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“First things first, but not necessarily in that order.”

[Doctor Who]

“Chaos was the law of nature. Order was the dream of man.”

[Henry B. Adams]
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Università degli Studi di Palermo

Abstract
Ensemble methods for ranking data with and without position

weights

by Simona BUSCEMI

The main goal of this Thesis is to build suitable Ensemble Methods for
ranking data with weights assigned to the items’positions, in the cases of
rankings with and without ties.

The Thesis begins with the definition of a new rank correlation coeffi-
cient, able to take into account the importance of items’position. Inspired
by the rank correlation coefficient, τx, proposed by Emond and Mason
(2002) for unweighted rankings and the weighted Kemeny distance pro-
posed by García-Lapresta and Pérez-Román (2010), this work proposes
τwx , a new rank correlation coefficient corresponding to the weighted Ke-
meny distance. The new coefficient is analized analitically and empiri-
cally and represents the main core of the consensus ranking process. Sim-
ulations and applications to real cases are presented. In a second step, in
order to detect which predictors better explain a phenomenon, the The-
sis proposes decision trees for ranking data with and without weights,
discussing and comparing the results. A simulation study is built up,
showing the impact of different structures of weights on the ability of
decision trees to describe data. In the third part, ensemble methods for
ranking data, more specifically Bagging and Boosting, are introduced.
Last but not least, a review on a different topic is inserted in this Thesis.
The review compares a significant number of linear mixed model selec-
tion procedures available in the literature. The review represents the an-
swer to a pressing issue in the framework of LMMs: how to identify the
best approach to adopt in a specific case. The work outlines mainly all
approaches found in literature. This review represents my first academic
training in making research.

http://www.unipa.it
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Chapter 1

Introduction

1.1 Ranking data: weights to items’positions

Ranking and classification are basic cognitive ways that people generally
use for grading everything they experience. Grouping and ordering a set
of elements (movies, politicians, sport teams, websites, and so on) repre-
sent a natural and common attitude for human beings in handling their
life. A particular kind of ranking data is given by preferences, where in-
dividuals (called “judges”) provide their preferences over a set of objects
(called “items”). The traditional metrics comparing rankings don’t take
into account the importance of swapping elements similar among them
(element weights) or elements belonging to the top (or to the bottom) of
an ordering (position weights) which are a crucial point in some fields
of research. First of all, this Thesis focuses on the importance given to
items’positions.
Within preference data framework, distance-based decision trees repre-
sent a non-parametric tool for identifying the profiles of subjects giving
a similar ranking. This Thesis aims to detect, in the framework of com-
plete ranking data, with or without ties, the impact of different structures
of weighted distances for, firstly, building decision trees and, after that,
Ensemble methods.

1.2 Distance-based models for weighted ranking data

The last years have seen a remarkable flowering of works about the use
of decision trees.
Decision trees are non parametric recursive statistical tools used for clas-
sification and prediction issues. The so-called decision trees are named
in such a way because of their tree-shapped structure, obtained by some
prediction rules. The most known decision tree methodology consists of
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classification and regression tree (CART, Breiman et al. (1984)), and it is
based on two steps: growing and pruning. CART methodology has been
introduced for predicting quantitative or categorical variables and, only,
in few cases for analyzing ordinal responses or rankings.
As a matter of fact, decision trees are useful and intuitive, but they are
very unstable: small perturbations bring big changes. For this reason it’s
necessary to use more stable procedures, as ensemble methods, in order
to find which predictors are able to explain the preference structure in
a more efficient way. In this work ensemble methods as Bagging and
Boosting are proposed, from both a theoretical and computational point
of view, for deriving multiple classification trees when ranking data (with
and without position weights) are observed. The advantages of these
procedures are shown through an example and a simulation. The last
topic (selection of effects in Linear Mixed Models) could seem far away
from the consensus ranking problem, but, actually, we could consider
the output of a model selection process as a ranking; therefore, using dif-
ferent measures (AIC, BIC,. . . ) which provide different rankings of the
models, a consensus ranking process could be applied in order to iden-
tify the “optimum”ranking of the models. In a few words, each measure
could provide a ranking of linear mixed models and a consensus ranking
process could be useful for detecting the best consensus of the ranked
models.

1.3 Outline of thesis

The contribution of this thesis involves the development of a new rank
correlation coefficient for ranking (complete and weak) data, that can be
used as the main ingredient of consensus measure processes in order to
cope with the rank aggregation (in the terminal nodes of distance-based
decision trees and, suitably, in the aggregation procedure of predicted
rankings in the field of Ensemble Methods). As final chapter a review
about the selection of effects in the framework of linear mixed models. A
summary outline of how the thesis is organized can be shown:

• Foundations on rankings. Chapter 2 forms the basis for all sub-
sequent chapters. It describes the main classical distances used for
rankings and the correlation coefficients related to each distance.

• A new position weighted rank correlation coefficient without ties.
In this thesis, a new position weighted correlation coefficient for
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consensus ranking process is provided, able to deal with linear rank-
ings. Chapter 3 has been published as (Plaia et al., 2019b) and it pro-
poses a new rank correlation coefficient when ties are not allowed.

• A new position weighted rank correlation coefficient with ties.
The new position weighted correlation coefficient for consensus rank-
ing process is adapted for weak rankings. Chapter 4 has been pub-
lished as a conference paper (Plaia et al., 2018b) and it is actually
submitted (Plaia et al., 2018a).

• Decision trees for weighted ranking data. Chapter 5 proposes de-
cision trees for positional weighted ranking data, using the new
rank correlation coefficient introduced in the previous chapter. This
chapter is an extension of the short paper submitted at the confer-
ence SIS2018 (Plaia et al., 2018c).

• Boosting and Bagging for ranking data, with and without posi-
tion weights. In Chapter 6, multiple decision trees are combined for
rankings with position weights, leading to the development of suit-
able Ensemble Methods, such as Bagging and Boosting. Chapter 6
is an extension of a paper submitted to the conference ASMDA2019
(Plaia et al., 2019a).

• Model Selection in Linear Mixed-Effect Models: a Review. Chap-
ter 7 ends the Thesis focusing on a different topic: model selection
in Linear Mixed-Effect Models (LMMs). Many approaches are stud-
ied and compared, focusing on the part of the model subject to se-
lection (fixed and/or random), the dimensionality of models and
the structure of variance and covariance matrices, and also, wher-
ever possible, the existence of an implemented application of the
methodologies set out. This chapter has been published as Buscemi
and Plaia (2019).
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Chapter 2

Foundations on rankings

2.1 Introduction

Distances between rankings and the rank aggregation problem have re-
ceived growing consideration in the past few years. Ranking is one of
the most simplified cognitive processes that help people to handle many
aspects of their life. When some subjects are asked to indicate their pref-
erences over a set of alternatives (items), ranking data are called prefer-
ence data. An important issue involving rankings concerns the aggrega-
tion of the preferences in order to identify a compromise or a "consen-
sus". Different approaches have been proposed in the literature to cope
with this problem, but probably the most popular is the one related to
distances/correlations. In order to get homogeneous groups of subjects
having similar preferences, it is natural to measure the spread between
rankings through dissimilarity or distance measures among them. In this
sense, a consensus is defined to be the ranking that is the closest (i.e. it
shows the minimum distance) to the whole set of preferences. Another
possible way for measuring (dis)-agreement between rankings is in terms
of a correlation coefficient: rankings in full agreement are assigned a cor-
relation of +1, those in full disagreement are assigned a correlation of
-1, and all others lie in between. A distance d between two rankings,
instead, is a non-negative value, ranging in 0 - Dmax , where 0 is the
distance between a ranking and itself. A distance measure d can be trans-
formed into a correlation coefficient c (and vice-versa) using the linear
transformation c = 1− 2d

Dmax
. Distances between rankings have received

a growing consideration in the past few years. Usual examples of met-
rics in this framework are Kendall’s and Spearman’s. In 1962 Kemeny
and Snell (1962) introduced a metric defined on linear and weak orders,
known as Kemeny distance (or metric), which satisfies the constraints of
a distance measure suitable for rankings. Cook (2006) highlights the in-
tractability of the Kemeny metric, an issue already stressed by Emond
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and Mason (2002): that’s why the latter introduced a new correlation co-
efficient strictly related to Kemeny distance, proposing to use this coeffi-
cient in place of Kemeny metric, as bases for deriving a consensus among
a set of rankings.

Even if nowadays the problem of the difficulty to cope with the Ke-
meny distances (due to the presence of absolute values) is behind us,
thanks to its improvements, working with correlations rather than with
distances is preferable due to its range, always between −1 and 1 inde-
pendently on the particular distance used. On the contrary, Dmax de-
pends on the chosen distance.

The traditional metrics between rankings don’t take into account the
importance of swapping similar elements (element weights) or elements
belonging to the top (or to the bottom) of an ordering (position weights).
Kumar and Vassilvitskii (2010) have provided an extended measure for
Spearman’s Footrule (Spearman, 1987) and Kendall’s Tau (Kendall, 1938),
embedding weights relevant to the elements or to their position in the or-
dering. As Henzgen and Hüllermeier (2015) say, weighted versions of
rank correlation measures have been studied in many fields other than
statistics. For example, “in information retrieval, important documents
are supposed to appear in the top, and a swap of important documents
should incur a higher penalty than a swap of unimportant ones”. In the
context of the web, comparing the query results from the different search
engines, the distance should emphasize the difference of the top elements
more than the bottom ones, since people may be interested in the first few
items(Chen et al., 2014). A short review of the solutions proposed in the
literature to cope with this issue can be found in Yilmaz et al. (2008).

The first purpose of this thesis is to propose a new position weighted
correlation coefficient and to investigate the effect of different weighting
vectors on the consensus ranking process. Particular attention is given to
the weighted Kemeny distance (proposed by García-Lapresta and Pérez-
Román (2010)) and a properly modified τx of Emond and Mason (2002) is
defined, in order to measure the correlation between position weighted
rankings. The choice of a rank correlation coefficient based on the Ke-
meny distance is due to the ability of τx to measure the correlation be-
tween ranks with ties. Even if in the first part of this work the focus is on
rankings without ties, this can be considered the first step for the defini-
tion of a generalized coefficient able to capture the correlation giving the
right importance to both the positions of items and to ties.
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2.2 Distances between rankings and rank correlation
coefficients

2.2.1 Classical distances for ranking data

Ranking data arise when a group of n judges (experts, voters, raters etc.)
is asked to rank a fixed set of m items (different alternatives of objects like
movies, activities and so on) according to their preferences.

While ranking m items, labelled 1, . . .m, a ranking a is a mapping
function from the set of items {1, . . . ,m} to the set of ranks {1, . . . ,m},
endowed with the natural ordering of integers, where ai is the rank given
by the judge to item i 1. When all m items are ranked in m distinct ranks,
we observe a complete ranking or linear ordering (Cook et al., 1986). A
ranking a is, therefore, one of the m! possible permutations of m ele-
ments, containing the preferences of a judge for the m items. Yet, it is
also possible that a judge fails to distinguish between two or more ob-
jects and assigns them equally, thus resulting in a tied ranking or weak
ordering. In real situations, many times it happens that not all items are
ranked and, so, besides complete and tied rankings, partial and incomplete
rankings exist: the first occurs when only a specific subset of q < m ob-
jects are ranked by judges, while incomplete rankings occur when judges
are free to rank different subsets of m objects (Cook et al., 1986). Obvi-
ously, different types of ordering will generate different sample spaces of
ranking data. With m objects there are m! possible complete rankings;
this number gets even larger when ties are allowed (for the cardinality of
the universe when ties are allowed refer to Good (1980) and Marcus et al.
(2013).

In order to classify judges into C homogeneous clusters according to
their expressed preferences, a dissimilarity or distance measure d has to
be defined for rankings and such a measure has to meet the usual prop-
erties of a distance function:

• Reflexivity: d(a, a) = 0,

• Positivity: d(a, b) > 0 if a 6= b,

• Symmetry: d(a, b) = d(b, a),

• Triangle inequality: d(a, b) ≤ d(a, c) + d(c, b) (in case of a distance).

1Preference rankings can be represented through either rank vectors (as in this chap-
ter) or order vectors (D’ambrosio et al., 2015a)
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Moreover, a desirable property of any distance is its invariance to-
ward a renumbering of the elements: the so-called label invariance or
equivariance (Cheng et al., 2009).

Many distances between rankings can be found in the literature (Mar-
cus et al., 2013), given in terms of ranking themselves, or as functions of
the m ×m score matrix {aij} (defined for the generic ranking a), whose
elements are defined as:

aij =


1 if object i is preferred to object j
−1 if object j is preferred to object i
0 if objects i and j are tied, or if i = j

(2.1)

Let’s see a small example that shows how to compute the score ma-
trix. Given the ranking vectors a = (3, 1, 1, 4) and b = (1, 3, 2, 2) The score
matrices of a and b, computed according to (2.1), are respectively:

a =


0 −1 −1 +1

0 0 +1
0 +1

0

 b =


0 +1 +1 +1

0 −1 −1
0 0

0


Another possible way of measuring (dis)-agreement between rankings
is in terms of a correlation coefficient: rankings in full agreement are
assigned a correlation of +1, those in full disagreement are assigned a
correlation of −1, and all others lie in between. A distance between two
rankings, instead, is a non-negative value, ranging in 0 −Dmax, where 0
is the distance between a ranking and itself. A distance measure d can
be transformed into a correlation coefficient c (and vice-versa) using the
linear transformation c = 1− 2 d

Dmax
(Emond and Mason, 2002).

One of the best-known metrics that evaluate the distance between
two permutations is Spearman’s Footrule (Spearman, 1987) distance, which
measures the `1 distance between two generic orderings a and b as fol-
lows:

F (a, b) =
m∑
i=1

|ai − bi|. (2.2)

As an alternative, Kendall’s Tau (Kendall, 1938) distance is defined as
the number of discordant pairs between rankings a and b:

T (a, b) =
∑
1≤i

∑
i<j

I{[ai − aj ][bi − bj ] < 0}, (2.3)
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where I is the indicator function. Its expression in terms of correlation,
τb, can be found in the literature as an extension of Kendall’s Tau rank
correlation coefficient to the case of weak orderings, by using the score
matrices aij and bij of the two rankings a and b defined according to
Equation 2.1:

τb(a, b) =

∑m
i=1

∑m
j=1 aijbij√∑m

i=1

∑m
j=1 a

2
ij

∑m
i=1

∑m
j=1 b

2
ij

. (2.4)

In the case of linear orderings comparison, the denominator of τb re-
duces tom(m−1); when weak orderings are compared, the denominator
assumes a smaller value, reduced according to the total number of ties
observed for each ranking (Emond and Mason, 2002).

Kemeny and Snell (1962) outlined a set of four axioms that should
apply to a distance measure between weak orderings, and proposed a
new distance, also defined in terms of score matrices, that satisfies these
axioms:

K(a, b) =
1

2

m∑
i=1

m∑
j=1

|aij − bij | (2.5)

The Kemeny distance, K(a, b), between two rankings a and b is a city-
block distance where aij and bij are the generic elements of the m × m
score matrices associated to a and b.

Emond and Mason (2000) showed that Spearman’s Footrule distance
in Equation (2.2) suffers from what is known as sensitivity to irrelevant
items, that can lead to an inconsistent result. The same authors (Emond
and Mason, 2002) proved later that Kendall’s distance failed the trian-
gular inequality when dealing with weak orderings; therefore, they pro-
posed a new correlation coefficient τx, that differs from Kendall’s τb by
using a different score matrix

{
a
′
ij

}
to represent ties:

a
′
ij =


1 if object i is preferred to or tied with object j
−1 if object j is preferred to object i
0 if objects i and j are the same

(2.6)
Let’s consider the small example that shows how to compute the score

matrix, according to (2.6). Given the ranking vectors a = (3, 1, 1, 4) and
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b = (1, 3, 2, 2) The score matrices of a and b, defined by Emond and Ma-
son (2002), are respectively:

a
′

=


0 −1 −1 +1

0 +1 +1
0 +1

0

 b
′

=


0 +1 +1 +1

0 −1 −1
0 +1

0


The new rank correlation coefficient, τx, is defined as:

τx(a, b) =

∑m
i=1

∑m
j=1 a

′
ijb
′
ij

m(m− 1)
. (2.7)

τx reduces to τb for linear orders (i.e. in the absence of ties) and the au-
thors demonstrate that it is the correlation coefficient corresponding to
the Kemeny’s distance in Equation (2.5).

2.2.2 Weighted distances

The distances presented in Section (2.2.1) fail to take into account two im-
portant aspects: element and positional information (Kumar and Vassilvit-
skii, 2010). In some practical applications, one or some of the k elements
can be more important than others, or, similarly, the top of the ordering
can deserve more attention than the bottom. In these situations, changing
the rank of very important elements or changing the top of the ranking
requires different “weighting”. Lee and Yu (2010) proposed a distance-
based tree model where weights are functions related to modal ranking.

In this thesis, on the other hand, we focus on position weights, while
considering the weighted version of the three distances (F , T , and K)
presented in the previous section. Nevertheless, even by introducing po-
sition weights, the maximum distance between two rankings is reached
when one ranking is the exact reverse of the other.

Letw = (w1, w2, . . . , wm−1) be a weighting vector, such that
∑m−1

i=1 wp =
1 and w1 ≥ w2 ≥ . . . ≥ wm−1 > 0; weight wi is used to measure the con-
tribution of moving an element from position i to position i + 1 or from
position i + 1 to position i to the overall distance. Thus, for any two
positions i and j, CF (i, j), defined as:

CF (i, j) =


∑j−1

k=i wk if i < j

0 if i = j∑i−1
k=j wk if i > j
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will be the total contribution of moving an element from position i to
position j. For permutations a and b, the contribution of moving a generic
element i is CF (a(i), b(i)) and the resulting Weighted Spearman’s Footrule
distance (Chen et al., 2012) will be defined as:

Fw(a, b) =
k∑
i=1

CF (a(i), b(i)) (2.8)

An extension to the weighted case of Kendall’s Tau distance in Equa-
tion (2.3) is due to Farnoud et al. (2012). It is based on the intuitive concept
that given two rankings a and b, it is always possible to obtain a from
b by a sequence of adjacent inversions. So let s = (η1, η2, . . . , ηm) be a
transforming sequence of consecutively executed permutations where each
one inverts two adjacent ranks, and that transforms a to b and CT (s) =∑m

r=1wηr the length of the transforming sequence s, then Weighted Kendall’s
Tau distance between a and b is defined as:

Tw(a, b) = min
s∈Φ

CT (s) (2.9)

over the set Φ of all possible transforming sequences from a to b.
In this part of the thesis, we consider the weighted version of the Ke-

meny metric proposed by García-Lapresta and Pérez-Román (2010) (see
Equation (2.10)) and we limit the analyses to the case of linear orders. For
measuring the weighted distances, the non-increasing weighting vector
w = (w1, w2, . . . , wm−1) is used, where wi is the weight given to position
i in the ranking, with

∑m−1
i=1 wi = 1. Note that wi is the weight that we

want to give to position i, and is not derived from the data, but chosen
by the analyst. Given two generic rankings of m elements, a and b, the
Weighted Kemeny distance was provided by García-Lapresta and Pérez-
Román (2010) as follows:

dwK(a, b) =
1

2

 m∑
i,j=1
i<j

wi|a(σ1)
ij − b(σ1)

ij |+
m∑

i,j=1
i<j

wi|b(σ2)
ij − a(σ2)

ij |

 , (2.10)

where (σ1) states to follow the a ranking and (σ2), similarly, orders ac-
cording to b. More specifically, b(σ1)

ij is the score matrix of the ranking

b reordered according to a, a(σ2)
ij is the score matrix of the ranking a re-

ordered according to b and a
(σ1)
ij = b

(σ2)
ij is the score matrix of the linear

order 1, 2, . . . ,m (see Plaia and Sciandra (2019) for more details).
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A small example shows how to compute the weighted Kemeny distance.
Given the ranking vectors a = (3, 1, 1, 4) and b = (1, 3, 2, 2), we can easily
define their orderings: σ1 = (2, 3, 1, 4) and σ2 = (1, 3, 4, 2). Then we have:
aσ1 = (1, 1, 3, 4), aσ2 = (3, 1, 4, 1), bσ1 = (3, 2, 1, 2) and bσ2 = (1, 2, 2, 3).
The score matrices of aσ1 , bσ1 , aσ2 and bσ2 are respectively:

aσ1 =


0 0 +1 +1

0 +1 +1
0 +1

0

 bσ1 =


0 −1 −1 −1

0 −1 0
0 +1

0



bσ2 =


0 +1 +1 +1

0 0 +1
0 +1

0

 aσ2 =


0 −1 +1 −1

0 +1 0
0 −1

0


Through simple algebric operations it can be easily found that:

|aσ1 − bσ1 | =


0 1 2 2

0 2 1
0 0

0

 |bσ2 − aσ2 | =


0 2 0 2

0 1 1
0 2

0


Now we can compute the weighted Kemeny distance. Let’s assume equal
weights, w = (1/3, 1/3, 1/3), the distance between a and b is:

dwK(a, b) =
1

2

[
(1 + 2 + 2 + 2 + 0 + 2)

1

3
+ (2 + 1 + 1 + 1)

1

3
+ (0 + 2)

1

3

]
=

=
1

2

(
16

3

)
=

8

3
.

If we change the vector of weights, with a decreasing structure w =
(2/3, 1/3, 0), the value of the distance is:

dwK(a, b) =
1

2

[
(1 + 2 + 2 + 2 + 0 + 2)

2

3
+ (2 + 1 + 1 + 1)

1

3
+ (0 + 2)0

]
=

=
1

2

(
23

3

)
=

23

6
.

For the sake of completeness, other kinds of weight could be intro-
duced when considering preference data: weights assigned to individ-
uals. Hence, a weight is not assigned to an item or a position, but to
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the whole ranking, i.e. to the judge. This necessity can arise when deal-
ing with measures of consensus ranking, and a weight wj , assigned to
individual j, represents the strength of his opinion among the group of
individuals (Emond and Mason, 2002).
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Chapter 3

A position weighted rank
coefficient for rankings
without ties

As already stated in Section 2.1, Cook (2006) highlights the intractabil-
ity of the Kemeny metric, issue already stressed by Emond and Mason
(2002). Given a set of n independent rankings involving m items, the
median ranking is the one for which the Kemeney-Snell distance is the
minimum. According to this approach, researching the median ranking
implies to search the space of all possible rankings with m objects. The
research is totally governed by the number of items and not by the num-
ber of judges. In the case of full rankings the set of all different rankings
Zm is equal to m!. The searching space increases consistently when ties
are allowed: the universe of all possible rankings with ties (Sm) is ap-
proximately given by the following quantity:

Sm =

m∑
r=0

r!

{
m

r

}
,

where
{
m
r

}
states the Stirling number of the second kind, corresponding

to the number of all possible ways to partition a set of m objects into r
non-empty subsets. “Even if there are close formulas for the detection of
the consensus rankings, these are not feseable because of the complexity
of the problem (e.g. when ties are allowed , in the case ofm = 12 we have
that Sn = 28.091.567.595)”(D’Ambrosio et al., 2017). That’s a NP hard
problem, because of the high values reached by the Stirling number of
the second type when the number of items increases and ties are allowed.
That’s the reason why the definition of a rank correlation coefficient (with
positional weights) has been necessary. Moreover, in statistics a measure
of correlation is, usually, an index assuming values in [−1, 1] which gives
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an information deeper than only a distance, i.e. how much is the intensity
of the relation between two variables. Hence, working with correlations
rather than with distances is preferable due to its range, always between
−1 and 1 independently on the particular distance used. On the contrary,
the maximum value of a distance,Dmax, depends on the chosen distance.

3.1 Linear orderings

In this work we propose a new rank correlation coefficient, suitable for
position weighted rankings which handles linear orders.

Considering that, even if Emond and Mason (2002) introduced their
τx as in Equation (2.7), it can also be written as:

τwx (a, b) =

∑m
i<j a

(σ1)
ij b

(σ1)
ij +

∑m
i<j a

(σ2)
ij b

(σ2)
ij

m(m− 1)
,

combining the weighted Kemeny distance proposed by García-Lapresta
and Pérez-Román (2010) and the extension of τx provided by Emond and
Mason (2002), we define:

τwx (a, b) =

∑m
i<j a

(σ1)
ij b

(σ1)
ij wi +

∑m
i<j a

(σ2)
ij b

(σ2)
ij wi

max[dwK(a, b)]
, (3.1)

where the denominator represents the maximum value for the Kemeny
weighted distances (García-Lapresta and Pérez-Román, 2010), equal to:

max[dwK(a, b)] = 2
m−1∑
i=1

(m− i)wi. (3.2)

It can be proven that the constraint
∑m−1

i=1 wi = 1 is no more neces-
sary. For linear orderings (i.e. without ties), aσ1 and bσ2 represent the
natural ascending orderings. Let aσ1 = bσ2 = 1, 2, . . . ,m, the new rank
correlation coefficient reduces to:

τwx (a, b) =

∑
i<j Aij(b

(σ1)
ij + a

(σ2)
ij )wi

max[dwK(a, b)]
,
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where

Aij =


0 1 1 . . . 1 1
−1 0 1 . . . 1 1

...
...

...
...

...
...

−1 −1 −1 . . . −1 0



3.2 Correspondance between distance and correlation

The correspondence between the weighted rank correlation coefficient
and the weighted Kemeny distance holds, whatever is the weighting vec-
tor assigned to the items’ positions:

τwx = 1−
2dwk

max(dwk )

or equivalently, it’s enough to demonstrate the equality of the following
equation:

m∑
i<j

Aij

(
b
(σ1)
ij + a

(σ2)
ij

)
wi =

= 2

m−1∑
i=1

(m− i)wi −

 m∑
i<j

wi|Aij − b(σ1)
ij |+

m∑
i<j

wi|Aij − a(σ2)
ij |

 . (3.3)

Proof. In order to evaluate the contribution to the sum in Equation
(3.2) we can distinguish the two cases:

Case 1. Both A and B prefer object i to j. The Kemeny-Snell matrix
values are: Aij = b

(σ1)
ij = a

(σ2)
ij = 1.

