
ASIAN J. MATH. c© 2009 International Press
Vol. 13, No. 3, pp. 369–384, September 2009 007

THE TAUTOLOGICAL RING OF SPIN MODULI SPACES∗

GILBERTO BINI†

Abstract. We introduce the notion of tautological ring for the moduli space of spin curves.
Moreover, we study some relations among tautological classes which are motivated by physics. Fi-
nally, we show that the Chow rings of these moduli spaces are tautological in low genus.
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1. Introduction. In the last decades, ideas set forth by physicists have revived
a more detailed study of moduli spaces of curves. In particular, the contribution
to the partition function for Polyakov’s bosonic string is an integral [22], which can
be reformulated on the moduli space Mg of genus g smooth curves. To rewrite the
integrand as a function, we need to know how to manipulate Chern classes on the
moduli space. These classes are related to tautological classes, which have beeen
defined by Mumford for Mg - see [24]. This moduli space parametrizes stable curves,
i.e., curves with a finite automorphism group, and contains Mg as a dense open set.
Tautological classes are closed under cup product, so they form a ring, which is usually
called the tautological ring [17].

Besides the bosonic string, physicists focus on the fermionic string as well. To
deal with this theory, algebraic curves must be equipped with some extra structure.
Following [10], we take into account the space which parametrizes curves with spin
structures - see Section 2. Usually denoted by Sg, this space is a branched covering
of Mg and compactifies the parameter space of pairs (C, η), where C is a genus g
algebraic curve and η is a theta-characteristic, i.e., a square root of the canonical
bundle. The space Sg is the union of two connected components parametrizing odd
and even spin structures, respectively. Moreover, it is a 22g degree finite covering of
Mg. Expectedly, the contribution to fermionic strings should come from an integral
on the moduli space of spin curves. If so, a natural problem is to study tautological
classes and their intersection on Sg. Unfortunately, the notion of tautological ring is
missing.

In the present paper we introduce the tautological ring R•(Sg,n) for the moduli
space Sg,n of pointed spin curves. We show that it is a non-trivial extension of the
image of the tautological ring of the moduli space of stable curves. To introduce
R•(Sg,n) , we need to describe the irreducible components of the boundary via some
maps from other moduli spaces of spin curves. In some cases, these spaces are not
of the form Sg,n, but they are slightly modified as shown in Section 2. Motivated by
physics, we come up with some relations among tautological classes which generalize
those found by Mumford in connection with string theory [25]. We also give some
examples of Chow ring in genus 3 and 4. As a by-product we obtain that the rational
Picard group of the open part is one dimensional. This matches with more general
results proved in [23]. We end our paper with some speculation and open questions
that come quite naturally from our research.
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2. Some basic facts on spin curves. In this section, we recall some basic
definitions about spin structures. We closely follow [12], which we refer for more
details. For a general approach see, for instance, [1].

Let C be a Deligne-Mumford semistable curve and let E be a complete, irreducible
subcurve of C. The curve E is said to be exceptional when it is smooth, rational,
and intersects the other components in exactly two points. Moreover, C is said to
be quasi-stable when any two distinct exceptional components of C are disjoint. In
the sequel, C̃ will denote the subcurve C \ ∪Ei obtained from C by removing all the
exceptional components.

A spin curve of genus g (see [12], § 2) is the datum of a quasi-stable genus g
curve C with an invertible sheaf ζC of degree g − 1 on C and a homomorphism of
invertible sheaves αC : ζ⊗2

C −→ ωC such that i) ζC has degree 1 on every exceptional
component of C, and ii) αC is not zero at a general point of every non-exceptional
component of C. Therefore, αC vanishes identically on all exceptional components of
C and induces an isomorphism α̃C : ζ⊗2

C |C̃ −→ ωC̃ . In particular, when C is smooth,
ζC is just a theta-characteristic on C. Two spin curves (C, ζC , αC) and (C′, ζC′ , αC′)
are isomorphic if there are isomorphisms σ : C → C′ and τ : σ∗(ζC′) → ζC such that
τ is compatible with the natural isomorphism between σ∗(ωC′) and ωC .

A family of spin curves is a flat family of quasi-stable curves f : C → S with
an invertible sheaf ζf on C and a homomorphism αf : ζ⊗2

f −→ ωf such that the
restriction of these data to any fiber of f gives rise to a spin curve.
Two families of spin curves f : C → S and f ′ : C′ → S are isomorphic if there are
isomorphisms σ : C −→ C′ and τ : σ∗(ζf ′) −→ ζf such that f = f ′ ◦ σ and τ is
compatible with the natural isomorphism between σ∗(ωf ′) and ωf .
Let Sg be the moduli space of isomorphism classes of spin curves of genus g. Denote
by Sg the open subset consisting of classes of smooth curves. As shown in [12], § 5,
Sg has a natural structure of analytic orbifold given as follows. For any spin curve
Y , there is a neighbourhood U of [Y ] such that U ∼= BY /Aut(Y ), where BY is a
3g−3-dimensional polydisk and Aut(Y ) is the automorphism group of the spin curve
Y . Alternatively, Sg may be viewed as a projective normal variety with finite quotient
singularities.

The moduli space of spin curves can be slightly generalized as follows. For all
integers g, n, m1, . . . ,mn, such that 2g − 2 + n > 0, 0 ≤ mi ≤ 1 for every i, and∑n

i=1mi is even, we define

S
(m1,...,mn)

g,n :=
{
[(C, p1, . . . , pn; ζ;α)] : (C, p1, . . . , pn) is a genus g

quasi-stable projective curve with n marked points;

ζ is a line bundle of degree g − 1 +
1

2

n∑

i=1

mi on C

having degree 1 on every exceptional component of C, and

α : ζ⊗2 → ωC(

n∑

i=1

mipi) is a homomorphism which

is not zero at a general point of every non-exceptional

component of C
}
.

