc. 

properties) on matter due to the irradiation by energetic particles (protons, light and heavy ions, 

electrons, atoms, molecules). This effect is very important in space applications where energetic 

particles are present, whose energetic distribution includes also high energies (in the order of MeV, 

GeV or more). 

Thermal filters are not able to effectively shield detectors by high energy particles (E > 100 keV), 

then it’s important to know the effect of such irradiation on the mechanical, thermal, RF, and optical 

filter characteristics, to ensure they aren’t damaged during the mission lifetime. 

 

5.4.1 Space particle irradiation 

The sun emits a complex spectrum of particles (protons, electrons, light and heavy ions) with a 

wide energy spread [178, 179]; a regular low energy (1eV to 10 keV) particle flux exists, that is the 

solar wind, moving radially from the sun with about 10 particle.cm-3 density, but, in some periods, 

called solar particle events (SPEs), high intensity emissions of high energy particles (MeV to GeV) 
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add to the regular flux. Furthermore, outside the solar system, galactic cosmic rays (GCRs) are 

emitted, likely from supernova remnants; they are constituted by about the same particles as the solar 

emission, and their energies span in the range 108 to 1020 eV; their flux is constant and modulated on 

Earth by the solar activity [180, 181]. Both sun emission and GCRs are dangerous both for human 

beings working in space and for onboard spacecraft electronics and solar panels. 

Another source of space radiation comes from the radiation belts, that are protons and electrons 

trapped around planets with magnetic fields, like the Earth [180, 181]; they can damage both onboard 

electronics and solar panels. 

For the Earth, the radiation belt is divided into two zones [181]:  

 

- the inner one, extending from some hundreds kilometer height to about 6000 km, mainly 

populated by high energy protons (some tens MeV) and electrons (1 to 10 MeV);  

- the outer belt, extending up to about 60000 km, is mainly rich in high energy electrons. 

 

Due to the above described effects, many theoretical studies and several experiments, both in 

space and ground laboratories, were performed to evaluate consequences of particle irradiation on 

both thick layer and thin films of different electronics and space application materials. 

As a background for the experimental characterization of filters with respect to the radiation 

damage, the scientific literature related to both polyimide and silicon nitride films was reviewed. 

 

Polyimide films 

Several polyimide films with different thickness were irradiated by protons, both light and heavy 

ions, by electrons in several facilities [182, 183, 184, 185, 186], to simulate operating conditions 

during space flights. The obtained samples were then analyzed by atomic force microscopy (AFM), 

SEM, UV-Vis-IR spectroscopy, micro-Raman scattering, X-ray photoelectron spectroscopy (XPS), 

and other techniques. 

The investigation of the irradiating polyimide films with protons in the energy range from keV 

to MeV  allows to conclude as follows: 

 

- the tensile strength increases for an irradiation dose corresponding to 3 years flight time, then 

it decreases [187]; a similar trend holds for the elongation [187]; 

- the hardness increases with increasing fluence [183]; 

- the Vis-NIR band spectral transmittance decreases with the increasing fluence [184]. 

 

However, the fluences employed in above experiments are greater than the ESA qualification 

value for Athena (1.2.1010 cm-2 @ 1 MeV). 

Other effects due to high mass and energy particles (light and heavy ions, atoms) were observed: 

 

- the irradiation with so-called swift heavy ions (SHI), ions whose energy is greater than 1 MeV, 

deteriorates polyimide, by producing internal disorder [188] and modifying its optical 

properties, as evidenced by the redshift of the UV-Vis-IR transmission edge [189]; 

- the irradiation with oxygen atoms, at increasing fluences in the low earth orbit (LEO) range, 

provokes: increase of sample surface roughness, thickness reduction, both tensile strength and 

elongation decrease [190]. 
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The electrons also modify the polymer, and in particular they affect the optical properties; in fact, 

the spectral reflectance reduces with increasing fluence in the wavelength range 500 to 1200 nm 

[191]. 

Above macroscopic effects can be microscopically explained as the particle irradiation in 

polyimide causes polymeric chain scission, bond breaking, cross-linking, gas release (N, O, H), and 

free radical production [191, 192]. 

 

Silicon nitride 

Silicon nitride was very diffusely studied related to heavy ions irradiation, which are the most 

dangerous particles for microelectronic devices. 

When high energy SHIs impact Si3N4 samples, they penetrate the material producing, around 

their tracks, fused matter pipes whose diameter is some nanometer and in which Si-N bonds are 

distorted [193]; this effect was explained by the thermal spike model [194]. Also, high mass, lower 

energy (hundreds of keV) ions produce ion tracks whose length is about 10 ÷ 20 nm [195]; as these 

have thicknesses comparable to those of thermal filters, it’s necessary to account for their effects. 

 

Another consequence of ionic irradiation is the surface swelling [196]; at first, the surface height 

steeply grows with increasing ion fluence, but, after a threshold value, it saturates at a limit value. 

