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COMPLEX SYMPLECTIC STRUCTURES AND THE ∂∂̄-LEMMA

ANDREA CATTANEO AND ADRIANO TOMASSINI

Abstract. In this paper we study complex symplectic manifolds, i.e., compact complex mani-
folds X which admit a holomorphic (2, 0)-form σ which is d-closed and non-degenerate, and in
particular the Beauville–Bogomolov–Fujiki quadric Qσ associated to them. We will show that if
X satisfies the ∂∂̄-lemma, then Qσ is smooth if and only if h2,0(X) = 1 and is irreducible if and
only if h1,1(X) > 0.

Introduction

Let M be a compact real manifold, endowed with both a complex structure I and a compatible
Riemannian metric g. Then the 2-form associated to (M, I, g), namely ωg( , ) = g(I , ),
can be seen as a collection of non-degenerate 2-forms on each real tangent space to M , varying
smoothly with the point. If ωg is d-closed, then the triple (M, I, ωg) is a Kähler manifold.

Let now X be a compact complex manifold, and assume we have a collection of non-degenerate
2-forms, one on each holomorphic tangent space, varying holomorphically with the point. This is
then a (2, 0)-form on X , and under the further assumption that it is d-closed, it is called a complex
symplectic structure (cf. [2, p. 763] and [3]).

In the context of Kähler geometry, such kind of manifolds plays an important role: by the
Bogomolov covering theorem, any compact Kähler manifold with vanishing first Chern class has
a covering which splits as the product of Calabi–Yau manifolds, complex tori and irreducible
holomorphic symplectic manifolds. Among these, the last two are in fact complex symplectic
manifolds. In particular, an interesting and crucial tool for the study of the latter is the Beauville–
Bogomolov–Fujiki quadratic form introduced in [2] (see (1.3) for the definition).

The aim of this paper is to study cohomological properties of compact complex (possibly non-
Kähler) manifolds X endowed with a complex symplectic structure σ. We weaken the Kähler
assumption requiring that X satisfies the ∂∂̄-lemma (cf. [5]). Observing that the Beauville–
Bogomolov–Fujiki form qσ makes sense also in this setting, we will show that if X satisfies the
∂∂̄-lemma, then there is a deep link between the geometric properties of the quadric Qσ defined
in P(H2

dR(X,C)) by the vanishing of qσ and the Dolbeault cohomology of X : the smoothness of

Qσ depends on the Dolbeault spaces H
2,0

∂̄
(X) and H

0,2

∂̄
(X), while its irreducibility depends on

H
1,1

∂̄
(X).

The structure of the paper is as follows. In Section 1 we set up the notation and recall the basic
facts we will use throughout the paper. Section 2 is devoted to the proof of the two main theorems:
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2 ANDREA CATTANEO AND ADRIANO TOMASSINI

Theorem 1 (cf. Thm. 2.1). Let (X, σ) be a complex symplectic manifold, and assume that X

satisfies the ∂∂̄-lemma. Let Qσ be the quadric in P(H2
dR(X,C)) defined by (1.3). Then the following

are equivalent:

(1) h1,1(X) > 0;
(2) the quadric Qσ is irreducible.

Theorem 2 (cf. Thm. 2.2). Let (X, σ) be a complex symplectic manifold, and assume that X

satisfies the ∂∂̄-lemma. Let Qσ be the quadric in P(H2
dR(X,C)) defined by (1.3). Then the following

are equivalent:

(1) qσ is non-degenerate;

(2) h2,0(X) = 1, i.e., H2,0

∂̄
(X) = C · [σ];

(3) the quadric Qσ is smooth.

We collect through Section 2 all the results we need for the proofs of the two main theorems
and which are interesting also on their own; in particular Corollary 2.4 can be viewed as a sort of
Lefschetz Theorem for complex symplectic manifolds. In Section 3 we briefly study some property
of the set

{[σ] ∈ H
2,0

∂̄
(X)|σ is a complex symplectic form} ⊆ H

2,0

∂̄
(X).

Finally, Section 4 contains two examples: with the first we want to show the importance of the
assumption that the ∂∂̄-lemma holds for the manifolds we are dealing with, and with the second
we want to show explicitly the results of the paper.

Acknowledgement: the authors would like to thank Daniele Angella for useful comments.
They want also thank the referee for his suitable suggestions.