In order to put an analytic structure on S
(m1,...,mn)

g,n , we notice that Cornalba’s
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construction in [12] can be easily adapted to S
(m1,...,mn)

g,n . Indeed, from the universal
deformation of the stable model of Y = (C, p1, . . . , pn) we obtain exactly as in [12],
§ 4, a universal deformation UY → BY of Y = (C, p1, . . . , pn; ζ;α). Next, we put on

S
(m1,...,mn)

g,n the structure of the quotient analytic space BY / Aut(Y ) following [12],

§ 5. Alternatively, we can regard S
(m1,...,mn)

g,n as the coarse moduli space associated
to the stack of r-spin curves (in the easiest case r = 2), which has been constructed
by Jarvis in [20] and revisited by Abramovich and Jarvis in [1].

Analogously to Sg (see [12], Proposition 5.2), the spaces S
(m1,...,mn)

g,n are normal
projective varieties of complex dimension 3g − 3 + n. If m1 = . . . = mn = 0, then

Sg,n := S
(0,...,0)

g,n splits into two disjoint irreducible components S
+

g,n and S
−
g,n that

consist of the even and the odd spin curves, respectively (see [12], Lemma 6.3).

The moduli space of spin curves comes equipped with a natural map ν :

S
(m1,...,mn)

g,n → Mg,n, which forgets the spin structure and stabilizes the domain
curve. It is a finite morphism of degree 22g.

In general, if P is a set with n elements, it will be technically convenient to
consider also P -pointed spin curves and P -pointed stable curves. These are simply
spin curves (resp. stable curves) whose marked points are indexed by P and not

by {1, . . . , n}. We shall denote by S
(m1,...,mn)

g,P (resp. Mg,P ) and by S
(m1,...,mn)
g,P the

corresponding moduli spaces.

3. The tautological ring. In this section we first recall the definition of the
tautological ring of Mg,P . Next, we introduce the tautological ring of the moduli
space of spin curves.

For p ∈ P denote by ψp the universal cotangent class defined as follows. Let
σp : Mg,P → Mg,P∪{q} be the section of the forgetful morphism

φ : Mg,P∪{q} → Mg,P . (3.1)

Then set ψp = c1
(
σ∗

p(ωφ)
)
, where ωφ is the relative dualizing sheaf. For A ⊂ P

and 2h − 1 + |A| > 0, 2g − 2h − 1 + |Ac| > 0, recall the boundary maps (see, for
instance, [3])

ξirr : Mg−1,P∪{q1,q2} → Mg,P (3.2)

and

ξh,A : Mh,A∪{r1} ×Mg−h,Ac∪{r2} → Mg,P . (3.3)

The tautological ring of Mg,P is the smallest system of Q-subalgebras of the
cohomology rings which is closed under the morphisms (3.1), (3.2), (3.3) and contains
the universal cotangent classes. We prefer to give the definition in terms of cohomology
rings and not Chow rings for more generality.

We introduce some maps which will be used to define the tautological ring of
Sg,P . To begin with, we have the forgetful morphism

π : Sg,P∪{q} → Sg,P , (3.4)
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where |P | = n. It forgets the point q and stabilizes the spin curve. As remarked in
[20], §3.2, Sg,P∪{q} is isomorphic to the universal curve over Sg,P . For 0 ≤ i ≤ g and
T ⊂ P with 2i− 1 + |T | > 0 and 2g − 2i− 1 + |T c| > 0, let

a+
i,T : S

+

i,T∪{r1} × S
+

g−i,T c∪{r2} → S
+

g,P , (3.5)

b+i,T : S
−
i,T∪{r1} × S

−
g−i,T c∪{r2} → S

+

g,P , (3.6)

a−i,T : S
−
i,T∪{r1} × S

+

g−i,T c∪{r2} → S
−
g,P , (3.7)

b−i,T : S
+

i,T∪{r1} × S
−
g−i,T c∪{r2} → S

−
g,P (3.8)

be the following maps. A point in the domain is a pair of spin curves with the
corresponding parity. A point in the image is obtained by attaching the two spin
curves at a point and blowing-up. The exceptional P1 is equipped with the line
bundle OP1(1), which is glued to the other two characteristics of the spin curves.
Along the lines of [12], the image set of these divisors are the boundary divisors
A+

i,T , B
+
i,T , A

−
i,T , B

−
i,T , respectively. For i ≥ 2 and i = 1, T 6= ∅, we set [A±

i,T ] = α±
i,T

and [B±
i,T ] = β±

i,T , where [γ] denotes the (rational) Poincaré dual of γ. For i = 1

and T = ∅ we have α±
1,∅ = 1

2 [A±
1,∅] and β±

1,∅ = 1
2 [B±

1,∅] because elliptic tails have an
automorphism of order two. Notice that

α±
i,T = α±

g−i,T c , β±
i,T = β±

g−i,T c , α−
i,T = β−

g−i,T c .

Note in particular that β−
[g/2],∅ = α−

[g/2],∅. This justifies the assumption in [12] to

disregard the class β−
[g/2],∅.

