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Abstract 

A critical comorbidity of HIV infection is HIV-associated neurocognitive disorders 

(HAND). Although combined antiretroviral therapy (cART) is an effective treatment in 

blocking systemic viral replication, it is unsuccessful in reducing the incidence of HAND. 

HIV CNS damage, in the current cART era, can be associated to the presence of latently 

HIV-infected cells including microglia/macrophages and a small population of astrocytes. 

This Ph.D. thesis focuses on identifying, localizing, and quantifying viral reservoirs using 

an improved staining and microscopy technique. Although in low amount, our data 

confirmed that microglia/macrophages and a small population of astrocytes are still 

infected. These cells synthetize and secrete viral proteins generating a bystander damage 

in the CNS. Viral proteins are also involved in lipid dysregulation. We demonstrated by 

Mass Spectrometry Imaging (MSI) that in the brain of HIV-infected individuals with 

HAND lipids including sulfatide play a key role in bystander damage. Sulfatide is 

dysregulated in several neurocognitive diseases such as Alzheimer’s disease and 

Parkinson’s disease. Thus, we propose that sulfatide as a potential biomarker of 

neurocognitive disorders.  

We demonstrated that sulfatide secretion can be regulated by HIV proteins and we 

evaluated sulfatide effects in vitro, focusing on cell-to-cell communication and 

mitochondrial metabolism, all parameters altered in NeuroHIV. 

Therefore, this thesis provides specific tools and unique data to a better understanding the 

neuropathogenesis of HAND in the current cART-era and may lead to the identification of 

new molecular targets for preventing or curing HIV neurological decline.  
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Part I – Human Immunodeficiency Virus 

Epidemiology 

Human Immunodeficiency Virus (HIV) is a major public health concern with 37.9 million 

infected individuals worldwide in 2018. 1.7 million people were newly infected, and 

770,000 people died from AIDS-related illnesses (http://www.unaids.org/en/, 2019). In 

developed countries, 90% of individuals have access to combined antiretroviral therapy 

(cART) resulting in extended lifespan. Although clinically successful, cART is not a cure. 

Most ARTs are potent small molecules targeting entry, reverse transcriptase, protease 

maturation and integration steps of the HIV life cycle (Reeves and Piefer 2005), but not 

viral genome transcription and translation. Even though cART suppresses systemic virus 

replication, decreases the risk of transmission, and restores the immune competence, it 

cannot deplete circulating or tissue associated HIV reservoirs which remains one of the 

main obstacles for curing HIV infection (Vanhamel et al. 2019).  

 

HIV classification  

HIV was identified in 1983 (Barre-Sinoussi et al. 1983) and it was considered the causative 

agent of acquired immunodeficiency syndrome (AIDS), which was first diagnosed in 1981 

in the USA (Gottlieb et al. 1981). It is accepted that the origin of HIV occurred by a cross-

species adaptation, which started from simian immunodeficiency virus (SIV) infected 

monkeys and progressed to great apes and ultimately humans (Sharp and Hahn 2011). Two 

types of HIV have been identified, HIV-1 and HIV-2, with comparable structure, tropism 

and transmission pathophysiology. HIV-1 is more virulent, responsible of 95% infection 

worldwide. HIV-1 strains are subdivided into four groups: M, N, O, and P. The M group, 

or “Major” group, is the responsible for the global HIV epidemy. Within the group M, there 

are 9 genetically distinct and phylogenetically equidistant clades (A, B, C, D, F, G, H, J, 

and K) (Hemelaar 2012). From them, the clade C is globally dominant and responsible for 

approximately 50% of infections especially in South Africa and India (McCutchan 2006). 

On another hand, HIV-1 N group consists in a recombinant virus between two ancestral 

strains, one ancestor related to HIV-1 group M and one related to SIV chimpanzee strains 

found in Cameroon (Simon et al. 1998). This group is not so common in the global 
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population, and all the cases identified are from Cameroon (Mourez et al. 2013). The O 

group is present in the 1-2% of the population, especially in Cameroon and some European 

countries (Belgium, France and Spain) (Bush and Tebit 2015).  The last group is the P 

group that accounts for just 0.06% of infection in the global population (Vallari et al. 2011). 

In contrast to HIV-1, HIV-2 is mostly asymptomatic, and predominately found in West 

Africa. HIV-2 can be classified into nine groups (A to I), which derive from 9 different 

cross-species transmission involving SIV (Marlink 1996). The groups A and B are the most 

common in the population, and the other seven groups account for just one patient each 

(Visseaux et al. 2016). 

 

Time course of HIV infection 

HIV transmission is principally due to sharing of biological fluids including mucosal and 

blood (Shaw and Hunter 2012). The progression of HIV infection can be divided into 4 

phases: primary infection, acute infection, chronic or latent infection, and AIDS (Figure 

1.1) (Coffin and Swanstrom 2013). As indicated in Figure 1.1, prior to infection, the normal 

CD4+ T cell count is between 500 and 1500 cells/µl of blood. In the early stages of 

infection, plasma viremia increases and CD4+ T cell count in the blood decreases. The 

subsequent acute phase (weeks 2-9) is therefore characterized by high levels of viral RNA 

in the blood (>107 copies of viral RNA/ml) and spreading of infection to susceptible tissues 

and organs. In this phase, the adaptive immune response induces the production of 

antibodies against HIV proteins (Cohen et al. 2011, Tomaras and Haynes 2009) and the 

CD8+ cytotoxic T lymphocytes attach to productively infected CD4+ T lymphocytes 

contributing to the CD4 count decrease (Jones and Walker 2016). Typically, people show 

flu-like symptoms, such as fever, headache, and rash. The following phase corresponds to 

the clinical latency that can last 2-12 years (Lemp et al. 1990, Moss and Bacchetti 1989), 

but in cART virally suppressed individuals, this period can be extended for years 

(Nakagawa et al. 2013). During this phase, plasma viremia is low or undetectable due to 

cART (~50 copies of HIV RNA/ml plasma) but CD4+ T lymphocytes progressively decline 

due to chronic immune activation exhaustion and inflammation (Coffin and Swanstrom 

2013). The last phase, that does not directly involve infected individuals under effective 

cART, is defined by CD4+ T lymphocytes decline (<350 CD4+ T cells/µl of blood) and 
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high viremia levels (>106 copies of viral RNA/ml plasma) causing the loss of the immune 

control and leading to opportunistic infections and cancers (Cribbs et al. 2019, McNally 

2019, Shi et al. 2019). Therefore, the death of the HIV-infected population is mainly due 

to immunological disorders, opportunistic infections and aging related issues (Coffin and 

Swanstrom 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

Figure 1.1. Clinic time-line of HIV-infection, replication, and CD4 counts in humans, 

adapted from (Fauci and Desrosiers 1997) 

The black line represents the amount of CD4+ cells in the blood, the red line shows the 

amount of HIV RNA copies in the plasma of HIV-infected individuals. Early after primary 

infection, viral replication increases and CD4 count decreases. These parameters also 

characterize the acute phase of infection with high levels of viral RNA in the plasma (>107 

copies of viral RNA/ml) and decreased CD4+ T cells, but with spreading of infection in the 

tissues. On another hand, the long clinical latency phase is characterized by low or 

undetectable plasma viremia and by a progressive reduction of CD4+ T lymphocytes. In 

the last phase, CD4+ T lymphocytes continue to decline, and plasma viremia rapidly 

increases causing opportunistic infections and cancers, leading to death. 
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HIV life cycle 

HIV is a positive-sense single-stranded enveloped RNA virus. HIV is classified as a 

retrovirus and its RNA genome is structured in nine-open reding frames (ORF) (German 

Advisory Committee Blood 2016). Three major ORFs are retrovirus common: gag, pol and 

env; which encode for the polyprotein precursors of structural proteins. Specifically, gag 

encodes for a polyprotein cleaved to form 6 structural proteins: matrix protein p17, capsid 

proteins p24, p7 and p6, and two spacer peptides. The matrix protein p17 ensures capsid 

integrity, while p24, p7, p6 and the spacer peptides are essential for capsid assembly (Freed 

1998). The pol ORF encodes for reverse transcriptase, integrase, and protease, which 

provide critical enzymatic functions. Reverse transcriptase transcribes viral RNA into 

double stranded cDNA, integrase modulates the insertion of viral cDNA into the host cell 

genome, instead, HIV protease is involved in the final maturation of the released virions 

after budding (Tekeste et al. 2015). The env gene encodes for the envelop protein gp160 

which is proteolytical cleaved by furin to form gp120 and gp41, which are involved in the 

initial viral binding entry (Checkley et al. 2011). The other six ORFs of the HIV genome 

encode for regulatory and accessory proteins such as trans-activator of transcription protein 

(tat), regulator of expression of viral protein (rev), negative factor (nef), virion infectivity 

factor (vif), viral protein r (vpr) and viral protein u (vpu) (Karn and Stoltzfus 2012). Tat 

facilitates activation of viral transcription after integration, stabilizing the interaction 

between the RNA polymerase II and the viral integrated DNA, and phosphorylating the 

RNA polymerase II C-terminal domain inducing the elongation process. Rev and vpr 

regulate the transport. Nef, vif and vpu manipulate the host cell signaling and the immunity 

to attenuate immune surveillance (Freed and Mouland 2006, Turner and Summers 1999).  

The HIV infection is initiated by the Env-mediated adhesion viral particles binding to host 

attachment factors present on the surface of targeted cells (heparan sulfate proteoglycans 

for macrophages, α4β7 integrin for T cells, and dendritic cell-specific intercellular 

adhesion molecule-3-grabbing non-integrin for dendritic cells), as well as by HIV envelop 

protein gp120 interacting with the CD4 receptor. Binding to CD4 induces a conformational 

change in gp120 that facilitates binding to co-receptor C-X-C chemokine receptor type 4 

(CXCR4) or C-C chemokine receptor 5 (CCR5) (Kwong et al. 1998). After gp120 binding 

to CD4 and co-receptor, the envelop protein gp41 is exposed into the host lymphocytes 
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membrane and inserts into the outer leaflet to facilitate the fusion process between the host 

cell and virus (Freed et al. 1992, Shugars et al. 1996).  

Once viral fusion with the host cell is completed, the HIV capsid containing two strands of 

viral RNA is deposited into the host cytoplasm to begin the process of reverse transcription 

(Campbell and Hope 2015). Reverse transcription is performed by reverse transcriptase 

that has two enzymatic activities, the DNA polymerase activity to copy either RNA or 

DNA template, and the RNase H that degrades RNA of the RNA–DNA duplex (Hu and 

Hughes 2012). Reverse transcription process induces the formation of double stranded 

DNA (dsDNA) with long terminal repeats (LTRs) sequences at the 5’ and 3’ ends. These 

repeats contain all the useful elements for gene expression (enhancer, promoter, 

transcription terminator, and polyadenylation signal), and they are also used as a substrate 

for HIV protein integrase which allow the HIV DNA insertion into the host cell genome 

(Klaver and Berkhout 1994). Specifically, the viral DNA made by reverse transcription 

within the cytoplasm is part of a large nucleoprotein complex, the pre-integration complex 

(PIC) (Bowerman et al. 1989), which allows crossing of the nuclear membrane through the 

nuclear pore complexes (NPCs). The nuclear import process is a crucial process in the 

establishment of infection and several viral proteins such as integrase, Vpr, Matrix, capsid, 

HIV-1 central DNA flap, and host importin proteins with host tRNAs are involved 

(Jayappa et al. 2012). In the nucleus, integrase catalyzes the reaction generating a hydroxyl 

nucleophile for DNA strand insertion in an LTR region adjacent to a cytosine-adenine (CA) 

dinucleotide sequence of the host genome (Roth et al. 1989). Later, the hydroxyl group 

cleaves the host cell DNA and become integrated following strand transfer and DNA repair 

(Engelman et al. 1991). The integration of HIV DNA into the host cell genome does not 

guarantee viral production. HIV integration is not random and preferentially occurs in host 

DNA areas with actively transcribed genes, gene-rich regions, intronic regions, and largely 

avoids promoter regions (Anderson E. M. and Maldarelli 2018). Therefore, the nuclear 

topography of HIV integration may impact HIV replication (Lusic et al. 2013). For 

instance, HIV pre-integrated complex preferentially targets those areas of open chromatin 

that are proximal to the nuclear pore, excluding the internal regions in the nucleus as well 

as the peripheral regions associated with the nuclear lamina. When HIV genome is 

transcribed by the host RNA polymerase II, the full-length (unspliced), singly spliced, and 
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multiply spliced RNAs are recognized by rev and transported to the cytoplasm by host 

exportin 1 (XPO1)-RanGTP nuclear export pathway (Dayton 2004, Mahboobi et al. 2015), 

where they can be translated in polyprotein precursors, regulatory and accessory proteins. 

Nevertheless, Gag and gag-pol polyproteins become localized to the cell membrane and 

the immature virion begins to bud from the cell surface to infect other cells (Sundquist and 

Krausslich 2012). This classical process of infection mediated by the virions is called "cell-

free spread" (Figure 1.2). Recent studies recognized a more efficient and predominant 

spreading process called "cell-to-cell spread" (Martin et al. 2010), in which intercellular 

structures such as gap junctions (GJs) and tunneling nanotubes (TNTs) transfer ions, small 

molecules, organelles, as well as pathogens, between the connected cells (Ariazi et al. 

2017, Bracq et al. 2018, Eugenin et al. 2009, Okafo et al. 2017). Part of this thesis also 

involved a detailed description of these communication systems in the contest of HIV 

spread (see Part II of General introduction).  
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Figure 1.2. HIV life cycle adapted from (Pau and George 2014) 

(1) Attachment. The HIV infection starts with the Env-mediated adhesion viral particles 

binding to host attachment factors present on the surface of targeted cells, as well as by 

HIV envelop protein gp120 interacting with the CD4 receptor and co-receptor (CXCR4 or 

CCR5), later gp41 inserts into the outer leaflet to facilitate the fusion between the HIV 
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envelop and the host plasma membranes. (2) Fusion. The viral genome, the pre-integration 

complex, and proteins from capsid such as p24 are released in the cytoplasm of the host 

cells. (3) Reverse transcription. It is performed by reverse transcriptase to convert HIV 

RNA into HIV dsDNA. (4) Integration. It is conducted by an intermediate PIC which 

includes reverse transcriptase and integrase to transport the HIV dsDNA into the nucleus 

to be integrated into the host genome. HIV begins to use the cell machinery to transcribe 

HIV mRNAs that are transported to the cytoplasm. (5) HIV protein production. This 

occurs in the cytoplasm, where HIV proteins are synthetized from viral mRNA. (6) 

Assembly. The new synthetized HIV proteins, as well as HIV RNA, accumulate and move 

to the host plasma membrane to generate immature virions. (7) Budding. Newly immature 

formed virions are released into the extracellular space. Protease induce the maturation of 

the virions to become infectious. 

The red box in the figure indicates the topic of this thesis: HIV-integrated DNA, HIV 

mRNA production and HIV protein synthesis. 
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Antiretroviral therapies  

The first anti-retroviral agent was introduced in 1987. Although, over 50% of patients 

treated with singular drug longer than 6 months develop the drug resistance (Larder et al. 

1989). Currently, HIV-infected individuals use combined antiretroviral therapy (cART), 

which transformed HIV from a deadly to a chronic disease. The first combined treatment, 

which block the virus replication at the multiple stages of the HIV life cycle, was 

introduced in 1996 (https://www.niaid.nih.gov/diseases-conditions/antiretroviral-drug-

development). Combined ART treatment consists in a combination of anti-retroviral drugs 

with the purpose of reducing the viral load, delaying disease progression and prolonging 

patient survival. The first therapy combinations commonly prescribed include a 

“backbone” of 2 inhibitors of the HIV reverse transcriptase (nucleoside reverse 

transcriptase inhibitor NRTI) plus a non-nucleoside reverse transcriptase inhibitor 

(NNRTI), an integrase strand transfer inhibitors (INSTI) or a protease inhibitor (PI) 

boosted with cobicistat or ritonavir (https://aidsinfo.nih.gov/understanding-hiv-aids/fact-

sheets/21/53/what-to-start-choosing-an-hiv-regimen). Other new generated drugs include 

CCR5 antagonist, fusion inhibitor, and post-attachment inhibitor. The NRTIs are prodrugs 

that need to be activated into diphosphate or triphosphate metabolites. They inhibit the 

reverse transcriptase enzyme for the insertion of nucleotide analogue. NNRTs inactivate 

the reverse transcriptase enzyme inducing conformational change and they do not need 

intracellular phosphorylation to be active. The PIs block proteolytic activities necessary for 

the formation of mature infectious virions. The INSTIs work by preventing the integration 

of viral DNA into the host genome. In addition, the CCR5 antagonist and the fusion 

inhibitor obstruct the fusion process blocking the interaction of the HIV gp120 and the 

CCR5 receptor and avoiding conformational changes of gp41, respectively. The last class 

of drug is the post-attachment inhibitor or entry inhibitor that is a competitive inhibitor for 

the CD4 receptor. Together these drugs conform the cART targeting different steps of the 

viral replication, with the purpose of improving the CD4+ T cell count, prolonging patient 

survival, and reducing the risk of transmission. However, cART is not able to eradicate 

HIV. Moreover, cART need to be administrated regularly and constantly because viral 

rebound occurs rapidly after treatment discontinuation (https://aidsinfo.nih.gov/guidelin, 

https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/58/fda-approved-hiv-

https://www.niaid.nih.gov/diseases-conditions/antiretroviral-drug-development
https://www.niaid.nih.gov/diseases-conditions/antiretroviral-drug-development
https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/53/what-to-start-choosing-an-hiv-regimen
https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/53/what-to-start-choosing-an-hiv-regimen
https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/58/fda-approved-hiv-medicines
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medicines). Even though cART blocks peripheral viral replication, cART does not prevent 

viral mRNA and protein expression. Thus, damage in the absence of viral production, is 

dependent on viral proteins. 

 

HIV latency 

Stable and productive HIV DNA integration is the most important aspect of HIV latency 

(Lafeuillade and Stevenson 2011). Thus, productively infected cells can become latently 

infected through viral silencing mechanisms that are still under investigation (Kim M. et 

al. 2014, Mok and Lever 2007). Several transcriptional and post-transcriptional molecular 

mechanisms have been proposed (Bruner et al. 2016, Hiener et al. 2017). Post-integration 

latency can be dependent on histone deacetylases (HDACs) (Margolis 2011) and methyl-

CpG-binding proteins which form complexes with HDACs (Bednarik et al. 1990) 

promoting chromatin condensation and HIV silencing. Other mechanisms involve the 

regulation of the essential Tat-cofactor P-TEFb (Kim Y. K. et al. 2011), NF-κB (nuclear 

factor κB) and NFAT (nuclear factor of activated T-cells) (Mbonye and Karn 2014) 

characterized by occlusion of transcription initiation or elongation complexes. For 

example, the elongation process requires P-TEFb that is recruited by Tat (Mbonye and 

Karn 2014). On another hand, a post-transcriptional mechanism involves microRNAs that 

regulate the levels of cyclin T1 protein, which is essential for T cell activation and viral 

replication (Chiang et al. 2012).  

Recent studies have proposed a new therapeutic approach based on the reactivation of 

latently-infected reservoirs by small molecules, called latency reversing agents (LRAs) that 

reactivate the virus stimulating the immune system with the goal of killing the viral 

reservoirs. This is called “shock and kill” strategy (Petravic et al. 2017, Schwartz et al. 

2017). The several LRAs proposed include drugs that induce NF-κB pathway activation, 

extra-terminal domain inhibitors enhancing the binding of the viral Tat protein to the HIV 

TAR element, and histone deacetylase inhibitors (HDACi-SAHA) that work as epigenetic 

modifiers, or a combination of them (Sadowski and Hashemi 2019). Moreover, current 

detection methods for viral reservoirs also use viral reactivators such as 

Phytohaemagglutinin (PHA) and phorbol myristate acetate (PMA) that block the binding 

of IκBα to NF-κB that can translocate to the nucleus and activate transcription (Chauhan 

https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/58/fda-approved-hiv-medicines
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2015).  Although several groups focus primarily on LRAs or several stimulators to induce 

HIV reactivation, they are unable to reactivate all the integrated viruses, suggesting that 

there is a gap between the signals required for reactivation of some viruses, depending on 

where they are integrated, degree of epigenetic modulation and specific respond to different 

stimuli to induce reactivation.  

 

Viral reservoirs 

As discussed above, HIV remains incurable due to the early viral seeding and generation 

of latent-infected cells. Viral reservoirs are defined as a cell type in which a replication-

competent form of HIV persists. HIV reservoirs are long-lived infected cells due to their 

slow decay rate (t1/2=3.7 years) (Siliciano et al. 2003). Thus, the virus remains integrated 

in the host genome and it can be reactivated. The transient increase in plasma HIV RNA 

called blips, which are common in HIV patients under cART and there are typically related 

to viral rebound (Grennan et al. 2012). This stochastic reactivation of viral reservoirs is 

probably due to gaps in circulating concentration, toxicity or discontinuation of cART 

regimen. 

Currently, the best described viral reservoirs are resting CD4+ T lymphocytes including 

central memory T cells, transitional T cells, effector T cells, and naïve T cells (Stein et al. 

2016). However, other viral reservoirs are also described in circulation and in tissues such 

as peripheral blood monocytes, dendritic cells, macrophages (such as microglial), 

astrocytes and other myeloid cells (Castellano et al. 2017, Eugenin et al. 2011, Ganor et al. 

2019, Mitchell et al. 2019). The mechanism by which T cells survive and become latent 

has been investigated by the Siliciano group, creating a CD4 cell line transduced with the 

B cell Lymphoma 2 gene (Bcl-2) (Yang et al. 2009). Bcl-2 are pro-apoptotic members that 

regulate the mitochondrial outer membrane pore formation inducing apoptosis. Siliciano 

group showed that the Bcl-2 cell line survive infection and later are able to revert to the 

latent state, suggesting that Bcl-2 pathway can explain the survival mechanism of these 

viral reservoirs (Kim M. et al. 2014). However, there is no evidence that Bcl-2 can 

contribute to the latent stage since distinct cell types react differently after infection with 

HIV. Other mechanisms of cell survival are associated with other upregulated anti-

apoptotic proteins such as cFLIP and Mcl-1 or downregulated pro-apoptotic proteins such 
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as BAX and FADD (Timilsina and Gaur 2016), suggesting that blocking apoptosis 

contributes to viral reservoir survival. 

On another hand, data in our laboratory demonstrated that macrophage survival in response 

to HIV infection has a metabolic and an anti-apoptotic component. Latent macrophages 

show mitochondrial fusion, lipid accumulation, and reduced mitochondrial ATP 

production and use glutamine/glutamate as a primary energy source (Castellano et al. 

2019). Therefore, it’s necessary to enlighten on the importance of myeloid cells as viral 

reservoirs. Two critical cases are the “Berlin Patient” and the “Mississippi baby”, which 

can demonstrate the effective role of the myeloid cells in HIV infection. The first one 

achieved viral remission after a bone marrow transplant with stem cells from a donor who 

was homozygous for CCR5 delta32 used to cure acute myeloid leukemia (AML) (Hutter 

et al. 2009). In the case of the “Mississippi baby” after an early administration of ART (30 

hours after birth), plasma viremia was undetectable without cART, suggesting a crucial 

role of the myeloid reservoirs to viral persistence in the earliest stage of infection (Persaud 

et al. 2013). Several strategies have been proposed to study and target myeloid reservoirs, 

using the shock and kill mechanism with HDACi or protein kinase C activator, or using 

cell transplant and gene therapy to modify CCR5 in myeloid compartments (Mitchell et al. 

2019).  

 

Current methods to detect viral reservoirs 

The current methods to detect viral reservoirs are not able to precisely measure their size 

and the cell type involved. Currently, most viral reservoirs are detected in blood, but they 

are a poor representation of viral reservoirs in tissues. Quantitative Viral Outgrowth Assay 

(QVOA), Tat/rev Induced Limiting Dilution Assay (TILDA) and other Quantitative PCR 

assays for total HIV RNA or HIV DNA are frequently used to detect viral reservoirs. 

QVOA is a cultured based assay that identifies reservoir in circulating cells (Finzi et al. 

1997). TILDA is a PCR-based assay that measure the frequency of cells harboring HIV-

integrated genomes. Other PCR-based methods can also measure the frequency of cells 

harboring HIV-integrated and unintegrated DNA. QVOA is performed in the blood CD4+ 

T lymphocytes which are stimulated with phytohemagglutinin (PHA) in the presence of 

irradiated allogeneic peripheral blood mononuclear cells (PBMCs) that induces global T 
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cell activation of HIV-integrated genomes. The replication of the virus is detected by HIV-

p24 ELISA on the media of 2-3 week cultures combined with CD4+ lymphoblasts from 

HIV-negative donors (Finzi et al. 1997). Instead, TILDA measures the frequency of cells 

harboring viral genomes that produce tat/rev multiply-spliced HIV RNA upon maximal 

stimulation. It also needs isolation of the total CD4+ T lymphocytes that are stimulated with 

PMA and ionomycin for 12 hours to induce the maximal production of tat/rev RNA and 

later the qRT-PCR is used to quantify tat/rev transcripts. TILDA requires 10 ml of blood 

and can be completed in 2-3 days (Procopio et al. 2015). Other PCR-based techniques PCR 

assays such as digital droplet PCR for total HIV DNA/RNA or integrated HIV sequences 

(Alu or 2LTR) can be used to quantify HIV DNA or RNA in PBMCs, in purified CD4+ T 

cells or in plasma. They are expensive, use a large amount of starting materials and time 

consuming, as well as overestimate the size of the latent reservoirs (Eriksson et al. 2013).  

Overall, QVOA, TILDA, and other PCR-based techniques have enormous limitations such 

as timing, cost, accuracy, precision, sensitivity and use of a large volume of blood. 

Additionally, they detect just one component of viral cell cycle and are limited to only 

circulating viral reservoirs. Generally, they can misinterpret the data and incorrectly 

estimate the replication‐competent viruses within the circulating and tissue reservoirs 

(Churchill et al. 2016).  

Recently, Dr. Eugenin’s laboratory generated a highly sensitive and innovative protocol 

that is specific for viral DNA, viral RNA, several viral proteins and characterizes 

circulating and tissue-associated viral reservoirs in HIV-infected individuals (Prevedel et 

al. 2019). This technique is based on improved staining and confocal microscopy analysis. 

It determines the stage of the viral life cycle detecting, quantifying, and localizing 

concurrently HIV DNA, HIV mRNA, HIV proteins and host cell markers in vitro and in 

vivo (Prevedel et al. 2019). HIV reservoir identification and localization are necessary to 

study the mechanism of bystander damage and to find new molecular targets for HIV 

efficacious treatments. Our laboratory has developed techniques to identify viral reservoirs 

in urethral tissue (Ganor et al. 2019) and in other human tissues such as bone marrow (Real 

F. et al. in press). In this thesis, we present data about localization, identification, and 

quantification of viral reservoirs in brain and lymph nodes in Chapter 2.  
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Part II – HIV in CNS  

 

HIV CNS infection  

HIV-infection of the Central Nervous System (CNS) arises very early after primary 

infection (15 days). It is accepted that HIV transmigration into the brain occurs by the 

“Trojan Horse” mechanism (Hazleton et al. 2010). Briefly, circulating HIV-infected 

monocytes, specifically CD14+CD16+ intermediate monocytes, cross the Blood Brain 

Barrier (BBB) in response to chemotactic signals as such CCL2 and CXCL12 (Eugenin et 

al. 2006, Williams et al. 2012). The high sensitivity of HIV-infected cells to sense these 

chemokines is due to enhanced capacity of HIV-infected cells to sense physiological 

chemokine gradients such as CCL2 (Eugenin et al. 2006). During the process of 

transmigration of HIV-infected cells in response to CCL2, the BBB become compromised 

further contributing to local inflammation. In the CNS, migrated HIV-infected monocytes 

infect local resident cells such as microglia, perivascular macrophages and a small 

population of astrocytes (Williams et al. 2014). In particular, microglial cells and 

perivascular macrophages are the major productively infected cells by HIV (Cosenza et al. 

2002). On the contrary, astrocytes support a low viral replication. Astrocytes are CD4 

negative cells and they are infected by HIV using a mannose receptor that mediates vesicle 

endocytosis from the membrane that have to also avoid endolysosomal destruction, or via 

viral synapses using cell-to-cell contacts with infected lymphocytes (Do et al. 2014, 

Galloway et al. 2015, Liu Y. et al. 2004).  

During active CNS infection, formation of multinucleated giant cells and neuronal and glial 

cell death were common in infected individuals in the pre-ART-era. However, upon cART 

introduction, damage still occurs but is more controlled. 

 

Viral reservoirs within the CNS 

During the acute phase of HIV, infection of human microglia/macrophages and astrocytes 

results in inflammation due to the release of cytokines and chemokines, finishing in a 

massive apoptosis (Castellano et al. 2017). However, a small population of HIV-infected 

cells survive and become latently infected (Castellano et al. 2017, Eugenin and Berman 

2007, 2013, Eugenin et al. 2011, Orellana et al. 2014). Macrophages/microglia are the 
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primary CNS target of HIV (Wong and Yukl 2016). It was shown that uninfected 

macrophages derived from recently transmigrated monocytes die in few days (Bellingan et 

al. 1996), whereas microglia, perivascular, and alveolar macrophages have an long half-

life (months-years) (Lassmann and Hickey 1993). Latently HIV-infected macrophages are 

terminally differentiated and non-dividing cells that derive from circulating monocytes 

residing in all tissues. They are able to survive HIV infection principally due to metabolic 

alterations and apoptosis inhibition (Castellano et al. 2017, Castellano et al. 2019). In 

latently HIV-infected microglia/macrophages the pro- and anti-apoptotic pathways are 

blocked and Bim that is a highly pro-apoptotic negative regulator of Bcl-2 is upregulated 

and recruited into the mitochondria preventing apoptosis (Castellano et al. 2017). Thus, the 

mechanism of survival is different than CD4+ T cells mediated by Bcl-2 (Kim M. et al. 

2014).  

In macroglia/macrophage reservoirs, the mitochondria become larger and show lipid 

accumulation and produce less ATP for the compromised metabolic steps in the 

tricarboxylic acid (TCA) cycle preceding oxidative phosphorylation (OXPHOS). While 

HIV-infected macrophages use fatty acids and glucose as primary sources of energy as well 

as the uninfected cells, they also use glutamine/glutamate and alpha-ketoglutarate (αKG) 

as an alternative energy supply (Castellano et al. 2019).  Otherwise, latently HIV-infected 

astrocytes survival is principally due to cytochrome C mislocalization from the 

mitochondria to the cytoplasm and for the following alterations in inositol triphosphate 

(IP3), IP3 receptors and calcium that block the formation of the apoptosome (Figure 1.3) 

(Eugenin and Berman 2013). Despite the fact that only a small fraction of astrocytes 

become infected, they induce bystander apoptosis of neighboring cells through cell-to-cell 

mechanism (Eugenin and Berman 2007, Eugenin et al. 2011). Thus, macrophages and 

astrocytes have different survival mechanisms than CD4+ T cells. Moreover, HIV envelope 

sequencing studies from blood, brain and other non-brain tissues such as bone marrow, 

colon, lung and liver showed an HIV macrophage tropism with a different HIV 

compartmentalization and evolution within the blood and the tissues (Holman et al. 2010), 

suggesting that viral reservoirs are different in each compartment.  

Data showed in this thesis demonstrate the adaptation of glial networks to limited HIV 

infection. Briefly, we have shown that HIV-infected astrocytes prefer an alternative source 
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of energy independent from mitochondria such as pentose phosphate (see details in Chapter 

6). 

 

Novel mechanism of bystander CNS damage in the current cART-era 

HIV-associated neurocognitive disorders (HAND) are present in around 50% of HIV-

infected individuals of the post cART-era. CNS damage was identified in 90% of autopsied 

brains from HIV-infected patients displaying chronic neuroinflammation and 

neurocognitive impairment even after they received cART for many years (Lamers et al. 

2016). Moreover, HAND can be exacerbated by HIV-related infections, cART-related 

toxicities, cART discontinuation and comorbidities (alcohol and substance of abuse) (Byrd 

et al. 2011, Justice et al. 2010, Tedaldi et al. 2015). According to the severity of the clinical 

manifestations, HAND are divided in asymptomatic neurocognitive impairment (ANI), 

mild neurocognitive disorder (MND), and HIV-associated dementia (HAD) (Antinori et al. 

2007). In the post-cART era, the proportion of HIV-infected individuals with 

neurocognitive symptoms is the same of the pre-cART era, but the percentage of infected 

patients with HAD has decreased in favor of ANI and MND (Heaton et al. 2010, Saylor et 

al. 2016). The symptoms displayed in the milder forms of HAND include memory loss, 

problems in concentration, difficulty learning new tasks, diminished reflexes, personality 

changes, and mood swing. Instead, people diagnosed with HAD have severe memory and 

concentration problems, wild mood swings, symptoms of psychosis and loss of physical 

coordination (Eggers et al. 2017).  

