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Abstract

Environmental data usually have a spatio-temporal structure; pollutant concentrations,

for example, are recorded along time and space. Generalized Additive Models (GAMs)

represent a suitable tool to model spatial and/or temporal trends of this kind of data,

that can be treated as functional, although they are collected as discrete observations.

Frequently, the attention is focused on the prediction of a single pollutant at an unmoni-

tored site and, at this aim, we extend kriging for functional data to a multivariate context

by exploiting the correlation with the other pollutants. In particular, we propose two

procedures: the first one (FKED) combines the regression of a variable (pollutant), of

primary interest on the other variables, with functional kriging of the regression residu-

als; the second one (FCK) is based on linear unbiased prediction of spatially correlated

multivariate random processes. The performance of the two proposed procedures is

assessed by cross validation; data recorded during a year (2011) from the monitoring

network of the state of California (USA) are considered.
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1. Introduction

Environmental data are usually multivariate spatio-temporal data, that can be orga-

nized in three way arrays where two dimension domains (both structured) are time and

space (Fig. 1).

Let us consider, as motivating example, PM10 and the main daily gaseous pollutant5

concentrations (CO,NO2,O3, S O2) recorded during a year (2011) by the monitoring
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Figure 1: Three dimensional array for space-time data
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network of the State of California: we may recognize time series along one of the

dimensions (Fig. 2) and spatial series along another (Fig. 3).

Functional Data Analysis (FDA) [Ramsay and Silverman, 2005] provides a suit-

able framework when large amount of data are recorded over time and/or space and10

Generalized Additive Models (GAMs) [Hastie and Tibshirani, 1990] are a useful tool

for modelling and describing temporal and/or spatial trends of pollutant concentrations.

Over the last years there has been an increasing interest within the statistical com-

munity on FDA and, recently, attention has been focused on Spatial Functional Statis-

tics, considering spatially dependent functional data [Delicado et al., 2010]. In this15

context, one of the main issues is the spatial prediction. The Functional kriging [Gi-

raldo et al., 2011b, Nerini et al., 2010] extends the ordinary kriging to the functional

context, which allows to predict a curve at an unmonitored site by exploiting the curves

related to other monitored sites. Giraldo et al. [2011b] present a methodology to make

spatial predictions at non-data locations when the data values are functions. In partic-20

ular, they propose both an estimator of the spatial correlation and a functional kriging

predictor. Nerini et al. [2010] propose to generalize the method of kriging when data

are spatially sampled curves and construct a spatial functional linear model includ-

ing spatial dependencies between curves. Giraldo et al. [2010] present an approach
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Figure 2: Time series of five pollutants from the monitoring network of California, 2011
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Figure 3: Spatial interpolation of 5 pollutants on May 2011
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for spatial prediction, based on the functional linear point-wise model, adapted to the25

case of spatially correlated curves. Giraldo et al. [2011a] extend cokriging analysis

and multivariable spatial prediction to the case where the observations at each sam-

pling location consist of samples of random functions, that is they extend two classical

multivariable geostatistical methods to the functional context. Giraldo [2014] gives

an overview of cokriging analysis and multivariable spatial prediction when the obser-30

vations at each sampling location consist of samples of random functions, extending

classical cokriging multivariable geostatistical methods to the functional context. Suit-

able methodologies have also been developed in the more realistic cases of absence of

stationarity [Caballero et al., 2013], that is for processes with non-constant mean func-

tion (non-stationary functional data). In order to take into account exogenous variables,35

such as meteorological information, Kriging with External Drift (KED), or regression

kriging, is extended to the functional data, involving functional modelling for the trend

(drift) and spatial interpolation of functional residuals [Ignaccolo et al., 2014].

In this paper we want to consider a recurrent case, when more than a single variable

(pollutants, for example) is recorded and a variable has to be predicted in a site where40

a) no other variables are recorded; b) other variables are recorded. Actually, even if

we are interested in predicting a single variable, in an unmonitored site, exploiting its

correlation with the other variables can improve the estimation. In particular, in this

paper, we want to focus on case a).