The τwx score matrix values are: a
′(σ2)
ij = b

′(σ1)
ij = 1 Hence, the equality in

Equation (3.2) holds:
1 + 1 = 2− [|1− (1)|+ |1− (1)|].

Case 2. A prefers object i to j and B prefers j to object i. The Kemeny-
Snell matrix values are: Aij = 1 and b(σ1)

ij = a
(σ2)
ij = −1.

The τwx score matrix values are: a
′(σ2)
ij = b

′(σ1)
ij = −1 Hence, the equality

in Equation (3.2) holds:
−1− 1 = 2− [|1− (−1)|+ |1− (−1)|].
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Proof. The equivalence can be also demonstrated considering the con-
cordant and discordant couples (analogous approach is used in Vigna
(2015)),

m∑
i<j

Aij

(
b
(σ1)
ij + a

(σ2)
ij

)
wi

︸ ︷︷ ︸
(1)∗

= 2

m−1∑
i=1

(m− i)wi︸ ︷︷ ︸
(2)∗

−
 m∑
i<j

wi|Aij − b
(σ1)
ij |+

m∑
i<j

wi|Aij − a
(σ2)
ij |


︸ ︷︷ ︸

(3)∗

.

Fixing i and wi, each contribution to the sums in (1)∗, (2)∗ and (3)∗ is
given by:
(1)∗

∑m
j=i+1Aij(b

(σ1)
ij + a

(σ2)
ij ) = ci − di .

where ci and di are the number of all concordant and discordant couples
of items for the two rankings a and b, for the i-th item, respectively (see
the following example).
Since

∑m−1
i=1 (m − i)wi =

∑
i<j wi, fixing i and wi, each piece of the sum

in (2)∗ is:
(2)∗ 2

∑m
j=i+1 1 = 2(m − i) = ci + di, i.e. the number of all couples of

items for two rankings, row by row.
As regards the last expression (3)∗, each single element of the sum is:
(3)∗

∑m
j=i+1(|Aij − b(σ1)

ij |+ |Aij − a
(σ2)
ij |) = 2[2(m− i)− ci] = 2di

Substituting row by row all the results in (1)∗, (2)∗ and (3)∗, hence fixing
i and wi, it can be easily seen that the equation in (3.2) holds:

ci − di = ci + di − 2di ⇒ ci − di = ci − di

Example: Let’s consider a = 1, 2, 3, 4, 5, 6 and b = 2, 4, 1, 6, 5, 3. Hence,
aσ1 = bσ2 = 1, 2, 3, 4, 5, 6 and aσ2 = 3, 1, 6, 2, 5, 4 and bσ1 = 2, 4, 1, 6, 5, 3.
The corresponding score matrices are:

aσ1 = bσ2 =


0 1 1 1 1 1

0 1 1 1 1
0 1 1 1

0 1 1
0 1

0

 bσ1 =


0 1 −1 1 1 1

0 −1 1 1 −1
0 1 1 1

0 −1 −1
0 −1

0



aσ2 =


0 −1 1 −1 1 1

0 1 1 1 1
0 −1 −1 −1

0 1 1
0 −1

0
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From the score matrices we are able to compute the concordant and
discordant couples of items, row by row.

bσ1 ⇒

ci di
4 1
2 2
3 0
0 2
0 1

aσ2 ⇒

ci di
3 2
4 0
0 3
2 0
0 1

The expression in (1), row by row and ignoring the presence of the weight-
ing vector, is easily computed as follows:

bσ1 + aσ2 =


0 0 0 0 2 2

0 0 2 2 0
0 0 0 0

0 0 0
0 −2

0



⇒
∑
j=i+1

(bσ1 + aσ2) =


4
4
0
0
−2

 =


(4 + 3)− (1 + 2)
(2 + 4)− (2 + 0)
(3 + 0)− (0 + 3)
(0 + 2)− (2 + 0)
(0 + 0)− (1 + 1)

 = ci − di

|A− bσ1 |︸ ︷︷ ︸
2(m− i)− ci(bσ1 )

+

2(m− i)− ci(aσ2 )︷ ︸︸ ︷
|A− aσ2 | =

=



0 0 2 0 0 0
0 2 0 0 2

0 0 0 0
0 2 2

0 2
0

+



0 2 0 2 0 0
0 0 0 0 0

0 2 2 2
0 0 0

0 2
0

 =

=



2(1 + 2)
2(2 + 0)
2(0 + 3)
2(2 + 0)
2(1 + 1)

0

 = 2di
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3.3 Minimum and Maximum values

The weighted rank correlation coefficient holds the main property of a
generic correlation coefficient, i.e. it takes values between −1 and 1:

τwx =

∣∣∣∣∣∣
∑

i<j Aij

(
b
(σ1)
ij + a

(σ2)
ij

)
wi

max
(
dwK
)

∣∣∣∣∣∣ ≤ 1.

Taking into account that max(dwK) = 2
∑m−1

i=1 (m− i)wi = 2
∑

i<j wi, let us
demonstrate that:

τwx =

∣∣∣∣∣∣
∑

i<j Aij

(
b
(σ1)
ij + a

(σ2)
ij

)
wi

2
∑

i<j wi

∣∣∣∣∣∣ ≤ 1.

Proof

• τwx reaches the maximum value, equal to 1, if and only if the judges
agree on all items. Therefore, a(σ2)

ij = b
(σ1)
ij = Aij ∀i < j:

τwx =

∑
i<j(1 + 1)wi

2
∑

i<j wi
= 1.

• τwx reaches the minimum value, equal to−1, if and only if the judges
disagree on all items. Therefore, a(σ2)

ij = b
(σ1)
ij = −Aij ∀i < j:

τwx =

∑
i<j(−1− 1)wi

2
∑

i<j wi
= −1.

• τwx takes a value between −1 and 1, when the judges agree on some
items and disagree on the others. A particular case is when they
agree on half of the items and disagree on the other half, i.e.: a(σ2)

ij =

−b(σ1)
ij ∀i < j:

τwx =

∑
i<j(±1∓ 1)wi

2
∑

i<j wi
= 0.

3.4 Correspondence between weighted and unweighted
measures

When an equal importance is assigned to the items’ position, i.e. wi =
1

(m−1) ∀i = 1, 2, . . . ,m − 1, the weighted rank correlation coefficient is
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equivalent to the rank correlation coefficient defined by Emond and Ma-
son.
Proof. Thanks to the symmetry of the combined input matrix, τx can be
expressed also as:

τx =

m∑
i,j=1
i 6=j

aijbij
m(m− 1)

= 2

m∑
i<j

aijbij
m(m− 1)

,

τwx =

∑m
i<j wia

(σ1)
ij b

(σ1)
ij +

∑m
i<j wia

(σ2)
ij b

(σ2)
ij

max(dwk )

=

∑m
i<j wiAij

(
b
(σ1)
ij + a

(σ2)
ij

)
m

=
1

m(m− 1)

m∑
i<j

(
b
(σ1)
ij + a

(σ2)
ij

)
Aij .

The term Aij can be omitted since, for i < j, Aij = +1 ∀i, j.
Hence, we have to assess if the following equality holds:

2
m∑
i<j

aijbij
m(m− 1)

=
1

m(m− 1)

m∑
i<j

(
b
(σ1)
ij + a

(σ2)
ij

)
.

Fixing i and j, it sufficies to see what happens to each element of the
equality:

2aijbij = b
(σ1)
ij + a

(σ2)
ij .

Case 1. Both A and B prefer object i to j or vice versa. If aij = bij = ±1,
it’s obvious that a(σ2)

ij = b
(σ1)
ij = 1 and substituting these values to the

previous equation leads to obtain, respectively:

2 · (±1) · (±1) = 1 + 1.

Case 2. A prefers object i to j and B prefers j to i or vice versa. If aij =

±1 and bij = ∓1, it’s obvious that a(σ2)
ij = b

(σ1)
ij = −1 and substituting

these values to the previous equation leads to obtain, respectively:

2 · (±1) · (∓1) = −1− 1.

For equal weights assigned to the items (wi = 1
m−1 , for each i = 1, 2, . . . ,m−

1) the weighted distance is proportional to the Kemeny distance without
weights, according to the number of items:
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dwK =
dK

m− 1
.

Proof. Let’s consider the natural increasing ordering of m elements a =
{1, 2, . . . ,m} and any other permutation b. The couples that contribute to
the calculation of the Kemeny distance are only the discordant ones of b
and they could be at most

(
m
2

)
. If a and b present

(
k
2

)
discordant couples,

with (k = 2, 3, . . . ,m), i.e. if b = {m,m− 1,m− 2, . . . , 2, 1}, we obtain:

dk =
m∑
i<j

|aij − bij | = 2 ·
(
k

2

)
,

dwk =
1

2

m∑
i<j

wi

[
|Aij − b(σ1)

ij |+ |Aij − a
(σ2)
ij |

]
=

=
1

2

1

m− 1

m∑
i<j

[
|Aij − b(σ1)

ij |+ |Aij − a
(σ2)
ij |

]
=

=
1

2
· 1

m− 1
[(2 + 2)

(
k

2

)
] =

2

m− 1

(
k

2

)
=

dk
m− 1

.

The previous results lead to the following considerations:

max(dK) = 2 ·
(
m

2

)
,

max(dwK) =
max(dK)

m− 1
.

3.5 The consensus ranking problem and a suitable
branch-and-bound BB algorithm

When dealing with preference rankings, searching for a ranking repre-
sentative of a group of judges is a central theme (D’ambrosio et al., 2015a).
Two broad classes of approaches to consensus can be found in the litera-
ture: ad hoc procedures developed over time (parliamentary procedures,
preferential voting needs, and so on) and more formal methodologies,
based on a measure of distance (Cook, 2006). Here we follow this second
approach, and, among the several consensus ranking measures proposed
in the literature (Kemeny and Snell, 1962), the median ranking approach
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will be used in the examples presented in the next subsection. It is de-
fined as the ranking corresponding to the minimum sum of the weighted
distances of all rankings from it.
Emond and Mason (2002) proposed to use a branch and bound algorithm,
in order to avoid the research of the median ranking among all possible
rankings belonging to Zm or Sm (see Section 3). Hence, to compute the
median ranking we start from the above cited branch and bound algo-
rithm, implemented in the R package “ConsRank” (D’Ambrosio et al.,
2015b).
The proposed weighted correlation coefficient can be used to deal with a
consensus ranking problem: given a n xm matrix X, whose l-th row rep-
resents the ranking associated to the l-th judge, the purpose is to identify
that ranking (b) (a candidate within the universe of the permutations of
m elements) that best represents the average consensus of the subjects
involved (i.e. the matrix X). Considering that there is a one-to-one cor-
respondence between a rank correlation coefficient and a distance, the
solution ranking is reached by minimizing the average distance or, simi-
larly, maximizing the average rank correlation:

n∑
l=1

d(lx, b) = min,

n∑
l=1

τwx (lx, b) = max . (3.4)

Maximizing the expression in Equation (3.4) means to maximize the
following function, once a candidate ranking is fixed among all m! per-
mutations of m items:

n∑
l=1

τwx (lx, b) =
n∑
l=1

∑m
i<j a

X(l)
ij (l)b

X(l)
ij wi +

∑m
i<j a

b
ij(l)b

b
ijwi

max[dwK(X, b)]
,

where l refers to one of the n orderings, aX(l)
ij (l) and bbij are the ij-th el-

ements of the score matrices related to the natural ascending orderings
(1, 2, . . . ,m), namedAij , b

X(l)
ij is the generic ij-th element in the score ma-

trix of the candidate ranking b reordered according to the l-th ordering
of X and abij(l) is the generic ij-th element in the score matrix of the l-th
ranking in X reordered according to b, and the denominator is defined in
Equation (3.6). Changing the order of the summation operations, leads
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to work under another perspective:

n∑
l=1

τwx (lx, b) =

=
1

max
[
dwK(X, b)

]
 m∑
i<j

n∑
l=1

a
X(l)
ij (l)b

X(l)
ij wi +

m∑
i<j

n∑
l=1

abij(l)b
b
ijwi

 =

=
1

max
[
dwK(X, b)

]
 m∑
i<j

n∑
l=1

b
X(l)
ij Aijwi +

m∑
i<j

n∑
l=1

abij(l)Aijwi

 =

=
1

max
[
dwK(X, b)

]
 m∑
i<j

cij(b)Aijwi +

m∑
i<j

cij(a)Aijwi

 , (3.5)

where cij(b) =
∑n

l=1 b
X(l)
ij and cij(a) =

∑n
l=1 a

b
ij(l) are the elements of the

combined input matrices (Emond and Mason, 2002). In few words, they
are m×m matrices obtained aggregating the score matrices of all the in-
dividual orderings. Hence, we deal with the optimization of a function
given by two components, where each one is a product of combine input
matrices, score matrices (Aij) and the vector of weights. The maximiza-
tion problem is limited to maximizing only the numerator, because the
denominator is a fixed quantity depending on the number of subjects,
the number of items and the positional weights fixed at the beginning of
the process.
Emond and Mason (2002) proposed the BB algorithm to deal with the
consensus ranking problem. Recently, Amodio et al. (2016) and D’ambrosio
et al. (2015a) proposed two accurate algorithms, they called QUICK and
FAST, for identifying the median ranking when dealing with weak and
partial rankings, in the framework of the Kemeny approach.

The procedure proposed here is based on their approach, but τx is
replaced with τwx ; in particular, following Emond and Mason (2002), we
calculate the maximum possible value P ∗ of the numerator in Equation
(3.5), which is represented by the denominator since a rank correlation
coefficient has a maximum value of | ± 1|:

P ∗ = max [dwK(X, b)] = 2n
m−1∑
i=1

(m− i)wi, (3.6)
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and taking a candidate ranking among the m! permutations of the items,
we evaluate the numerator in the Equation (3.5):

p =
m∑
i<j

cij(b)Aijwi +
m∑
i<j

cij(a)Aijwi =
m∑
i<j

cwij . (3.7)

In particular, to identify a good candidate to be the median ranking
that can be used as an input in the algorithm, we follow (Amodio et al.,
2016).

The two quantities (P ∗ and p) are used for measuring an initial penal-
ization, in the consensus ranking process, in the following way:

P = P ∗ − p. (3.8)

The purpose of the algorithm is to find, among all the possible linear
rankings, the one that provides the minimum penalty from now on. In
order to achieve this objective, the set of m! permutations is divided into
two mutually exclusive branches according to the position of the two first
items (namely i and j) in the ordering used as the initial solution. After
that, an incremental penalty for each branch can be computed, taking into
account the cwij and cwji of the entire Cw input matrix (defined in Equation
(3.7)):
BRANCH 1

• object i is preferred to object j:

a) if cwij > 0 and cwji > 0, with cwij ≥ cwji, then δP = 0

b) if cwij < 0 and cwji < 0, then δP = |cwij + cwji|

BRANCH 2

• object j is preferred to object i:

a) if cwij < 0 and cwji < 0, with cwij ≤ cwji, then δP = |cwij + cwji|
b) if cwij > 0 and cwji > 0, then δP = 0

where δP represents the incremental penalty. If the incremental penalty
obtained from a branch is greater than the initial penalty, then the rank-
ings belonging to that branch are excluded from the search process. In
the opposite case, if a branch provides a smaller (or equal) penalty than
the initial one, then the next object in the initial solution is taken into
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consideration and other new branches are built up, by moving this ob-
ject in all possible positions with respect to the objects considered before.
The incremental penalty produced by the new branches is again the tool
for cutting useless branches and for keeping, only, the useful ones until
a solution is reached. Of course, with constant weights (wi = 1

m−1 ) τwx
reduces to τx (see Proposition 2 in Section 3), therefore the modified BB
algorithm proposed loses utility.

3.6 Experimental evaluation

To assess the performance of our algorithm, we considered both a simula-
tion study and real datasets. We implemented the proposed BB algorithm
in R environments by suitably modifying the corresponding functions of
the “ConsRank” package (D’Ambrosio et al., 2015b).

Simulations

In the simulation study ranking data were generated according to a Mal-
lows model (Irurozki et al., 2016), which is an exponential model defined
by a central permutation α and a spread (or dispersion) parameter θ.
When θ > 0 (with θ = 0 we obtain the uniform distribution), α is the
mode of the distribution, i.e., the permutation with the highest probabil-
ity. The probability of any other permutation S decays exponentially as
its distance to the central permutation increases, according to the model

fθ(α;S) = C(θ) exp(−θd(S, α)), (3.9)

where C(θ) is a constant of normalization. The distance d can be mea-
sured in many ways, including Kendall’s, Cayley, Hamming and Ulam
distances. The Mallows model that uses Kendall’s distance (used in this
chapter) is also known in the literature as the Mallows φ model.
The four levels chosen for θ were 0.4, 0.7, 1 and 2. Two different lev-
els for the number of items were taken into account: 5 and 9. The po-
sition weighting vectors were employed according to a precise struc-
ture, let’s show those relative to 5 items: w1 = (1/4, 1/4, 1/4, 1/4), w2 =
(4/10, 3/10, 2/10, 1/10), w3 = (1/2, 1/2, 0, 0), w4 = (2/3, 1/3, 0, 0) and
w5 = (1, 0, 0, 0). In other words, equal and decreasing weights were con-
sidered, at first involving all the weights and then only half of the total
amount of the vectors, and, finally, only the first position was weighted.
The sample size used for all the datasets generated was 50, and for each
combination of θ and the number of items, 100 samples were generated.
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For each sample, we estimated the consensus ranking and the corre-
sponding τwx (8) with each weighting vector. Figure 3.1 compares the
true distribution (i.e., computed with reference to the true mode α used
to generate the data according to model (3.9)) of τwx , always shown in
white colour, and τwx computed with respect to the estimated consensus;
on the left rankings of 5 items are considered, 9 items on the right.

As it appears, the implemented procedure always finds the correct
consensus, since the distributions of true and estimated τwx are compa-
rable. Both with 5 and with 9 items the higher θ the higher τwx and the
simpler the weighting vector (few positions involved) the higher τwx .

It is possible (see for example the lowest values Figure 3.1-left, θ =
0.4 or θ = 0.7 and w = w2 to w = w5) that the estimated consensus is
even better (i.e. with a higher τwx ) than the true model: this is due to the
introduction of weights with a simpler structure.

Real data

The first dataset considered is AGH Course Selection (http://www.preflib.
org/data/election/agh/). This dataset contains the results of a survey con-
ducted among students at AGU University of Science and Technology
regarding their course preferences. Each student provided a rank order-
ing over all the courses with no missing elements. In the dataset of 2003,
here considered, there are 9 courses (coded C1 to C9) to choose from, i.e
each student had to order 9 courses according to his/her preference.

As previously considered in the simulations, 5 different weighting
vectors are considered (shown in Table 3.1), in order to assess their effect
on the estimated consensus: withw1 we give the same importance to each
position, which means that we do not weigh positions (see Proposition 3);
with w5 we give importance to the first position only.

w1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
w2 0.222 0.194 0.167 0.139 0.111 0.083 0.056 0.028
w3 0.250 0.250 0.250 0.250 0.000 0.000 0.000 0.000
w4 0.400 0.300 0.200 0.100 0.000 0.000 0.000 0.000
w5 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 3.1: AGH Course Selection dataset: Weighting vectors

The consensus estimated for each weighting vector is shown in Table
3.2. With the first four weighting vectors we obtain very similar results,
with increasing values of τwx (as expected according to the simulation
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FIGURE 3.1: Real (white color) and estimated tauwx distribution vs theta
and weighting vectors for rankings of 5 items (left) and 9 items (right).
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results). With w5 we obtain 16 different solutions corresponding to the
same value of τwx , always with course "C1" in first position.

1 2 3 4 5 6 7 8 9 τwx

w1 C1 C9 C2 C3 C7 C8 C4 C6 C5 0.571
w2 C1 C9 C2 C3 C7 C8 C4 C6 C5 0.603
w3 C1 C9 C2 C4 C7 C8 C5 C6 C3 0.606
w4 C1 C9 C2 C6 C7 C8 C4 C5 C3 0.680

w5

C1 C6 C2 C9 C7 C8 C4 C3 C5

0.955

C1 C6 C2 C8 C9 C7 C3 C4 C5
C1 C7 C2 C8 C6 C9 C3 C4 C5
C1 C9 C2 C7 C8 C6 C3 C4 C5
C1 C8 C2 C9 C6 C7 C3 C4 C5
C1 C9 C2 C6 C7 C8 C3 C4 C5
C1 C7 C2 C9 C8 C6 C3 C4 C5
C1 C9 C2 C7 C8 C6 C4 C3 C5
C1 C8 C2 C9 C7 C6 C4 C3 C5
C1 C6 C2 C7 C9 C8 C3 C4 C5
C1 C7 C2 C6 C8 C9 C4 C3 C5
C1 C7 C2 C6 C8 C9 C3 C4 C5
C1 C7 C2 C6 C9 C8 C4 C3 C5
C1 C6 C2 C7 C8 C9 C3 C4 C5
C1 C6 C2 C9 C7 C8 C3 C4 C5
C1 C8 C2 C6 C9 C7 C4 C3 C5

TABLE 3.2: Consensus rankings for each weighting vectors

The second dataset considered is the T-shirt dataset (http://www.preflib.
org/data/election/shirt/) that contains complete rank orderings of T-Shirt
designs voted on by members of the Optimization Research Group at
NICTA. There are 11 designs (candidates, coded A to K) and 30 votes
about these designs. Voters were required to submit complete strict or-
ders.

Again 5 different weighting vectors are considered (shown in Table
3.3), in order to assess their effect on the estimated consensus.: with w1

we give the same importance to each position, which means that we do
not weigh positions (see Proposition 3); with w5 we give importance to
the first position only.

This time the solutions are quite different (Table 3.4): while t-shirt
coded E is in first position with weight w1 (or analogously without
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w1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
w2 0.222 0.194 0.167 0.139 0.111 0.083 0.056 0.028
w3 0.250 0.250 0.250 0.250 0.000 0.000 0.000 0.000
w4 0.400 0.300 0.200 0.100 0.000 0.000 0.000 0.000
w5 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 3.3: T-shirt dataset: eighting vectors

1 2 3 4 5 6 7 8 9 10 11 tau

w1
E F L I J K C A D B H 0.189
E F L I J K B A D C H

w2 C D L I J K B A F E H 0.2

w3

C D K H J L B A F E I
0.201C D L H J K B A F E I

C D L I J K B A F E H
w4 C D L H J K B A F E I 0.211

w5

B C D E L H J A F I K

0.343B C E D K H I A F J L
B C D E K H J A F I L
B C E D L H I A F J K

TABLE 3.4: T shirt results

weights), t-shirt C becomes the most preferred with weights w2, w3 and
w4, and t-shirt B is in first position with weight w5.

3.7 Conclusion

We have proposed a new position weighed rank correlation coefficient
for linear orders. We demonstrated that the proposed coefficient is in one
to one correspondence with the weighted Kemeny distance proposed by
García-Lapresta and Pérez-Román (2010), whereby if equal importance is
assigned to an items’ position, the weighted rank correlation coefficient
is equivalent to the rank correlation coefficient defined by Emond and
Mason (2002).

The proposed weighted correlation coefficient can be used to deal
with a consensus ranking problem: given n linear orderings of m objects,
the purpose is to identify the ranking (b) that best represents the average
consensus of the subjects involved.

We implemented the proposed BB algorithm in R environments,by
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suitably modifying the functions of the “ConsRank” package (D’Ambrosio
et al., 2015b). A simulation plan shows that the implemented procedure
always find the correct consensus, since the distributions of true and esti-
mated τwx are comparable. Both with 5 and with 9 items the higher θ (the
dispersion parameter, indicating the level of heterogeneity/homogeneity
among rankings) the higher τwx and the simpler the weighting vector (few
positions involved) the higher τwx . Finally, applying the proposed pro-
cedure to two real datasets, we have shown how a different weighting
vector can modify the estimated consensus.
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A position weighted rank
coefficient for rankings with
ties

4.1 Weak orders

Combining the weighted Kemeny distance proposed by García-Lapresta
and Pérez-Román (2010) and the extension of τx provided by Emond and
Mason (2002), we propose a new rank correlation coefficient working
with a couple of score matrices.

Let’s define the generic (i, j) element of the score matrices a+
ij and a−ij

related to a ranking a as follows:

a+
ij , b

+
ij =

{
1 i preferred to or tied with j
0 i = j

−1 j preferred to i
a−ij , b

−
ij =

{
1 i preferred to j
0 i = j

−1 j preferred to or tied with i

Following the observations in Emond and Mason (2002) (Sections 38,
39), both "+1" in a+

ij and "-1" in a−ij are associated to ties. The new rank
correlation coefficient uses both these score matrices and it is defined as:

τwx (a, b) =

∑m
i<j

(
a+σ1
ij b+σ1ij + a+σ2

ij b+σ2ij + a−σ1ij b−σ1ij + a−σ2ij b−σ2ij

)
wi

2 max
[
dwK
] ,

(4.1)
where the denominator represents twice the maximum value of the Ke-
meny weighted distances (see Equation (3.2)).

A question that arises immediately is: what weight or weights are
used when two items occupy the same position in a ranking? Equation
(4.1), based on the two newly introduced score matrices, associates the
same weight, as the next example shows. Let’s consider b = 1, 2, 3, 4, and
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a1 = 1, 3, 2, 4, a2 = 1, 2, 2, 3, a3 = 1, 1, 2, 3 and w = (w1, 0, 0). Giving
weight to the first position only, the correlation between a1 and b, as well
as the one between a2 and b has to be maximum, while the correlation
between a3 and b has not. And sure enough it results to be:

τwx (a1, b) = τwx (a2, b) = 1, while, τwx (a3, b) < 1.

