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ON THE NONSYMPLECTIC INVOLUTIONS

OF THE HILBERT SQUARE OF A K3 SURFACE

SAMUEL BOISSIÈRE, ANDREA CATTANEO, DIMITRI MARKUSHEVICH,
AND ALESSANDRA SARTI

Abstract. We investigate the interplay between the moduli spaces of ample

〈2〉-polarized IHS manifolds of type K3[2] and of IHS manifolds of type K3[2]

with a nonsymplectic involution with invariant lattice of rank one. In par-
ticular we geometrically describe some new involutions of the Hilbert square
of a K3 surface, whose existence was proven in a previous work of Boissière–
Cattaneo–Nieper-Wißkirchen–Sarti.

1. Introduction

By a classical result of Saint-Donat [25], every ample 〈2〉-polarized complex K3
surface is a double cover of the complex projective plane branched along a smooth
sextic curve and it admits in a natural way a nonsymplectic involution. The co-
homological invariant sublattice is generically isometric to the rank one lattice 〈2〉,
generated by the pullback of the class of a line in the plane. The converse is also
true: if a K3 surface admits a nonsymplectic involution whose invariant lattice has
rank one, then this lattice is isometric to the lattice 〈2〉 and it is generated by an
ample class, so the K3 surface can be constructed as a double cover of the plane
branched along a smooth sextic curve.

The present paper focuses on the generalization of the above result for a class of
irreducible holomorphic symplectic (IHS) manifolds. These can be seen as a higher
dimensional generalization of K3 surfaces, and share several properties with them.
These are simply connected manifolds with a unique (up to scalar multiplication)
holomorphic 2–form which is everywhere nondegenerate. This implies that their
dimension is even and that their canonical divisor is trivial. Moreover their second
cohomology with integer coefficients is a lattice for the Beauville–Bogomolov–Fujiki
quadratic form. One of the most studied families of IHS manifolds is the 2n-
dimensional Hilbert scheme of n points on a smooth complex projective K3 surface,
which has a 20–dimensional moduli space.

The study of automorphisms of IHS manifolds was started by Arnaud Beauville [1,
2], who generalized to IHS manifolds several results of Nikulin for automorphisms
of K3 surfaces. In this paper, we focus on ample 〈2〉-polarized IHS manifolds of

type K3[2], i.e. deformation equivalent to the Hilbert square of a projective K3
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surface (see Section 2). The first main result of this paper is Theorem 3.1, which
generalizes Saint-Donat’s result for K3 surfaces:

Theorem.

(1) Let (X,D) be an ample 〈2〉-polarized IHS manifold of type K3[2]. Then

X admits a nonsymplectic involution σ whose action on H2(X,Z) is the

reflection in the class of D in H2(X,Z).

(2) Conversely, let X be an IHS manifold of type K3[2] with a nonsymplectic

involution σ whose invariant lattice T(σ) has rank 1. Then T(σ) is gener-

ated by the class of an ample divisor D of square 2 and σ acts on H2(X,Z)
as the reflection in the class of D.

In Section 4, we interpret this result as an isomorphism between the moduli space

of ample 〈2〉–polarized IHS manifolds of type K3[2] introduced by Gritsenko–Hulek–
Sankaran [12] and recently reconsidered by Debarre–Macr̀ı [8] on one side, and the

moduli space of IHS manifolds of type K3[2] with a nonsymplectic involution of
invariant lattice of rank one on the other side. Then in Section 5.3 we show that
in this setup, two automorphisms can always be deformed to each other, and in
particular to a Beauville involution or to an O’Grady involution. The major part
of these results where already known by experts but to our knowledge a complete
proof was missing.