The prediction of a geophysical quantity based on observations at nearby locations45

of the same quantity and other related variables, so-called covariables, is often of in-

terest and, in this paper, we explore two alternative ways of including the influence

of the covariates in prediction. The classical approach in the geostatistical framework

is cokriging and in the functional context the proposed approaches deal with univari-

ate stochastic process, under stationary assumptions (Giraldo [2009], Delicado et al.50

[2010], [Menafoglio et al., 2014]) and non stationary assumptions ([Menafoglio et al.,

2013], [Ignaccolo et al., 2014]). In practical and methodological considerations on

kriging of functional data the problem of the high dimensionality occurs. In this con-

text, our first proposal, the Functional Kriging with External Drift (FKED), combines

the regression of a variable of primary interest on the other variables, with functional55
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kriging of the regression residuals; alternatively, a second procedure, the Functional

Cokriging (FCK), is based on linear unbiased prediction of spatially correlated multi-

variate random processes.

The paper is organized as follows: Sections 2 describes the state of art and 3 intro-

duces the proposed methodology; Section 4 presents the data and the performance of60

the spatial prediction is assessed; Section 5 reports the conclusions and further devel-

opments.

2. GAMs and Functional kriging

2.1. P-spline smoothing

In the geostatistical functional data framework, considering a site s ∈ D ⊆ R2, Y p
st,65

p = 1, ..., P, is a realization of a set of p curves, functions of time t ∈ T ⊆ R:

Y p
st︸︷︷︸

data

= Xp(s, t)︸  ︷︷  ︸
signal

+ ε
p
st︸︷︷︸

noise

; (1)

the set Xp(s, t) is a non-stationary functional random field and the set εp
st is sta-

tionary Gaussian process with a zero first moment and isotropic spherical covariance

functions. both the proposed procedures fit GAMs to spatio-temporal data via the pe-70

nalized likelihood approach, assuming separable structures in the data. In a two-step

estimation procedure we assume separable spatio-temporal structures, i.e. the spatial

correlation structure does not change over time, The following underlying functional

form is provided:

Xp(s, t) = Zp(s) + χ
p
s (t). (2)

Throughout this paper, the process Zp(s) has a non constant mean and describes the75

main spatial effects, that we model through penalized splines in the GAMs framework

[Hastie and Tibshirani, 1990]. These models assume that the mean of the response

variable depends on an additive predictor through a link function. The space-dependent
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function Zp(s) is expanded in terms of basis matrix B = (B1(s), ...,B2(s), ...,Bk(s)) and

coefficients up = (up
1 , u

p
2 , . . . , u

p
k ):80

Zp(s) = B (s) up. (3)

The functions are estimated by minimizing the Penalized Residual Sum of Squares, for

each dimension p = 1, ..., P:

PENS S Eλ(y) = ‖y − Bup‖
2

+ H.

Depending on the data structure, the model basis B can be defined as Kronecker

product (data in a regular grid) or box product (irregularly spaced data); this last choice

is outlined in this paper, as we deal with irregularly spaced data. The box product, or85

rows-wise Kronecker product, denoted by � symbol, was defined in [Eilers and Marx,

1996] and proposed by Lee and Durban [2013] in multidimensional smoothing:

B = B2�B1 = (B2 ⊗ 1′k1
) � (1′k2

⊗ B1), (4)

where B1 =
(
B1

1(s1), ...,B1
k1

(s1)
)

and B2 =
(
B2

1(s2), ...,B2
k2

(s2)
)
, are the (n × k1)

and (n × k2) marginal B-spline bases for the geographical coordinates.

The penalty matrix:90

H = λ1Ik2 ⊗ D1
′D1 + λ2D2

′D2 ⊗ Ik1 , (5)

allows for anisotropic smoothing structures, λ1 and λ2 being the smoothing param-

eters; Ik1 and Ik2 are the identity matrices of order k1 and k2, respectively; D1 and D2

are second-order difference matrices of order k1 and k2, respectively. The values of

λ, can be readily estimated by means of criterions as AIC, BIC or Generalized Cross

Validation (GCV), by using the mgcv library [Wood, 2016] in the statistical platform95

R.