Moreover, ion irradiation changes optical properties of silicon nitride: 

 

- optical transmissivity in near UV – Vis – NIR bands changes depending on the ion specie 

[197]; this can be explained by supposing different ions provoke various chemical lattice 

modifications; 

- refractive index in Vis-NIR bands varies depending on ion specie, and decreases with 

increasing irradiation fluence; its variation can be greater than 10% [196], and this is due to 

chemical bond changes that reduce crystal density. 

 

Generally speaking, all above effects are caused by the breaking of Si-N bonds in the crystal due 

to ion collisions; two lattice damage mechanisms were identified, the nuclear type and the electronic 

one, and they verify depending on ion specie and energy [193]. 

 

5.4.2 Irradiation of Si3N4 samples 

Radiation damage characterization activity was focused on silicon nitride films mounted on TO8 

frame; both C2 and C3 series samples have been irradiated. A review of sample characteristics, 

described in par.5.1, is reported in Table 5.3. 

 

Table 5.3 - Irradiated sample characteristics 

 

Serie 

Layer thickness 

Upper Al layer Si3N4 layer Lower Al layer 

C2 15 nm 40 nm 15 nm 

C3 10 nm 20 nm 10 nm 
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Tested samples were irradiated by 1 MeV protons with different fluences, according to Table 

5.4, at the Van der Graaf accelerator of the Johann Wolfgang Goethe-Universität Frankfurt am Main 

(Figure 5.14). The maximum proton energy available at this facility is 2.5 MeV. Two types of 

detectors are used to detect ions: micro channel plate and silicon surface barrier. 

 

Table 5.4 - Irradiated filters (Cx-y) and related fluences relative to the Qualification Fluence 

(Q.F.) specified by ESA (1.2.1010 cm-2 @ 1 MeV). 

 

Filter Irradiation fluence (I.F.) 

C2-4/C3-12 ∽1.21.109 [cm-2] (∽0.1 Q.F.) 

C2-5/C3-13 ∽1.21.1010 [cm-2] (∽ Q.F.) 

C2-2/C3-10 ∽1.25.1011 [cm-2] (∽10 Q.F.) 

C2-3/C3-16 ∽1.26.1012 [cm-2] (∽100 Q.F.) 

C2-7/C3-15 ∽4.5.1012 [cm-2] (∽300 Q.F.) 

 

 

 

 
 

Figure 5.14 - Van der Graaf accelerator at the Johann 

Wolfgang Goethe-Universität Frankfurt am Main 

 

After irradiation, the characterization activity was developed. 

 

5.4.3 Scanning electron microscope observation 

Filters in TO8 frame were observed by a FEI Quanta 200F SEM, at the Dipartimento di 

Ingegneria of the Università di Palermo (UNIPa). A detail of C2-3 sample placed in the SEM sample 

holder is illustrated in Figure 5.15. 

In order to study the effect of proton irradiation on sample surfaces, two filter were analyzed: 

C2-1 (pristine) and C2-3 (Table 5.3). In Figure 5.16 their 100000 X magnification surface SEM 

images are represented, respectively. 

It can be observed, apart focusing difficulties due to the extremely regular surfaces, and within 

resolution limits of the instrument, no morphological effects appear on irradiated sample membrane, 

resulting of the same aspect of the other one. 
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Figure 5.15 - C2-3 sample placed in the SEM holder. 

 

       
 

Figure 5.16- SEM images of filter surfaces: pristine C2-1 (left); 100 Q.F. irradiated C2-3 (right). 

 

5.4.4 Atomic force microscopy observation 

The same filter (C2-1 and C2-3) surfaces were also observed by a Bruker Fastscan atomic force 

microscope (AFM), sited at the Advanced Technologies Network (ATeN) Center of the Università 

di Palermo. A detail of the microscope head, with the C2-3 filter placed on the support, is reported in 

Figure 5.17. 

Surface analyses were performed in air in soft tapping mode, by using the Bruker Fastscan A 

wafer A01405 n.09 tip. The silicon mesh appears below both the silicon nitride membrane and the 

upper aluminum layer. 
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Figure 5.17 - Detail of the atomic force microscope head, with the C2-3 filter (A) 

placed on the sample holder. 

 

Wide areas (8 x 8 m2) for each sample were scanned to acquire surface morphology features by 

applying parameters reported in Table 5.5; they were chosen to obtain the best scan results after 

having performed several preliminary tests. 

The AFM images of C2-1 (pristine) and 100 Q. F. irradiated TO8-C2-3 samples are shown in 

Figure 5.18. The surface seem quite similar, regular, and without any defect, within the detection 

limit of the instrument. 

In order to characterize the surface morphology of scanned samples both the height density and 

the RMS roughness were evaluated by the Gwyddion software [198]. The calculated sample RMS 

roughness values Sq [pm] are given in Table 5.6. 