Section 6 is devoted to geometric constructions of nonsymplectic involutions with
invariant lattice isometric to 〈2〉. This is in general a difficult problem: in [6] these
involutions are classified with the help of the Global Torelli theorem of Markman–
Verbitsky [18], but until now the only geometric example was the Beauville in-
volution (see Definition 5.1). In [6] the authors consider a generic projective K3
surface S with an ample polarization of square 2t, with t a positive integer, and by
using Torelli theorem they show the existence of nonsymplectic involutions on S[2]

for certain values of t (see Section 6). The question of constructing geometrically
these involutions remained open and it is the second goal of this paper. We consider
special K3 surfaces admitting two embeddings as quartics in P

3 and we show how
one can use Beauville involutions to construct the nonsymplectic involution on the
Hilbert scheme. Finally in Section 6.2 we use nodal K3 surfaces to give different
geometric constructions of Beauville involutions.

Acknowledgements. Part of the work was done during the 2015 Oberwolfach
mini–workshop Singular Curves on K3 Surfaces and Hyperkähler Manifolds. The
authors thank this institution for the stimulating working atmosphere.

2. Preliminary notions

A lattice L is a free Z-module endowed with an integer valued, nondegenerate,
symmetric bilinear form. A sublattice M ⊂ L is called primitive if L/M is a free
Z-module.

A compact complex Kähler manifold X is called irreducible holomorphic sym-

plectic (IHS) if it is simply connected and if it admits a holomorphic 2-form ωX

everywhere nondegenerate and unique up to scalar multiplication. The existence
of such a symplectic form immediately implies that the dimension of X is even.
The second cohomology group with integer coefficients H2(X,Z) is a lattice for
the Beauville–Bogomolov–Fujiki [2] quadratic form qX . We denote by 〈−,−〉X the
associated bilinear form.
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The group Aut(X) of biholomorphic automorphisms of X is a discrete group.
An element σ ∈ Aut(X) is called symplectic if σ∗ωX = ωX , and nonsymplectic

otherwise. In particular a nonsymplectic involution σ is such that σ∗ωX = −ωX .
The invariant lattice of σ ∈ Aut(X) is the primitive sublattice T(σ) ⊂ H2(X,Z)
consisting of the cohomology classes invariant by σ∗.

An IHS manifold X is called of type K3[2] if it is deformation equivalent to the
Hilbert scheme (or Douady space if nonalgebraic) of 0-dimensional subschemes of
length 2 of a K3 surface. In this case, the lattice (H2(X,Z), qX) is isometric to the
lattice:

L := U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2〉

(by convention U is the hyperbolic plane and the root lattice E8 is positive definite).
The monodromy group Mon2(X) is the subgroup of O(H2(X,Z)) generated by

the image of all monodromy representations of smooth proper holomorphic families

with central fiber X . By Markman [17, Theorem 1.2], if X is of type K3[2] then
Mon2(X) is equal to the subgroup O+(H2(X,Z)) of isometries whose real exten-
sion preserves the orientation of any positive definite 3-dimensional subspace of
H2(X,R). In this context, a natural orientation of X is Span(ℜ(ωX),ℑ(ωX), κ)
where κ is a Kähler class. More generally, if X and Y are IHS manifolds in the
same deformation class, an isometry ϕ : H2(X,Z) → H2(Y,Z) is called orientation-

preserving if it respects the orientation of any pair of positive definite 3-dimensional
subspaces of H2(X,Z) and H2(Y,Z).

An ample 〈2〉-polarized IHS manifold is by definition a pair (X,D) consisting of a
projective IHS manifoldX and an ample divisorD onX of square 2. It has a canon-
ical orientation given by the positive definite 3-plane Span(ℜ(ωX),ℑ(ωX), [D]).

We recall for later use a Hodge theoretic version of the Torelli theorem in the

special case of IHS manifolds of type K3[2]:

Theorem 2.1. [18, Theorem 1.3,Theorem 9.1,Theorem 9.5,Theorem 9.8] Let X

and Y be IHS manifolds of type K3[2] and ϕ : H2(X,Z) → H2(Y,Z) be an orientation-

preserving isometry. Assume that ϕ induces an isomorphism of Hodge structures

between H2(X,C) and H2(Y,C) and that the image by ϕ of a Kähler class of X is

a Kähler class of Y . Then there exists an biregular isomorphism f : X → Y such

that f∗ = ϕ.

