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THE GOLOMB TOPOLOGY ON A DEDEKIND
DOMAIN AND THE GROUP OF UNITS OF ITS

QUOTIENTS

DARIO SPIRITO

Abstract. We study the Golomb spaces of Dedekind domains
with torsion class group. In particular, we show that a homeo-
morphism between two such spaces sends prime ideals into prime
ideals and preserves the P -adic topology on R \ P . Under certain
hypothesis, we show that we can associate to a prime ideal P of
R a partially ordered set, constructed from some subgroups of the
group of units of R/Pn, which is invariant under homeomorphisms,
and use this result to show that the unique self-homeomorphisms
of the Golomb space of Z are the identity and the multiplication by
−1. We also show that the Golomb space of any Dedekind domain
contained in the algebraic closure of Q and different from Z is not
homeomorphic to the Golomb space of Z.

1. Introduction

Let R be an integral domain. The Golomb topology of R is the
topology on R• := R \ {0} generated by the coprime cosets; we de-
note by G(R) the space R• endowed with the this topology, and call it
the Golomb space of R. The Golomb topology on the set Z+ of posi-
tive integer was introduced by Brown [5] and subsequently studied by
Golomb [13, 14]. On general domains, the Golomb topology was con-
sidered alongside several other coset topologies (see for example [15]),
and was shown to provide a way to generalize Furstenberg’s “topologi-
cal” proof of the infinitude of primes in a more general context [11, 6].
See [7, Section 4] for a more detailed historical overview of the subject.

Two recent articles have shed more light on the Golomb topology.
The first one, due to Banakh, Mioduszewski and Turek [3], deals with
the “classical” subject of the Golomb topology on Z+, with the ex-
plicit goal of deciding if this space is rigid, i.e., if it does not ad-
mit any self-homeomorphism; in particular, they show that any self-
homeomorphism of this space fixes 1 [3, Theorem 5.1]. The second
one, due to Clark, Lebowitz-Lockard and Pollack [7], studies Golomb
spaces on general domains, in particular when the ring R is a Dedekind
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2 DARIO SPIRITO

domain with infinitely many maximal ideals: under this hypothesis,
they show that G(R) is a Hausdorff space that is not regular, and
that it is a connected space that is totally disconnected at each of its
points. They also raise the isomorphism problem: can two noniso-
morphic Dedekind domains with infinitely many maximal ideals (or,
more generally, two integral domains with zero Jacobson radical) have
homeomorphic Golomb spaces? As a first step in this study, they prove
that any homeomorphism of Golomb topologies sends units to units [7,
Theorem 13], and thus that two domains with a different number of
units have nonhomeomorphic Golomb spaces. We note that the rigid-
ity problem and the isomorphism problem can be unified into a single
question:

Problem. Let R, S be two Dedekind domains with infinitely many
maximal ideals, and let h : G(R) −→ G(S) be a homeomorphism. Is
it true that there is a ring isomorphism σ : R −→ S and a unit u ∈ S
such that h(x) = uσ(x) for all x ∈ R?

In this paper, we show that the only self-homeomorphisms of the
Golomb space G(Z) are the identity and the multiplication by −1
(Theorem 7.7), and that if R is a Dedekind domain contained in the
algebraic closure Q of Q such that G(Z) ' G(R) then R = Z, thus
giving a complete answer to the above question for R = S = Z and a
partial answer for R = Z. While the method we use works best for the
ring of integers, we work as much as possible in a greater generality:
the main restrictions we have to put (especially in Sections 6 and 7) are
that the class group of Dedekind domain we consider must be torsion,
and that some quotients of the group of units of R/P n are cyclic.

The structure of the paper is as follows. In Section 3, we generalize
[3, Lemma 5.6] to the case of general Dedekind domains; in particular,
we show that the partially ordered set V(R) formed by the subsets
of Max(R) that can be written as V (x) := {M ∈ Max(R) | x ∈ M}
for some x ∈ R• is a topological invariant of the Golomb topology
(Proposition 3.3). Through this result, we prove that if G(R) ' G(S)
then the class groups of R and S are either both torsion or both non-
torsion (Theorem 3.4) and, if they are torsion, then a homeomorphism
between G(R) and G(S) sends prime ideals to prime ideals and radical
ideals to radical ideals.

In Section 4, given a prime ideal P of R, we show how to construct
from the Golomb topology a new topology on R \ P (the P -topology),
which allows to concentrate on the cosets in the form a+P n. Section 5
collects some results about the groups Hn(P ) := U(R/P n)/πn(U(R)).

In Section 6, we study the sets pow(a) := {uan | u ∈ U(R)} of
powers of the elements a ∈ R \ P , and in particular their closure
in the P -topology. We relate this closure to the cyclic subgroups of
the groups Hn(P ); in particular, we show that under some hypothe-
sis (among which that R has torsion class group and that the Hn(P )
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are cyclic) the closure of pow(a) is characterized by the index of the
subgroup generated by a in Hn(P ) for large n. Restricting to almost
prime elements (i.e., irreducible elements generating a primary ideal)
we show that there is a bijective correspondence between these clo-
sures and a set of integers depending on the cardinality of the Hn(P )
(Theorem 6.12), and that this structure is preserved under homeomor-
phisms of Golomb spaces (Propositions 6.5 and 6.14). In Section 7, we
explicit enough of this correspondence to characterize completely the
self-homeomorphisms of G(Z) (Theorem 7.7).

2. Dedekind domains and the Golomb topology

All unreferenced statement about Dedekind domains are standard;
see for example [4, Chapter 7, §2], [2, Chapter 9] or [16, Chapter 1].