1. Preliminaries

In this Section we want to recall the basic definitions and properties we will use in the sequel.
Let X be a compact complex manifold and denote by Ap,q(X) the space of smooth (p, q)-forms

on X . According to Deligne, Griffiths, Morgan and Sullivan [5], X is said to satisfy the ∂∂̄-lemma
if

ker ∂ ∩ ker ∂̄ ∩ im d = im ∂∂̄.

The manifolds X satisfying the ∂∂̄-lemma (e.g., the Kähler or Moishezon manifolds as observed
in [5, Cor. 5.23]) have interesting cohomological properties, which we will briefly sketch. Denote
by

H
p,q
BC(X) =

ker(d : Ap,q(X) −→ Ap+1,q(X)⊕Ap,q+1(X))

im(∂∂̄ : Ap−1,q−1(X) −→ Ap,q(X))

the Bott–Chern cohomology of X , and by

H
p,q

∂̄
(X) =

ker(∂̄ : Ap,q(X) −→ Ap,q+1(X))

im(∂̄ : Ap,q−1(X) −→ Ap,q(X))

the Dolbeault cohomology of X .
Then we have a natural homomorphism

(1.1)
H

p,q
BC(X) −→ H

p,q

∂̄
(X)

[α]BC 7−→ [α]∂̄ ,

which is an isomorphism if and only if the ∂∂̄-lemma holds for X (cf. [5, Remark 5.16]).
Two consequences of this fact (cf. [5]) are that:
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(1) we have a decomposition

Hk(X,C) =
⊕

p+q=k

H
p,q

∂̄
(X);

(2) complex conjugation gives an isomorphism

H
p,q

∂̄
(X) −→ H

q,p

∂̄
(X)

[α]∂̄ 7−→ [α]∂̄ = [ᾱ]∂̄ .

Let (X, σ) be a complex symplectic manifold, namely X is an even dimensional (connected)
compact complex manifold, and σ is a d-closed (2, 0)-form which is non-degenerate at any point
(cf. [3, Def. 3.3]). Observe that σ is automatically holomorphic and that as direct consequences X

has trivial canonical bundle and dimH
2,0

∂̄
(X) ≥ 1.

To fix the notation, (X, σ) will denote a compact complex symplectic manifold, dimC X = 2n,
and we will always assume that σ is normalized, that is

(1.2)

∫

X

(σσ̄)n = 1.

Remark 1.1. Observe that our normalization assumption (1.2) is not restrictive. In fact, as σn is a

nowhere vanishing canonical section, we have that dimH
2n,0

∂̄
(X) = 1 and that [σn]∂̄ is a generator

for this space. By Serre duality H
0,2n

∂̄
(X) is 1-dimensional as well, and it is generated by [σ̄n]∂̄

since

(1) σ̄ is a d-closed (0, 2)-form, and so it is also ∂̄-closed;
(2) σ̄n is nowhere vanishing as σn has the same property.

As a consequence

0 6= [σn]∂̄ ∪ [σ̄n]∂̄ =

∫

X

(σσ̄)n

and so we can always assume this integral to be 1.

The Beauville–Bogomolov–Fujiki quadratic form qσ onH2(X,C) is defined, as in the hyperkähler
case (cf. [2, §8]), as follows: for each [α] ∈ H2(X,C) set

(1.3) qσ([α]) =
n

2

∫

X

(σσ̄)n−1α2 + (1− n)

(∫

X

σn−1σ̄nα

)(∫

X

σnσ̄n−1α

)

.

We will denote by 〈 , 〉σ the symmetric bilinear form polar to qσ, namely

〈[α], [β]〉σ =
1

2
(qσ([α] + [β]) − qσ([α]) − qσ([β])).

Since qσ is homogeneous of degree 2, we can consider the quadric Qσ defined by the equation
qσ = 0 in P(H2(X,C)). In the next Section we will mainly be concerned with the study of this
quadric.

2. The Beauville–Bogomolov–Fujiki quadric and the ∂∂̄-lemma

The purpose of this Section is to show the following results.

Theorem 2.1. Let (X, σ) be a complex symplectic manifold, and assume that X satisfies the
∂∂̄-lemma. Then the following are equivalent:

(1) h1,1(X) > 0;
(2) the quadric Qσ is irreducible.

Theorem 2.2. Let (X, σ) be a complex symplectic manifold, and assume that X satisfies the
∂∂̄-lemma. Then the following are equivalent:
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(1) qσ is non-degenerate;

(2) h2,0(X) = 1, i.e., H2,0

∂̄
(X) = C · [σ];

(3) the quadric Qσ is smooth.