4.2 Correspondence between distance and correlation

We will demonstrate that Equation (4.1) is the correlation coefficient cor-
responding to the weighted Kemeny distance in Equation (2.10) through
the straightforward linear transformation:

∑m
i<j(a

+σ1
ij b+σ1ij + a+σ2

ij b+σ2ij + a−σ1ij b−σ1ij + a−σ2ij b−σ2ij )wi

2 max
[
dwK
] = 1−

2dwK
max

[
dwK
] ,

or equivalently

m∑
i<j

(a+σ1
ij b+σ1ij + a+σ2

ij b+σ2ij + a−σ1ij b−σ1ij + a−σ2ij b−σ2ij )wi = 2 max [dwK ]− 4dwK ,

(4.2)
where max

[
dwK
]

and dwK are defined in Equation (3.2) and in Equation
(2.10), respectively.

According to Emond and Mason (2002), if two rankings a and b agree
except for a set S of k objects, which is a segment of both, then dwK(a, b)
may be computed as if these k objects were the only objects being ranked.
As a consequence, to prove the equality in (4.2) we will show that for each
pair of objects i and j:

a+σ1
ij b+σ1ij +a+σ2

ij b+σ2ij +a−σ1ij b−σ1ij +a−σ2ij b−σ2ij = 4(m−i)−2
[
|aσ1ij −b

σ1
ij |+|b

σ2
ij −a

σ2
ij |

]
(4.3)

In Equation (4.3) the weights wi have been omitted from both the sides.
There are nine possible combinations of orderings for item i and j be-
tween judges a and b, but only four distinct cases must be considered.
The other five are equivalent to one of these four through a simple rela-
beling of the rankers and/or the objects. (Emond and Mason, 2002).

Case 1. Both a and b prefer object i to j. The Kemeny-Snell matrix
values are: aσ1ij = bσ1ij = aσ2ij = bσ2ij = 1. The τwx score matrix values are:
a+σ1
ij = b+σ1ij = a+σ2

ij = b+σ2ij = a−σ1ij = b−σ1ij = a−σ2ij = b−σ2ij = 1. Hence,
the equality in Equation (4.3) holds:
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1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 4− 2[|1− (1)|+ |1− (1)|].

Case 2. a prefers object i to j and b prefers the two objects as tied. The
Kemeny-Snell matrix values are: aσ1ij = aσ2ij = 1 and bσ1ij = bσ2ij = 0. The τwx
score matrix values are: a+σ1

ij = b+σ1ij = a+σ2
ij = b+σ2ij = a−σ1ij = a−σ2ij = 1

and b−σ1ij = b−σ2ij = −1. Hence, the equality in Equation (4.3) holds:
1 · 1 + 1 · 1 + 1 · (−1) + 1 · (−1) = 4− 2[|1− 0|+ |1− 0|].

Case 3. a prefers object i to j and b prefers j to object i. The Kemeny-
Snell matrix values are: aσ1ij = bσ2ij = 1 and aσ2ij = bσ1ij = −1. The τwx score
matrix values are: a+σ1

ij = b+σ2ij = a−σ1ij = b−σ2ij = 1 and a+σ2
ij = b+σ2ij =

a−σ2ij = b−σ1ij = −1. Hence, the equality in Equation (4.3) holds:
1 · (−1) + (−1) · 1 + 1 · (−1) + (−1) · (1) = 4− 2[|1− (−1)|+ |1− (−1)|].

Case 4. Both judges a and b rank the objects i and j as tied. The
Kemeny-Snell matrix values are: aσ1ij = bσ2ij = aσ2ij = bσ1ij = 0. The τwx score
matrix values are: a+σ1

ij = b+σ1ij = a+σ2
ij = b+σ2ij = 1 and a−σ1ij = b−σ1ij =

a−σ2ij = b−σ2ij = −1. Hence, the equality in Equation (4.3) holds:
1 · (1) + (1) · 1 + 1 · (1) + (1) · (1) = 4− 2[|0− 0|+ |0− 0|].

4.3 Minimum and Maximum values

From the demonstrations in Section 4.2, τwx assumes its maximum value,
equal to 1, if and only if for all i and j only Case 1 or only Case 4 are
observed. Therefore, differently from what happens with Kendall τb (see
(Emond and Mason, 2002) sect 3.3), τwx assumes the maximum value even
when a generic all tied ranking is compared with itself.

Analogously, τwx can be minimum, and equal to -1, if and only if for
all i and j only Case 3 occurs.

4.4 Correspondence between weighted and unweighted
measures

For equal weights assigned to the items (wi = 1
m−1 , for each i = 1, 2, . . . ,m−

1) the weighted distance is proportional to the classical Kemeny distance,
on the basis of the number of items:

dwx =
dx

m− 1
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Proof. Referring to the cases listed in Section 4.2:

Case 1. dwx = 1
2 [|1−(1)|+|1−(1)|]wi = 0 and dx = 1

2 [|0−0|+|0−0|] = 0

Case 2. dwx = 1
2 [|1−0|+ |1−0|]wi = 1

m−1 and dx = 1
2 [|1−0|+ |1−0|] = 1

Case 3. dwx = 1
2 [|1−(−1)|+ |1−(−1)|]wi = 2

m−1 and dx = 1
2 [|1−(−1)|+

|1− (−1)|] = 2

Case 4. dwx = 1
2 [|0− 0|+ |0− 0|]wi = 0 and dx = 1

2 [|0− 0|+ |0− 0|] = 0

Corollary Since τx ↔ dK and τwx ↔ dwK , then the weighted rank corre-
lation coefficient is equivalent to the rank correlation coefficient defined
by Emond and Mason when equal importance is given to the positions
occupied by the items:

τwx = τx, with wi =
1

m− 1
∀i = 1, 2, . . . ,m− 1

4.5 The consensus ranking problem and a suitable
branch-and-bound BB algorithm

The proposed weighted correlation coefficient can be used to deal with a
consensus ranking problem: given n rankings, full or weak, of m items,
which best represents the consensus opinion? This consensus will be the
ranking that shows the maximum correlation, with the whole set of n
rankings.

Given a n xm matrix X, whose l-th row represents the ranking asso-
ciated to the l-th judge, the consensus ranking, i.e. the ranking r (a can-
didate within the universe of the permutations with ties of m elements)
that best represents the matrix X, is that ranking that maximizes the fol-
lowing expression:

max

n∑
l=1

τwx (lx, r) = (4.4)

= max

n∑
l=1

∑m
i<j

(
lx

+σl
ij r+σl

ij +l x
+σr
ij r+σr

ij +l x
−σl
ij r−σlij +l x

−σr
ij r−σrij

)
wi

2 max
[
dwK(X, r)

]
where max[dwK(X, r)] is 2n

∑m−1
i=1 (m− i)wi.
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Changing the order of the summations, leads to work under another
perspective:

n∑
l=1

τwx (lx, r) = (4.5)

=

n∑
l=1

∑m
i<j

(
lx

+σl
ij r+σl

ij +l x
+σr
ij r+σr

ij +l x
−σl
ij r−σlij +l x

−σr
ij r−σrij

)
wi

2 max
[
dwK(X, r)

] =

=
1

2 max
[
dwK(X, r)

] ·
·
m∑
i<j

[
n∑
l=1

lx
+σl
ij r+σl

ij +l x
+σr
ij r+σr

ij +l x
−σl
ij r−σlij +l x

−σr
ij r−σrij wi

]
=

=
1

2 max
[
dwK(X, r)

]
 m∑
i<j

cwij


where cwij is the analogous of a combined input matrix (Emond and Ma-
son, 2002). In few words, it is m × m matrix obtained aggregating the
score matrices of all the individual orderings.

The maximization problem reduces to maximize only the numerator,
because the denominator is a fixed quantity depending on the number
of subjects, the number of items and the positional weights fixed at the
beginning of the process.

Emond and Mason (2002) proposed a BB algorithm to deal with the
consensus ranking problem. As we mentioned before, Amodio et al. (2016)
and D’Ambrosio et al. (2015b) proposed two accurate algorithms, they
called QUICK and FAST, for identifying the median ranking when deal-
ing with weak and partial rankings, in the framework of the kemeny ap-
proah.

The procedure proposed is based, again, on their approach, but τx
is replaced with τwx ; in particular, following Emond and Mason (2002),
the maximum possible value P ∗ of the numerator in Equation (4.5) is
calculated; it is represented by the denominator of the equation itself,
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since a rank correlation coefficient has a maximum value equal to | ± 1|:

P ∗ = max [dwK(X, b)] = 2n
m−1∑
i=1

(m− i)wi,

and taking a candidate ranking within the universe of the permutations
with ties of the items, we evaluate the numerator in the Equation (4.5):

p =

[ m∑
i<j

cwij

]
.

The two quantities P ∗ and p are used for estabilish an initial penalization,
in the consensus ranking process, in the following way:

P = P ∗ − p. (4.6)

The purpose of the algorithm is to find out, among all the possible weak
rankings, that one which provides the minimum penalty. In order to
reach this objective, the universe of the permutations with ties is divided
into three mutually exclusive branches according to the position of the
two first items (named i and j) in the ordering used as the initial solution.
After that, an incremental penalty for each branch can be computed, tak-
ing into account the cwij and cwji of the entire Cw input matrix:

BRANCH 1

• object i is preferred to object j:

a) if cwij > cwji > 0, then δP = 0

b) if cwij = cwji = 0, then δP = [(wi + wj) · (m− 1) · n]/2

c) if cwij < cwji < 0, then δP = |cwij + cwji|

BRANCH 2

• object i is tied to object j:

a) if cwij = cwji = 0, then δP = [(wi + wj) · (m− 1) · n]/2

b) if cwij > 0 and cwji < 0, then δP = 0

c) if cwij = cwji = 0, then δP = [(wi + wj) · (m− 1) · n]/2

BRANCH 3
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• object j is preferred to object i:

a) if cwij < cwji < 0, then δP = |cwij + cwji|
b) if cwij = cwji = 0, then δP = [(wi + wj) · (m− 1) · n]/2

c) if cwij > cwji > 0, then δP = 0

where δP represents the incremental penalty. If the incremental penal-
ty computed from a branch is greater than the initial penalty, then the
rankings belonging to that branch are excluded from the searching pro-
cess. Otherwise, if a branch provides a smaller (or equal) penalty than
the initial one, then the next object in the initial solution is considered
and other new branches are built up, by moving this object in all possible
positions with respect to the objects considered before. The incremental
penalty produced by the new branches is again the tool for cutting use-
less branches and for holding, only, the useful ones until a solution is
reached. Actually, following Amodio et al. (2016) QUICK algorithm, the
penalty is evaluated by considering all items in the input ranking, while
in the original BB formulation, the penalty was computed by consider-
ing only the elements of the combined input matrix associated with the
processed objects, adding up these partial values.

4.6 Experimental evaluation

Both a simulation study and real datasets will be considered to assess the
performance of the proposed procedure. Data analysis is performed us-
ing our code written in R language. The proposed BB algorithm has been
implemented in R environment by suitably modifying the corresponding
functions of the “ConsRank” package (D’Ambrosio et al., 2015b).

Simulations

In the simulation study, ranking data were generated according to the
Mallows model (Irurozki et al., 2016), which is an exponential model de-
fined previosuly (see Equation (3.9), Section 3.6). We consider m = 4 and
m = 9 items, while four different values of θ are used: 0.42, 0.6, 1.2 and
3.5. The full space of complete and tied rankings has been considered.
The position weighting vectors were employed according to a precise
structure: for example, for 5 items we consider w1 = (1/4, 1/4, 1/4, 1/4), w2 =

(4/10, 3/10, 2/10, 1/10), w3 = (1/2, 1/2, 0, 0), w4 = (2/3, 1/3, 0, 0) and w5 = (1, 0, 0).
In brief, equal and decreasing weightings were considered, at first involv-
ing all the weights and then only half of the total number of the positions
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and, finally, only the first position was weighted. The sample size used
for all the datasets generated was 50, and for each combination of θ and
number of items, 100 samples were generated. For each sample, we esti-
mated the consensus ranking and the corresponding τwx in Equation (4.5)
by using all the weighting vectors. Figure 4.1 compares the true distribu-
tion (i.e., computed with reference to the true mode α used to generate
the data according to model (3.9)) of τwx , always shown in white color,
and τwx computed with respect to the estimated consensus.
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As it appears, the implemented procedure always finds the correct
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FIGURE 4.1: Real (white color) and estimated tauwx distribution vs theta
and weighting vectors for rankings of 5 items (left) and 9 items (right).
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consensus, since the distributions of true and estimated τwx are compa-
rable. Both with 5 and with 9 items the higher θ the higher τwx and the
simpler the weighting vector (few positions involved) the higher τwx .

Real data

The first dataset considered is the Sport Dataset (Amodio et al., 2016). In
this data, 130 students of the University of Illinois were asked to rank
seven sports according to their preference for participate on. The sports
considered were: A = baseball, B = football, C = basketball, D = tennis, E
= cycling, F = swimming and G = jogging.

As previously considered in the simulations, 5 different weighting
vectors are considered (shown in Table 4.1), in order to assess their effect
on the estimated consensus.: with w1 we give the same importance to
each position, which means that we do not weight positions (see Section
4.4); with w5 we give importance to the first position only.

w1 0.125 0.125 0.125 0.125 0.125 0.125
w2 0.286 0.238 0.190 0.143 0.095 0.048
w3 0.334 0.333 0.333 0.000 0.000 0.000
w4 0.500 0.266 0.133 0.000 0.000 0.000
w5 1.000 0.000 0.000 0.000 0.000 0.000

TABLE 4.1: Sport dataset: Weighting vectors

w1 EFCADBG
w2 EFCADBG
w3 ECF
w4 EFA
w5 E

TABLE 4.2: Sport dataset: consensus rankings

The consensus estimated for each weighting vector is shown in Table
4.2. With the first two weighting vectors, we obtain the same consensus,
which corresponds to the one obtained by Amodio et al. (2016). With the
other 3 weighting structures we obtained different consensuses, and with
w5 2 different solutions corresponding to the same value of τwx , always
with the course "E" in first position.

The second real data example is reported by Emond and Mason (2000).
In this dataset, 112 experts were asked to rank 15 Departmental initiatives
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(A to Q), competing for limited funds. In this example, some ties occur,
and some rankings are not complete. This dataset has also been analyzed
by Amodio et al (2016). Table 4.3 shows the results corresponding to the
five weighting structures (conceptually equivalent to the ones shown in
the Table 4.1, but extended to 15 items). The first consensus, as expected,
is the one found by Emond and Mason, while it changes as soon as the
weighting structure changes, even if D is always in first position.

w1 DL < EM >< ABP >< CN > IHFG < OQ >
w2 DEMF < ABL > IP < CN > HG < OQ >
w3 DEMPF < AL >

D < EM > P < AL >
w4 DEM < AFL >
w5 D

TABLE 4.3: Emond and Mason dataset: consensus rankings

4.7 Concluding remarks

We provided a weighted rank correlation coefficient τwx for linear and
weak orderings, as an extension of τwx for linear orderings. We demon-
strated the correspondence between τwx and the weighted Kemeny dis-
tance and, finally, we showed that, in the case of tied rankings and wi =

1
m−1 for all i, the weighted rank correlation coefficient τwx is equal to the
Emond and Mason rank correlation coefficient τx . From the simulation
study, we demonstrated that the modified BB algorithm allows us to find
the true consensus and to verify the effect of the weighting vector. The
analysis of the two real datasets shows, as demonstrated analytically, that
with wi = 1

m−1 for all i we obtain the same solution without weightings,
while the solutions always differ as soon as we simplify the weighting
structure.

Some crucial points could represent the basis for future developments:
first of all, to take into account the multiple solutions of the consensus
process, since only one random solution has been considered for now (in
order to facilitate the implementation process); then, the optimization of
the implemented procedures in order to achieve faster algorithms; in the
end, the development of the same analysis for item positions for a com-
plete consensus process.
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Chapter 5

Decision trees for
positions’weighted ranking
data

5.1 Introduction

Decision trees are a competitive tool with respect to other state-of-the-
art methods in terms of predictive accuracy and, not less relevant, they
are generally considered as being more comprehensible and interpretable
than most other model classes (Cheng et al., 2009). Piccarreta (2010) pro-
poses binary trees for dissimilarity data, listing preference data too as a
possible practical application, but the paper does not consider dissimi-
larities that are specific to preference data. The class of distance-based
ranking models states that the probability of observing a specific ranking
depends on the distance between the observed ranking and the modal
ranking, i.e.: “they assume a modal ranking and the probability of ob-
serving a ranking is inversely proportional to its distance from the modal
ranking. The closer to the modal ranking, the more frequent the ranking
is observed” (Lee and Yu, 2010). A further development in the distance-
based approach is due to Lee and Yu (2010) who developed a distance-
based tree model introducing a weighted distance, where the weights are
linked to items in the preference ranking.

The possibility of using weights can take into account crucial con-
cepts, totally ignored by classical non-weighted distances: item relevance
and positional information. As a matter of fact, in some real situations, it
might be relevant to give more importance to changes in the top-positions
of rankings or it might be more important to emphasize changes occur-
ring in highly-relevant items rather than changes in less important items.
Distance measures with either position or element weights are well dis-
cussed by Kumar and Vassilvitskii (2010).
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The aim of this chapter is to introduce weighted distance-based tree
models, inspired by Plaia and Sciandra (2019).

Decision trees represent a simple non-parametric statistical method-
ology designed, originally, for classification and prediction issues. Their
main feature consists that the space spanned by all predictor variables
is recursively partitioned into a set of rectangular areas, such that obser-
vations with similar response values are grouped and, at the end of the
recursive procedure, the resulting groups are as homogeneous as possi-
ble with respect to the considered response.

The Classification and Regression Tree (a.k.a. CART) procedure has
been described for the first time by Breiman et al. (1984) and it is, defi-
nitely, the most popular decision tree methodology and widely used in
multidisciplinary fields. Nevertheless, a variety of algorithms have been
proposed in the literature for the construction of decision trees, for cate-
gorical, discrete or continuous response, such as C4.5, CHAID or QUEST
(see Philip et al. (2010) for some references). CART is mainly character-
ized by two stages: a growing phase and a pruning one.

The CART procedure, starting from the root node containing the whole
dataset (or only a learning sample), uses a recursive partitioning algo-
rithm in order to create a tree where each node t represents a subset of the
partition. In the binary tree structure, all internal nodes have two child
nodes, whereas the nodes with no descendants are called leaf nodes or
terminal nodes. At each step of the partitioning process, a splitting rule
is used to split the N(t) objects in node t into a left and a right node.
The splitting process is an important step, the core issue being how to
choose the splitting rule, the rule that performs the splitting of the sam-
ple into smaller parts. Generally, the splitting rule is chosen on the basis
of the quality-of-split criterion, which is equivalent to choosing a split
among all possible splits at each node so that the resulting child nodes
are the “purest”, where pureness is meant in terms of homogeneity (with
respect to the response) of observations in the same node. Maximum ho-
mogeneity of child nodes is defined by a so-called impurity function i(t),
a generic function satisfying the following three properties: (a) it is mini-
mum when the node is pure; (b) it is maximum when the node is the most
impure; (c) its value does not change if items are renamed. Specifically,
a splitting criterion is based on the reduction in impurity resulting from
the split s of node t, with the best split chosen as the one maximizing the
impurity reduction (Shih, 2001). In the end, once the tree has been built,
terminal nodes must be associated with a predicted response: for classi-
fication trees (categorical response variable) the assignment is based on a
simple majority rule, while for a regression tree (quantitative response),
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a simple mean of the response variable of the objects in the node can be
considered. The problem of “class assignment” for preference data will
be discussed in Section 5.2.1.

5.2 Decision trees for preference data

The weighted Kemeny distance measure, introduced by García-Lapresta
and Pérez-Román (2010) and reported in Equation (2.10), represents the
main ingredient for the definition of our proposal, which consists of ex-
tending classical splitting criteria, used in decision tree modelling, in or-
der to include other measures that can be used to evaluate impurity when
faced with preference data.

5.2.1 Splitting criterion and impurity function for preference
data

The main problem in extending univariate regression trees to the multi-
variate response case deals with generalizing the definition of the parti-
tioning metric. In order to avoid the problems linked to the multivariate
nature of the ranking data, in this work the vectors of preferences will
be treated as a unique multivariate entity. Specifically, when the m items
are completely ranked, the ranking process can be seen as a permutation
function from {1, . . . ,m} onto {1, . . . ,m}. Hence, if a label is assigned to
each permutation defined from a set of distinct items, each ranking vector
can be identified through a label that, used as a response variable, allows
applying the classical univariate classification tree methodologies. The
recursive binary partitioning process used by the CART methodology,
starting from the root node, produces a nested sequence of subtrees

Tk = {root− node} ⊂ · · · ⊂ T0 = {full − tree}

obtained, at each step, through a splitting criterion which works with the
maximization of ∆i(s, t), i.e.: the reduction in the impurity resulting from
the split s in node t. In a line:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR),

where pL and pR are the proportions of units in node t falling in the left
child node tL and in the right child node tR, respectively, at the s-th split.
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When the impurity has to be evaluated working with ranking data,
the impurity function can be properly modified as follows:

i(t) =
∑

d(a, b), (5.1)

where d is the chosen distance measure between the orderings a and b
and summation is extended to all the couples of rankings in the node t. A
decrease in node impurity at each step will be evaluated according to all
covariates and respective split points. Piccarreta (2010) proposes an im-
purity function based on dissimilarities, without proposing specific dis-
tances for preference data. In order for the impurity function to take into
account the ordinal nature of rankings, we propose to use the weighted
Kemeny distance (Equation 2.10) , as distance d in Equation (5.1),

According to the CART methodology, tree optimization implies cut-
ting off insignificant nodes through a pruning process based on some
cost-complexity criteria that will lead obtaining the optimum tree size.
This pruning procedure is out of the aim of this work, but classical cost-
complexity pruning procedure can be applied.

5.2.2 Rank aggregation in the leaves

Once the tree has grown, the definition of a consensus ranking is neces-
sary for assigning a class label or class ranking to each node, i.e. the rank-
ing in the best agreement with all the rankings in the node (D’ambrosio
et al., 2015a). Among the several consensus ranking measures proposed
in the literature, the median ranking approach will be used in the exam-
ples presented in the next section. The median is defined as the ranking
corresponding to the minimum sum of the distances of all rankings from
it or it is, equivalently, the ranking that maximizes the average τwx rank
correlation coefficient between itself and the other rankings belonging
to the set of rankings (D’Ambrosio and Heiser, 2016). To compute the
median ranking we use the adapted versions of the Branch and Bound
algorithm, proposed in Sections 3.5 and 4.5 for positional weighted rank-
ing data, without and with ties, respectively.

The ranking having the highest correlation with the entire set of the n
rankings is the consensus ranking, i.e. the most representative ordering
among all possible solutions. Hence, given a n xmmatrix X, where the l-
th row represents the ranking associated to the l-th judge, the consensus
ranking, i.e. the ranking r (a candidate within the universe of the per-
mutations with/without replacement of m elements) that best represents
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the matrix X, is that ranking that maximizes
∑n

l=1 τ
w
x (lx, r), see Equa-

tions (3.5) and (4.4).
The implementation of the decision trees above described has been

possible through the adaption of a proper splitting function in the “rpart”
package (Therneau et al., 2010).

5.2.3 Simulation study

We are interested in evaluating the effect both on the splits and on the
leaf labels of different weighting vectors w. For this reason, following
D’Ambrosio and Heiser (2016), we consider a theoretical population par-
tition of the predictor space (X1 and X2) reported in Figure 5.1, with
X1 ∼ U(0, 10) and X2 ∼ U(0, 6).
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FIGURE 5.1: Theoretical partition of the predictor space: X1 ∼
U(0, 10), X2 ∼ U(0, 6)

The number of rankings falling in each group was defined by a ran-
dom number drawn from a normal distribution N ∼ (10, 2) and each
number was divided by the summation of all of them, obtaining a rela-
tive frequency distribution for each sub-partition. The rankings of 4 items
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of each sub-partition were generated from a Mallows Model (see Equa-
tion (3.9)), varying the dispersion parameter θ. The central permutations
used for generating the rankings related to each sub-groups are shown in
Figure 5.1.
Considering three levels for the sample size (100 and 300) and three dif-
ferent level of noise (low with θ = 50, medium with θ = 2 and high with
θ = 1), the experimental design counts 2× 3 = 6 different scenarios. Fig-
ure 5.2 shows one of the nine datasets considered in the simulation study,
obtained with θ = 50 and n = 300.

FIGURE 5.2: Generation of homogeneous groups of ranking from the
theoretical partition with: X1 ∼ U(0, 10) and X2 ∼ U(0, 6), theta = 50
and n = 300

For each dataset five different weight vectors are considered : w1 =
(1/3, 1/3, 1/3), w2 = (3/6, 2/6, 1/6), w3 = (1/2, 1/2, 0), w4 = (2/3, 1/3, 0)
and w5 = (1, 0, 0).
With reference to the data in Figure 5.2, Figure 5.3 reports two of the
five trees obtained: in particular, (A) shows the tree corresponding to
w1, which perfectly recreates the original partition of the predictor space;
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(B) corresponds to w3 and, as expected, does not perform the two splits
X R 4 and X R 7 (the couples of rankings below each of the split in (A)
do not differ for the first two positions). In fact, w3 = (1/2, 1/2, 0) means
that we are not interested in positions 3 and 4, i.e. the τwx between two
rankings that differ only for the positions 3 and 4 is maximum (= 1).
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X2 >= 4

X1 >= 4

X1 >= 7
 BDCA 

 1

 ABDC 
 1

 ABCD 
 1

 BDCA 
 1

 BDAC 
 1

 ADCB 
 1

yes no

(A)

For each dataset generated with n = 300 and θ = (1, 2, 50), τwx was
measured before and after applying the decision trees with all five weights’
vectors and the distributions obtained are shown in Figures 5.4, 5.5 and
5.6. The higher the homogeneity among rankings, the better the abil-
ity of the decision trees to detect groups of similar rankings according
to different values of X1 and X2. When rankings have an initial high
homogeneity (θ = 50, see Figure 5.6) the trees show an almost perfect
performance for all kinds of position weights, except for the case of w5:
assigning a weight only to the first position penalizes the performance of
the trees. This penalization reduces as the homogeneity tends to decrease
(θ = 1, see Figure 5.4).