Throughout the paper, R will a Dedekind domain, that is, R is a
commutative unitary ring with no zerodivisors, and such that every
ideal can be written (uniquely) as a product of prime ideals. Equiva-
lently, R is a Dedekind domain if it has no zerodivisors, it is Noetherian
(its ideals satisfy the ascending chain condition), one-dimensional (all
its nonzero prime ideals are maximal) and integrally closed (if p(X) is
a monic polynomial, then every root of p(X) in the quotient field of
R belongs to R). Examples of Dedekind domains are Z, the ring of
integers of a number field F and the polynomial ring K[X] over a field
K.

For every subset I ⊆ R, we set I• := I \{0}, and we denote by U(R)
the set of units of R.

We denote by Max(R) the set of maximal ideals of R; if x ∈ R•, we
set V (x) := {M ∈ Max(R) | x ∈ M}; this set is always finite. If I is
an ideal of R, the radical of I is

rad(I) := {x ∈ R | xn ∈ I for some n ∈ N}.
The radical of I is an ideal and is also the intersection of all prime ideals
containing I. If I is contained in a unique maximal ideal P , then I
is called a primary ideal (or P -primary ideal if we want to underline
P ); note that this definition is not the general definition of a primary
ideal, but it is equivalent for a nonzero ideal of a Dedekind domain.

An R-submodule J of the quotient field of R is a fractional ideal of
R if there is a d ∈ R• such that dJ ⊆ R (in particular, dJ is an ideal of
R). The set F(R) of nonzero fractional ideals of R is an abelian group
under the product of ideals. The nonzero principal ideals of R form a
subgroup P(R) of F(R); the quotient F(R)/P(R) is called the class
group (or ideal class group) of R, and is denoted by Cl(R). The class
group of R is trivial if and only if R is a unique factorization domain.

Let I 6= (0) be an ideal of R, and let a ∈ R. The coset a + I is a
coprime coset if 〈a, I〉 = R, i.e., if there is no proper ideal containing
both a and I. In particular, any coprime coset is contained in R•.
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Likewise, two nonzero ideals I and J are coprime if 〈I, J〉 = R, i.e., if
there is no proper ideal containing both I and J .

The Golomb topology on R• is the topology generated by all coprime
cosets a+ I. We denote by G(R) the set R• endowed with the Golomb
topology, and we call it the Golomb space of R. For X ⊆ R•, we denote
by X the closure of X in the Golomb topology. If R has infinitely
many maximal ideals, the Golomb space is an Hausdorff space that is
not regular; furthermore, it is not compact and is totally disconnected
[7].

The closure of the coprime cosets can be completely described.

Lemma 2.1. [7, Lemma 15] Let R be a Dedekind domain, let I be
a nonzero ideal of R and let x ∈ R• be such that 〈x, I〉 = R. Let
I = P e1

1 · · ·P en
n be the factorization of I into prime ideals. Then,

x+ I =

(
n⋂
i=1

Pi ∪ (x+ P ei
i )

)•
.

In particular, we immediately obtain the following.

Corollary 2.2. Let R be a Dedekind domain, and let I, J be coprime
ideals. For every x such that 〈x, I〉 = 〈x, J〉 = R, we have x+ IJ =
x+ I ∩ x+ J .

3. Radical and prime ideals

The purpose of this section is to generalize the results obtained in
[3, Section 5] on the relationship between the Golomb topology and
the prime divisors of an element x ∈ R•. Following the methods used
therein, we define Fx as the set of all F ⊆ R• such that there are a
neighborhood Ux of x and a neighborhood U1 of 1 such that Ux∩U1 ⊆ F .

Part (b) of the following proposition corresponds to [3, Lemma 5.5(a)],
while part (c) corresponds to [3, Lemma 5.6].

Proposition 3.1. Let R be a Dedekind domain. Let x, y ∈ R• and let
M ∈ Max(R). Then, the following hold.

(a) Fx is a filter.
(b) M• ∈ Fx if and only if x /∈M .
(c) Fx ⊆ Fy if and only if V (y) ⊆ V (x).

Proof. (a) By the proof of [7, Theorem 8(a)] (and the discussion in
Section 3 therein), for every open sets V1, . . . , Vn the intersection V1 ∩
· · · ∩ Vn is nonempty; the claim follows.

(b) is a direct consequence of [7, Lemma 17], applied with y = 1.
(c) Suppose Fx ⊆ Fy, and let P ∈ V (y). Then, y ∈ P , so by point

(b) P /∈ Fy; hence, P /∈ Fx and thus again x ∈ P , i.e., P ∈ Vx.
Conversely, suppose V (y) ⊆ V (x). Let F ∈ Fx; then, there are

ideals I, J of R such that 〈x, I〉 = R and such that x+ I ∩ 1 + J ⊆ F .
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Without loss of generality, we can suppose that J ⊆ I and that J = IJ ′

for some J ′ such that 〈I, J ′〉 = R. Let I =
∏

i P
ei
i be the prime

decomposition of I; by Corollary 2.2, we have

x+ I ∩ 1 + J =x+ I ∩ 1 + I ∩ 1 + J ′ =

=
⋂
i

x+ P ei
i ∩ 1 + P ei

i ∩ 1 + J ′.

For each i, let ni be an integer such that y − 1 /∈ P niei
i . Then, by

Lemma 2.1,

y + P niei
i ∩ 1 + P niei

i = ((y + P niei
i ) ∪ Pi)• ∩ ((1 + P niei

i ) ∪ Pi)• = P •i .

Let I ′ :=
∏

i P
eini
i : then,

y + I ′ ∩ 1 + I ′ =
⋂
i

y + P niei
i ∩ 1 + P niei

i =

(⋂
i

Pi

)•
⊆

⊆
⋂
i

x+ P ei
i ∩ 1 + P ei

i =

=x+ I ′ ∩ 1 + I ′ ⊆ x+ I ∩ 1 + I,

and thus

y + I ′∩ 1 + I ′J ′ = y + I ′∩ 1 + I ′∩ 1 + J ′ ⊆ x+ I ∩ 1 + I ∩ 1 + J ′ ⊆ F.