The temporal dynamic is estimated from the residuals of the model 3 through a

P-spline smoothing model, with a basis matrix Φ(t) spanning the space of the time and

a vector of parameters θp estimated by penalized least square:

χ
p
s (t) = Φ(t)θp. (6)
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2.2. Functional Kriging100

Functional Kriging is the prediction of spatially referred curves in an unvisited site,

based on curves at nearby locations weighted by the strength of their correlation with

the location of interest s0, in such a way that curves from those locations closer to the

prediction point will have greater influence. For a single variable of interest, some

contributions, discussed in [Delicado et al., 2010], extend the classical geostatistical105

techniques to the functional context, providing a definition of functional variogram.

Among them, the best linear unbiased predictor, the ordinary kriging for function-

valued spatial data, proposed by [Giraldo et al., 2011b], is the approach here adopted

for the univariate component χp
s (t) of our functional model. In other words, we consider

a second-order stationary and isotropic functional random process, that is, the mean

function is constant in the domain D ⊆ R2: E
[
χ

p
s (t)

]
= µ(t). The second order proper-

ties of the process are described by a covariance function, depending only on the dis-

tance h between two sampling points si, s j and on time t: C(h; t) = Cov(χp
si

(t), χp
s j

(t)),

and by the functional variogram:

γ(h; t) =
1
2

Var(χp
si

(t) − χp
s j

(t)), h =
∥∥∥si − s j

∥∥∥ .
It also implies that the variance is constant.

The predictor χ̂p
s0

(t) in an unvisited site s0 is a linear combination of the available

curves χp
s (t) with the optimal weight determined on the trace-variogram, the mean

function obtained by integrating the variogram function over the time:110

γ(h) =
1
2

E
[∫

T

(
χ

p
si

(t) − χp
s j

(t)
)2

dt
]
. (7)

In order to have the best linear unbiased predictor (BLUP), the weights are esti-

mated by minimizing:

minα =

∫
T

E
∥∥∥χ̂p

s0
(t) − χp

s0
(t)

∥∥∥2
dt. (8)

Since the curves are estimated by means of a linear combination of B-Spline and

coefficients, the kriging prediction is carried out, at an unvisited location, by kriging on

the coefficients of the spline:115
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minα =

∫
T

E
∥∥∥∥∑n

i=1
αi(t)χ

p
si

(t) − χp
s0

(t)
∥∥∥∥2

dt, (9)

subject to the constraints on the weights:
∑n

i=1αi = 1.

As result, each curve is weighted by a scalar parameter:

χ̂p
s0

(t) =
∑n

i=1
αi(t)χ

p
si

(t). (10)

The R package geofd [Giraldo et al., 2015] implements the ordinary kriging pre-

diction for functional data.

3. Two methodological proposals120

The two proposed procedures aim to include the multivariate information in the

two components of (2), the first one, FCK, taking into account the cross dependence in

χ
p
s (t), while the second, FKED, involving regression models for Zp(s).

3.1. Functional Kriging with External Drift (FKED)

The following procedure includes the influence of other covariates, combining a re-125

gression of a variable of primary interest on the other variables with functional kriging

of the regression residuals (FKED). In this subsection we extend the general procedure

known as kriging with external drift to a broader range of regression techniques. In our

procedure we identify one of the dimensions of the multivariate process as the primary

variable of interest and consider the other as secondary variables. We aim at predict-130

ing the primary variable at an unvisited location getting information from curves of

primary and secondary variables at a possibly different set of distinct locations. The

residuals of the estimated regression are the input of the procedure of functional ordi-

nary kriging predictor. From a practical point of view, this hybrid techniques, based

on regression and kriging, may play an interesting role in dealing with missing values135

through predictive models, incorporating available information from several different

variables.
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Due to the high flexibility in model specification, GAMs provide a proper frame-

work for including covariates in the spatial predictor rather straightforwardly: pre-

dictions are drawn by estimating the relationship between the pth variable of interest,140

denoted by Zp∗
t (s) and the set of the other P − 1 auxiliary variables Z{P−1}

t (s) at sample

locations, and applying the model to unvisited locations:

Zp∗ (s) = f (s) + g(Z{P−1}
t (s)). (11)

Both for computational reasons an for interpretability, the model assumes an ad-

ditive structures: for each covariate a penalized regression spline of order m smooths

the data and quite simple expressions can be derived for the estimator of the functional145

data:

Zp∗ (s) = f (s) +

P−1∑
p=1

g(Zp
t (s)), (12)

and for the penalty matrix:

Hλ = λ1Ik2 ⊗ D1
′D1 + λ2D2

′D2 ⊗ Ik1 +

P−1∑
p=1

λpDp
′Dp. (13)

For the reconstructed functional datum in the location s0, the standard error of predic-

tion is also known [Giraldo et al., 2011b]. In the subsequent step we focus on the

observed residuals of model (12) in order to estimate the ordinary kriging predictor

χ̂
p
s0

(t) and the functional datum is obtained as:

X̂p(s0, t) = Ẑp(s0) + χ̂
p
s0

(t).

Depending on the strength of the auxiliary information in the maps of covariates

and on the spatial correlation among curves, the model might turn to pure kriging (no

influence from covariates) or pure regression (pure nugget variogram).150

3.2. Functional CoKriging (FCK)

An alternative procedure includes the information of other covariates in the func-

tional prediction of spatially correlated multivariate random processes, accounting for

the cross-dependence between the different p dimensions. We denote it as Functional
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Cokriging (FCK). The aim is to predict a curve at a location of interest weighting155

all the p dimensional curves from those locations closer to the prediction point. For

the initial model (2) we adopt the definition of the component Zp(s) as a smoothing

function of coordinates and we focus on the component χp
s (t) for which we derive a

linear predictor with weights determined by the strength of the correlations among the

curves in the same site and in different sites. The most natural way to generalize the160

functional prediction is to generalize the trace variogram, defining a similar measure

of cross-dependence between curves. Referring to [Cressie, 1993], let generalize the

cross-variance between the curves, referred to two dimensions p and p′ in two sites si

and s j, in the functional context:

γp,p′ (h; t) =
1
2

Var(χp
si

(t) − χp′
s j

(t)), (14)

for h =
∥∥∥si − s j

∥∥∥ , p and p′ in 1, . . . , P.165

In the site s0, where the set of the other P − 1 covariates χp
t (s) is available, the

prediction is:

χ̂
p∗
s0

(t) =
∑n

i=1

∑P

p=1
αi j(t)χ

p
si

(t). (15)

The vector α being the solution that minimizes under the uniform-unbiasedness

assumptions:

minα =

∫
T

E
∥∥∥∥χ̂p∗

s0
(t) − χp∗

s0
(t)

∥∥∥∥2
dt (16)

minα =

∫
T

E
∥∥∥∥∥∑n

i=1

∑P

p=1
αi j(t)χ

p
si

(t) − χp∗
s0

(t)
∥∥∥∥∥2

dt (17)

subject to the constraints:170 ∑n

i=1
αi j = 1 , f or p = p∗ (18)

∑p

j=1
αi j = 0 , f or p , p∗. (19)

By analogy with Functional kriging, the proposal goes through the definition of the

trace - covariogram:

Γpp′ (h) =
1
2

E
[∫

T
(χp

si
(t) − χp′

s j
(t))2dt

]
, h =

∥∥∥si − s j

∥∥∥ , (20)
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and the implementation of the trace covariogram in a optimization procedure.

To implement our proposal, all computations are coded in R (R Development Core

2016). The conversion to functional data is realized by using the fda package [Ramsay175

et al., 2014] and mgcv package [Wood, 2016], while the geofd package [Giraldo

et al., 2015] is also used to implement the proposed kriging procedure. The R code is

available on request.

4. Dealing with real data

In order to show the behavior of the two proposed procedures, a spatio-temporal180

multivariate data set related to air quality is here considered.

In particular, our case study considers PM10 and the main daily gaseous pollutant

concentrations (CO,NO2,O3, S O2), recorded during 2011 and aggregated by month, at

59 monitoring stations dislocated along the State of California (raw data are available

at: http://www.epa.gov).185

The sites in our map make up a regular space-time grid with respect to the five

pollutants, in the sense that there is the same configuration of spatial points at each

time. Data on the regular space-time grid consists of 295 time series, arranged in a

12 × 59 × 5 array; five of the monitoring sites are excluded from the analysis and used

for assessing the performance of the proposed procedures. A map of the monitored190

area, with the observed sites, is reported in Fig. 4; the five sites chosen as validation

set are highlighted in blue (Fig. 4, right).