To be as clear as possible, we prove here the technical results needed for the Proofs of Theorem
2.1 and Theorem 2.2, which we postpone at the end of the Section.

As a matter of notations, Ω1
X will be used to denote the holomorphic cotangent bundle of X ,

while Ωp
X =

∧p
Ω1

X and KX = Ωn
X will denote the bundles of holomorphic p-forms on X and the

canonical bundle of X respectively. Finally, Lα will denote the operator given by wedging with α.

Lemma 2.3. Let (X, σ) be a complex symplectic manifold of dimension 2n. Then the map

Ln−1
σ : Ω1

X −→ Ω2n−1
X

given by the wedge product with σn−1 is an isomorphism of vector bundles.

Proof. The Lemma follows from the description of this map in [7] and [6], which we recall here.
Since σ is non-degenerate, it induces isomorphisms TX ≃ Ω1

X and KX ≃ OX . The first is given by

TX 7−→ Ω1
X

v 7−→ σ(v, ),

while the second is induced by σn, which is holomorphic and everywhere non-vanishing. Since we
have also a non-degenerate pairing Ω1

X ⊗Ω2n−1
X −→ KX induced by the cup product, the fact that

KX ≃ OX exhibits also Ω2n−1
X as (Ω1

X)∗. So we have the sequence of isomorphisms

Ω1
X ≃ TX ≃ (Ω1

X)∗ ≃ Ω2n−1
X ,

and the map Ln−1
σ is nothing but this composition. �

As a consequence of Lemma 2.3 the following Corollary holds.

Corollary 2.4. We have for the Dolbeault cohomology the following isomorphisms:

Ln−1
σ : Hq(X,Ω1

X) // Hq(X,Ω2n−1
X )

H
1,q

∂̄
(X) H

2n−1,q

∂̄
(X),

where Ln−1
σ is induced by the wedge product with σn−1.

We can see this result as an instance of a sort of “symplectic Lefschetz theorem”.

Lemma 2.5. Let (X, σ) be a complex symplectic manifold, and assume that X satisfies the ∂∂̄-
lemma. Then

Ln−1
σσ̄ : H

1,1

∂̄
(X) −→ H

2n−1,2n−1

∂̄
(X)

[α]∂̄ 7−→ [(σσ̄)n−1α]∂̄

is an isomorphism.

Proof. By Corollary 2.4, Ln−1
σ : H1,q

∂̄
(X) −→ H2n−1,q(X) is an isomorphism. Since X satisfies the

∂∂̄-lemma, and so complex conjugation is an isomorphism, Ln−1
σ̄ : Hq,1

∂̄
(X) −→ Hq,2n−1(X) is an

isomorphism as well, being Ln−1
σ̄ ([α]) = Ln−1

σ ([ᾱ]). In particular, for q = 1 we get our result since
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we have the commutative square

H
1,1

∂̄
(X)

Ln−1

σ
//

L
n−1

σ̄

��

H
2n−1,1

∂̄
(X)

L
n−1

σ̄

��

H
1,2n−1

∂̄
(X)

Ln−1

σ
// H

2n−1,2n−1

∂̄
(X)

where all the maps are isomorphisms. �

Remark 2.6. Lemma 2.5 is false if X does not satisfy the ∂∂̄-lemma, as we will show in Example
4.1.

Lemma 2.7. Let (X, σ) be a complex symplectic manifold, and assume that X satisfies the ∂∂̄-

lemma. Then the restriction of 〈 , 〉σ to H
1,1

∂̄
(X) is non-degenerate.

Proof. The symmetric bilinear form 〈 , 〉σ on H2(X,C) restricts to the form on H
1,1

∂̄
(X) given

by

〈[α], [β]〉σ =
n

2

∫

X

(σσ̄)n−1αβ.

Assume now that [α] ∈ H
1,1

∂̄
(X) is a class such that 〈[α], [β]〉σ = 0 for all [β] ∈ H

1,1

∂̄
(X). This

means that ∫

X

Ln−1
σσ̄ ([α])[β] = 0,

i.e., that Ln−1
σσ̄ ([α]) is a (2n − 1, 2n− 1)-class which annihilates all the space H

1,1

∂̄
(X). By Serre

duality, we have that then Ln−1
σσ̄ ([α]) = 0, and since we proved that Ln−1

σσ̄ is an isomorphism, we
finally get that [α] = 0. �

Proposition 2.8. Let (X, σ) be a complex symplectic manifold, and assume that X satisfies the
∂∂̄-lemma. Then

H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X) = H

1,1

∂̄
(X)⊥.