Since the radical of I and I ′ is the same and 〈x, I〉 = R, also 〈x, I ′〉 = R;
since V (y) ⊆ V (x), we have 〈y, I ′〉 = R, and thus y + I ′ is an open
neighborhood of y. Hence, F ∈ Fy and thus Fx ⊆ Fy, as claimed. �

Let R be a Dedekind domain. We consider two sets associated to R:

F(R) := {Fx | x ∈ R•}

and

V(R) := {V (x) | x ∈ R•}.
The previous proposition establishes a relation between them.

Proposition 3.2. Let R be a Dedekind domain. The map

Ψ: F(R) −→ V(R),

Fx 7−→ V (x)

is well-defined and an anti-isomorphism (when F(R) and V(R) are
endowed with the containment order).

Proof. Proposition 3.1(c) guarantees that Ψ is well-defined, injective
and order-reversing, while the surjectivity is obvious. �

Proposition 3.3. Let R, S be Dedekind domains and h : G(R) −→
G(S) be a homeomorphism. Then, the following hold.

(a) If h(1) = 1, then h(Fx) = Fh(x) for every x ∈ R•.
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(b) h induces an order isomorphism

h : V(R) −→ V(S),

V (x) 7−→ V (h(x)).

Proof. (a) Since h is a homeomorphism and h(1) = 1, h sends neigh-
borhoods of x into neighborhoods of h(x), and neighborhoods of 1 into
neighborhoods of 1, and analogously for their closures. The claim fol-
lows by the definition of Fx.

(b) For every unit v of S, let ψv : G(S) −→ G(S) be the multiplica-
tion by v. Clearly, ψv is a self-homeomorphism of G(S).

Let u := h(1). By [7, Theorem 13], u is a unit of S, and thus ψu
is a self-homeomorphism of G(S). Then, h = ψu ◦ ψu−1 ◦ h; setting
h′ := ψu−1 ◦ h, it is enough to show the claim separately for ψu and for
h′.

For every y ∈ S•, V (uy) = V (y); hence, the map

ψ̃u : F(S) −→ F(S),

Fx 7−→ Fux
is the identity, and in particular it is an order isomorphism. Then,

if Ψ is the map of Proposition 3.2, we have that Ψ ◦ ψ̃u ◦ Ψ−1 is an
order-isomorphism of V(S) with itself; unraveling the definition we see

that ψu = Ψ ◦ ψ̃u ◦Ψ−1, and the claim is proved.
Consider now h′. Then, h′(1) = u−1h(1) = 1. By the previous point,

h′(Fx) = Fh′(x); hence, by Proposition 3.1(c), the map

h̃′ : F(R) −→ F(R),

Fx 7−→ Fh′(x)

is well-defined and an order-isomorphism. As before, we see that h′ =

Ψ ◦ h̃′ ◦ Ψ−1 and that the right hand side is an order-isomorphism
between V(R) and V(S), and the claim is proved. �

Since any nonzero element of a Dedekind domain is contained in only
finitely many maximal ideals, V(R) is always a subset of Pfin(Max(R)),
the set of nonzero finite subsets of Max(R); the two sets are equal if and
only if the class group of R is torsion (this is essentially proved in [12,
Proposition 3.1]). Indeed, if Cl(R) is torsion then every nonzero prime
ideal P contains an element xP such that V (xP ) = {P}, and thus, if
P1, . . . , Pn are nonzero prime ideals then {P1, . . . , Pn} = V (xP1 · · ·xPn).
Conversely, if Cl(R) is not torsion then there is a prime ideal P such
that P k is not principal for every k, and thus V (x) 6= {P} for every
x ∈ R•, so V(R) 6= Pfin(Max(R)). We can upgrade this difference.

Theorem 3.4. Let R, S be Dedekind domains such that G(R) and
G(S) are homeomorphic. Then, the class group of R is torsion if and
only if the class group of S is torsion.
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Proof. Suppose that the class group of R is torsion while the class group
of S is not, and let M(R) (respectively, M(S)) be the set of minimal
elements of V(R) (resp., V(S)).

Since Cl(R) is torsion, by the reasoning above every member of
M(R) is a singleton; therefore, if ∆ ⊆ M(R) is finite, say ∆ =
{{P1}, . . . , {Pn}}, then sup ∆ exists and is equal to {P1, . . . , Pn}. In
particular, sup ∆ 6= sup Λ for every finite ∆ 6= Λ.

We claim that this does not hold in V(S). Indeed, since the class
group of S is not torsion there is a maximal ideal P such that no power
of P is principal. Let x ∈ P \ P 2: then, xR = PA for some ideal A
coprime with P . By the approximation theorem for Dedekind domains
(see e.g. [4, Chapter 7, §2, Proposition 2]), we can find a y ∈ P \ P 2

that is not contained in any prime ideal containing A; then, yR = PB
for some ideal B, and by construction B must be coprime with P and
A. Since PA and PB are both principal, the classes of A and B in the
class group are the same (more precisely, they are both the inverse of
the class of P ).

Take b ∈ P \ P 2: then, bR = PC for some ideal C coprime with
P . Again by the approximation theorem, we can choose c ∈ C such
that c /∈ P and such that c /∈ CQ for every prime ideal Q containing
A or B: then, H := b−1cP is a proper ideal of R that is coprime with
P , A and B and such that H is in the same class of P . Therefore,
HA and HB are principal, say HA = zR and HB = wR. Then,
xwR = PAHB = PBHA = yzR, and in particular V (xw) = V (yz).
LetM(x) be the set of minimal elements of V(R) containing V (x), and
likewise define M(y), M(z) and M(w); then, sup(M(x) ∪M(w)) =
V (x) ∪ V (w) = V (xw) = V (yz) = sup(M(y) ∪M(z)). We claim that
M(x) ∪M(w) 6=M(y) ∪M(z).