The concentrations of the pollutants are opportunely standardized and scaled in

[0, 100], through the linear interpolation introduced by Ott and F. [1976] and used by

US EPA (Environmental Protection Agency); as shown in [Ruggieri and Plaia, 2012],195

the standardization by segmented linear function with respect to the standardization

by threshold value, allows accounting for different effects of each pollutant on human

health, as well as for short and long-term effects.

The 2-step GAM procedure estimates the curves using P-spline: functions of the

coordinates only are estimated in the preliminary step (eq. 3), in order to take into200

account the main spatial variations; then, the underlying temporal variability of the

12



residuals of the previous model is modelled in order to obtain estimations of the 59× 5

functions of time (eq. 6). The parameters (number of knots and smoothing parameters)

are selected by mean of Generalized Cross Validation.

Then we performed the two proposed procedures, in order to assess the spatial pre-205

diction capability: combining a regression of a variable of primary interest on the other

variables, with functional kriging of the regression residuals (FKED) (eq.10 and eq.11);

or including the information of other covariates in prediction of spatially correlated

multivariate random processes (FCK) (eq.3 and eq.15). Cross-validation is applied to

compare their performances.210
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Figure 4: Maps

Plots of the predicted curves for the validation set (blue points in the maps reported

in Fig. 4) are presented in Fig. 5 for some pollutants and sites. In each site of the

validation set, each pollutant in turn is considered not observed. Its prediction, FKED

(red line) and FCK (green line), is compared to the observed time series (black line)

and to the functional estimation (blue line), the last obtained including the site in the215

estimation procedure; in the figures, the smoothed curves in all the observed sites (gray

lines) are also represented in the background. The predictions appear overall consistent,

being very close to the smoothed and observed data for both the approaches. They both

catch the main variations in time and this suggests that the results are improved when

the spatial kriging exploits common dynamics in different pollutants.220

Results from the leave-one-out cross-validation (not distinguishing between test set

and validation set) for testing the two algorithms may be also evaluated compared the
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Figure 5: FKED and FCK prediction
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histograms of the standardized residuals (Fig. 6), i.e. the predicted values minus the

fda values, divided by the kriging variance; they confirm unbiased predictors for both

approaches.225
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Figure 6: Standardized residuals from FKED and FCK

The correlation, as well as the root mean square deviation (RMSD), between the

estimated functional data and predictors are also presented in Figg. 7 and 8, respec-

tively, for the FKED and FCK approaches. In both cases, the FKED approach performs

slightly better, as it emerges from the direct comparison of the two distributions.
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Figure 7: Distribution of the correlations between estimated functional data and predictors in the validation

set
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5. Conclusions and further developments230

In this paper an integration of Multivariate Spatial FDA with kriging for functional

data is proposed, exploiting correlations among variables in order to predict one of

them. In particular, we want to consider a recurrent case, when more than a single

variable (pollutants, for example) is recorded and a variable has to be predicted in a

site where a) no other variables are recorded; b) other variables are recorded. Actu-235

ally, even if we are interested in predicting a single variable in an unmonitored site,

exploiting its correlation with the other variables can improve the estimation. In this

paper, we want to focus on case a). The spatial prediction capability of the proposed

procedures has been assessed considering a three way array (time× space× variables)

containing the concentrations of 5 main pollutants recorded in 59 monitoring sites in240

California (USA) over a year. We focus on predicting each pollutant in an unmonitored

site. The performance of the proposed procedures has been evaluated first graphically,

comparing observed and predicted data at five validation sites. A more detailed per-

formance evaluation has been carried out considering some performance indexes. In

particular, the correlation coefficient ρ (the higher the better) and the root mean square245

deviation RMSD (the lower the better) have been computed by comparing recorded and

estimated data considering a leave-one-out procedure. As specified, here we deal only

with the case a), getting good performances. An extension of the proposed procedures

will be considered in a future work to explore their potentiality when the case b) has to

be treated.250
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Figure 8: Distribution of the RMSD between estimated functional data and predictors in the validation set
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