The classes α±
i,T and β±

i,T can be expressed as push-forwards under the maps (3.5),
(3.6), (3.7), (3.8). Indeed, the general image point under these maps has an auto-
morphism σ of order two, which is given as follows. Pick [C1, p1, . . . , p|T |, r1,L1] and
[C2, x1, . . . , x|T c|, r2,L2]. The automorphism σ is the identity over the components of
genus i and g − i and exchanges the two points - which can be assumed to be 0 and
∞ - on P1. Accordingly, the spin structure obtained by glueing (L1)r1

with OP1(1)0
and (L2)r2

with OP1(1)∞ is sent to the spin structure obtained by glueing (L1)r1
with

OP1(1)∞ and (L2)r2
with OP1(1)0. Therefore, we set

α±
i,T =

1

2
a±i,T ,∗(1), β±

i,T =
1

2
b±i,T ,∗(1).

We also have other natural maps, namely:

a+
0 : S

(0,...,0,1,1)

g−1,P∪{q1,q2} → S
+

g,P , (3.9)

a−0 : S
(0,...,0,1,1)

g−1,P∪{q1,q2} → S
−
g,P , (3.10)

b+0 : S
+

g−1,P∪{m1,m2} → S
−
g,P , (3.11)
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b−0 : S
−
g−1,P∪{m1,m2} → S

−
g,P . (3.12)

The maps a±0 are defined as follows. Pick a point [C, x1, . . . , xn, q1, q2,L] in the
domain. As explained in [21], there are two possible identifications of the fibers Lq1

and Lq2
. Each of them yields a spin structure on the curve which is obtained from

C by identifying q1 and q2. The first identification gives the map a+
0 and the second

gives a−0 . As for the maps b±0 , we identify m1 and m2 and we blow-up the resulting
curve. Next, we glue OE(1) on the exceptional component E to the spin curve of the
domain point. As before, we denote the closure of the images as A±

0 and B±
0 . The

Poincaré duals are denoted by α±
0 and β±

0 . We set α±
0 = 1

2a
±
0,∗(1) because the points

[C, p1, . . . , pn,m1,m2,L] and [C, p1, . . . , pn,m2,m1,L] map to the same image point.
On the other hand, we set β±

0 = 1
4b

±
0,∗(1). In fact, we still have two points that map to

the same one. For each of them, the generic member has an order two automorphism
which is the identity on the genus g− 1 component and exchanges two points - which
can be assumed to be 0 and ∞ -on the exceptional component. Accordingly, the spin
structure obtained by glueing Lm1

with OP1(1)0 and Lm2
with OP1(1)∞ is sent to the

spin structure which is obtained by glueing Lm1
with OP1(1)∞ and Lm2

with OP1(1)0.
The forgetful morphism has n sections σp : Sg,P → Sg,P∪{q}. Let ωπ be the

relative dualizing sheaf and define Lp := σ∗
pωπ. For each p ∈ P set ψp = c1(Lp).

Definition 3.1. The tautological ring R•(Sg,P ) is the smallest system of Q-
subalgebras of the cohomology rings which is closed under the push-forwards of natural
morphisms (3.4) through (3.12) and contains the classes ψp.

Let i : Sg,P → Sg,P . Then the tautological ring of Sg,P is the image under i∗ of
the tautological ring of Sg,P .

The finite map ν : Sg,P → Mg,P induces an injective homomorphism ν∗. We
now prove that the image of R•(Mg,P ) lies in the tautological ring R•(Sg,P ).

We recall the definition of push-forward of a map: see, for instance, [26], p. 178.
If ρ : V →W is a morphism between two projective orbifolds, the push-forward ρ∗ is
given by

ρ∗(α) = PW (ρ∗PV (α)),

where ρ∗ on the right hand side is the morphism induced in singular homology by ρ
and PA(γ) is the (rational) Poincaré dual over the space A of the cohomology class
γ. The following result is probably known to experts, but we include the proof for
the sake of completeness.

Lemma 3.2. Let X,Y,X ′, Y ′ be projective orbifolds. Let us consider the following
diagram:

X ′ π→ Y ′

η ↓ ↓ ν
X →

φ
Y,

(3.13)

where π and φ are codimension one maps and η and ν have finite degree. Then
deg(η)ν∗φ∗ = deg(ν)π∗η∗.

Proof. Denote by α a class in H∗(X) of degree k. By definition, the composition
π∗η∗ is given by PY ′(π∗PX′(η∗α)). On the other hand, the class ν∗φ∗(α) is given by
ν∗PY (φ∗PX(α)). Notice that in homology we have:
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ν∗π∗PX′(η∗α) = φ∗η∗PX′(η∗α) (3.14)

because the diagram (3.13) commutes. Let ω be a differential form of degree k in
H∗(X). Then we have

∫

η∗PX′ (η∗(α))

ω =

∫

PX′ (η∗α)

η∗ω =

=

∫

X′

η∗α ∧ η∗ω =

∫

X′

η∗(α ∧ ω) = deg(η)

∫

X

α ∧ ω.

Hence we have

φ∗η∗PX′(η∗α) = deg(η)φ∗PX(α). (3.15)

Set β = π∗PX′(η∗α) and γ = deg(η)φ∗PX(α). By (3.14) and (3.15) we have ν∗(β) =
γ. On the other hand, we have

∫

γ

ω =

∫

ν∗(β)

ω =

∫

β

ν∗ω =

∫

Y ′

PY ′(β) ∧ ν∗ω

=

∫

Y

PY (γ) ∧ ω =
1

deg(ν)

∫

Y ′

ν∗P(α) ∧ ν∗ω.

This yields ν∗PY (γ) = deg(ν)PY ′(β). In other words, the following holds:

deg(η)ν∗PY (φ∗PX(α)) = deg(ν)PY ′(π∗PX′(η∗α)),

which proves the claim completely.