There is an element of M(x) containing P : since the class of P is
not torsion, such element cannot be {P}, and thus it must be equal
to Θ := {P,Q1, . . . , Qn} for some prime ideals Q1, . . . , Qn containing
A. Since z /∈ P , no element of M(z) contains P , and in particular
Θ /∈ M(z). If Θ′ ∈ M(y) contains P then Θ′ = {P,L1, . . . , Lm}
for some prime ideals L1, . . . , Lm containing B; since A and B are
coprime, each Qi is different from each Lj, and thus Θ′ 6= Θ, and so
Θ /∈ M(y). Hence, there are finite subsets ∆ 6= Λ of M(S) such that
sup ∆ = sup Λ; since this property is purely order-theoretic, it follows
that V(R) and V(S) are not isomorphic. By Proposition 3.3(a), neither
G(R) and G(S) are homeomorphic. �

It would be interesting to know how much further this method can
be pushed: for example, is it possible to recover the rank of the class
group of R from the order structure of V(R)?
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We now consider more in detail the case where the class group of R
is torsion. Given ∆ ⊆ Max(R), we define

G∆(R) := {x ∈ R• | V (x) = ∆}.

By the discussion before Theorem 3.4, if Cl(R) is torsion then G∆(R) 6=
∅ for every finite ∆ ⊆ Max(R).

The following is an analogue of [3, Lemmas 5.8 and 5.9].

Proposition 3.5. Let R, S be Dedekind domains with torsion class
group, and let h : G(R) −→ G(S) be a homeomorphism. Then, there is
a bijection σ : Max(R) −→ Max(S) such that h(G∆(R)) = Gσ(∆)(S).

Proof. By [7, Theorem 13], h(1) is a unit of S. The multiplication by
u is a homeomorphism of S which sends every GΛ(S) into itself; hence,
passing to h′ : G(R) −→ G(S), x 7→ h(1)−1h(x), we can suppose
without loss of generality that h(1) = 1.

We claim that |V (x)| = |V (h(x))| for every x ∈ R•. Indeed, since
Cl(R) is torsion V(R) ' Pfin(Max(R)), and thus |V (x)| is equal to 1
plus the length of an ascending chain of V(R) starting from V (x). By
Proposition 3.3(b), this property passes to V(S), and thus |V (x)| =
|V (h(x))|.

Let σ be the restriction to M(R) (the set of maximal elements of
V(R)) of the isomorphism h of Proposition 3.3(b). Since M(R) is
in natural bijective correspondence with Max(R) (just send {P} into
P ) we get a bijection σ : Max(R) −→ Max(S), such that if P ∈
Max(R) and xR is P -primary then σ(P ) is the unique maximal ideal
of S containing h(x).

If now x ∈ G∆(R), then ∆ = {P ∈ Max(R) | P /∈ Fx}; hence,
σ(∆) = {Q ∈ Max(S) | Q /∈ Fh(x)}, and thus h(x) ∈ Gσ(∆)(S), so
h(G∆(R)) ⊆ Gσ(∆)(S). Applying the same reasoning to h−1 gives the
opposite inclusion, and thus h(G∆(R)) = Gσ(∆)(S). �

If h : G(R) −→ G(S), we denote by he : R −→ S the extension of h
sending 0 to 0.

Theorem 3.6. Let R, S be Dedekind domains with torsion class group,
and let h : G(R) −→ G(S) be a homeomorphism. Let I be a radical
ideal of R. Then, the following hold.

(a) he(I) is a radical ideal of S.
(b) The number of prime ideals of R containing I is equal to the

number of prime ideals of S containing he(I).
(c) If I is prime, he(I) is prime.
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Proof. Since I is radical, I =
⋃
{G∆(R) | V (I) ⊇ ∆} ∪ {0}; hence,

applying Proposition 3.5,

he(I) =h
(⋃
{G∆(R) | V (I) ⊇ ∆}

)
∪ {0} =

=
⋃
{h(G∆(R)) | V (I) ⊇ ∆} ∪ {0} =

=
⋃
{GΛ(S) | V (I) ⊆ σ−1(Λ)} ∪ {0} =

=
⋃
{GΛ(S) | σ(V (I)) ⊆ Λ} ∪ {0} = J

where J is the radical ideal such that V (J) = ∆, i.e., J =
⋂
Q∈Λ Q. (a)

is proved.
(b) follows from the fact that that the number of prime ideals con-

taining I is the least n such that there is a subset ∆ ⊆ Max(R) of
cardinality n such that G∆(R) ⊆ I. (c) is immediate from (b). �

4. The P -topology

The Golomb topology on a Dedekind domain R is a very “global”
structure: that is, it depends at the same time on all the prime ideals
of R. In this section, we show a way to “isolate” the neighborhoods
relative to a single prime ideal P , i.e., in the form a + P n. The main
idea is the following.

Proposition 4.1. Let R be a Dedekind domain and let P be a prime
ideal of R; take Ω ⊆ R \ P . If Ω is clopen in R \ P , then for every
x ∈ Ω there is an n ≥ 1 such that x+ P n ⊆ Ω.

Proof. Fix Ω clopen in R \ P and let x ∈ Ω. Since R \ P is open,
Ω is also an open set of G(R), and thus there is an ideal I such that
x+ I ⊆ Ω; since (x+ I)∩P = ∅, we can write I = P nJ for some n ≥ 1
and some ideal J coprime with P . We claim that x+ P n ⊆ Ω.