5.3 Conclusion

In this chapter, we have focused on distance-based decision trees for
ranking data, when the position occupied by items is relevant. We have
proposed the weighted Kemeny distance as impurity function and the
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X1 >= 7.1 X1 >= 4

 BDCA 
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FIGURE 5.3: (B)
Decision tree models for weighted rankings with weights vector w1 in
(A) and w3 in (B).

relative proper weighted correlation coefficient in order to achieve the
consensus measure in the terminal nodes. Our methodology found to be
capable of identifying correctly homogeneous groups of rankings when
more than one position is taken into account. The implementation of a
faster algorithm for the rpart package (Therneau et al., 2010) could lead
to work faster in the presence of a large number of items. Further de-
velopments could be, hence, a replication of the same analyses with an
increasing number of items.
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FIGURE 5.4: Measure of τwx both in the root and overall tree (theta = 1
and n = 300)
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Chapter 6

Ensemble methods for
position weighted ranking
data: a new proposal

6.1 Introduction

In order to detect which predictors better explain a phenomenon, a huge
use of decision trees has been observed in the past. These techniques are
quite intuitive but they are unstable: small perturbations bring big pre-
dictive changes. An approach used to make decision more reliable is to
combine the output of multiple trees, leading to a more stable procedure
called ensemble method. This technique has been applied mostly to nu-
meric prediction problems and classification tasks. In the last years, some
attempts to extend the ensemble methods to ordinal data can be found in
the literature, but not a concrete methodology has been provided for pref-
erence data. The interest of this research lies in building decision trees
and, consequently, ensemble methods for ranking data. Boosting and
Bagging are two of the most known ensemble methods and this work
proposes a theoretical and computational definition of them for ranking
data.

In the 1980s Breiman et al. (1984) developed Classification and Regres-
sion Trees (CART) as alternative non-parametric approaches to classifica-
tion and regression. The resulting tree-structured predictors are simply
obtained as functions of the input variables, but they are unstable, i.e.
small perturbations in the training set could bring to large changes in the
predictive results. Unstable classifiers such as decision trees have high
variance and low bias. Breiman (1996) suggested to improve the accu-
racy of decision trees using the bootstrapping technique, a general statis-
tical method in which several (nondisjoint) training sets are obtained by
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drawing randomly, with replacement, from a single base dataset. There-
fore perturbing the training set and then combining the multiple decision
trees into a single predictor, it is possible to improve the prediction pro-
cess. It is a quite simple idea: many bootstrap samples are drawn from
the available data, some prediction process is applied to each bootstrap
sample, and then the results are somehow combined. Breiman labelled
this methodology P&C (perturb and combine) . One of the most known
P&C methods is Bagging (Boostrap AGGregatING), which perturbs the
training set several times in order to generate multiple predictors and
combine them by simple voting and by averaging in classification and
regression, respectively. The bootstrap samples drawn at each iteration
have the same probability to be drawn and that guarantees independent
classifiers.

Freund et al. (1996) and Freund and Schapire (1998), worked on the
P&C algorithms to increase the rate of the training set error going to zero:
they increased the probability to be drawn in next iterations for those
units mostly misclassified in the previous steps. They introduced there-
fore another perturb and combine method called Boosting. Unlike bag-
ging, it’s clear that the samples used in the several iterations are not inde-
pendent. The Boosting procedure is considered by Breiman et al. (1998) as
a special case of the class of arcing (adaptive resampling and combining)
classifiers, where an increased probability to be drawn in next iterations
is assigned to units frequently classified as incorrect. Bagging and Boost-
ing have been widely applied to quantitative or qualitative response but,
up to our knowledge, no extension to cope with preference data exists in
literature.

The purpose of this chapter is to define, analytically and empirically,
the Boosting and Bagging algorithms for rankings, with or without ties.
The algorithms will be applied to real and simulated data.

6.2 Emsemble methods for ranking data without weights

“The idea of ensemble learning is to build a prediction model by com-
bining the strengths of a collection of simpler base models” (Hastie et al.
(2005)). In this part of the Thesis, Ensemble methods are built using trees
as building blocks in order to construct more powerful prediction mod-
els, than a single tree. Ensemble learning can be broken down into two
tasks: developing a population of base learners (decision trees) from the
training data, and then combining them to form the composite predictor.
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In this section the first point is going to be discussed and in Section 6.2.4
the way of aggregating the trees will be shown.

6.2.1 Bagging algorithm with replacement

The simplest implementation of the idea of generating quasi-replicate
training sets Breiman (1996) is:

• 1. Start with wb(i) = 1/n;∀i = 1, 2, . . . , n

• 2 Repeat for b = 1, 2, . . . , B

a Fit the classifier Cb(xi)

In a few words, several training datasets of the same size are chosen
at random, with replacement, from the training set. The decision tree is
built for each of them, leading to a proper prediction of ranking for each
unit. Once the trees are built, a final ranking prediction is assigned to
each unit through the consensus ranking process described in Sections
(3.5) and (4.5). Combining multiple classifiers decreases the expected
error by reducing the variance component. The more the classifiers in-
cluded, the greater the reduction in error.

6.2.2 AdaBoost.M1 algorithm for rankings

Boosting is a method that combines classifiers, which are iteratively cre-
ated from weighted versions of the learning sample, with the weights
adaptively adjusted at each iteration to give a higher probability to be
drawn to misclassified cases in the previous step. The final predictions
are obtained by weighting the results of the iteratively produced predic-
tors. There are many versions of boosting algorithms, but the most used
is the AdaBoostM1 (Freund et al. (1996)) and it is specifically used for
classifications.

In a few words, the boosting technique consists of repeatedly using
the base weak learning algorithm, on differently weighted versions of
the training data, leading to a sequence of weak classifiers that are fi-
nally combined someway. A weak learner is a learning algorithm which
provides classifiers with a probability of error less than that of simply
random guessing (0.5, in the binary case). A strong learner, instead, is
capable (given enough training data) to lead to classifier algorithms with
small error probability.
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Firstly, the AdaBoost.M1 algorithm adapted to position weighted rank-
ings is described as follows. The weight wb(i) is assigned to each i-th
observation and it’s initially equal to 1/n for all instances. This value
is updated after each step. A basic classifier, Cb(xi), is built on the new
training set (Tb) and is applied to every training example. For fitting Cb
the weights wb are used for drawing a random sample Sb of the data, and
then Cb is used for learning from Sb. The error of this classifier is rep-
resented by eb and is calculated differently from the classification prob-
lems, where the fact that a label is classified wrongly or correctly is the
relevant point. In the field of ranking data, what counts mainly is given
by how far the predicted ranking is away from the real one. That’s why
the error measure used in each classifier is based on the rank correlation
coefficient:

eb =

n∑
i=1

wb(i)

[
1− τx(i) + 1

2

]
. (6.1)

From the error of the classifier in the bth tree, αb is computed for up-
dating the weights related to each tree. Recalling Freund and Schapire:
αb = ln((1 − eb)/eb). Anyway, the new weight for the (b + 1)-th tree is
wb+1(i) = wb(i) expαbτx(i) and it’s normalized after the computation on
all the trees.

The bigger the distance between the ranking associated to an obser-
vation and the original ranking, the higher the probability that this ob-
servation is resampled in the new iteration. The sequence of trees tries to
correctly identify the rankings, focusing more on those hardly predictable
in the right way. When the classifiers’error decreases more and more then
a high accuracy in prediction is reached. The iterative procedure contin-
ues until the stopping criterion (i.e. αb > 0.5 or the maximum number of
trees) is reached.

• 1. Start with wb(i) = 1/n;∀i = 1, 2, . . . , n

• 2 Repeat for b = 1, 2, . . . , B

a Fit the classifier Cb(xi) using weights wb(i) on Tb
b Compute: eb =

∑n
i=1wb(i)

[
1− τx(i)+1

2

]
where τx(i) = τx(ŷi, yi))

and αb = 1
2 ln((1− eb)/eb)

c Update the weights wb+1(i) = wb(i) expαbτx(i) and normalize
them
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6.2.3 Bagging algorithm with OOB

As an alternative to Bagging with replacement, we can consider for the
Bagging method the out-of-bag (OOB) approach. This approach consists
in fitting the trees on around two-thirds of the observations in the train-
ing set. The ability of the ensemble method to predict as better as possible
the response variable is measured using the one-third of the observations
left out in the fitting process. In order to obtain a single prediction for a
generic unit belonging to the OOB set, usually, an average value is taken
among all the numeric predictions provided by all the fitted trees if the
regression is the case, otherwise, in the classification case, the simple ma-
jority vote is followed. Once all the OOB units are predicted an overall
OOB mean squared error (in regression problems) or a classification er-
ror (in classification issues) is computed. In the particular case we deal
with, it’s necessary to take into account the nature of the response vari-
able: ranking data. Hence, the OOB error resulting is obtained working
with an average rank correlation coefficient between the real rankings
and those predicted.

In order to reach a higher reduction in error, we applied Bagging sam-
pling the bootstrapped trainings without replacement. Even if it’s true
that replacement leads to higher variability (with respect to the original
set of data), it’s also true that its effect is less as the size of the training set
increases. Since in our application we consider large dataset, we consider
the possibility to sample the units belonging to each training set, tree by
tree, without replacement.

6.2.4 Rank aggregation and test error measurement

In order to assign a predicted ranking to each unit, the rank aggregation
process explained in Sections 3.5 and 4.5 is used, after building all the
trees in the ensemble procedure. The partial ranking for a generic i-th
observation, ŷib (see Table 6.1), will be obtained as follows:

ŷib = arg max

b∑
k=1

αkτx,k(i), b = 1, 2, . . . B (6.2)

where αk, the weight related to the k-th tree, is equal to 1
2 ln((1− ek)/ek)

(Breiman et al. (1998)) in the Boosting methodology and equal to 1 in the
case of Bagging. Furthermore, ŷiB represents the final ranking for the i-th
unit.
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Weights a1 a2 . . . ab . . . . . . aB
Obs tree1 tree2 . . . treeb . . . . . . treeB
1 ŷ11 ŷ12 . . . ŷ1b . . . . . . ŷ1B

2 ŷ21 ŷ22 . . . ŷ2b . . . . . . ŷ2B

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
n ŷn1 ŷn2 . . . ŷnb . . . . . . ŷnB
Error err(1) err(2) . . . err(b) . . . . . . err(B)

TABLE 6.1: Predicted rankings per tree

Once each unit has been assigned a final ranking tree by tree (See
Equation (6.2)), the error assigned to each tree is computed as:

err(b) = 1− τx(b) + 1

2
, (6.3)

where τx(b) is the average of τx of the b-th tree over all the units in the
b-th tree.

6.2.5 Real example and a simulation experiment

In order to evaluate the performance of the Ensemble methods described
above, we performed a simulation study and the application on a real
dataset. To this aim, following D’Ambrosio and Heiser (2016), we con-
sidered a theoretical population partition of the predictor space (X1 and
X2), with X1 ∼ U(0, 10) and X2 ∼ U(0, 6). The number of rankings of
4 items falling in each group was defined by a random number drawn
from a normal distribution N ∼ (10, 2) and each number was divided by
the summation of all of them, obtaining a relative frequency distribution
for each sub-partition. The rankings of each sub-partition were generated
from a Mallows Model using the PerMallows R package (Irurozki et al.,
2016), described in Section 3.6.

In our simulation, we generated rankings assuming the Kemeny dis-
tance and varying the dispersion parameter θ, according to three differ-
ent level of noise (low with θ = 2, medium with θ = 0.7 and high with
θ = 0.4). Considering two levels for the sample size (200, 500) the exper-
imental design, hence, counts 3 × 2 = 6 different scenarios (three levels
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FIGURE 6.1: Empirical partition of the predictor space, generating high
homogeneous groups of rankings (θ = 2), with n = 500.

of noise and two sample sizes). Figure 6.1 shows one of the six datasets
considered in our experiment.

We applied the ensemble methods defined in Section 6.2 to all the
six scenarios, fixing the number of trees to 300. Looking at the errors
produced by Boosting (Figure 6.2), the methodology is able to perform
very well when there is a high level of heterogeneity among the rankings
(θ = 0.4)

The training error and the test error for n = 500 are almost costant
after 100 trees. Worst performances are visible for n = 200 compared to
the case with n = 500. Moreover, the higher the heterogenity among the
rankings, the higher the ability of the boosting method.
Bagging performs worse than Boosting. In particular, as concerns the
Bagging approach with OOB (Figure 6.4), it’s pretty clear that the method
is unstable. The training error was measured with the OOB approach
and the random absence of one third of the predicted rankings, probably,
leads to jagged errors with a zig-zag shape around the initial error. On the
same simulated data we applied Bagging (with replacement) and Bag-
ging (with OOB and without replacement) and the outcomes obtained
are reported in Figure 6.3 and in Figure 6.4, respectively. As concerns
the first case, it was enough stopping the procedure at 100 trees, since
the errors showed to be quite stable. In all the scenarios, Bagging errors
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FIGURE 6.2: Boosting for all the simulated scenarios: different levels
of homogeneity among the rankings, θ = (0.4, 0.7, 2), and two sample
sizes, n = (200, 500)

decreases when the heterogeneity decreases, independently on the data
size. Bagging with OOB is insensitive to the data size too, but the pro-
cedure results instable. In order to analyze if the procedure is sensitive
to the number of splits in each tree, i.e. to its depth, we considered for
the Boosting method (see Figure 6.5), a maximum number of splits first
equal to 2 and then 4. It becomes clearer, going from θ = 0.4 to θ = 2, that
the mean error computed using 4 splits (both in the training and in test
sets) tends to be lower than that with the number of split equal to 2.

Real case application

The two ensemble methods have been applied to a real case (Figures 6.6
and 6.7). The real application is related to the dataset “vehicle” avail-
able in the UCI repository (https://archive.ics.uci.edu/ml/machine-learning-
databases/statlog/vehicle/). This dataset concerns 846 units, 18 variables
and four items and we fixed the number of trees to 350. Figure 6.6 com-
pares the outcomes obtained applying Boosting and Bagging (with re-
placement) to the data: the boosting shows a better performance again.
The two kinds of error become stable after 100 trees. Figure 6.7 com-
pares, instead, the outcomes obtained applying Boosting and Bagging
(with OOB and without replacement). Bagging procedure show results
similar to the simulation’s ones: the training error doesn’t apport a good
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FIGURE 6.3: Bagging for all the simulated scenarios with 100 trees: dif-
ferent levels of homogeneity among the rankings, θ = (0.4, 0.7, 2), and
two sample sizes, n = (200, 500)

performance, since its values are quite unstable and move around 0.06.
The same conclusion concerns the OOB error, which is even more unsta-
ble. The test error after an initial decreasing becomes stable around 0.09
after 50 trees.

6.2.6 Conclusion

In this section we propose two ensemble methodologies, Boosting and
Bagging (with replacement and with OOB, without replacement), for rank-
ing data. Looking at the single decision tree, we used the Kemeny dis-
tance (Kemeny Snell) as a measure of impurity in the splitting process
and its related rank correlation coefficient (τx proposed by Emond and
Mason) for identifying the median ranking in the final nodes. Once the
trees are built up, τx was employed for assigning the median ranking
as the final prediction, tree by tree, and for measuring the relative error.
We applied the above methodologies to simulated data and to a real case
showing that boosting outperforms bagging (both with and without re-
placement). By means of simulations the sensitivity of the procedures to
the number of threes, the heterogeneity of the data and the depth of the
single tree has been studied.
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FIGURE 6.4: Bagging for all the simulated scenarios: different levels
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FIGURE 6.5: Boosting built up for each simulated dataset, using two
depths for the trees (2 and 4)

6.3 Emsemble methods for ranking data with posi-
tional weights

In this part of the Thesis, the well known Ensemble method called Ad-
aboostM1 is built using trees as building blocks in order to construct more
powerful prediction models, rather than a single tree, when the position
occupied by the items is important. Hence, the two tasks relevant for
an Ensemble methodology (i.e. developing a population of base learners
from the training data, and then combining them to form the composite
predictor) are hereby adapted to the case of position weights assigned
to the items. Bagging outcomes are too unstable in the case of rankings
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FIGURE 6.6: Boosting and Bagging applied to Vehicle dataset
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FIGURE 6.7: Boosting and Bagging applied to Vehicle dataset
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without position weights (see Section 6.2.5) which is a subcase of posi-
tion weights (uniform weights, see Section 4.4). For this reason, the focus
in this section is on adapting only Boosting in the case of rankings with
position weights.

6.3.1 AdaBoost.M1 algorithm for rankings with weights

The AdaBoost.M1 algorithm has the same structure introduced in Section
6.2.2, but since the focus is on the items’positions the rank correlation
coefficient τx introduced by Emond and Mason (2002) is suitably replaced
by its weighted version τwx (Plaia et al., 2019b) and (Plaia et al., 2018a) (See
Equations (3.1) and (4.1)). The error measure (Equation (6.1)) used in each
classifier is based now on the weighted rank correlation coefficient which
takes into account the positions of items:

eb =
n∑
i=1

wb(i)

[
1− τwx (i) + 1

2

]
. (6.4)

The main concepts is the same: the bigger the distance between the
ranking associated to an observation and the original ranking, the higher
the probability that this observation is resampled in the new iteration.
Hence, the sequence of trees tries to correctly identify the rankings, fo-
cusing more on those hardly predictable in the right way. The iterative
procedure continues until the stopping criterion (i.e. αb > 0.5 or the
maximum number of trees) is reached. The pseudo-code of Section 6.2.2
is proposed, replacing τx with τwx :

• 1. Start with wb(i) = 1/n;∀i = 1, 2, . . . , n

• 2 Repeat for b = 1, 2, . . . , B

a Fit the classifier Cb(xi) using weights wb(i) on Tb

b Compute: eb =
∑n

i=1wb(i)
[
1− τwx (i)+1

2

]
where τwx (i) = τwx (ŷi, yi))

and αb = 1
2 ln((1− eb)/eb)

c Update the weightswb+1(i) = wb(i) expαbτ
w
x (i) and normalize

them
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6.3.2 Rank aggregation and test error measurement

In order to assign a predicted ranking to each unit, the rank aggregation
process explained in Section 6.2.4 is used, after building all the trees in
the ensemble procedure. The final ranking for a generic i-th observation,
ŷiB , will be obtained as follows:

ŷiB = arg max
B∑
b=1

αbτ
w
x,b(i), (6.5)

where αb, the weight related to the b-th tree, is equal to 1
2 ln((1 − eb)/eb)

(Breiman et al. (1998)) in the Boosting methodology and 1 in the case of
Bagging.

Following the same procedure described in Section 6.2.4, once each
unit has been assigned a final ranking tree by tree (See Equation (6.5)),
the error assigned to each tree is computed as:

err(b) = 1− τwx (b) + 1

2
, (6.6)

where τwx (b) is the average of τwx of the b-th tree over all the units in the
b-th tree.

6.3.3 Real example and a simulation experiment

For the simulation, we repeated what described in Section 6.2.5. More-
over, we introduced 5 different structure of weights: w1 = (1/3, 1/3, 1/3),
w2 = (3/6, 2/6, 1/6), w3 = (1/2, 1/2, 0), w4 = (2/3, 1/3, 0) and w5 =
(1, 0, 0). In other words, equal and decreasing weights were considered,
at first involving all the weights and then only half of the total amount of
the vectors, and, finally, only the first position was weighted. The sample
size used for all the datasets was 300. The experimental design, hence,
counts 3× 5 = 15 different scenarios (three levels of noise and five differ-
ent weighted vectors).

We applied the Boosting method defined in Section 6.3.1 to all the sce-
narios, fixing the number of trees to 300. Looking at the errors produced
(Figure 6.8), the methodology is able to perform very well when there is
a high level of heterogeneity among the rankings (θ = 0.4)

It’s clear that the method is stable and the items’position weights
have a greater effect on the error as the heterogeneity among rankings
increases (θ = 0.4). When only the first position is considered (w5 =
(1, 0, 0)) the error outcome is unstable with a high level heterogeneity
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(θ = 0.4) and it becomes stable as θ increases but once again we find out
that this kind of weights penalizes the performance of the trees.
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FIGURE 6.8: Boosting for nine simulated scenarios: different lev-
els of homogeneity among the rankings, θ = (0.4, 0.7, 2), and three
weights’structures, w1 = (1/3, 1/3, 1/3), w3 = (1/2, 1/2, 0) and w5 =
(1, 0, 0)

Real case application

Again, the real application is related to the dataset "vehicle" available in
the UCI repository (https://archive.ics.uci.edu/ml/machine-learning-databases/
statlog/vehicle/). Figure 6.9 compares the outcomes obtained with the

weights’ structures mentioned before: w1, w3 and w5. The errors pro-
duced with w1 and w3 are quite similar, while w5 penalizes the error as
figured out with the simulations. The reason is clearer analyzing the vari-
able importance: Figures 6.10 and 6.11 shows similar results and they re-
produce the variable importance outcomes related to w1 and w3, respec-
tively, while Figure 6.12 shows the different importance of the variables.
Table 6.2 summarizes the outcomes of the variable importance measured
using the three different vectors of position weights.
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FIGURE 6.9: Training error and test error for AdaBoostM1 applied
on the dataset "vehicle" using three different position weights: w1 =
(1/3, 1/3, 1/3), w3 = (1/2, 1/2, 0) and w5 = (1, 0, 0).

6.3.4 Conclusion

In this section we propose Boosting for ranking data with different posi-
tions’weights structures. Looking at the single decision tree, we used the
weighted Kemeny distance as a measure of impurity in the splitting pro-
cess and its related weighted rank correlation coefficient (τwx proposed
by Plaia et al. (2019b) and Plaia et al. (2018a)) for identifying the median
ranking in the final nodes. Once the trees are built up, τwx was employed
for assigning the median ranking as the final prediction, tree by tree, and
for measuring the relative error. By means of simulations the sensitiv-
ity of the procedures to the different weighted structures was studied, in
terms of error and variable importance. The considerations stated in Sec-
tion 5.3, about future development of a faster “rpart” algorithm, is even
more necessary since “adabag” need “rpart” objects. The extension to
the definition and analysis of Random Forests for ranking data with po-
sition weights (and in future with item weights) will be necessary, for the
sake of compeletness in the framework of Ensemble Methods for ranking
data.
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FIGURE 6.10: Variable importance for the dataset "vehicle" without po-
sitional weights for the rankings, i.e.: w1 = (1/3, 1/3, 1/3).
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FIGURE 6.11: Variable importance for the dataset "vehicle" with posi-
tional weights given to the two first positions of the rankings: w3 =
(1/2, 1/2, 0).



72
Chapter 6. Ensemble methods for position weighted ranking data: a

new proposal

0 50 100 150 200 250 300

0
10

20
30

40
50

60
70

Variable influence − w5

Number of trees

R
el

at
iv

e 
im

po
rt

an
ce

A1
A2
A3
A4
A5
A6

A7
A8
A9
A10
A11
A12

A13
A14
A15
A16
A17
A18

FIGURE 6.12: Variable importance for the dataset "vehicle" with posi-
tional weights giving importance only to the first position of the rank-
ings: w5 = (1, 1, 0).
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Variables w1 w3 w5

A1 1,49 1,11 0,63
A2 0,53 0,68 1,47
A3 8,73 4,29 4,88
A4 4 2,98 8,55
A5 3,96 5,47 5,03
A6 1,92 2,27 3,53
A7 35,04 26,81 14,29
A8 3,9 1,98 2,64
A9 1,04 0,4 0,56
A10 2,07 4,09 1,42
A11 5,97 9,72 18,94
A12 11,88 19,98 22,41
A13 1,35 1,32 2,86
A14 4,95 5,07 3,71
A15 2,88 5,66 1,24
A16 2,83 2,05 0,79
A17 6,17 5,23 3,82
A18 1,3 0,91 3,23

TABLE 6.2: Variable importance for the dataset "vehicle" with posi-
tional weights: w1 = (1/3, 1/3, 1/3), w3 = (1/2, 1/2, 0) and w5 =
(1, 0, 0)
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Chapter 7

Model Selection in Linear
Mixed-Effect Models: a review

7.1 Introduction

Linear Mixed effects Models (LMM) represent one of the most widely
instruments for modelling data in applied statistics, and increasing re-
search on linear mixed models has been rapidly in the last 10-15 years.
This is due to the wide range of its applications to different types of data
(clustered data such as repeated measures, longitudinal data, panel data,
and small area estimation), which involve the fields of agriculture, eco-
nomics, medicine, biology, sociology etc.

Some practical issues usually encountered in statistical analysis con-
cern the choice of an appropriate model, estimating parameters of inter-
est and measuring the order or dimension of a model. This paper focuses
on model selection, which is essential for making valid inference. The
principle of model selection or model evaluation is to choose the “best
approximating” model within a class of competing models, characterized
by a different number of parameters, a suitable model selection criterion
given a data set (Bozdogan, 1987). The ideal selection procedure should
lead to the “true” model, i.e. the unknown model behind the true process
generating the observed data. In practice, one seeks, among a set of plau-
sible candidate models, the parsimonious one that best approximates the
“true” model.

The selection of only one model among a pool of candidate models
is not a trivial issue in LMMs, and the different methods proposed in
the literature over time are, often, not directly comparable. In fact, not
only there is a different notation among papers and great confusion as
regards the software (R, SAS, MATLAB, etc) to be used, but also a lack of
landmarks allowing users to prefer one method rather than others.
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Hence, the main purpose of this review is to provide a view about
some useful components/factors characterizing each selection criterion,
so that users can identify the method to apply in a specific situation.
Moreover, we will also try to tidy up the notation used in the literature,
by “translating”, if necessary, the symbols and formulas found in each
paper to produce a common “language”. We begin by updating the re-
cent review by Müller et al. (2013), then add some information about each
selection criteria, such as the kind of effects that each method focuses on,
or the structure of variance-covariance matrix, or the model dimension-
ality, or even the software used for implementing each method.

When coping with LMMs, it is not a good idea to assume indepen-
dence or uncorrelation among response observations. For example, in the
case of repeated measures: data are collected about the same individual
over time. Hence, the traditional linear regression model is not appro-
priate to describe the data. For a detailed description of analogies and
differences between linear mixed models and linear models, see (Müller
et al., 2013).