 

Table 5.5 - AFM parameters for filter scans. 

 

Scan size 8 m 

Aspect ratio 1 

X offset 0 nm 

Y offset 0 nm 

Scan angle  0° 

Scan rate 1.05 Hz 

Tip velocity 18.6 m/s 

Samples/line 1536 

Lines 1536 

Integral gain 0.5 

Proportional gain 2.5 

Amplitude setpoint 255 mV 

 

 

A 
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Figure 5.18 - AFM images of C2-1 pristine sample (left panel) and 100 Q. F. irradiated TO8-C2-3 (right panel). 

 

Table 5.6 - Sample RMS roughness 

 

Sample Sq [pm] 

C2-1 299.7 

C2-3 274.7 

 

Due to very small differences of RMS roughness values (25 pm) between pristine and irradiated 

filters, within the equipment resolution limit, it wasn’t clear if this effect is due to tolerances in the 

filter fabrication process or to irradiation, that could reduce the roughness; to solve the question, 

another pristine sample, the C2-6, was tested. 

Height distribution histograms, with related widths, are reported in the left, center, right panels 

of Figure 5.19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

By visually inspecting histograms in Figure 5.19, it’s deduced that 100 Q.F. TO8 C2-3 height 

distribution shows a slightly more negative skewness [199] and a higher kurtosis [199] values with 

respect to pristine samples. The first feature indicates that valleys are more present with respect to 

peaks on the surface [200]; the second one implies less spreading in the height distribution, due to 

irradiation. 

Figure 5.19 - Height distribution histograms for pristine TO8 C2-1 (left), pristine TO8 C2-6 (center), 

100 Q.F. TO8 C2-3 (right); related widths are 4.57 nm, 5.68 nm, 3.33 nm, respectively. 
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From this data it’s possible to conclude that a small roughness reduction is due to strong 

irradiation, but fabrication tolerances produce similar roughness differences among pristine filters 

themselves. 

 

5.4.5 UV-Vis-IR spectroscopy 

The UV-Vis-IR spectroscopy characterization of several filter samples was performed using a 

Jasco V770 optical spectrograph at the UNIPa Dipartimento di Fisica e Chimica (DiFC). 

Preliminarily both a suitable filter holder and a beam delimiter were custom designed and 

fabricated to ensure samples were mounted always in the same position and interested by the same 

spot size. Also, several tests were firstly performed to evaluate best measurement parameters, that are 

reported in Table 5.7; the examined samples are listed in Table 5.8. 

 

Table 5.7 - Best UV-Vis-IR spectroscopy measurement parameters 

 

Parameter Value or range 

Wavelength range 190 – 3200 [nm] 

Wavelength scan rate 400 [nm/min] 

UV-Vis bandwidth 1 [nm] 

IR bandwidth 4 [nm] 

Pitch 0.5 [nm] 

 

 

Table 5.8 - Measured samples 

 

Sample Description 

C2-1 Pristine  

C3-9 Pristine  

C2-5 1 Q. F. irradiated 

C3-13 1 Q. F. irradiated  

C2-2 10 Q. F. irradiated  

C3-10 10 Q. F. irradiated  

 

Each test was repeated many times to reduce noise influence by averaging obtained spectra; it 

was also observed that noise increased excessively at wavelength greater than 2800 nm, so it was 

decided to not include the 2800 – 3200 nm range of each spectrum during data elaboration to evaluate 

filter performances. 

In order to calculate absolute filter transmission values and verify the spectrophotometer light 

source emission intensity trend with time, several blank spectra (with the dummy filter inserted or 

without any filters) were collected at the start of each sample measurement session. 

Acquired spectra are reported in Figure 5.20 a to f and Figure 5.21 a to f; some main differences 

appear between C2 and C3 filter series, both in pristine or irradiated ones (Table 5.9). 

 

For both series, otherwise, it was observed that: 
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- the minimum transmission is very low, less than 1% for both pristine and irradiated C3 series 

filter in the about 1250 – 1800 nm wavelength field, and about 0.7% near 1500 nm; less than 

1.5% in the about 1000 - 1800 nm range for both pristine and irradiated C2 series filters, with 

about 0.6% minimum near 1250 nm; 

- the transmission strongly increases for every filter for wavelength greater than 2500 nm. 

 

Table 5.9 - Main filter feature differences 

 

Serie Sample 
UV transmission peak 

position (nm) 

UV transmission peak amplitude 

(%) 

C2 C2-1 (pristine) 304  28.362 

 C2-5 (1 Q. F.) 304 12.173 

 C2-2 (10 Q. F.) 299 13.446 

C3 C3-9 (pristine) 244.5 26.630 

 C3-13 (1 Q. F.) 244 26.341 

 C3-10 (10 Q. F.) 239 26.418 

 

Also, by comparing C2 series transmission spectra (Figure 5.20a, c, e and Figure 5.21a, c, e) it 

can be seen a clear effect of 1 MeV proton irradiation on filters; less evident modifications happen 

for C3 series ones (Figure 5.20b, d, f and Figure 5.21b, d, f). 