Otherwise, let y ∈ (x+P n)\Ω; then, y ∈ R\P , and since (R\P )\Ω
is clopen in R \P we can find, as in the previous paragraph, an integer
m ≥ 1 and an ideal L coprime with P such that y+PmL ⊆ (R\P )\Ω.
Since Ω is clopen in R \P , we have Ω∩ (R \P ) = Ω; hence, x+ P nJ ∩
(R \ P ) ⊆ Ω. Likewise, y + PmL ∩ (R \ P ) ⊆ (R \ P ) \ Ω, and thus in
particular x+ P nJ ∩ y + PmL = ∅. However,

x+ P nJ = x+ P n∩x+ J = ((x+P n)∪P )•∩x+ J ⊇ (x+P n)∩rad(J)•

and likewise y + PmL ⊇ (y + Pm) ∩ rad(L)•. Since y ∈ x + P n, the
intersection (x + P n) ∩ (y + Pm) is nonempty, and thus it contains a
coset z + P t. Since J and L are coprime with P , we have (x + P t) ∩
rad(J)• ∩ rad(L)• 6= ∅; this contradicts the construction of J and L,
and thus y cannot exist, i.e., x+ P n ⊆ Ω. The claim is proved. �

Corollary 4.2. Let R, S be Dedekind domain with torsion class group,
let h : G(R) −→ G(S) be a homeomorphism, and let P be a prime ideal
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of R. For every x ∈ R \ P , there is an n such that h(x) + h(P )n ⊆
h(x+ P ).

Proof. Since x+ P = (x + P ) ∪ P •, the set x + P is a clopen set of
R\P . Hence, h(x+P ) is clopen in S\h(P ); we now apply the previous
proposition. �

Let P be a prime ideal of R. We define the P -topology on R \ P as
the topology generated by the Ω ⊆ R\P that are clopen in R\P , with
respect to the Golomb topology. Since every coprime coset a + P n is
clopen inR\P , Proposition 4.1 implies that the P -topology is generated
by a + P n, for a ∈ R \ P and arbitrary n. Therefore, the P -topology
on R \P actually coincides with the restriction of the P -adic topology.

In our context, the most useful property of the P -topology is that it
depends uniquely on the Golomb topology, in the following sense.

Theorem 4.3. Let R, S be Dedekind domain with torsion class group,
and let h : G(R) −→ G(S) be a homeomorphism of Golomb topologies.
Then the restriction of h to R \ P is a homeomorphism between R \ P
with the P -topology and S \ h(P ) with the h(P )-topology.

Proof. If Ω ⊆ R \P is clopen in R \P , then h(Ω) is clopen in S \h(P ).
Hence, the basic open sets of the P -topology go to open sets in the
h(P )-topology; since the same holds for h−1, the restriction of h is a
homeomorphism between the P -topology and the h(P )-topology. �

We end this section by determining the closure of a subset in the
P -topology.

Proposition 4.4. Let Y ⊆ R \ P , and let X be the closure of Y in
the P -topology. For every n ≥ 1, let πn : R −→ R/P n be the canonical
quotient map. Then,

X =
⋂
n≥1

π−1
n (πn(Y )).

Proof. Let g be in the intersection: then, for every n, there is an ∈ Y
such that πn(g) = πn(an), that is, g − an ∈ P n. Hence, g ∈ X.
Conversely, if g is in the closure then for every n there is an ∈ Y such
that g − an ∈ P n; that is, πn(g) ∈ πn(Y ), as claimed. �

5. The groups Hn(P )

Let R, S be Dedekind domain with torsion class group, and let P be
a prime ideal of R. Let h : G(R) −→ G(S) be a homeomorphism. By
Theorem 3.6, h(P ) is a prime ideal of S. A natural question is whether
this result can be generalized to cosets: that is, if a ∈ R \ P , does
h(a + P ) = h(a) + h(P )? In particular, if h(1) = 1, does h(1 + P ) =
1 + h(P )? We are not able to prove this result; therefore, our strategy
will be to use Proposition 3.5, the P -topology and the group structure
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of U(R/P n) to obtain “approximate” results. We collect in this section
some technical lemmas which will be useful in the following sections.

Let P be a prime ideal of R and let n ≥ 1 be an integer. Let πn :
R −→ R/P n be the canonical quotient; then, πn(U(R)) is a subgroup
of the (abelian) group U(R/P n) of the units of R/P n. Therefore, we
can define Hn(P ) as the quotient group

Hn(P ) := U(R/P n)/πn(U(R)),

and we denote by θn : U(R/P n) −→ Hn(P ) the canonical quotient. We
also denote by π̃n = θn ◦ πn : R \ P −→ Hn(P ) the composition of the
two quotients. The reason for considering Hn(P ) instead of U(R/P n)
is that we want to “factor out” the self-homeomorphisms of G(R) given
by the multiplications by the units of R.

If m > n, there is a natural map from R/Pm to R/P n, obtained by
taking the quotient by P n/Pm. An analogous connection holds for the
groups Hn(P ).

Lemma 5.1. For every n ≥ 1, there is a surjective map λn : Hn+1(P ) −→
Hn(P ) such that the following diagram commutes:

R \ P U(R/P n+1) Hn+1(P )

R \ P U(R/P n) Hn(P ).