Proof. We will prove that H2,0

∂̄
(X)⊕H

0,2

∂̄
(X) ⊆ H

1,1

∂̄
(X)⊥ and that the two spaces have the same

dimension.

(⊆) It is an easy computation with the polar form of qσ. Let [α2,0+α0,2] ∈ H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X),

we need to prove that for any [α1,1] ∈ H
1,1

∂̄
(X) we have

〈[α2,0 + α0,2], [α1,1]〉σ = 〈[α2,0], [α1,1]〉σ + 〈[α0,2], [α1,1]〉σ = 0.

It is only a matter of type that

qσ([α2,0]) = qσ([α0,2]) = 0,

from which we deduce the equality

2〈[α2,0], [α1,1]〉σ = qσ([α2,0] + [α1,1])− qσ([α2,0])− qσ([α1,1]) = qσ([α1,1])− qσ([α1,1]) = 0,

and similarly 〈[α0,2], [α1,1]〉σ = 0. So we are done.
(=) We denote bi(X) = dimHi(X,C) and hp,q(X) = dimH

p,q

∂̄
(X) as usual. By Lemma 2.7,

〈 , 〉σ is non degenerate on H
1,1

∂̄
(X), which is equivalent to H

1,1

∂̄
(X)∩H

1,1

∂̄
(X)⊥ = {0}.

In turn this implies that dimH
1,1

∂̄
(X)⊥ = b2(X)− h1,1(X), and finally that

dimH
1,1

∂̄
(X)⊥ = b2(X)− h1,1(X) = h2,0(X) + h0,2(X).

�
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Now we study the restriction of the quadratic form on H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X).

Lemma 2.9. Let (X, σ) be a complex symplectic manifold satisfying the ∂∂̄-lemma, and let V =

Span{[σ], [σ̄]}. Let [τ2,0] + [τ0,2] ∈ H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X). Then [τ2,0] + [τ0,2] ∈ V ⊥ if and only if

∫

X

σnσ̄n−1τ0,2 =

∫

X

σn−1σ̄nτ2,0 = 0.

Proof. We observe that 2〈[σ], [τ2,0] + [τ0,2]〉σ = 0 if and only if qσ([σ] + [τ2,0] + [τ0,2])− qσ([τ2,0] +
[τ0,2]) = 0; a straightforward computation shows that this last is equivalent to say that

∫

X

σnσ̄n−1τ0,2 = 0.

In the same way, one sees that 2〈[σ̄], [τ2,0] + [τ0,2]〉σ = 0 if and only if
∫

X
σn−1σ̄nτ2,0 = 0, and the

result then follows. �

Observe that we have two natural linear functionals on H
2,0

∂̄
(X) and H

0,2

∂̄
(X) respectively:

H
2,0

∂̄
(X) −→ C

[τ2,0] 7−→
∫

X
σn−1σ̄nτ2,0

,
H

0,2

∂̄
(X) −→ C

[τ0,2] 7−→
∫

X
σnσ̄n−1τ0,2

These functionals are surjective since their value on [σ], resp. [σ̄], is 1, and so they have (d − 1)-
dimensional kernel, where d = h2,0(X) = h0,2(X). In particular, after fixing a basis {[σ2], . . . , [σd]}
for the kernel of the first, we have

H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X) = Span{σ, σ̄}

︸ ︷︷ ︸

V

⊕ Span{σ2, . . . , σd, σ̄2, . . . , σ̄d}
︸ ︷︷ ︸

W

,

where W is the orthogonal complement of V in H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X) by Lemma 2.9.

We now want to show that W is the subspace where the form qσ degenerates.

Proposition 2.10. Let (X, σ) be a complex symplectic manigold, and assume that X satisfies the
∂∂̄-lemma. Then the second complex cohomology group of X has an orthogonal decomposition for
qσ

H2(X,C) = Span{[σ], [σ̄]} ⊕W ⊕H
1,1

∂̄
(X),

where W ⊆ H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X) is the kernel of 〈 , 〉σ.

Proof. We know by Lemma 2.7 and Proposition 2.8 that 〈 , 〉σ is non-degenerate onH
1,1

∂̄
(X) and

that H1,1

∂̄
(X)⊥ = H

2,0

∂̄
(X)⊕H

0,2

∂̄
(X). Hence we can restrict our attention to H

2,0

∂̄
(X)⊕H

0,2

∂̄
(X),

where the Beauville–Bogomolov–Fujiki form has expression

qσ([τ2,0] + [τ0,2]) = n

∫

X

(σσ̄)n−1τ2,0τ0,2 + (1− n)

(∫

X

σnσ̄n−1τ0,2

)(∫

X

σn−1σ̄nτ2,0

)

.