Other details can be evidenced: 

 

- in Figure 5.20c the 5 nm UV peak displacement with less than 50% transmission, for 10 Q. F. 

C2-2 sample with respect to pristine C2-1, is shown; 

- in Figure 5.20 d the 5.5 nm UV peak displacement, with about the same transmission, for 10 

Q.F. C3-10 sample with respect to pristine C3-9 is shown; 

- large differences derived by small irradiation fluences for C2 series, as it can be seen in Figure 

5.21a, comparing pristine C2-1 and 1 Q. F. C2-5 samples; 

- C2-1 and C2-5 sample UV peaks are at the same 304 nm wavelength, and less than a half 

transmission can be observed for C2-5 (Figure 5.21c); 

- a small (0.5 nm) peak displacement can be noted (inside red circle) between C3-9 and C3-13 

UV spectra in Figure 5.21d, while heights are about the same for both peaks. 

 

IR peaks in both 10 Q. F. C2-2 (Figure 5.20e) and 1 Q. F. C2-5 (Figure 5.21e) spectra are lower 

with respect to pristine C2-1 sample ones. 
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a)                                                                                        b) 

 

 
c)                                                                                           d) 

 

    
e)                                                                                                        f)  

Figure 5.20 - C2-1, C2-2, C3-9 and C3-10 filter transmission spectra; a) C2-1 and C2-2 full band; C3-9 

and C3-10 full band; c) detail of C2-1 and C2-2 UV spectra; d) detail of C3-9 and C3-10 UV spectra; e) 

detail of C2-1 and C2-2 IR spectra; f) detail of C3-9 and C3-10 IR spectra. 
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a)                                                                           b) 

 

 
c)                                                                              d) 

 

 
e)                                                                                     f) 

 

Figure 5.21- C2-1, C2-5, C3-9 and C3-13 filter transmission spectra; a) C2-1 and C2-5 full band; C3-9 and 

C3-13 full band; c) detail of C2-1 and C2-5 UV spectra; d) detail of C3-9 and C3-13 UV spectra; e) detail 

of C2-1 and C2-5 IR spectra; f) detail of C3-9 and C3-13 IR spectra. 
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5.4.6 X-Ray Absorption Spectroscopy 

In order to evaluate the areal density of the material composition, and thickness uniformity of 

aluminized Si3N4 filters, X ray absorption spectroscopy (XAS) [201] in transmission was performed 

at both PTB-EUV and PTB-X-ray beamlines of BESSY II synchrotron (Berlin, Germany). 

 

Measured samples 

Measured samples with related structural characteristics are listed in Table 5.10. It can be noted 

C1-1 is a meshless sample; C2-2 to C2-6 ones have the aluminum coating on both silicon nitride 

sides, whilst C2-31 has no coating. 

 

Table 5.10 - XAS tested samples 

 

Sample Si3N4 thickness 

[nm] 

Aluminum 

thickness [nm] 

Silicon mesh 

thickness [m] 

Open area (%) 

TO8 C1-1 145 2 x 10 - - 

TO8 C2-2 40 2 x 15 15 82 

TO8 C2-5 40 2 x 15 15 82 

TO8 C2-6 40 2 x 15 15 82 

TO8 C2-31 40 0 15 81 

 

 

Facilities 

The X-ray spot on the sample at PTB EUV is rectangular, with 1.2 mm width and 1 mm height; 

the energy range allowed in this beamline is 50 eV ÷ 1.8 keV. 

Also in the PTB X-ray beamline the light source is a bending magnet, and the spot size on the 

sample is smaller than the previous: 0.3 x 0.3 mm2; this beamline operates in a higher energy range 

(1.75 ÷ 3.6 keV). 

 

Measurement execution and results 

The energy intervals of both beamlines allow to perform measurements at main edges for filter 

materials, as described in Table 5.11. The measurements were performed at variable steps, strongly 

reducing this parameter near above edges; the transmission curves for each filter were so modeled; a 

comparison between pristine TO8 C2-6 and 10 Q. F. irradiated TO8 C2-2 is reported in Figure 5.22. 

 

Table 5.11 - Main edges for filter materials 

 

Element Edge Energy [eV] 

Al 

L 73 

L 118 

K 1560 

Si 

L 99 

L 149 

K 1839 

N K 402 

O K 532 
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From Figure 5.22 it’s evident no practical differences are produced in Si3N4 filters related soft 

X-ray transmission by 1 MeV proton irradiation. 

    
 

Figure 5.22- Comparison between X-ray transmission curves for pristine TO8 C2-6 (left) 

and 10 Q. F. irradiated TO8 C2-2 (right) filters. 