πn+1 θn+1

λn

πn θn

Proof. If u + P n is a unit of R/P n, then u /∈ P , and thus u + P n+1

is a unit of R/P n+1. Hence, the natural map R/P n+1 −→ R/P n re-
stricts to a surjective map λ′ : U(R/P n+1) −→ U(R/P n) between the
unit groups; thus, the left square commutes. Furthermore, λ′ sends
πn+1(U(R)) onto πn(U(R)), and thus λ′ induces a map λn which re-
mains surjective. �

Let L be a subgroup of Hn(P ). By the previous lemma, we can lift
L to Hn+1(P ) by λn and, subsequently, use the maps λn+i to lift it to
all groups Hn+i(P ); therefore, we obtain a sequence

(1) L L1 := λ−1
n (L) L2 := λ−1

n+1(L1) · · ·λn λn+1 λn+2

where each Li is a subgroup of Hn+i(L). Since every λk is surjective,
the index [Hn+i(P ) : Li] is always equal to the index [Hn(P ) : L] of
L, and in particular does not depend on i; on the other hand, the
cardinality of these subgroups may grow, as |Li+1| = |Li| · | kerλn+i|.
We call the sequence {L,L1, . . . , } the telescopic sequence of L.

When L = H1(P ), the telescopic sequence of L is just the sequence
{H1(P ), H2(P ), . . .}. We distinguish two classes of behavior.

One case is when the maps λn are isomorphisms for every n ≥ N :
in this case, all the information about the Hn(P ) “stops at N”. If
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R/P is finite (and thus also U(R/P n) and Hn(P ) are finite for every
n ≥ 1) then in particular the sequence of the cardinalities of the Hn(P )
is bounded.

The second case is when there are infinitely many λn that are not
isomorphisms: in this case, to study Hn(P ) we need to consider all
the groups. If R/P is finite, this implies that the sequence of the
cardinalities of the Hn(P ) is not bounded.

Example 5.2. Consider the ring of integers Z, and let p be a prime
number. If p > 2, then U(Z/pnZ) is a cyclic group of cardinality
pn−1(p−1), while πn(U(Z)) is always its two-elements subgroup. Hence,

Hn(pZ) is a cyclic group of cardinality pn−1(p−1)
2

. In particular, none of
the maps λn : Hn+1(pZ) −→ Hn(pZ) is an isomorphism.

When p = 2, then U(Z/2nZ) is not cyclic, but it is isomorphic (as a
group) to (Z/2Z)× (Z/2n−2Z) (for n ≥ 2), with the class of −1 corre-
sponding to the element (1, 0) of the direct product. Hence, Hn(2Z) is
again a cyclic group, of cardinality 2n−2, and λn is not an isomorphism
for every n ≥ 2.

Let now R := Z[1/2]: then, the units of R are 1/2n and −1/2n, for
every n ∈ N. Let p 6= 2 be a prime number; then, pR is a prime ideal of
R, and R/pnR ' Z/pnZ, so U(R/pnR) is a cyclic group of cardinality
pn−1(p − 1). The subgroup πn(U(R)) is generated by 2 and −1, and
for every n ≥ 2 the index of this subgroup is equal to the index of
π2(U(R)) in U(R/p2R) (this is a standard result, and can be proved
essentially in the same way of Proposition 6.3, (iv) =⇒ (i) below); thus,
λn is an isomorphism for every n ≥ 2.

For example, if p = 5 then 2 and −1 generate the whole unit group
U(R/p2R), and thus Hn(pR) is the trivial group for every n ≥ 1. On
the other hand, if p = 17, then the order of 2 in U(R/p2R) is 8 · 17,
and the subgroup generated by 2 contains −1, so that Hn(pR) is cyclic
of order 2 for every n.

A similar reasoning shows that, if p is a prime number and Rp :=
Z[1/p], then for every prime ideal Q of Rp the maps λn between the
groups Hn(Q) are isomorphisms for n ≥ 2.

Even when the cardinality of the Hn(P ) grows unbounded, however,
a part of their structure is still bounded. Given an abelian group L
and a prime number p, the non-p-component of L is the subgroup of L
formed by the elements whose order is coprime with p.

Lemma 5.3. Let R be a Dedekind domain and let P be a prime ideal
such that R/P is finite; let p be the characteristic of R/P . Then, there
is an integer η(P ), coprime with p, such that, for all n ≥ N , the non-
p-component of Hn(P ) has order η(P ).

Proof. Let H ′k(P ) be non-p-component of Hk(P ), and let ηk(P ) be its
cardinality. Then, λk maps H ′k+1(P ) onto H ′k(P ), so that ηk(P ) divides
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ηk+1(P ). Hence, {ηk(P )}k∈N is an ascending chain with respect to the
divisibility order. Set |R/P | = pe. Then, |U(R/P n)| = pe(n−1)(pe − 1),
and thus ηk(P ) divides pe − 1; hence, the chain is bounded above and
thus finite. It follows that it stabilizes at some value η(P ). �

When R = Z, using Example 5.2, it is not hard to see that η(pZ) is
equal to 1 if p = 2, while it is equal to p−1

2
if p is odd. For R = Z[1/p],

on the other hand, there is no easy formula for η(P ).
Several results in the following sections will be valid only under the

assumption that the groups Hn(P ) are cyclic. This forces a rather
severe limit on the cardinalities of the residue fields.

Lemma 5.4. Let R be a Dedekind domain, and let P be a prime ideal
of R. If U(R) is discrete in the P -topology, and Hn(P ) is cyclic for
every n, then |R/P | is a prime number.

Proof. Since U(R) is discrete in the P -topology, there is an N ≥ 2 such
that 1 + PN−1 contains no units different from 1. Fix p ∈ PN−1 \ PN ,
and define

σ : R −→ HN(P ),

a 7−→ π̃N(1 + ap).

Since p2 ∈ PN , we have

σ(a)σ(b) = π̃N((1 + ap)(1 + bp)) = π̃N(1 + (a+ b)p) = σ(a+ b).