An important issue associated with LMMs selection is related to the
dimension of the fixed and random components. Most of the literature
bases inference, selection and interpretation of models in the finite (fixed)
dimensional case, which means that the number of parameters is less
than the number of units. Recently, more attention has been given to
the handling of high-dimensional settings, which requires more complex
computational applications. The word “high-dimensional” refers to situ-
ations where the number of unknown parameters that are to be estimated
is one or several orders of magnitude larger than the number of samples
in the data (Bühlmann and van de Geer, 2011). Furthermore, in LMMs,
the number of parameters can grow exponentially with the sample size,
i.e. the number of effects is strictly related to the number of units. Thus,
if the sample size increases the set of effects diverges. Only recently some
authors have tried to make inference within the LMM framework, on
high-dimensional settings (Fan and Li, 2012; Schelldorfer et al., 2011).

Model selection is a challenge in itself when one deals with the clas-
sic linear model. It becomes more complex when mixed models are in-
volved, because of the presence of two kinds of effects with completely
different characteristics and roles . Among others, a key aspect of linear
mixed model selection is how to identify the real important random ef-
fects, i.e. those whose coefficients vary among subjects. It is important
to note that the exclusion of relevant effects has a drawback on the es-
timation of the fixed effects: their variance-covariance matrix would be
underfitted and the estimation of the variances related to the fixed part
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estimates would be biased. The inclusion of irrelevant random effects in
a model, on the other hand, would lead to a singular variance-covariance
matrix of random effects, producing instability in the model (Ahn et al.,
2012). As pointed out by Müller et al. (2013), most procedures focuse on
the selection of fixed effects exclusively. Only Chen and Dunson (2003)
and Greven and Kneib (2010) worked on random part selection before
Müller et al. (2013) . There are obvious difficulties due to computational
issues in selecting only the random part, that is why the researchers who
worked on the random effects, after Müller et al. (2013), optimise with
respect to the fixed part, too, excepted for Li and Zhu (2013). In recent
years, in fact, it has been easy to find procedures selecting both the ef-
fects .

It is worth noting that since the LMMs are a special case of Gener-
alized LMMs, we obviously excluded from the current review all those
methods built mainly for selecting effects in the GLMMs, such as Hui
et al. (2017). Moreover, this review doesn’t include works based on graph-
ical tools for model selection if these graphical representations are refer
to methods already existent in the literature. This is the case, for example,
of Sciandra and Plaia (2018) who adapt an available graphical represen-
tation to the class of mixed models, in order to select the fixed effects
conditioning on the random part and covariance structure, and of Singer
et al. (2017) who discuss different diagnostic methods focusing on resid-
ual analysis but also addressing global and local influence, giving general
guidelines for model selection.

This review mentions the available theoretical properties correspond-
ing to the different methodologies, with comparisons among them whereas
it’s possible.

Müller et al. (2013) classified the proposed methods by considering
four different kinds of procedures: information criteria (such as Akaike
Information Criterion, Bayesian Information Criterion); shrinkage meth-
ods such as LASSO and adaptive LASSO; the Fence method and some
Bayesian methods.

In this paper we prefer to cluster methods according to which part of
the model, fixed, random or both, they focus on. The paper is organized
as follows. In Section 2, we present the structure and notation of a lin-
ear mixed model and we discuss some problems occurring in selection
models. In Section 3, we give an overview of model selection procedures
within the LMMs framework that are useful for selecting linear mixed
models, by considering the classification proposed in (Müller et al., 2013).
In Section 4 and 5, we describe the methods grouped according to the
part of the model selected i.e. fixed and both, respectively. Finally, we
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examine some simulations in Section 6, and conclude with a brief dis-
cussion and some conclusions in Section 7. Moreover, to help the reader
decide which method to prefer, according to his own data, we include
two tables (2 and 3), that summarize the main features of each method.

7.2 LMM and the Linear Mixed Model selection prob-
lem

Suppose data are collected from m independent groups of observations
(called clusters or subjects in longitudinal data). The response variable
Yi is specified in the linear mixed models at cluster level as follows:

Yi = Xiβ +Zibi + εi, i = 1, 2, ...,m, (7.1)

where Yi is a ni dimensional vector of observed responses, Xi and Zi
are the known ni × p and ni × q matrices of covariates related to the
fixed effects and to the random effects, respectively, β is the p-vector of
unknown fixed effects, bi is the q-vector of unobserved and independent
random effects and εi is the vector of unobserved random errors. Let us
assume that bis are independent of εis and that they are independent and
identically distributed random variables for each group of observations
in the following way:

bi ∼ Nq(0,Ψ), εi ∼ Nni(0,Σ), (7.2)

where Ψ is a q × q positive definite matrix and Σ is a ni × ni positive
definite matrix. Consequently, the response vector follows a multivariate
normal distribution, Yi ∼ Nni(Xiβ,Vi), where the variance-covariance
matrix is given by Vi = ZiΨZ

′
i + Σ.

The vectorized form of the model is:

Y = Xβ +Zb+ ε, (7.3)

where all elements concern all macro units, therefore Y is a n dimen-
sional vector (n =

∑
ni), X and Z are the known n × p and n × q ma-

trices of covariates related to the fixed effects and to the random effects,
respectively, β is the p-vector of unknown fixed effects, b is the q-vector of
unobserved and independent random effects and ε represents the vector
of unobserved random errors.

The selection of linear mixed effects models implies the selection of
the “true” fixed parameters and/or the “true” random effects. Even if
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there exists a kind of estimation for b, the Best Linear Unbiased Pre-
dictors (BLUP, see Equation (7.7)), the correct investigation for identify-
ing b requires to estimate its q(q + 1)/2 variance-covariance parameters.
Let τ denote the s-vector filled with all distinctive components in the
variance-covariance matrices Ψ and Σ. A random effect is not relevant if
its variance-covariance elements, for all observations, are zero (Ahn et al.,
2012), hence, it suffices to identify the non-zero diagonal components in
Ψ (Wu et al., 2016) correctly and, also, their related covariance terms, for
avoiding the drawback of excluding random effects correlated to some
explanatories.

We call θ = (β, τ ) the overall set of parameters relevant in a linear
mixed model. This set represents the whole group of the parameters
related to the true model generating data. Let us identify the selection
of linear mixed models with M ∈ M, where M is the countable set
containing all candidate models involved in the selection. The number
of candidate models used depends on some contextual considerations:
some variance-covariance components could be known or assumed to be
known; some authors could focus only on nested models; or, still, the
classic null model (the one with intercept only) could not be admitted
among the set of candidate models (see Section 7.7 for further details).

The conditional log-likelihood for model (3) is given by:

l(θ|b;y) = log fy(y|b;θ) =

−1

2

{
log |Σ|+ (y −Xβ −Zb)′Σ−1(y −Xβ −Zb)

}
− n

2
log(2π), (7.4)

while the marginal likelihood is:

l(θ;y, b) = log fy(y; b,θ) = −1

2
{log |V |+(y−Xβ)′V −1(y−Xβ)}. (7.5)

For fixed τ , the optimization process of the joint log-likelihood leads
to an estimate of β that is similar to a generalized least squares estimator:

β̂(τ ) = (X ′V −1X)−1X ′V −1y. (7.6)

The most popular approach for predicting b is an empirical Bayesian
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method, which uses the posterior distribution f(b|y) yielding the follow-
ing BLUP prediction:

b̂(τ )BLUP = ΨZ ′V −1{y −Xβ̂(τ )}. (7.7)

The same solutions of β̂(τ ) and b̂(τ )BLUP can be obtained by solving
Henderson’s linear mixed model equations (Müller et al., 2013):[

X ′Σ−1X X ′Σ−1Z
Z ′Σ−1X Z ′Σ−1Z + Ψ−1

] [
β̂(τ )

b̂(τ )

]
=

[
X ′

Z ′

]
Σ−1y. (7.8)

Although consistent, the ML estimator of variance-covariance parame-
ters is known to be biased in small samples. Hence, the restricted maxi-
mum likelihood estimators (REML) are used:

lR(τ ) = −1

2
{log |V |+ log |X ′V −1X|+ y′P−1y}, (7.9)

where P = V −1−V −1X(X ′V −1X)−1X ′V −1 (Müller et al., 2013). Thus,
the simple ML estimators forβ and τ will here forth be indicated as β̂ and
τ̂ , while the REML estimators as β̂R and τ̂R.

It is important to note that in many papers dealing with LMMs some
authors use the σ2 scaled versions of Ψ and Σ, which are σ2Ψ∗ and σ2Σ∗.
Then we are going to use, in the description of the methods, the symbol
∗ for those variance-covariance matrices scaled by σ2.

7.3 Introduction to model selection criteria

Within the framework of linear mixed effect models, a large number of se-
lection criteria are available in the literature. Model selection criteria are
frequently set up by building estimators of discrepancy measures, which
evaluate the distance between the “true” model and an approximating
model fitted to the data.

7.3.1 AIC and its modifications

The most widely used criteria for model selection are the information
criteria. Their application consists in finding the model that minimizes
a function, in the form of a loss function plus a penalty, usually depen-
dent on model complexity. The Akaike Information Criterion (AIC), in-
troduced by Akaike (1992), is the most popular method. The Akaike In-
formation Criterion is based on the Kullback-Leibler distance between
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the true density of the distribution generating the data, y, and, the ap-
proximating model for fitting the data, g(θ) (Vaida and Blanchard, 2005).
With his criterion, Akaike tried to combine point estimation and hypoth-
esis testing into a single measure, thus formalizing the concept of finding
a good approximation of the true model in a predictive view. In this
sense, a good model is the one that is able to generate predictive values
(independent of the real data) as close as possible to the observed data.
AI is given by −2Ef(y)Ef(y∗) log g{y∗; θ̂(y)}, where θ̂ is an estimator of
θ, while y∗ represents the predictive set of data obtained from the fit-
ted model and independent of y. Vaida and Blanchard (2005) defined
a new version of AI by conditioning the distribution f(y;θ) to the clus-
ters. Hence, the conditional AI (cAI) uses the conditional distribution
f(y;θ, b) as follows:

−2Ef(y,b)Ef(y∗|b) log g{y∗; θ̂(y), b̂(y)},

where b̂(y) is the estimator of b. It should be noted that y∗ and y have
to be considered conditionally independent of b and belonging to the
same conditional distribution f(.|b). These two last assumptions imply
that they have the same random effects b.

The underlying reasoning of the criterion based on the Akaike Infor-
mation Criterion is not to identify the true model generating the data,
but the best approximation of it, which adapts well to the data. The esti-
mators employed for measuring AI and cAI are known as Akaike Infor-
mation Criterion and conditional Akaike Information Criterion, respec-
tively, and they are both biased for finite samples. They approximate
their own information as minus twice the relative log-likelihood function
plus a penalty term, an(dM ), which tries to adjust the bias. The marginal
AIC, defined by Vaida and Blanchard (2005), has the following generic
formula:

mAIC = −2l(θ̂) + 2an(p+ q)

where an = 1 or an = n/(n − p − q − 1) in small samples (Sugiura,
1978; Vaida and Blanchard, 2005). The conditional Akaike Information
Criterion (cAIC - Vaida and Blanchard (2005)) provides a procedure for
selecting variables in LMMs with the purpose of predicting specific clus-
ters or random effects, since the mAIC is inappropriate when the focus
is on clusters and not on the population. For predicting at cluster level,
the likelihood needs to be computed conditionally on the clusters and
the random effects bi need to be considered as parameters. Hence, for
computing the cAIC, the terms to estimate are the p + q + s parameters
in θ. If all the variance elements τ are known, the q random effects b are
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predicted by the best linear unbiased predictor (BLUP), or using an esti-
mated version of BLUP (Equation (7.7)). The generic formula for cAIC is:

cAIC = −2l(θ̂|b̂) + 2an(ρ+ 1) (7.10)

where ρ is connected to the effective degrees of freedom used in es-
timating β and b. Many authors ((Greven and Kneib, 2010; Kubokawa,
2011; Liang et al., 2008; Shang and Cavanaugh, 2008; Srivastava and Kubokawa,
2010; Vaida and Blanchard, 2005)) have tried to reduce the bias of mAIC
and cAIC, working on the penalty term in different ways, i.e. taking into
account the MLE estimator or the REML estimator for θ, distinguishing if
variance-covariance matrices are known or unknown. A clear and com-
plete overview of all penalties used in the literature is available in (see
Müller et al., 2013, Secc 3.1 and 3.2).

7.3.2 Mallow’s Cp

Another criterion, based on a discrepancy measure (Gauss discrepancy)
and used for choosing the model nearest to the true one, is given by Mal-
lows’ Cp.

Cp =
SSEp
σ̂2

− n+ 2p,

with SSEp and p representing, respectively, the error sum of squares and
the number of parameters of the reference model and σ̂2 an estimate
of σ2 (Gilmour, 1996). Some variants on Mallows’Cp are provided by
Kubokawa (2011) and are clearly presented by Müller et al. (2013).

7.3.3 BIC

The Bayesian Information Criterion is based on the marginal distribution
of y, which requires the full prior information about all parameters (β,θ)
to be computed:

f(y) =

∫ ∫
fm(y|β,θ)π(β,θ)dβdθ. (7.11)

BIC, proposed by Schwarz (1978), is an approximation of −2 log{fπ(y)},
free of any prior distribution setup:

BIC = −2l(θ̂) + (p+ q) log(N). (7.12)

Since BIC is a Bayesian procedure for model selection, it requires prior
distributions. Kubokawa and Srivastava (2010) derived the expression of
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EBIC, an intermediate method between BIC and full Bayesian variable
selection tools. The EBIC procedure employs partial non-subjective prior
distribution only for the parameters of interest, ignoring the nuisance pa-
rameters in terms of distributional assumptions.

7.3.4 Shrinkage

Often, it is not feasible to compute Information Criteria in variable selec-
tion when p and/or q are large, i.e. in high-dimensional settings, when
one deals with classic linear models. Hence, in this sense, shrinkage
methods such as the least absolute shrinkage and selection operator, LASSO
(Tibshirani, 1996), and its extensions such as the adaptive LASSO, ALASSO
(Zou, 2006), the elastic net (Zou and Hastie, 2005) or the smooth clipped
absolute deviation, SCAD (Fan and Li, 2012), have been proposed in the
literature. When using these techniques, thanks to a penalization system,
some coefficients are shrunk towards zero, while at the same time, the
once influential on response are estimated to be non-zero. The shrink-
age procedures are applicable to either the least squares or the likelihood
functions. For the sake of simplicity, the penalized likelihood function is
readopted in the case of the classical linear model:

−
n∑
i=1

li(β;yi) + n

p∑
j=1

pλ(||β||`), (7.13)

where ||β||` is the `-th norm of β. Taking into account that `1 corresponds
to work with the LASSO, while `2 refers to ridge estimation. The adap-
tive LASSO is an extension of LASSO. It involves the addition of some
weights depending on the `-th norm of β, i.e. pλ(||β||`) = λj ||β||`/2, with
λj = λ/||β||`, where ` is an additional parameter often considered equal
to 1.

The generic SCAD penalty on θ introduced by Fan and Li (2001) works
on the first derivative of pλ(|θ|):

p′λj (|θ|) = λ

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ − λ)

}
. (7.14)

For the solution of θ, Fan and Li (2001) provided an algorithm via local
quadratic approximations.
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7.3.5 MDL principle

The minimum description length (MDL) principle originates from data
compression literature and Rissanen (1986) who developed it to “under-
stand” the observed data, it represents a valid statistical criterion em-
ployed for selecting linear mixed models. This method aims to detect the
best model approximating the observed data, among a pool of candidate
models, through a data compression process based on the code length
needed to describe the data. A model can be described using fewer sym-
bols than those necessary to describe the data. Usually, this criterion is
used in the presence of independent data. Li et al. (2014) propose a MDL
principle for fixed effects selection when there is a correlation between
observations within clusters. The principle is presented as a good trade-
off between AIC, thanks to its asymptotic optimality, and BIC, because of
its consistency property. The proposed criterion is a hybrid form of MDL
which merges a two stage description length and the mixture MDL with
the dependent data.

7.4 Fixed effects selection

AIC and its modifications consist in finding the model that minimizes
a function in the form of a loss function plus a penalty, which measures
model complexity. Kawakubo and Kubokawa (2014) and Kawakubo et al.
(2014) propose a modified conditional AIC and a conditional AIC under
covariate shift in Small Area Estimation (SAE), respectively. For linear
mixed model selection, random intercept model selection in particular, in
the small area estimation, Marhuenda et al. (2013) work on two variants
of AIC and two variants of the Kullback symmetric divergence criterion
(KIC), defined as:

KIC = −2 log f(y|θ̂) + 3(p+ 1).

Kawakubo and Kubokawa (2014) and Kawakubo et al. (2018) provide
a modified version of the exact cAIC (McAIC), because the cAIC sug-
gested by Vaida and Blanchard (2005) is highly biased when the can-
didate models do not include the true model generating the data (un-
derspecified cases). They assume that Ψ = σ2Ψ∗, Σ = σ2Ini , and ex-
tend cAIC to a procedure that could be valid both for the overspecified
cases (situations in which the true model is included among the candi-
date models) and for the underspecified cases. The modified conditional
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AIC is given by:

McAIC = −2 log f(y|b̂j , β̂j , σ̂2
j ) + ∆̂cAI , (7.15)

where ∆̂cAI is the estimate of the bias of cAIC, estimated by:

∆̂cAI = B∗ + B̂1 + B̂2 + B̂3, (7.16)

where B∗ is a function of V −1 and B1, B2 and B3 are functions of V and
X . The authors demonstrate that B∗, B̂1, B̂2 and B̂3 have distributions
proportional to χ2 with degrees of freedom opportunely quantified and,
in the overspecified case, ∆̂cAI reduces to B∗, i.e. McAIC=cAIC by Vaida
and Blanchard (2005).

When the variable selection problem focuses on finding a set of sig-
nificant variables for a good prediction, Kawakubo et al. (2014) propose a
cAIC under covariate shift (CScAIC). They derive the cAIC of Vaida and
Blanchard (2005) under the covariate shift for both known and unknown
variances σ2 and Ψ∗ and with Σ∗ assumed to be known.

The proposed criterion replaces, in the formula of the classic cAIC, the
conditional density of y (the vector of the observed responses) given b,
with the conditional density of ỹ (the vector of observed responses in the
“predictive model”: ỹ = X̃β + Z̃b+ ε̃, a LMM with same regression co-
efficients β and random effects b, but different -shifted- covariates) given
b.

CScAIC = −2 log g(ỹ|b̂, β̂, σ̂2) +B∗c , (7.17)

when σ2 is unknown and estimated by its ML estimator and B∗c is the
bias correction.

Lombardía et al. (2017) introduce a mixed generalized Akaike infor-
mation criterion, xGAIC, for SAE models. One typical model used in the
field of SAE is the Fay-Herriot model, which is a particular type of LMMs
containing only one random effect, the intercept. The clusters are repre-
sented by areas and the model in Equation (7.1) for each area is reduced
to: yi = x

′
iβ + bi + εi, with i = 1, 2, ...,m.

Instead of the usual AIC-types based only on the marginal or the con-
ditional log-likelihood, the authors propose to use a new AIC, based
on a combination of both the log-likelihood functions. The quasi-log-
likelihood used for deriving the new statistics is the following:

log(lx) = −1

2
m log(2π)− 1

2
log |V | − 1

2
(Y − µ)

′
V −1(Y − µ), (7.18)
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where µ = E(Y |b). The generalized degrees of freedom (xGDF), linked
to the quasi-log-likelihood in Equation (7.18), takes into account the ex-
pectation and covariance with respect to the marginal distribution of Y :

xGDF =

m∑
i=1

∂Ey(µ̂i)

∂(Xiβ)
=

m∑
i=1

m∑
j=1

V ijcov(µ̂i,yj), (7.19)

where V ij is the ij-th element of the matrix V −1. Combining the log(lx)
with xGDF, the mixed generalized AIC is finally defined as:

xGAIC = −2 log(lx) + xGDF. (7.20)

Han (2013) derives the closed form for the unbiased conditional AIC
when the linear mixed model is reduced to the Fay-Herriot model. The
author proposed a more suitable cAIC for three different approaches to
fitting the model: the unbiased quadratic estimator (UQE), the REML es-
timator and the ML estimator. The unbiased cAIC for the Fay-Herriot
model has the same form as for the classical LMMs, with i.i.d. errors
(see Equation (7.10)), where the degrees of freedom are measured by

Φ =
∑m

i=1
∂Xiβ̂
∂Yi

= tr(∂X
′
β̂

∂Y ), which is computationally expensive, be-
cause Xiβ̂ is not a linear estimator through σ̂2

b and the derivates therein
depend on the specific choise of estimating σ2

b :

cAIC = −2 log f(y|b,θ) + 2Φ. (7.21)

If σ̂2
b = 0, whatever is the method used for estimating it, then Φ =

p, otherwise when σ̂2
b > 0 the way of measuring Φ is different. If the

unbiased quadratic estimate method is used, then:

Φ = ρ̂+ 2(m− p)−1r
′
SΣ−1P ∗rs. (7.22)

If σ̂2
b > 0 is the REML or ML estimate:

Φ = ρ̂− 2

(
∂ŝ

∂σ2
b

)−1

r
′
sΣ̂
−1P ∗SΣ−1P ∗rs, (7.23)

with ∂ŝ
∂σ2
b

= tr
(
(Σ−1P ∗)2

)
− 2r

′
sΣ̂
−1P ∗rs in the case of REML or ∂ŝ

∂σ2
b

=

tr(Σ−2)−2r
′
sΣ̂
−1P ∗rs for ML estimating process, P ∗ = I−X(X

′
Σ−1X)−1Σ−1,

r the residuals from the OLS estimation for β and rs = Σ−1P ∗Y the stan-
dardized residuals obtained from the GLS estimation for β. The closed-
form cAIC results to be an unbiased estimator for the conditional AI for
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the Fay-Herriot model.
It is worth mentioning Lahiri and Suntornchost (2015) for their contri-

bution to the selection of fixed effects in LMMs with applications in SAE
models, even if their proposal doesn’t concern a modification of some In-
formation Criteria. The authors define an alternative to the usual Mean
Square Error and Mean Square Total, estimating them with M̂SE = MSE−
Dw and M̂ST = MST−D, respectively, whereDw =

∑m
i=1((1−hii)Di)/(m−

p) and Dw =
∑m

i=1Di/m, with hii = x
′
i(X

′
X)−1xi. They suggest to

use M̂SE and M̂ST , because under standard regularity conditions these
measures tend to the true MSE and MST with probability one, as the
number of areas increases. But, since for small areas M̂SE and M̂ST
could be negative, the authors suggest an alternative to their estimates,
through the function h(x, b) in Equation (7.24) which guarantees to obtain
positive values for them:

h(x, b) =
2x

1 + exp
(

2b
x

) . (7.24)

This function allows to figure out new estimators in the following way:
M̂SE = h(MSE,Dw) and M̂ST = h(MST,D).

Kubokawa and Srivastava (2010) derive an exact expression of the
Empirical Bayes Information Criterion (EBIC) for selecting the fixed ef-
fects in a linear mixed model. Their criterion represents an intermedi-
ate solution between BIC and the full Bayes variable selection methods,
because it exploits the partitioning of the vector of parameters (β, τ∗, σ)
into two sub-vectors, one for the parameters of interest (β) and the other
one for the nuisance parameters (τ∗, σ). Specifically, it works with a par-
tial non-subjective prior distribution for only the parameters of inter-
est, ignoring a prior setup for the nuisance parameters and applying the
Laplace approximation for this one. The full prior distribution π(β, τ )
can be written through a proper prior distribution, π1(β|τ , λ), which is
not completely subjective because of its dependence on an unknown hy-
perparameter λ:

π(β, τ ) = π1(β|τ , λ)π2(τ ).

The two authors derive EBIC, starting from the BIC but they approxi-
mate the marginal distribution of y, f(y), with one of its two components
i.e. the conditional marginal density based on the partial prior distribu-
tion, m1(y|τ , λ) :

m1(y|τ , λ) =

∫
f(y|β, τ )π1(β|τ , λ)dβ.
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After estimating λ, λ̂ = argmaxλm1(y|τ̂ , λ) using a consistent estimator
of τ , the EBIC is obtained as follows:

EBIC = −2log{m1(y|τ̂ , λ̂)}+ dim(θ) log(n)

= −2 log{m1(y|σ̂2, τ̂∗, λ̂)}+ (d+ 1) log(n).

The derivation of the EBIC neglects the full prior distribution, but it uses
the non-subjective prior distribution π1(β|σ2, λ), assuming that, condi-
tioned to σ2, it assumes a multivariate normal distribution:

π1(β|σ2, λ) = Np(0, σ
2λ−1W ),

with an unknown scalar λ and a p × p known matrix W . A possible
choice for W could be the so called Zellner’s q-prior, Wq = n(X ′X)−1.
The authors demonstrate that EBIC is a consistent estimator.

Wenren and Shang (2016) and Wenren et al. (2016) work on condi-
tional conceptual predictive statistics and on marginal conceptual pre-
dictive statistics for linear mixed model selection, respectively. The con-
ditionalCp is formalized in both cases in which σ2 and Ψ∗ are known and
unknown. The marginal Cp appears to be useful in two ways, both when
the sample size is small and when there is a high correlation between
the observations. Wenren et al. (2016) propose a modified variant of Mal-
lows’ Cp when there is a correlation between observations, even if not
known. They work under the assumption that Ψ = σ2Ψ∗ and Σ = σ2Ini .
They assume that the estimator of the correlation matrix (for the candi-
date model) is consistent. The formalization of Modified Cp (MCp) is as
follows:

MCp =
SSRES
σ̂2

+ 2p− n, (7.25)

where SSRES is the residual sum of squares for the candidate model,
σ̂2 represents an asymptotically unbiased estimator for σ2 and it is com-
puted for the largest candidate model. MCp is a biased estimator for the
expectation of the transformed marginal Gauss discrepancy. However, it
is an unbiased estimator of ∆Cp(θ), if the true model is included in the
pool of all candidate models. For better performance, they also provide a
more accurate estimator:

IMCp =
(n− p∗ − 2)SSRes

SS∗Res
+ 2p− n+ 2, (7.26)

using the symbol * for referring to the largest candidate model. IMCp
results to be an asymptotically unbiased estimator of the expected overall
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transformed Gauss discrepancy. It is preferred to MCp because it avoids
the bias introduced by 1

σ̂2 used for estimating 1
σ2 .