 

 

5.5 Characterization conclusions 

After the whole characterization activity in described fields (mechanical static deformation, RF 

attenuation, radiation damage), the conclusions could be stated for both polyimide and silicon nitride 

filters. 

About the former, both the test equipment and procedure were applied, and they resulted well 

adequate to perform thermal filter characterization; very useful guidelines were also derived for 

designing thermal filter fulfilling ESA specifications. 

Mechanical deformation tests under static pressure, performed on pre-assessment filters, allowed 

to state the filter design and test procedures are well suited for final filter characterization. Related to 

RF attenuation, it can be stated polyimide filters with both the 30 ÷ 40 nm thick aluminum layer and 

the mesh according to parameters reported in the paragraph 6.3, if mounted in a Dewar enclosure 

according to present Athena design, can satisfy current ESA specifications. 

Referring to Si3N4 filters in TO8 frame, related to radiation damage tests, the comparison of 

measurement results obtained by different techniques applied (SEM, AFM, UV-Vis-IR spectroscopy, 

Raman microscopy, XAS) to characterize both pristine and irradiated filters allowed to derive useful 

conclusions about the irradiation effect by 1 MeV protons, with fluences also higher than the ESA 

qualification level. Both filter types (C2 and C3 series) were tested, in order to understand irradiation 

effects on both physical structures. 

The first result is that, within used SEM and AFM equipment measurement limits, the surface 

morphology is very little smoothed by the applied irradiation, evidencing a small roughness reduction, 

but fabrication tolerances produce similar roughness differences among pristine filters themselves. 

On the contrary, some internal structure modifications is due to proton irradiation, revealed by 

both UV-Vis-IR spectroscopy and Raman scattering; however, only C2 filters undergo evident 

changes in their optical features. 
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CONCLUSIONS 
 

This thesis deals with the development of instrumentation for high energy astrophysics 

observations. In particular, two topics were addressed. The main topic was the development of a 

technique to produce thick bismuth X-ray absorbers to be employed in the fabrication of planar arrays 

of NTD germanium microcalorimeters sensitive to hard (up to 100 keV) X-rays. A second topic was 

the study of filters for shielding X-ray microcalorimeters by out of band radiation. 

 

The work on bismuth absorbers showed that it is possible to grow very thick bismuth layers on 

the array of NTD germanium thermometers of X-ray microcalorimeters and  a tuning of the process 

was carried out. This result will allow to build  devices capable of observing the universe in the hard 

X-ray band with unprecedented energy resolution. We plan to use the guidelines developed in this 

work in the next fabrication processes of planar arrays of microcalorimeters. 

The work on X-ray filters was mainly devoted to the study  of Athena X-IFU thermal filter 

samples. A few filter prototypes developed for the Athena mission have been characterized with 

respect to mechanical robustness, optical performances and radio-frequency attenuation. The design 

consolidation  of these filters is still in progress, yet this work has given a substantial contribution to 

demonstrate the compliance of the investigated technology to some mission requirements. In addition, 

radiation hardness has been investigated on novel filters based on silicon nitride of potential interest 

for future space missions.  

It should be pointed out that the fabrication of fully operating hard x ray NTD Ge 

microcalorimeters for astrophysical applications is the long term goal of this activity. This goal 

requires a significant characterization activity performed at cryogenic temperature (thermometer 

sensitivity, read-out performance, absorber-thermometer and thermometer-bath thermal 

conductivity) which is demanded to future work. 
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APPENDIX 

 

 

A.1 Main detector requirements 

Detectors for X-ray radiation are featured by several parameters; most important of them are: 

 

• energy resolution; it represents the detector capability to resolve photopeaks in the energy 

spectrum. For a monocromatic source, if the detector response presents a peak of maximum 

value M at energy E0, and the peak width at M/2 is W (the full width at half maximum, 

FWHM), the absolute energy resolution E is equal to W (eV); it’s also defined the 

dimensionless relative energy resolution 
∆𝐸

𝐸
=

𝑊

𝐸0
; 

• energy range; it’s the energy interval in which the sensor is able to produce a signal when 

a photon hits it; 

• space resolution; it’s the capability to discriminate small objects that are at small distance 

between them, and its maximum value (best imaging) is determined by the sum of the pixel 

dimension and the spacing between them, called pitch; 

• quantum efficiency (QE); it’s the fraction of incoming photons that are revealed; it’s always 

QE < 1; it depends on both the detector operation principle and fabrication parameters; 

• detective quantum efficiency (DQE); it’s defined as 𝐷𝑄𝐸 =
(𝑆/𝑁)𝑜𝑢𝑡

(𝑆/𝑁)𝑖𝑛
, where S/N is the 

signal-to-noise ratio, measured at the sensor output and input respectivly; 

• sensitivity; it’s the lowest amplitude signal that can be detected by the sensor; 

• count rate; the average rate of occurrence of events revealed by the detector; high count 

rate let high photon flux operation;  

• dead time; the time interval between the start of a counted event and the earliest instant at 

which a new event can be counted. 