Remark 2.2. Observe that in this setup, a Hodge isometry preserving a Kähler
class is automatically orientation-preserving since ωX is mapped to a complex mul-
tiple of ωY .

3. Ample polarizations and nonsymplectic involutions

This section is inspired by the following classical result of Saint-Donat [25] for
IHS manifolds of dimension 2 already recalled in Introduction. Consider an ample
〈2〉-polarized K3 surface (S,D), where D is an ample divisor of square 2. Then the
linear system |D| is base point free and defines a double covering S → P2 branched
along a smooth sextic curve. The covering involution σ is nonsymplectic and it acts
on H2(S,Z) as the reflection in the class of D. If (S,D) is generic in the moduli
space of ample 〈2〉-polarized K3 surfaces, the invariant sublattice of H2(S,Z) for
the action of σ is isometric to 〈2〉, generated by the divisor D. The converse is
true: any double covering of P2 branched along a smooth sextic curve is an ample
〈2〉-polarized K3 surface. We extend this result as follows:
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Theorem 3.1.

(1) Let (X,D) be an ample 〈2〉-polarized IHS manifold of type K3[2]. Then

X admits a nonsymplectic involution σ whose action on H2(X,Z) is the

reflection in the class of D in H2(X,Z).

(2) Conversely, let X be an IHS manifold of type K3[2] with a nonsymplectic

involution σ whose invariant lattice T(σ) has rank 1. Then T(σ) is gener-

ated by the class of an ample divisor D of square 2 and σ acts on H2(X,Z)
as the reflection in the class of D.

Proof.

(1) Consider the reflection

ϕ : H2(X,Z) → H2(X,Z), v 7→ 〈v, [D]〉X · [D]− v,

whose invariant lattice Z[D] is isometric to 〈2〉. We know that ϕ ∈ Mon2(X)
by [16, Corollary 1.8], but this can be checked again as follows using the
characterization of Mon2(X) recalled above. Since H2,0(X) = CωX is or-
thogonal to the algebraic class [D], ϕ acts as multiplication by (−1) on
H2,0(X), so ϕ is a Hodge isometry. Since ϕ leaves the ample class [D] in-
variant, it preserves the orientation of the positive definite 3-dimensional
subspace Span(ℜ(ωX),ℑ(ωX), [D]) of H2(X,R), so ϕ ∈ Mon2(X). By The-
orem 2.1, there exists σ ∈ Aut(X) such that σ∗ = ϕ. Since the map
Aut(X) → O(H2(X,Z)) is injective (see [19, Lemma 1.2]), σ is an involu-
tion.

(2) Looking at the lattice theoretical classification of nonsymplectic involutions

acting on IHS manifolds of type K3[2] (see [5, Proposition 8.2]), we know
that the invariant lattice T (σ) is isometric to the lattice 〈2〉, generated
by the class of a divisor D of square 2. Since X admits a nonsymplectic
automorphism, it is projective (see [1, Proposition 6]). Consider an ample
class ℓ of X . The class ℓ+σ∗(ℓ) is ample and σ-invariant, so it is a multiple
of the generator [D] of the invariant lattice, hence D is ample. Using the
first assertion we get that σ is the reflection in the class [D].

�

Remark 3.2. One can state very similar results for IHS manifolds of type K3[n],
n ≥ 3 (see Alberto Cattaneo [7]). Compared to the 2-dimensional situation, in this
4-dimensional setup the full understanding of the linear system |D| of the ample
class of square 2 remains open (see [6]).

4. Modular interpretation

We interpret the result above as an isomorphism between two moduli spaces.
We fix a primitive embedding j : 〈2〉 →֒ L. Such an embedding is unique up to an
isometry of L, see [5, Proposition 8.2]. We denote by ρ ∈ O(L) the reflection in the
ray j(〈2〉).