Hence, σ is a group homomorphism from (R,+) to HN(P ). Further-
more,

kerσ ={a ∈ R | π̃N(1 + ap) = π̃N(1)} =

={a ∈ R | 1 + ap ∈ U(R) + PN} = P

by the choice of N and p. Therefore, σ factors into an embedding
of (R/P,+) inside HN(P ); since HN(P ) is cyclic, it follows that also
(R/P,+) is cyclic. Since R/P is a field, it follows that R/P must be
isomorphic to the field Fp with p elements for some prime number p.
In particular, |R/P | is prime. �

Note that the fact that |R/P | is a prime number does not guarantee
that Hn(P ) is cyclic: for example, if R = Fp[X], where p > 2 is a prime
number, and P = (X), then H3(P ) has p2 elements, but every element
has order p.

6. Closure of powers

In isolation, the P -topology is not very interesting: indeed, since it
coincides with the P -adic topology, it makes R \P into a metric space
with no isolated points. In particular, if R is countable then R \ P
is homeomorphic to Q [17, 9], and thus a homeomorphism between
the P -topology of R \ P and the Q-topology of S \ Q does not give
much information. However, by Proposition 3.5, a homeomorphism h
between Golomb spaces carries a lot more structure.
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In the following, we shall mostly restrict ourselves to Dedekind do-
mains with torsion class group; indeed, many of our proofs are gen-
eralizations and abstractions of arguments that can be carried more
concretely in the ring Z of integers. The hypothesis we put on R (for
example, R being Dirichlet at P and P being almost cyclic, see Defi-
nitions 6.6 and 6.7) are, as well, formalizations of the properties of Z
that are needed to carry out the proofs.

Given a ∈ R \ P , set

pow(a) := {uat | u ∈ U(R), t ∈ N+}.

We want to study the closure of pow(a) in the P -topology.

Proposition 6.1. Let R be a Dedekind domain, P a prime ideal, a ∈
R \ P ; let X be the closure of pow(a) in the P -topology. Then, the
following hold.

(a) If πn(a) is torsion in U(R/P n) for every n ≥ 1 then

X =
⋂
n≥1

π−1
n

(
〈πn(a), πn(U(R))〉

)
.

(b) If π̃n(a) is torsion in Hn(P ) for every n ≥ 1 then

X =
⋂
n≥1

π̃−1
n (〈π̃n(a)〉).

Proof. (a) If πn(a) is torsion with order k, then

πn(pow(a)) ={πn(u)πn(a)t + P n | u ∈ U(R), t ∈ N+} =

={πn(u)πn(a)t + P n | u ∈ U(R), t ∈ {1, . . . , k}}

is exactly the subgroup generated by πn(a) and πn(U(R)). The claim
now follows from Proposition 4.4.

(b) follows as the previous point, noting that π̃n sends all of U(R)
into the identity. �

The sets π̃−1
n (〈π̃n(a)〉) form a descending sequence of subsets of R\P ;

if such sequence stabilizes at N , then we can study pow(a) by study-
ing the subgroup 〈π̃N(a)〉 of HN(P ). In general, this does not happen:
for example, if a = 1 (so pow(a) = U(R)) and U(R) is finite), then
π̃−1
n (〈π̃n(a)〉) = U(R) + P n and thus the sequence is strictly decreas-

ing (at least for large n). However, we can characterize this case; we
distinguish the two behaviors of the λn.

Proposition 6.2. Let R be a Dedekind domain, P a prime ideal, X ⊆
R \P . Suppose that the canonical surjections λn : Hn+1(P ) −→ Hn(P )
are isomorphisms for n ≥ N . Then, the following are equivalent.

(i) X is the closure of pow(a) for some a ∈ R \ P ;
(ii) X = π̃−1

N (L) for some cyclic subgroup L of HN(P ).
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Proof. For every a ∈ R\P , for every k ≥ 0 we have λN+k(π̃N+k+1(a)) =
π̃N+k(a), and thus the subgroup generated by π̃N+k+1(a) in HN+k+1(P )
is mapped onto the subgroup generated by π̃N+k(a). Hence, π̃−1

N (〈π̃N(a)〉) =
π̃−1
N+k(〈π̃N+k(a)〉) for every k ≥ 0. The claim follows. �

When the canonical surjections are not isomorphisms, the picture is
more complicated. For simplicity, we restrict to the case where R/P is
finite.

Proposition 6.3. Let R be a Dedekind domain, P a prime ideal, a ∈
R \ P ; let X be the closure of pow(a) in the P -topology. Suppose
that R/P is finite and that there are infinitely many n such that λn :
Hn+1(P ) −→ Hn(P ) is not an isomorphism. Then, the following are
equivalent:

(i) the chain {π̃−1
n (〈π̃n(a)〉)}n∈N stabilizes;

(ii) X = π̃−1
N (L) for some N ≥ 1 and some subgroup L of HN(P );

(iii) there is an N ≥ 1 such that every element of the telescopic
sequence of 〈π̃N(a)〉 is generated by the image of a;

(iv) there is an N ≥ 1 such that every element of the telescopic
sequence of 〈π̃N(a)〉 is cyclic, and the order of π̃n(a) goes to
infinity as n→∞.

Proof. (i) =⇒ (ii) If the chain stabilizes at N , that is, if π̃−1
N (〈π̃N(a)〉) =

π̃−1
N+k(〈π̃N+k(a)〉) for all k ≥ 0, then X = π̃−1

N (L) with L := 〈π̃N(a)〉.
(ii) =⇒ (iii) If X = π̃−1

N (L), then π̃N(X) = L, and thus by Proposi-
tion 6.1(a) L = 〈π̃N(a)〉. We have a commutative diagram

X L

X λ−1
N (L);

π̃N

π̃N+1

λN

however, we also have π̃N+1(X) = 〈π̃N+1(a)〉, and thus the telescopic
sequence of L is formed by the subgroups is generated by (the image
of) a in the various HN+k(P ).