 

Other minor features are: 

• sensitivity to polarization; 

• low sensitivity to static magnetic fields; 

• simple readout electronics. 

 

A.2 Different detector type overview 

Different types of X-ray detectors (energy range 0.1 – 100 keV) were developed during their 

long historical evolution, each of them based on its own operation principles and characterized 

by its performances. In this energy range the photoelectric effect is the most probable interaction 

between radiation and matter, in particular in high atomic number materials.  Main sensor classes 

are now reviewed. 

 

Gas detectors 

The operation principle of these sensors is based on the ionization provoked by X photons 

incident on gas atoms or molecules due to the photoelectric effect; the first quantitative study on 
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gas ionization was developed by J. J. Thomson in 1899, and since then several instruments based 

on this principle were invented: 

 

Ionization chamber 

The basic gas detector is the ionization chamber, in which X photons, passing through a 

radiation window, enter a gas filled chamber (argon, xenon, carbon dioxide), containing two 

electrodes, and ionize gas particles; if the photon energy is E and the average ionization energy 

is w, the number of generated ions by each photon is N=E/w. A power supply applies to the 

electrodes a potential difference letting to collect all generated ions (electrons are much faster 

than positive ions and are the main contributor to the current) without  generating other ions 

by accelerated primary ion collisions with neutral gas particles (saturation regime); in this case 

the current passing in the supply circuit depends on the incident photon energy, and by its 

measurement the latter can be evaluated.  

 

Proportional counter 

This device is also based on the gas ionization, but the voltage applied to electrodes is greater 

than in the ionization chamber; ions generated by the X photons are accelerated and gain 

energies letting them to ionize other gas particles (Towsend discharge); the process gain G is 

defined as the number of electron-positive ion pair produced by each firstly generated electron, 

and so the total number of electrons originated by each X photon is 𝑁𝑇 = 𝑁𝐺, in which G can 

be large as 105. Due to the applied voltage all ions are collected by electrodes and the generated 

current is still proportional to the primary ionization; the advantage of the proportional counter 

with respect to the ionization chamber is the greater amplitude of the detection signal. 

 

Geiger-Müller counter 

The Geiger-Müller counter is a device whose detection signal is the number of incoming X 

photons, but their energy information can’t be obtained; in fact it is also based on a ionization 

chamber, but it operates in the gas discharge regime, in which each X photon striking gas 

particles produces ions that gain so much energy to provoke a Towsend discharge in the whole 

volume of the chamber; also, excited neutral atoms during their decay emit UV radiations, 

stimulating other electron emission by the cathode, and this origins new discharges; so, in such 

devices, the dead time is quite long, up to 200 s, implying very low count rates. 

 

Scintillators 

Scintillators are radiation detectors made by high bandgap materials in which a suitable 

doping with elements called activators produces energetic states sited in the energy gap. 

When a X photon strikes the scintillator material electron-hole pairs are created and electrons 

hops to high energy states; when decaying they are temporarily trapped in activator states, placed 

at energy levels for which the successive transition to ground state produces the emission of 

visible light. Such signal can be sent to a photomultiplier to be amplified. 

Main scintillator types are: NaI(Tl) – sodium iodide tallium activated; CsI(Tl); CsI(Na); 

Bi4Ge3O12. 

Scintillators are characterized by a very poor energy resolution (some keV at tens of keV). 
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Photomultipliers 

Photomultipliers are very sensitive detector whose operation principle is the secondary 

electron emission by metals. 

It is constituted by a vacuum tube in which a photocathode emits electrons by photoelectric 

effect when photons of sufficient energy, depending on the electrode material, strike it; a series 

of successive electrodes, called dynodes, each of them kept at an electric progressively increasing 

potential, greater than the cathode one, attract primary and secondary electrons emitted by the 

previous electrode, and in particular the first dynode collects electrons emitted by the cathode;  

at the end of this amplification chain the anode, at potential greater than the highest dynode one, 

collects the whole current. 

The photomultiplier gain G, defined as the total electron number generated for each electron 

emitted by hit photon on the photocathode, is: 𝐺 = 𝑓𝑛, in which 𝑓 in the secondary electron 

emission coefficient and n is the number of dynodes. 

In this way, by properly designing the photomultiplier with adequate dynode number and 

material, also the emission of a single electron by the photocathode, apart thermal noise 

contribution by the electrode material, can be converted in a suitable voltage signal by sending 

the anode current to a low noise resistor and picking up the related potential difference. 

Photomultiplier are often coupled with scintillators for high energy (X and  rays) photon 

detection. 