Theorem 3.3. The tautological ring R•(Mg,P ) is a subring of R•(S
+

g,P ) (resp.

R•(S
−
g,P )).

Proof. First, notice that the following diagram commutes:

Sg,P∪{q}
π→ Sg,P

η ↓ ↓ ν
Mg,P∪{q} →

φ
Mg,P .

(3.16)

The horizontal maps forget the point q and the vertical arrows forget the spin
structure on the curve. By Prop 2.5.1 in [13], we have η∗ωφ

∼= ωπ. If τp and σp are
sections of φ and π respectively, by the commutativity of (3.16) we also have that
τpν = ησp. Hence, we get

ν∗c1(τ
∗
pωp) = c1(σ

∗
pωπ).

Therefore, the image of the cotangent classes of Mg,P is contained in R•(Sg,P ).
As for boundary maps, let us consider first the maps ξh,T . We deal with even spin

curves because the odd case can be dealt with analogously. Let X ′ be the orbifold

X ′ = X1 ⊔X2 = S
+

h,T∪{f1} × S
+

g−h,T c∪{f2} ⊔ S
−
h,T∪{r1} × S

−
g−h,T c∪{r2}.
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We have a diagram as follows:

X1 ⊔X2 −→
−→

S
+

g,P

u ↓ ↓ v ↓ ν
Mh,T∪{l1} ×Mg−h,T c∪{l2} −→

ξh,T

Mg,P

where the upper horizontal maps are a+
h,T and a−h,T , respectively. The vertical arrows

forget the corresponding spin structure. Denote by η the map (u, v) and by π the
map (a+

h,T , a
−
h,T ). Analogously to Lemma 3.13, we have

ν∗ξh,T ,∗ = a+
h,T ,∗u

∗ + a−h,T ,∗v
∗ (3.17)

since deg(ν) = deg(u) + deg(v).

As for the other boundary maps, the even and the odd case has to be dealt with
simultaneously. More precisely, let

Y1 ⊔ Y2 ⊔ Y = S
+

g−1,P∪{a1,a2} ⊔ S
−
g−1,P∪{b1,b2} ⊔ S

(0,0,...,1,1)

g−1,P∪{c1,c2}.

There exist maps from this disjoint union to Sg,P which are given by a±0 b±0 . We thus
have a diagram

Y1 ⊔ Y2 ⊔ Y −→ S
+

g,P

τ ↓↓ ξ ↓ µ ↓ ν
Mg−1,P∪{q,t} →

ξirr

Mg,P ,

where the upper horizontal map is given by (b+0 , b
−
0 , a

+
0 , a

−
0 ). The vertical arrows

forget the corresponding spin structure. We notice that the map ξirr has degree
two so Lemma 3.2 must be slightlty modified. However, it is easy to prove that the
following holds:

2(deg(τ) + deg(ξ) + deg(µ))ν∗ξirr,∗

= deg(ν)
(
b+0,∗τ

∗ + b−0,∗ξ
∗ + a+

0,∗µ
∗ + a−0,∗µ

∗) .
(3.18)

Let Q ∈ H∗(Mg,P∪{q}) be a polynomial in the class ψp. If we apply Lemma 3.2

or (3.17) and (3.18), we see that the image of φ∗(Q) is a class in R•(Sg,P ).

Remark 3.4. Notice that

ν∗(ξh,A,∗(1)) = a±h,A,∗(1) + b±h,A,∗(1) = 2α±
h,A + 2β±

h,A,

ν∗
(
ξirr,∗(1)

2

)
=
a±0,∗(1)

2
+
b±0,∗(1)

2
= α±

0 + 2β±
0 .

We thus obtain a generalization of the formulas given in [12] for the moduli space
Sg.
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4. Some tautological classes and their relations. In this section we present
some tautological classes and study some relations among them.

Let us recall the definition of the Mumford-Morita-Miller classes on Mg,P . Set

κ̃m = φ∗
(
c1(ωφ)m+1

)
. (4.1)

Analogously, define the classes - by abuse of notation we still denote them by the
same letter -

κ̃m = π∗
(
c1(ωπ)m+1

)
. (4.2)

By Diagram 3.16 and η∗ωφ = ωπ we have ν∗(κ̃m) = κ̃m.
Let us consider the sheaf π∗ωn

π for n ≥ 1 on Sg,P . By base change applied to
Diagram 3.16, we have π∗ωn

π = ν∗φ∗ωn
φ . By abuse of notation, we denote by the same

symbol the pull-back under ν of the Chern classes of φ∗ωn
φ . Note in particular that

ν∗(λ) = λ, where λ is the first Chern class of the Hodge bundle.
Let µ denote the class of the line bundle detRf∗ζf , where ζf is the line bundle of

degree g − 1 on a family of spin curves f : X → B. The class µ is tautological since
α0 = 4λ+ 8µ - see [11].

Proposition 4.1. For g ≥ 1 the ring R•(Sg,P ) is a non-trivial extension of
ν∗
(
R•(Mg,P )

)
.

Proof. It suffices to show there exist non-zero elements which belong to
R•(Sg,P )\ν∗R•(Mg,P ). Let us consider the even case. The odd case can be dealt with
analogously. On the contrary, suppose α+

0 = ν∗(t) for some t. Since α+
0 ∈ PicQ(Sg,P ),

the class t belongs to PicQ(Mg,P ), i.e., t = aλ+
∑

i biδi. By pull-back we have

α+
0 = aλ+ + b0(α

+
0 + 2β+

0 ) +
∑

bi(2α
+
i + 2β+

i ).

Since the classes λ+, α+
i are linearly independent, we get b0 = 1 and b0 = 0, which

is clearly impossible.