Assume now that [τ2,0] + [τ0,2] ∈ H
2,0

∂̄
(X) ⊕H

0,2

∂̄
(X) is orthogonal to Span{[σ], [σ̄]}: by Lemma

2.9 this means that { ∫

X
σnσ̄n−1τ0,2 = 0

∫

X
σn−1σ̄nτ2,0 = 0.

Since H
2n,0

∂̄
(X) = C · [σn], H0,2n

∂̄
(X) = C · [σ̄n] and the natural pairing is non-degenerate, we

obtain that [σ̄n−1τ0,2] = [σn−1τ2,0] = 0, and consequently

qσ([τ2,0] + [τ0,2]) = 0.

This computation shows that the bilinear form 〈 , 〉σ vanishes on W , and since it is non-
degenerate on Span{[σ], [σ̄]} it follows that W = ker〈 , 〉σ. �
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We are now ready to prove the two Main Theorems.

Proof of Theorem 2.1. The quadric Qσ is irreducible if and only if the Gram matrix of 〈 , , 〉σ
has rank at least 3. So, it suffices to show that there exist three orthogonal classes [α]i ∈ H2(X,C)
such that qσ([α]i) 6= 0 if and only if h1,1(X) > 0. It is an easy computation that [σ+ σ̄] and [σ− σ̄]
are orthogonal and satisfy qσ([σ± σ̄]) = ±1. It follows then from Proposition 2.10 and Lemma 2.7
that a third class with this property exists if and only if h1,1(X) > 0. �

Proof of Theorem 2.2. It is well known that a quadric is smooth if and only if it is defined by a
non-degenerate quadratic form. From Proposition 2.10 we have that qσ is non-degenerate if and
only if (with the notations of Proposition 2.10) W = {0}, i.e., if and only if h2,0(X) = 1. �

Remark 2.11. Assume that (X, σ) is an irreducible holomorphic symplectic manifold, i.e., that X

is a (compact) simply connected Kähler manifold such that H2,0

∂̄
(X) = C · [σ]. Then it was shown

in [2, Théorème 5] that Qσ is smooth and irreducible. In particular, to show the irreducibility the

proof uses the fact that the Kähler class [ω] of X is orthogonal to H
2,0

∂̄
(X)⊕H

0,2

∂̄
(X) and satisfies

qσ([ω]) =
n

2

∫

X

(σσ̄)n−1ω2 > 0

by the Hodge–Riemann bilinear relations.

Remark 2.12. Let (X, σ) be a complex symplectic manifold. As qσ([σ]) = 0, the point defined by
[σ] in P(H2

dR(X,C)) lies on Qσ, and it follows from Proposition 2.10 that [σ] is always a smooth
point of Qσ.

3. Complex symplectic cones

In this section we want to study the locus

Sp(X) = {[σ] ∈ H
2,0

∂̄
(X)|σ is a complex symplectic form} ⊆ H

2,0

∂̄
(X).

Observe first of all that since there are no ∂̄-boundaries in A2,0(X), then we have only one
element in each Dolbeault class, so

Sp(X) = {σ ∈ A2,0(X)|σ is a complex symplectic form} ⊆ Z2,0

∂̄
(X) = {ϕ ∈ A2,0(X)|∂̄ϕ = 0}.

It is then easy to see from the definitions that Sp(X) is a cone in Z2,0

∂̄
(X): if σ ∈ Sp(X), then

λσ ∈ Sp(X) for any λ ∈ C∗.

Proposition 3.1. Let X be a compact complex manifold satisfying the ∂∂̄-lemma. Then the set
Sp(X) is open in H

2,0

∂̄
(X).

Proof. Observe that if τ is a ∂̄-closed (2, 0)-form, then dτ = 0. In fact dτ = ∂τ is of type (3, 0), and
as dτ ∈ ker ∂∩ker ∂̄∩im d = im ∂∂̄ we deduce that dτ = 0 because there are on X no (2,−1)-forms.

Let then σ ∈ Sp(X) be fixed, and let τ ∈ Z2,0

∂̄
(X) be any (2, 0)-form. Consider then the form

σ + ετ , with ε > 0: this is

(1) ∂̄-closed, since both σ and τ are;
(2) d-closed, since both σ and τ are;
(3) non-degenerate for some suitable ε > 0, since σ is non-degenerate and X is compact.