Wenren and Shang (2016) provide another conceptual predictive statis-
tics for selecting a linear mixed model if one is interested in predicting
specific clusters or random effects. Inspired by cAIC and conditional
Mallow’s Cp, they construct two versions of the conditional Cp (CCp),
according to known or unknown variance components. They work un-
der the assumption that Ψ = σ2Ψ∗ and Σ = σ2Ini , too. Assuming that
σ2 and Ψ∗ are known, they combine a goodness of fit term with a penalty
term, and propose CCp defined as:

CCp =
SSRes
σ2

+K, (7.27)

where K = 2ρ − n defines the effective degrees of freedom with ρ =
tr(H1) (Hodges and Sargent, 2001). If the variance components are un-
known, Ψ∗ is substituted by its ML Ψ̂∗ or restricted MLE Ψ̂∗R estimate.
The effective degrees of freedom ρ is also estimated, ρ̂ = tr(Ĥ1) where
Ĥ1 = Ĥ1(Ψ̂∗) or Ĥ1 = Ĥ1(Ψ̂∗R). σ2 is estimated in the largest candidate
model (∗) through σ̂2 =

SS∗Res
N−p∗ , an unbiased estimator of σ2. For further

details about Ĥ1 see Hodges and Sargent (2001). By substituting the vari-
ance components by their estimators in a suitable way, the conditional Cp
is:

CCp = (n− p∗)
SSRes
SS∗Res

+ K̂, (7.28)

with K̂ = 2ρ̂− n indicating the (ML or REML) estimated penalty term.

Kuran and Özkale (2019) provide a conditional conceptual predictive
statistic, too, in the framework of LMMs but applying a ridge estima-
tor for overcoming multicollinearity problems. Like Wenren and Chang
(2016), they work under the assumption that Ψ = σ2Ψ∗ and Σ = σ2Ini .
When we have to manage multicollinearity problems, usually we delete
one or more variables related to the fixed effects, but this could cause
some not irrelevant consequences: the fitted candidate model could be
misspecified. For this reason, the two authors are motivated to require to
the ridge estimator and the ridge predictor for LMMs proposed by Liu
and Hu (2013) and Özkale and Can (2017):

β̂k = (X
′
V −1
∗ X + kIp)

−1X
′
V −1
∗ y, (7.29)

b̂k = Ψ∗Z
′
V −1
∗ (y −Xβ̂k), (7.30)
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where k, a positive real number, represents the ridge biasing parameter.
Its selection is obtained by minimizing a generalized cross-validation in
the predictive step, while the same is measured through the minimiza-
tion of the scalar mean square error of the ridge regression, in the estima-
tion process (see Özkale and Can (2017)). Following Wenren and Shang
(2016), they propose two versions of the conditional conceptual predic-
tive statistic, distinguishing the case in which σ2 and Ψ∗ are known or
they aren’t. The proposed criteria are the same of CCp in Equation (7.27)
and in Equation (7.28), substituting the effective degrees of freedom un-
der ridge estimator for LMMs, ρk = tr(H1k), to ρ, ρ̂k = tr(Ĥ1k) to ρ̂
and SSRes,k = (y − ŷk)

′
(y − ŷk) to SSRes, where H1k = In − V −1

∗ [In −
X(X

′
V −1
∗ X + kIp)

−1X
′
V −1
∗ ].

Li et al. (2014) proposed a two stage method based on the MDL prin-
ciple. When β is the only unknown parameter, encoding the estimated
parameter represents the first stage. Then, all the sequence of data with
the distribution fθ̂ is encoded. The resulting total length code used for
transmission is equivalent to BIC:

L(y) = L(y|θ̂) + L(θ̂) = − log fθ̂(y) +
p

2
log(m).

The penalty term, which measures the precision used to encode each pa-
rameter, is log(m)/2 with a uniform distribution. The authors follow the
idea of the mixture MDL proposed by Hansen and Yu (2003), which as-
sumes a mixture distribution induced by the user-defined probability dis-
tribution w(θ) on the parameter space Θ. They assume that Σ = σ2Ini ,
β ∼ N(0, cσ2(X ′iΨ

−1
∗i Xi)

−1) and the hyperparameter c is a scalar con-
strained to be non negative. As regards the distribution of σ2, an in-
verse gamma distribution is assumed with parameters (a, 3/2). Hence,
the mixture description length of y is expressed as:

− logm(y) = − log

∫
fθ(y)w(θ)dθ.

The code length is minimized with respect to c ≥ 0 and the resulting
ĉ is plugged into the code length expression, leading to the lMDL0 crite-
rion. The expression of the final code length, with only β unknown and
ignoring the impact of b, is:

1
2

{∑n
i=1 y

′
iΣ
−1
i yi − FSSσ + p

[
1 + log

(
FSSσ
p

)]
+ log n

}
, if FSSσ > p,

1
2

∑n
i=1 y

′
iΣ
−1
i yi, otherwise,
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FSSσ = (
∑n

i=1 y
′
iΣ
−1
i Xi)(

∑n
i=1X

′
iΣ
−1
i Xi)

−1(
∑n

i=1X
′
iΣ
−1
i yi) and (log n)/2

represents the code length necessary for transmitting ĉ. If FSSσ ≤ p,
ĉ = 0 and this implies that all fixed effects are null. The lMDL0 criterion
has the same structure of penalized likelihoods such as AIC and BIC, but
with a proper data-adaptive penalty, depending on the covariance ma-
trices. The two-stage mixture MDL principle, in the most realistic case
with (σ2,Ψ∗) unknown, it consists in estimating Ψ∗ and plugging it into
the code length. Minimization of the code length function, with respect
to a and c, leads to an even more complex lMDL structure. The authors
showed that the MDL criteria possess the selection consistency of BIC for
finite-dimensional models.

Marino et al. (2017) give a really important contribution to the selec-
tion of relevant covariates in the LMMs, since their proposal is aimed
at mixed models with missing data. Their work deals with selection of
covariates in multilevel models, hence applicable to linear mixed mod-
els being a two-level model. The authors work under the assumption
that Ψ = σ2Ψ∗ and Σ = σ2Ini and that parts of the covariates are ig-
norable missing, hence imputable. They propose to identify the covari-
ates with missing data, to perform imputations producing m complete
datasets (multiple imputations) and in the end to stack all these datasets
into one single wide complete dataset. Before imputation, the generic
linear mixed model in Equation (7.1) is rewritten, taking into account for
the missing values, as follows:

Yi =

L∑
l=1

G∑
g=1

(X(l)
ig β

(l)
g )+Z

(•)
i bi+εi, i = 1, 2, ...,m; g = 1, ..., G; l = 1, ..., L;

(7.31)
where X(l)

ig represents the g-th predictor for the i-th cluster from the l-
th imputed dataset. After grouping all datasets into one, according to
group relevant variables for imputation, the model could be rewritten in
a compact way:

Yi = X(•)
i β

(•) +Z
(•)
i bi + εi, (7.32)

where X(•)
i = (X(•)

i1 ,X
(•)
i2 , ...,X

(•)
iG )

′
containing all the imputation data, and

β(•) is the relatedG-vector of parameters. For identifying the relevant co-
variates, the authors suggest a shrinkage estimation process, i.e. to max-
imize the profile penalized REML log-likelihood built for the extended
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model to imputed datasets:

QR(β(•)) = lR(β(•), σ2,Ψ∗)− λ
G∑
g=1

√
ug||β(•)

g ||, (7.33)

where λ is the positive tuning parameter, ug is the number of covari-
ates, belonging to the group g, with imputation data inside. In case of
no missing data or only one imputation, the optimal penalized solution
is obtained through the classical LASSO penalization. Instead of max-
imizing the Equation (7.33), because of some computational issues, the
authors prefer to solve a different optimization problem through an iter-
ative algorithm concerning the following penalized function:

Q2
R(β(•)) = lR(β(•), σ2,Ψ∗)−

G∑
g=1

τ 2
g − λ2

G∑
g=1

ug
4τ 2

g

[||β(•)
g ||]2, (7.34)

Hossain et al. (2018) propose a non-penalty Stein-like shrinkage es-
timator and then an adaptive version of the same estimator. This ap-
proach, first, consists in using a non-penalty Shrinkage Estimator (SE)
and then it applies an adaptive measure related to the number of re-
strictions, which measures the distance between the restricted and the
full model. The procedures works as follows: they propose to maxi-
mize the log-likelihood function under the postulated restricted parame-
ter space, using the Lagrange multiplier vector, to get a restricted estima-
tor for β this allows to build the profiling log-likelihood for estimating τ .
Once the RE for θ = (β, τ ) are available, the likelihood ratio test statis-
tic Dm = 2[l(θ̂|θ) − l(θ̂RE |θ)] is introduced, and it allows to define the
pretest estimator (PT) for β:

β̂PT = β̂ − I(Dm ≤ χ2
r,α)(β̂ − β̂RE). (7.35)

Since that β̂PT is a discontinuous function of β̂ and β̂RE and it depends
on the α-level chosen a priori by the user, an adapted shrinkage estimator
is built up, as follows:

β̂PSE = β̂RE + (1− (r − 2)D−1
m )(β̂ − β̂RE), r ≥ 3, (7.36)

The shrinkage estimator is, actually, a linear combination of β̂ and ˆβRE :
λβ̂ + (1 − λ)β̂RE , where the shrinkage parameter λ is an optimal value
equal to (r − 2)D−1

m . The final estimator proposed by the authors is the
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positive-part shrinkage estimator, which takes into account only the posi-
tive values of the estimator in Equation (7.36) due to the not convex func-
tion of SE in β̂ and ˆβRE .

Only two papers discuss the selection of fixed effects in a linear mixed
model in the case of a high dimensional setting: Rohart et al. (2014) and
Ghosh and Thoresen (2018).

In many fields, it happens that one has to manage quite large amount
of covariates. Thus, if interest is focused on obtaining an optimal infer-
ence, then, choosing only the relevant covariates is particularly impor-
tant.

Ghosh and Thoresen (2018) contribute to linear mixed effects model
selection with a non-concave penalization for the selection of fixed ef-
fects. Their procedure works with a maximum penalized likelihood, where
non-concave penalties are implemented, considering Σ = σ2Ini . A gen-
eral objective function (with a general non-convex optimization):

Qn,λ(β,η) = Ln(β,η) +

p∑
j=1

Pn,λ(|βj |), (7.37)

has to be minimized with respect to (β,η) for a general loss function,
L(β,η), which is assumed to be convex only in β and non-convex in η.
We can distinguish two situations: the number of fixed effects is less than
the number of observations (p < n) and a high-dimensional set-up where
p is of non-polynomial (NP) order of sample size n.

Making some appropriate assumptions on the penalty, it is impor-

tant to note that: as n increases, max{p”λn(|β|)} → 0 and
p′λn (θ)

λn
> 0.

Moreover, the true parameter β0 is divided into two sub-vectors β0 =

(β
(1)′

0 ,β
(2)′

0 )′, where β(2)
0 is a null vector. If λn → 0 and

√
nλn → ∞,

as n increases, we can be sure that the local minimiser exists and satis-
fies that β̂(2) is equal to 0. Concerning the case of high-dimensionality,
when p is of non-polynomial (NP) order of sample size, one should take
into account the SCAD penalty for obtaining an estimator that is simul-
taneously consistent and satisfies the oracle property (Fan and Li, 2001)
of variable selection optimality for any suitably chosen regularization se-
quence λn. Under some particular assumptions (extensively presented in
Ghosh and Thoresen (2018)) what happens is that a local minimiser is ob-
tained, which satisfies, with a probability of reaching one as n increases,
that β(2) = 0 and that the estimated active set of β̂ coincides with the
true active set of the fixed effect parameters. The β̂(1) and η̂ estimators
are normally distributed under both types of dimensional settings.
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Rohart et al. (2014) focus on the selection of the fixed effects in a
high dimensional linear mixed model, suggesting the addition of an `1-
penalization on β to the log-likelihood of the complete data. This penal-
ization is useful in cases where the number of fixed effects is greater than
the number of observations: it shrinks some coefficients to zero.They
propose an iterative multicycle Expectation Conditional Maximization
(ECM) algorithm to solve the minimization problem of the objective func-
tion:

g(θ;x) = −2L(θ;x) + λ||β||1, (7.38)

The algorithm consists of four steps and it converges when three stop-
ping criteria, based respectively on ||β[t+1] − β[t]||2 , ||b[t+1]

k − b[t]
k ||

2 and
||L(θ[t+1],x) − L(θ[t],x)||2, are fulfilled. Since the estimation of θ is bi-
ased, a good choice would be to use the algorithm only for estimating
the support of β and, after that, to estimate θ using a classic mixed model
estimation, based on the model that contains the only J relevant fixed ef-
fects: y = Xβj + Zb + ε. The regularization parameter λ is tuned with
the BIC,

λBIC = min
λ
{log |Vλ|+ (y −Xβ̂λ)′V −1

λ (y −Xβ̂λ) + dλ log(n)}, (7.39)

where dλ is the number of non-zero variance-covariance parameters plus
the number of non-zero fixed effects coefficients. Substituting the LASSO
method in the second step with any other variable selection method that
optimizes a criterion, the algorithm becomes a multicycle ECM. All these
considerations are valid assuming independence between the random ef-
fects, i.e. if there are q random effects corresponding to q grouping fac-
tors. As regards the selection of the random effects, it suffices to observe
quite a small variance of a random effect to remove it at one step of the
algorithm. The algorithm produces the same results and the same theo-
retical properties of the lmmLasso method (Schelldorfer et al., 2011) when
variances are known or they are assumed to be known, but it is much
faster.

7.5 Random effects selection

Testing if random effects exist is equivalent to testing the hypothesis whether
their variance/covariance matrix is made by zeros. Some authors, like
Zhang et al. (2016), worked on the identification of the covariance struc-
ture of random effects, and others such as Wang (2016) provided some
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characterizations of the response covariance matrix that cause model non-
identifiability. The common perspective of these works lies in providing
a preliminary analysis before the selection of the effects in a linear-mixed
model, without providing a tool for testing the significance of random
effects. Li and Zhu (2013), instead, introduced a test for evaluating the
existence of random effects in semi-parametric mixed models for longi-
tudinal data, proposing a projection method. The two authors created a
test with two estimates for the error variance, one consistent under the
null hypothesis and the other consistent under both the null and the al-
ternative. The idea was to compare the two estimates under the alter-
native hypothesis, leading to reject the null one in case of large values
of the test. But the test showed to be not stable and powerful, because
of the projection matrix of Z variables onto the space spanned by the X
variables. Hence, the two authors propose a similar, but more powerful
test, in the LMMs framework but without projections. For developing the
test, no assumptions are necessary for the random effects or the random
errors. The test is built using the trace of the variance/covariance matrix
of random effects:

TmΩ =
tr(Â)√

(k̂ − 3σ̂4)tr{diag2(M tr
0m)}+ 2σ̂4tr{(M tr

0m)2}

d−→ N(0, 1), (7.40)

with m→∞. Under the alternative, the same test converges in distribu-
tion to N(mΩ, 1), where

mΩ =
k0c11 − q1 + (q1 − 1)c13tr(ΣzQ10)√

(k − 3σ4)Cdiag + 2σ4Ctr
, (7.41)

with c11 and c13 estimates of variance/covariance matrices related to scaled
Z,Ctr andCdiag two non-negative constants such that limm→∞[m·tr{diag2

(M tr
0m)}] = Cdiag and limn→∞[m · tr(M tr

0m2)] = Ctr. The test results to be
consistent, not only under the null hypothesis, but under the alternative
too. Even if the rate of convergence is slower than m−1/2, the test is con-
sistent. Furthermore, the test is good even if high correlations betweenZ
andX are present.

7.6 Fixed and random effects selection

In most real cases, it is a matter of investigating the individuation of the
important predictors corresponding not only to the fixed effects but, also,
to the random part of the model. The joint selection of the two types of
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effects has drawn more attention in recent years. Most of the proposed
procedures are related to shrinkage methods: it suffices to look simul-
taneously at Table 7.2 and 7.3 to check this statement. The joint effect
selection through penalized function can be based on a two-stage pro-
cedure, considering fixed and random effects separately, or a one-stage
procedure, considering them jointly. Bondell et al. (2010) underlined that,
in a separate selection, a change in the structure of one set of effects can
lead to considerable different choices of variables for the other set of ef-
fects. Lin et al. (2013), on the other hand, argued that greater computation
efficiency is reached if one prefer a separate selection of the effects. The
number of stages employed in the shrinkage methods is reported in Table
6.1.

Braun et al. (2012) propose a predictive Cross-Validation (CV) crite-
rion for the selection of covariates or random effects in the presence of lin-
ear mixed-effects models with serial correlation. Their approach is based
on the logarithmic and the Continuous Ranked Probability Score (CRPS).
Wang and Schaalje (2009) use point predictions, while Braun et al. (2012)
focus on the whole predictive distribution, inspired by the proper scoring
rules suggested by Gneiting and Raftery (2007), and the “mixed” cross-
validation approach provided by Marshall and Spiegelhalter (2003). Go-
ing into detail, they use a very common proper score, the LS (local score),
which considers the log predictive density f(y) for the observed value
yobs and the CRPS, which is sensitive to the distance. The CRPS considers
how close a predictive value is to the observed value through a pondera-
tion system. With the univariate Gaussian as predictive distribution, the
CRPS has the following form:

CRPS(Y ,yobs) = σ

[
1√
π
− 2ϕ

(
yobs − µ

σ

)
+

−yobs − µ
σ

(
2Φ

(
yobs − µ

σ

)
− 1

)]
, (7.42)

where ϕ and Φ indicate the p.d.f. and the distribution function of a stan-
dardized Gaussian variable, respectively. The “mixed” cross-validation
approach fits a model to the whole dataset. Once the hyperparameters
have been estimated through all data, one observation is left out and for
this one the LS and the CRPS are computed. Finally the cross-validation
mean scores LSCV and CRPSCV are calculated from the distribution.
The LSCV is asymptotically equivalent to cAIC, but it is preferable to
a full cross-validation approach because only one model is fitted at the
beginning instead of fitting a model for each observation left out.
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Schmidt and Smith (2016) focus on model selection when the number
of models involved in the process is huge. They introduce a parameter
subset selection algorithm (PSS). This technique consists in ranking the
parameters by their significance, to establish the influential parameters.
The basic assumption regarding the variance-covariance matrices of the
random effects and of the random errors is Ψ and σ2Ini , respectively.
The methodology is based on the asymptotic approximation of standard
errors, measured through a normalization of the estimated standard de-
viations for each parameter. The proposed method works as follows: at
first an estimate of the error variance is measured, then using a local sen-
sitivity matrix - containing all the derivatives with respect to all fixed
and random parameters for each i-th observation - one is able to estimate
the variance-covariance matrix with all variances and correlations for the
fixed and for the random effects (the authors suggest to use for instance
the Moore-Penrose pseudoinverse). An estimate for the standard errors
for each parameter is now possible:

√
Cov(k, k), which is used for ob-

taining a measure of the selection score related to each k-th parameter in
the i-th individual: αki = |st.err.k/θ̂ki |. A small selection score is equiva-
lent to a significant parameter. A ranking of all selection scores is created
assigning a selection index γki according to the position reached by each
αki in the ordering. For all the parameters is calculated a global selection
index Γk =

∑m
i=1 γki , which implies that the smallest values of this global

index are related to the most significant parameters for all the clusters. If
two or more parameters bring to the same Γk, then the parameter that has
the smallest selection scores over all m individuals, is chosen as the most
significant one. It is worth noting that since the PSS is repeated m times,
the m sets of parameter rankings will be all different because the random
effects parameter estimate will be different for each individual. The PSS
algorithm attributes to the standard errors the role of measuring the pa-
rameter uncertainty: the parameters which obtain the smallest selection
scores are those most significant and with the smallest uncertainty.

Rocha and Singer (2018) propose exploratory methods based on fit-
ting standard regression models to the individual response profiles or to
the rows of the sample within-units covariance matrix (in the case of bal-
anced data) as supplementary tools for selecting a linear mixed-effects
model. As concerns the choice of the fixed effects they examine the pro-
file plots and suitable hypothesis tests. Assuming homoschedastic con-
ditional independence, the model in eq (1) is re-written as:

yi = X∗i β
∗
i + εi, (7.43)
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where X∗i contains the common variable between Xi and Zi and those
that are unique to both the kind of variables, β∗i contains the amount
of p + k parameters related to the fixed and the random effects. To test
whether the generic k−th element of β is null, they propose the following
statistic test:

t =
β
∗
k

n−1

√
σ̂2diagk[(

∑m
i=1X

∗′
i X

∗
i )−1]

∼ tv, (7.44)

where the degrees of freedom v =
∑m

i=1 ni −m(p+ q) and the estimated
σ̂2 is given by

∑m
i=1

ni−(p+q)
v σ̂2

i , with:

σ̂2
i =

1

ni − (p+ q)
Y
′
i [Ini −X∗i (X∗iXi)

−1Xi]Yi. (7.45)

The variance of β̂∗ik, i = 1, 2, ...,m, is expected to be equal to the k−th

diagonal term of σ2(X∗
′

i X
∗
i )−1 when the variance of the correspond-

ing random coefficient, b̂ik, is null. Otherwise, we might expect a larger
variability of the β̂∗ik around its mean. The k−th element of β̂∗i , β̂∗ik, fol-

lows a N (β∗ik; vikσ
2) distribution where vik = diagk{(X∗

′

i X
∗
i )−1}. There-

fore, β̂∗ik/
√
vik ∼ N (β∗ik/

√
vik;σ

2). Letting ŵik = β∗ik/
√
vik and wk =∑m

i=1 ŵik/m, it follows that:

t(ŵk) =
√
n/(n− 1)(ŵik − wk)/σ̂ ∼ tv. (7.46)

Thus, for each k we expect around α% of the values of t(ŵk) outside the
corresponding global significance level α∗% = α/(m(p + q)) Bonferroni-
corrected confidence interval, namely [tv(α

∗/2), tv(1−α∗/2)] where tv(δ)
denotes the 100δ% percentile of the t distribution with v degrees of free-
dom. A larger percentage of points outside that interval suggests that bik
may be a random coefficient. Combining the two statistic tests in Equa-
tions (7.44) and (7.46) makes possible to detect which effects are statisti-
cally significant in the selection procedure. Another way to select the ran-
dom effects requires the assumption of the homoschedastic conditional
independence, i.e. when data are collected at the same time. In this case,
the number of units for each i-th individual is the same and hence it’s
possible to estimate only one variance-covariance matrix V as S − σ̂2In,
where S = (m− 1)−1

∑m
i=1(yi − y)(yi − y)

′
. Fitting polynomial models,

with the same degree, to the rows of S the exploratory analysis along the
lines obtained becomes an additional tool for the selection of the random
effects.
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7.6.1 One-stage shrinkage procedures

Chen et al. (2015) propose a variable selection methodology under the
ANOVA type linear mixed models, for a high dimensional setting .They
focus on the selection of the fixed effects and on testing the existence of
the random effects. The authors state that cov(bi) = σ2

i Ini and Σ = σ2I ,
without setting any distributional assumption for Y . The selection re-
garding the fixed effects is made through the SCAD penalty. With the
main purpose of removing the heteroschedasticity and correlation of the
response variable, they modify the model in Equation (7.1), through an
orthogonalization applied to random variablesZ⊥. Let M (Z) be the vec-
tor space spanned by the columns of Z, Z⊥ such that Z

′
⊥Z = 0, M (Z)⊥

the orthogonal complementary space of M (Z), therefore:

Z⊥Y = Z⊥Xβ +Z⊥ε, (7.47)

A sparse estimate of β can be obtained by minimizing:

Q(β) =
1

2
(Y −Xβ)

′
P(Z)⊥(Y −Xβ) + n

p∑
j=1

pλ(|βj |), (7.48)

whereP(Z)⊥ = Z⊥Z
′
⊥ is the orthogonal projection matrix of space M (Z)⊥

and pλ(θ) is the SCAD penalty. Putting Y ∗ = Z
′
⊥Y and X∗ = Z

′
⊥X the

minimization algorithm Q(β), the convergence test and the selection of
thresholding parameters can be applied to Equation (7.48) without addi-
tional effort. Once the fixed effect parameters are estimated, the authors
focus on the selection of the random effects, which means to detect if
some σi = 0. The formal hypothesis system is:

H0 : σ2
k = 0, k ∈ D ↔ Ha : ∃D∗ ⊆ D , s.t., σ2

k > 0, k ∈ D∗, (7.49)

where D is a subset of 1,2,...,q. Two estimators are proposed for σ2: one,
σ̂2, consistent even if the null hypothesis doesn’t hold, the other one, σ̂0,
consistent only under the null hypothesis. Indicating with l̂=̂{i : β̂i 6= 0}
all the relevant fixed effects, once the fixed parameters have been esti-
mated, with Wl̂=̂(Xl̂,Z) the relative covariate matrix together with the
design matrix for the random effects, an estimate of σ2 is defined as:

σ̂2 =
Y
′
P(Wl̂)⊥Y

tr[P(Wl̂)⊥]
, (7.50)
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whereP(Wl̂)⊥ is the orthogonal projection matrix on the space of M (Wl)
⊥:

σ̂2
0 =

Y
′
P(Wl̂,−D)⊥Y

tr[P(Wl̂,−D)⊥]
, (7.51)

Let’s assume that D = D1 ∪ D2 with D1=̂{k : k ∈ D ,mk → ∞ when
n → ∞} and D2=̂{k : k ∈ D ,mk = O(1)}. Under H0 in (7.49), un-
der certain conditions and assuming that the D1 is a null set, the authors
built a test for assessing the existence of at least one of the random effects
based on the difference between (7.50) and (7.51), which tends in distribu-
tion to χ2(g) where g represents the dimension of space M (P(Wl,−D)⊥ZD).
Whereas, underH0 in (7.49) if D1 contains at least one element and know-

ing that σ̂2− σ̂2
0 = Y

′
Mn,l̂Y , withMn,l̂=̂

P(W
l̂
)⊥

tr(P(W
l̂
)⊥ )−

P(W
l̂,−D

)⊥
tr(P(W

l̂,−D
)⊥ ) , then the

test to be considered is:

TnG,l̂(γ) =
Y
′
Mn,l̂Y

σ̂2
√
γtr{diag2(Mn,l̂)}+ 2tr{Mn,l̂}

d−→ N(0, 1) as n→∞,

(7.52)
where γ indicates the kurtosis parameter that can be estimated with any
consistent estimator.