Nowadays, the diagnosis and the monitoring of HAND is based on neuropsychometric 

performance tests, blood tests, CSF analysis, and neuroimaging (Clifford and Ances 2013). 

These techniques may provide metabolic and structural alteration in the blood and in the 

brain. However, techniques to identify viral reservoirs are lacking. In Chapter 2, we will 

describe a novel method to identify, localize, and quantify viral reservoirs in circulation 

and in tissues. In addition, in Chapter 4, we will show new potential biomarkers of HAND. 

Later, we will discuss the bystander effect of viral proteins and lipids.  

Our laboratory identified that viral reservoirs can promote a bystander damage into 

neighboring cells via GJs mediated mechanism. Gap junctions are expressed in most cell 

types of the nervous system, including astrocytes, neurons, oligodendrocytes, neuronal 
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stem cells, endothelial cells, and under inflammatory conditions in microglia/macrophages 

(Eugenin et al. 2012, Kielian 2008, Palacios-Prado et al. 2013, Vejar et al. 2019). Gap 

junctions are low-resistance bridges that perform electrical and metabolic functions, 

connecting the cytoplasm of adjacent cells and allowing the exchange of electrical signals 

and intracellular messengers, such as IP3, calcium, cyclic nucleotides, metabolites, 

neurotransmitters, and viral peptides (Yeager and Nicholson 1996). Gap junctions consist 

in connexin (Cx) dodecamer channels formed of two hexameric unopposed hemichannels 

(uHCs), one from each of the coupled cells (Harris A. L. 2001). Connexin-containing uHCs 

are defined homomeric when 6 monomers of Cx that compose it are the same, or 

heteromeric when the Cxs are different. Gap junctions can be docked by two identical 

(homotypic) or different (heterotypic) subunits of HCs. Homo- and hetero-combinations 

generate channels with different biophysical properties and permeability (Harris A. L. 

2007). Hemichannels and GJ channels have an internal pore of approximately 12 A° 

enabling the diffusion of molecules up of 1.2 kDa (Villanelo et al. 2017). The role of HCs 

and GJs in HIV infection has acquired an increased interest. Although uHCs exist 

physiologically in a closed state, HIV infection is one of the few cases where uHCs become 

opened enabling the release of pro-apoptotic and pro-inflammatory factors such as 

prostaglandin E2 (PGE2) and adenosine-triphosphate (ATP) in the extracellular space 

(Eugenin 2014). For instance, in HIV-infected astrocytes the opened Cx43 containing 

uHCs led the secretion of dickkopf-1 protein (DKK1) that is a soluble Wnt pathway 

inhibitor. It has been shown in neuron and astrocyte mixed cultures treated with DKK1 

resulted in a significant collapse of neuronal processes (Orellana et al. 2014). Thus, it can 

explain the synaptic compromise observed in HIV-infected individuals.  On another hand, 

GJs that are regulated in order to control synaptic function, after HIV infection they are 

permanently open and used by the virus to spread and maintain infection in the CNS. 

Specifically HIV reservoirs mediate bystander damage into the neighboring cells via 

Connexin-43 (Cx43) containing GJs and uHCs (Malik et al. 2017). To prove GJs crucial 

role in CNS damage, the Cx43-GJ blockers 18-α-glycerritenic acid (AGA) or octanol were 

used to treat HIV-infected astrocyte cultures resulting in decreased level of apoptosis in the 

neighboring HIV-uninfected cells (Eugenin and Berman 2007). In addition, bystander 

apoptosis was related to inositol trisphosphate and intracellular calcium (Figure 1.3) and to 
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endothelial apoptosis, dysregulation of lipoxygenase/cyclooxygenase, BK calcium 

channels, and ATP receptor activation within astrocytes (Eugenin and Berman 2013). 

Recently it was demonstrated that HIV Tat protein enhances Cx43 expression in primary 

human astrocytes to maintain communication between the few HIV-infected cells and 

surrounding uninfected cells suggesting a critical link between HIV proteins, commonly 

present in the brain of virally-suppressed infected individuals, and cell-to-cell 

communication (Malik et al. 2017). To conclude, we can remark that HIV reservoirs used 

a different way to survive to infection and to generate bystander effect on the neighboring 

uninfected cells. Several of these communication systems will be discussed in Chapter 6. 
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Figure 1.3. Proposed model of HIV-infected astrocytes for survival and bystander 

damage mediated by Cx43 containing GJs, from (Eugenin and Berman 2013) 

HIV-infected astrocyte survives to apoptosis for cytochrome c secretion in the cytoplasm 

that blocks the apoptosome formation and increases IP3 and intracellular calcium 

concentration. IP3 and calcium can diffuse into the neighboring cells through Cx43 

containing GJs and induce apoptosis.  
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Neuroimaging used to diagnose and monitor HAND in the current cART-era 

Neuroimaging includes the use of different techniques that directly or indirectly image 

metabolic, structural, and functional changes of the brain. They can be partially useful to 

generate a diagnosis and to monitor the clinical course of HAND (Clifford and Ances 

2013). The more common techniques for metabolic imaging are proton-magnetic 

resonance spectroscopy (H-MRS or MRS), positron emission tomography (PET), and 

single photon emission computer tomography (SPECT). H-MRS is a non-invasive 

technique that gives information on brain pathophysiology measuring signals from 

hydrogen atoms of specific brain metabolites, such as N-acetylaspartate (NAA), 

myoinositol (MI), choline (CHO), and glutamate-glutamine (GLX) (Van Zijl and Barker 

1997). N-acetylaspartate is a neuronal functional marker and it is synthesized as a result of 

the reaction between aspartate and acetyl coenzyme A (Baslow 2003). Myoinositol is an 

astrocyte marker associated with inflammation, astrocytosis and gliosis (Harris J. L. et al. 

2015). Choline is a cell membrane marker that specifically represents the membrane lipid 

turnover and reflects macrophage infiltration and inflammation (Lin et al. 2005).  

Glutamate (Glu) is the major excitatory neurotransmitter in the brain, stored as glutamine 

(Gln) in glial cells. Glutamate-glutamine balance cycling is essential for normal 

functioning of brain cells. Astrocytes are responsible for uptake of most extracellular 

glutamate via glutamate transporters GLT1 (or EAAT1) and GLAST (or EAAT2), in order 

to maintain Glu extracellular concentration and avoid excitotoxicity (Schousboe and 

Waagepetersen 2005). In MRS the magnet strength is not always sufficient to resolve Glu 

from Gln and in some cases they are combined as GLX (Ramadan et al. 2013). Moreover, 

some MRS data are expressed as a ratio of the specific metabolites compared to creatine 

(Cr) that is a reference marker (Vigneswaran et al. 2015). The most common MRS features 

in HIV seropositive population are increased levels of CHO and MI that suggest 

inflammation and microglial proliferation, and decreased levels of NAA and GLX that are 

related to neuronal-axonal injury or dysfunction (Mohamed M. A. et al. 2010). During HIV 

infection, MRS is also used to monitor changes in brain inflammation and neuronal 

integrity associated with cART effects. The biggest limit of MRS is that the results of the 

analysis are restricted to certain brain regions. During acute HIV infection, brain 
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metabolites have been measured in frontal grey and white matter, in the occipital grey 

matter, and in basal ganglia.  Elevated levels of CHO/CR in the basal ganglia and in the 

occipital grey matter of acute HIV cases (14 days after HIV infection) were detected 

compared to uninfected controls, as well as chronic HIV subjects. These values became 

normal after 6 months of cART (Sailasuta et al. 2012). Moreover, the levels of Cho/Cr, 

NAA/Cr, Glu/Cr and MI/Cr have been shown to be increased in frontal white matter, in 

parietal grey matter and in basal ganglia, but after cART initiation their excitotoxicity and 

neuronal injury effect were attenuated (Young et al. 2014). In addition, the relationship 

between HIV-cognitive impairment and brain metabolism was investigated in older HIV-

infected individuals under cART and it was shown that NAA and Glu were lower and 

correlated with worse performance on neuropsychological tests in MND or HAD 

individuals (Mohamed M. et al. 2018). Although, MRS can detect several brain metabolites 

only one study mentions the possibility to detect lipid molecules (Bairwa et al. 2016), 

without identifying either the class or their specific alteration.  

Other techniques that can be applied for metabolic investigation in HIV pathology are PET 

and SPECT. Positron emission tomography (PET) and single photon emission computed 

tomography (SPECT) were used to study HIV patients with or without HAND. PET and 

SPECT are used to evaluate glucose metabolism or cerebral perfusion applying nuclear 

medicine tracers (18F-deoxyglucose - 99Tc-HMPAO) that specifically bind to a positron-

emitting radioisotope, such as 18fluorine (18F) or 11carbon (11C) (Sathekge et al. 2014). 

Decreased glucose metabolism in the frontal cortex detected by PET in HIV seropositive 

patients may reflect neuronal injury or dysfunction (Andersen et al. 2010). PET imaging is 

also used to assess dopamine (DA) function in HIV-infected patients, because HIV-

infected patients with HAND often present psychomotor slowing and parkinsonian 

symptoms. For this particular technique, (11C)-cocaine and (11C)-raclopride are used to 

measure presynaptic dopaminergic transporter and postsynaptic D2 dopaminergic receptor, 

respectively. These tracers demonstrated lower levels of dopamine transporters (DAT) that 

are associated with dopaminergic neuronal injury especially in HIV-positive patients with 

HAD (Wang et al. 2004) and worst neurocognitive performance (Chang et al. 2008). 

Likewise, SPECT is utilized to put in evidence the central dysfunction of the dopaminergic 

pathways in HIV infection and 123I-FP-CIT and 123I-IBZM are the trackers used for these 
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analyses (Scheller et al. 2010). Current studies are focusing on the development of 

radiotracers ((11C)PK11195, (11C)PBR18, (11C)DPA-713, and (11C)PBR28) specific for 

microglia in order to quantify and localize brain inflammation in HIV-infected patients 

(Chang and Shukla 2018, Hammoud et al. 2005). 

For the structural neuroimaging, two techniques have been applied to HAND investigation: 

volumetric analysis and diffusion tensor imaging. Structural neuroimaging involves brain 

tissue contrast that is based on differences in proton density and relaxation times amongst 

brain structures (Ashburner and Friston 2000, Good et al. 2001, Sanford et al. 2017). The 

measurement of cortical and subcortical grey matter and total and abnormal white matter 

(aWM) volumes showed that HAD and MND patients had smaller grey and white matter 

volumes and more aWM than neurocognitively unpaired patients (Alakkas et al. 2019). On 

the other hand, diffusion tensor imaging is an MRI-based neuroimaging technique used for 

the detection of microarchitectural changes. Using this technique, microstructural 

disruptions were localized especially in the frontal and motor white-matter regions of the 

HIV-infected individuals (Wright et al. 2012).  

Currently, functional neuroimaging techniques include magnetic resonance imaging (MRI) 

for blood oxygen level dependent imaging (BOLD) and perfusion.  BOLD fMRI signal 

investigates the ratio of oxygenated to deoxygenated hemoglobin in the microvasculature. 

Although, HIV regional injury can be associated with a partial dysfunction of the brain 

networks, BOLD task-activated fMRI and resting-state fMRI (rsfMRI) are used to evaluate 

functional networks (Fox and Raichle 2007). For instance, HIV seropositive patients 

showed a selective activation for networks involving attention, working memory, and 

hippocampal function (Chang et al. 2001), as well as risky choices (Connolly et al. 2014). 

On another hand, rsfMRI showed lesser connectivity within frontostriatal, salience, frontal, 

motor, and executive networks and within precuneus seed and prefrontal cortex in HAND 

population, suggesting a compromised brain activity (Ann et al. 2016, Chaganti et al. 

2017). Perfusion MRI is another functional method using arterial spin labeling (ASL) 

technique to measure the proton spins associated to endogenous oxyhemoglobin and 

deoxyhemoglobin for calculating the arterial function. Using ASL low levels of cerebral 

blood flow were demonstrated in HIV seropositive population that can be partially restored 

after cART (Ances et al. 2009).  
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Together all these neuroimaging techniques are useful to assess HAND onset and 

progression, but better markers in term of prediction and selectivity are required. Several 

of these neuroimaging techniques can also measure different species of lipids, but most of 

these data has been ignored. In this thesis, we study lipid metabolic alteration in the brain 

of HIV-infected patients and correlate them with neurocognitive impairments in order to 

find a specific biomarker that can be predictive of the risk to develop HAND. 

 

Brain volume changes and localized damage in HAND in the current cART-era 

Neuroimaging data have shown that volumetric changes involve the brain of HIV-infected 

patients virally suppressed with cART (Alakkas et al. 2019). By diffusion tensor imaging 

it was demonstrated that white matter deficits comprise dramatic thinning of the corpus 

callosum, reduction in blood flow to white matter, loss of structural integrity and volume 

in white matter structures such as the superior longitudinal fasciculus, superior corona 

radiata, and the internal capsule (Correa et al. 2015, Leite et al. 2013). A recent CHARTER 

study used structural MRI to determine reduced white matter volume in HIV-infected 

individuals with HAD and MND compared with HIV-infected patients who were 

neurocognitively normal, all of them were virally suppressed with cART (Alakkas et al. 

2019). Higher levels of abnormal white matter were associated with higher risk of HAND. 

Specifically, HIV-infected individuals of the post-cART era displayed synapto-dendritic 

damage (Ellis et al. 2007) with prominent atrophy in subcortical structures, such as caudate, 

putamen, amygdala, hippocampus, and thalamus, instead of neuronal loss often observed 

in pre-cART era (Ances et al. 2012, Harezlak et al. 2011). In addition, cortical thinning or 

regional volume loss affect parietal white matter, orbitofrontal cortex, cingulate cortex, 

primary motor and sensory cortices, frontal and temporal lobes suggesting worst cognitive 

performance (Sanford et al. 2017). One cross-sectional study performed using a volumetric 

analysis compared HIV-infected patients virally unsuppressed and suppressed to 

uninfected individuals showing that reduced brain volumes in the corpus callosum, 

amygdala, caudate, thalamus, and putamen volumes is independent of cART because both 

HIV positive groups displayed similar changes. As discussed before, volumetric reductions 

of subcortical regions happen despite cART, suggesting a faster morphometry change after 

seroconversion that is persistent also in the virologically suppressed cohorts (Ances et al. 
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2012). Thus, cART has no significant effects on these volume changes (Brier et al. 2015), 

and we propose it cannot prevent lipid dysregulation. Our idea for this thesis is to study 

lipid dysregulation and the future direction aim to better characterize the pathway involved 

for obtaining target molecules for a specific therapeutic approach.  

 

Potential biomarkers of HAND in the HIV-infected population 

Several blood and CSF biomarkers for HAND are under investigation in order to determine 

the risk of HIV-infected patients developing neurocognitive impairment. However, it is 

difficult to assess their unequivocal role because most of the performed studies are cross-

sectional or do not consider the evolution of cognitive impairment that in NeuroHIV is not 

linear (Bandera et al. 2019). The CSF/blood biomarkers for HAND may be divided into 

markers for neuronal injury, inflammation, and immune activation. Markers of neuronal 

injury previously investigated include β-Amyloid 1-42 (Petersen et al. 2016), the light 

subunit of the neurofilament protein (Yilmaz et al. 2017),  calcium binding protein B 

(S100B) (Du Pasquier et al. 2013, Guha et al. 2019), extracellular vesicles (Urbanelli et al. 

2019), and the Wnt pathway (Al-Harthi 2012), but none of these studies clearly explain the 

reason why they can be used as a biomarkers, especially in the virally suppressed patients 

with neurocognitive disorders. Although neuronal injury biomarkers have been long 

investigated, interest in inflammatory biomarkers has exponentially grown due to the 

persistent neuro inflammatory feature in cART suppressed individuals (Suh et al. 2014). 

Included among these biomarkers are: Monocyte Chemoattractant Protein-1 (CCL2) 

(Kamat et al. 2012), Tumor Necrosis Factor Alpha (TNF-α) (Oliveira et al. 2017), 

Interleukin-6 (IL-6) (Cassol et al. 2013), Interferon-γ-Inducible Protein (IP-10 or CXCL-

10) (Yuan et al. 2015), Interleukin-8 (IL-8 or CXCL-8) (Kamat et al. 2012, Yuan et al. 

2015), Interferon Alpha (IFN-α) (Anderson A. M. et al. 2017), Intercellular adhesion 

molecule-5 (ICAM5) (Yuan et al. 2017), Lipopolysaccharide (LPS) (Ancuta et al. 2008, 

Vassallo et al. 2013) and Growth Factors (Kallianpur et al. 2019, Yuan et al. 2015). 

Recently, our laboratory has identified ATP as a potential biomarker for HAND, affecting 

BBB function, stability, and neuroinflammation (Velasquez et al. 2019). Although several 

of these inflammatory factors may be directly or indirectly involved in HAND and 

increased in the blood and/or CSF of infected patients virally suppressed with cART and 
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with cognitive impairment, none of them explore the neuronal damage progression in 

HAND.  

To conclude, recent research focus in HAND biomarkers include immune activators such 

as neopterin (Valcour et al. 2013), soluble CD163 (Burdo et al. 2013), soluble CD14 

(Burdo et al. 2011) and Cathepsin B (Cantres-Rosario et al. 2013). 

Still, although all these markers are increased in HAND condition, their role in HAND 

pathophysiology is often ambiguous and still under investigation. Moreover, the large 

range of variabilities in infected and neurocognitive impaired populations obstruct the 

absolute validation of blood/CSF biomarkers. Additionally, all these biomarkers are late 

indicators of the CNS damage that need a total disruption of neurons to be released in the 

circulation and be detected, so they are not predictive. 

We demonstrated that sulfatide distributions in brain are perturbed in HIV-infected 

patients. Here, we explore the possibility that lipids, such as sulfatide, are potential 

biomarkers of HIV cognitive impairment.  
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Part III – Lipids in HAND 

 

General introduction of lipids  

Lipids are amphipathic biomolecules (Fahy et al. 2011). Lipids assist several important 

cellular functions, they are structural elements of the lipid bilayers, are sources of chemical 

energy, and are precursors for several second messengers (Glatz 2015). Lipids are 

classified into eight categories based on the ketoacyl groups and the isoprene groups: 

glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, sterol lipids, prenol lipids, 

saccharolipids, and polyketides (Fahy et al. 2005). In order to simplify their metabolic 

characterization, we divided them in phospholipids, neutral lipids, and glycolipids.  

Phospholipids are the major class of lipids present in all cells and they can be divided into 

glycerophospholipids and sphingomyelins. Glycerophospholipids include 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, 

phosphatidic acid, phosphatidylglycerol, and cardiolipin. All of them have a structural 

function in the cellular membranes in which are asymmetrically distributed in the bilayer 

(Fadeel and Xue 2009). The major phospholipid component present in cell membranes is 

phosphatidylcholine, which represents the 40-50% of the total phospholipid pool. 

Moreover, phosphatidylcholine is a precursor of several signaling molecules such as 

phosphatidic acid, diacylglycerol, lysophosphatidylcholine, platelet-activating factor, and 

arachidonic acid (Billah and Anthes 1990). Phosphatidylethanolamine is the second most 

abundant phospholipid in the membrane representing the 20-30% of the total cell 

phospholipid. Its function is to stabilize the membrane proteins in the bilayer. 

Phosphatidylserine is a minor membrane phospholipid and it is involved in the early phases 

of apoptosis and in the production of anti-inflammatory mediators (Bratton and Henson 

2008, Vance and Steenbergen 2005). Phosphatidylinositol is also a minor lipid in 

mammalian cells, but it is involved in several signaling processes. It is the precursor of 

polyphosphoinositol lipids (PIP, PIP2, and PIP3) which regulate intracellular calcium 

signaling, gene transcription, RNA editing, nuclear export, and protein phosphorylation 

(Di Paolo and De Camilli 2006). Other classes of glycerophospholipids such as 

phosphatidic acid, phosphatidylglycerol, and cardiolipin are lower in abundance compared 

to phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and 
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phosphatidylserine. Specifically, phosphatidic acid is less than 1% abundant in the 

membrane but is a very important intermediate for the synthesis of membrane 

phospholipids and an important regulator of signal transduction, membrane trafficking, 

secretion, and cytoskeletal rearrangement (Jenkins and Frohman 2005). 

Phosphatidylglycerol is more express in the mitochondrial membranes and it is the 

precursor of cardiolipin which is necessary for normal electron transport and oxidative 

phosphorylation (Claypool 2009).  

Sphingomyelins are also important components of cell membranes and they amount at 10% 

of the total phospholipids. Specific sphingomyelin metabolites such as ceramide (Cer), 

sphingosine (Sph), sphingosine-1-phosphate (S1P), diacylglycerol (DAG) and 

gangliosides (GMs), are also involved in cell signaling (Merrill et al. 1997). Ceramide is a 

crucial metabolite for sphingolipid metabolism. It is involved in cellular apoptosis (Hannun 

and Obeid 1995), cell differentiation (Okazaki et al. 1990), and inflammatory responses 

(Masini et al. 2008). Sphingosine and S1P are cofactors of inflammatory signaling, SPH 

inhibits proliferation and promotes apoptosis, S1P mediates cell growth arrest and 

apoptosis inhibition (Hannun and Obeid 2008). DAG is a second messenger that supports 

the biosynthesis (and degradation) of glycerolipids regulating protein kinase C (PKC) 

activity (Bishop and Bell 1988). Gangliosides are predominantly localized in the outer 

leaflets of neuronal plasma membranes where they contribute to cell-cell recognition, 

adhesion, and signal transduction (Kolter 2012, Yu et al. 2011). 

Neutral lipids are comprised of sterols and glycerolipids. Sterols play a key role in the 

membrane integrity maintaining its microfluid state. The most abundant sterol in the 

cellular membranes is cholesterol (Dufourc 2008). Glycerolipids include triacylglycerols 

and steryl esters, and they are typically used as energy store (Athenstaedt and Daum 2006).  

Glycolipids are glycans with a lipidic portion that bind to monosaccharide or 

polysaccharide chains that is extended into the extracellular space. Glycolipids include 

glyceroglycolipids, lipopolysaccharides, glycosphingolipids, and glycosylphosphatidyl-

inositols. They have structural role for the cellular membrane and participate in immune 

responses to bacterial infections and cell-to-cell communication (Paulick and Bertozzi 

2008, Stoffel and Bosio 1997, Zajonc and Kronenberg 2009).  
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Lipids within the CNS 

Lipids such as cholesterol, fatty acids, sphingolipids, and glycerophospholipids are 

important structural components of the neuronal cells (Cermenati et al. 2015). 

Within CNS, cholesterol facilitates the extension of axons, promotes the neurons survival 

and the myelin formation (Bruce et al. 2017). On another hand, fatty acids determine 

membrane fluidity and plasticity of neuronal membranes, serving also as signaling 

molecules. They are classified in saturated fatty acids that are made by single bonds 

between neighbor carbons and unsaturated fatty acids that present one or more carbon–

carbon double-bonds. The neuronal membranes are mostly composed by polyunsaturated 

fatty acids (PUFAs), which are very abundant in the myelin sheath (Hooijmans and Kiliaan 

2008). Instead, glycerophospholipids and sphingolipids maintain structural integrity in 

neuronal membrane (Olsen and Faergeman 2017). Sphingolipids are also involved in 

synaptic transmission and neuronal differentiation.  

Altered lipid metabolism and changes in lipids concentration were presented in several 

neurodegenerative disorders, such as Alzheimer’s (AD) and Parkinson’s diseases (PD) 

(Hussain et al. 2013). The main changes in the brain of Parkinson’s and Alzheimer’s 

individuals were described in the altered levels of cholesterol and sphingolipids (Hussain 

et al. 2019), but also fatty acids and glycerophospholipid alterations contribute to the CNS 

structural compromise. For example, the high cholesterol in membrane causes 

incorporation of amyloid-β (Aβ) into the membrane in AD and accumulation of α-

synuclein in PD leading to neuronal death (Abramov et al. 2011, Galvagnion et al. 2015). 

On another hand, fatty acids accelerates AD progression by enhancing the production of 

amyloid beta (Aβ) (Amtul et al. 2011). It has also been demonstrated that in patients with 

AD, the expression of Cer, the precursor of sphingolipids, in membrane was increased, 

whereas the level of sphingomyelin was reduced as a result of sphingomyelinase activation 

(He et al. 2010) inducing synaptic loss and neuronal cell death in response to amyloid 

accumulation (Couttas et al. 2014). Altered levels of sphingolipids were also observed in 

the brains of Parkinson’s patients. Interestingly, oxidative stress results in the activation of 

neutral sphingomyelinase enzyme resulting in increased levels of Cer, leading to apoptosis 

in the substantia nigra (Posse de Chaves and Sipione 2010).  
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Moreover, glycerophospholipids, especially phosphatidylethanolamines, 

phosphatidylinositols, and phosphatidylcholines are significantly reduced in the neural 

membrane during the progression of AD (Gonzalez-Dominguez et al. 2014, Kosicek and 

Hecimovic 2013). This excessive degradation of glycerophospholipids may be due to 

stimulation of phospholipase A2 producing arachidonic acid (AA) that induces the release 

of inflammatory cytokines (Frisardi et al. 2011) 

 

Arachidonic Acid and Ceramide synthesis pathways 

Lipids are active compounds involved in important physiological and pathological 

processes. Disruption or imbalance in lipid composition or metabolism lead to various 

metabolic disorders including infections and neurodegenerative diseases (Lee et al. 2003). 

Although, any investigated biomarker will represent HAND onset and progression, few 

studies have investigated lipids as possible indicator of neurocognitive impairment in 

HAND. The dysregulation in lipid metabolism that occurs in the CNS and in the CSF/blood 

of HIV-infected population (Farooqui et al. 2007, Haughey et al. 2004) has never been 

considered as a direct or indirect cause of HAND.  

As previously discussed, phospholipids are the most abundant structural elements of the 

lipid bilayers, they support chemical energy and are precursors for inflammatory 

messengers such as AA and ceramides (van Meer et al. 2008). Arachidonic acid is an 

omega-6 (n-6) polyunsaturated fatty acid, esterified on the sn-2 acyl position of 

phospholipids such as phosphatidylethanolamine, phosphatidylcholine, and 

phosphatidylinositol (Yin et al. 2013). During CNS injury, microglial cells release 

cytokines/chemokines that activate the cytosolic calcium-dependent phospholipases A2 

(cPLA2) that catalyzes the hydrolytic release of AA from membrane phospholipids. 

Oxidation of AA produces pro-inflammatory eicosanoids, which are local hormones that 

can be further subdivided into prostaglandins, leukotrienes, prostacyclins, and 

thromboxanes (Figure 1.4) (Farooqui et al. 2007). Eicosanoids in the brain can be secreted 

by several classes of cells such as microglia, astrocytes, oligodendrocytes, neurons and 

endothelial cells (Bendani et al. 1995). They are proinflammatory lipid mediators with 

autocrine and paracrine activities. From AA, the cyclooxygenase (COX) pathway gives 
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rise to prostaglandins, prostacyclines and thromboxanes; alternatively, the lipoxygenase 

pathway generates leukotrienes and lipoxins (Figure 1.4) (Radmark and Samuelsson 2009).  

Another dysregulated lipidic pathway observed in the CNS of HIV-infected patients is the 

ceramide pathway. Ceramide is a crucial mediator of cell differentiation, proliferation, 

survival, and apoptosis (Andrieu-Abadie et al. 2001). It is a metabolic and structural 

precursor for many sphingolipids, such as sphingomyelin (SM), ceramide-1 phosphate 

(Cer1-P) and glucosylceramide. The de novo synthesis of ceramide originates in the 

endoplasmic reticulum (ER) through a series of condensation and reduction reactions. 

Specifically, serine palmitoyltransferase (SPT) catalyzes the initial step of the pathway 

converting the L-serine (L-ser) and the palmityl coenzyme A (PalmitylCoA) in 3-keto-

dihydrosphingosine (3KdhSph) that is translated in dihydrosphingosine (dhSph) by 3-keto-

dihydrosphingosine reductase (3KSR). (Dihydro)ceramide synthase (dihydroCS) removes 

sphingoid bases and produces dihydroceramide (dhCer), which is converted into Cer by 

dihydroceramide desaturase (DES). Next, Cer is transported via non-vesicular transport by 

ceramide transfer protein (CERT) and via vesicular transport by four-phosphate adaptor 

protein 2 (FAPP2) to the Golgi apparatus. There, Cer is modified to form SM, Cer1-P and 

glucosylceramide (GluCer). The latter is the precursor for complex glycosphingolipids 

(GSL). After Cer synthesis in the Golgi apparatus, SM and complex GSL are delivered to 

the plasma membrane by vesicular transport. Several sphingolipid metabolic enzymes are 

present at the plasma membrane to regulate the levels of SM, Cer, Sph and sphingosine-1-

phosphate (S1P). The latter is produced from Sph by sphingosine kinase (SK) and may also 

take part in the salvage pathway for generation of Cer. Coordination between S1P and 

Cer1-P is crucial for eicosanoid inflammatory mediator production such as prostaglandins 

(Hannun and Obeid 2008). During endocytosis, membrane sphingolipids are internalized 

and transported to the lysosome via endocytic vesicles, where acid sphingomyelinase 

(aSMase), acid ceramidase (aCDase), and glycosidase catalyze the hydrolysis (Figure 1.5) 

(Bartke and Hannun 2009).  

An important Cer related metabolite is sulfatide because it is the major lipidic component 

of the myelin sheet (~4%). It is synthetized in the Golgi apparatus of oligodendrocytes and 

Schwann cells. Sulfatide is a class of anionic sulfoglycolipids mainly found in the outer 

leaflet of the plasma membranes of cells (Honke 2013). Its presence is not exclusive to 
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oligodendrocytes and Schwann cells, where is located to the plasma membrane, it is also 

produced in neurons and astrocytes, where is located in intracellular compartments 

(Ishizuka 1997). The precursor of sulfatide is galactosylceramide, which undergoes 3-O-

sulfation of the galactose residue by the enzyme 3′-phosphoadenosine-5′-phosphosulfate: 

cerebroside sulfotransferase (CST). Galactosylceramide is synthesized in the ER from 

ceramides and UDP-galactose by the enzyme UDP-galactose: ceramide 

galactosyltransferase (CGT) and is then transported to the Golgi apparatus prior to sulfation 

to sulfatide. Sulfatide is specifically degraded by a sulfatase (arylsulfatase A) in the 

lysosome (Figure 1.5) (Eckhardt 2008).  
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Figure 1.4. Metabolic pathway of Arachidonic acid (AA) transformation into 

eicosanoid products 

After proinflammatory stimulus, AA can be cleaved by cytosolic phospholipase A2 

(cPLA2) from diacylglycerol or phospholipids that compose cellular membranes. Free AA 

can take part in the Cyclooxygenase (COX) and Leukotriene (LO) pathways. For the 

cyclooxygenase pathway, AA is converted into prostaglandin H2 (PGH2), which generates 

prostacyclin (TXA2) by prostacyclin synthase and thromboxane by thromboxane synthase. 

In addition, PGH2 is converted in prostaglandin D2 (PGD2) and prostaglandin F2 (PGF2) 

by PGD and PGE synthetases. On another hand, AA can be transformed in Arachidonate 

5-lipoxygenase (5-LO) by lipoxygenase. The same enzyme catalyzes the conversion of 5-

LO to leukotriene A4, which is conjugated with reduced glutathione to be transformed into 

leukotriene C4. Next, leukotriene C4 is converted into leukotriene D4 and leukotriene E4 

with subsequent production of glutamic acid. 
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Figure 1.5. Localization and metabolism of Ceramide 

Ceramide is generated either by hydrolysis of SM through SM-specific Phospholipase-C 

(PLC) termed Sphingomyelinases (SMases), by de novo synthesis through the enzyme 

ceramide synthase (CerS) in the endoplasmic reticulum (ER), through the acylation of 

sphingosine in the salvage pathway, by dephosphorylation of Cer1-P, and catabolism of 

glycosphingolipids.  
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Arachidonic Acid and Ceramide related metabolites as possible HAND indicators 

HIV-infection and subsequent treatment with cART is often associated with perturbations 

in lipid profiles (Archibald et al. 2014, Griffin et al. 1994, Padmapriyadarsini et al. 2017), 

but any studies have investigated their altered metabolism in the brain. For instance, HIV-

infected population show decreased levels of high density lipoprotein (HDL) cholesterol 

and increased levels of low density lipoprotein (LDL) cholesterol, total cholesterol (TC) 

and triglycerides in the blood (Archibald et al. 2014, Padmapriyadarsini et al. 2017). 

Interesting AA and Cer pathways have foreshadowed their direct or the indirect function 

in HAND but limited data are present in the literature. Some AA metabolites are 

upregulated in the HIV-infected CNS, which may be correlated with cognitive impairment. 

Prostaglandin E2 elevated levels in the CSF of HIV-positive individuals correlates with 

dementia (Griffin et al. 1994). However, the direct role of these inflammatory lipid 

mediators in the development and progression of HAND is still not completely understood.  