So we can perturb σ ∈ Sp(X) in any direction remaining in Sp(X), which implies that Sp(X) is
open. �
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4. Examples

As we observed in Corollary 2.4, the map

Ln−1
σ : H

1,q

∂̄
(X) −→ H

2n−1,q

∂̄
(X)

[ϕ]∂̄ 7−→ [σn−1ϕ]∂̄

is an isomorphism.
In Example 4.1 we will show that this is not true if we consider Bott–Chern cohomology instead

of Dolbeault cohomology, and that if X does not satisfy the ∂∂̄-lemma, then its conjugate Ln−1
σ̄ :

H
q,1

∂̄
(X) −→ H

q,2n−1

∂̄
(X) may fail to be an isomorphism. Finally, in Example 4.2 we want to deal

with an explicit example that clarifies our results, in particular Theorems 2.1 and 2.2.

Example 4.1. Let I(3) = Γ\G be the Iwasawa threefold, i.e., the quotient of the complex nilpotent
lie group

G =











1 z1 z3
0 1 z2
0 0 1





∣
∣
∣
∣
∣
∣

z1, z2, z3 ∈ C







by the lattice Γ consisting of the matrices with entries in Z[
√
−1]. We have then on I(3) the

following global (1, 0)-forms, expressed in terms of the natural coordinates (z1, z2, z3):

ϕ1 = dz1, ϕ2 = dz2, ϕ3 = dz3 − z1dz2,

and which satisfy the structure equations

dϕ1 = 0, dϕ2 = 0, dϕ3 = −ϕ1 ∧ ϕ2.

We consider then X = I(3) × T, where T is a complex 1-dimensional torus with coordinate z4
giving us a fourth (1, 0)-form ϕ4 = dz4 satisfying the structure equation dϕ4 = 0. Observe that X
is a 4-dimensional complex manifold which does not satisfy the ∂∂̄-lemma as I(3) does not. In the
sequel we will use the following notation:

ϕij = ϕi ∧ ϕj , ϕij̄ = ϕi ∧ ϕ̄j , . . . .

With some computations we can see that the second cohomologies of X have the following gener-
ators: the de Rham cohomology is

(4.1) H2
dR(X,C) = Span







[ϕ13]dR, [ϕ14]dR, [ϕ23]dR, [ϕ24]dR,
[ϕ11̄]dR, [ϕ12̄]dR, [ϕ14̄]dR,
[ϕ21̄]dR, [ϕ22̄]dR, [ϕ24̄]dR,
[ϕ41̄]dR, [ϕ42̄]dR, [ϕ44̄]dR,

[ϕ1̄3̄]dR, [ϕ1̄4̄]dR, [ϕ2̄3̄]dR, [ϕ2̄4̄]dR







;

the Bott–Chern cohomology is

H
2,0
BC(X) = Span

{
[ϕ12]BC , [ϕ13]BC , [ϕ14]BC , [ϕ23]BC , [ϕ24]BC

}
,

H
1,1
BC(X) = Span







[ϕ11̄]BC , [ϕ12̄]BC , [ϕ14̄]BC ,

[ϕ21̄]BC , [ϕ22̄]BC , [ϕ24̄]BC ,

[ϕ41̄]BC , [ϕ42̄]BC , [ϕ44̄]BC






,

H
0,2
BC(X) = Span

{
[ϕ1̄2̄]BC , [ϕ1̄3̄]BC , [ϕ1̄4̄]BC , [ϕ2̄3̄]BC , [ϕ2̄4̄]BC

}
;
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and finally the Dolbeault cohomology is

H
2,0

∂̄
(X) = Span

{
[ϕ12]∂̄ , [ϕ13]∂̄ , [ϕ14]∂̄ , [ϕ23]∂̄ , [ϕ24]∂̄ , [ϕ34]∂̄

}
,

H
1,1

∂̄
(X) = Span







[ϕ11̄]∂̄ , [ϕ12̄]∂̄ , [ϕ14̄]∂̄ ,
[ϕ21̄]∂̄ , [ϕ22̄]∂̄ , [ϕ24̄]∂̄ ,
[ϕ31̄]∂̄ , [ϕ32̄]∂̄ , [ϕ34̄]∂̄ ,
[ϕ41̄]∂̄ , [ϕ42̄]∂̄ , [ϕ44̄]∂̄







,

H
0,2

∂̄
(X) = Span

{
[ϕ1̄3̄]∂̄ , [ϕ1̄4̄]∂̄ , [ϕ2̄3̄]∂̄ , [ϕ2̄4̄]∂̄

}
.