Fan et al. (2014) propose a robust estimator for jointly selecting the
fixed and random effects. The variable selection methodology defined
by the three authors is robust against outliers in both the response and
the covariates. The variance-covariance matrix of the random effects,
is factorized using the Cholesky decomposition: Ψ = ΛΓΓ

′
Λ, where

Λ = diag(ν1, ν2, ..., νq) and Γ represents a diagonal matrix and a triangu-
lar matrix with 1 on its diagonal, respectively. Hence, the random effects
bi are now substituted by ΛΓb∗i . It’s worth noting that setting to zero one
element of Λ implies that all elements of the corresponding row and col-
umn in Ψ are zero, too, i.e. the relative random effect is not significant.
To obtain a robust estimator which doesn’t suffer the impact of outliers
in the covariates, they introduce some weigths, wij , function of the Ma-
halanobis distance:

wij = min

{
1,

{
d0

(xij −mx)′S−1
x (xij −mx)

} δ
2

,

{
b0

(zij −mz)′S−1
z (zij −mz)

} δ
2
}
, (7.53)
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where the parameter δ ≥ 1, d0 and b0 are the 95-th percentiles of the
chi-square distributions with the dimension of xij and zij like degrees of
freedom, respectively. Sx and Sz are the median absolute deviance and
mx and mz represent the medians of the covariates and random vari-
ables, respectively. For reducing the impact of outliers in the response
variable, it is modified subtracting υij to each its element in Equation
(7.54), considering the studentized residuals rij = yij − x

′
ijβ − z

′
ijΛΓb∗i

υij = sign(rij)(|rij | − c)σI(|rij | > c). (7.54)

The robust log-likelihood is then defined as:

lR(θ) = log

∫
σ2−

mq+n
2 exp

{
− 1

2σ2

∥∥W 1
2 (y∗−Xβ−ZIm⊗ΛIm⊗Γb∗)

∥∥}×
× exp

{
− 1

2σ2
b∗
′
b∗
}
. (7.55)

To guarantee the consistency property to the estimators, a correction has
to be applied to lR(θ):

lRC(θ) = lR(θ)− am(θ), (7.56)

with am(θ) =
∑m

i=1 ai(θ) such that ∂
∂θai(θ) = Eθ

[
∂lRi (θ)
∂θ

]
.

Selection and estimation of fixed and random effects are obtained
maximizing:

QR(θ) = lRc (θ)− n(

p∑
j=1

pλn(|βj |) +

q∑
j=1

pλm(|νj |)), (7.57)

where pλm(·) is a shrinkage penalty with λn being the parameter which
controls the amount of shrinkage, while βj and νj are the unpenalized
maximum estimators in Equation (7.55). The authors propose the ALASSO
penalty to control the amount of shrinkage. For selecting λm the authors
prefer to minimize the following BIC criterion:

BIC(λ) = −1

2
log |V̂ | − 1

2
||y −Xβ̂||2

V̂
+ log(m)||θ̂λ||0, (7.58)

where σ̂2, part of V̂ , is the median absolute deviation estimate, β̂ and V̂
are obtained as robust estimators and, finally, ||θ̂λ||0 states for the zero
norm, measuring the amount of non-zero elements of θ̂λ.
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Taylor et al. (2012) extend the two-parameter Lr penalty of Frank and
Friedman (1993) and Fu (1998) in order to obtain new mixed model pe-
nalized likelihood, useful for selecting both the random and the fixed
effects. The extended linear mixed model considers a set of penalized
effects (a), containing a subset of some effects:

y|b ∼ N(Xβ +Zb+Ma,Σ), y ∼ N(Xβ +Ma, V (τ )). (7.59)

The authors use the scaled variance-covariance matrices Σ∗ = Σ/σ2 and
V (τ )∗ = V (τ )/σ2 and identify a, a potentially large vector of k effects,
k < p + s and k < n, with covariates M . The penalized likelihood in-
volves the Lr class of penalties with 0 < r < 1:

l = log f(y,θ)−
k∑
j=1

pλ(|aj |; r), (7.60)

with the penalty term given by: pλ(|aj |; r) = λ((|aj | + 1)r − 1)/r, λ > 0.
Taking into account a simple setting with σ2 = 1 and M as orthonor-
mal columns, an unbiased OLS estimator for a is obtained, through an
iterative process:

aj(s+1) = sign(âj)(|aj | − λ∗)+. (7.61)

This penalty is singular at origin, then, a local quadratic approximation
is introduced to the derivative of the penalty, approximated as follows:

pλ(|aj |; r) ≈
1

2
(λ(|ajs|+ 1)r−1/|ajs|)a2

j , (7.62)

Thus, the introduction of a penalized term estimated iteratively, as shown
is equivalent to inserting the pseudo-random effects in the linear mixed
models. This it suffices to guarantee Henderson’s results for estimation
(REML estimates for τ ) and prediction of both kinds of effects. Thresh-
olding the elements of |as+1| with an optimal rule, a partitioned set of
estimates into non-zero and zero components (a1,s+1,a2,s+1) is obtained.
The zero set (a2,s+1,M2,s+1) is discarded from the set of information and
the non-zero set replaces a2 until the iterative penalized REML estimates
converge.

Li et al. (2018) propose a doubly regularized approach for selecting
both the fixed and the random effects, in two cases: a) finite dimension
of fixed and/or random effects, b) fixed and/or random effects that in-
crease as the sample size goes to infinity. Their approach set Σ = σ2Ini
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and Ψ = σ2Ψ∗ = σ2LL
′
, (Cholesky decomposition) with L a lower trian-

gular matrix containing positive diagonal elements. The authors apply a
double regularization (a `1−norm penalty for β and a `2−norm penalty
for Ψ∗ parameters) to the log-likelihood function, l(β, σ2,Ψ∗) (equivalent
to Equation (7.5)), as concerns the case with m < p. Hence, the objective
function to maximize for estimating β, σ2 and Ψ∗ is the following:

Q(β,L, σ2) = `(β, σ2,L)− λ1

p∑
j=1

|βj | − λ2

q∑
k=2

√
L2
k1 + ....+ L2

kq. (7.63)

For the case m > p, they modify l(·) in Equation (7.63) with the following
function:

`m(β, σ2,L) = −1

2

m∑
i=1

log |σ2V∗i| −
1

2
log

∣∣∣∣σ−2
m∑
i=1

X
′
iV
−1
∗i Xi

∣∣∣∣+
− 1

2σ2
(Yi −Xiβ)

′
V −1
∗i (Yi −Xiβ). (7.64)

The authors propose an algorithm as effective as the Newton-Raphson
algorithm for estimating step by step β and L, since the penalty function
in Equation (7.64) is separable.

Pan and Shang (2018b) propose a simultaneous selection procedure of
fixed and random effects. Let’s assume that Ψ = σ2Ψ∗, Σ = σ2Ini and ψ
containing the q(q+1)

2 unique elements in Ψ∗, and let’s indicate with θ∗ the
vector related to (β,ψ). The authors maximize the following penalized
profile likelihood function:

Q(θ∗) = p(θ∗)− λmρ(|θ∗|) = (7.65)

= −1

2

m∑
i=1

log |Vi∗|−
n

2
log

(
m∑
i=1

(yi −Xiβ)TV −1
i∗ (yi −Xiβ)

)
−λmρ(|θ∗|),

where λm is the tuning parameter controlling the amount of shrinkage
and ρ(|θ∗| is the adaptive Lasso function: ρ(|θ∗| = |θ∗|/|θ̃∗|, with θ̃∗
the MLE estimator of θ∗ used as the initial weights vector. To maximize
7.65, the authors use the Newton-Raphson algorithm, considering a local
quadratic approximation at each iteration step as concerns the approxi-
mation of |θ∗|.
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7.6.2 Two-stage shrinkage methods

One issue with the application of one stage shrinkage methods is that
the combined dimension of both fixed and random effects is higher than
the dimension of each of the two steps considered separately (Lin et al.,
2013). The computational efficiency depends also on the penalized log-
likelihood taken into account for the selection of the random effects: the
REML is preferred by Lin et al. (2013) and Pan (2016). The reasoning be-
hind this choice is intuitive and underlined by Lin et al. (2013): REML
estimators are unbiased and seem to be more robust to outliers than ML
estimators. Furthermore, REML estimators do not involve the fixed ef-
fects.

Lin et al. (2013) propose two stage model selection by REML and path-
wise coordinate optimization, inspired by the algorithm suggested by
Friedman et al. (2007). The mixed model used is formulated assuming
that Σ = σ2Ini . In detail, during the first stage, the random effects are
selected by maximizing the restricted log-likelihood penalized with the
adaptive LASSO penalization:

QR(τ ) = lR(τ )− λ1,m

s∑
j=1

λjwj |Ψj |, (7.66)

where Ψj is the j-th diagonal element of Ψ and wj is the known weight.
Because of the non-differentiable nature of the objective function, the
Newton-Raphson algorithm is used for maximising QR(τ ), after having
locally approximated the penalty function by a quadratic function. Once
the variance-covariance matrix is estimated, it is considered as known
when the following penalized log-likelihood function is maximized to
estimate the fixed effects:

Qf (β) = −1

2
(yi −Xiβ)′v−1

i (yi −Xiβ)− λ
p∑
j=1

wj |βj |. (7.67)

Wu et al. (2016) propose an orthogonalization-based approach, which
selects separately the fixed effects, at first, and then the random effects.
All the selection steps are based on the least squares and no specific dis-
tribution assumption has to be involved. This method is suggested when
the dimension of fixed effects is not large. The mixed model used consid-
ers Σ = σ2I and the selection procedure applies, at first, a QR decompo-
sition of the design matrices, related to the random effects, for obtaining
a homogeneous linear regression model (which does not depend on the
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random effects). To select the fixed effects, it suffices to minimize, with
respect to β, the sum of residuals with SCAD penalization, thanks to pos-
sibility to find an unbiased estimate (Fan and Lì, 2001):

S1(β) =
1

2
(Y −Xβ)′Pz′(Y −Xβ)′ + (n−ms)

p∑
j=1

pλ1(|βj |), (7.68)

where Pz′ = I − Z(Z ′Z)−1Z is an idempotent matrix and pλ1(|βj |) is
a function whose first derivative depends on the tuning parameter λ. A
ridge estimation process is computed for obtaining β̂, approximately:

β̂k+1 = (X ′Pz′X + (n−ms)
∑

(λ1, β̂
k))−1X ′Pz′Y , (7.69)

while to estimate σ2 they consider:

W ∗2 (Ψ, σ2) =
1

2

m∑
i=1

((yi − xiβ̂)⊗ (yi − xiβ̂)− vec(Vi))′× (7.70)

×((yi − xiβ̂)⊗ (yi − xiβ̂)− vec(Vi)), (7.71)

where Vi stands for the variance-covariance matrix of Yi, ⊗ for the Kro-
necker tensor product and β̂ for the estimates of the fixed effects obtained
previously. Then, the objective function S2(θ) with the SCAD penalty be-
comes:

S2(τ ) =
1

2

m∑
i=1

(Ỹ −uiτ )′(V̂i⊗ V̂i)−1(Ỹ −uiτ )+
m∑
i=1

n2
i

(q2+q)/2+1∑
j=1

pλ2(|τj |),

(7.72)
and even in this situation it is solved iteratively obtaining the ridge esti-
mation for τ :

τ̂ k+1 = (U ′Ŵ−kU +
m∑
i=1

n2
i

∑
λ2

(τ̂ k))−1U ′Ŵ−kỸ , (7.73)

knowing that W is a diagonal matrix whose elements are given by
Wi = Vi ⊗ Vi, Ỹ is the bias corrected Y and ui is a function of zi ⊗ zi .

Ahn et al. (2012) provide a class of robust thresholding and shrinkage
procedures for selecting both the effects in linear mixed models. The ro-
bustness is guaranteed as they deal with non-normal correlated data and
they do not assume any distribution of random effects and errors. For



106 Chapter 7. Model Selection in Linear Mixed-Effect Models: a review

the estimation of the variance components, a moment-based loss func-
tion is built. For ensuring the desired sparse structure they employ a
hard thresholding estimator Ψ̂H = [σ̂Hij ], defined as σ̂Hij = σ̃ijI(|σ̃ij | > ν),
where I(·) is a typical indicator function and ν ≥ 0 is the parameter which
controls the thresholding criterion. Although Ψ̂H is consistent, it could
not be a positive semi-definite matrix in the presence of small sample
sizes. Hence, in this sense, a sandwich estimator with a shrinkage penalty
is yielded, by minimizing the following function:

QR(D) =

m∑
i=1

ni−1∑
j=1

ni∑
k=j+1

(ỹijk − z′ijDΨ̃Dzjk)
2 + λ

q∑
i=1

di,

subject to all di ≥ 0,∀i = 1, ..., q.

To select the fixed effects, usingV = ZΨ̃Z ′+σ̂2
ε In, a Feasible Generalized

Least Square (FGLS) estimator for β is computed as the minimiser of the
following objective function:

QF (β) = LF (β|Ψ̂, σ̂2
ε ) + τ

p∑
j=1

wj |βj |,

where data are transformed and wj ’s are data-dependent weights.

Pan (2016) and Pan and Shang (2018a) propose a shrinkage method
for selecting separately the two kinds of effects. The employment of
the profile log-likelihood leads to a more efficient and stable computa-
tional procedure. Recalling the linear mixed model, let us assume that
Ψ = σ2Ψ∗, Σ = σ2Ini and ψ contains the q(q+1)

2 unique elements in Ψ∗.
The profile and the restricted profile log-likelihood functions are, respec-
tively:

p(β,ψ) = −1

2

m∑
i=1

log |Vi| −
n

2
log

(
m∑
i=1

(yi −Xiβ)TV −1
i (yi −Xiβ)

)
,

(7.74)

pR(ψ, σ) = −1

2
log

∣∣∣∣∣
m∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣− 1

2

m∑
i=1

log |Vi|

− 1

2
(n− p) log

[
m∑
i=1

(yi −Xiβ̃)TV −1
i (yi −Xiβ̃)

]
,

(7.75)
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The random covariance structure is selected by maximizing the penalised
restricted profile log-likelihood with the adaptive LASSO, but a factor-
ization of the vector containing the variance-covariance elements of Ψ∗
in (d, γ) has to be carried out before hand, with d representing the vec-
tor of the diagonal elements and γ the vector of parameters that can vary
freely:

QR(ψ) = pR(ψ)− λ1m

q∑
j=1

w1jdj |, (7.76)

where λ1m is the tuning parameter and w1 = 1/|d̃| are weights used for
reaching the optimality of the solution, with d̃ computed as a root-n con-
sistent estimator vector of d. The Newton-Raphson algorithm is first ap-
plied for maximizing the penalized restricted profile likelihood function
leading to V̂ and, then, the same is applied for maximizing the penalized
profile likelihood function:

QF (β) = pF (β)− λ2m

p∑
j=1

w2j |βj |, (7.77)

where pF (β) is the profile log-likelihood, λ2m is the tuning parameter for
fixed effect selection and w2j are weights computed as the inverse of |β̃j |,
considering that β̃ is the MLE of β. When the algorithm converges, the
maximizer of the penalized profile log-likelihood is obtained. Hence, the
set of suitable covariates is identified.

Fan and Li (2001) stated that “the penalty functions have to be singu-
lar at the origin to produce sparse solutions (many estimated coefficients
are zero), to satisfy certain conditions to produce continuous models (for
stability of model selection), and to be bounded by a constant to produce
nearly unbiased estimates for large coefficients”. The estimator obtained
through the penalty functions should lead to three important properties:
asymptotic unbiasedness for avoiding modeling bias; sparsity, i.e. as
a thresholding rule, the estimator should shrink some estimated coeffi-
cients to zero in order to reduce model complexity; continuity in data
to avoid instability in model prediction. They showed, in few, that the
choice of the shrinkage parameter should guarantee the well known or-
acle properties in the resulting estimator: the penalized likelihood esti-
mator is root-n consistent if λn → 0, a set of estimated parameters is set
to 0 and the remaining estimators converge asymptotically to a normal
distribution when

√
nλn →∞.

Hossain et al. (2018) show that under certain regularity conditions
and for fixed alternatives BHa = δ 6= 0, as n increases, the estimators
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β̂PT (see in Equation 7.35), β̂PSE (see in Equation 7.36) and the positive-
part shrinkage estimator converge in probability to β̂ and they derive
the asymptotic joint normality for the unrestricted and restricted esti-
mators, of which the three estimators are a function. Fan et al. (2014)
demonstrate that their proposed robust estimator enjoy all the proper-
ties defined by Liski and Liski (2008). Chen et al. (2015) demonstrate
only the validity of the Oracle property of only sparsity and consistency,
but not the asymptotical distribution. Li et al. (2018) show the “spar-
sistency” property which ensures the selection consistency for the true
signals of both fixed and random effects, hence, they provide analytical
proofs about the validity of consistency and sparsity, but nothing about
the distributional form. Pan and Shang (2018b) demonstrate that their
procedure fills the consistency and the sparsity properties, without men-
tioning anything about the asymptotical normality. Marino et al. (2017)
only refer to take a look at Rubin (2004) in which is possible to assess that
“a small number of imputations can lead to high-quality inference”. As
concerns Rohart et al. (2014) thus no mention about asymptotic properties
fulfilled by their final estimator. Pan (2016), Pan and Shang (2018a), Ahn
et al. (2012) and Lin et al. (2013) demonstrate that, if λ→ 0 and

√
mλ→∞

as m → ∞, the estimators produced by their two stage model selection
are
√
m consistent and they possess the oracle properties, i.e. sparsity

and asymptotic normality (asymptotically the proposed approaches can
discover the subset of significant predictors). In other words, for an ora-
cle procedure, the covariates with nonzero coefficients will be identified
with probability tending to one, and the estimates of nonzero coefficients
have the same asymptotic distribution as the true model (Pan, 2016). All
these statements are valid if an appropriate tuning parameter is chosen.

Consistent variable selection depends on the choice of the tuning pa-
rameter. The shrinkage procedures yield estimates, assuming the tuning
parameters as known, but they are not. Hence, they have to be tuned
among a pool of values, from the largest to the smallest quantity, iden-
tifying a path through the model space. After constructing the path and
reducing parameter space, one can apply a direct approach (information
criteria, cross validation and so forth) to better identify the important
variables. For this reason, shrinkage methods are, usually, employed
in the case of many variables, thanks to the fact that they do not need
to focus on all possible models (2p+q). The most widely used methods
in the literature for tuning the parameter, which controls regularization,
are cross-validation and BIC. “A more rigorous theoretical argument jus-
tifying the use of the BIC criterion for the `1 penalized MLE in high-
dimensional linear mixed effects models is missing: the BIC has been
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empirically found to perform reasonably well”(Schelldorfer et al., 2011).
This seems to be generally valid for other shrinkage methods: there is not
theoretical justification for employing the BIC. Fan et al. (2014) highlight
their choice to select the shrinkage parameter through the BIC criterion is
due to the fact that GCV leads to over-fitting models and AIC seems not
to be consistent when the true model has a sparsity structure. The BIC
criterion on which the authors base their selection of λn is the following:

BIC(λ) = −1

2
log |V̂ | − 1

2
||y −Xβ̂||2

V̂
+ log(m)||θ̂λ||0, (7.78)

where V̂ = diag(V̂1, V̂2, ..., V̂m) and the generic V̂i, β̂, Ψ̂∗ are the robust
estimates contained in θ̂λ upon convergence of the EM algorithm. Be-
cause of the over-fitting problems using GCV, Marino et al. (2017) choose
the BIC criterion for the selection of the tuning parameter:

BIC(λ) = −2lR(β(•), σ̂2, Ψ̂∗) + q × ln(n), (7.79)

where lR(β(•), σ̂2, Ψ̂∗) is the REML log-likelihood function related to the
model in (7.32).

Li et al. (2018) select the two tuning parameter minimizing a variant
of BIC, proposed by Wang (2016):

BIC = −2pR(β, L) +

[
dβ +

(1 + dΨ∗)dΨ∗

2

]
log(n), (7.80)

where pR(β, L) is the profile log-likelihood in Equation (7.75), dβ and dΨ∗

are given by the amount of non-zero elements in β and on the diagonal
of Ψ∗, respectively. Pan (2016) and Pan and Shang (2018a) propose to
minimize the BIC or the AIC or the Generalized CV (GCV) as possible
criteria for selecting the optimal tuning parameter. The above criteria,
surely, have to be computed with the corresponding profile likelihood,
shown in Equations (7.74) and (7.75), to identify the tuning parameter for
the fixed part and the random part, respectively. The degrees of freedom
necessary to compute all three criteria also refer to the fixed effects in
one case (the number of non zero β̂’s) and to the random part in the
other case (the amount of nonzero parts in ψ̂). Pan and Shang (2018b)
select the optimal λ by minimizing the BIC criterion, where the degrees
of freedom takes into account the number of non-zero elements in θ∗.
The tuned parameters (λ1, λ2) are computed, by Wu et al. (2016), with a
CV or GCV technique. Taylor et al. (2012) and Ahn et al. (2012) choose
a tuning parameter that minimizes the BIC criterion, Taylor et al. (2012)
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focus on the value of r (from a fixed grid, see Equation (7.60)), which
leads to the minimum BIC, after obtaining convergence for the penalized
REML estimators:

BIC = −2l(β̂, â, τ̂ ) + log(m)#df, (7.81)

where l(·) is the un-penalized (since it involvesa as fixed effects) marginal
loglikelihood over the random effects b evaluated at the REML estimates
of τ and #df represents the number of nonzero elements in â. Ahn et al.
(2012) work on a modified version of the BIC, similar to the RSS ratio, for
both the fixed effects and the random effects:

BICR(ν) =
L0(ΨH

ν )

L0(Ψ)
+

log(n)

n
× df1, (7.82)

BICF (τ ) =
LF (β̂τ |Ψ̂, σ̂2)

LF (β̂G|Ψ̂, σ̂2)
+

log(n)

n
× df2, (7.83)

where β̂G is the FGLS estimator and df1 and df2 represent the number
of nonzero components on the diagonal in Ψ̂H and in β̂τ . The degrees
of freedom measure the effective model dimension. Unlike Bondell et al.
(2010) and Ibrahim et al. (2011), where the degrees of freedom considered
are, respectively, sample size n and cluster size m, in the methods dis-
cussed above the number of parameters that can vary freely is connected
to the nonzero parameters in the working model (fixed components and
variance-covariance elements of the random effects). As pointed out by
Müller et al. (2013), the number of nonzero estimated components related
to the tuning parameter is not equivalent to the number of independent
parameters, which is instead true for the linear models.
The main characteristics associated with shrinkage procedures available
in the literature, are summarised in Table 6.1.

7.7 Review of simulations

Almost all the authors have performed at least one simulation to measure
and demonstrate the reliability of their own procedure. As in a Meta-
analysis, we have collected the simulations but, since the results are not
directly comparable, the tables synthesise the main parameters charac-
terizing the simulations. We followed the setting of Müller et al. (2013),
for continuity to purposes. Considering Table 7.2, the smaller the val-
ues of min|β|/σ and min{ev(Ψ/σ2)} the more difficult the selection of
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the true model for β and τ . Nevertheless, it is worth noting that these
values are not useful as regards the goodness of fit of the models or the
real ability of the methods, once they are applied, for identifying the true
values of β and τ , since they refer to initial settings of simulations and
not to their results. As Müller et al. (2013) underlined, one could consider
these simulations as a mere meta-analysis. The results obtained are not
directly comparable, because the authors use different measures to assess
the performance of their method.
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It is worth noting that, all simulations are applied with a moderate
number of random effects (for both the full and the true model) and of
variance-covariance parameters, except for that of Li et al. (2018) and Ahn
et al. (2012). A large amount of fixed effects occur in the full model of
Chen et al. (2015), Ghosh and Thoresen (2018) and Rohart et al. (2014).

To determine the set of candidate models for β, |Mβ|, the authors do
not follow the same criterion. Some authors focus only on covariates
and in this sense |Mβ| is equal to 2p−1 (so the intercept is not included
for size of β). Others instead refer to p as the whole fixed regression
parameters, including the intercept, and thus the candidate models are
2p. Furthermore some authors, such as Kawakubo et al. (2014), state that
they exclude from |Mβ| the null model (i.e. the model containing only
the intercept).

Kawakubo and Kubokawa (2014) found that both the McAIC and a
model averaging procedure (which has more appropriate weights) de-
pending on McAIC, work better than cAIC in terms of prediction errors.
They prove empirically the same results in the case of small area pre-
diction, which is the topic on which Kawakubo et al. (2014) and Lom-
bardía et al. (2017) focus on. They show, therefore, a prediction error im-
provement of CScAIC with respect to cAIC. Compared to mAIC, cAIC
and BIC, the EBIC of Kubokawa and Srivastava (2010) is the criterion
which, by simulation, leads to a better selection of the true model as the
number of covariates and the number of clusters increase. These results
constitute empirical evidence of the consistency property of the EBIC.
Lombardía et al. (2017), instead, compared the extended generalized AIC
they defined (7.20) with the conditional AIC defined by Vaida and Blan-
chard (2005). They discovered that the xGAIC for the Fay-Herriot model
presents better performances in terms of correct classification rates of the
true model. As the number of covariates increases, the xGAIC performs
better and better (in a scenario with three variables it perfectly brings
to the correct model), instead the vAIC selects 44% of the times a model
with a fewer number of fixed effects. Wenren and Shang (2016) show that
the proposed conditional criteria perform more efficiently than the classic
Mallow’s Cp when more significant fixed effects are added. A large num-
ber of units for each cluster is required, if one works with the random
effects within clusters (for instance small area estimation) or if one could
obtain a less biased estimation of the penalty term. Wenren et al. (2016)
show by simulation that their two marginal Cp-types perform better, in
selecting the correct model, than mAIC and mBIC in particular situations:
when observations are few and highly correlated or when the true model
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is included in all candidate models and includes more significant fixed ef-
fect variables.Kuran and Özkale (2019) compare the performance of their
conditional ridge Cp with the CCP of Wenren and Shang (2016), in both
cases of known and unknown variance-covariance matrices of the ran-
dom effects and of the random errors. Furthermore, they use different
values for the ridge parameters and compare various models (with dif-
ferent number of the explicative variables). They show that the percent-
ages of choosing the true model by all the Cp statistics are quite optimal
and comparable and they increase as the number of fixed effects increases
as well. When the ridge parameter increases, the number of individuals
and the number of units are quite small and the correlation between ex-
planatory variables is not high, the CRCp outperformes the CCp.