Relatively more investigations have been performed for Cer metabolites in the brain of 

HIV-infected patients. Levels of Cer and SM are significantly increased in brain tissues 

and CSF of HIV-infected patients with dementia compared to mild demented and HIV-

infected without cognitive disorder individuals (Haughey et al. 2004). The same group 

demonstrated elevated level of Cer and SM in hippocampal neuronal cultures after 

stimulation with Tat or gp120 which induces apoptosis (Haughey et al. 2004). This suggest 

a possible correlation between lipid secretion and HIV proteins.  In conclusion, our studies 

aim to demonstrate that lipid biomarkers associated with the cART can fill an important 

gap in the field of NeuroHIV. The screening of these structural and inflammatory lipids 

may have a potential use for diagnosis and follow-up of HIV aviremic population affected 

by HAND. Only a recent study by MRS showed increased lipids in HIV patients with CNS 

lesion versus asymptomatic HIV individuals and healthy controls (Bairwa et al. 2016). 

Whilst, they demonstrated increased lipid levels in HIV patients with CNS lesion 

suggesting a critical role of inflammatory lipid in HAND pathophysiology, the lipid species 

involved were not elucidated. To fully understand lipidomic and metabolic changes 

occurring due to advancing disease state, lipid classes and species need to be fully 

identified at the molecular level. Mass spectrometry has emerged as the leading technique 

for accurate, sensitive and detailed lipid analysis (Han and Gross 2003).  Advanced mass 
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spectrometry technologies such as matrix-assisted laser desorption/ionization (MALDI) 

are very useful tools for making available lipidic signature in several disease conditions 

including HAND. 

 

Mass Spectrometry Imaging 

Mass spectrometry imaging (MSI) is a powerful tool allowing molecule investigations 

without extraction, purification, separation, or labeling of biological samples (Chughtai 

and Heeren 2010). MSI was introduced in 1994 by Spengler B., Hubert M. and Kaufmann 

R. at the 42nd Annual Conference on Mass Spectrometry and continue to be used  to 

examine numerous analytes such as lipids (Jackson et al. 2014), proteins (Seeley and 

Caprioli 2008), peptides (Schober et al. 2012), metabolites (Bhandari et al. 2015), drugs 

(Mdanda et al. 2019) in different samples including mammalian tissues, plant tissues (Li 

B. et al. 2018), insects (Ly et al. 2019) and microbial cultures (Hoffmann and Dorrestein 

2015). Mass spectrometry imaging determines the molecule distribution present in 

biological samples by direct ionization from the tissue surface and without the requirement 

for chromatographic separation. The mass spectrometer ionizes and analyzes the molecules 

on the surface of the sample and generates a mass spectrum at each acquisition point (pixel 

in the resulting image) of the tissue section surface. Every mass spectrum is analyzed by 

computational software selecting individual mass-to-charge (m/z) values and calculating 

the intensity from each pixel. Signal intensities are later plotted to generate a heat map 

image showing the relative distribution of every molecule with specific m/z values 

(Buchberger et al. 2018). Matrix-assisted laser desorption/ionization (MALDI) is the most 

sensitive and used ionization technique for MSI (Leopold et al. 2018). For MALDI-MSI, 

fresh frozen samples are used, which are later sectioned (~12 μm thickness), thaw-mounted 

onto the microscope slides (e.g., indium tin oxide coated glass slides for MALDI-MSI 

lipidomics) and placed into a desiccator to dry in order to not compromise molecules 

distribution and structures. MALDI requires matrix or nanoparticles application to 

facilitate the production of charged ions. Commonly used matrices for lipids and small 

molecules include: 2,5-dihydroxybenzoic acid (DHB), 9-aminoacridine (9-AA), 1,5-

Diaminonaphthalene (DAN), and norharmane (NRM) (Goto-Inoue et al. 2011). The matrix 

is typically applied to the tissue by spraying method (Agar et al. 2007). The matrix absorbs 
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the energy of the UV laser resulting in thermal desorption and ionization of the co-crystal 

analytes in the gas phase where they are measured using by a mass analyzer (Karas and 

Kruger 2003). The tissue remains intact and the same section can be washed with methanol 

and used for histological examinations (Schwamborn and Caprioli 2010). The use of high-

mass resolution and high mass accuracy analyzers (such as the Orbitrap) provides specific 

and unequivocal information about the elemental composition of the desorbed ion from the 

tissue (Landgraf et al. 2009).  

Although MALDI-MS is used in lipidomics, proteomics, metabolomics, and glycomics, 

several reasons have encouraged the use of MSI for lipids. As discussed before, lipids are 

abundant molecules in the cells, especially in the membranes, and they can be easily 

ionized in order to generate abundant positive or negative ions during the MALDI process. 

Moreover, many (but not all) lipids have molecular weights below 1,000 Daltons, that is 

an optimal mass range for their diffusion into the matrix crystals and for sensitive operation 

of MALDI (Berry et al. 2011). Whether lipids can be detected in positive mode or negative 

mode depends upon the charge of the head group. Several types of lipids, such as 

phospholipids (Zaima et al. 2009), neutral lipids (Hayasaka et al. 2009), glycolipids (Goto-

Inoue et al. 2010), and fatty acids (Hayasaka et al. 2010) have been investigated by MSI. 

Multiple lipid species have been identified as potential markers for diseases including 

cancer (Paine et al. 2019), cardiovascular infarction (Menger et al. 2012), Alzheimer’s 

(Hong et al. 2016), and  hepatitis B (Park E. S. et al. 2014). 

For example, MALDI-MSI was applied to investigate specific host lipidic distribution as 

well as for accurate localization of Mycobacterium Tuberculosis in pulmonary granulomas. 

Using serial sections to perform MALDI-MSI assessed the spatial distribution of drugs for 

tuberculosis and mycobacterial glycolipids in lesion sections detected by acid-fast staining 

and microscopy. Thus, they obtained a perfect map of drugs colocalizing with specific 

metabolites and bacterial target populations (Blanc et al. 2018, Prideaux et al. 2015a, 

Prideaux et al. 2015b, Zimmerman et al. 2018). Using a similar approach, we have applied 

MALDI-MSI lipidomic analysis to investigate lipidic dysregulations that are very common 

in pathological conditions such as HAND. We identified in post-mortem brain tissues 

multiple structural lipids that maintain their distribution and abundance under HIV 

condition indicating little to no structural damage is occurring in these tissues. However, 
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we detected significant changes in sulfatide brain distribution and abundance compared to 

the control condition. Thus, we proposed sulfatide as a potential indicator of 

neurocognitive impairment. In the future, we want to expand our research to detect this 

specific lipid in the blood or in the CSF of HIV-infected patients and predict CNS damage.  
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Part IV - Aims of the study 

This Ph.D. thesis aims to test the hypothesis that “neurocognitive decline in HIV-infected 

population is mediated through CNS viral reservoirs by local lipid dysregulation”. To 

address this hypothesis, we generated a protocol to identify, localize, and quantify viral 

reservoirs in HIV-infected brain and lymph node tissues. We identified that the cells with 

HIV-integrated DNA are not totally silent and still producing viral proteins even in patients 

under efficient cART. In addition, viral proteins diffused to the neighboring uninfected 

cells. Therefore, viral reservoirs were shown to generate CNS damage using a bystander 

mechanism. Using MALDI-MSI, we aimed to identify whether altered lipid distribution in 

both grey and white matter could be involved in bystander damage. We identified sulfatide 

as a potential indicator for HAND pathogenesis. We also determined that HIV proteins can 

induce the secretion of sulfatide. Subsequently, we examined sulfatide effects by detecting 

key molecules involved in cell-to-cell communication such as Connexin43, Connexin36 

and Zonula Occludens-1. Additionally, we investigated the extracellular effects of sulfatide 

on cellular metabolism by performing proteomics analysis and cell mito stress Seahorse.  

Through the following aims, we intend to provide evidence for a new mechanism that can 

justify CNS viral reservoirs and lipid alternation connection with HAND.  

For the future, we will complete and expand our data to identify whether sulfatide and its 

biosynthetic pathways can be potential pharmaceutical targets to cure or prevent 

neurocognitive impairment in HIV-infected population that under cART show an 

undetectable viral replication.  
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Chapter 2: Identification, localization, and quantification of HIV viral reservoirs 

using improved staining and microscopy technique in human tissues 
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Introduction 

HIV persists in the body of infected individuals despite effective c-ART due to the 

presence of viral reservoirs in different tissues (Balcom et al. 2019, Blankson et al. 2002). 

Viral reservoirs are characterized as a small population of cells with integrated HIV DNA 

into the host DNA that does not produce or produce low levels of virus. This process is 

called latency (Dahabieh et al. 2015). Upon cART interruption, virus rebounds and 

repopulates the body in few weeks (Sengupta and Siliciano 2018).  Currently, most viral 

reservoir studies are performed in blood due to the easy access. The current clinical limit 

of viral detection is 20-50 HIV RNA copies (Tan et al. 2018). However, recent advances 

in the field indicate that most viral reservoirs are present in different tissue compartments 

(Lamers et al. 2016). Several tissues have been proposed as anatomical compartments for 

viral reservoirs including gastrointestinal mucosa, the liver, the brain, the lymph nodes and 

the associated lymphatic tissues, and the genital tract (Svicher et al. 2014). Currently, there 

are two schools of thought about viral reservoir compartmentalization; one describes that 

there is no difference between viral strains and evolution in tissues versus the blood (Bozzi 

et al. 2019) and a second one that indicates that virus and viral reservoirs in different tissues 

can evolve in a different way than blood strains (De Scheerder et al. 2019). Most of these 

views are based on sequencing of HIV strains because there are no available techniques to 

detect viral reservoirs in tissues in a reliable manner. Also, all the techniques that detect 

and quantify viral reservoirs are based on the detection of only one component of the virus 

such as viral DNA, mRNA or proteins. These techniques to detect viral reservoirs are 

described in Table 1, overall, they involve the particular amplification of the viral reservoir 

population or viral component by inducing proliferation and selection by viral reactivation 

with phytohaemagglutinin (PHA) and phorbol myristate acetate (PMA). However, it is 

unclear whether these amplification systems overrepresent or only detect a partial size of 

the total viral reservoirs poll (Finzi et al. 1997, Massanella et al. 2018).  

Viral reservoirs are characterized by having a potentially productive HIV DNA 

integrated into the host DNA (Pinzone and O'Doherty 2018). Moreover, HIV DNA 

integration cannot assure viral replication because there are several mechanisms that could 

compromise HIV replication including mutations, wrong site or direction of integration, 

and epigenetic regulation (Abbas and Herbein 2012, Cary et al. 2016). If the HIV DNA 
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enables viral production, viral mRNA will be produced upon infection or reactivation. 

Viral mRNA expression results in viral protein production and subsequent viral particle 

assembly and release of mature virions. However, the ratio of HIV integration, viral RNA 

and protein production, are totally unknown in viral reservoirs. Several laboratories 

indicate that during effective cART, several HIV proteins are produced and several animal 

models overexpress them (Nesbit and Schwartz 2002). Furthermore, these viral proteins 

are secreted as soluble proteins and the proteins, not the virus, induce inflammation and 

bystander damage into the neighboring cells. However, there are no data in vivo that show 

this mechanism in latently HIV-infected individuals. Most of these models are accepted 

mechanisms but not based on strong data. The main problem to demonstrate that these 

models and bystander mechanisms of damage are present is due to the inability to correctly 

identify, localize, and quantify latent HIV reservoirs within infected individuals in the 

circulation and in the tissues. 

One of the major objectives of this thesis was to design, test, and validate a method 

to detect, localize, and quantify viral reservoirs in tissues and in circulation using a multi-

probe and antibody-based system visualized using microscopy. Our method enables the 

identification of HIV integrated DNA, HIV mRNA, and several viral proteins in a single 

test.  

 

Materials and Methods 

Sample Preparation 

Human brain and lymph node tissue blocks were obtained from the National NeuroAIDS 

Tissue Consortium (NNTC). The patient information are indicated in Table 2. Fixed and 

unfixed tissue blocks were cut in seven µm thick tissue serial sections using a Leica 

RM2235 microtome or Leica CM1850 cryostat (Buffalo Grove, IL) and thaw-mounted 

onto frosted glass microscope slides. After sectioning, unfixed tissues were fixed with PFA 

4% (15710-S, Electron Microscopy Science, Hatfield, PA) for 20 minutes and stored at 4 

ºC.  

For blood, an entire Leukopak was used to isolate PMBC using Ficoll-Paque (GE17-1440, 

GE Healthcare, Chicago, IL). Centrifugation of 30 minutes at 400 x g was required to 

obtain a clean buffy coat and an additional centrifugation of 10 minutes at ≥450 x g was 
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necessary for removing the ficoll from the white cells. The PMBC pellet obtained was 

sliced and fixed with PFA 4%.  

For all these analyses serial sections were essential to perform 3D reconstructions of large 

pieces of tissues with the main objective to quantify thousand-millions of cells in the 3D 

reconstructed samples. 

 

Protocol for Detecting Viral Reservoirs (fixed and fresh tissue blocks) 

Rehydration: 

1. Immerse slides into two separate xylene solutions, 5 minutes each. 

2. Immerse slides into two separate solutions containing 100% ethanol, 3 minutes 

each. 

3. Immerse slides into a solution containing 96% ethanol dissolved in ddH2O, 3 

minutes. 

4. Immerse slides into a solution containing 90% ethanol dissolved in ddH2O, 3 

minutes. 

5.  Immerse slides into a solution containing 70% ethanol dissolved in ddH2O, 3 

minutes.  

6.  Immerse slides into a solution containing 60% ethanol dissolved in ddH2O, 3 

minutes.  

7.  Immerse slides into a solution containing 50% ethanol dissolved in ddH2O, 3 

minutes.  

8.  Immerse slides into pure water for at least 3 minutes. 

5. Encircle the specimen with Dako Pen (cat # 52002). 

6. Immerse slides into a solution of pure water for 3 minutes. 

 

Pre-treatment: 

7. Place slides in humidity chamber. 

8. Dilute the needed amount of Proteinase K (0.01 mol/ml, K5201, Dako products-

Agilent Technologies, Santa Clara, CA),1:10 in TBS. 

9. Add 150 µl of diluted Proteinase K to each section and incubate for 10 minutes at 

room temperature. 
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11. Immerse slides into pure water for 3 minutes. 

12. Immerse slides in 96% ethanol for 20 seconds and air-dry the slides for 5 minutes. 

 

DNA probe Hybridization: 

13. Dilute probe stocks to 10 µM in TBS and add to the specific sections Nef-PNA 

Alexa 488 (Alexa488-GCAGCTTCCTCATTGATGG) and Alu-PNA Cy5 (Cy5- 

GCCTCCCAAAGTCGTGGGATTACAG) (PNA Bio, Thousand Oaks, CA).  

14. Place slides in a pre-warm humidity chamber. 

15. Incubate slides at 42 ºC for 30 minutes then at 55 ºC for 1 hour. 

Note: from this point try to work in the dark. 

 

DNA Probe Stringent wash: 

16. Preheat stringent wash working solution (PNA ISH kit, K520111-2, Dako products-

Agilent Technologies, Santa Clara, CA) diluted 1:60 to 55 ºC in a water-bath. 

17. Place slides in stringent wash solution for 25 minutes in an orbital shaker at 55 ºC. 

18. Equilibrate the slides to room temperature by immersion in TBS for 20 seconds. 

Note: Probe will be detected in the subsequent steps.  

 

Viral RNA Probe detection: 

21. Place slides in humidity chamber. 

22. Apply RNAscope probe (HIV RNAscope 2.5 HD Detection Reagent–RED Kit, 

322360, ACD). 

23. Incubate slides at 42 ºC for 30 minutes then at 55 ºC for 50 minutes. 

Note: the autofluorescence of the probe is used for accurate measure. 

 

RNA Probe Stringent wash: 

24. Preheat stringent wash working solution (PNA ISH kit, K520111-2, Dako products-

Agilent Technologies, Santa Clara, CA) diluted 1:60 to 55 ºC in a water-bath. 

25. Place slides in stringent wash solution for 15 minutes in an orbital shaker at 55 ºC. 

26. Equilibrate the slides to room temperature by immersion in TBS for 20 seconds. 
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Hybridize RNA (RNAscope 2.5 HD Detection Reagent–RED kit, 322360, ACD): 

26.  Add three drops of tube 1 and incubate for 30 minutes at 40 ºC. 

27.  Immerse slides in TBS for 5 minutes. 

28.  Add three drops of tube 2 and incubate for 15 minutes at 40 ºC. 

29.  Immerse slides in TBS for 5 minutes. 

30.  Add three drops of tube 3 and incubate for 30 minutes at 40 ºC. 

31.  Immerse slides in TBS for 5 minutes. 

32.  Add three drops of tube 4 and incubate for 15 minutes at 40 ºC. 

33.  Immerse slides in TBS for 5 minutes. 

34.  Add three drops of tube 5 and incubate for 30 minutes at room temperature. 

35.  Immerse slides in TBS for 5 minutes. 

36.  Add three drops of tube 6 and incubate for 15 minutes at room temperature. 

37.  Immerse slides in TBS for 5 minutes. 

36.  Add three drops of tube RED and incubate for 10 minutes at room temperature. 

37.  Immerse slides in TBS for 5 minutes. 

 

Immunofluorescence: 

38. Perform antigen retrieval incubating the section in antigen retrieval solution 

(S1700, Dako products-Agilent Technologies, Santa Clara, CA) at 80 ºC in water-bath for 

30 minutes. 

39. Permeabilize with Triton X-100 (X-100, Sigma-Aldrich, St. Luis, MO) 0.1% in 

TBS for 2 minutes. 

40.  Block unspecific binding sites of presence of Fc receptors using the blocking 

solution (1 ml 0.5 M EDTA pH 8.0 (15575-038, Thermo Fisher Scientific, Waltham, MA), 

100 μl gelatin from cold-water fish skin (G7765, Sigma-Aldrich, St. Luis, MO), 0.1 g 

bovine serum albumin (BSA immunoglobulin-free, A2058, Sigma-Aldrich, St. Luis, MO; 

or BSA fraction V,  BP1605, Thermo Fisher Scientific, Waltham, MA), 100 μl horse serum 

(H1138, Sigma-Aldrich, St. Luis, MO), 5% human serum (Corning, New York), and 9 ml 

ddH2O) to incubate the sections for at least 1 hour at room temperature or overnight at 4 

ºC.  
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41. Applied biotinylated primary antibodies for viral proteins (p24 GXT40774, Irvine, 

CA; integrase NIH 7374; Gp120 NIH 1476; tat NIH 705; Nef NIH 2949; Vpr NIH 3951) 

and cellular markers (Iba-1, anti-goat, dilution 1:200, ab5076, Cambridge, UK; and GFAP, 

anti-mouse, dilution 1:100, G3893, Sigma-Aldrich, St. Luis, MO) and incubate overnight 

at 4 ºC. 

42. Wash 3 times with TBS every 5 minute to eliminate the unbound antibodies. 

43. Add the secondary antibodies at the right dilution and incubate for at least 2 hours. 

44. Wash 3 times with TBS every 5 minute to eliminate the unbound antibodies. 

45. Mount slides with Prolong Diamond Antifade Mount Medium containing DAPI 

(P36930, Thermo Fisher Scientific, Waltham, MA).  

 

Analysis: 

To identify the probes and the antibodies a Nikon A1 confocal microscopy with spectral 

detection was used. Absorption and emission of each fluorophore were examined using 

spectral detection to narrow the wavelengths into 20-40 nm. These analyses were also 

performed using RNAscope due to the significant amount of red color present in uninfected 

samples. The fluorescent detection of RNAscope precipitate was only found in HIV 

infected samples. For further analysis, NIS Elements (Japan) and other proprietary software 

were used.  

 

Statistical Analysis  

All data were expressed as mean ± standard deviation (STD). Differences among groups 

were analyzed by the one-way analysis of variance (ANOVA test), using Bonferroni’s 

multiple comparison test for post-hoc analysis. The level of significance was accepted at 

p<0.05. Origin v9.0 software was used for all statistical analyses performed. 

 

Results 

Identification of viral reservoirs by staining and microscopy method. As described in 

Table 1, the current techniques to detect viral reservoirs are limited to circulating cells. 

Specifically, quantitative viral outgrowth assay (QVOA), Tat/rev induced limiting dilution 

assay (TILDA), and PCR based methods use large amount of blood and require 
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proliferation and reactivation by PHA and PMA, resulting in overestimation of the viral 

reservoirs. Using these techniques, the sensitivity is 0.02 copies per million cells (see 

details in Table 1). Moreover, all these methods detected only one component of the viral 

cell cycle (e.g. viral DNA, viral mRNA or viral proteins). Thus, the size of HIV reservoirs 

within infected individuals virally suppressed with cART is not well defined.  

 To develop a better system, we generated new methodologies for multi probe and 

antigen detection to identify, localize and quantify viral reservoirs as described in Figure 

2.1. Briefly, to detect multiple HIV and host markers, we sectioned large pieces of tissues 

(cm or inches) to detect a sufficient number of total cells, due to the presence of only one 

viral reservoir into millions of uninfected cells. In addition, to the large pieces, we also 

prepared serial sections to create a sufficient volume to perform 3D reconstructions if 

required.  

The main premise and specificity of our method is based on a redundant system of control 

probes and staining to assure proper viral reservoir detection.  Briefly, for the HIV-DNA 

probe to be considered as a positive signal it needs to colocalize with Alu-repeats probe. 

Alu repeats are abundant repetitive DNA sequences dispersed throughout the human 

genome (Batzer and Deininger 2002). Also, both HIV DNA and Alu repeats need to 

colocalize with DAPI. Any inconsistence of these colocalizations indicates un-specificity. 

However, minor inconsistences were observed (data not presented). For viral mRNA, 

signal does not colocalize with DAPI and Alu-repeats due to the different subcellular 

distribution. A similar selection for specificity was used for HIV viral proteins. An example 

of staining protocol is presented in Figure 2.1. Serial sections were used to perform the 

staining for HIV-integrated DNA (DNA Nef probe), HIV mRNA (RNA scope), Alu 

repeats (DNA probes), DAPI (nuclear staining), HIV proteins (p24, integrase, Gp120, Tat, 

Nef, or Vpr) and cellular markers (Iba-1 and GFAP). In addition, H&E and trichrome 

staining were also performed and repeated between the staining to evaluate the changes in 

morphology of serial tissue sections used to identify the viral reservoirs.  So far, we have 

identified myeloid and lymphoid viral reservoirs in bone marrow (Real F. et al. in press), 

vaginal, and urethral tissues (Ganor et al. 2019). Currently, we are expanding our 

identification of viral reservoirs into other human tissues and HIV/SIV animal models.  
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Identification, localization, and quantification of HIV reservoirs within the brain of 

HIV-infected individuals.  Based on the literature, two populations of CNS cells have 

been identified in the pre-cART to be HIV infected in vitro and in vivo, they are 

microglia/macrophages and a small population of astrocytes (Clayton et al. 2017, Li G. H. 

et al. 2016). Nevertheless, their contribution to CNS damage and to the pool of viral 

reservoirs is still controversial due to the lack of reliable data in the current cART era. 

Thus, we applied our protocol to large pieces of brain and lymph node tissue sections to 

detect viral components (HIV DNA, mRNA and viral proteins) in combination with 

staining for microglia/macrophages and astrocytes (positive cells for Iba-I and GFAP, 

respectively). 

Using cortical brain tissue sections obtained from uninfected and HIV-infected 

individuals under cART (see patient information in Table 2), we stained the tissues as 

described in Figure 2.1. In the patient samples analyzed we detected few cells with HIV-

Nef DNA colocalizing with DAPI and Alu-repeats. Our analysis identified that most of the 

HIV-integrated DNA (colocalizing with DAPI and Alu-repeats) was in Iba-1 and in a small 

percentage of GFAP positive cells. A representative example was given in Figure 2.2, 

where it is shown that one section of an image 6x6 covers approximately 1500 µm2. This 

area was multiplied by 6 fields to either side. Furthermore, this figure represents only 1 

tissue section of 12 serially analyzed (84 to 144 µm combined thickness, depending on the 

protocol). Thus, the analyzed area was large enough to detect the few infected cells in a 

pool of million uninfected cells.  

Interestingly, positive cells for HIV-DNA were always in clusters of 3-10 cells 

containing virus, suggesting a cooperative niche generated by HIV-infected cells within 

the brain. Most of these clusters were closely associated with blood vessels and areas rich 

in neuronal bodies. Unequivocally, HIV-integrated DNA had never been detected in Iba-1 

and GFAP negative cells such as endothelial cells or neurons. Thus, our results confirmed 

that our innovative strategies to detect viral reservoirs is extremely specific and 

demonstrates that the virus infects microglia/macrophages and a small population of 

astrocytes in the CNS. In conclusion, our data in vivo determines that HIV-reservoirs are 

present in a small population of CNS resident cells such as microglia/macrophages but also 

in a smaller population of astrocytes (see quantification in Figure 2.5). 
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The same specificity that we detected for HIV-integrated DNA was obtained for 

HIV mRNA (data not shown). Overall, minimal colocalization with DAPI and Alu-repeats 

was found because HIV mRNA is mainly localized in the cytoplasm.  Moreover, HIV 

mRNA staining was detected only in cells containing HIV-integrated DNA (see 

quantifications in Figure 2.5 B). However, only half of the cells having integrated DNA 

also expressed HIV mRNA. The mechanism of low expression of mRNA in HIV DNA 

positive cells could be explained by the use of cART that induced an effective viral control, 

or by the presence of abortive sequences of DNA, as well as by the lack of right reactivation 

mechanism or latency (Cary et al. 2016, Ishizaka et al. 2016, Kaiser et al. 2017, Pasternak 

and Berkhout 2018, van den Dries et al. 2017). Again, mRNA was only detected in cells 

that could support viral replication such as microglia/macrophages and a small population 

of astrocytes. No unspecific staining for HIV mRNA was observed in other cell types or 

uninfected tissues. An important note is the specificity of the spectral detection system to 

detect viral mRNA over traditional colorimetric systems promoted by several companies 

(RNAscope). Several laboratories reported unspecific HIV mRNA staining due to aging 

samples or precipitates related to salts or crystals. None of these artifacts were observed if 

the tissues were analyzed by fluorescence. A critical limitation of our approach is that 

currently we can only determine HIV mRNA for Nef. Therefore, it is unknown whether 

other viral mRNAs are produced. Future experiments will focus on developing probes and 

approaches to analyze additional viral mRNAs to complete these studies.   

 

A small population of the viral reservoirs express viral proteins in the current cART-

era. Using the same human tissue samples described above, we quantified the number of 

positive cells for Nef, Gp120, Integrase, Vpr, and Tat protein. As an example of the 

analysis, we focus this discussion on the data acquired for HIV Nef protein, but the results 

need to be expanded for all the proteins indicated (Figure 2.5 C). In cells containing HIV 

integrated DNA and expressing HIV Nef mRNA, only 2% of these cells expressed HIV-

Nef protein in tissues obtained from HIV infected individuals under cART (Figure. 2.5 B). 

As a positive control, HIV encephalitic (HIVE) brain tissue was used.  In HIVE conditions 

HIV-integrated DNA, perfectly correlated with expression of HIV Nef mRNA and Nef 
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protein expression as expected due to the high HIV replication rates observed in the brain 

of HIV-infected individuals without cART (Figure 2.5 B).  

However, HIV Nef protein did not fully colocalized with cells containing HIV-

integrated DNA, suggesting that viral proteins, including Nef, gp120, Integrase, Vpr, and 

Tat, diffuse or are secreted into neighboring uninfected cells (Fig. 2.5 B and C). The most 

abundant viral proteins secreted into neighboring uninfected cells were Nef, Gp120, Vpr 

and Tat (Figure 2.5 C). Secretion of Integrase protein was less than other proteins analyzed, 

but still significant as compared to cells containing HIV-integrated DNA (Figure 2.5 C).  

In contrast, in HIVE tissues a perfect correlation was observed between Nef, Gp120, 

Integrase, Vpr and Tat protein expression in cells containing HIV-integrated DNA and 

uninfected surrounding cells (Figure 2.5 C).  

Figure 2.3 and 2.4 show representative examples of human brain tissue sections 

stained for DAPI, Gp120 protein, HIV-Nef DNA and Iba-1. In Figure 2.3, we showed the 

staining for human brain tissue from a HIV-infected patient under cART, with a normal 

CD4 count and without systemic viral replication, where it was possible to observe that 

cells positive for HIV-Nef DNA (in green), for Alu repeats (data not shown) and Gp120 

protein (in red) corresponded to macroglia/macrophages (Iba-1 positive in white). 

However, most of the Gp120 signals did not colocalize with HIV-Nef DNA in 

microglia/macrophages, suggesting that Gp120 diffused from the HIV-integrated positive 

cells into the neighboring cells. No unspecific staining was detected in human brain tissue 

sections from uninfected individuals (Figure 2.4).  

 

Quantification and extrapolation of our results into the size of the viral reservoirs 

within the brain. In the field of viral reservoirs, several questions need to be addressed for 

the brain. 1) Are there infected cells within the brain in the current cART era? 2) Are there 

viral reservoirs within the brain? 3) Which are the cell types infected in vivo? And 4) Is the 

brain a significant anatomical compartment for viral reservoirs compared to other tissues? 

To address these questions, we extrapolated our data into the entire brain (Table 3) as 

compared to our data in lymph nodes (Table 4). Our data, described above, can give an 

answer for the first three questions. To address the last question, we calculated the volume 

of tissue analyzed versus the entire volume of the human brain (Figure 2.6). We repeated 
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the same analysis for the total human lymph nodes. Two important caviars of these 

extrapolation are present. First, cortex tissue was used, other brain structures (such as basal 

ganglia) have higher levels of HIV-infected cells, this means that the total number of viral 

reservoirs may be bigger. Second, we quantified the total number of reservoirs including 

all lobes of the cerebrum, the basal ganglia, the thalamus, the ventricles and the 

hippocampi, excluding the cerebellum and peripheral areas. 

Our analysis for brain used 8 serial sections of large brain areas obtained from 

uninfected and HIV infected individuals with different sizes as indicated in Figure 2.6 A. 

Overall, we estimated that the volume analyzed was 0.005152 cm3 (Figure 2.6 B).  The 

numbers of total Iba-1 positive cells (microglia/macrophages) containing HIV DNA was 

5170 ± 6689 cells in the volume analyzed. Also, the total number of GFAP positive cells 

(astrocytes) containing HIV DNA corresponded to 1645 ± 2128 cells in the volume 

analyzed; thus, combining the numbers of both populations, the total numbers of cells 

containing HIV DNA was 6580 ± 8514 in the volume analyzed (Figure 2.6 D).  

 If we consider that the total volume of the human brain in males is 1135 cm3 and 

female is 1003 cm3 including all lobes of the cerebrum, the basal ganglia, the thalamus, the 

ventricles and the hippocampi (Allen et al. 2002). Thus, the mean volume of the brain is 

1069.1 cm3 (Figure 2.6 D). Furthermore, overall quantifications of the numbers of cells in 

the entire brain indicate that the human brain contains approximately 1.1 trillion cells 

between neurons and glia (von Bartheld et al. 2016).  

To extrapolate our data into the entire brain several assumptions were used: first, a 

mean brain volume between male and female; second, a uniform distribution of viral 

reservoirs even that dopaminergic areas, not quantified in our analysis, that in general have 

higher numbers of HIV infected cells (Gaskill et al. 2014, Purohit et al. 2011); third, a 

constant ratio between glia/neurons/and other cell types to maintain similar percentages. 

Overall, the ratio between total brain volume and volume of the sample analyzed 

corresponded to 207511.6 fold. Thus, the total numbers of cells with HIV-integrated DNA, 

expressing viral mRNA and viral proteins can be calculated as described in Table 3.  

Analyzing the lymph nodes, we considered that the human body contains ~500 

lymph nodes and one lymph node, oval in shape, has a mean volume of 1.6 cm3 

(https://opentextbc.ca/anatomyandphysiology/chapter/21-1-anatomy-of-the-lymphatic-
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and-immune-systems/). Thus, the mean volume of the total lymph nodes in the human body 

is 785.4 cm3 and the ratio between total volume of all the lymph nodes and volume of the 

sample analyzed corresponded to 457692.3 fold. In addition, we evaluated that the 

lymphocytes in the total lymph nodes are approximately 0.5 trillion 

(https://assets.thermofisher.com/TFS-Assets/LSG/brochures/I_WEB.pdf). Thus, we 

extrapolated the numbers of lymphocytes with HIV-integrated DNA, expressing viral 

mRNA and Gp120 proteins for the total lymph nodes of the human body (Table 4). We 

calculated that the 7.8% of lymphocytes of the total cells in all the human lymph nodes 

presented HIV-integrated DNA, 4.6% presented HIV-integrated DNA and HIV mRNA, 

and the 0.6% were in addition positive for Gp120 (Table 4). Consistent with the brain 

quantification of viral reservoirs (Table 3), lymphocytes negative for HIV-integrated DNA 

and presenting Gp120 protein were higher (2%) compared to the lymphocytes positive for 

HIV-integrated DNA and Gp120 protein, confirming the bystander effect of HIV proteins 

also in lymph nodes. Comparing the brain with the 500 lymph nodes of the human body, 

the total number of microglia/macrophages and astrocytes with HIV-integrated DNA is 

1/62 of the total lymphocyte reservoirs with HIV-integrated DNA in the lymph nodes. 