By Gritsenko–Hulek–Sankaran [13, §3] (see also Debarre–Macr̀ı [8, §3.1]), there
exists a quasi-projective coarse moduli space M〈2〉, which is irreducible and 20-

dimensional, parametrizing pairs (X, ι) where X is an IHS manifold of type K3[2]

and ι : 〈2〉 →֒ NS(X) is a primitive embedding, with an open subspace Mample
〈2〉

parametrizing pairs (X, ι) such that ι(〈2〉) contains the class of an ample divisor.
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By results of Verbitsky (see [8] and references therein), there is an algebraic
period map P〈2〉 : M〈2〉 → D〈2〉, mapping (X, ι) to its period H2,0(X), which is an
open embedding, where D〈2〉 is an irreducible algebraic variety.

By Boissière–Camere–Sarti [4, Theorem 4.5,Theorem 5.6], there exists a quasi-
projective coarse moduli space Mρ

〈2〉, which is irreducible and 20-dimensional,

parametrizing triples (X, σ, ι) where X is an IHS of type K3[2], ι : 〈2〉 →֒ NS(X) is
a primitive embedding and σ ∈ Aut(X) is a nonsymplectic involution whose action
on H2(X,Z) is conjugated to ρ.

Corollary 4.1. The moduli spaces Mρ

〈2〉 and Mample
〈2〉 are isomorphic.

Proof. The natural map Mρ

〈2〉 → Mample
〈2〉 is given by Theorem 3.1(2). Conversely,

starting from (X, ι) ∈ Mample
〈2〉 , denote by D an ample divisor generating ι(〈2〉). By

Theorem 3.1(1) the pair (X,D) admits a nonsymplectic involution σ such that σ∗ is
the reflection in the ray Z[D]. Then σ∗ is conjugated to ρ so (X, σ, ι) ∈ Mρ

〈2〉. �

5. Deformation of nonsymplectic involutions

We exhibit two famous families of nonsymplectic involutions. The first one, the
Beauville family, gives a codimension one subspace of Mρ

〈2〉. The second one, the

O’Grady family, is dense in Mρ

〈2〉.

5.1. The Beauville family. Let S be a projective K3 surface. Recall that the
Néron–Severi group of the Hilbert scheme S[2] of 2 points on S admits an orthogonal
decomposition

NS(S[2]) ∼= NS(S)⊕ Zδ,

where 2δ is the class of the exceptional divisor of S[2], with qS[2](δ) = −2.

Definition 5.1. A Beauville involution on S[2] is a nonsymplectic involution σ
whose invariant lattice has rank 1, generated by the class of an ample divisor D of
square 2, which decomposes as [D] = [H ] − δ where H is a very ample divisor of
square 4 on S.

Beauville involutions are geometrically realized as follows. Let S be a smooth
quartic K3 surface in P3 containing no line and |H | be the linear system of the
hyperplane section. The line ℓ through a subscheme ξ ∈ S[2] cuts S in a residual
length two subscheme, providing the involution σ (see Beauville [1] for details).
The construction of such nonsymplectic involutions depend on 19 parameters, cor-
responding similarly as above to the moduli of ample 〈4〉-polarized K3 surfaces.

5.2. The O’Grady family. We briefly recall the construction of double EPW
sextics [21]. Let V be a 6-dimensional complex vector space. We choose an

isomorphism vol:
∧6 V → C, thus making

∧3 V a symplectic vector space by
(α, β) := vol(α ∧ β). The 10-dimensional Lagrangian subspaces

Fv =

{
v ∧ α |α ∈

2∧
V

}
∼=

2∧
(V/Cv) , v ∈ V,

are the fibers of the sheaf F = OP(V )(−1) ⊗
∧2 Q, where Q is the tautological

bundle. By a Chern classes computation one obtains that c1(F) = −6c1(OP(V )(1)).
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Let A ⊆
∧3

V be a lagrangian subspace. By inclusion and projection one gets a
map of vector bundles:

λA : F →

3∧
V ⊗OP(V ) →

∧3
V

A
⊗OP(V ),

whose degeneracy locus YA is the subscheme of zeros of det(λA), which is a global
section of the sheaf det(F∨) = OP(V )(6). If YA is a proper subscheme of P(V ), it is
thus a sextic hypersurface called an EPW sextic [9, 21].