Focusing on the shrinkage selection procedures, Hossain et al. (2018)
compare the performances, in terms of mean squared prediction errors,
reached by their PT and PSE estimators against the unrestricted MLE,
the restricted MLE, the LASSO and ALASSO methods. They show that
their methodology, as the sample size increases and the number of active
covariates decreases, brings to better performance than the other estima-
tors except the restricted MLE. Ghosh and Thoresen (2018) try to demon-
strate the great performances of the SCAD penalty over `1 penalization.
Hence, by simulations, they point out that both in a low dimensional set-
ting and in a high dimensional setting the two penalties correctly select
the true fixed effects. With respect to `1, SCAD focuses on a smaller acti-
vate set of β, especially, in the high-dimensional case. Marino et al. (2017)
compare their penalized likelihood procedure for multilevel models with
missing models with the LASSO method applied on data without miss-
ing values and, hence, used as benchmark reference. Therefore they also
compare the performance of their method with the regularized LASSO
on complete-case data. When missing data are present in the dataset the
proposed methodology performs better, especially when the number of
imputations increases. Taking into account only one imputation doesn’t
produce huge benefits. On the other hand, the methodology is quite
good in identifying the correct model when the number of imputation
and the number of units increases. Rohart et al. (2014) reached the same
results as Schelldorfer et al. (2011) in the case of known variances, but
with an algorithm much faster. It is worth noting that their method can
be computationally combined with other procedures. The orthogonal-
based SCAD procedure of Wu et al. (2016) is very efficient in selecting the
fixed effects as the number of total units increases, but has to be improved
for the selection of the random effects. Pan (2016) compared the ability
of his two-stage procedure to correctly identify the two kinds of effects
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with that of Ahn et al. (2012) and Bondell et al. (2010). He found that the
percentage of the effects (taken both separately and together) correctly
identified was higher than the others and was rose as the number of clus-
ters increased. Only in the case of a non normal distribution assumed for
ε did the method proposed by Ahn et al. (2012) perform better, since it
does not need any distributional assumptions. Pan (2016) also compares
the computational efficiency of his model selection with that of Bondell
et al. (2010), and concludes that his algorithm takes less time to converge.
There are two probable reasons: σ2 is not included in the profile log- like-
lihood used by Pan (2016) and a two stage procedure for selecting both
the effects is faster than the procedures involving only one step. Lin et al.
(2013) used the same settings for their simulations as those used by Bon-
dell et al. (2010), that is the reason why their results are missing in Table
7.2: they are available in Table 2 of Müller et al. (2013). The robust se-
lection method presented by Fan et al. (2014) has been shown to lead to
the same results of the equivalent non robust method if the data do not
present outliers. On the other hand, the method has no influence on the
estimates if outliers are present in the data (both in the response variable
and in the covariates), while the non robust methodology brings to over-
fitting with lower fit percentages and higher mean squared errors of the
estimated parameters as a consequence. The robust selection method is
perturbed by outliers if these are only in the response variable or in the
covariates.

In the case of high-dimensional settings where the focus is on selec-
tion the fixed and the random effects, Li et al. (2018) used in their sim-
ulations two ways of controlling the tuning parameters: a non-adaptive
regularization (NAR), which chooses the tuning parameter from a sim-
ple grid of values, and an adaptive regularization (AR), which attributes
weights to different penalty parameters. The AR methodology leads to
smaller estimation bias for the variance components and to a better con-
trol of the false discovery rate. Chen et al. (2015) obtained a good per-
formance selection in terms of low proportion of parameters that didn’t
shrink to zero while one expected the opposite or of parameters shrink-
ing to zero, by mistake. Furthermore, they obtained accurate results in
terms of bias and standard deviations of the estimates. They conducted
some simulations excluding from the selection the fixed effects and they
discovered that in all situations the fixed effect selection never affects the
power performances.

The parameter subset selection method proposed by Schmidt and
Smith (2016) leads to better performances, compared to other techniques,
among which LASSO, ALASSO and M-ALASSO.
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As specified at the beginning of this review, our purpose is to give
a clear outline of most methodologies used in linear mixed models that
are available in the literature. Hence, in this sense, Table 7.3 summarises
all the features that easily identify all procedures: the part of the model
focusing on (fixed and/or random), the dimension of the linear mixed
model used and the structure of variance and covariance matrices. Di-
mensionality represents the level of the number of parameters (θ = β, τ )
involved in the model. We included not only the methods mentioned
by this article, but also those contained in Müller et al. (2013), in order
to provide a global view of all methodologies. Taking a look jointly to
Table 2 of Müller et al. (2013), Table 7.2 and Table 7.3, it becomes obvi-
ous that most model selection procedures, focusing on selecting both the
fixed and the random part in cases of medium and/or high dimension-
ality, involve a shrinkage procedure. The shrinkage methods are compu-
tationally more efficient and statistically accurate (Bühlmann and van de
Geer, 2011; Müller et al., 2013).

7.8 Review of real examples

LMM are widely used in medical statistics and biostatistics. To enrich
this review, we give a brief look at the real examples described in some
of the listed papers.

Ahn et al. (2012), Pan (2016) and Hossain et al. (2018) describe the
Amsterdam Growth and Health Study, widely used in literature. The
Amsterdam Growth and Health Study Data were collected to explore
the relationship between lifestyle and health in adolescence and young
adulthood. In growing towards independence, the lifestyle habits of
teenagers change substantially with respect to physical activity, food in-
take, tobacco smoking, etc. Accordingly, their health perspective may
also change. Individual changes in growth and development can be stud-
ied by observing and measuring the same participant over a long period
of time. The Amsterdam growth and health longitudinal study was de-
signed to monitor the growth and health of teenagers and to develop fu-
ture effective interventions for adolescence. A total of 147 subjects in the
Netherlands participated in the study, and they were measured over 6
time points, thus the total number of observations is 882. The continuous
response variable of interest was the total serum cholesterol expressed
in mmol/l. Pan (2016) in his paper analyses a second dataset, which
is the Colon Cancer Data. The goal of the analysis was to estimate the
cost attributable to colon cancer after initial diagnosis by cancer stage,
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comorbidity, treatment regimen, and other patient characteristics. The
data reported aggregate Medicare spending on a cohort of 10,109 colon
cancer patients up to 5 years after initial hospitalization, and these data
are considered as the response for a linear mixed model.

Taylor et al. (2012) applied their method to determine quantitative
trait loci (QTL) in a wheat quality data set. The data set was obtained
from a two-phase experiment conducted in 2006 involving a wheat pop-
ulation consisting of 180 double haploid (DH) lines from the crossing of
two favoured varieties. Data were collected from two phases of exper-
imentation consisting of an initial field trial and milling laboratory ex-
periment. A partially replicated design approach was used at both ex-
perimental phases. The field trial was designed as a randomised block
design. The analysis considers a very large set of candidate variables,
and matrix a in Equation (7.59) is a (390× 1) size matrix.

Jiang et al. (2008) considered a dataset from a survey conducted in
Guatemala regarding the use of modern prenatal care for pregnancies
where some form of care was used. They consider applying the fence
method in selection of the fixed covariates in the variance component
logistic model. Again, they cope with a quite large number of covariates.

Marino et al. (2017) worked on a dataset provided by the Healthy Di-
rections–Small Business study conducted by Sorensen et al. (2005). Some
recent epidemiological studies proved that there is a relationship between
dietary patterns and physical inactivity with multiple cancers and chronic
diseases. One of the main purposes of the study was to detect whether or
not the cancer prevention (based on occupational health and health pro-
motion) could lead to reduce significantly the red meat consumption or to
improve significantly the mean consumption of fruits and vegetables, the
levels of physical activity, the smoking cessation and the reduction of oc-
cupational carcinogens. The HD-SB study was a randomized, controlled
trial study conducted between 1999 and 2003 as part of the Harvard Cen-
ter Prevention Program Project. The study population of the study were
twenty-six small manufacturing worksites that employed multi-ethnic,
low-wage workers. Participating worksites were randomized to either
the 18-month intervention group or minimal intervention control group.
The respondents to the study were 974 but only 793 of them answered
with complete information, hence there was 18.5% of missing data. The
number of variables involved in the survey was huge and they were
grouped according different areas: health behaviors, red meat consump-
tion, physical activity and consumption of multivitamin and sociodemo-
graphic characteristics. The authors took into account 15 covariates and
they built a linear-mixed model where the mean consumption of fruit and
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vegetables at follow-up. They proposed their methodology for missing
data with 1, 3, and 5 imputations, comparing the results to the analysis
made on the complete-cases data.

Fan et al. (2014) applied their robust method on a longitudinal proges-
terone dataset, available on Diggle P.J.’s homepage: https://www.lancs.
The dataset contains 492 urine samples from 34 women in a menstrual,
where each woman contributed from 11-28 times. The menstrual cycle
length was standardized for all women to a reference 28-day cycle. A lin-
ear mixed-model was analysed by the authors with the log-transformed
progesterone level as response variable, a random intercept and 7 fixed
effects: age, bmi, time, the squared values of time and the three first-level
interactions among age, bmi and time.

Li et al. (2018) in their paper analyze two datasets. The first is re-
lated to a longitudinal randomized controlled trial, involving 423 adoles-
cent children from an Hispanic population in New York City had their
parents affected by HIV+. The main purpose was to investigate about
a negative state of mind (measured by a Basic Symptoms Inventory, a
score well described by Weiss (2005)), over six years (each person has
been visited about 11.5 times). Six variables were involved in the original
dataset, i.e.: treatment (or control group), age, gender, Hispanic (1=Yes,
0=No), visit time (expressed in logarithm of year) and visit season. The
authors, worked on a linear mixed model containing the six covariates
plus the two-way interactions between treatment and time, gender and
Hispanic, counting so 10 predictors, which were included in all the two
types of effects. Their regularization procedure was applied both with
the non-adaptive version and with the adaptive version (through the in-
verse of the estimated from the ridge-penalization procedure). Their sec-
ond dataset is related to a clinical study that investigated on a possible
relationship of some protein signatures with post-transplant renal func-
tions for people with a kidney transplant. The study involved 95 renal
transplant patients. The main purpose of the study was to analyze which
proteins had a significant influence on the longitudinal trajectory of renal
function measured by glomerular filtration rate (GFR) of the patients.

Lombardía et al. (2017) analyzed a dataset about surveys conducted
from the behavioural risk factors information system in Galicia (2010-
2011). The sample design applied in the survey was a stratified random
sampling, allocating with equal proportions by sex and age group. Forty-
one areas from the 53 counties in Galicia were involved in the survey.
The authors tried to estimate the prevalence of smokers (at least 16 years
old) distinguished by sex. The minimum sample size in the domain was
44 for men and 48 for women. The response variable, employed in the
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Fay-Herriot model used, was the logarithmic transformation of smok-
ers’numbers. The covariates were globally 14, classified in four groups:
age, degree of urbanization, activity and educational level.

Han (2013) analyzed a public health dataset about obesity released
by the U.S. Centers for Disease Control and Prevention, which realized
a large health study (6971 people) in the United States (51 counties of
California) in the years between 2006 and 2010. The information obtained
by the surveys. The purpose of the author was to estimate county level
obesity rates for the female Hispanic population within working ages of
18-64.

Bondell et al. (2010) consider a recent study of the association between
total nitrate concentration in the atmosphere (TNO3,ug/m3) and a set of
measured predictors. Nitrate is one of the major components of fine par-
ticulate matter (PM2.5) across the United States. However, it is one of
the most difficult components to simulate accurately using numerical air
quality models. Identifying the empirical relationships that exist between
nitrate concentrations and a set of observed variables that can act as sur-
rogates for the different nitrate formation and loss pathways can help
the research and can allow for more accurate simulation of air quality.
To formulate these relationships, data obtained from the U.S. EPA Clean
Air Status and Trends Network (CASTNet) sites are used. The CASTNet
dataset consists of multiple sites with repeated measurements of pollu-
tion and meteorological variables on each site, i.e.: the mean ambient
particulate ammonium concentration (NH4,ug/m3), the mean ambient
particulate sulfate concentration (SO4,ug/m3), relative humidity (RH,%),
ozone (O3,ppb), precipitation (P,mm/h), solar radiation (SR,W/m2), tem-
perature (T, °C), temperature difference between 9 m and 2 m probes
(TD,°C) and scalar wind speed (WS, m/s). The same data were used by
Li et al. (2014) to apply their proposed MDL procedure. A subset of the
CASTnet dataset was, instead, implied by Chen et al. (2015), who focused
only on five sites across the eastern United States, (2001-2009) and took as
original variables TNO3, NH4 and SO4, instead the others variables were
transformed from ours to seasonal, substituting the maximum value for
O3 and the mean value for the others. The total number of observations
were 175 and in the two-way random effect model the variable time and
sites were included as main random effect.

Ghosh and Thoresen (2018) investigated the effects of intake of oxi-
dized and non-oxidized fish oil on inflammatory markers in a random-
ized study of 52 subjects (dataset already studied in literature). Inflam-
matory markers were measured at baseline and after three and seven
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weeks. They use the data to investigate whether there are any associ-
ations between gene expressions measured at baseline and level of the
inflammatory marker ICAM-1 throughout the study. From a vast set of
genes, they initially selected p = 506 genes having absolute correlation
greater than or equal to 0.2 with the response at any time point, so that
the total number of fixed effects considered becomes p = 512. On the
other hand, removing the missing observations in the response variable
they obtain n = 150 observations, making it a high-dimensional selec-
tion problem. Further, due to the longitudinal structure of the data, they
additionally considered random effect components in the model: they
included random intercept and a random slope.

Finally, Rohart et al. (2014) apply their approach to a real data set from
a project in which hundreds of pigs were studied, the aim being to shed
light on the relationships between some of the phenotypes of interest and
metabolic data. Linear mixed models are appropriate in this case because
observations are in fact repeated data collected in different environments
(groups of animals reared together in the same conditions). Some indi-
viduals were also genetically related, introducing a family effect. The
data set consisted of 506 individuals from 3 breeds, 8 environments and
157 families, metabolic data contained p = 375 variables, and the pheno-
type investigated was the Daily Feed Intake (DFI).

Li and Zhu (2013) applied their new covariance-based test on a fa-
mous pig weight dataset, containing the weights of 48 pigs, measured in
9 successive weeks.
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7.9 Discussion and conclusion

In this paper we have discussed most of the model selection procedures
for linear mixed models available to date. The purpose of our review is
to allow users to easily identify the type of method they need, according
to certain characteristics, such as the number of clusters and/or the num-
ber of units per cluster, the part of the model to be selected (fixed and/or
random), the dimension of the model and the structure of the variance-
covariance matrices. For all the methods, a description of the simula-
tions, if available, is reported in Table 7.2: the purpose is to give an idea
of the model settings and not to provide evidence of the best methods.
We used more or less the same notation as Müller et al. (2013) for align-
ment with the previous review and, hence, facilitating the comparisons
of the various methods over time. But this review is not only an update of
Müller’s review (Müller et al., 2013), but an attempt to cluster the proce-
dures from a different point of view: the part of the model to be selected,
fixed and/or random. As a matter of fact, this is one of the main issues
when looking for an appropriate method to choose. Moreover, particular
attention is given to the SW used, together with the implementation and
the availability of the code.

This review mentions the available theoretical properties correspond-
ing to the different methodologies, with comparisons among them whereas
it’s possible. A relevant importance is given here to the shrinkage meth-
ods (focused on the selection of fixed and/or random effects), since these
procedures need for the oracle properties established by Fan and Li (2001).

By simulation the authors considered in this review try to achieve the
best result, i.e. to identify the optimal model among a pool of candidate
models and not the true model. Many issues are related to the choice
of the optimal model, one of which is determined by the dimension of
the pool of candidate models (2p+s). The larger this set M, the lower
computational efficiency is. This has been proven by Fence methods and
a number of Bayesian methods reported in (Müller et al., 2013) as well
as the two stage procedures of Section 7.6.2, which select the two effects
separately, thus reducing the overall dimension of models.

Over time, greater attention has been given to the generalization of
Σ in Equation (7.2): the scaled version σ2Σ∗ replaced σ2Ini , but except
for Shang and Cavanaugh (2008) the scaled version σ2Ψ∗ is assumed for
Ψ. There is still poor theoretical support for a generalized scenario of the
variance-covariance matrices for both the effects.

Most of the methods were implemented in R, using different pack-
ages or through their own codes (not published in any package). Some
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Reference Focus Dimensionality Ψ Σ Software
BKG10 (Bondell et al., 2010) Fixed+Random Low/Medium σ2Ψ∗ σ2Ini R
CD03 (Chen and Dunson, 2003) Random Low Ψ σ2Ini
DMT11 (Dimova et al., 2011) Fixed+Random Low σ2Ψ∗ σ2Ini
GK10 (Greven and Kneib, 2010) Random Low σ2Ψ∗ σ2Ini “cAIC4”R package
IZGG11 (Ibrahim et al., 2011) Fixed+Random Low/Medium Ψ σ2Ini R
JNR09 (Jiang et al., 2009) Fixed Low σ2 σ2 “fence”R package
JR03 (Jiang and Rao, 2003) Fixed+Random Low Ψ Σ
JRGN08 (Jiang et al., 2008) Fixed Medium Ψ Σ “fence”R package
K11 (Kubokawa, 2011) Fixed + Random Low Ψ Σ
NJ12 (Nguyen and Jiang, 2012) Fixed High σ2

b I σ2
ε I “fence”R package

PL12 (Peng and Lu, 2012) Fixed+Random Low/Medium Ψ σ2Ini Matlab
PN06 (Pu and Niu, 2006) Fixed+Random Low Ψ Σ
SC08 (Shang and Cavanaugh, 2008) Fixed+Random Low Ψ σ2Σ∗
SK10 (Srivastava and Kubokawa, 2010) Fixed Low σ2Ψ∗ σ2Ini

Inserted in (Müller et al., 2013))

Reference Focus Dimensionality Ψ Σ

AZL12 (Ahn et al., 2012) Fixed+Random Low/Medium Ψ σ2Ini
CLSZ15 (Chen et al., 2015) Fixed+Random High σ2

i Ini σ2Ini
FQZ14 (Fan et al., 2014) Fixed+Random Low σ2Ini σ2Ini
GT16 (Ghosh and Thoresen, 2018) Fixed Low/High Ψ σ2Ini R
H13 (Han, 2013) Fixed Low/Medium σ2

b Ini σ2
i Ini R

HTA18 (Hossain et al., 2018) Fixed Low/Medium Ψ Σ
KK14 (Kawakubo and Kubokawa, 2014) Fixed Low σ2Ψ∗ σ2Σ∗
KO18 (Kuran and Özkale, 2019) Fixed Low/Medium σ2Ψ∗ σ2Ini R
KS10 (Kubokawa and Srivastava, 2010) Fixed Low σ2Ψ∗ σ2Σ∗
KSK14 (Kawakubo et al., 2014) Fixed Low σ2Ψ∗ σ2Σ∗
LLVR17 (Lombardía et al., 2017) Fixed Low/Medium Ψ Σ R
LPJ13 (Lin et al., 2013) Fixed+Random Medium Ψ σ2Ini R
LS15 (Lahiri and Suntornchost, 2015) Fixed Low/Medium σ2

bi
σ2Ini

LWSWZZ18 (Li et al., 2018) Fixed+Random High σ2Ψ∗ σ2Ini
LYCZ14 (Li et al., 2014) Fixed Low Ψ σ2Ini
LZ13 (Li and Zhu, 2013) Random Low/(Medium) Ψ σ2Ini
MBL17 (Marino et al., 2017) Fixed Low(Medium) σ2Ψ∗ σ2

i Ini
P16 (Pan, 2016) Fixed+Random Low/Medium/High σ2Ψ∗ σ2Ini R
PS18 (Pan and Shang, 2018b) Fixed+Random Low/Medium σ2Ψ∗ σ2Ini R
RSCL14 (Rohart et al., 2014) Fixed(+Random) High Ψ σ2Ini “MMS”R package
SS16 (Schmidt and Smith, 2016) Fixed+Random Low/(Medium) Ψ σ2Ini Matlab
TVCN12 (Taylor et al., 2012) Fixed+Random Medium/High σ2Ψ∗ σ2Σ∗ ASReml-R
WLXZ16 (Wu et al., 2016) Fixed+Random Low/Medium Ψ σ2Ini R and Matlab
WS16 (Wenren and Shang, 2016) Fixed Low σ2Ψ∗ σ2Ini R
WSP16 (Wenren et al., 2016) Fixed Low σ2Ψ∗ σ2Ini R

Not inserted in (Müller et al., 2013)

TABLE 7.3: Settings of LMM selection procedures for all the proce-
dures analyzed in the review. “Reference” refers to the initials of the
authors followed by the second digit of the year of publication (we
use the same approach as (Müller et al., 2013)); “Focus” indicates the
part of the model that is subject to selection (Fixed, Random or both);
“Dimensionality” is inherent to the number of parameters involved
in the initial model; Ψ and Σ describe the structure assumed for the
variance-covariance matrices related to the random effects and the ran-
dom component, respectively; “Software” specifies the software (when
specified) used for implementation of the procedure
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authors, however, do not even specify the software used (see Table 7.3).
As in a Meta-analysis, we gathered the simulations presented in the pa-
pers described but, since the results are not directly comparable, the ta-
bles synthesise the main parameters characterizing the simulations.

Hence, the main purpose of this review was to provide an overview of
some useful components/factors characterizing each selection criterion,
so that users can identify which method to apply in a specific situation
also. In addition, an effort was made to tidy up the notation used in the
literature, by “translating”, if necessary, symbols and formulas in each
paper into a common “language”.
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Chapter 8

Conclusions

In this Thesis, at first, we proposed a new position weighted rank corre-
lation coefficient for linear orders. We demonstrated that the proposed
coefficient is in one to one correspondence with the weighted Kemeny
distance proposed by García-Lapresta and Pérez-Román (2010), when
equal importance is assigned to items’positions, the weighted rank corre-
lation coefficient is equivalent to the rank correlation coefficient defined
by Emond and Mason (2002).

Then, we provided a weighted rank correlation coefficient τwx for weak
orderings, as an extension of τwx for linear orderings. We demonstrated
the correspondence between τwx and the weighted Kemeny distance and,
finally, we showed that, in the case of tied rankings andwi = 1

m−1 for all i,
the weighted rank correlation coefficient τwx is equal to the Emond and
Mason rank correlation coefficient τx. By means of simulations, we demon-
strated that a modified BB algorithm allows us to find the true consensus
and to verify the effect of the weighting vector. The analysis of two real
datasets shows, as demonstrated analytically, that withwi = 1

m−1 for all i
we obtain the same solution without weightings, while the solutions al-
ways differ as soon as we simplify the weighting structure.

Some crucial considerations could represent the basis for future de-
velopments: firstly to take into account the multiple solutions of the con-
sensus process, since only one random solution has been considered in
this thesis (in order to facilitate the implementation process); then, to
focus on the optimization of the implemented procedures in order to
achieve faster algorithms; in the end, the development of the same anal-
ysis for items’importance for a complete consensus process.

Moreover, we focused on distance-based decision trees for ranking
data, when the position occupied by items is relevant. We proposed the
weighted Kemeny distance as impurity function and the relative proper
weighted correlation coefficient in order to achieve the consensus mea-
sure in the terminal nodes. Our methodology found to be capable of
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identifying correctly homogeneous groups of rankings when more than
one position is taken into account. The implementation of a faster al-
gorithm for the rpart package (Therneau et al., 2010) could lead to work
faster in the presence of a large number of items. Further developments
could be, hence, a replication of the same analyses with an increasing
number of items.

We proposed a combination of multiple decision trees in order to con-
struct more powerful prediction models: Boosting and Bagging (with re-
placement and with OOB, without replacement), for ranking data. Once
the trees are built up, τx was employed for assigning the median ranking
as the final prediction, tree by tree, and for measuring the relative error.
We applied the above methodologies to simulated data and to a real case
showing that boosting outperforms bagging (both with and without re-
placement). By means of simulations the sensitivity of the procedures
to the number of trees, the heterogeneity of the data and the depth of
the single tree has been studied. The Boosting for ranking data was also
extended to the case of different positions’weights structures. Once the
trees are built up, τwx was employed for assigning the median ranking
as the final prediction, tree by tree, and for measuring the relative error.
By means of simulations the sensitivity of the procedures to the different
weighted structures was studied, in terms of error and variable impor-
tance. The extension to the definition and analysis of Random Forests for
ranking data with position weights (and in future with item weights) will
be necessary, for the sake of completeness in the framework of Ensemble
Methods for ranking data.

The last topic (selection of effects in Linear Mixed Models) could seem
far away from the consensus ranking problem, but, actually, we could
consider the output of a model selection process as a ranking; therefore,
using different measures (AIC, BIC,. . . ) which provide different rankings
of the models, a consensus ranking process could be applied in order
to identify the “optimum”ranking of the models. In a few words, each
measure could provide a ranking of linear mixed models and a consensus
ranking process could be useful for detecting the best consensus of the
ranked models.
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