However, lymph nodes may present higher levels of viral reservoirs compared to brain, as 

for this reason used as a control, it is necessary to consider that the lymphoid tissues are 

important sites of viral replication during active infection and are numerous (Huot et al. 

2018, Wong and Yukl 2016). Nevertheless, we showed that brain is a valid anatomic niche 

for viral reservoirs. 

In conclusion, our data demonstrated several points. First, our methodology cannot 

only detect viral reservoirs, but can identify cells with active replication and viral protein 

synthesis. Second, our method enables us to detect bystander protein secretion or diffusion 

into uninfected cells. Third, certainly, the brain contains HIV reservoirs. Fourth, these viral 

reservoirs are mostly microglia/macrophages and a small population of astrocytes. Fifth, 

the brain is a considerable viral reservoir compartment, compared to the lymph tissues.  

 

Discussion  

HIV, as well as other viruses, has evolved to persist within the host. HIV persistence 

involves the generation of viral reservoirs that remain undetectable in cellular and 

https://assets.thermofisher.com/TFS-Assets/LSG/brochures/I_WEB.pdf
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anatomical sites (Denton et al. 2019). As discussed in the general introduction, most of the 

current techniques to detect viral reservoirs only detect one component of the viral cell 

cycle and require amplification or cell proliferation for efficient detection. Our method is 

extremely sensitive, reliable and specific for all the components analyzed.  We did not 

detect any signal in uninfected tissues and the negative and positive controls included in 

the methodology were reliable.  

 Overall, the numbers of detected viral reservoirs were lower than the described data 

in isolated microglia/macrophage and astrocytes (Castellano et al. 2017, Churchill et al. 

2009, Russell et al. 2017, Thompson et al. 2011). Thus, our data in vivo may be 

representative of the more realistic number of viral reservoirs present in HIV-infected 

individuals under effective cART, with low numbers of HIV-infected cells, with minimal 

viral mRNA and protein synthesis. Also, in the current cART era, not all the 

microglia/macrophages and astrocytes contain HIV. Thus, there is a selection mechanism 

that is not full known. 

 An important point to discuss is that for the first time, we can detect basal synthesis 

and release of several HIV proteins in tissue samples from HIV-infected individuals under 

effective cART, with normal CD4 counts and undetectable systemic replication. This result 

is unique and validates the multiple papers describing the toxic and inflammatory effects 

of viral proteins in tissue cultures and animal models without active HIV replication (Jaeger 

and Nath 2012, Kanmogne et al. 2002, Kovalevich and Langford 2012, Nath 2002). 

The clustering of the cells between microglia/macrophages and astrocytes denote a 

unique symbiosis between both cell types to keep viral reservoirs within the brain.  Viral 

reservoirs in the brain, but not in the lymph nodes, aggregate into cellular clusters. In the 

brain most clusters were close to the blood vessels. Contrary to the belief that viral 

reservoirs are only present in different kinds of CD4+ T cells, the identification of infected 

microglia/macrophages and astrocytes indicate that several cells may be infected with HIV. 

Recent data from our laboratory showing that specific macrophages of the urethral tissue 

and megakaryocytes can be infected with HIV (Ganor et al. 2019). Furthermore, data of 

human macrophages identified several mechanisms of survival that are not present in CD4+ 

T cells and require urgent examination to eliminate these cells.  
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 Our data provides a unique demonstration of the presence of viral reservoirs within 

the brain and their contribution to chronic inflammation and bystander damage is mediated 

by several HIV proteins. Our accurate process of localization and quantification is essential 

for the development of therapeutic strategies targeting specific areas of viral reservoirs and 

to treat HIV comorbidities such as the neurocognitive manifestations seen in HAND.  
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Table 1. Summary of the current techniques used to identify circulating associated 

viral reservoirs. Sample size indicates the amount of blood required; assay input reveals 

the cells used; amplification required means the necessity of clones to proliferate or 

sequences to be amplified before the assay; limits of detection indicates the lowest number 

of cells detectable.   
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Table 2. Clinical data of HIV-infected and uninfected patients. Tissues of the patients, 

provided by NNTC, used for this thesis. Data show the status of infection, the gender, the 

age, the possible cART administration during life, the last CD4 count (NP means not 

provided) and viral load of the patients analyzed plus the years following HIV diagnosis.  

Specifically, patients 1 to 5 were HIV-infected, instead, patients 6, 7, and 8 were HIV-

uninfected and used as controls. 
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Figure 2.1. Summary of the microscopy and staining protocols used to detect viral 

reservoirs. (A) Detection method. For our methodologies, blood or tissues can be used to 

detect circulating or tissue-associated viral reservoirs. Blood was prepared as described in 

the materials and methods section. Tissue sections can be unfixed or fixed with PFA 4% 

as explained in materials and methods section. The improved methods to detect viral 

reservoirs included hydration, antigen retrieval, RNA treatment, blocking and 

autofluorescence elimination that are well explained in the materials and methods section. 

The staining involved the use of 2 DNA probes, one for HIV DNA and one for Alu repeats; 

an RNA probe for HIV Nef mRNA; DAPI for the nuclear staining; and several antibodies 

for HIV and host cellular proteins. To amplify the small signals present in viral reservoirs, 

we take advantage of the biotin-streptavidin amplification system. The detection system 

required camera, software, automatic detection and algorism/spectral detection. This 

protocol was analyzed using Confocal-Stochastic Optical Resolution microscopy 

(STORM) with spectral detection capabilities. (B) Representative picture of 12 stained 

serial sections, reconstructed to generate a 3D map of the viral reservoirs. (C) 

Representative example of the protocol used to detect viral reservoirs. Serial sections were 

generated for a large piece of tissue and sections 1,11 and 12 were used to perform H&E 

and trichrome staining to assess histology and volume changes (62 µm of distance between 
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section 1 and 11). Serial sections 2, 7 and 10 were used to stain DAPI, HIV-integrated 

DNA, HIV mRNA, Alu repeats, and p24 protein to evaluate the correct 3D reconstruction 

of the tissue considering that the size of the cells is ~40 µm. Serial section 3 was stained 

for DAPI, HIV-integrated DNA, Iba-1 (microglia/macrophages marker), and GFAP 

(astrocytes marker). The other serial sections were stained for DAPI, HIV-integrated DNA, 

HIV mRNA, and HIV proteins such as Gp120, Integrase, Nef, Vpr, and Tat. Overall this 

experiment investigated 84 µm (in thickness) of tissue.  
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Figure 2.2. Representative example of staining for DAPI, HIV-Nef DNA, Iba-1 and 

GFAP in human brain tissue of HIV-infected patient under cART, with a normal 

CD4 count and without systemic viral replication. Shown is a positive field of 1500 µm2 

from a 6 by 6 picture, where it is possible to observe cells positive for HIV-Nef DNA (in 

green) and for Alu repeats (data not shown). These HIV-integrated DNA cells correspond 

to macroglia/macrophages (Iba-1 positive in red) and astrocytes (GFPA positive in white) 

that generate clusters as indicated by the arrows. Clusters are made by 3 to 10 cells located 

in the sample place. 
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Figure 2.3. Representative example of staining for DAPI, Gp120 protein, HIV-Nef 

DNA and Iba-1 in human brain tissue of HIV-infected patient under cART, with a 

normal CD4 count and without systemic viral replication. Shown is a positive field 

from a 6 by 6 picture, where it is possible to observe cells positive for HIV-Nef DNA (in 

green), for Alu repeats (data not shown) and Gp120 protein (in red). These HIV-integrated 

DNA and Gp120 protein positive cells correspond to macroglia/macrophages (Iba-1 

positive in white), as indicated by the white arrows. But most of the Gp120 signals do not 

colocalize with HIV-Nef DNA in microglia/macrophages, as indicated by the yellow 

arrows, suggesting that Gp120 can diffuse into the neighboring cells negative for HIV-

integrated DNA. 
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Figure 2.4. Human brain uninfected tissue showing no staining for HIV-Nef DNA and 

Gp120 protein. The staining is only positive for DAPI showing nuclear localization and 

Iba-1 indicating microglia/macrophages in the tissue. 
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Figure 2.5. Quantification of the viral reservoirs in brain tissue. (A) Identification of 

cell containing HIV-integrated DNA in human brain tissue sections. HIV-integrated DNA 

was not detected in any of the uninfected tissues analyzed. Between the HIV-infected brain 

tissue sections, we counted a total amount of 4-9x106-7 cells. From them, the HIV-integrated 

DNA positive cells represented 0.014% of the total volume analyzed. 0.011% of these cells 

were Iba-1 positive identifying microglia/macrophages and 0.003% were GFAP positive 

identifying them as astrocytes (* p<0.0001). (B) Identification of localized HIV-integrated 

Nef DNA, HIV Nef mRNA and Nef protein in uninfected, HIV-infected and HIV-

encephalitis conditions. HIV-integrated DNA, HIV-mRNA, and Nef protein were not 

detected in any of the uninfected tissues analyzed. Between the HIV-infected brain tissue 

sections we counted 600-1500 of HIV-integrated DNA positive cells that represent the 20% 

of the total cells, 8% of them were HIV mRNA positive and 2% were Nef protein positive. 

These small percentages are due to administration of cART during the life of the patients 

considered. HIV-encephalitis was used as a positive control for its correlation between 

HIV-integrated DNA, HIV mRNA and viral proteins. Moreover, Nef proteins were also 

located in the neighboring HIV-associated DNA negative cells, suggesting HIV protein 
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diffusion in both HIV and encephalitis conditions (* p<0.0001). (C) Identification of HIV 

proteins (Nef, Gp120, Integrase, Vpr, Tat) in HIV-integrated DNA positive and negative 

cells within uninfected, HIV-infected and HIV-encephalitis human brain sections. No viral 

proteins were detected in uninfected tissues. HIV-encephalitis human brain tissue sections 

indicated a good correlation for all the HIV proteins in HIV-integrated DNA positive and 

negative cells. On the contrary, HIV-infected human brain tissue sections showed a major 

localization of the viral protein in HIV-integrated DNA negative cells than the positive one 

(* p<0.0001).   
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Figure 2.6. Explanation of the quantification of HIV reservoirs in human brain 

tissues: rationale for approach. (A) H&E staining section used for calculating the volume 

of the tissue. (B) Quantification of the total brain volume analyzed of 8 human occipital 

cortex slides used to investigate HIV reservoirs, 0.005152 cm3. The number of 4-9x106-7 

cells corresponds to the total cells in one slide. (C) Representation of the analyzed area. 

For the large-scale quantification brain included all lobes of the cerebrum, the basal 

ganglia, the thalamus, the ventricles and the hippocampi. (D) Table showing the numbers 

of cells in the total volume of tissue analyzed, including the total volume of the brain in 

female and male, the average of the human brain volume that we used to quantify viral 

reservoirs in the total brain, and quantification of microglia/macrophages and astrocytes 

with HIV-integrated from the 8 tissue sections analyzed. 
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Table 3. Quantification of HIV reservoirs in the entire human brain.  
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Table 4. Quantification of HIV reservoirs in the total human lymph nodes.  
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Introduction  

As described in Chapter 2, our data generated in vivo demonstrated that 

microglia/macrophages and a small population of astrocytes are infected with HIV and 

survive infection for extended periods of time, even in the presence of cART. In agreement, 

our data in vitro using human primary astrocyte cultures demonstrated that only 5% of cells 

are infected with HIV (Eugenin and Berman, 2007). However, despite the low number, 

HIV-infected astrocytes can trigger bystander cellular dysfunction compromising 

neighboring uninfected endothelial cells, neurons and astrocytes by a gap junction-

dependent mechanism (Eugenin and Berman 2007, Eugenin et al. 2011, Malik et al. 2017). 

Also, our laboratory demonstrated that the bystander mechanism of toxicity was mediated 

by the Cytochrome C, inositol triphosphate, and calcium dependent mechanism (Eugenin 

and Berman 2013). Electron microscopy analysis of HIV-infected astrocytes indicated that 

mitochondria were enlarged and membrane contacts with other organelles were 

compromised (data in process of publication). This phenotype was similar to that data 

obtained in latently HIV macrophage reservoirs described by us (Castellano et al. 2019). 

Briefly, we demonstrated that latent HIV-infected macrophages have a specific metabolic 

signature characterized by the use of unusual sources of energy such as 

glutamine/glutamate (Castellano et al. 2019). Uninfected macrophages use fatty acid and 

glucose as a major source of energy and upon blocking a particular metabolic pathway they 

can switch to alternative sources of carbon. In contrast, HIV-infected macrophages use fatty 

acid and glucose but also glutamine/glutamate as a major source of energy. More 

importantly, they cannot shift between different carbon sources to produce energy 

(Castellano et al. 2019). However, whether this metabolic signature was present in HIV-

infected astrocytes is unknown.  

In contrast, the metabolism of latent HIV-infected T cells has been correlated with 

enhanced glycolysis and OXPHOS. Glucose metabolism rather than fatty acid oxidation 

characterized the primary sources of energy for the latent CD4+ T cells (Valle-Casuso et al. 

2019). Glucose transporter-1 (Glut1), which is a marker for glycolysis, is up-regulated in 

CD4+ T cells of HIV-infected patients compared with uninfected controls (Palmer et al. 

2014). Glut1 mediates the glucose metabolic pathways by the homeostatic cytokine IL-7 
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(Loisel-Meyer et al. 2012). However, it is unknown whether a similar pathway is present 

in HIV-infected astrocytes. 

Overall, the investigated latently HIV-infected cells have different metabolic signatures, 

but all of them have a common feature, they are not able to shift from one source of energy 

to another by shifting away from OXPHOS towards glycolysis that is useful to support the 

rapid cell progression and proliferation (as demonstrated in glioblastoma cells) (Guda et 

al. 2019). This finding is unique and enables us to target this “weak” mechanism present 

in HIV reservoirs. Therefore, we examined OXPHOS in HIV-infected astrocyte cultures 

using the Seahorse Biosystems platform (Agilent Technologies, Santa Clara, CA) by 

testing different sources of carbon related to the tricarboxylic acid cycle (TCA) as we 

previously described for macrophages (Castellano et al. 2019).  

 

Materials and Methods  

Cell Culture Methods 

Human primary astrocytes were cultured using high glucose Dulbecco's modified Eagle's 

medium (DMEM, 11995-065, Thermo Fisher Scientific, Waltham, MA) supplemented 

with 10% fetal bovine serum (FBS, S12450H, Atlanta Biologicals, Flowery Branch, GA), 

penicillin, and streptomycin (15070063, Thermo Fisher Scientific, Waltham, MA) and 

grown at 37 °C in a humidified atmosphere with 5% CO2.  

 

HIV-infection of astrocyte cultures 

Confluent cultures of human astrocytes were infected by incubation with HIVADA (20–50 

ng p24/ml), using a previously described protocol (Eugenin et al. 2011). Briefly, astrocytes 

were exposed to the HIVADA for 24 hours. Later HIV-infected astrocytes were washed 

extensively to eliminate the unbound virus before addition of fresh medium supplemented 

with 5% fetal bovine serum (FBS, S12450H, Atlanta Biologicals, Flowery Branch, GA) 

and leaved for 6 days. 

 

Metabolic assessment through extracellular flux analysis 

Analysis of the oxygen consumption rate (OCR) were measured using an XFp Analyzer 

(Agilent Seahorse Technologies, Santa Clara, CA). XFp Seahorse plates were seeded with 
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10,000 human primary astrocytes per well. Cells were infected with HIVADA for 7 days. 

Culture medium was replaced by XF base medium (102353-100, Agilent Seahorse 

Technologies, Santa Clara, CA) supplemented with 2 mM Glutamine (25030081, Thermo 

Fisher Scientific, Waltham, MA), 1 mM Pyruvate (P5280, Sigma-Aldrich, St. Luis, MO) 

and 10 mM Glucose (47829, Sigma-Aldrich, St. Luis, MO) according to the manufacturer’s 

instructions (https://www.agilent.com/cs/usermanuals/public/XFCellMitoStressTest). For 

testing single source of carbon for the TCA cycle, culture medium was replaced by XF 

base medium with Glutamine only, Pyruvate only, Glucose only, 2 mM Glutamate 

(1446600, Sigma-Aldrich, St. Luis, MO), or 50 µM Fumarate (242926, Sigma-Aldrich, St. 

Luis, MO) (Kornberg et al. 2018) with an adjusted pH of 7.4. Cells were then incubated at 

37°C without CO2 for 45 minutes. Four compounds from the XFp cell mito stress test kit 

(103010-100, Agilent Seahorse Technologies, Santa Clara, CA) were injected during the 

assay at the following final concentrations: oligomycin (2 µM), p-

trifluoremethoxyphenylhydrazone (FCCP, 0.8 µM), and a mixture of antimycin A (0.5 µM) 

and rotenone (0.5 µM). Agilent Seahorse software Wave 2.3 was used for data analysis. 

The mitochondrial basal respiration, the maximal respiration, the proton leak, the ATP 

production, the spare respiratory capacity and the non-mitochondrial respiration were used 

to compare metabolic activities of the HIV-infected astrocyte cultures with the uninfected 

controls. 

 

Statistical Analysis  

All data were expressed as mean ± standard error of the mean (SEM). Differences among 

groups were analyzed by t-test and one-way analyses of variance (ANOVA test), using 

Bonferroni’s multiple comparison test for post-hoc analysis. The level of significance was 

accepted at p<0.05. Prism8.0 software was used to perform statistical analyses. 

 

Results 

Analysis of the mitochondrial metabolic profile of human astrocytes by the Seahorse 

system.  The Seahorse systems enables us to measure electron transport chain (ETC) 

(Figure 3.2 A) and the OXPHOS function in the mitochondria. As indicated in the Figure 

3.2 A, the ETC mechanism occurs in the inner mitochondrial membrane and the five 

https://www.agilent.com/cs/usermanuals/public/XFCellMito
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protein complexes that compose it transfer electrons and pump protons into the inter 

membrane space. Protons in the mitochondrial inter membrane space generate a high 

proton gradient that enable the complex V to convert ADP into ATP and produce energy. 

Rotenone, Antimycin A and Oligomycin are used for the seahorse analysis to specifically 

inhibits complex I, IV and V, respectively and evaluate oxygen consumption rate (Figure 

3.2 A).  

OXPHOS is the main source of oxygen consumption in the mitochondria and OCR is used 

to assess mitochondrial integrity and performance (Figure 3.2 B). Through the Seahorse 

analysis, it is possible to evaluate the mitochondrial basal respiration, the ATP production, 

the proton leak, the maximal respiration, the spare respiratory capacity, the non-

mitochondrial respiration, and the coupling efficiency (Figures 3.2 B and 3.3). The 

mitochondrial basal respiration (Figure 3.2 A, blue box) represents the energetic demand 

of the cell under baseline conditions. The ATP production (Figure 3.2 B, pink box), 

evaluated after the inhibition of complex V by oligomycin, shows the ATP molecules 

produced by the mitochondria. The proton leak (Figure 3.2 A, violet box) characterizes the 

remaining basal respiration not coupled to ATP production. The maximal respiration 

(Figure 3.2 A, green box) calculated after the FCCP injection shows the maximum rate of 

respiration that the cells can accomplish. The spare respiratory capacity (Figure 3.2 B, dark 

green box) indicates the capability of the cell to respond to an energetic demand. The non-

mitochondrial respiration (Figure 3.2, red box) reveals the consume of oxygen after the 

addition of rotenone and antimycin A and it is driven by processes outside the 

mitochondria. The coupling efficiency represents the relationship between the ATP 

production rate and the basal respiration rate. Thus, we used this assay to provide insight 

about mitochondrial function to understand the metabolic profile of HIV-infected 

astrocytes compared to the uninfected astrocytes using different sources of carbons (Figure 

3.1), as we recently described for HIV-infected macrophages (Castellano et al. 2019).  

 

Human astrocytes can use different sources of carbon to produce energy. As indicated 

in the Figure 3.1, glucose, pyruvate, glutamine, glutamate, and fumarate can be metabolic 

sources for the TCA cycle in the mitochondria (Figure 3.1) and used by viral reservoirs to 

produce energy and survive (Castellano et al. 2019). Thus, we determined how these 
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alternative sources of carbon for the TCA cycle can affect mitochondria metabolism in 

uninfected and HIV-infected astrocytes cultures. We treated uninfected and HIV-infected 

astrocyte cultures with media supplemented with 10 mM Glucose, 1 mM Pyruvate and 2 

mM Glutamine as a mix reference media, with 10 mM Glucose, 1 mM Pyruvate, 2 mM 

Glutamine, 2 mM Glutamate, or 50 µM Fumarate containing media to perform the 

Seahorse analysis. As control, uninfected astrocytes were used and we showed that basal 

respiration (Figure 3.3 B), maximal respiration (Figure 3.3 C), proton leak (Figure 3.3 D), 

ATP production (Figure 3.3 E), spare respiratory capacity (Figure 3.3 F), coupling 

efficiency (Figure 3.3 G) and non-mitochondrial oxygen consumption (Figure 3.3 H) in 

mix control uninfected condition were induced by the ETC inhibitors using the same 

timecourse showed in Figure 3.3 A, as well as other cell types (Pence and Yarbro 2018, van 

der Windt et al. 2016). When we replaced the mix media with the media containing only 

glucose, we observed decrease in basal respiration (Figure 3.3 B, ! p=0.0215), maximal 

respiration (Figure 3.3 C, ! p=0.0069) and spare respiratory capacity (Figure 3.3 F, ! 

p=0.0068). In contrast to what we noticed for glucose, when the mix media was replaced 

with media containing only pyruvate or glutamine, we did not observed differences in basal 

respiration, maximal respiration, proton leak, ATP production, spare respiratory capacity, 

coupling efficiency and non-mitochondrial oxygen consumption. Remarkably, even that 

glutamate is a sub-product of glutamine, we observed a significant decrease in basal 

respiration (Figure 3.3 B, ^ p<0.0001), maximal respiration (Figure 3.3 C, ^ p<0.0001), 

proton leak (Figure 3.3 D, ^ p=0.0012), ATP production (Figure 3.3 E, ^ p=0.0067), spare 

respiratory capacity (Figure 3.3 F, ^ p<0.0001), and coupling efficiency (Figure 3.3 G, ^ 

p=0.0038) compared to the mix media condition, the media containing only glucose, 

glutamate or glutamate conditions. This may suggest impairment in glutamine synthetase 

or glutaminase enzymes in the HIV-infected cultures (Figure 3.1). Normally, the reaction 

between glutamine and glutamate is reservable. Thus, a gradient problem may be present 

and will be explored in future studies. When we replaced the media mix with the media 

containing only fumarate, the differences observed were for maximal respiration (Figure 

3.3 C, ~ p=0.0312) and spare respiratory capacity (Figure 3.3 F, ~ p=0.0212) that 

decreased, and for non-mitochondrial oxygen consumption (Figure 3.3 H, ~ p=0.0446) 
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which increased. These data suggest that OXPHOS is not compromised and that uninfected 

astrocytes can use different sources of carbon to produce energy. 

 

HIV-infected astrocytes can use different sources of carbon to produce energy in a 

similar manner to uninfected astrocytes.  Our Seahorse analysis comparing uninfected 

and HIV-infected astrocyte cultures treated with media supplemented with glucose, 

pyruvate and glutamine as a mix reference media, with glucose, pyruvate, glutamine, 

glutamate, or fumarate containing media did not show any significative changes in basal 

respiration (Figure 3.3 B), maximal respiration (Figure 3.3 C), proton leak (Figure 3.3 D), 

ATP production (Figure 3.3 E), spare respiratory capacity (Figure 3.3 F), coupling 

efficiency (Figure 3.3 G) and non-mitochondrial oxygen consumption (Figure 3.3 H). This 

may be explained by the low numbers of HIV-infected cells in cultures. Nevertheless, when 

we compared the HIV-infected astrocytes cultures treated with the mix media to HIV-

infected astrocytes cultures treated with glucose, pyruvate, glutamine, glutamate, or 

fumarate containing media, we detected differences. Replacing the mix media with glucose 

containing media, we only observed decreasing levels of maximal respiration (Figure 3.3 

C, !! p=0.0032) and spare respiratory capacity (Figure 3.3 F, !! p=0.0009), but no 

significant differences were detected between HIV-infected astrocytes and uninfected 

astrocytes treated with glucose. Moreover, when we replaced mix media in HIV-infected 

astrocytes with medium containing only pyruvate we did not detect any changes in basal 

respiration (Figure 3.3 B), maximal respiration (Figure 3.3 C), proton leak (Figure 3.3 D), 

ATP production (Figure 3.3 E), spare respiratory capacity (Figure 3.3 F), and coupling 

efficiency (Figure 3.3 G). Instead, the media containing only glutamine in HIV-infected 

astrocytes cultures induced decrease of spare respiratory capacity (Figure 3.3 F, ** 

p=0.0368) compared to the HIV-infected astrocyte cultures treated with media mix. In 

agreement with the control uninfected condition, media containing only glutamate also 

generated several changes compared to the mix media in HIV-conditions. In fact, the media 

containing only glutamate in HIV-infected astrocyte cultures decreased basal respiration 

(Figure 3.3 B, ^^p=0.0026), maximal respiration (Figure 3.3 C, ^^ p<0.0001), proton leak 

(Figure 3.3 D, ^^ p=0.0180), ATP production (Figure 3.3 E, ^^ p=0.0171), and spare 

respiratory capacity (Figure 3.3 F, ^^ p<0.0001) compared to HIV-infected astrocytes 
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treated with media mix, glucose, pyruvate, and glutamine containing media. Again, when 

we replaced the media mix with the media containing only fumarate in HIV-infected 

astrocyte cultures, the maximal respiration (Figure 3.3 C, ~~ p=0.0342) and the spare 

respiratory capacity (Figure 3.3 F, ~~ p=0.0368) decreased, but were maintained at the 

same levels as the uninfected astrocyte cultures treated with the media containing only 

fumarate. These results suggest that also in HIV conditions OXPHOS is not fully 

compromised, thus uninfected and HIV-infected astrocytes can use different sources of 

carbon to produce energy. 

 

HIV infection changes the non-mitochondrial oxygen consumption in astrocytes. As 

indicated above, Seahorse analysis comparing uninfected and HIV-infected astrocyte 

cultures treated with media supplemented with glucose, pyruvate and glutamine as a mix 

reference media, with glucose, pyruvate, glutamine, glutamate, or fumarate containing 

media did not show any significative changes in basal respiration (Figure 3.3 B), maximal 

respiration (Figure 3.3 C), proton leak (Figure 3.3 D), ATP production (Figure 3.3 E), spare 

respiratory capacity (Figure 3.3 F), coupling efficiency (Figure 3.3 G) and this was valid 

also for the non-mitochondrial oxygen consumption (Figure 3.3 H). In addition, when we 

replaced the media mix in HIV-infected astrocyte cultures with media containing only 

glucose or pyruvate, any differences were detected for the non-mitochondrial oxygen 

consumption. Noteworthy, only glutamine (Figure 3.3 H, ** p=0.0308) and glutamate 

(Figure 3.3 H, ^^ p=0.0449) treated HIV-infected astrocyte cultures showed decreased 

levels of non-mitochondrial oxygen consumption compared to the HIV-infected astrocytes 

treated with mix media and media containing only glucose, pyruvate or fumarate. This data 

suggests that HIV-infected astrocytes can use alternative sources of energy that are 

completely independent from mitochondria, such as the pentose phosphate pathway 

(Loreck et al. 1987).  

 

Discussion 

Measurement of cellular respiration can be used to assess cellular energy metabolism for 

the oxygen consumption during oxidative phosphorylation (Divakaruni et al. 2014). For 

our analysis, we used glucose, pyruvate, glutamine, glutamate and fumarate as respiratory 
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substrates from which electrons are transported through the electron transport chain to 

measure oxygen consumption and evaluate if HIV infection can alter mitochondrial 

metabolism in astrocytes. 

Metabolic analyses for latently HIV-infected macrophages and CD4+ T cells have shown 

that they use glutamine/glutamate and glucose, respectively, as primary sources of energy. 

Therefore, we demonstrated that HIV-infected astrocytes compared with uninfected 

astrocytes did not show compromised metabolic steps in the tricarboxylic acid cycle 

preceding oxidative phosphorylation, even in the presence of different carbon sources. This 

may be due to the culture’s composition of around 95% of uninfected astrocytes and only 

5% of HIV-infected astrocytes.  Nevertheless, the non-mitochondrial oxygen consumption 

rate decreased for glutamine and glutamate in HIV-infected astrocytes suggesting that 

glutaminase (GLS) and/or glutamine synthase (GS) enzymes do not work properly and that 

HIV-infected astrocytes need to be partially supported by a non-mitochondrial source of 

energy such as pentose phosphate pathway. The pentose phosphate pathway can metabolize 

glucose in the cytoplasm, parallelly to glycolysis (Loreck et al. 1987).  Its activity has been 

investigated in astrocytes (Brekke et al. 2012, Sickmann et al. 2005), where it covers 

approximately 5% of the glucose metabolism, but can be upregulated to in response to 

pathological conditions (Allaman et al. 2010, Dusick et al. 2007). Therefore, for future 

experiments we intend to investigate GLS and GS activity in HIV-infected astrocytes. In 

parallel, we plan to examine the glucose-6-phosphate dehydrogenase (G6PDH) activity 

because it catalyzes the conversion of glucose-6-phosphate to 6-phosphoglucono-δ-lactone 

that is the first and rate-limiting step of the pentose phosphate pathway (PPP) testing its 

role in HIV-infected astrocytes. 

Thus, if our analysis cannot draw a specific metabolic profile for HIV-infected astrocytes 

due to their low number in culture, we can assess that they use glucose as a major energy 

source as well as that they can be partially dependent on non-mitochondrial energy sources 

such as the pentose phosphate pathway.  

 

 

 

 



78 
 

 

 

 

Figure 3.1. Biochemical reactions driving the TCA cycle, adapted from (Anderson N. 

M. et al. 2018). Glucose represents the major source of energy for the cells. Glucose is 

transported into the cell by glucose transporters and delivered to the TCA cycle in the form 

of pyruvate. The starting metabolite for the TCA cycle is acetyl-CoA, deriving from 

pyruvate. Specifically, the pyruvate dehydrogenase (PDH) enzyme transforms pyruvate, 

nicotinamide adenine dinucleotide (NAD+), coenzyme A into acetyl-CoA, CO2, and 

NADH. Several redox reactions allow acetyl-CoA to produce high-energy electrons, which 

are carried to the electron transport chain by nicotinamide adenine dinucleotide (NAD+) 

and flavin adenine dinucleotide (FAD). Thus, oxidative phosphorylation produces 

adenosine triphosphate (ATP). Since NAD+ and FAD require oxygen, the TCA cycle 

works in aerobic environments. Eight steps characterize the TCA cycle. Three of them are 

irreversible: the generation of citrate from oxaloacetate and acetyl-CoA by citrate synthase 

(CS); the conversion of isocitrate to α-ketoglutarate (α-KG) by isocitrate dehydrogenase 
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(IDH2/3); and the formation of succinyl-CoA from α-KG by α-ketoglutarate 

dehydrogenase complex (KGDHC). The other steps include the conversion of citrate into 

isocitrate by aconitase (AH), the formation of the succinate from succinyl CoA by succinyl-

CoA synthase (SCS) generating guanosine triphosphate (GTP), the oxidization of succinate 

by succinate dehydrogenase (SDH) to have fumarate and transfer two hydrogen atoms to 

the FAD+ to obtain FADH2, the conversion of fumarate in malate by fumarate hydratase 

(FH), and the oxidation of malate in oxaloacetate by malate dehydrogenase (MDH) and 

generation to a molecule of NAD+.  

In addition to glucose, amino acids can also participate to the TCA cycle. Glutamine, which 

is the most abundant amino acid in the human body, enters the TCA cycle in the form of 

α-KG. Glutamine is first hydrolyzed by glutaminase (GLS) into glutamate (which can be 

converted into glutamine again by glutamine synthase, GS), which subsequently is 

dehydrogenated by glutamate dehydrogenase (GLUD) to form α-KG that continues the 

TCA cycle. The sources of carbon for the TCA cycle used in our experiment are highlighted 

in red. 
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Figure 3.2. Mitochondrial metabolic profile by Seahorse system: rationale for 

approach.  (A) Electron transport chain mechanism. Electron transport chain mechanism 

occurs in the inner mitochondrial membrane and is composed of five protein complexes 

that transfer electrons and pump protons from the matrix to the inter membrane space, 

generating a high proton gradient within the inter membrane space that is used to pump 

protons through complex V to convert ADP into ATP. Briefly, complex I receives two 

electrons from NADH and facilitates the transport of four hydrogen ions from the matrix 

to the inter membrane space. Complex II, which receives two electrons from complex I, 

converts succinate to fumarate to produce the hydrogen ions needed to convert FAD to 
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FADH2. FADH2 transfers electrons to the complex III, which gives them to the 

Cytochrome C (CytC) and pumps four hydrogens into the inter membrane space. CytC is 

a mobile electron carrier that shuttles electrons from complex II to complex IV, which 

transfers two protons to the intermembrane space. Complex IV also mediates the 

conversion of oxygen into water using two protons removed from the matrix. In conclusion, 

the transport of two electrons trough the ETC enables hydrogens to be pumped into the 

intermediate space generating a chemical potential gradient necessary for complex V to 

convert ADP into ATP. Rotenone, Antimycin A and Oligomycin are inhibitors of complex 

I, IV and V, respectively, used to evaluate oxygen consumption rate. (B) Oxygen 

consumption rate examined by Seahorse analyzer. After the measurement of basal OCR 

(blue box), oligomycin is injected to inhibit complex V and shut down ATP production. 