Motivated from physics, we express the Chern classes of Wb = π∗ωb
π for b ≥ 2 on

Sg,P in terms of those of W1. This can be done again by applying the Grothendieck-
Riemann-Roch Theorem. We recall some conventional notation on Bernoulli numbers
and Bernoulli polynomials. Their definition is given via the following identities:

x

ex − 1
=
∑

j≥1

Bj
xj

j!
,

eux x

ex − 1
=
∑

n≥0

Bn(u)
xn

n!
.

where x and u are formal variables.

Proposition 4.2. The following hold:
i)

ch2d(Wb) =





0 b = 1,

B2d+1(b)
(2d+1)! κ̃2d otherwise.

(4.3)



THE TAUTOLOGICAL RING OF SPIN MODULI SPACES 377

ii)

ch2d−1(Wb) =
B2d(b)

B2d
ch(W1) +

(
1 − B2d(b)

B2d

)
∆2d−1, (4.4)

where

∆2d−1 =
1

2

B2d

(2d)!

{
a±0,∗

(
ψ2a−2

q1
− ψ2a−3

q1
ψq2

+ . . .+ ψ2a−2
q2

)

+ b±0,∗
(
ψ2a−2

q1
− ψ2a−3

q1
ψq2

+ . . .+ ψ2a−2
q2

)}

+
1

2

B2d

(2d)!

g∑

h=0

∑

T⊂P

{
a±h,T ,∗

(
ψ2a−2

r1
⊗ 1 − ψ2a−3

r1
⊗ ψr2

+ . . .+ 1 ⊗ ψ2a−2
r2

)

+ b±h,T ,∗
(
ψ2a−2

r1
⊗ 1 − ψ2a−3

r1
⊗ ψr2

+ . . .+ 1 ⊗ ψ2a−2
r2

)}
.

Proof. By [24] and [7], i) follows easily by pull-back under ν.
ii) Set ωb

φ = Eb. By base change with respect to the map ν in (3.13), we have
π∗η∗Eb = ν∗φ∗Eb. As for Chern classes we have cj(Wb) = cj(π∗η∗Eb) = ν∗cj(φ∗Eb).
By [7], we have

ch2a−1(Eb) =
B2a(b)

(2a)!
κ̃2a−1 + δ2a−1,

where

δ2a−1 =
B2a

(2a)!

{
1

2
ξirr, ∗

(
ψ2a−2

q1
− ψ2a−3

q1
ψq2

+ . . .+ ψ2a−2
q2

)

+
1

2

g∑

h=0

∑

T⊂P

ξh,T ,∗
(
ψ2a−2

r1
⊗ 1 − ψ2a−3

r1
⊗ ψr2

+ . . .+ 1 ⊗ ψ2a−2
r2

)
}
.

By [24], we get

κ̃2a−1 =
(2a)!

B2a
(ch2a−1(E1) − δ2a−1) .

Thus, we have

ch2a−1(Eb) =
B2a(b)

B2a
ch2a−1(E1) +

(
1 − B2a(b)

B2a

)
δ2a−1.

As remarked above, the Chern character of Eb on Sg,P is the pull-back under ν
of the Chern character of Eb on Mg,P . To prove the claim we just need to compute
ν∗(δ2a−1). The claim follows from Theorem 3.3.

Remark 4.3. For a = 1 we get

c1(Wb) = (6b2 − 6b+ 1)λ−
(
b

2

)
2

⌊g/2⌋∑

i=1

(αi + βi) + α0 + 2β0


 ,

which is the pull-back on Sg,P of the relation obtained by Mumford in [25].
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Other relations between tautological classes may be obtained by applying the
Grothendieck-Riemann-Roch Theorem to the universal root of the line bundle ωs

π and
its generalizations. This has been done in [14]. For the case at hand, the formulas in
[14] read as follows. Let S be the universal root of the bundle ωs

π. Then the following
holds [14], Thm. 1.1.1:

ch(R•π∗S) =
∑

d≥0

(
Bd+1(s/2)

(d+ 1)!
κ̃d +

1

2

1∑

q=0

2Bd+1(q/2)

(d+ 1)!
(jq)∗(γd−1)

)
,

where

j0 =
∑

i,T

(a±i,T ) + (b±i,T ) + a±0 , j1 = b±0 ,

and γd−1 =
∑

i+j=d(−ψ)i(ψ̂j), where ψ and ψ̂ are the first Chern classes of the line
bundles whose fibers are the cotangent line to the first branch and the cotangent line
to the second branch of the singular locus.

5. Some tautological rings in low genus. In this section we study some
tautological rings in low genus. More specifically, we determine the Chow rings of
some moduli spaces of spin structure and show they are tautological. To begin with,
we handle some cases in genus one.

Lemma 5.1. The degree three covering

γ : S
+

1,1 → M1,1 = M1,1 ∪ {∆0} ∼= P1

is branched at ∆0 and [E, 0], where Aut(E) ∼= Z/mZ for m = 4, 6 and ∆0 is the class
of the irreducible nodal curve.

Proof. The divisor ∆0 is a branch point of γ since it corresponds to an irreducible
nodal curve. Let p1 = 0, p2, p3 and p4 be the two-torsion points of E. The even
theta-characteristics are given by OE(p1 − pj) for j ∈ {2, 3, 4}. If Aut(E) ∼= Z/4Z,
the torsion points are given by 0, 1/2,

√
−1/2, 1/2+

√
−1/2. The generator of Aut(E)

exchanges the two theta-characteristics OE(0 − 1
2 ) and OE(0 −

√
−1
2 ) and fixes the

remaining theta characteristic. Thus, the map γ is branched at the point in M1,1

corresponding to this curve. Analogously, the elliptic curve with Aut(E) ∼= Z/6Z

yields a total ramification point of γ. The variety S
+

1,1 is smooth since it is normal
and has dimension one. Its genus is zero because the following holds:

2 − 2g(S
+

1,1) = 6 − 2 − 1 − 1 = 2.