For later purposes, we list here the generators for other cohomology groups:

H
3,1

∂̄
(X) = Span







[ϕ1231̄]∂̄ , [ϕ1232̄]∂̄ , [ϕ1234̄]∂̄ ,
[ϕ1241̄]∂̄ , [ϕ1242̄]∂̄ , [ϕ1244̄]∂̄ ,
[ϕ1341̄]∂̄ , [ϕ1342̄]∂̄ , [ϕ1344̄]∂̄ ,
[ϕ2341̄]∂̄ , [ϕ2342̄]∂̄ , [ϕ2344̄]∂̄







,

H
3,1
BC(X) = Span







[ϕ1231̄]BC , [ϕ1232̄]BC , [ϕ1234̄]BC ,

[ϕ1241̄]BC , [ϕ1242̄]BC , [ϕ1244̄]BC ,

[ϕ1341̄]BC , [ϕ1342̄]BC , [ϕ1344̄]BC ,

[ϕ2341̄]BC , [ϕ2342̄]BC , [ϕ2344̄]BC







,

H
1,3

∂̄
(X) = Span







[ϕ11̄2̄3̄]∂̄ , [ϕ11̄3̄4̄]∂̄ , [ϕ12̄3̄4̄]∂̄ ,
[ϕ21̄2̄3̄]∂̄ , [ϕ21̄3̄4̄]∂̄ , [ϕ22̄3̄4̄]∂̄ ,
[ϕ31̄2̄3̄]∂̄ , [ϕ31̄3̄4̄]∂̄ , [ϕ32̄3̄4̄]∂̄ ,
[ϕ41̄2̄3̄]∂̄ , [ϕ41̄3̄4̄]∂̄ , [ϕ42̄3̄4̄]∂̄







(see also [1] for general computations and [4] for Dolbeault formality).
We now focus on the complex symplectic forms on X . Let σ be any d-closed form of type (2, 0)

on X : according to (4.1) it is cohomologus to

αϕ12 + βϕ13 + γϕ14 + δϕ23 + εϕ24,

and it is easy to see by taking its square that such a form is non-degenerate (hence a symplectic
form) if and only if

βε− γδ 6= 0.

We now fix such a symplectic form σ, and we also assume that it satisfies the normalization
∫

X

(σσ̄)2 = 4|βε− γδ|2
∫

X

ϕ12341̄2̄3̄4̄ = 1.

It is then only a matter of computation with the generators given above that

(1) the Lefschetz operator Lσ : H1,1

∂̄
−→ H

3,1

∂̄
(X) is an isomorphism (as stated in Corollary

2.4), while on the Bott–Chern cohomology it defines only an injective homomorphism

Lσ : H1,1
BC −→ H

3,1
BC(X);

(2) the Lefschetz operator induced by σ̄ is not an isomorphism, since

ker(Lσ̄ : H1,1

∂̄
−→ H

1,3

∂̄
(X)) = Span

{
[β̄ϕ11̄ + δ̄ϕ12̄]∂̄ , [β̄ϕ21̄ + δ̄ϕ22̄]∂̄ ,
[β̄ϕ31̄ + δ̄ϕ32̄]∂̄ , [β̄ϕ41̄ + δ̄ϕ42̄]∂̄

}

,

and so the hypothesis that X satisfies the ∂∂̄-lemma is necessary in Lemma 2.5;
(3) the images under the canonical maps H

p,q
BC(X) −→ H

p+q
dR (X,C) of H2,0

BC(X) ⊕ H
0,2
BC(X)

and H
1,1
BC(X) are orthogonal with respect to 〈 , 〉σ, and the form qσ is degenerate on

both of them.

Example 4.2. Let t ∈ Cr{0} and consider the manifold Xt which is the product of a deformation
of the holomorphic parallelizable Nakamura threefold and a complex 1-dimensional torus. The
deformations of the Nakamura threefold we are considering were analysed in [1], where it is shown
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that they satisfy the ∂∂̄-lemma: in terms of the natural coordinates (z1, z2, z3) on the threefold
and z4 on the torus the manifold Xt is described by