Therefore, oligomycin is used to indirectly assess the amount of ATP produced by 

OXPHOS (pink box) and the remaining basal respiration not coupled to ATP production 

generates proton leak (violet box). The second injection is characterized by FCCP that 

determines the maximal OCR (green box), which dissipates the membrane potential 

between the intermembrane space inducing an increase of electron transport chain to 

compensate the chemical gradient. The difference between maximal respiration and the 

basal respiration represents the spare respiratory capacity (dark green box) that is a measure 

of the ability of the cell to respond to increased energy demand or stress. The final injection 

with rotenone and antimycin A completely shuts down electron transport, inhibiting 

complex I and complex II. This combination collapses mitochondrial respiration and 

enables the calculation of non-mitochondrial respiration (red box) driven by processes 

outside the mitochondria.  

 

 

 

 



82 
 

 

Figure 3.3. HIV-infection of astrocytes decreases the non-mitochondrial oxygen 

consumption after treatment with media containing only glutamine and glutamate as 

major carbon sources. (A) Schematic representation of oxygen consumption rate by the 
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Seahorse analyzer. OCR measurements were performed in human primary astrocytes (both 

HIV-infected and uninfected) treated with media supplemented with 10 mM Glucose, 1 

mM Pyruvate and 2 mM Glutamine as mix, with 10 mM Glucose, 1 mM Pyruvate, 2 mM 

Glutamine, 50 µM Fumarate, and 2 mM Glutamate, separately. (B) Basal respiration 

measurement. Basal respiration did not change between control uninfected and HIV-

infected astrocytes treated with mix media, media containing only glucose, pyruvate, 

glutamine, glutamate media, or fumarate, as well as the other measurements. Decreased 

levels of basal respiration were detected in glucose control uninfected condition (! as 

compared to the mix control uninfected condition, p=0.0215, n=9), in glutamate control 

uninfected condition (^ as compared to the mix control uninfected condition, p<0.0001, 

n=9), in glutamate HIV-infected conditions (^^ as compared to the mix HIV-infected 

condition, p=0.0026, n=9), and was unchanged for the other conditions respectively 

compared with the control uninfected and the HIV-infected mix. (C) Maximal respiration 

measurement. The maximal respiration decreased only in glucose uninfected control 

condition (! as compared to the mix control  uninfected condition, p=0.0069, n=9), in 

glucose HIV-infected condition (!! as compared to the mix HIV-infected condition, 

p=0.0032, n=9), in fumarate control uninfected condition (~ as compared to the mix control 

uninfected condition, p=0.0312, n=9), in fumarate HIV-infected condition (~~ as compared 

to the mix HIV-infected condition, p=0.0342, n=9), in the glutamate uninfected control (^ 

as compared to the mix control uninfected condition, p<0.0001, n=9) and HIV-infected 

conditions (^^ as compared to the mix HIV-infected condition, p<0.0001, n=9). (D) Proton 

leak measurement. The proton leak was only reduced in the glutamate conditions (^as 

compared to the mix control uninfected condition, p=0.0012; ^^ as compared to the mix 

HIV-infected condition, p=0.0180, n=9).  (E) ATP production measurements. Consistent 

with D, ATP production was reduced in glutamate conditions (^ as compared to the mix 

control uninfected condition, p=0.0067; ̂ ^ as compared to the mix HIV-infected condition, 

p=0.0171, n=9). (F) Spare respiratory capacity measurement. In agreement with the other 

measurements, the spare respiratory capacity was reduced in glutamate conditions (^ as 

compared to the mix uninfected control condition, p<0.0001; ^^ as compared to the mix 

HIV-infected condition, p<0.0001, n=9) but also in glucose conditions (! as compared to 

the mix control uninfected condition, p=0.0068; !! as compared to the mix HIV-infected 
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condition, p=0.0009, n=9), in glutamine HIV condition (** as compared to the mix HIV-

infected condition, p=0.0368, n=9), and in fumarate conditions (~ as compared to the mix 

control uninfected condition, p=0.0212; ~~ as compared to the mix HIV-infected condition, 

p=0.0368, n=9). (G) Coupling efficiency measurement. The coupling efficiency, ratio 

between ATP production rate basal respiration rate, was only reduced for glutamate 

uninfected control (^ as compared to the mix control uninfected condition, p=0.0038, n=9). 

(H) Non-mitochondrial oxygen measurement. The non-mitochondrial oxygen 

consumption was increased in fumarate uninfected control condition (~ as compared to the 

mix control uninfected condition, p=0.0446, n=9) and decreased in glutamine and 

glutamate HIV conditions (** as compared to the mix HIV-infected condition, p=0.0308; 

^^ as compared to the mix control HIV-infected condition, p=0.0449, n=9).  

Our results indicate that HIV-infected astrocytes compared with the uninfected astrocytes 

do not show compromised metabolic steps in the tricarboxylic acid cycle in the presence 

of glucose, pyruvate, glutamine, glutamate or fumarate as sources of carbon. In addition, 

glutamine and glutamate in HIV-infected astrocytes decrease non-mitochondrial oxygen 

indicating that HIV-infected astrocytes are partially supported by a non-mitochondrial 

source of energy. 
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Introduction 

Lipids are highly abundant in the brain (Hancock et al. 2017), where they perform 

several functions as vital components of membranes structure, metabolism, cell 

proliferation, survival, apoptosis, and signaling (Cermenati et al. 2015). Disruption or 

imbalance in lipid composition or metabolism has been associated with several 

neurodegenerative diseases (Mesa-Herrera et al. 2019). In Chapter 2, we demonstrated that 

the failure in eradicate HIV is due to the presence of latently viral reservoirs located in 

different anatomical compartments including the brain. Thus, we propose that HAND is 

dependent on the viral reservoirs present within the brain and one of the mechanisms of 

damage amplification is mediated by lipids.  

In a similar manner to other neurocognitive diseases (Adibhatla and Hatcher 2007, 

Xicota et al. 2019), HAND has been linked to lipid dysregulation including structural, 

signaling and circulating lipids (Bandaru et al. 2013, Kearns et al. 2017, Kelesidis and 

Currier 2014). Our interest in structural/signaling lipids was also supported by data from 

our laboratory showed peripheral lipid dysregulation in HIV-infected patients. The levels 

of PGE2 (a bioactive eicosanoid lipid) in the sera of HIV-infected individuals virally 

suppressed with cART were elevated compared to the uninfected individuals (Velasquez 

et al. 2019). In addition, PGE2 secretion in the media of the peripheral blood mononuclear 

cells (PBMCs) isolated from HIV-infected individuals or isolated from uninfected 

individuals and stimulated with Gp120 was higher compared to the secretion obtained in 

PBMCs isolated from uninfected individuals (Velasquez et al. 2019). PGE2 is an 

eicosanoid synthetized from arachidonic acid (AA) via cyclooxygenase 2 and 

prostaglandin E synthase. It is a potent inflammatory lipid mediator (Park J. Y. et al. 2006) 

that according to our laboratory data, can be secreted via pannexin 1 (Panx-1) channels into 

the extracellular space (Velasquez et al. 2019), where it binds to E-prostanoid (EP) 

receptors to trigger toxic signaling pathways into the neighboring cells (Andreasson 2010).  

Thus, we used MALDI-MSI with a high spatial resolution and high mass accuracy, 

to investigate altered structural/signaling lipid distribution in HIV-infected brain tissues 

compared to uninfected controls. We used an untargeted lipidomics approach to identify 

the major lipids spectral peaks corresponding to phospholipids highly abundant in the 

brain. Phospholipids are essential membrane lipids, they are comprised of a glycerol 
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molecule, two hydrophobic fatty acids chains, and a hydrophilic phosphate head group. 

They can be classified in several molecular species based on the fatty acid tail groups, who 

have a standard nomenclature constructed with the number of carbon atoms in the fatty 

acid chain and the number of double bonds, thereby providing information on the saturation 

of the chain. Phospholipids containing very long chain fatty acids (fatty acids with more 

than 22 carbons) are known to be predominantly located within the grey matter (Kihara 

2012). Additionally, phospholipids containing polyunsaturated fatty acids (PUFAs - fatty 

acids containing 2 or more double bonds) are mostly localized into the grey matter 

(Soderberg et al. 1991). Conversely, white matter is enriched in saturated and 

monounsaturated fatty acids (Lopez et al. 1995). Furthermore, monounsaturated fatty 

acids, particularly oleic acid, are known to be predominantly localized into myelin (Guest 

et al. 2013).  

Thus, we applied MALDI-MSI analysis to HIV-infected human brain tissue samples to 

identify potential lipid biomarkers of HAND and to verify the link between altered lipid 

distribution in the brains obtained from individuals with minimal to undetectable viral 

replication, few viral reservoirs, but with cognitive impairment. Our data demonstrate that 

despite all previous points, we identified a significant lipidic dysregulation in vast areas of 

the CNS, supporting our hypothesis that lipids “help” HIV reservoirs to spread damage 

within the CNS. 

 

Materials and Methods 

Human brain tissue sections 

Unfixed human brain tissue blocks of HIV-infected and uninfected patients were obtained 

from NNTC (Table 2 in Chapter 2). Unfixed human brain tissues were cut in 12 µm thick 

tissue serial sections using a Leica CM1850 cryostat (Buffalo Grove, IL) and thaw-

mounted onto stainless steel slides. After sectioning, tissues were placed in a dessicator for 

15 minutes and then transferred to a -80 °C freezer for storage and for preventing lipid 

degradation. All these tissues come from postmortem donations (2 hours after death), 

where blood was eliminated by PBS perfusion to prevent any lipid accumulation within 

the blood vessels.  
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Matrix application to tissue sections 

Prior to MALDI-MSI analysis, the thaw-mounted tissue sections were removed from the -

80 °C freezer and allowed to reach room temperature for 15 minutes. α-Cyano-4-

hydroxycinnamic acid (C2020, Sigma-Aldrich, St. Luis, MO) and 1,5-

Diaminonaphthalene (D21200, Sigma-Aldrich, St. Luis, MO) matrices were evaluated for 

positive and negative lipid imaging, respectively. 5 mg/ml of α-Cyano-4-hydroxycinnamic 

acid was dissolved in 70% Acetone (34850, Sigma-Aldrich, St. Luis, MO) and 5 mg/ml of 

α-Cyano-4-hydroxycinnamic acid was dissolved in 70% Acetonitrile (34851, Sigma-

Aldrich, St. Luis, MO) and 0.1% Trifluoroacetic acid (91707, Sigma-Aldrich, St. Luis, 

MO). All matrices were applied to the tissue by airspray deposition using the TM-sprayer 

(HTX Technologies LLC, Chapel Hill, NC).  The nozzle temperature was set to 60 °C, 

flow rate was 50 L/min and 20 passes over the tissue were performed.   

 

MALDI-MSI Analysis  

MALDI-MSI analysis was performed using Q Exactive HF Hybrid Quadrupole-Orbitrap 

Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with an Elevated 

Pressure Matrix Assisted Laser/Desorption Ionization (EP MALDI) source integrating an 

Nd:YAG laser (Spectroglyph LLC). Data were acquired at 40 µm2 lateral resolution in 

negative and positive ion mode. External mass calibration was performed using calibration 

solutions (A39239, Thermo Fisher Scientific, Waltham, MA).  Accurate mass measured 

lipid peaks were identified by matching to reference lipids in the LIPID MAPS and Human 

Metabolome Database within a ±0.002 Da mass tolerance window. Data visualization was 

performed using Thermo ImageQuest software. Ion images were plotted within a ±0.002 

m/z mass tolerance window and all lipid images were normalized to the total ion current 

(TIC) chromatogram. Extracted ion images were interpolated using the linear interpolate 

function. 

 

Results 

MALDI-MSI analysis for lipid markers of the grey and white matter. The workflow 

for lipidomic profiling of the human brain tissues by MALDI-MSI is shown in Figure 4.1.   

The human brain tissues were acquired from uninfected and HIV-infected individuals 
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undergoing cART, with a good CD4 count and with undetectable viral load as indicated in 

Table 2 of Chapter 2. Initially, the phospholipid profile of the frontal cortex from HIV-

infected individuals was compared to uninfected individuals to evaluate alterations in lipid 

distribution and relative intensity. To guide phospholipid localization in the grey matter 

and in the white matter, H&E staining (Figures 4.2 A, 4.3 A, and 4.4 A) was performed on 

adjacent tissue sections to the ones used for MALDI-MSI.  

Membrane phospholipids such as phosphatidylethanolamine (PE), 

phosphatidylinositol (PI), and phosphatidic acid (PA) have previously been demonstrated 

using MALDI-MSI to show altered abundance and distribution within the brain following 

damage caused by infection, inflammation, and/or trauma (Adibhatla and Hatcher 2008, 

Ojo et al. 2018). Our MALDI-MSI results indicated that membrane phospholipids of the 

grey matter (Figure 4.2 B, C, D) and the white matter (Figure 4.3 B, C, D) did not show 

significative changes in relative expression and localization in HIV-infected brain tissues 

when compared to the controls uninfected. In Figure 4.2, we show representative images 

for membrane phospholipids containing polysaturated fatty acids that are markers of the 

grey matter such as  phosphatidylethanolamine 40:6 (PE 40:6, Figure 4.2 B), 

phosphatidylinositol 18:0/20:4 (PI 18:0/20:4, Figure 4.2 C) and phosphatidic acid 40:6 (PA 

40:6, Figure 4.2 D). Note, the distribution and relative abundance of the lipids do not 

significantly change between HIV-infected brain tissue and uninfected control. As they are 

essential structural membrane glycolipids of the grey matter and unaltered in our analysis, 

we can assess that the grey matter in HIV-infected patients under cART and with 

undetectable viral load is structurally intact. Next, we repeated the same analysis for the 

white matter phospholipids, and we did not observe significant dysregulation of the 

membrane lipids. The short chain and monounsaturated fatty acid membrane 

phospholipids, phosphatidylethanolamine 36:2 (PE 36:2, Figure 4.3 B), phosphatidylserine 

36:1 (PS 36:1, Figure 4.3 C), and phosphatidic acid 36:1 (PA 36:1, Figure 4.3 D) were 

showed as representation. Even though PA 36:1 relative expression appeared increased in 

the cell bodies of HIV-infected tissues compared to controls, it is necessary to increase the 

numbers of the samples to better investigate this variation. Nevertheless, these markers 

maintained similar relative intensity and localization in the white matter of uninfected and 

HIV-infected brain tissues. Thus, these results indicated that also the structure of the white 
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matter is not compromised in HIV conditions even that most HIV-infected individuals had 

neurocognitive decline.  

 

MALDI-MSI showed sulfatide dysregulation in HIV-infected human brain tissues. 

Although the gross grey and white matter are not perturbed in HIV-infected brain, through 

our untargeted MSI analyses, we identified a specific lipid class, sulfatide, that showed a 

significative change in relative abundance between the uninfected and the HIV-infected 

brain tissues. Sulfatide, is a glycosphingolipid with a polar galactosyl-3-O-sulfate head 

group and a lipid core of ceramide made by a fatty acid and a long-chain base. Sulfatide is 

expressed in both grey and white matter (Takahashi and Suzuki 2012). Literature data 

indicate that the white matter mostly present long-chain sulfatides with structural roles in 

the plasma membrane, instead, the grey matter mainly shows short-chain sulfatides 

typically localized in intracellular vesicles (Isaac et al. 2006). As shown in Figure 4.4, 

sulfatide relative intensity was much higher in HIV-infected tissues than in uninfected 

controls, specifically in the white matter where sulfatide is known to be largely located 

(Han 2007). We analyzed several species of sulfatide, and we demonstrated that sulfatide 

containing short acid-chain 16:0 (labeled sulfatide 16:0 in Figure 4.4 B) did not show 

significative increase of relative expression between HIV-infected brain tissue as compared 

to uninfected control, but it still maintains its location in the white matter. On another hand, 

sulfatide containing short acid-chain 18:0 (labeled sulfatide 18:0 in Figure 4.4 C) and 

particularly sulfatide containing long acid-chains 24:1 (labeled sulfatide 24:1 in Figure 4.4 

D) and 25:1 (labeled sulfatide 25:1 in Figure 4.4 E) significantly increased their relative 

expression in the white matter of HIV-infected brain tissues. This result is highly important 

because it is the first data identifying and visualizing potential lipid markers in HIV-

infected patients with neurocognitive disorders.  

 

Discussion  

Lipidomics by MALDI-MSI is a young discipline with enabling high spatial 

resolution, highly specific imaging of lipids in tissue without the requirement for additional 

labeling steps (Luberto et al. 2019). Although, MALDI-MSI was previously applied to 

investigate cART distribution and efficacy in HIV-infected individuals or animal models 
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of HIV infection (Ntshangase et al. 2019, Seneviratne et al. 2018), this potent tool has not 

been used to explore lipids alteration in HIV-infected tissues, especially in the brain. 

Therefore, we proposed to investigate lipid alteration by MALDI-MSI in human brain 

tissues from HIV-infected individuals undergoing cART, with normal CD4 count and 

without detectable viral replication but developing asymptomatic or mild neurocognitive 

disorders.  

Although, HIV persists in the brain of HIV-infected individuals in few viral 

reservoirs and introduces changes in neuronal branching (Kovalevich and Langford 2012) 

generating a change in volume of the infected brain (Ances et al. 2012), the neurons do not 

die. Thus, our results showing no significative changes in relative expression and 

distribution for the essential membrane phospholipids in grey and white matter confirmed 

that the brain structures of the HIV-infected individuals undergoing cART and without 

viral replication are not compromised. 

Thereafter, analyzing ceramide related metabolites, we found that sulfatide 

increased in relative expression in the white matter of HIV-infected tissues, especially 

sulfatides containing long acid-chain. Sulfatide increase in intensity cannot be due to the 

diffusion or release from damaged brain structures because the grey and the white matter 

resulted structurally intact. Hence, we propose it is due to an increased synthesis in white 

matter or the inability of the arylsulfatase A enzyme to degrade sulfatide in the lysosome 

of the white matter.  Thus, our future experiments will focus on investigating sulfatide 

synthesis pathway in HIV-infected brain tissues.  

Sulfatide has been shown to be dysregulated in several neurodegenerative diseases. 

A substantial reduction in sulfatide levels has been observed in the brain and the CSF of 

Alzheimer’s disease subjects, in which the low levels of sulfatide is accompanied with a 

significant increase in ceramide, possibly caused by increased sulfatide degradation (Han 

et al. 2002). On the contrary, elevated levels of sulfatide was detected in the superior frontal 

and cerebellar grey matter of Parkinson’s disease subjects (Cheng et al. 2003). Thus, 

literature data and our results suggest that sulfatide has a strong potential for being 

considered a biomarker for neurocognitive impairment and a potential target for therapeutic 

molecules that can prevent or cure HAND.   
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  In addition, antiretroviral drugs, particularly protease inhibitor drugs, has been 

demonstrated to directly cause lipid dysregulation and all the HIV-infected tissues in our 

study came from patients on cART. However, current evidence supports that HAART-

induced lipid dysregulation primarily affects triglyceride and cholesterol metabolism (Lo 

2011). For HIV-infected individuals, white matter thinning with loss of volume and 

structural integrity of myelin were reported by immunohistochemical staining in 

postmortem tissues  (Langford et al. 2003) or by diffusion tensor imaging (Correa et al. 

2015) analyses suggesting a possible relation with the antiretroviral compounds used to 

treat HIV individuals (Jensen et al. 2019). Our analysis did not detect significant structural 

damage in the white matter of HIV-infected patients under cART but we intend to expand 

our analysis. Moreover, there are no current reports of direct drug-induced sulfatide 

dysregulation. Thus, the observed changes in sulfatide distribution are unlikely to be due 

to the drug therapy. 

In summary, the key points of this chapter are: 1)  grey and white matters of the 

brain of HIV-infected individuals under cART and with undetectable viral replication are 

not structurally compromised; 2) sulfatide is a potential biomarker for HAND that increase 

in the white matter of HIV-infected individuals. Thus, MALDI-MSI was essential for 

identifying sulfatide, whose role will be investigated in vitro in the following chapters.  
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Figure 4.1. Lipidomic profile by MALDI-MSI: rationale for approach. (A) Tissue 

collection and sectioning. Post-mortem frontal lobe brain tissues from uninfected and HIV-

infected individuals virally suppressed with cART, with a normal CD4 count and 

undetectable viral load were obtained from the NNTC and cryo-sectioned at 12 µm. (B) 

MALDI matrix application. Matrix was sprayed matrix using a TM-sprayer. (C) Data 

acquisition. MSI data were acquired at 40 µm
2
 lateral resolution in negative and positive 

ion mode using a Q Exactive HF Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo 

Scientific) equipped with an Elevated Pressure Matrix Assisted Laser/Desorption 

Ionization (EP MALDI) source integrating an Nd:YAG laser (Spectroglyph LLC). (D) Data 

visualization. It was performed using Thermo ImageQuest software by plotting ion 

intensity versus relative position of the data from the sample. (E) H&E staining. Adjacent 

brain tissue sections were stained with H&E to visualize brain morphology. 
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Figure 4.2. Representative distribution of phospholipids in the grey matter of 

uninfected and HIV-infected brain tissues. The top and the lower panels present brain 

sections of uninfected and HIV-infected individuals, respectively. (A) H&E-stained 

reference sections for the grey matter (indicated with grey arrows) and the white matter 

(indicated with white arrows). MALDI-MSI images for (B) phosphatidylethanolamine 

(PE) 40:6, (C) phosphatidylinositol (PI) 18:0/20:4, (D) phosphatidic acid (PA) 40:6. 

Intensity is expressed by the gradient intensity scale. Scale bar=5mm.  

Our results indicate that the relative intensity and the localization of the phospholipids 

characteristic for the grey matter do not significantly change under HIV condition. 
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Figure 4.3. Representative distribution of phospholipids in the white matter of 

uninfected and HIV-infected brain tissues. The top and the lower panels present brain 

sections of uninfected and HIV-infected individuals, respectively. (A) H&E-stained 

reference sections for the white matter (indicated with white arrows) and the grey matter 

(indicated with grey arrows). MALDI-MSI images for (B) phosphatidylethanolamine (PE) 

36:2, (C) phosphatidylserine (PS) 36:1, (D) phosphatidic acid (PA) 36:1. Intensity is 

expressed by the gradient intensity scale. Scale bar=5mm.  

Our results indicate that the relative intensity and the localization of the phospholipids 

characteristic for white matter do not significantly change under HIV condition. 
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Figure 4.4. Representative distribution of sulfatide in uninfected and HIV-infected 

brain tissues. The top and the lower panels present brain sections of uninfected and HIV-

infected individuals, respectively. (A) H&E-stained reference sections for the grey matter 

(indicated with grey arrows) and the white matter (indicated with white arrows). MALDI-

MSI images for (B) sulfatide 16:0, (C) sulfatide 18:0, (D) sulfatide 24:1, and (E) sulfatide 

25:1. Intensity is expressed by the gradient intensity scale. Scale bar=5mm.  

Our results indicate that sulfatide containing short acid-chain 18:0 and long acid-chains 

increase in relative expression in white matter under HIV condition. 
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Introduction  

As described in Chapter 4, we identified that sulfatide increases its relative expression in 

the white matter of HIV-infected individuals without any sign of structural membrane 

phospholipid dysregulation. Thus, sulfatide change in relative concentration was 

associated with HIV infection and cognitive disease. As described in Table 2, the brain 

tissue sections investigated were obtained from individuals with minimal to undetectable 

HIV replication, normal CD4 count, and asymptomatic neurocognitive impairment. 

Despite these minimal neurocognitive alterations, sulfatide changes were significant. Also, 

we described in Chapter 2 that the brain tissues analyzed only showed minimal numbers 

of viral reservoirs with perivascular localization comprised microglia/macrophages and a 

small population of astrocytes. Surprisingly, we detected that several proteins diffused to 

the neighboring areas of the brain from areas containing HIV-integrated DNA. Thus, we 

propose that HIV proteins dysregulate sulfatide release and we focused our investigation 

on Gp120, Tat1-72, Nef, Vif and Vpr. All the selected proteins have already been identified 

to have significant toxicity within the brain.  

For example, the soluble viral envelope protein Gp120 has neurotoxic effect that induces 

axonal degeneration via activation of several neurotoxic pathways including dysregulated 

calcium homeostasis, activation of oxidative stress, induction of the proapoptotic 

transcription factor p53, mitochondrial fission/fusion, and impaired mitochondrial 

dynamics (Avdoshina et al. 2016).  

The viral transactivator protein, Tat, induces neuronal apoptosis through the formation of 

a macromolecular complex composed by the low-density lipoprotein receptor-related 

protein (LRP), postsynaptic density protein-95 (PSD-95), N-methyl-d-aspartic acid 

(NMDA) receptors, and neuronal nitric oxide synthase (nNOS) in the neuronal plasma 

membrane (Eugenin et al. 2007). Moreover, Tat upregulates Cx43 gene and protein 

expression binding Cx43 promoter and supporting gap junctional communication in human 

primary astrocytes (Berman et al. 2016), which is the topic of the following chapter.  The 

viral transactivator is a 101-residue protein encoded by two exons. We decided to use Tat1-

72 that defines the first exon and that activates transcription with the same proficiency of 

the full-length protein. 
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The negative factor, Nef, is a small protein expressed abundantly in astrocytes of HIV-

infected brains. It induces axonal and neurite degeneration of neurons through oxidative 

stress (Sami Saribas et al. 2017). Nef also contributes to inflammation inducing the 

production of pro-inflammatory cytokines such as CCL5 by the Akt, p38MAPK, NF-κB, 

CEBP, and AP-1 pathways (Liu X. et al. 2014). 

The viral initial factor, Vif, shows its neurotoxic properties by inhibiting proteasomal 

degradation of ubiquitinated proteins (Royal et al. 2012).   

Instead, Vpr induces neuronal apoptosis altering the mitochondrial transition pore 

formation, inducing cytochrome c release, and  increasing the activation of caspase-8 

(Jacotot et al. 2000, Pomerantz 2004).  

In our analysis, we choose all these HIV proteins for their full blow neurotoxic effects and 

because some of them were directly detected as soluble proteins diffusing into the non-

HIV-associated DNA cells of the HIV-infected brain tissues. However, it was unknown 

whether HIV proteins compromised sulfatide release.  

 

Materials and Methods  

Cell Culture Methods 

Human primary astrocytes and SH-SY5Y human neuroblastoma cells were separately 

maintained in culture. High glucose Dulbecco's modified Eagle's medium (DMEM, 11995-

065, Thermo Fisher Scientific, Waltham, MA) supplemented with 10% fetal bovine serum 

(FBS, S12450H, Atlanta Biologicals, Flowery Branch, GA), penicillin, and streptomycin 

(15070063, Thermo Fisher Scientific, Waltham, MA) was used to grow the human primary 

astrocytes at 37 °C in a humidified atmosphere with 5% CO2. SH-SY5Y human 

neuroblastoma cells were grown in gelatin coated coverslips using the same medium of 

astrocytes supplemented with 2 mM L-glutamine (25030081, Thermo Fisher Scientific, 

Waltham, MA), 2% B27 (17504044, Thermo Fisher Scientific, Waltham, MA) and 2 mM 

Glutamax (35050-061, Thermo Fisher Scientific, Waltham, MA). Before to obtain co-

cultures, SH-SY5Y human neuroblastoma cells were differentiated with 10 µM Retinoic 

Acid (R2625, Sigma-Aldrich, St. Luis, MO-Aldrich, St. Luis, MO) for 7 days. 

Differentiated SH-SY5Y human neuroblastoma cells were flipped on the human primary 

astrocytes to obtain co-cultures that were maintained for 12 hours in the media of 
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differentiated SH-SY5Y human neuroblastoma cells before to be treated with HIV 

proteins. This is a similar protocol described for hippocampal neurons to enable proper 

differentiation and synaptic development (Kaneko et al. 2014). 

 

ELISA for sulfatide and PGE2 

Co-cultures of human primary astrocytes and differentiated neurons were treated with HIV 

recombinant proteins Gp120 (HIV-1 BaL; 50 and 100 nM; 4961, NIH AIDS Reagent 

Program, Germantown, MD), Tat1-72 (HIV-1;100, and 300 nM), Nef (HIV-1 HXB2; 100 

and 250 nM; 13134, NIH AIDS Reagent Program, Germantown, MD), Vif (HIV-1 HXB2; 

100 and 300 nM; 11050, NIH AIDS Reagent Program, Germantown, MD) or Vrp (HIV-1; 

100 and 300 nM; 6447, NIH AIDS Reagent Program, Germantown, MD), for  6, 12, 24, 

and 48 hours. Sulfatide concentration was evaluated in the co-culture media using Human 

sulfatide ELISA kit (MBS7242142, MyoBioSource, San Diego, CA), and PGE2 

concentration with human PGE2 ELISA kit (ab133021, Abcam, Cambridge, UK) 

according to the manufacturer’s instructions. Human sulfatide ELISA kit had a sensitivity 

of 1 ng/ml, human PGE2 ELISA kit had a sensitivity of 13.4 pg/ml. Sulfatide and PGE2 

concentrations were quantified by bioluminescence (Optical Density 450/415 nm) using a 

Perkin Elmer envision system (2102 Multilabel Reader, Perkin Elmer, Waltham, MA). 

 

Statistical Analysis  

All data were expressed as mean ± standard error of the mean (SEM). Differences among 

groups were analyzed by a one-way analysis of variance (ANOVA test), using Bonferroni’s 

multiple comparison test for post-hoc analysis. The level of significance was accepted at 

p<0.05. Prism8.0 software was used for the statistical analyses performed. 

 

Results 

Evaluation of sulfatide secretion in mixed co-cultures of differentiated neurons and 

human primary astrocytes. Although, magnetic resonance spectroscopy and magnetic 

resonance imaging can provide elucidation about lipid distribution and characterization, 

they have never been applied to assess lipid alteration in HIV condition, especially for 

sulfatide, due to lack of specificity. Sulfatide, is a sulfoglycolipid synthetized by 
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oligodendrocytes, Schwan cells, astrocytes and neurons (Takahashi and Suzuki 2012). Our 

MALDI-MSI results for HIV-infected brain tissues showed higher sulfatide relative 

intensity in the white matter. On the contrary, elevated levels of sulfatide were detected in 

the grey matter of Parkinson’s disease subjects (Fabelo et al. 2011) and decreased level 

were identified in the grey and in white matters of Alzheimer’s disease subjects (Cheng et 

al. 2003). These pathologies show significant brain destruction and their progression is 

irreversible, critical difference with the milder forms of HAND. However, in HIV 

condition cognitive disorders can be reversible and even fluctuating. We detected that brain 

structural damage was minimal. Thus, we propose that sulfatide may be used as a marker 

of brain compromise and can provide signs of early CNS damage. 

In control untreated condition, analysis of our co-cultures of differentiated neurons and 

human primary astrocytes indicated that sulfatide was released into the media in a stable 

manner during the time course analyzed (6, 12, 24 and 48 hours) with a concentration of 

2.331 mg/ml.  

 

Gp120 increases sulfatide secretion in mixed co-cultures of differentiated neurons and 

human primary astrocytes. Treatment of mixed cultures of differentiated neurons and 

human primary astrocytes with Gp120 50 nM for 6, 12, 24 and 48 hours and subsequent 

ELISA for sulfatide demonstrated that Gp120 50 nM transiently increased sulfatide 

secretion. Specifically, sulfatide secretion was only increased after 24 hours (Figure 5.1 A, 

* p=0.0040) to be reduced at 48 hours (Figure 5.1 A, # p=0.0040). In addition, increasing 

Gp120 concentration at 100 nM did not change the transient increase in sulfatide secretion 

at 24 hours (Figure 5.1 B, * p=0.0257) that was again decreased at 48 hours (Figure 5.1 B, 

# p=0.0012). Thus, Gp120 data indicates that some HIV proteins at specific concentrations 

and time points can increase sulfatide secretion, even transiently.  

 

Tat prevents sulfatide secretion in mixed co-cultures of differentiated neurons and 

human primary astrocytes. In contrast to the Gp120 data upregulating sulfatide secretion 

at 24 hours at different concentrations, we identify that HIV-1 Tat1-72 100 ng/ml reduced 

sulfatide secretion at 48 hours (Figure 5.2 A, # p=0.0457). Although at 6 hours sulfatide 

secretion was also reduced, it was not statistically significant. On another hand, Tat1-72 at 
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increased concentration of 300 ng/ml did not reduce sulfatide secretion at 48 hours (Figure 

5.2 B) and any significative differences compared to control were detected at 6,12, and 24 

hours. Thus, Tat1-72 data indicate that some HIV proteins at specific concentrations can 

reduce sulfatide secretion.  