In other words, S
+

1,1
∼= P1.

Theorem 5.2. The following isomorphisms hold:
i)

H∗(S
−
1,1)

∼= Q[α−
0 ]/

(
(α−

0 )2)
)
,

H∗(S
−
1,2)

∼= Q[α−
0 , α

−
1 ]/

(
(α−

0 )2, 12(α−
1 )2 + (α−

0 )(α−
1 )
)
,
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where α−
1 = α−

1,∅
ii)

H∗(S
+

1,1)
∼= Q[α+

0 ]/((α+
0 )2),

H∗(S
+

1,2)
∼= Q[α+

0 , α
+
1 ]/

(
(α+

0 )2, 8(α+
1 )2 + (α+

0 )(α+
1 )
)
,

where α+
1 = α+

1,∅.

Proof. i) We recall that there exists only one odd theta-characteristic on a genus

one curve. In other words, S
−
1,1

∼= M1,1 and S
−
1,2

∼= M1,2. Thus, the claim follows:
see, e.g., [9].

ii) By Lemma 5.1, the space S
+

1,1 is isomorphic to P1. Since γ∗(δirr) = 3α+
0 , we

have (α+
0 )2 = 0. As for S

+

1,2, let δirr and δ1 be the (Poincaré) duals of the boundary

divisors on M1,2. We recall that δ2irr = 0 and δ21 + 1
12δirrδ1 = 0. Moreover, if

γ+
1,2 : S

+

1,2 → M1,2 is the 3 : 1 covering of M1,2, then we have:

(γ+
1,2)

∗(δirr) = 3α+
0 , (γ+

1,2)
∗(δ1) = 2α+

1 .

Hence, the claim follows.

As proved in [5], the cohomology ring of S
±
2 is tautological. Here we deal with

the moduli spaces S
±
2,{p}.

Proposition 5.3. S±
2,{p} is the union of two affine subvarieties:

U±
0 = {[C, p,L] : p is not a Weierstrass point ofC}

and

U±
1 = {[C, p,L] : p is a Weierstrass point ofC}.

Each of them has the Chow ring of a point; hence the Chow ring of S±
2,{p} is

generated by [S±
2,{p}] and [U±

1 ].

Proof. The moduli space M2,1 is the union of two affine subvarieties, each of them
parametrizing pairs (C, p) where the marked point is a Weierstrass point or not. U±

0

and U±
1 are the preimages under a finite morphism of these two subvarieties; hence

they are affine. Let us consider the following morphisms:

f+ : M0,7 → U+
0 , (5.1)

f− : M0,7 → U−
0 , (5.2)

g+ : M0,6 → U+
1 ,

g− : M0,6 → U−
1 .
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The morphism f+ maps the rational curve [P1; p1, . . . , p6, q] to the genus two
curve C (covering of P1) with branch points p1, . . . , p6 and with marked point one of
the two points in the preimage of q. The spin structure is given by OC(r1), where ri is
the preimage of pi. The morphism f− is defined in a similar way. The spin structure
is given by OC(r1 + r2 − r3).

As for the morphisms, g± we map the rational curve [P1; p1, . . . , p6] to [C, r6,L],
where C is as above and L is OC(r1) for g+ and OC(r1+r2−r3) for g−. The existence
of these maps show that U±

0 and U±
1 have the Chow ring of a point. Hence the claim

follows.

Corollary 5.4. The rational Chow ring of S±
2,{p} is isomorphic to

Q[ψ±
p ]/((ψ±

p )2). In particular, it is tautological.

Proof. As proved in [15], Thm. 2.2, the class ψp is a multiple of the class [U ] on
M2,{p}, where U is the locus of curves where the marked point is a Weierstrass point.

This means that ψ±
p is a multiple of [U±

1 ]. In other words, the natural morphism

Q[ψ±
p ]/((ψ±

p )2) → AQ(S±
2,{p})

is both injective and surjective.

Theorem 5.5. The cohomology groups of S
±
2,1 are generated by tautological

classes.

Proof. First, we notice that the maps (5.1) and (5.2) define a surjective morphisms

f± : M0,7 → S
±
2,1.

In fact, M0,7 is normal and S
±
2,1 is finite over M2,1. This means that Hk(S

±
2,1) ⊂

Hk(M0,7). In particular, the odd cohomology vanishes and the even cohomology is

algebraic. We also have that h2,0(S
±
2,1) = 0. By the exact sequence associated to the

exponential sequence, this implies that H2(S
±
2,1) is isomorphic to the rational Picard

group, which is isomorphic to A3(S
±
2,1) because the singularities are of finite quotient

type. By the exact sequence

Ak(∂S±
2,1) → Ak(S

±
2,1) → Ak(S±

2,1) → 0,

the Picard group is generated by tautological classes; hence H2 is tautological. By
the Hard Lefschetz Theorem, the H6 is isomorphic to H2 and so is tautological as
well. In fact, an isomorphism is given via multiplication by κ2

1. We recall that κ1 is
ample since it is the pull-back under a finite map of an ample class on M2,1. As for
the codimension two cycles, by Corollary 5.4 we have

A2(S
±
2,1 − S±

2,1) → A2(S
±
2,1) → 0. (5.3)