(1, 0)− forms: ϕ1 = dz1 − tdz̄1 (0, 1)− forms: ω1 = dz̄1 − t̄dz1
ϕ2 = e−z1dz2 ω2 = e−z1dz̄2
ϕ3 = ez1dz3 ω3 = ez1dz̄3
ϕ4 = dz4 ω4 = dz̄4,

with structure equations

dϕ1 = 0 dω1 = 0
dϕ2 = − 1

1−|t|2ϕ1 ∧ ϕ2 +
t

1−|t|2ϕ2 ∧ ω1 dω2 = − 1

1−|t|2ϕ1 ∧ ω2 − t
1−|t|2ω1 ∧ ω2

dϕ3 = 1

1−|t|2ϕ1 ∧ ϕ3 − t
1−|t|2ϕ3 ∧ ω1 dω3 = 1

1−|t|2ϕ1 ∧ ω3 +
t

1−|t|2ω1 ∧ ω3

dϕ4 = 0 dω4 = 0.

We observe that among all the (2, 0)-forms, the one which are d-closed are those of the form

αϕ14 + βϕ23, α, β ∈ C

and such forms are non-degenerate if and only if α, β ∈ C∗. This shows that Sp(Xt) ⊆ H
2,0

∂̄
(Xt)

is nothing but (C∗)2 ⊆ C2, which is clearly an open cone. It is then possible to compute explicitly
the cohomology of our manifold, and in particular its second cohomology spaces:

(4.2)

H
2,0

∂̄
(Xt) = Span{[ϕ14], [ϕ23]},

H
1,1

∂̄
(Xt) = Span{[ϕ1 ∧ ω1], [ϕ1 ∧ ω4], [ϕ2 ∧ ω3], [ϕ3 ∧ ω2], [ϕ4 ∧ ω1], [ϕ4 ∧ ω4]},

H
0,2

∂̄
(Xt) = Span{[ω14], [ω23]}.

As a consequence of the ∂∂̄-lemma, each Dolbeault class has a representative which is d-closed,
and in (4.2) we used such representatives. We can also describe the action of complex conjugation:

[ϕ14] = [ω14] [ϕ1 ∧ ω1] = −[ϕ1 ∧ ω1] [ϕ1 ∧ ω4] = −[ϕ4 ∧ ω1]

[ϕ23] = [ω23] [ϕ2 ∧ ω3] = −[ϕ3 ∧ ω2] [ϕ4 ∧ ω4] = −[ϕ4 ∧ ω4].

Fix now a complex symplectic form σ = αϕ14 + βϕ23, with α, β ∈ C∗, and let σ̄ = ᾱω14 + β̄ω23 be
its complex conjugate. By our normalization assumption (1.2), we will assume that

∫

Xt

(σσ̄)2 =

∫

X

4|α|2|β|2ϕ1234 ∧ ω1234 = 1.

Writing now

[α] = a14[ϕ14] + a23[ϕ23]+
+ b11[ϕ1 ∧ ω1] + b14[ϕ1 ∧ ω4] + b23[ϕ2 ∧ ω3] + b32[ϕ3 ∧ ω2] + b41[ϕ4 ∧ ω1] + b44[ϕ4 ∧ ω4]+
+ c14[ω14] + c23[ω23]

for the generic class [α] ∈ H2(X,C), we can compute explicitly qσ([α]). Using on H2(X,C) the
ordered set of coordinates (a14, a23, b11, b14, b23, b32, b41, b44, c14, c23) we have just introduced, the
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Beauville–Bogomolov–Fujiki form on Xt is described by the matrix





















0 0 0 0 0 0 0 0 1

8|α|2
1

8αβ̄

0 0 0 0 0 0 0 0 1

8βᾱ
1

8|β|2

0 0 0 0 0 0 0 − 1

4|α|2 0 0

0 0 0 0 0 0 1

4|α|2 0 0 0

0 0 0 0 0 1

4|β|2 0 0 0 0

0 0 0 0 1

4|β|2 0 0 0 0 0

0 0 0 1

4|α|2 0 0 0 0 0 0

0 0 − 1

4|α|2 0 0 0 0 0 0 0
1

8|α|2
1

8βᾱ
0 0 0 0 0 0 0 0

1

8αβ̄
1

8|β|2 0 0 0 0 0 0 0 0






















,

from which it is possible to observe that

(1) the form is degenerate, and its kernel is Span{α[ϕ14]− β[ϕ23], ᾱ[ω14]− β̄[ω23]},
(2) the signature of this form is (p+, p−, p0) = (4, 4, 2), and its restriction to H

1,1

∂̄
(Xt) is

non-degenerate of signature (p+, p−) = (3, 3).

According to Theorem 2.1 and Theorem 2.2, we see that the quadric defined in P9 by this matrix
is irreducible and singular.
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