 

Nef and Vif increase sulfatide secretion in mixed co-cultures of differentiated neurons 

and human primary astrocytes. Treatment of mixed cultures of differentiated neurons 

and human primary astrocytes with Nef or Vif for 6, 12, 24 and 48 hours and subsequently 

analyzed by  ELISA for sulfatide demonstrated that Nef 100 ng/ml and Vif 100 ng/ml, in 

the same manner, increased sulfatide secretion at 48 hours (Figure 5.3 A, * p=0.0148; 

Figure 5.4 A, * p=0.0005). Increasing Nef concentration to 250 nM and Vif to 300 ng/ml 

did not further increase sulfatide secretion at 48 hours (Figure 5.3 B, * p=0.0002; Figure 

5.4 B,  p=0.0157) and any significative differences compared to control were detected at 

6, 12, and 24 hours, as observed at the lower concentration. Thus, Nef and Vif data indicate 

that several HIV proteins at specific time points can increase sulfatide secretion.  

 

Vpr increases sulfatide secretion in mixed co-cultures of differentiated neurons and 

human primary astrocytes. In agreement with Gp120 data showing upregulating 

sulfatide secretion, we identified that Vpr 100 ng/ml transiently increased sulfatide 

secretion at 24 hours (Figure 5.5 A, * p=0.0094).  Partially consistent with this observation, 

treatment with a higher concentration of Vpr (300 ng/ml) induced an earlier increase in 

sulfatide secretion at 12 hours (Figure 5.5 B, * p=0.0439) compared to control condition. 

Thus, Vpr data confirm that several HIV proteins at specific concentrations and time points 

can increase sulfatide secretion, even transiently.  

 

HIV proteins do not change PGE2 secretion in vitro. PGE2, an AA-related metabolite that 

stimulates inflammation, was used as control (Figures 5.6 to 5.10). Our previous laboratory 

data showed that it is altered in the sera of all the HIV individuals. Thus, we evaluated 

whether viral proteins can regulate PGE2 release in vitro. Analysis of our mixed co-culture 

of differentiated neurons and human primary astrocytes indicated that PGE2 was released 

into the media in a stable manner at 6, 12, 24 and 48 hours with a concentration of 30 pg/ml 



104 
 

(Figures 5.5 to 5.10). Treatment of the mixed cultures of differentiated neurons and human 

primary astrocytes with Gp120 (50 nM, Figure 5.6 A; 100 nM, Figure 5.6 B), Tat1-72 (100 

ng/ml, Figure 5.7 A; 300 ng/ml, Figure 5.7 B), Nef (100 ng/ml, Figure 5.8 A; 250 ng/ml, 

Figure 5.8 B), Vif (100 ng/ml, Figure 5.9 A; 300 ng/ml, Figure 5.9 B) or Vpr (100 ng/ml, 

Figure 5.10 A; 300 ng/ml, Figure 5.10 B) for 6, 12, 24 and 48 hours and subsequent ELISA 

for PGE2 did not demonstrate difference in PGE2 secretion compared to the control. These 

results indicate that PGE2 secretion is not dependent on HIV protein stimulations.  

 

Discussion 

In this chapter, we identified that Gp120, Tat, Nef, Vif and Vpr HIV proteins are 

able to dysregulate sulfatide secretion in the co-cultures of human primary astrocytes and 

SH-SY5Y neuroblastoma cells, but the mechanism of sulfatide release is still under 

investigation.  

As described in Chapter 2, HIV protein secretion or diffusion can compromise large 

regions of tissue in close contact with viral reservoirs. This is supported by the fact that 

HIV proteins have previously been shown to be a source of neuronal damage (Kaul and 

Lipton 2006, Nath 2002). Neuronal damage occurs in the absence of neuronal infection 

and exposure of the neurons to the HIV proteins is able to trigger neuronal damage 

cascades. However, neurons in HIV-infected individuals do not necessary die but can show 

dendritic simplification and synaptic pruning, decreasing the synaptodendritic connectivity 

(Kovalevich and Langford 2012, Ru and Tang 2017). However, it still controversial 

whether in vivo HIV proteins are released into the neurons and glia cells. We demonstrated 

that this mechanism occurs in HIV-infected individuals without sign of viral replication 

(see Table 2, Chapter 2) and our research prove that the current cART blocks peripheral 

viral replication but does not prevent HIV protein synthesis.  

As described in Figure 1.5, sulfatide is concentrated in the cellular membrane 

including Golgi apparatus and lysosome. Although we demonstrated that sulfatide 

secretion can be regulated by several HIV proteins, the source of sulfatide release in 

response to HIV proteins is unknown. We cannot discard that viral proteins induce sulfatide 

secretion via gap junctions, exoxomes or other extracellular vesicles.  
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Sulfatide was released in control conditions, however, Gp120, Nef, Vif and Vpr 

were shown to increase its secretion and potentially increase apoptosis too. The 

concentration of sulfatide released as described in the subsequent chapters was not 

associated with apoptosis but toxicity cannot be excluded.  

Sulfatide may also contribute to synaptic pruning and for this reason our future experiments 

aim to analyze synaptic proteins in SH-HY5Y neuroblastoma cells stimulated with viral 

proteins to investigate synaptic stability and signaling.  

Moreover, our results for PGE2 secretion in the human primary astrocyte-SH-SY5Y 

neuroblastoma cell co-cultures did not show any significant changes in the presence of all 

the viral proteins used in this study. PGE2 secretion has been detected in PBMC isolated 

from HIV-infected individuals using a Panx-1 dependent mechanism (Velasquez et al. 

2019). To further elucidate the role of sulfatide in neuroHIV, future studies will focus on 

assessing the mechanism of sulfatide release.  
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Figure 5.1. Gp120 treatment of mixed cultures of human primary astrocytes and 

differentiated neurons increases sulfatide secretion. Media collected from co-cultures 

of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells at 

different time points were assessed for sulfatide by ELISA. Sulfatide secretion did not 

significantly change in control cultures at different time points (control equal to 2.331 

mg/ml). Due to the minimal variations, we set the control sulfatide secretion at 1. (A) 

Quantification of extracellular release of sulfatide in the media of co-cultures of human 

primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells treated with 

HIV-1 BaL Gp120 50 nM for 6, 12, 24 and 48 hours. Sulfatide secretion increased at 24 

hours (* as compared to Control condition, p=0.0040, n=3) and decreased at 48 hours (# 

as compared to Gp120 50 nM 24h condition, p=0.0040, n=3), showing a transient 

secretion; (B) the same conditions used in A were repeated with a higher concentration of 

HIV-1 BaL Gp120 (100 nM). Consistent with A, the higher concentration resulted in 

increased sulfatide secretion at 24 hours (* as compared to Control condition, p=0.0257, 

n=3), which was then reduced at 48 hours (# as compared to Gp120 100 nM 24h condition, 

p=0.0012, n=3).  

Our results indicate that independently of the different concentrations of Gp120, sulfatide 

release increases transiently at 24 hours.  
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Figure 5.2. Tat treatment of mixed cultures of human primary astrocytes and 

differentiated neurons prevents sulfatide secretion. Media collected from co-cultures of 

human primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells at 

different time points were assessed for sulfatide by ELISA. Control cultures at different 

time points did not significantly change (control equal to 2.331 mg/ml) in sulfatide 

secretion. Due to the minimal variations, we set the control sulfatide secretion at 1.  (A) 

Quantification of the extracellular release of sulfatide in the media of co-cultures of human 

primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells treated with 

HIV-1 Tat1-72 100 ng/ml for 6, 12, 24 and 48 hours. Sulfatide secretion appeared to be 

reduced at 6 hours, however the change was not significant. In addition, sulfatide secretion 

did not change at 6, 12 and 24 hours compared to the control, except at 48 hours when it 

was reduced (# compared to Control condition, p=0.0457, n=3); (B) the same conditions 

used in A were repeated with HIV-1 Tat1-72 at 300 ng/ml showing that no significant 

changes in sulfatide secretion were observed during the time course analyzed compared to 

the control. 

Our results indicate that sulfatide secretion can be reduced after treatment with Tat1-72. 
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Figure 5.3. Nef treatment of mixed cultures of human primary astrocytes and 

differentiated neurons increases sulfatide secretion. Media collected from co-cultures 

of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells at 

different time points were assessed for sulfatide by ELISA. Control cultures at different 

time points did not significantly change (control equal to 2.331 mg/ml) in sulfatide 

secretion. Due to the minimal variations, we set the control sulfatide secretion at 1. (A) 

Quantification of the extracellular release of sulfatide in the media of co-cultures of co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells treated with HIV-1 HXB2 Nef 100 ng/ml for 6, 12, 24 and 48 hours. Sulfatide 

secretion increased at 48 hours (* as compared to Control condition, p=0.0148, n=3); (B) 

the same conditions used in A were repeated with HIV-1 HXB2 Nef 250 ng/ml. Consistent 

with A, sulfatide secretion was higher at 48 hours after administration of higher 

concentration of Nef (* as compared to Control condition, p=0.0002, n=3).  

Our results indicate that sulfatide release is increased 48 hours after treatment with Nef. 
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Figure 5.4. Vif treatment of mixed cultures of human primary astrocytes and 

differentiated neurons increases sulfatide secretion. Media collected from co-cultures 

of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells at 

different time points were assessed for sulfatide by ELISA. Control cultures at different 

time points did not significantly change (control equal to 2.331 mg/ml) in sulfatide 

secretion. Due to the minimal variations, we set the control sulfatide secretion at 1. (A) 

Quantification of the extracellular release of sulfatide in the media of co-cultures of co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells treated with HIV-1 HXB2 Vif 100 ng/ml for 6, 12, 24 and 48 hours. Sulfatide secretion 

increased at 48 hours (* as compared to Control condition, p=0.0005, n=3); (B) the same 

conditions used in A were repeated with HIV-1 HXB2 Vif 300 ng/ml. Consistent with A, 

sulfatide secretion was increased at 48 hours (* as compared to Control condition, 

p=0.0157, n=3).  

Our results indicate that Vif can increase sulfatide release at 48 hours.  
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Figure 5.5. Vpr treatment of mixed cultures of human primary astrocytes and 

differentiated neurons increases sulfatide secretion. Media collected from co-cultures 

of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells at 

different time points were assessed for sulfatide by ELISA. Control cultures at different 

time points did not significantly change (control equal to 2.331 mg/ml) in sulfatide 

secretion. Due to the minimal variations, we set the control sulfatide secretion at 1. (A) 

Quantification of the extracellular release of sulfatide in the media of co-cultures of co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells treated with HIV-1 Vpr 100 ng/ml for 6, 12, 24 and 48 hours. Sulfatide secretion 

increased at 24 hours (* as compared to Control condition, p=0.0094, n=3). The release of 

sulfatide returned to control levels at 48 hours, showing a transient secretion; (B) the same 

conditions used in A were repeated with HIV-1 Vpr 300 ng/ml. Consistent with A, also at 

higher concentration, sulfatide secretion resulted increased at 12 and 24 hours (* as 

compared to Control condition, p=0.0439, n=3). The release returned to control levels at 

48 hours, indicating a transient secretion similar to the time course observed in A.  

Our results indicate that sulfatide release is increased at 12 and 24 hours after treatment 

with Vpr. 
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Figure 5.6. Gp120 treatment of mixed cultures of human primary astrocytes and 

differentiated neurons does not change PGE2 secretion. Media collected from co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells at different time points were assessed for PGE2 by ELISA. Control cultures at 

different time points did not significantly change (control equal to 30 pg/ml) in PGE2 

secretion. Due to the minimal variations, we set the control PGE2 secretion at 1.  (A) 

Quantification of the extracellular release of PGE2 in the media of co-cultures of human 

primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells treated with 

HIV-1 Bal Gp120 50 nM for 6, 12, 24 and 48 hours. PGE2 secretion did not change during 

the analyzed time course; (B) the same conditions used in A were repeated with HIV-1 Bal 

Gp120 100 nM. Consistent with A, secretion of PGE2 did not change compared to the 

control. 

Our results indicate that independent of time points and concentrations, PGE2 secretion 

does not change after treatment with Gp120.  
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Figure 5.7. Tat treatment of mixed cultures of human primary astrocytes and 

differentiated neurons does not change PGE2 secretion. Media collected from co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells at different time points were assessed for PGE2 by ELISA. Control cultures at 

different time points did not significantly change (control equal to 30 pg/ml) in PGE2 

secretion. Due to the minimal variations, we set the control PGE2 secretion at 1. (A) 

Quantification of the extracellular release of PGE2 in the media of co-cultures of human 

primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells treated with 

HIV-1 Tat1-72 100 ng/ml for 6, 12, 24 and 48 hours. PGE2 secretion did not change during 

the time course analyzed; (B) the same conditions used in A were repeated with HIV-1 Tat1-

72 300 ng/ml. Consistent with A, secretion of PGE2 did not change compared to the control. 

Our results indicate that independently of time points and concentrations, PGE2 secretion 

does not change after treatment with Tat.  
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Figure 5.8. Nef treatment of mixed cultures of human primary astrocytes and 

differentiated neurons do not change PGE2 secretion. Media collected from co-cultures 

of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells at 

different time points were assessed for PGE2 by ELISA. Control cultures at different time 

points did not significantly change (control equal to 30 pg/ml) in PGE2 secretion. Due to 

the minimal variations, we set the control PGE2 secretion at 1. (A) Quantification of the 

extracellular release of PGE2 in the media of co-cultures of human primary astrocytes and 

differentiated SH-SY5Y human neuroblastoma cells treated with HIV-1 HXB2 Nef 100 

ng/ml for 6, 12, 24 and 48 hours. PGE2 secretion did not change during the time course 

analyzed; (B) the same conditions used in A were repeated with HIV-1 HXB2 Nef 250 

ng/ml. Consistent with A, secretion of PGE2 did not change compared to the control. 

Our results indicate that PGE2 secretion after treatment does not change with Nef.  
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Figure 5.9. Vif treatment of mixed cultures of human primary astrocytes and 

differentiated neurons does not change PGE2 secretion. Media collected from co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells at different time points were assessed for PGE2 by ELISA. Control cultures at 

different time points did not significantly change (control equal to 30 pg/ml) in PGE2 

secretion. Due to the minimal variations, we set the control PGE2 secretion at 1. (A) 

Quantification of the extracellular release of PGE2 in the media of co-cultures of human 

primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells treated with 

HIV-1 HXB2 Vif 100 ng/ml for 6, 12, 24 and 48 hours. PGE2 secretion did not change at 

all the time points; (B) the same conditions used in A were repeated with HIV-1 HXB2 Vif 

300 ng/ml. Consistent with A, secretion of PGE2 did not change compared to the control. 

Our results indicate that PGE2 secretion does not change after treatment with Vif.  
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Figure 5.10. Vpr treatment of mixed cultures of human primary astrocytes and 

differentiated neurons does not change PGE2 secretion. Media collected from co-

cultures of human primary astrocytes and differentiated SH-SY5Y human neuroblastoma 

cells at different time points were assessed for PGE2 by ELISA. Control cultures at 

different time points did not significantly change (control equal to 30 pg/ml) in PGE2 

secretion. Due to the minimal variations, we set the control PGE2 secretion at 1. (A) 

Quantification of the extracellular release of PGE2 in the media of co-cultures of human 

primary astrocytes and differentiated SH-SY5Y human neuroblastoma cells treated with 

HIV-1 Vpr 100 ng/ml for 6, 12, 24 and 48 hours. PGE2 secretion did not change at all the 

time points; (B) the same conditions used in A were repeated with HIV-1 Vpr 300 ng/ml. 

Consistent with A, secretion of PGE2 did not change compared to the control. 

Our results indicate that PGE2 secretion does not change after treatment with Vpr.  
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Introduction 

A critical mechanism discovered in our laboratory is that HIV, even in the absence of viral 

replication, uses gap junctional communication to spread toxicity and inflammation from 

HIV-infected into uninfected cells. We identified that Tat is a key viral protein to maintain 

Cx43 expression and functional gap junction channels (Berman et al. 2016). Our data 

described in Chapter 2 further reinforce our previous results. Thus, we examined whether 

extracellular sulfatide regulates Connexin 43 (Cx43), Zonula-Occludens 1 (ZO-1), and 

Connexin 36 (Cx36) expression using human primary astrocytes and SH-SY5Y 

neuroblastoma cells.  

We propose that sulfatide helps to maintain Cx43 expression in neurons and glia cells. We 

specifically analyzed whether sulfatide changes Cx43 mRNA and protein expression.  

Cx43 is the major expressed connexin in astrocytes and Cx36 is exclusively expressed in 

neurons (Rash et al. 2001). In addition, we investigated the tight-junction protein ZO-1. 

ZO-1 binds to both connexins, Cx43 and Cx36, in order to stabilize them on the plasma 

membrane (Thevenin et al. 2013). Although, ZO-1 binds to the extreme carboxyl terminus 

of Cx43 with the second PDZ domain (Giepmans and Moolenaar 1998), it interacts with 

the C-terminal tail of Cx36 using the first PDZ domain (Li X. et al. 2004) while performing 

a scaffold role for the GJs in the plasma membrane. Notably, ZO-1 interaction regulates 

GJs dynamic turnover maintaining GJ channels in an open and functional state. On the 

contrary, when ZO-1 separates from Cxs, it induces GJs closure and transitioning for 

endocytosis (Thevenin et al. 2017).  This dynamic turnover of GJs determines a relative 

short half-life (1–5 hours) of Cxs and GJs, regulating the physiological presence of GJs 

into the plasma membrane and resulting in GJs recycling or the triggering of apoptosis in 

pathological conditions. In particular, the dynamic turnover of Cx43 is mediated by an 

organized process of phosphorylation/dephosphorylation in specific serine (S) residues of 

the Cx43 C-term (Thevenin et al. 2017). When Cx43 is phosphorylated in the S373, Cx43 

does not interact with ZO-1, but forward trafficking towards the plasma membrane occurs. 

The S373 phosphorylation step explains the unphosphorylated isoform (NP) detected in 

our western blotting experiment that specifically indicates Cx43 non-phosphorylated in 

S365. Once S373 is dephosphorylated, ZO-1 can bind to Cx43 and S365 is phosphorylated 

(P1 isoform of our western blotting) allowing the GJs to be open and functional. Another 
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important step includes the phosphorylation of S262 by ERK1/2 that allows Cx43 inclusion 

into the plaque (Solan and Lampe 2007), it explains the P2 isoform detected in our western 

blotting. After that, S365 and S262 become dephosphorylated, and S368 can be 

phosphorylated causing the closure of GJs and release of ZO-1. The phosphorylation on 

S368, S255, S279, and S282 cause Cx43 GJs internalization by endocytosis via clathrin 

system. Overall, we evaluate whether extracellular sulfatide compromise cell-to-cell 

communication in vitro.  

 

Materials and Methods 

Cell Culture Methods 

Human primary astrocytes, SH-SY5Y human neuroblastoma cells, and Hela cells stably 

transfected with Cx43-CFP were used. High glucose Dulbecco's modified Eagle's medium 

(DMEM, 11995-065, Thermo Fisher Scientific, Waltham, MA) supplemented with 10% 

fetal bovine serum (FBS, S12450H, Atlanta Biologicals, Flowery Branch, GA), penicillin, 

and streptomycin (15070063, Thermo Fisher Scientific, Waltham, MA) was used to grow 

all the cells at 37 °C in a humidified atmosphere with 5% CO2.  

SH-SY5Y human neuroblastoma cells were differentiated with 2 mM L-glutamine 

(25030081, Thermo Fisher Scientific, Waltham, MA), 2% B27 supplement (17504044, 

Thermo Fisher Scientific, Waltham, MA), 2 mM Glutamax (35050-061, Thermo Fisher 

Scientific, Waltham, MA) and 10 µM Retinoic Acid (R2625, Sigma-Aldrich, St. Luis, MO-

Aldrich, St. Luis, MO) for 7 days.  

Media for Hela cells stably transfected with Cx43-CFP was supplemented with 2 mM 

Geneticin (10131-027, Thermo Fisher Scientific, Waltham, MA). 

 

Total mRNA isolation 

Human primary astrocytes and SH-SY5Y cultures were treated with Sulfatide (10 ng/ml) 

for 6, 12 and 24 hours. Arachidonic acid (AA) (100 µM) was used as a control due to its 

effects in astrocytes (Martinez A. D. and Saez 1999). These concentrations were chosen 

according to lower pathological levels detected in non-myelinated areas (for sulfatide) and 

in the sera (for AA) of virologically suppressed HIV-infected individuals. Untreated and 

treated cells were harvested in TRI REAGENT (93289, Sigma-Aldrich, St. Luis, MO) 
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according to the manufacturer’s instructions. Cells were scratched in TRI REAGENT (1ml 

for 60 mm well plate) and 0.2 ml of chloroform (288306, Sigma-Aldrich, St. Luis, MO) 

were then added to the samples. After 3 minutes, the mixtures were transferred to 1 ml 

Eppendorf containing 0.5 ml pf phase lock gel (2302830, QuantaBio, Beverly, MA) and 

centrifuged at 12000 x g for 15 minutes at 4°C, to separate the RNA (aqueous phase) from 

proteins (red organic phase) and DNA (interphase). The aqueous phase was transferred to 

a fresh tube in which 0.5 ml of isopropanol (278475, Sigma-Aldrich, St. Luis, MO) was 

added. After 10 minutes, the samples were centrifuged at 12000 x g at 4°C for 15 minutes. 

The supernatant was removed and 1 ml of 75% ethanol (51976, Sigma-Aldrich, St. Luis, 

MO) was added to the RNA pellet at the bottom of the tube. The mixture was centrifuged 

at 7500 x g at 4°C for 5 minutes. The RNA was eluted from the filter in 100μl of DEPC-

treated water (AM9938, Invitrogen, Carlsbad, CA) and warmed for 10-15 minutes at 60 ºC 

to be fully dissolved. The RNA extract obtained was stored at -20 °C until use. The 

concentration of each sample was calculated by spectrophotometric analysis (OD 260/280) 

using NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA). 

 

Reverse Transcription PCR 

Reverse transcription for first-strand cDNA synthesis was performed using the SuperScript 

III First-Strand (18080-051, Invitrogen, Carlsbad, CA) according to the manufacturer’s 

instructions. 50 µM oligo (dT) was complexed with 300 ng of extracted RNA, in a final 

volume of 10 μl. Samples were incubated at 65 °C for 5 minutes and then placed on ice for 

at least 1 minute. 10 μl of cDNA synthesis mix (containing 10x RT buffer, 2 mM MgCl2, 

0.1 M DTT, 40 U/ μl RNaseOUT, 200 U/ μl  SuperScript III RT) was added prior to use of 

the Thermocycler (50°C for 50 minutes,  85°C 60’ for 5 minutes) (170-9703, BioRad, 

Hercules, CA). The cDNA obtained was stored at -20 °C until use. 

 

Quantitative real-time PCR (qRT-PCR) 

Human Cx43, ZO-1, Cx36 and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

expression in untreated and treated astrocytes and SH-SY5Y neuroblastoma cell line were 

analyzed by qRT-PCR using a StepOnePlus Real Time PCR system (4376600, Thermo 
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Fisher Scientific, Waltham, MA) (Table 5), absolute blue QPCR SYBR low Rox Mix 

(AB4323A, Thermo Fisher Scientific, Waltham, MA), and the primers in Table 6. Single 

product amplification was confirmed by melting curve analysis, and primer efficacy was 

near or close to 100% in all experiments.  

 

Table 5. qRT-PCR parameters. 

Temperature Time Process Number of Cycles 

95 ºC 15’ Enzyme Activation 1 cycle 

95 ºC 30’’ Denaturation  

 

40 cycles 

Tº annealing primers 

(~56 ºC) 

30’’ Annealing 

72 ºC 30’’ Extension 

95 ºC 15’’ Denaturation  

1 cycle 60 ºC 1’ Starting 

Temperature 

95 ºC 15’ Melting Step 

 

Table 6. Human reverse and forward primer sequences for Cx43, ZO-1, Cx36 and 

GAPDH. 

Gene Reverse Primer Forward Primer 

Cx43 5′-

GGGTTAAGGGAAAGAGCGAC

C -3′ 

5′-

CCCCATTCGATTTTGTTCTGC-

3’ 

ZO-1 5′-

CGCCTTTGGACAAAGAGAAG-

3′ 

5′-

TTTTAGGATCACCCGACGAC-3’ 

Cx36 5′-

TTCCTAGCCCTGGACAGAGA-

3′ 

5′-

GATGCAGTGCGTAGACCTGA-

3’ 
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GAPDH 5′-

AACGGATTTGGTCGTATTGGG

C-3′ 

5′-

CTTGACGGTGCCATGGAATTT

G-3’ 

 

Western blotting 

Human primary astrocytes and  SH-SY5Y neuroblastoma cultures were treated with 

sulfatide (10 ng/ml, 24323, Cayman Chemical, Ann Arbor, MI) and AA (100 µM, 2756, 

Tocris, Bristol, UK) for 6, 12 and 24 hours and harvested in RIPA buffer (9806, Cell 

Signaling, Danvers, MA) containing protease and phosphatase inhibitors (20 mM; 

pyrophosphate, 20 mM; NaF, 100 mM; NaVO3, 200 μM; leupeptin, 500 μg/ml; aprotinin, 

40 μg/ml; soybean trypsin inhibitor, 2 mg/ml; benzamidine, 1 mg/ml; ω-amino caproic 

acid, 1 mg/ml; PMSF, 3 mM; and EDTA, 20 mM). Untreated and treated cells were lysed, 

and the protein content of each cell lysate was determined using Bradford’s method (Bio-

Rad labs, Hercules, CA). Samples containing 50 μg of proteins were used to analyze Cx43, 

ZO-1, Cx36 and GAPDH. Proteins were separated in 7.5 % SDS-PAGE and 

electrophoretically transferred to nitrocellulose membrane, which was incubated 

sequentially with blocking solution (5 % non-fat milk in Tris-buffered saline); anti-Cx43 

(dilution 1:1000, anti-rabbit, C6219, Sigma-Aldrich, St. Luis, MO), anti-ZO-1 (dilution 

1:1000, anti-rabbit, 402200, Thermo Fisher Scientific, Waltham, MA), anti-Cx36 (dilution 

1:1000, anti-mouse, 37-4600, Thermo Fisher Scientific, Waltham, MA), and anti-GAPDH 

(dilution 1:1000, anti-rabbit, 14C10, Cell Signaling, Danvers, MA); and anti-rabbit/mouse 

IgG conjugated to HRP (dilution 1:1000, 7074S/7076S, Cell Signaling, Danvers, MA). 

Antigen-antibody complexes were detected by ECL (NEL103E001EA, Perkin Elmer, 

Boston, MA). The resulting immunoblot signals were scanned and densitometric analysis 

was performed using ImageJ NIH-image software. All results were normalized to the 

values obtained for control conditions. 

 

Immunofluorescence 

Human primary astrocytes and Hela cells stably transfected with Cx43-CFP were grown 

on coverslips and were treated with sulfatide and AA (resulting in a final concentration of 

10 ng/ml and 100 µM, respectively) for 6, 12 and 24 hours. Later, untreated and treated 
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cells were fixed with 4% PFA (15710-S, Electron Microscopy Science, Hatfield, PA) and 

permeabilized in 0.1% Triton (X-100, Sigma-Aldrich, St. Luis, MO) for 2 min at room 

temperature. Cells were incubated in blocking solution (0.5 M EDTA pH 8.0 (15575-038, 

Thermo Fisher Scientific, Waltham, MA), 1% Fish gelatin from cold water (G7765, Sigma-

Aldrich, St. Luis, MO), 0.1 g Albumine from bovine serum fraction V (BP1605, Thermo 

Fisher Scientific, Waltham, MA), 1% Horse serum (H1138, Sigma-Aldrich, St. Luis, MO), 

5% human serum (31876, Thermo Fisher Scientific, Waltham, MA), 9 ml ddH20) overnight 

at 4 °C and then in diluted primary antibodies (anti-Cx43, dilution 1:1000, anti-rabbit, 

C6219, Sigma-Aldrich, St. Luis, MO;  anti-ZO-1, dilution 1:200, anti-mouse, MABT339, 

Millipore, Burlington, MA) overnight at 4 °C. Cells were washed several times with PBS 

(BP665-1, Thermo Fisher Scientific, Waltham, MA) at room temperature and incubated 

with the appropriate secondary antibodies (plus Phalloidin 680 or Texas Red, dilution 

1:250, A22286/T7471, Thermo Fisher Scientific, Waltham, MA) for at least 2 hours at 

room temperature followed by several washes in PBS. Cells were then mounted using 

Prolong Gold anti-fade reagent (P36930, Thermo Fisher Scientific, Waltham, MA) and 

examined using an A1 confocal microscope (Nikon, Japan). Specificity was confirmed by 

replacing the primary antibodies with the appropriate isotype matched control reagent, anti-

IgG2A, or the IgG fraction of normal mouse/rabbit serum (A-2179/A-0418, Sigma-Aldrich, 

St. Luis, MO). 

 

Statistical Analysis  

All data were expressed as mean ± standard error of the mean (SEM). Differences among 

groups were analyzed by a one-way analysis of variance (ANOVA test), using Bonferroni’s 

multiple comparison test for post-hoc analysis. The level of significance was accepted at 

p<0.05. Prism8.0 software was used for the statistical analyses performed. 

 

Results 

Extracellular sulfatide increases cell-to-cell communication in human primary 

astrocytes. Considering that HIV-infected astrocytes use GJs and uHCs to spread 

inflammatory and pro-apoptotic molecules into the neighboring uninfected cells (Eugenin 

and Berman 2007) and that HIV proteins induce the secretion of sulfatide (see Chapter 5), 
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we mimicked these pathological conditions in vitro. We evaluated mRNA and protein 

expression by carrying out qRT-PCR, western blotting, and immunofluorescence in human 

primary astrocytes treated with 10 ng/ml sulfatide for 6, 12 and 24 hours. We showed that 

sulfatide upregulates Cx43 mRNA expression at 24 hours (Figure 6.1 A, * p=0.0425). 

Furthermore, sulfatide increased Cx43 P1 and P2 isoforms after 24 hours (Figure 6.2 C, * 

p<0.0001; Figure 6.2 D, * p=0.0092). This means that sulfatide induced S365 and S262 

phosphorylation in the C-term of Cx43 to make GJs open, functional, and well incorporated 

in the plaque between the cells. In addition, immunofluorescence analysis for Cx43, ZO-

1, actin and DAPI in human primary astrocytes treated with sulfatide showed an increase 

in Cx43 intensity (Figure 6.3 B, * p=0.0099), and Cx43-ZO-1 colocalization (Figure 6.3 

D, * p=0.0117; Figure 6.2 E, * p=0.0006), based on the maximum peak from all the groups 

treated. Thus, it suggests that Cx43 can be regulated by sulfatide in the forward trafficking 

towards the plasma membrane and in the stabilization into the plasma membrane.  

Although, sulfatide did not change ZO-1 mRNA compared to the control conditions 

(Figure 6.1 B), it increased ZO-1 protein level after 12 (Figure 6.2 F, * p=0.0006) and 24 

hours (Figure 6.2 F, * p=0.0006). Any significative changes were detected for ZO-1 

maximal peak intensity compared to the controls in the immunofluorescence analysis 

(Figure 6.3 C). This indicates that sulfatide upregulates astrocyte cell communication 

systems, especially working on the protagonist of the channels, Cx43.  

Likewise, we performed the same experiments in human astrocytes using AA, because 

several previous unpublished data in our laboratory and data from the literature (Martinez 

A. D. and Saez 1999, Puebla et al. 2017) showed that AA either decreased or did not change 

junctional communication. We showed that AA, as well as other inflammatory molecules, 

decreased cell-to-cell communication systems in human primary astrocytes. Specifically, 

AA transiently reduced Cx43 mRNA expression after 12 hours (Figure 6.4 A, * p=0.0414), 

as well as decreased all the protein isoforms of Cx43 after 24 hours compared to the control 

conditions (Figure 6.5 B, * p=0.0007; C, * p=0.0074; D * p=0.0034), suggesting that AA 

supports the close status of GJs. On another hand, AA did not change ZO-1 mRNA (Figure 

6.4 B) but drastically decreased ZO-1 proteins at all timepoints compared to the control 

conditions (Figure 6.5 F, * p<0.0001), confirming that AA destabilizes Cx43 in the plaque 

and obstructed cellular communication. In addition, immunofluorescence for Cx43, ZO-1, 
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actin and DAPI in human primary astrocytes treated with AA demonstrated that Cx43 

trafficking was not affected due to any significative changes in Cx43 and ZO-1 intensities 

(Figure 6.6 B and C) and colocalization (Figure 6.6 D and E), considering the maximum 

peak from all the treated groups. So, AA perfectly reproduced inflammatory conditions 

enhancing GJ closure. 