Clearly YA = {[v] ∈ P(V ) | dim(Fv∩A) ≥ 1}. For A generic in the Grassmannian
variety of Lagrangian subspaces of P(V ), the fourfold YA has only double points on
the smooth surface WA := {[v] ∈ P(V ) | dim(Fv ∩ A) ≥ 2}.

By O’Grady [22, Theorem 1.1], in this situation YA admits a smooth double cover

XA → YA branched alongWA, which is an IHS manifold of type K3[2] called a double
EPW sextic. By construction, XA comes together with its covering involution,
which is nonsymplectic, and it leaves invariant an ample class of square 2. We call
this an O’Grady involution. This family depends on 20 parameters, corresponding
to the dimension of the GIT quotient LG(∧3V ) � PGL(V ).

5.3. Deformation equivalences. Recall that two pairs (X1, f1) and (X2, f2) of
IHS manifolds of the same deformation type, endowed with a nonsymplectic au-
tomorphism, are deformation equivalent (see [5, §4],[15, Definition 4.5]) if there
exists a smooth and proper family π : X → ∆ of IHS manifolds over a connected
smooth analytic space ∆, with a fiber-preserving holomorphic automorphism F
which is nonsymplectic on each fiber Xt, t ∈ ∆, two points t1, t2 ∈ ∆ and isomor-
phisms ϕi : Xti → Xi such that ϕi ◦ Fti = fi ◦ ϕi for i = 1, 2 (we denote by Ft the
restriction of F on each fiber Xt).

Theorem 5.2. Any two points (X, iX), (Y, iY ) ∈ Mρ

〈2〉 are deformation equivalent.

Proof. The statement is an application of a general result of Joumaah [15, Theo-
rem 9.10]. However, in our situation it is more enlightening to write down a direct
argument following the same idea. To any triple (X, σ, ι) ∈ Mρ

〈2〉 we associate as

in [5, §4] the 20-dimensional local deformation space X → Def(X, σ, ι) endowed
with a holomorphic automorphism F of X extending σ to a nonsymplectic invo-
lution on each fiber. The disjoint union

∐
(X,σ,ι)∈Mρ

〈2〉

Def(X, σ, ι) is glued by the

equivalence relation given by the period map P〈2〉 : M〈2〉 → D〈2〉. Given two such
deformations F : X → X over a base U and F ′ : X ′ → X ′ over U ′, the restrictions
of F and F ′ over the intersection U ∩U ′ are equal since the period map is injective:
the nonsymplectic involution is uniquely determined by the period. So, glueing X
and X ′ over U ∩U ′, we can extend F and F ′ as a holomorphic automorphism over
U ∪ U ′, and finally over M〈2〉, which is connected, so we get the result. �

The invariant lattice of an automorphism is a topological invariant, thus invariant
by deformation. We get as corollary of Theorem 3.1 and Theorem 5.2 the following
result, which first appeared in Ferretti [10, Proposition 4.1], but the point of view
developed in this paper provides a more direct proof.

Corollary 5.3. Let X be an IHS manifold of type K3[2] with a nonsymplectic

involution σ. The following assertions are equivalent:

(1) rankT(σ) = 1.
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(2) (X, σ) is deformation equivalent to a Beauville involution.

(3) (X, σ) is deformation equivalent to an O’Grady involution.