 

Microchannel plates 

Microchannel plates (MCP) are both radiation and particle detectors consisting of a very 

high number (about 107) of densely packet, all equal tiny diameter (about 2 – 10 m) glass 

channels; each of them operates as an independent, continuous dynode photomultiplier. 

These devices are made of lead glass tubes, containing up to 48% in weight of lead oxide, a 

semiconductor material; at tube ends, coated with electrodes, a suitable (1.5 – 4 keV) potential 

difference is applied, and they operate at the internal gas pressure less than 10-5 Torr. 

Conventionally, the input face is connected to the highly negative potential, while the opposite 

end is grounded. When a photon strikes the tube wall at the entrance end a photoelectron is 

emitted and it’s accelerated towards the opposite side of the pipe by the applied field; as the 

material has a secondary electron emission coefficient greater than 1, a discharge starts and a 

gain (about 108) at the exit end is generally obtained. 

In order to increase the quantum detection efficiency, that is in the range 1% - 10 % for soft 

X rays, materials with high photoelectric yield, in particular cesium iodide, are deposited on the 

front end of the MCP and on the tube walls. 

 

Semiconductor detectors 

Semiconductor detectors are based on the electron-hole pair creation by the photoelectric 

effect when photons hit material atoms. If E is the energy of the photon and w is the average 

ionization energy, with E > w, 𝑁 = 𝐸/𝑤 is the number of electron-hole pairs generated. 

A type of semiconductor detector is constituted by a block of material at the opposite ends 

of which suitable electrodes are placed; by applying a voltage across them a current pulse is 

generated when a photon is received and charge carrier are generated in the lattice. Of course, 
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it’s necessary to reduce the thermal noise effect to increase both the energy resolution and the 

sensitivity of the detector; at this aim germanium crystals (energy gap Eg=0,785 eV at T=300K) 

have to operate at cryogenic temperatures, while high bandgap semiconductor (CdTe, 

Eg=1.44eV, and CdZnTe, Eg = 1,57 eV) work at room temperature. This last two materials have 

also the advantage of high Z numbers, so they are well suited to realize high energy detectors. 

 

Charge coupled devices 

Charge coupled devices (CCD) are semiconductor radiation detector devices constituted by 

an array of metal-oxide-semiconductor (MOS) capacitors (cells) connected in rows; electrons are 

generally majority charge carriers. 

When a high logic voltage polarizes a MOS capacitor of the CCD array, a depletion zone is 

formed under the metal layer, and, if a low logic voltage is applied at both neighbor cells in the 

same row, charges generated by incoming photons in the depletion zone of that capacitor 

accumulate in it during the so called frame time, after which the voltage of one side neighbor cell 

is increased to the high logic level; at this point the accumulated charge starts moving to the new 

depletion zone, and this process is completed by reducing the first capacitor voltage. 

This process is implemented contemporarily at different cells, according to specific 

sequences, in the same row, and at every row, depending on the CCD type; then single 

accumulated charges, representing each pixel of the received image, are transferred, row by row, 

to the conversion circuit to produce the image or its recording in the system memory. 

 

Microwave kinetic inductance detectors (MKIDs) 

Superconductor metals working at cryogenic temperatures (T << Tc) are characterized by a 

two component inductance: the magnetic inductance and the kinetic one, related to the kinetic 

energy of charge carriers (electrons); this second component is relevant in this case due to the 

negligible Joule effect in superconductors. 

The kinetic inductance value is inversely proportional to the quasiparticle density in the 

superconductor. 

In a MKID an inductor characterized by its kinetic inductance Lk is coupled with a capacitor 

to form a resonant circuit with a very high quality factor, due to its very low resistances, as it 

operates at cryogenic temperatures. The resonance frequency is in the microwave range. 

The operating principle of such devices is based on the displacement of the resonance 

frequency of the resonant circuit due to the kinetic inductance Lk change of the superconducting 

inductor (sensing element); this is caused by the quasiparticle density excess generated by Cooper 

pair breaking caused by suitable energy photon arrival on the detector. 

The advantage of such devices with respect to the other microcalorimeters is related to the 

possibility of reading out several (more than one thousand) detectors by the technique of 

frequency division multiplexing by designing each microwave resonator with a different 

resonance frequency. 

 

A.3 Microlithographic process 

The microlithography is based on the photoresist, that is a polymeric material constituted by 

a photoactive compound and an alkaline soluble resin. When radiation of suitable wavelength, 

depending on the photoresist type, illuminates the polymer, it’s chemically modified. Two classes 
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of photoresist exist: positive and negative one. The first class of polymers, when irradiated, 

become soluble in base solutions, and the solution concentration sets the dilution speed. Negative 

photoresists, on the contrary, harden itself when irradiated, and they can be removed in 

unilluminated areas by specific chemical agents. 