 

Extracellular sulfatide downregulates mRNA and proteins involved in cell-to-cell 

communication in differentiated SH-SY5Y neuroblastoma cell line. Neurons are not 

directly infected by HIV, but they are targets of HIV proteins. As sulfatide secretion is 

regulated by HIV proteins, we assessed sulfatide effect on cell-to-ell communication using 

qRT-PCR and western blotting on SH-SY5Y neuroblastoma cells differentiated for 1 week 

with retinoic acid and treated with sulfatide for 6, 12 and 24 hours. We analyzed the level 

of Cx43, ZO-1 and Cx36 (which allow neuron cellular communication and maintain 

electrical connectivity between different populations of neurons). Our results showed that 

sulfatide downregulated Cx43 mRNA expression after 24 hours compared to the control 

conditions (Figure 6.7 A, * p=0.002), downregulated ZO-1 mRNA expression at all the 

time points compared to control conditions (Figure 6.7 B, * p<0.0001), but did not affect 

Cx36 mRNA expression (Figure 6.7 C). Nevertheless, only ZO-1 protein underwent a 

significant reduction after sulfatide treatment all the time points (Figure 6.8 E, * p<0.0001), 

suggesting that sulfatide decrease expression of mRNA and proteins involved in cellular 

communication in neurons by reducing ZO-1, whose interaction with Cxs is necessary to 

establish cellular communication. Although, sulfatide decreased Cx43 mRNA, the two 

isoforms of proteins detected in neurons were repristinated. Moreover, Cx36 protein, as 

well as Cx36 mRNA, did not undergo significantly changes.  

Using the same approach as applied to astrocytes, SH-SY5Y cells were treated with AA as 

a positive control. In differentiated neurons, AA transiently decreased Cx43 mRNA after 

6 hours (Figure 6.9 A, * p<0.0001) and 24 hours (Figure 6.9 A, * p<0.0001), but did not 

change Cx43 protein expressions (Figure 6.10 B and C). Moreover, AA increased ZO-1 

mRNA level after 12 (Figure 6.9 B, * p<0.0001) and 24 hours (Figure 6.9 B, * p<0.0001), 

but any change was detected at the protein level (Figure 6.10 E).  In addition, neither Cx36 
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mRNA (Figure 6.9 C) or Cx36 protein (Figure 6.10 G) significantly changed. Thus, we can 

assess that AA does not change the cellular communication system between neurons. 

 

Extracellular sulfatide induces Cx43 internalization in Hela cells. Although, sulfatide 

can differentially regulate cellular communication in astrocytes and neurons, we 

investigated Cx43 trafficking using Hela cells stably transfected with Cx43-CFP. We also 

treated these cells with 10 ng/ml sulfatide for 6, 12 and 24 hours and we stained them for 

phalloidin Texas Red to visualize the cellular membrane (Figure 6.11 A). Thus, we 

identified that in all the control conditions and at 0 hour sulfatide, Cx43 was mostly 

localized in the plasma membrane to generate plaques (Figures 6.11 A as indicated by the 

yellow arrows). On the contrary, in sulfatide conditions Cx43 had a cytoplasmatic 

localization (Figures 6.11 A, as indicated by the white arrows), suggesting that sulfatide 

induces Cx43 internalization, moving Cx43 from the plaques (Figures 6.11 A, as indicated 

by the yellow arrows, and Figure 6.11 B, ** p<0.0001) in the cellular membrane to the 

intracellular vesicles (Figures 6.11 A, as indicated by the white arrows, and Figure 6.11 B, 

** p<0.0001) into the cytoplasm. This demonstrates that, sulfatide can modulate Cx43 

trafficking towards the cytoplasm.  

Hela cells stably transfected with Cx43-CFP were treated with AA for 6, 12 and 24 hours. 

Our results showed that AA did not induce Cx43 internalization. Internalized vesicles were 

also present in 6, 12 and 24 hours control conditions (Figure 6.12 A, as indicated by white 

arrows, and Figure 6.12 B, ** p<0.0001). This Cx43 internalization may be due to the soya 

oil/water solvent (Tocrisolve) used to dissolve AA and that we also used to treat 6, 12 and 

24 hours control conditions. This consideration is supported by Cx43 localization in the 

plaques at no treatment (0 hour control and 0 hour sulfatide) conditions (meaning no 

treatment with Tocrisolve and AA, respectively) (Figure 6.12 A, as indicated by yellow 

arrows, and Figure 6.12 B), when the cells never came in contact with Tocrisolve. Thus, 

we cannot assess that AA regulates Cx43 trafficking.  

 

Discussion  

As we explained in the general introduction and in this chapter’s introduction, cell-to-cell 

communication is a common physiological and pathological system used by cells to share 
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signaling as well as toxic molecules. Although, several pathological conditions showed a 

decreased level of GJs and uHC (Rouach et al. 2002), HIV is the only case that showed the 

opposite. In fact, HIV-infected astrocytes use GJs and uHCs to communicate with and 

induce apoptosis to the neighboring neurons, the other nearby astrocytes and the adjacent 

endothelial cells. Therefore, we investigated whether our potential lipid biomarker of the 

HIV CNS disease, sulfatide, could be involved in the regulation of cellular communication. 

Our data from human primary astrocytes showed that sulfatide upregulated Cx43. These 

results support our proposed mechanism of bystander damage and can be related to the 

common feature of GJs and uHCs being opened and functional in HIV-infected astrocytes.  

On the contrary, in differentiated SH-SY5Y neuroblastoma cells, sulfatide downregulates 

ZO-1, but it did not regulate Cx43 and Cx36. Thus, in neurons sulfatide displayed a 

different effect decreasing cell-to-cell communication. Sulfatide decreased ZO-1 

destabilizing Cxs in the plaques.  

In addition, in Hela cells stably transfected with Cx43-CFP, we demonstrated that sulfatide 

induced internalization of the plaques, regulating Cx43 trafficking from the plasma 

membrane to the cytoplasm. Although, this result seems to show an opposite mechanism 

from that one proposed for astrocytes, it is necessary to consider that the systems used are 

different. However, both in astrocytes and in Hela cells transfected with Cx43-CFP, 

sulfatide modulated Cx43 trafficking. Future experiments will further evaluate changes in 

cell-to-cell communication by using die coupling or electrophysiology. 

In conclusion, sulfatide may directly and indirectly contributes to the expansion of neuronal 

damage and neurocognitive disorders observed in the numerous cases of HIV-infected 

individuals under cART and with undetectable viral replication.  
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Figure 6.1. Extracellular sulfatide upregulates Cx43 mRNA in human primary 

astrocytes. Treatment of human primary astrocytes with sulfatide resulted in increased 

level of Cx43 mRNA. mRNA was isolated from human primary astrocytes and were 

assessed for Cx43 and ZO-1 using RT-PCR. (A) Quantification of Cx43 mRNA in human 

primary astrocytes treated with 10 ng/ml sulfatide for 6, 12 and 24 hours. Controls at 

different time points did not significantly change (controls equal to 1.8 2-ΔΔCt, was set to 

1). Cx43 mRNA increased at 24 hours (* as compared to controls and 0h Sulfatide 

conditions, p=0.0425, n=3). (B) The same conditions used in A were repeated for ZO-1 

mRNA level (controls equal to 2.9 2-ΔΔCt, was set to 1). In contrast with A, sulfatide did 

not significantly upregulate ZO-1 mRNA. 

Our results indicate that sulfatide treatment upregulates Cx43 mRNA level after 24 hours.  
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Figure 6.2. Extracellular sulfatide upregulates Cx43 and ZO-1 proteins in human 

primary astrocytes. Treatment of human primary astrocytes with sulfatide resulted in 

increased level of Cx43 and ZO-1 proteins. Proteins were extracted from human primary 

astrocytes and were assessed for Cx43 and ZO-1 using wester blotting. (A) Detection of 

Cx43 resulted in several bands representing different isoforms of around 43 kDa, according 

to the literature (Thevenin et al. 2017). GAPDH was used as control loading. (B) 

Quantification of Cx43 non-phosphorylated (NP) isoform in human primary astrocytes 

treated with 10 ng/ml sulfatide for 6, 12 and 24 hours. Controls at different time points did 

not significantly change (controls equal to 0.5 arbitrary units, was set to 1). (C) The same 

conditions used in A were repeated for Cx43 phosphorylated isoform (P1) (controls equal 

to 0.3 arbitrary units, was set to 1). Sulfatide increased Cx43 P1 protein level after 24 hours 

(* as compared to controls and 0h Sulfatide conditions, p<0.0001, n=3). (D) The same 

conditions used in A and in B were repeated for Cx43 phosphorylated isoform (P2) 
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(controls equal to 0.4 arbitrary units, was set to 1). Sulfatide increased Cx43 P2 protein 

level after 24 hours (* as compared to controls and 0h Sulfatide conditions, p=0.0092, n=3). 

(E) Detection of ZO-1 resulted in a single band of 220 kDa, GAPDH was used as loading 

control. (F) Quantification of ZO-1 protein in human primary astrocytes treated with 10 

ng/ml sulfatide for 6, 12 and 24 hours. Controls at different time points did not significantly 

change (controls equal to 0.5 arbitrary units, was set to 1).  Sulfatide increased ZO-1 protein 

level after 12 hours (* as compared to controls and 0h Sulfatide conditions, p=0.0006, n=3), 

suggesting a transient increase that came back to the control levels at 24 hours.  

Our results indicate that sulfatide treatment upregulates Cx43 P1 and P2 isoforms protein 

level at 24 hours and transiently ZO-1 protein level at 12 hours.  
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Figure 6.3. Extracellular sulfatide upregulates Cx43-ZO-1 colocalization in human 

primary astrocytes. Treatment of human primary astrocytes with sulfatide resulted in 

increased Cx43 and ZO-1 colocalization as well as stabilizing Cx43 plaques at the plasma 

membrane. Immunofluorescence staining for Cx43, ZO-1, actin and DAPI was performed 

in human primary astrocytes in control and sulfatide treated conditions after 6, 12 and 24 

hours. (A) Representative staining for Cx43 in green, ZO-1 in white, actin in red and DAPI 

in blue (20X). Quantification for 5 pictures per condition representing the total number of 

the pixels was performed considering the relative staining intensity from the maximal peak 

of all the treated groups (B) for Cx43 that was upregulated in sulfatide conditions (* as 

compared to control conditions, p=0.0099, n=3) and (C) for ZO-1 that did not show any 

difference in intensity for the controls and the treated groups (n=3). Co-localization for 

Cx43 and ZO-1 was measured by (D) correlation coefficient between Cx43 and ZO-1 (* 

as compared to control condition p=0.0117, n=3) and (E) overlap coefficient between Cx43 

and ZO-1 (* as compared to control conditions, p=0.0006, n=3;) considering the  maximal 

peak of all the control and treated groups. Both analyses used to calculate Cx43 and ZO-1 

colocalization showed upregulation for the sulfatide treated groups. 

Our results indicate that sulfatide treatment upregulates Cx43 intensity and Cx43-ZO-1 

colocalization in human primary astrocytes.  
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Figure 6.4. Arachidonic acid (AA) downregulates Cx43 mRNA in human primary 

astrocytes. Treatment of human primary astrocytes with AA resulted in decreased level of 

Cx43 mRNA. mRNA was isolated from human primary astrocytes were assessed for Cx43 

and ZO-1 using RT-PCR. (A) Quantification of Cx43 mRNA in human primary astrocytes 

treated with 100 µM AA for 6, 12 and 24 hours. Controls at different time points did not 

significantly change (controls equal to 2.7 2-ΔΔCt, was set to 1). Cx43 mRNA decreased at 

12 hours (* as compared to controls and 0h Sulfatide conditions, p=0.0414, n=3), 

supporting a transient downregulation. (B) The same conditions used in A were repeated 

for ZO-1 mRNA level (controls equal to 2.5 2-ΔΔCt, was set to 1). In contrast with A, 

sulfatide did not change ZO-1 mRNA. 

Our results indicate that sulfatide treatment transiently downregulates Cx43 mRNA level 

at 12 hours.  
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Figure 6.5. Arachidonic acid (AA) downregulates Cx43 and ZO-1 proteins in human 

primary astrocytes. Treatment of human primary astrocytes with AA resulted in 

decreased level of Cx43 and ZO-1 proteins. Proteins were extracted from human primary 

astrocytes and were assessed for Cx43 and ZO-1 using wester blotting. (A) Detection of 

Cx43 resulted in several bands representing different isoforms of around 43 kDa, according 

to the literature (Thevenin et al. 2017). GAPDH was used as control loading. (B) 

Quantification of Cx43 non-phosphorylated (NP) isoform in human primary astrocytes 

treated with 100 µM AA for 6, 12 and 24 hours. Controls at different time points did not 

significantly change (controls equal to 0.5 arbitrary units, was set to 1). AA decreased Cx43 

NP protein level after 24 hours (* as compared to controls and 0h AA conditions, p=0.0007, 

n=3). (C) The same conditions used in B were repeated for Cx43 phosphorylated isoform 

(P1) (controls equal to 0.7 arbitrary units, was set to 1). Consistent with A, AA decreased 

Cx43 P1 protein level after 24 hours (* as compared to controls and 0 hour AA conditions, 

p=0.0074, n=3). (D) The same conditions used in B and C were repeated for Cx43 
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phosphorylated isoform (P2) (controls equal to 0.5 arbitrary units, was set to 1). AA 

decreased Cx43 P2 protein level after 12 and 24 hours (* as compared to controls and 0h 

AA conditions, p=0.0034 and p=0.0067, n=3). (E) Detection of ZO-1 resulted in a single 

band of 220 kDa, GAPDH was used as loading control. (F) Quantification of ZO-1 protein 

in human primary astrocytes treated with 100 µM AA for 6, 12 and 24 hours. Controls at 

different time points did not significantly change (controls equal to 3.5 arbitrary units, was 

set to 1).  AA decreased ZO-1 protein level after 6, 12 and 24 hours (* as compared to 

controls and 0h AA conditions, p<0.0001, n=3).  

Our results indicate that AA treatment downregulates Cx43 and ZO-1 protein levels.  
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Figure 6.6. Arachidonic acid (AA) does not change Cx43-ZO-1 colocalization in 

human primary astrocytes. Treatment of human primary astrocytes with AA does not 

upregulate Cx43 and ZO-1 colocalization. Immunofluorescence staining for Cx43, ZO-1, 

actin and DAPI was performed in human primary astrocytes in control and AA treated 

conditions after 6, 12 and 24 hours. (A) Representative staining for Cx43 in green, ZO-1 

in white, actin in red and DAPI in blue (20X). Quantification for 5 pictures per condition 

representing the total number of the pixels was performed considering the relative staining 

intensity from the maximal peak of all the treated groups (B) for Cx43 that did not show 

any difference in intensity (n=3) and (C) for ZO-1, that consistent with B did not show any 

difference in intensity for the controls and the treated groups (n=3). Co-localization for 

Cx43 and ZO-1 was measured by (D) correlation coefficient between Cx43 and ZO-1 (n=3) 

and (E) overlap coefficient between Cx43 and ZO-1 (n=3) considering the maximal peak 

of all the control and treated groups. Both analyses used to calculate Cx43 and ZO-1 

colocalization do not show significant changes for the AA treated groups compared to 

controls. 
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Figure 6.7. Extracellular sulfatide downregulates Cx43 and ZO-1 but not Cx36 

mRNA in SH-SY5Y neuroblastoma cells. Treatment of in SH-SY5Y neuroblastoma cells 

with sulfatide resulted in decreased level of Cx43 and ZO-1 mRNA. mRNA was isolated 

from SH-SY5Y neuroblastoma cells and was assessed for Cx43, ZO-1, Cx36 using RT-

PCR. (A) Quantification of Cx43 mRNA in SH-SY5Y neuroblastoma cells treated with 10 

ng/ml sulfatide for 6, 12 and 24 hours. Controls at different time points did not significantly 

change (controls equal to 5 2-ΔΔCt, was set to 1). Cx43 mRNA decreased at 24 hours (* as 

compared to controls and 0h Sulfatide conditions, p=0.0002, n=3). (B) The same conditions 

used in A were repeated for ZO-1 mRNA level (controls equal to 1.2 2-ΔΔCt, was set to 1). 

ZO-1 mRNA decreased at 6, 12 and 24 hours (* as compared to controls and 0h Sulfatide 

conditions, p<0.0001, n=3). (C) The same conditions used in A and B were repeated for 

Cx36 mRNA level (controls equal to 1 2-ΔΔCt, was set to 1). Sulfatide treatment did not 

change Cx36 mRNA level.  

Our results indicate that sulfatide treatment downregulates Cx43 mRNA level at 24 hours 

and ZO-1 at all the time points considered.   

 

 

 

 

 

 

 

 

 



138 
 

 

 

Figure 6.8. Extracellular sulfatide downregulates ZO-1 protein in SH-SY5Y 

neuroblastoma cells. Treatment of in SH-SY5Y neuroblastoma cells with sulfatide 

resulted in decreased level ZO-1 protein. Proteins were extracted from in SH-SY5Y 

neuroblastoma cells and were assessed for Cx43, ZO-1 and Cx36 using wester blotting. 

(A) Detection of Cx43 resulted in two bands representing different isoforms of around 43 

kDa, according to the literature (Thevenin et al. 2017). Tubulin was used as control loading. 

(B) Quantification of Cx43 non-phosphorylated (NP) isoform in SH-SY5Y neuroblastoma 

cells treated with 10 ng/ml sulfatide for 6, 12 and 24 hours. Cx43 at different time points 

did not significantly change (controls equal to 0.3 arbitrary units, was set to 1). (C) The 
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same conditions used in B were repeated for Cx43 phosphorylated isoform (P1) (controls 

equal to 0.3 arbitrary units, was set to 1). Consistent with B, Cx43 at different time points 

did not significantly change (D) Detection of ZO-1 resulted in two bands of around 220 

kDa that were analyzed as sum. GAPDH was used as loading control. (E) Quantification 

of ZO-1 protein in SH-SY5Y neuroblastoma cells treated with 10 ng/ml sulfatide for 6, 12 

and 24 hours. Controls at different time points did not significantly change (controls equal 

to 1.1 arbitrary units, was set to 1).  In contrast with B and C, Sulfatide decreased ZO-1 

protein level after 6,12 and 24 hours (* as compared to controls and 0h Sulfatide condition, 

p<0.0001, n=3). (F) Detection of Cx36 resulted in two bands of around 36 kDa that were 

analyzed as sum. GAPDH was used as loading control. (G) Quantification of Cx36 protein 

in SH-SY5Y neuroblastoma cells treated with 10 ng/ml sulfatide for 6, 12 and 24 hours. 

Consistent with B and C, sulfatide did not significantly change Cx36 protein level (controls 

equal to 1 arbitrary unit, was set to 1).   

Our results indicate that sulfatide treatment downregulates ZO-1 protein level at all the 

time points considered. 
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Figure 6.9. Arachidonic acid (AA) downregulates Cx43 but not Cx36 mRNA and 

upregulates ZO-1 mRNA in SH-SY5Y neuroblastoma cells. Treatment of SH-SY5Y 

neuroblastoma cells with AA resulted in transient decreased level of Cx43 mRNA. mRNA 

was isolated from SH-SY5Y neuroblastoma cells and was assessed for Cx43, ZO-1 and 

Cx36 using RT-PCR. (A) Quantification of Cx43 mRNA in SH-SY5Y neuroblastoma cells 

treated with 100 µM AA for 6, 12 and 24 hours. Controls at different time points did not 

significantly change (controls equal to 1.7 2-ΔΔCt, was set to 1). Cx43 mRNA decreased 

transiently at 6 hours (* as compared to controls and 0h AA conditions, p<0.0001, n=3) 

and again at 24 hours (* as compared to controls and 0h AA conditions, p<0.0001, n=3), 

supporting transient downregulation. (B) The same conditions used in A were repeated for 

ZO-1 mRNA level (controls equal to 1.7 2-ΔΔCt, was set to 1). In contrast with A, AA 

upregulated ZO-1 mRNA at 12 and 24 hours (* as compared to controls and 0h AA 

conditions, p<0.0001, n=3). (C) The same conditions used in A and B were repeated for 

Cx36 mRNA level (controls equal to 1 2-ΔΔCt, was set to 1).  

Our results indicate that AA treatment transiently downregulates Cx43 mRNA level at 6 

and 24 hours, in contrast to ZO-1 that is upregulated.  
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Figure 6.10. Arachidonic acid (AA) does not change Cx43, ZO-1 and Cx36 proteins in 

SH-SY5Y neuroblastoma cells. Treatment of SH-SY5Y neuroblastoma cells with AA 

resulted in any changes. Proteins were extracted from SH-SY5Y neuroblastoma cells and 

were assessed for Cx43, ZO-1 and Cx36 using wester blotting. (A) Detection of Cx43 

resulted in two bands representing different isoforms of around 43 kDa, according to the 

literature, Tubulin was used as control loading. (B) Quantification of Cx43 non-

phosphorylated (NP) isoform in human primary astrocytes treated with 100 µM AA for 6, 

12 and 24 hours. AA did not significantly change Cx43 NP (controls equal to 0.4 arbitrary 

units, was set to 1). (C) The same conditions used in B were repeated for Cx43 
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phosphorylated isoform (P1) (controls equal to 0.3 arbitrary units, was set to 1). Consistent 

with B, AA did not significantly change Cx43 P1. (D) Detection of ZO-1 resulted in two 

bands of around 220 kDa that were calculated as sum. GAPDH was used as loading control. 

(E) Quantification of ZO-1 protein in SH-SY5Y neuroblastoma cells treated with 100 µM 

AA for 6, 12 and 24 hours (controls equal to 1.1 arbitrary units, was set to 1). Again, AA 

did not significantly change ZO-1 expression. (F) Detection of Cx36 resulted in two bands 

of around 36 kDa that were calculated as sum. GAPDH was used as loading control. (G) 

Quantification of Cx36 protein in SH-SY5Y neuroblastoma cells treated with 100 µM AA 

for 6, 12 and 24 hours. Consistent with Cx43 and ZO-1 results, AA did not significantly 

change Cx36 expression. (controls equal to 0.8 arbitrary units, was set to 1).   

Our results indicate that AA, independently of the time points, does not change cellular 

communication system in neurons. 
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Figure 6.11. Extracellular sulfatide induces internalization of Cx43-CFP in Hela cells. 

Treatment with sulfatide of Hela cells stably transfected with Cx43-CFP resulted in 

internalization of Cx43-CFP. (A) Representative staining for actin (red) in Hela cells stably 

transfected with Cx43-CFP (green) for controls and sulfatide groups at 6, 12 and 24 hours 

(40X). Plaques and internalized vesicles are indicated by yellow and white arrows, 

respectively. (B) Quantification for 5 pictures per condition representing the total number 

of the pixels was performed considering the percentage of Cx43 positive cells. Cx43 in the 

control conditions is mostly localized in the plasma membrane creating the plaques (yellow 

arrows, ** as compared to controls and 0h Sulfatide conditions, p<0.0001), instead, in 

sulfatide conditions Cx43 localized in the cytoplasm (white arrows, ** as compared to 

controls and 0h Sulfatide conditions, p<0.0001). 

Our results indicate that sulfatide increases the trafficking of Cx43 in Hela cells stably 

transfected with Cx43-CFP.  
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Figure 6.12. Internalization of Cx43-CFP is not observed in AA treated Hela cells 

versus controls Hela cells. Treatment with AA of Hela cells stably transfected with Cx43-

CFP did not affect Cx43-CFP trafficking. (A) Representative staining for actin (red) in Hela 

cells stably transfected with Cx43-CFP (green) for controls and AA groups at 6, 12 and 24 

hours (40X). Plaques and internalized vesicles are indicated by yellow and white arrows, 

respectively. (B) Quantification for 5 images per condition representing the total number 

of the pixels was performed considering the percentage of Cx43 positive cells. Cx43 in 

control and AA conditions at 6, 12, 24 hours were localized in intracellular vesicles (** as 

compared to 0h control and 0h AA conditions, p<0.0001). The 6, 12 and 24 hours control 

conditions were treated with the vehicle (Tocrisolve) which may induce the observed 

changes. 

Results suggest that AA does not change Cx43 trafficking in Hela cells stably transfected 

with Cx43-CFP, Cx43 internalization is due to the soya oil/water solvent used to dissolve 

AA, and that was used to treat 6, 12 and 24 hours control conditions.  
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Introduction  

Proteomics is defined as a large-scale study for the identification and the 

quantification of proteomes, which includes a set of proteins synthetized in a specific 

biological context. Proteomics can expand genomic and transcriptomics data to directly 

identify the proteins that are up- or down-regulated in specific conditions, and to 

investigate the related pathways  (Aslam et al. 2017).  

Previous transcriptomics and proteomics results from our laboratory (data not 

shown) supported lipid alteration in HIV-infected astrocytes, mostly related to the up-

regulation of ceramide related enzymes. In particular, transcriptomic analysis of 7 days 

HIV-infected astrocytes showed that HIV infection increased levels of glucosylceramidase, 

galactosyltransferase, and ceramide synthase that are enzymes critically involved in 

ceramide and sulfatide synthesis. In addition, proteomics data from 21 days HIV-infected 

astrocytes confirmed glucosylceramidase and galactosyltransferase up-regulation, 

suggesting sulfatide accumulation. This result correlates with our MSI data presented in 

Chapter 4 showing higher sulfatide relative abundance in the brain, specifically in the white 

matter of HIV-infected individuals under cART and without viral replication (see Table 2, 

Chapter 2).  

Since we have proposed sulfatide as a potential biomarker of neurocognitive 

disorders in HIV-infected individuals virally suppressed with cART and without detectable 

viral load, our interest was to investigate whether sulfatide altered cell-to-cell 

communication (see Chapter 6). Moreover, we demonstrated that sulfatide secretion can be 

regulated by several HIV proteins and it can modulate cell-to-cell communication, 

especially Cx43 trafficking in Hela cells stably transfected with Cx43-CFP.  

Although, we have not yet determined the molecular pathways that connect sulfatide with 

Cx43, we decided to identify the Cx43 partners in Hela cells stably transfected with Cx43-

CFP under sulfatide and AA conditions. Thus, coimmunoprecipitation for Cx43 was 

performed to identify potential Cx43 binding proteins.  
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Materials and Methods   

Cell Culture Methods 

Hela cells stably transfected with Cx43-CFP were grown with high glucose Dulbecco's 

modified Eagle's medium (DMEM, 11995-065, Thermo Fisher Scientific, Waltham, MA) 

supplemented with 10% fetal bovine serum (FBS, S12450H, Atlanta Biologicals, Flowery 

Branch, GA), 2 mM Geneticin (10131-027, Thermo Fisher Scientific, Waltham, MA), 

penicillin, and streptomycin (15070063, Thermo Fisher Scientific, Waltham, MA) at 37 °C 

in a humidified atmosphere with 5% CO2.  

 

Cx43 immunoprecipitation 

Immunoprecipitation analysis was performed for Cx43 as described in Figure 7.1.  Hela 

cells stably transfected with Cx43-CFP were treated with sulfatide (10 ng/ml) or with AA 

(100 µM) for 24 hours. Cells were homogenized with RIPA buffer containing protease and 

phosphatase inhibitors and sonicated using 5 pulses of 30 seconds on and 30 seconds off 

in a Microtip (Misonix, Inc, Microson XL-2000). Samples were pre-cleared with protein 

G plus agarose (sc-2002, Santa Cruz Biotechnology, Dallas, TX) and immunoprecipitated 

using Cx43 antibody (C6219, Sigma-Aldrich, St. Luis, MO). These samples were sent to 

Creative Proteomics (Shirley, NY) to be analyzed and quantified on a high-resolution mass 

spectrometry platform coupled with nanoflow UPLC to select proteins with a fold-change 

cutoff above 1.5 or below 1/1.5. 

 

Proteomics for proteins associated with Cx43 

The beads samples from untreated and sulfatide/AA treated cultures of Hela cells stably 

transfected with Cx43-CFP were resuspended in 40 μL of 1× electrophoresis sample buffer, 

boiled for 15 minutes and run on 12% separating gel for 20 minutes at 80 kV and for 30 

minutes at 120 kV. The SDS-PAGE gel was stained with Coomassie Brilliant Blue and 

each gel band was cut to be subjected to protein precipitation using cold acetone and 

centrifuged at 12000 rpm. Later, 50 mM ammonium bicarbonate was added, and the 

protein solution was transferred into Microcon devices YM-10 (Millipore). The device was 

centrifuged at 12000 rpm at 4°C for 10 min. Subsequently, 200 μL of 50 mM ammonium 

bicarbonate was added to the concentrate followed by centrifugation and repeated once. 



148 
 

After being reduced by 10 mM DL-dithiothreitol at 56°C for 1 hour and alkylated by 20 

mM odoacetamide at room temperature in dark for 1hour, the device was centrifuged at 

12000 rpm at 4°C for 10 minutes and washed once with 50 mM ammonium bicarbonate. 

100 μL of 50 mM ammonium bicarbonate and free trypsin were added into the protein 

solution at a ratio of 1:50, and the obtained solution was incubated at 37°C overnight. 

Finally, the device was centrifuged at 12000 rpm at 4°C for 10 minutes. 100 μL of 50 mM 

ammonium bicarbonate was added into the device and centrifuged, and then repeated once. 

The extracted peptides were lyophilized to near dryness and resuspended in 2-20 μL of 

0.1% formic acid before LC-MS/MS analysis. These samples were analyzed and quantified 

on Obitrap Q Exactive HF mass spectrometer coupled with Ultimate 3000 nano UHPLC 

system. The detected peptides were analyzed and searched against human protein database 

using Maxquant. The parameters were set as follows: the protein modifications were 

carbamidomethylation (fixed) and oxidation (variable); the enzyme specificity was set to 

trypsin; the maximum missed cleavages were set to 2; the precursor ion mass tolerance was 

set to 10 ppm, and MS/MS tolerance was 0.6 Da.  

 

Pathways analysis 

Creative Proteomics identified 455 proteins, 263 and 188 were proteins that bind to Cx43 

after sulfatide and AA treatments, respectively. These proteins were classified in 13 

families (Tables 7 to 15, Figures 7.2 and 7.3) according to their function and to their 

location described in GeneCards human gene database. Only the up-regulated recycling-

transport (Table 7, in green), mitochondrial (Table 8, in green) and membrane (Table 9, in 

green) related proteins after sulfatide and AA stimulations were run for the Ingenuity 

Pathway Analysis (IPA) to build molecular networks of each experimental system (Figures 

7.4 and 7.5).  

 

Results 

Extracellular sulfatide changes the molecular interactions of Cx43. Although, sulfatide 

can regulate mRNA and protein expression, we used Hela cells stably transfected with 

Cx43-CFP treated with 10 ng/ml sulfatide for 24 hours to pull-down Cx43 using G PLUS 

Agarose beads (Figure 7.1). We repeated the same experiment with Hela cells stably 



149 
 

transfected with Cx43-CFP but treated with AA as control condition, where cell-to-cell 

communication is not upregulated and Cx43 trafficking does not change. Thus, we 

confirmed the presence of Cx43 into the beads by SDS-page for both treatments (Figure 

7.1). These beads were processed and analyzed by Nano LC-MS/MS for proteomics. 

Proteomics analysis revealed 455 proteins. Comparing the control sample obtained from 

the coimmunoprecipitation of Cx43 in Hela cells stably transfected with Cx43-CFP and 

the sulfatide sample obtained from the same cells treated with sulfatide for 24 hours, 263 

proteins that bind to Cx43 were highlighted, 95 were upregulated and 168 downregulated. 

Comparing the control sample with the AA sample, 188 proteins were identified, 139 were 

up-regulated and 49 down-regulated. We classified the highlighted proteins of each 

experimental system into 13 families (nuclear, nuclear membrane, mRNA, ribosomal, 

metabolic, secreted, Golgi apparatus, endoplasmic reticulum, mitochondrial, recycling-

transport, ubiquitin, and membrane related proteins, plus unknown proteins) according to 

their role and physiological compartments provided by GeneCards information and 

literature data. We show an illustration that integrates all of them in Figures 7.2 and 7.3. 

Nuclear, membrane nuclear and mRNA related proteins (in the frame of Figures 7.2 and 

7.3) were excluded for the following analysis because they do not bind to Cx43, their 

detection was an experimental artefact due to the mechanical disruption of the nuclear 

membrane during processing of the samples. Thus, we focused on plasma membrane, 

mitochondria (Rodriguez-Sinovas et al. 2018) and transport compartments (Thomas et al. 

2005), where Cx43 is predominantly located.   

Focusing our analysis in the transport proteins that directly or indirectly bind to 

Cx43, sulfatide upregulated proteins related to myosin such as Myosin Light Chain 1 

(MYOFTA, MYO1B, MYO1C) and proteins involved in vesicular fusion and trafficking 

like the Rabs membrane-bound proteins (RAB2A, RAB1A) and the N-Ethylmaleimide 

Sensitive Factor (NSF). Parallelly, tubulin (Tubulin Alpha 1c TUBA1C, Tubulin Beta Class 

I TUBB, Tubulin Beta 4B Class IVb TUBB4B, Tubulin Folding Cofactor A TFCA) and 

cytoskeletal organized proteins such as Leucine Rich Pentatricopeptide Repeat Containing 

(LRPPRC) and Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) were downregulated 

(Table 7).  
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On another hand, AA induced upregulation of actin related proteins (ACTα/ACTβ, 

ARPC4) and membrane adaptors such as Flotillin 1 (FLOT1) and VAMP Associated 

Protein B and C (VAPBC), and downregulated Bone Marrow Stromal Cell Antigen 2 

(BST2), which blocks the release of nascent virions to the membranes of infected cells 

(Table 7).  