By iterating the exact sequence, we have

A2(∂(S
±
2,1 − S±

2,1)) → A2(S
±
2,1 − S±

2,1) → A2(Int(S
±
2,1 − S±

2,1)) → 0. (5.4)

The space Int(S
±
2,1 − S±

2,1) is given by the images of the maps - restricted to the
open part - which are defined in Section 1, namely:

a±0 : S
(0,1,1)
1,3 → Int(∆±

0 ),
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b±0 : S1,3 → Int(∆±
1 ),

a+
1 : S+

1,1 × S+
1,2 → Int(∆+

2 ),

b+1 : S−
1,1 × S−

1,2 → Int(Γ+
2 ),

a−1 : S+
1,1 × S+

1,2 → Int(∆−
2 ),

b−1 : S+
1,1 × S−

1,2 → Int(Γ−
2 ).

As proved in Theorem 5.2, the cohomology of S
±
1,1 and S

±

1,2 is generated by
boundary classes, so the codimension two Chow group of these components is trivial.
As for the other components, notice we have the following maps:

u : M0,6 → S±
1,3,

v : M0,6 → S
(0,1,1)
1,3 .

The map u sends [P1, p1, . . . , p4, q1, q2] to the genus one curve C branched over
p1, . . . , p4 with ramification point ri for i = 1, 2, 3, 4. Fix a point x1 over q1 and mark
the two points y1 and y2 in the preimage of q2. Thus, (C, x1, y1, y2) is a genus one
curve with three marked points. Notice that another choice of the marked points over
q1 and q2 yields an isomorphic curve. If we choose OC(r1 − r2), we have an even spin
curve. This is the image of the map u.

As for the map v, consider the moduli point [P1, p1, . . . , p4, q1, q2]. As before, we
have a curve F . We also mark the two points in the preimage of q1 and a point in
the preimage of q2. We associate the spin structure OF (r1) with this curve.

In both cases, we deduce that the codimension two Chow ring of the images of
a±0 and b±0 is trivial since Ak(M0,n) is trivial for k > 0.

Now, the exact sequence 5.4 becomes

A2(∂(S
±
2,1 − S±

2,1)) → A2(S
±
2,1 − S±

2,1) → 0.

Notice that B := ∂(S
±
2,1 − S±

2,1) is two-dimensional. By iterating the exact se-
quence above, we get

0 → A2(B) → A2(Int(B)) → 0,

since B−Int(B) is one-dimensional. The ring A2(Int(B)) is generated by components

which are dominated by products of moduli spaces of the form S±
1,n×S0,m×S(0,0,1,...,1)

0,k

for n ≤ 2. The cohomology of these spaces is tautological by Lemma 5.2 and by the

isomorphisms S0,m
∼= M0,m, M0,k

∼= S
(0,0,1,...,1)
0,k .

Finally, by pull-back from the moduli space M2,1, the one-dimensional group H8

is tautological.

Finally, we compute the rational Chow ring of S
±
g for g = 3, 4 and show that the

Picard group in this range is generated by the classes α±, β± and µ. For g = 2 this
has been worked out in [5].
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Let HS±
g be the preimage of the hyperelliptic locus Hg.

Lemma 5.6. The space HS±
g is affine and has the (rational) Chow ring of a

point.

Proof. Since HS±
g is the preimage of an affine set under a finite map, it is clearly

affine. There exist maps

φ+ : M0,2g+2 → HS+
g ,

φ− : M0,2g+2 → HS−
g .

The map φ+ sends a rational pointed curve [P1; p1, . . . , p2g+2] in a hyperelliptic curve
with with the theta characteristic P1 + · · · + Pg+1 − g1

2 , where the g1
2 defines the

hyperelliptic curve. The image point of φ− has theta characteristic P1 + · · · + Pg−1.
This is a surjective map, hence the Chow ring of HSg is trivial since that of M0,2g+2

is.

Theorem 5.7. The moduli space S−
3 is the union of two affine spaces HS−

g and
W . Each of them has trivial Chow ring, hence the rational Chow ring is Q-spanned
by the cycles [HS−

g ] and [W ].

Proof. As proved in [18], the moduli space M3 is the union of two affine spaces, the
hyperelliptic locus and its complement. Denote by HS−

g and W the preimages under
the forgetful map S3 → M3. By the Lemma 5.5, the preimage of the hyperelliptic
locus has trivial Chow ring. As proved in [18], the space M3 −H3 is the image under
a finite map Φ of a space with trivial Chow ring. The map is defined in such a way
that it factorizes through the moduli space S−

3 . Hence W has the Chow ring of a
point.

Corollary 5.8. The ring A•(S−
3 ) is isomorphic to the ring Q[λ−]/((λ−)2),

where λ− is the first Chern class of the Hodge bundle on S−
3 .

Proof. The map Q[λ−]/((λ−)2) is injective and by Theorem 5.7 is also surjective.
Hence the claim follows.

Proposition 5.9. The (rational) Picard group of S
−
3 is generated by the classes

α−
i , β

−
i , µ

−.

Proof. By Theorem 3.6 in [11], the class µ− is a multiple of λ− on S−
3 . Recall the

exact sequence

A5(∂S
−
3 ) → A5(S

−
3 ) → A5(S

−
3 ) → 0.

By the previous corollary, it follows that A5(S
−
3 ) is generated by µ−, so A5(S

−
3 )

is generated by boundary divisors and the class µ−.

Corollary 5.10. PicQ(S−
3 ) ∼= Q.

An analogous statement holds in genus four.