Main photoresist properties are: 

 

- resolution: the minimum line width that can be reproduced in the photoresist layer 

from an areal image; 

- contrast: the different answer of the photoresist at light and dark regions; 

- sensitivity: minimum energy needed to activate chemical photoreactions for 

patterning. 

 

Depending on the applications, photoresist can be impressed by visible, ultraviolet, X-ray or 

electron radiation, with specific threshold wavelengths. The irradiation dose (mJ/cm-2), given by 

the light intensity times the irradiation (exposure) time, is the energy density which the 

photoresist is illuminated with; the optimal exposure dose is that minimum value letting the total 

conversion of the photoinitiator. 

For practical reasons, positive photoresistsphotoresist are more advantageous, in particular 

due to easy and safe development, by simple easily available and cheap chemical solutions (e.g. 

KOH, NaOH). A general microlithographic process is divided in the following steps: 

 

- photoresist spinning on the substrate; 

- photoresist baking; 

- photoresist exposure, by direct laser writing technique or by a patterned mask; 

- photoresist development. 

 

The single steps will be now detailed described in details. 

 

Photoresist spinning on the substrate 

The fotoresist spinning consists in dispensing a polymer drop on the substrate mounted on a 

chuck spinning at high speed (thousands of rpm). When the drop reaches the substrate, it starts 

forming a film, that enlargesenlargs while its thickness fastly decreases up to a limit thickness, 

depending on rotation speed.  

The photoresist is a liquid compound, whose viscosity can be controlled by the addiction of 

a suitable diluent, said thinner; the more viscous the photoresist is, the thicker the film will be at 

fixed spinning speed. 

This process is performed by the photoresist spinner, a machine in which the chuck spinning 

is speed and time controlled and, in many models, also the acceleration can be set; the substrate 

is vacuum locked to the chuck.  

 

Photoresist baking  

The photoresist baking after the spinning (soft baking) consists in placing photoresist coated 

samples on a hotplate or in an oven at temperatures around 90 ÷ 100 °C for typical times in the 

range 1 ÷ 10 min, generally. 
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In fact, photoresists contain a residual percentage of solvent, after the spinning; baking is 

required in order to improve its adhesion to the substrate, to avoid its sticking to the mask when 

used, and to prevent photoresist foaming by nitrogen production during the exposure. 

The baking hasn’t doesn’t have to be too hot or too long, as, in positive photoresists, in these 

cases a relevant fraction of the photoactive compound is dissolved, and the development time 

increases. 

 

Photoresist exposure 

Photoresist exposure is the process in which the polymer is irradiated by suitable wavelength 

(energy) light to activate the photochemical reactions that improve causes positive photoresist 

solubility (or reduce prevents negative photoresist one) in the developer, to let the polymer 

removing in selected areas. 

Photoresist exposure can be executed by the direct writing technique or by patterned masks. 

The first method requires a focused light (or electron) beam of suitable wavelength (energy) 

patterning a photoresist coated substrate according to a designed layout. 

In the second method, suitable light emitted by a wide and uniform source pass through a 

mask, perpendicularly to its surface, in the ideal model, to reach the photoresist coated substrate 

which is placed parallel to the mask at its opposite side with respect to the radiation source. 

A microlithographic mask is a structure in which transparent and opaque (for the used 

radiation) areas are patterned. The radiation illuminating the mask hits the photoresist only 

through transparent regions, reproducing the mask pattern in it. 

The exposure time has to be strictly controlled; in fact, at the fixed light intensity, if the 

irradiation dose is less than the optimal exposure one, not all the photoinitiator will be 

transformed to be developed, whilst, if the exposure time produces an excessive exposure dose, 

due to diffraction also areas that should be covered by the mask will be partially or totally 

exposed. 

Optical lithography uses visible or ultraviolet light, and masks are made of quartz or, for 

visible light, glass plates on which a patterned metal film, usually chrome, is deposited. 

Photoresist exposure is usually performed by a mask aligner, a complex system letting both 

the relative positioning between the mask and the photoresist coated sample (or another mask 

plate), and the photoresist exposure with different conditions (proximity, soft contact, hard 

contact, and others, depending on the model) and doses. 

 

Photoresist development 

This process dissolve exposed or unxeposed photoresist, in positive or negative processes 

respectively, letting pattern areas are open on the substrate; then, such areas can be furtherly 

processed (e.g., chemical etching or electroplating). 

The photoresist development is performed by immersing the sample in a development bath, 

depending on the polymer type; for positive ones, different concentration base solutions (KOH, 

NaOH) are usually employed as developers. 

After having chosen the solution, both development bath temperature and immersion time 

are critical parameters; in fact, the higher the bath temperature is, the shorter the development 

time results, and, if this  one is too long with respect to the optimal one (able to dissolve all but 

only right exposed area photoresist), also under mask exposed areas due to diffraction will be 
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(partially or totally) dissolved, and the obtained substrate pattern will result enlarged, in particular 

edges will be evidently rounded. 
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