After that, we analyzed the mitochondrial proteins. Coimmunoprecipitation of 

Cx43 after sulfatide treatment highlighted upregulated proteins related to apoptosis (such 

as Apoptosis Inducing Factor Mitochondria Associated 1 (AIFM1)), to chaperon (such as 

Heat Shock Protein Family A Member 9 (HSPA9)), and to the mitochondrial 

transmembrane electron transport (such as Voltage Dependent Anion Channel 1/2 

(VDAC1/2)) (Table 8). At the same time,  ATP synthesis (ATP Synthase F1 Subunit Alpha 

ATP5A, ATP Synthase F1 Subunit Beta ATP5B, ATP Synthase Membrane Subunit G 

ATP5L, ATP Synthase Subunit O ATP5PO, Carbamoyl-Phosphate Synthase 1 CPS1) and 

fatty acid metabolism (Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme 

Complex Subunit Alpha HADHA and Hydroxyacyl-CoA Dehydrogenase Trifunctional 

Multienzyme Complex Subunit Beta HADHB) related proteins were downregulated in the 

mitochondria, suggesting that several sources of energy can be used by these cells (Table 

8). In contrast, when we analyzed the mitochondrial proteins binding to Cx43 after 

treatment with AA, the ATP synthase enzymes (ATP Synthase F1 Subunit Alpha ATP5A1, 

ATP Synthase F1 Subunit Gamma ATP5C1) were upregulated with associated TCA 

(GOT2) and glycolysis (Lactate Dehydrogenase B LDB) enzymes,  suggesting a crucial 

role of the mitochondrial metabolic pathways for AA (Table 8). 

Finally, we analyzed the plasma membrane proteins. In this case, we found a 

significative difference in proteins that interact with Cx43 following sulfatide and AA 

treatments. Specifically, sulfatide induced upregulation of proteins that regulate the cellular 

membrane organization and stability such as actin (ACTN1/4), annexin (ANXA1/5) and 

spectrin (SPTAN1, SPTBN) (Table 9). In addition, sulfatide upregulated Peptidylprolyl 

Isomerase A (PPIA), which is necessary for the formation of infectious HIV virions and 

Protein Phosphatase 1 Catalytic Subunit Alpha (PPP1CA) that is involved in HIV viral 

transcription, suggesting a mechanistic link between Cx43, sulfatide and HIV-infection. 

Furthermore, the observed upregulation of thioredoxin (TXN), which plays a key role in 
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the reversible S-nitrosylation of cysteine residues in target proteins, suggests that TXN may 

S-nitrosylate Cx43 to maintain open Cx43 hemichannels. Cytoskeleton related proteins 

(Cytoskeleton Associated Protein 4 CKAP4, Ezrin EZR) were observed to be 

downregulated in sulfatide condition (Table 9). 

AA downregulated Scavenger Receptor Class B Member 2 (SCARB2) and the adhesion 

molecule Metadherin (MTDH) discouraging cellular communication but upregulated 

several adaptors and actin related proteins that stabilize the plasma membrane (Table 9).  

Subsequently, only the up-regulated recycling-transport (Table 7, in green), 

mitochondrial (Table 8, in green), and membrane (Table 9, in green) related proteins after 

sulfatide and AA stimulation were run for the Ingenuity Pathway Analysis (IPA) to build 

molecular networks of each experimental system (Figures 7.4 and 7.5). Ingenuity pathway 

analysis for sulfatide provided 4 top canonical pathways including integrin-linked kinase 

signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions and 

EIF2 signaling. They were represented as network overlapping in the Figure 7.4.  

The same analysis was repeated for proteomics data coming from the 

coimmunoprecipitation of Hela cells stably transfected with Cx43-CFP treated with AA 

and 5 top canonical pathways were identified including cell cycle G2/M DNA damage 

checkpoint regulator, Myc mediated apoptotic signaling, extracellular regulated kinase 5 

(ERK5) signaling, EIF2 signaling, and remodeling of epithelial adherent junctions (Figure 

7.5). Only the EIF2 signaling and remodeling of epithelial adherent junctions’ pathways 

were in common between the two experimental systems. 

 

Discussion  

Although, sulfatide can enhance Cx43 expression, we decided to pull-down Cx43 

in Hela cells stably transfected with Cx43-CFP treated with sulfatide and perform 

proteomics analysis to investigate proteins that directly or indirectly bind to Cx43 and 

related pathways. We also used AA as a control because it reduces Cx43 expression and 

mediates the rapid channel closure (Martinez A. D. and Saez 1999).  

Proteomics analysis provided a contained number of proteins that we divided in 13 

families. We focused our attention in the recycling-transport, mitochondria and plasma 
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membrane compartments to find specific correlations between sulfatide and cell-to-cell 

communication or sulfatide and mitochondrial metabolism.  

Analysis for the transport proteins induced by sulfatide and binding to Cx43 revealed an 

active vesicular transport that was also observed in the AA experimental condition but 

triggered by different proteins of the same pathways.  Analyzing the mitochondrial 

proteins, we discovered that sulfatide induces the upregulation of Cx43 binding proteins 

related to fatty acid, glucose, and glutamate/glutamine synthesis.  It is noteworthy that these 

results correlated to the metabolism of the HIV-infected astrocytes investigated in Chapter 

3. In addition, within the plasma membrane proteins that interact with Cx43 in the sulfatide 

treated cells PPIA and PPP1CA were identified. These proteins  play a crucial role in the 

formation of infectious HIV virions and in the viral transcription, supporting our 

association between viral reservoirs, bystander damage and lipid dysregulation 

investigated in Chapter 2 and 4. Sulfatide also upregulated TXN, which may induce S-

nitrosylation of Cx43 on cysteine 271 to maintain open and functional Cx43 hemichannels 

(Retamal et al. 2006, Straub et al. 2011). This result may explain the connection between 

sulfatide secretion, cellular communication and HIV infection. Thus, future experiments 

will be performed to confirm this hypothesis.  Moreover, the ingenuity pathway analysis 

for sulfatide highlighted pathways involved in cellular morphology, assembly, 

organization, and movement that further justify sulfatide contribution to cell-to-cell 

communication. Although, the same proteomics analysis is required to be repeated in 

human primary astrocytes treated with sulfatide or in HIV-infected astrocytes, this analysis 

still identifies proteins that are known in the literature to directly or indirectly bind to Cx43. 

These proteins include actinin (ACTN1, ACTN4) (Sorgen et al. 2018, Wall et al. 2007), 

debrin (DBN) (Ambrosi et al. 2016, Butkevich et al. 2004), or ezrin (EZR) (Pidoux et al. 

2014) and other new potential partners of Cx43. In summary, the work conducted 

demonstrates that sulfatide plays an important role in cell metabolism and communication 

and these findings will form the basis for further studies. 
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Figure 7.1. Summary of the immunoprecipitation protocol used to pull-down Cx43 

for proteomics analysis.  (A) Hela cells stably transfected with Cx43-CFP were plated 

and treated with 10 ng/ml sulfatide or with 100 µM AA for 24 hours. (B) Untreated and 

treated cells were scratched with RIPA buffer to obtain the total cell lysates. A small 

amount of total cell lysate was isolated to be analyzed by SDS-page. (C) The total lysates 

were complemented with IgG and Protein G PLUS-Agarose beads to prevent non-specific 

binding. (D) Antibody against Cx43 was added to pull-down Cx43 and the related binding 

proteins. (E) The beads binding Cx43 and related interacting proteins were collected and 

dissolved in PBS.  (F) Total lysate, supernatant and beads were analyzed by SDS-page for 

Cx43. The band at 43 kDa representing Cx43 was strongly detected in the beads sample 

(3). (G) Beads were analyzed for proteomics. 

 

 

 

 

 

 

 

 

 



154 
 

Cx43 associated proteins involved in Recycling-

Transport  

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

ACTA 1  AHNAK  B2M ACTα/ACTβ 

ACTB  BST2  CAPZA1 ANXA4  

ACTR2B                                              CKAP4  MYH10 ARPC4  

ACTR3 DYNC1H1  MYL12A CLTC  

ANXA2  FABP5  MYO1B FLOT1  

ANXA4 GDI2  MYO1C HSPB1  

ARPC2                                                 NPEPPS  NSF  IghG1  

ATP6V1A RAF1  PPIA MAP4  

CAPZB             SCARB2  RAB1A MYH9  

CKAP4      TPM4  RAB2A RAB7A  

CLTC  TUBA1C  S100A11 RAF  

DYNC1H1 TUBB4B SERPINB1 S100A11  

FLNA             VAT1  TXN  SERPINB6  

FLOT1  YWHAG  YWHAB  STATHMIN  

GDI2 YWHAH  YWHAZ VAPB 

ITGB1     YWHAZ 

LRPPRC     YWHAE 

MYH9             YWHAQ 

PLIN3        

RAB6        

SERPINH1        

SLC3A2        

TBCA       

TPM4        

TFRC        

TUBA1C        

TUBB        

TUBB4B         

VAT1       

YWHAG        

YWHAQ       

YWHAZ       

 

Table 7. Summary of the recycling-transport related proteins that bind to Cx43 

detected after coimmunoprecipitation and subsequent proteomics. List of proteins 
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involved in the recycling and transport pathways after treatment with sulfatide and AA. 

Downregulated proteins are shown in red; upregulated proteins are shown in green. The 

common proteins between sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins involved in 

Mitochondrial functions 

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

ATAD3B  ATAD3B  AIFM1  AIFM1  

ATP5PO  HADHB  HSPA9 ATP5A1 

ATP5A  TUFM  VDAC1 ATP5C1   

ATP5B    VDAC2 DDX5  

ATP5L      EIF4A1 

CPS1      FH  

HADHA      GOT2  

HADHB      HMGCL 

HMGCL      HSP90 

TUFM      LDHB  

      MDH2  

      PRDX3  

      SLC25A5  

      VDAC1  

 

Table 8. Summary of the mitochondrial related proteins that bind to Cx43 detected 

after coimmunoprecipitation and subsequent proteomics. List of proteins involved in 

the mitochondrial pathways after treatment with sulfatide and AA. Downregulated proteins 

are shown in red; upregulated proteins are shown in green. The common proteins between 

sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins involved in 

Plasma Membrane functions 

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

BASP1  AHNAK  ACTN1  ACTA1  

CKAP4    MTDH  ACTN4  ACTB 

CTTN                                     NPEPPS  ANXA1  ANXA4  

EZR                           SCARB2  ANXA5 ATP1A1 

IQGAP1                         TLN1  CFL1  CALM1A  

GNB2L1              VAT-1  DBN 1 DBN1  

LMNB2   DSG1 DDX5  

LMO7   DSP EZR 

MSN   ESYT1  FLNB  

PHB2   FLNB HSPA1B  

SLC3A2   FSCN1 LMO7  

STOM   PLEC  MSN  

TLN1   PPIA  PLEC  

VCL   PPP1CA  PPM1G 

    SPTAN1  SLC3A2  

    SPTBN 1 SPTAN1 

    TXN  SPTBN1  

      VAPB  

      VCL  

 

Table 9. Summary of the membrane related proteins that bind to Cx43 detected after 

coimmunoprecipitation and subsequent proteomics. List of proteins involved in the 

membrane pathways after treatment with sulfatide and AA. Downregulated proteins are 

shown in red; upregulated proteins are shown in green. The common proteins between 

sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins involved in 

Ribosomal functions 

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

EEF16  LARS  NACA FBL  

EEF2  RPS 15   KARS 

LARS RPS 18    MARS 

NCL  RPS 18A   NACA 

NPMI  RPS 34   NCL  

RPL 13 RPS 5     

RPL 15 RPS 7A     

RPL 18 A RPS11A     

RPL 26 RPS7     

RPL 3       

RPL 34       

RPL 5       

RPS 11       

RPS 13       

RPS 14       

RPS 18       

RPS 19       

RPS 2       

RPS 20       

RPS 23       

RPS 7       

RPS 8       

RPS A       

 

Table 10. Summary of the ribosomal related proteins that bind to Cx43 detected after 

coimmunoprecipitation and subsequent proteomics. List of proteins involved in the 

ribosomal pathways after treatment with sulfatide and AA. Downregulated proteins are 

shown in red; upregulated proteins are shown in green. The common proteins between 

sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins induced in 

Endoplasmic Reticulum  

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

CALR  CCT3  HS7A9 CCT5  

CANX  FKBP4  HSPB1 CCT6A  

CCT3 HSP90 B1  PDIAG  DDOST  

CCT5 HSPA1B RPN1  GANAB  

CCT8 SERPINH1  STIP1  HSP90 

Ddast      PLIN3 

GANAB      PLOD3  

HSD90 

AB1     
POR  

HSP90 

AA1     
PRKCSH  

HSP90 B1     RPNI 

HSPAB     TCP1  

HSPD1       

HSPH1       

PRKCSH        

RPN2       

SRP14       

 

Table 11. Summary of the endoplasmic reticulum related proteins that bind to Cx43 

detected after coimmunoprecipitation and subsequent proteomics. List of proteins 

involved in the endoplasmic reticulum pathways after treatment with sulfatide and AA. 

Downregulated proteins are shown in red; upregulated proteins are shown in green. The 

common proteins between sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins induced in 

Golgi Apparatus  

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

  CCT3    CCT5  

  FKBP4    CCT6A  

  

HSP90 

B1    
PLIN3 

  HSPA1B   TCP1  

 

Table 12. Summary of the Golgi apparatus related proteins that bind to Cx43 detected 

after coimmunoprecipitation and subsequent proteomics. List of proteins involved in 

the Golgi apparatus pathways after treatment with sulfatide and AA. Downregulated 

proteins are shown in red; upregulated proteins are shown in green. The common proteins 

between sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins induced 

in Secretion System 

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

EXOSC4     GRN 

PGK1       

 

Table 13. Summary of the secreted proteins that bind to Cx43 detected after 

coimmunoprecipitation and subsequent proteomics. List of proteins involved in the 

pathways of secretion after treatment with sulfatide and AA. Downregulated proteins are 

shown in red; upregulated proteins are shown in green. The common proteins between 

sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins induced in 

Metabolism 

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

ALPI    ACLY  AKR1B1  

APOA1    AHCY   APOA1  

CAD    BSG APRT  

ENO1    GAPDH CAD  

ESYT2    MAT2A  CBR1  

Fasn    PGAM2  ENO1  

GARTS    PGM1  FASN  

GOT2     PPP1CA  FH  

GPT    SLC25A13  GOT2  

IDH1      MAT2A  

IMPDH2      MDH2  

LDHA        

LDHB        

MTHFD1       

PAICS        

PGK1       

PHGDH        

PKM        

UGDH        

 

Table 14. Summary of the metabolic related proteins that bind to Cx43 detected after 

coimmunoprecipitation and subsequent proteomics. List of proteins involved in the 

metabolic pathways after treatment with sulfatide and AA. Downregulated proteins are 

shown in red; upregulated proteins are shown in green. The common proteins between 

sulfatide and AA treatments are marked in bold type. 
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Cx43 associated proteins involved in Ubiquitin-

related system 

Down-Regulated Up-Regulated 

Sulfatide AA Sulfatide AA 

UBE2N    UBE2N    PSMA1 PSMA4  

PSMBG   PSMA5 PSMB1  

    PSMA6 PSMB5  

    PSMD2 PSMD3  

    RPL11 RDL3 

    RPL13A RDL4 

    RPL14 RDLP2 

    RPL23 RPL13A 

    RPL31 RPL14 

    RPL4 RPL22 

    RPL7 RPL7 

    RPL8   RPL9 

    RPS10 RPNI  

    RPS12 RPS14 

    RPS16      RPS16 

    RPS25 RPS2 

    UBA-1 RPS23 

      RPS3 

      RPS8 

 

Table 15. Summary of the ubiquitin related proteins that bind to Cx43 detected after 

coimmunoprecipitation and subsequent proteomics. List of proteins involved in the 

ubiquitin related pathways after treatment with sulfatide and AA. Downregulated proteins 

are shown in red; upregulated proteins are shown in green. The common proteins between 

sulfatide and AA treatments are marked in bold type. 
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Figure 7.2. Schematic representation of all the Cx43 binding proteins detected after 

sulfatide treatment, coimmunoprecipitation and subsequent proteomics. Proteins 

binding to Cx43 were immunoprecipitated from Hela stably transfected Cx43-CFP cells 

treated with sulfatide for 24 hours. Proteins were classified in 13 families (nuclear, nuclear 

membrane, mRNA, ribosomal, metabolic, secreted, Golgi apparatus, endoplasmic 

reticulum, mitochondrial, recycling-transport, ubiquitin, and membrane related proteins, 

plus unknown proteins), according to their functional role and to their location described 

in GeneCards human gene database and literature data. Nuclear, membrane nuclear and 

mRNA related proteins (in the frame) were excluded because they do not physiologically 

bind to Cx43. Their detection was due to the mechanical disruption of the nuclear 

membrane during the procced of the samples. Downregulated proteins are indicated in red, 

upregulated in green.  
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Figure 7.3. Schematic representation of all the Cx43 binding proteins detected after 

AA treatment, coimmunoprecipitation and subsequent proteomics. Proteins binding 

to Cx43 were immunoprecipitated from Hela stably transfected Cx43-CFP cells treated 

with AA for 24 hours. Proteins were classified in 13 families (nuclear, nuclear membrane, 

mRNA, ribosomal, metabolic, secreted, Golgi apparatus, endoplasmic reticulum, 

mitochondrial, recycling-transport, ubiquitin, and membrane related proteins, plus 

unknown proteins), according to their functional role and to their location described in 

GeneCards human gene database and literature data. Nuclear, membrane nuclear and 

mRNA related proteins (in the frame) were excluded because they do not physiologically 

bind to Cx43. Their detection was due to the mechanical disruption of the nuclear 

membrane during the procced of the samples. Downregulated proteins are indicated in red, 

upregulated in green.  

 

 



168 
 

 

 

Figure 7.4. Network overlapping of the canonical pathways triggered by the up-

regulated recycling-transport, mitochondrial and membrane related proteins after 

sulfatide treatment. Proteins binding to Cx43 were immunoprecipitated from Hela stably 

transfected Cx43-CFP cells treated with sulfatide for 24 hours and analyzed by proteomics. 

The up-regulated proteins related to the recycling-transport, the mitochondrial and the 

membrane pathways were selected to build a specific molecular network using the 

Ingenuity Pathway Analysis software. The network overlapping showed the canonical 

pathways identified in our experimental system. Each pathway was indicated as a single 

“node” colored proportionally to the Fisher’s Exact Test p-value, where brighter red meant 

more significant. A line connected two pathways when at least one data set molecule was 

common between them.   



169 
 

Results suggest that the top canonical pathways include integrin-linked kinase (ILK) 

signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions and 

EIF2 signaling. These pathways are involved in cellular morphology, assembly, 

organization, and movement.  
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Figure 7.5. Network overlapping of the canonical pathways triggered by the up-

regulated recycling-transport, the mitochondrial and the membrane related proteins 

after AA treatment. Proteins binding to Cx43 were immunoprecipitated from Hela stably 

transfected Cx43-CFP cells treated with AA for 24 hours and analyzed by proteomics. The 

up-regulated proteins related to the recycling-transport, the mitochondrial and the 

membrane pathways were selected to build a specific molecular network using the 

Ingenuity Pathway Analysis software. The network of overlapping showed the canonical 

pathways identified in our experimental system. Each pathway was indicated as a single 

“node” colored proportionally to the Fisher’s Exact Test p-value, where brighter red meant 
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more significant. A line connected two pathways when at least one data set molecule was 

common between them.   

Results suggest that the top canonical pathways are: EIF2 signaling, cell cycle G2/M DNA 

damage checkpoint regulator, Myc mediated apoptotic signaling, remodeling of epithelial 

adherent junctions, ERK5 signaling. These pathways are involved in protein synthesis, 

RNA damage and repair, cellular assembly and organization, protein trafficking, and cell 

death and survival.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8: General discussion and future directions 
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HIV infection is a major public health concern, affecting around 40 million people 

in the world (https://www.who.int/news-room/fact-sheets/detail/hiv-aids). Current drugs to 

treat HIV-infected people are not a cure even they induce immune reconstitution (Perelson 

et al. 1997). Although, most HIV-infected patients under cART show a normal CD4 count, 

a low to undetectable viral load and an increased life-expectancy, they develop symptoms 

of accelerated aging including HIV-associated neurocognitive disorders (HAND) (Saylor 

et al. 2016). Neurological disorders affect more that the half of HIV-infected individuals 

and the mechanisms by which HIV induces HAND in the current cART era is unknown.  

HIV persists due to the presence of viral reservoirs in different anatomical compartments 

(Svicher et al. 2014). Moreover, upon cART interruption, the virus rebounds from all the 

anatomical compartments in which viral reservoirs are resident (De Scheerder et al. 2019).  

Currently, there is not a reliable method to detect viral reservoirs, as well as it is 

unknown in which cells HIV genome is integrated and the size of these cells. In addition, 

it is unclear the mechanism related to neuroHIV. Thus, this thesis tried to address these 

two major problems.  

As we describe in the general introduction, there are not reliable methods to detect 

viral reservoirs in the tissues. In this thesis, we outlined a microscopy strategy that can be 

used for the reliable identification, localization, and quantification of viral reservoirs in the 

tissues and blood of HIV-infected individuals. This methodology is based on a multi probe 

and antigen detection system using a DNA probe targeting the HIV-Nef sequence, an 

mRNA probe targeting HIV Nef mRNA, and detecting HIV proteins and cellular markers 

using the traditional antibody-based technology. For this analysis, we used human brain 

tissues provided by NNTC collected from uninfected and HIV-infected patients after 2 

hours of death to avoid molecular and tissue disruption. Infected patients were under cART 

for long time showing normal CD4 count and low to undetectable viral load (see Table 2, 

Chapter 2). Lymph nodes from the same patients were used as a control for the presence 

of the viral reservoirs. Through our strategy, we confirmed that the brain is an anatomical 

compartment for viral reservoirs (Balcom et al. 2019) and that a small population 

microglia/macrophages and a smaller population of astrocytes are the major reservoirs 

within the brain (Clayton et al. 2017, Li G. H. et al. 2016) in the current cART era. 

Nevertheless, not all microglia/macrophages and astrocytes were infected with HIV, 
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suggesting that an unknown mechanism of selection is used for specific niches within the 

brain that have a higher susceptibility to HIV infection. Moreover, literature data of the 

pre-cART era indicated that the percentage of macrophages and astrocytes with HIV-

integrated DNA is higher compared to our analysis (Castellano et al. 2017, Churchill et al. 

2009). Through our system, we identified that around 0.014% and 0.0035% cells in human 

brain tissue sections of HIV-infected individuals, showing HIV-integrated DNA, were 

macrophages/microglia and astrocytes, respectively. As expected, not all of these cells 

expressed HIV mRNA and few of them synthetized viral proteins. Despite effective cART, 

we demonstrated that HIV replication persists in particular areas of the brain. Interestingly, 

the low numbers of viral reservoirs into the brain cannot explain the damage detected in 

HIV-infected patients. But we demonstrated that viral reservoirs can synthetize HIV 

proteins that can diffuse or be secreted and be taken up by neighboring uninfected cells.  

This is the first scientific data demonstrating a local synthesis of viral proteins in the brain 

of HIV-infected individuals under cART. Several laboratories using animal models such 

as humanized mouse models and non-human primates (Hanna et al. 1998, Hansen et al. 

2009, Nesbit and Schwartz 2002, Yamada et al. 2015) have shown a consistent synthesis 

of HIV proteins that is not representative of what we observed in human brain tissues, 

where HIV proteins synthesis is not systemic but localized. Nevertheless, the basal 

synthesis of HIV proteins can validate the theory of HIV protein neurotoxicity that has 

discussed for many years and that implicates HIV proteins in the progression of neuroHIV 

(Kovalevich and Langford 2012, Mocchetti et al. 2012, Wallace 2006). Thus, we 

demonstrated that viral reservoirs contribute to the bystander damage by secretion of HIV 

proteins.  

To characterize viral reservoirs, we measured the metabolism of these cells based 

on our recent paper (Castellano et al. 2019). We identified that HIV-infected astrocytes do 

not behave as latently HIV-infected microglia/macrophages. This, it may be due to the low 

percentage (~5%) of HIV-infected astrocytes in cultures or because they really have a 

different metabolic profile. Nevertheless, we demonstrated that microglia/macrophages 

and astrocytes have a common link with glutamine/glutamate metabolism. Even though, 

HIV-infected microglia/macrophages use glutamine/glutamate as a major source of energy 

(Castellano et al. 2019), HIV-infected astrocytes released a large amount of 
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glutamine/glutamate in the media (Eugenin and Berman 2007). Future studies will 

elucidate whether HIV-infected astrocytes are the real glutamine/glutamate donors. 

Considering that our results for viral reservoirs identification and reservoirs 

metabolism indicate minimal changes, this do not correlate with the significant 

neurocognitive impairment that affect HIV-infected individuals.  Our recent data indicates 

that HIV-infected individuals under cART display circulating lipid altered metabolism 

(Velasquez et al. 2019). In addition, existing literature data revealed that HIV dysregulates 

lipids causing fat accumulation in the body (Bernasconi et al. 2002, Martinez E. et al. 2001) 

and dyslipidemia in the blood (Finkelstein et al. 2015, Souza et al. 2013). Importantly, 

HAND, as well as other neurodegenerative diseases, has been linked to lipid dysregulation 

(Bandaru et al. 2013), but a real examination of structural and signaling lipids in the brain 

of HIV-infected individuals under cART and developing neurocognitive impairment is 

missing. In this thesis, we analyzed lipid distribution in the brain of HIV-infected 

individuals by MALDI-MSI and we demonstrated the structural lipids of the grey and the 

white matters did not change in HIV condition, proving that the grey and white matter are 

not compromised in the cART era. Other neurodegenerative diseases showed significant 

changes in lipid distribution and an important structural damage (Hussain et al. 2019). For 

our analysis, we used the same tissue sections where we identified few viral reservoirs with 

HIV-integrated DNA, minimal expression of viral mRNA and viral proteins but with HIV 

proteins bystander release. We identified a significant dysregulation of sulfatide in large 

areas of the brain. Although, sulfatide is the major component of the myelin sheet (Schmitt 

et al. 2015), so it is relatively abundant in the white matter, its relative intensity was 

elevated in HIV condition. Our analysis needs to be expanded in order to show if sulfatide 

increase is due to an over production in the white matter or to a lysosomal storage disorder. 

Even though we do not know the mechanism of release of sulfatide, we showed that lipid 

dysregulation involves several subclasses of sulfatide and large areas of the brain, despite 

the virus is minimally replicated and the number of viral reservoirs is low. If HAND is 

compared with Alzheimer’s (AD) and Parkinson’s diseases (PD) several differences 

appear. First, sulfatide increases in the white matter of HIV-infected patients rather than in 

the grey matter as observed in PD’s patients (Cheng et al. 2003) or being reduced in both 

grey and white matter as observed in AD condition (Han et al. 2002). Second, in HAND 
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we did not detect significative alterations for structural membrane phospholipids, whereas 

in AD and PD conditions cholesterol and phospholipid alterations determine a significant 

CNS structural compromise (Hussain et al. 2019). These results may correlate with MRI 

data for HIV-infected brain showing reduction in brain volume but not structural disruption 

of the brain regions (Alakkas et al. 2019, Ances et al. 2012). This suggest that in the current 

cART era neuronal apoptosis is not the major mechanism triggered by HIV, but neuronal 

pruning (Ru and Tang 2017) can be a reasonable explanation for the reversible and flexible 

symptoms of the common milder forms of HAND. For all these reasons, we proposed 

sulfatide as a potential biomarker of HAND. For future directions, we intend to expand our 

research to a larger number of human brain tissues from cART suppressed HIV-infected 

individuals with different kind of cognitive impairment, we need to analyze different areas 

of the brain and isolate specific areas by Laser Capture Microdissection (LCM) to quantify 

the amount of sulfatide.  

Tissue reservoirs are not entirely silent, we identified a bystander release of HIV 

proteins that compromise a bigger area of the brain and we demonstrated that several viral 

proteins participate in sulfatide secretion in vitro. Evaluating sulfatide secretion in the 

media of human primary astrocytes and differentiated SH-SY5Y neuroblastoma cell co-

cultures, we showed that Gp120, Nef, Vif or Vpr increased its secretion. Even though the 

mechanism of release of sulfatide is unknown, a minimal amount of viral proteins can 

amply toxicity by sulfatide release. Then, we plan to reproduce the same experiment using 

connexin43 (Cx43) or pannexin-1 (Panx-1) blockers. This is because other bioactive lipids 

such as PGE2 can be released by these channels (Velasquez et al. 2019). Or we can consider 

potentially other sources of secretion such as exoxomes (Fruhbeis et al. 2012).  

One of the key finding of our laboratory is that HIV Tat, that is express in the brain 

of HIV-infected patients under cART, upregulates Cx43 expression in astrocytes (Berman 

et al. 2016). Hence, we have investigated extracellular sulfatide effects on human primary 

astrocytes, differentiated neurons, and Hela cells stably transfected with Cx43-CFP. We 

used astrocytes because they highly express Cx43, and our previous publication 

demonstrated that HIV-infected astrocytes induced bystander apoptosis of uninfected cells. 

Cx43 GJs are maintained between HIV-infected cells and uninfected cells in order to 

transfer toxic signals such as IP3 and calcium and extend survival of HIV-infected cells 
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(Eugenin and Berman 2007, 2013, Eugenin et al. 2011). Recently, unpublished data from 

our laboratory demonstrated that Nef can bind to IP3 receptors and amply the damage 

induced from the few HIV-infected astrocytes. On another hand, neurons were used to 

mimic the bystander effect mediated by the HIV-infected astrocytes for other residential 

cells in CNS (Eugenin et al. 2011, Ton and Xiong 2013). Hela cells were used as a stable 

system for Cx43 expression to study Cx43 trafficking. In these experiments, we 

demonstrated that sulfatide increased Cx43 mRNA and protein expression, especially in 

human primary astrocytes, and regulates the trafficking of Cx43 in Hela cells. This suggests 

that one of the potential mechanisms used by Tat to induce Cx43 expression is related to 

sulfatide release in HIV condition. 

Moreover, we investigated Cx43 binding proteins after sulfatide stimulation by 

coimmunoprecipitation and subsequent proteomics in Hela cells stably transfected with 

Cx43-CFP. Proteomics data revealed that sulfatide regulated three important families of 

proteins related to recycling-transport, mitochondria and cellular membrane, where Cx43 

is mostly localized. Between the recycling-transport proteins, we identify proteins binding 

to Cx43 involved in an active vesicular transport such as myosin and rab proteins. On 

another hand, mitochondrial proteins binding Cx43 and upregulated by sulfatide were 

related to glucose and glutamate/glutamine synthesis, that we analyzed in Chapter 3 and 

future experiments aim to demonstrate the direct interaction of Cx43 with these specific 

enzymes in the mitochondria. In addition, we found a particular proteomics profile for 

Cx43 in the plasma membrane that may result in stabilization of Cx43 by Tat and sulfatide. 

Although, we choose the Hela cells to perform this analysis because they represent a simple 

model, future studies intend to characterize Cx43 binding proteins in HIV-infected 

astrocytes. 

Overall, there are major contributions to the HIV field presented in this thesis. First, 

we have optimized a high throughput technique to identify, localize, and quantify viral 

reservoirs in blood and in the tissues. We characterized that localized populations of 

microglia/macrophages and astrocytes create clusters of infected cells. Second, we 

analyzed that viral reservoirs relay glutamine/glutamate to survive. Third, we identified 

that HIV-infected patients under cART do not have significative structural changes in grey 

and white matter, and we presented sulfatide as a potential lipid biomarker of HAND, that 
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is highly expressed in the white matter. Fourth, we showed that sulfatide secretion is 

regulated by low concentration of HIV proteins, suggesting that amplification of the 

damage is controlled by viral proteins through a lipid mediated mechanism. Fifth, we 

identified a potential mechanism used by Tat to increase Cx43 that is mediated by sulfatide, 

which increased the expression of Cx43 mRNA and protein. In conclusion, we enlightened 

new Cx43 partners showing a direct or indirect protein:protein interaction with Cx43 in the 

recycling-trafficking, membrane and mitochondria compartments.   

Although, CNS damage in HIV-positive individuals under cART is multifactorial 

we provided specific tools and unique data that describe a mechanism of neuronal 

bystander damage in HAND.  Therefore, we proposed sulfatide as a potential biomarker or 

as a molecular target for preventing or curing HAND in the HIV aviremic population. 
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