6. New geometric constructions of nonsymplectic involutions

6.1. Double Beauville involutions. Let S be a complex projective K3 surface
of Picard number 1, with a very ample polarization H of square H2 = 2t, t ≥ 2.
Using the Global Torelli theorem (see Theorem 2.1), Boissière–Cattaneo–Nieper-
Wißkirchen–Sarti [6, Theorem 1.1] proved that the Hilbert square S[2] admits a
nontrivial automorphism if and only if the following arithmetic conditions are sat-
isfied:

• t is not a square,
• Pell’s equation Pt(−1): x2 − ty2 = −1 admits a solution,
• Pell’s equation P4t(5) : x

2 − 4ty2 = 5 has no solution.

In this case, S[2] admits a unique nontrivial automorphism, which is a nonsymplec-
tic involution. Denote h the class of H in the splitting NS(S[2]) ∼= NS(S) ⊕ Zδ
(see Section 5.1) and by (a, b) the minimal positive solution of Pt(−1). The invo-
lution acts on H2(S[2],Z) as the reflection in the class D = bh− aδ, which is ample
of square 2, so this gives a point in the moduli space Mρ

〈2〉. However it is hard to

produce a geometric realization of this involution if t 6= 2, this is the goal of this
section.

It is easy to check that the arithmetic assumptions above are satisfied in particu-
lar if t = (2α+1)2+1, with α ≥ 1: the minimal solution of Pt(−1) is (2α+1, 1) and
P4t(5) has no solution modulo 8. We denote by Σα any K3 surface of Picard num-
ber 1 and polarization of square (2α+ 1)2 +1, by σα the nonsymplectic involution

on Σ
[2]
α and by Lα := Zh1 ⊕ Zh2 the rank two lattice with Gram matrix

(
4 4 + 2α

4 + 2α 4

)
.

Theorem 6.1. For any α ≥1, the pair (Σ
[2]
α , σα) deforms to the pair (S

[2]
α , κα)

where Sα is a K3 surface with Picard lattice Lα and κα := σ1
ασ

2
ασ

1
α, where σ1

α, σ
2
α

are two Beauville involutions on S
[2]
α . The deformation follows a deformation path

of polarized K3 surfaces from Σα to Sα.

Proof. The lattice Lα is even and hyperbolic of rank 2, so by Morrison [20, Corollary
2.9] it admits a primitive embedding in the K3 lattice and there exists a projective
K3 surface Sα such that NS(Sα) ∼= Lα. For any d = xh1 + yh2, x, y ∈ Z, we have

d2 = 4
(
x2 + (2 + α)xy + y2

)
= (4 + α)(x + y)2 − α(x − y)2,

so there are no (−2)-curves on Sα. It follows by the Nakai–Moishezon criterion
for ampleness (see [14, Proposition 1.4]) that the ample cone of Sα coincides with
its positive cone. Recall that the positive cone is the connected component of the
cone {d ∈ Lα ⊗Z R | d2 > 0} which contains the Kähler classes. Since h2

1 > 0
and h2

2 > 0, the first quadrant Z>0h1 + Z>0h2 and its symmetric by the origin
are contained in this cone, and without loss of generality we may assume that the
Kähler cone intersects the first quadrant. It follows that the positive cone is given

by the inequalities y > 1+ǫβ
ǫβ−1x with ǫ = ±1 and β =

√
α

4+α
.
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Lemma 6.2. The classes h1, h2, (2 + 2α)h1 − h2 and (2 + 2α)h2 − h1 are very

ample.

Proof of Lemma 6.2. These four classes are clearly in the ample cone. Their asso-
ciated linear systems have no base components: by [24, §3.8, Theorem (d)] if any
of these linear systems has base components, then it decomposes as aE + Γ where
a is an integer, |E| is a free pencil and Γ is a (−2)-curve such that E · Γ = 1, but
Sα contains no (−2)-class. These linear systems thus define regular maps

ϕ|h1|, ϕ|h2| : Sα −→ P
3, ϕ|(2+2α)h1−h2|, ϕ|(2+2α)h2−h1| : Sα −→ P

1+t.