Theorem 5.11. The moduli space S−
4 admits a stratification by subvarieties

whose successive differences are affine. Moreover, each of them has the Chow ring of
a point.
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Proof. As proved in [18], Thm. 3.1, the moduli space M4 has a stratification
M4 ⊃ M′

4 ⊃ H4, where M′
4 is the Thetanull divisor and H4 is the hyperelliptic

locus. The successive differences are affine and have the Chow ring of a point. The

preimages S±
4 , S

±′

4 ,HS±
4 of the strata yield a stratification of S−

4 and S+
4 whose suc-

cessive differences are affine.

The subvarieties M4 − M′
4 and M′

4 − H4 have the Chow ring of a point be-
cause there exists a finite morphism from the complement of a hypersurface H in
a projective space P. Such a morphism factorizes through the moduli space of odd

theta characteristics of genus four. Therefore, by Lemma 2.2. in [18], S−
4 − S−′

4 and

S−′

4 −HS−
4 have the Chow ring of a point.

Corollary 5.12. The map

Q[λ−]((λ−)3) → A•
Q(S−

4 ) (5.5)

is an isomorphism.

Proof. By Theorem 5.11, the Chow ring is spanned by the classes of S−
4 , S−′

4

and HS−
4 . The class of S−′

4 is the pull-back of the class of the Thetanull divisor,
hence a multiple of λ−. Moreover, the class of HS−

4 is a multiple of the class of the
hyperelliptic locus, which is a multiple of λ2. Therefore, the map 5.5 is injective and
surjective.

Analogously to Proposition 5.9 and Corollary 5.10, and with the same proof, the
following holds.

Proposition 5.13. i) The (rational) Picard group of S
−
4 is generated by µ− and

the boundary classes α−
i and β−

i .
ii) PicQ(S−

4 ) ∼= Q.

6. Concluding Remarks. In Section 5 we showed that some Chow rings are
tautological in low genus. Clearly, this work is only partial and we hope to come back
on this in the next future. In particular, it would be interesting to study the whole
structure of the Chow ring of the moduli space S2,1. Moreover, in all the other cases
we have dealt with, it is an open question to find relations among the tautological
classes.

In [6], we proved that PicQ(Sg) is tautological for g ≥ 9. In [5], we prove that

the degree two cohomology group of S
+

1,n is tautological. It is therefore reasonable to
formulate the following

Question. H2(Sg,P ; Q) ∼= PicQ(Sg,P ) for g ≥ 0.

Although expected, this result might be non-trivial to prove. The inductive tech-
niques in [2] do not work directly because the boundary of the moduli space is made
up by components which are not of the same type as Sg,n, but different spaces of
square roots.
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Geometrie, 44:2 (2004), pp. 559–565.

[8] G. Bini and C. Fontanari, A remark on the cohomology of S
+
1,n, to appear in Coll. Math.

[9] P. Belorousski, Chow rings of moduli spaces of pointed elliptic curves, Ph. D. dissertation,
University of Illinois, 1998.

[10] R. Catenacci, M. Cornalba, M. Martellini and C. Reina, Algebraic Geometry and path

integrals for closed strings, Phys. Lett. B, 172:3 (1986), pp. 328–332.
[11] M. Cornalba, A remark on the Picard group of spin moduli space, Rend. Mat. Accad. Lincei,

2:9 (1991), pp. 211–217.
[12] M. Cornalba, Moduli of curves and theta characteristics, Lectures on Riemann surfaces (Tri-

este, 1987), pp. 560–589, Teaneck, NJ: World Sci. Publishing, 1989.
[13] A. Chiodo, Stable twisted curves and their r-spin structures, Ann. Inst. Fourier (Grenoble),

58:5 (2008), pp. 1635–1689.
[14] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and r-th

roots, Comp. Math., 144 (2008), pp. 1461–1496.
[15] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus

≥ 23, Invent. Math., 90 (1987), pp. 359–387.
[16] C. Faber, A conjectural description of the tautological ring of the moduli space of curves, In:

Moduli of curves and abelian varieties, The Dutch Intercity Seminar on Moduli (C. Faber,
E. Looijenga eds.) Aspects of Maths. E33, pp. 109–129, Vieweg 1999.

[17] C. Faber, Chow rings of moduli spaces of curves, Ph. D. dissertation, University of Amsterdam,
1988.

[18] C. Fontanari and E. Looijenga, A perfect stratification of Mg for g at most 5, Geom.
Dedicata, 136 (2008), pp. 133–143.

[19] J. Harer, The rational Picard group of the moduli space of Riemann surfaces with spin struc-

ture, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seat-
tle, WA, 1991), pp. 107–136, Contemp. Math. 150, Amer. Math. Soc., Providence, RI,
1993.

[20] T. Jarvis, Geometry of the moduli of spin curves, Intern. J. Math., 11:5 (2000), pp. 637–663.
[21] T. Jarvis, T. Kimura and A. Vaintrob, Moduli spaces of higher spin curves and integrable

hierarchies, Comp. Math., 126 (2001), pp. 157–212.
[22] A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, 103:3 (1981), pp. 207–

210.
[23] A. Putman, The second rational homology group of the moduli space of curves with level

structures, e-print arXiv:0809.4477.
[24] D. Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic

and Geometry (M. Artin and J. Tate, eds.) Part II, Birkhäuser 1983, pp. 271–328.
[25] D. Mumford, Stability of projective varieties, Enseign. Math. (2), 23:1-2 (1977), pp. 39–110.
[26] C. Voisin, Hodge theory and complex algebraic geometry, I Cambridge Studies in Advanced

Mathematics, 76, Cambridge University Press, Cambridge, 2002.