Let d be any of the four primitive divisors in issue. We show that d is not hyper-
elliptic by using Saint-Donat’s criterion for determining hyperelliptic divisors [25,
Theorem 5.2] : for this it is easy to check, by reduction modulo 2, that there is no
class E = xh1 + yh2 such that E2 = 0 and E · d = 2. It follows that the regular
map ϕ|d| is birational onto its image, but since Sα contains no (−2)-curve it is an
embedding (see [25, (4.2) and §6]: by the genus formula, any contracted curve has
square −2). �

The maps ϕ|hi| embed Sα in P3 in two different ways as a quartic with no line, so

S
[2]
α has two different Beauville involutions σi

α, i = 1, 2. The Néron–Severi lattice

of S
[2]
α is isometric to NS(Sα) ⊕ 〈−2〉 and σi

α acts on H2(S
[2]
α ,Z) as the reflection

in the class hi − δ. Consider the nonsymplectic involution κα := σ1
ασ

2
ασ

1
α. An easy

computation shows that it acts on H2(S
[2]
α ,Z) as the reflection in the class

Dα := ((2 + 2α)h1 − h2)− (2α+ 1)δ,

which has square 2 and, by Theorem 3.1, is ample and generates the invariant lattice

of κα. By Theorem 5.2, the pairs (Σ
[2]
α , σα) and (S

[2]
α , κα) are deformation equiva-

lent and deform to a Beauville involution, but observe that κα is not a Beauville
involution since the class Dα cannot be written as [H ′] − δ with H ′ very ample
of square 4 on Sα. The pairs (Σα, H) and (Sα, (2 + 2α)h1 − h2) belong to the
moduli space of ample 〈2t〉-polarized K3 surfaces and Sα is obtained from Σα by
moving the period along a path which increases the Néron–Severi group from Zh
to Zh1 ⊕ Zh2. �

Remark 6.3.

(1) We obtain a significatively more accurate result that in Theorem 5.2 since
the deformation path is here explicit. When deforming Sα to Σα, the
Beauville involutions σ1

α, σ
2
α disappear but κα survives.

(2) By Oguiso [23, Theorem 4.1], if α is even and α > 8, the two quartic K3
surfaces ϕ|h1|(Sα) and ϕ|h2|(Sα) are isomorphic as abstract varieties, but

there is no birational transformation of P3 sending one to the other.

6.2. Nodal K3 surfaces. In this section we give a new geometric construction of
nonsymplectic involutions on the Hilbert square of a K3 surface, using K3 surfaces
with nodes and high Picard number.

6.2.1. K3 surface with one node. Let S̃ be a general nodal K3 surface in P
4 (S̃ is

the complete intersection of a quadric and a cubic) and β : S → S̃ its minimal K3
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resolution. We denote by H̃ the hyperplane section on S̃, H := β∗H̃ and by ε the
(−2)-exceptional curve. We thus have

NS(S) = ZH̃ ⊕ Zε ∼= 〈6〉 ⊕ 〈−2〉.

We define a birational involution σ on S[2] as follows. We denote by p the node

of S̃. Take two general points q1, q2 ∈ S̃, distinct from p. The family of hyperplanes
through p, q1, q2 is a pencil since the general points q1, q2 impose independent con-

ditions on the linear system |H̃ |, which is 4-dimensional. Let H1, H2 be any two

generators of this pencil, then H1 cuts S̃ along a degree six curve singular at p,
which H2 cuts in two more points q3, q4 (generically distinct). So {p, q1, q2, q3, q4}
is the base locus of the pencil. We thus define a birational involution σ on S[2] by
sending {q1, q2} to {q3, q4}.

Proposition 6.4. The involution σ is a Beauville involution on S[2].

Proof. The linear system |H−ε| on S has no base components sinceH is very ample.
We see as in the proof of Lemma 6.2 that the divisor H − ε is not hyperelliptic,
hence the regular map ϕ|H−ε| : S → P

3 is birational onto its image. This map
contracts no (−2)-curve, otherwise there would exist a class αH + βε such that
(αH + βε)(H − ε) = β + 3α = 0 and (αH + βε)2 = 6α2 − 2β2 = −2, which
is impossible. So ϕ|H−ε| embeds S as a quartic Σ in P3, and it contains no line
otherwise a (−2)-class αH + βε would be sent to a line, so we would get 1 =
(αH + βε)(H − ε) = 6α+ 2β which has clearly no solution.

The hyperplane sections on S̃ passing through the node p correspond to divisors
in the system |H − ε| on S, so the hyperplanes H1, H2 are sent to hyperplane
sections h1, h2 of Σ which contain the images of the points q1, q2, q3, q4. These four
points thus lie on the line h1∩h2: this shows that the birational involution σ on S[2]

is nothing else than the Beauville involution on Σ[2]. �

Remark 6.5. It follows that the invariant lattice of σ on S[2] is generated by
the square 2 ample divisor (H − ε) − δ. By Bini [3] we have Aut(S) = {id}, but
Aut(S[2]) contains at least an involution. We refer to [6] for a similar property on
K3 surfaces of Picard rank one.

6.3. K3 surfaces with several nodes. Consider the even hyperbolic lattice

Rk = 〈4 + 2k〉 ⊕

k⊕

i=1

〈−2〉, k ≤ 10.

By [20, Corollary 2.9, Remark 2.11] there exists a K3 surface with Néron–Severi
lattice isomorphic to Rk. For k = 1 we recover the K3 surface with one node
described above, for k = 2 we have a K3 surface in P5 with two nodes (a complete
intersection of three quadrics).

The condition on k comes from the observation that if k > 10, Rk cannot be
the Néron–Severi group of a K3 surface: indeed in this situation the Néron–Severi
lattice has rank at least 12 and discriminant group of length k+1, so that the rank
of the transcendental lattice is at most 10 with a discriminant group again of length
k+ 1, which is impossible. If k > 10, the lattice Rk can only be a sublattice of the
Néron–Severi group, see [11, Theorem 2.7] for some examples when k = 16.
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Denote by Hk the generator of the summand 〈4 + 2k〉 and by εi the generator
of the i-th copy of the lattice 〈−2〉, with i = 1, . . . , k. The lattice Rk is the Néron–
Severi group of the K3 surface Sk obtained as the minimal resolution of a K3 surface

S̃k embedded in Pk+3 as a surface of degree 4 + 2k, with k singularities of type A1

at points p1, . . . , pk. The curves εi, i = 1, . . . , k, correspond to the exceptional
divisors obtained by the blowup of the singular points. We define similarly as

above a birational involution on S
[2]
k . Take two general points q1, q2 ∈ S̃k distinct

from p1, . . . , pk. The family of hyperplanes through p1, . . . , pk, q1, q2 has dimension
(k + 3) − (k + 2) = 1. Let H1, H2 be any two generators of this pencil. Then

H1 cuts S̃k along a degree 4 + 2k curve with nodes at the points p1, . . . , pk. The
divisor H2 cuts this curve twice in the singular points p1, . . . , pk and once at q1, q2
so it cuts the curve in two other points q3, q4 (generically distinct). We thus define

a birational involution σ on S
[2]
k by sending {q1, q2} to {q3, q4}.

Proposition 6.6. The involution σ is a Beauville involution on S
[2]
k .

Proof. The proof is similar to those of Proposition 6.4. The divisorHk−
∑k

i=1 εi has
square 4, its associated linear system has no base components, it is not hyperelliptic
and it contracts no (−2)-curve. So it embeds Sk as a quartic Σk in P

3 which contains
no line: since any two divisors of the lattice Rk have even intersection number, no
(−2)-curve is sent to a line.

�
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