(iii) =⇒ (iv) Since there are infinitely many n such that λn is not an
isomorphism, the cardinality of Hn(P ) goes to infinity; since the index
remains fixed among the elements of a telescopic sequence, it follows
that the cardinality of the 〈π̃n(a)〉 is unbounded, as claimed.

(iv) =⇒ (i) Let σn be the order of π̃n(a).
By Lemma 5.3, σn = pk(n)dn for some k(n) ≥ 0 and some dn divid-

ing η(P ); since the sequence {σn}n∈N is unbounded, we can find N ′

such that dN ′ = dN ′+k for every k ≥ 0. Furthermore, by the hypoth-
esis, we can find N ≥ N ′ such that every element of the telescopic
sequence {L,L1, . . . , } of L := 〈π̃N(a)〉 is cyclic. We claim that each Li
is generated by the image of a.
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Indeed, by construction we have |Lk| = ps(k)|L| = ps(k)σN for every
k ≥ 0 (and some nonnegative function k 7→ s(k)). If φ be the Euler
totient, the number of generators of Lk is

φ(|Lk|) = φ(σN+k) = φ(ps(k)σN) = ps(k)φ(σN),

since p|σN . Hence, every generator of L lifts to a generator of Lk;
therefore, π̃−1

N (〈π̃N(a)〉) = π̃−1
N+k(〈π̃N+k(a)〉) for all k ≥ 0, as claimed.

�

One problem in applying the previous proposition to the Golomb
topology is that we don’t know if the sets pow(a) are invariant with
respect to homeomorphisms. However, if R, S are principal ideal do-
mains, and q ∈ R is a prime element (i.e., if qR is a prime ideal) then
pow(q) = G{qR}(R), and thus by Proposition 3.5 a homeomorphism
h : G(R) −→ G(S) carries pow(q) to pow(q′), for some prime element
q′ of S. Therefore, it carries the closure of pow(q) in the P -topology
to the closure of pow(q′) in the h(P )-topology.

More generally, suppose R is a Dedekind domain with torsion class
group. Take a maximal ideal Q of R. If Qt = qR is the smallest
power of Q that is a principal ideal, we say that q is an almost prime
element; equivalently, an almost prime element is an irreducible element
generating a primary ideal. In this case, we still have pow(q) = GQ(R),
since if xR is a Q-primary ideal then xR must be in the form (Qt)k

for some k. In particular, we must still have h(pow(q)) = pow(q′) for
some almost prime element q′ of S. More precisely, the unique prime
ideal containing q′ will be the image h(Q) of Q, the only prime ideal
containing q.

Definition 6.4. Let P be a prime ideal. We define X (P ) as the set of
closures of pow(q), as q ranges among the almost prime elements of R
outside P .

The previous discussion shows the following.

Proposition 6.5. Let R, S be two Dedekind domains with torsion class
group, and let h : G(R) −→ G(S) be a homeomorphism. Then, the map

h : X (P ) −→ X (h(P )),

X 7−→ h(X)

is an order isomorphism (when X (P ) and X (h(P )) are endowed with
the containment order).

We are now interested in studying the order structure of X (P ); since
we will need to have plenty of almost prime elements, we introduce the
following definition.

Definition 6.6. Let R be a principal ideal domain and P a prime ideal
of R. We say that R is Dirichlet at P if, for every a ∈ R\P and every
n ≥ 1 the coset a+ P n contains at least one almost prime element.
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For example, by Dirichlet’s theorem on primes in arithmetic progres-
sions (see e.g. [10, Chapter 4] or [1, Chapter 7]), Z is Dirichlet at each
of its primes. An equivalent condition is that the set of almost prime
elements of R is dense in R \ P under the P -topology. Note that it is
not known if a homeomorphism of Golomb spaces sends almost prime
elements to almost prime elements, and thus this condition may not be
a topological invariant.

We shall use the following terminology.

Definition 6.7. Let R be a Dedekind domain, and let P be a prime
ideal of R. We say that P is almost cyclic if R/P is finite and Hn(P )
is cyclic for every n ≥ 1.

The main example of almost cyclic prime ideals are the prime ideals
of Z (see Example 5.2). Note that, if R is a Dedekind domain, it is
possible that some prime ideals are almost cyclic and some are not: for
example, if R = Z[i] is the ring of Gaussian integers, then Hn(P ) is
cyclic if P is generated by the factor of a prime number congruent to 1
modulo 4 (since in this case U(R/P n) is cyclic [8, Theorem 3]), while
if P is generated by a prime number q ≡ 3 mod 4 then |R/P | = q2 is
not prime and thus P is not almost cyclic by Lemma 5.4.

Our next step is to link X (P ) with the subgroups of the Hn(P ). We
first show how to compare subgroups living in different Hn(P ).

Lemma 6.8. Let R be a Dedekind domain, and let P be an almost
cyclic prime ideal. Let L and L′ be, respectively, subgroups of Hn(P )
and Hm(P ). Then, π̃−1

n (L) ⊆ π̃−1
m (L′) if and only if [Hm(P ) : L′]

divides [Hn(P ) : L]; in particular, π̃−1
n (L) = π̃−1

m (L′) if and only if
[Hm(P ) : L′] = [Hn(P ) : L].

Proof. Without loss of generality, suppose n ≥ m. Composing the
canonical maps λk, we get a surjective map λ := λn−1 ◦ · · · ◦ λm from
Hn(P ) to Hm(P ). Then, λ(L) is a subgroup of Hm(P ) of the same
index of L in Hn(P ), i.e., [Hn(P ) : L] = [Hm(P ) : λ(L)]. Since Hm(P )
is cyclic, we have λ(L) ⊆ L′ if and only if [Hn(P ) : L] is a multiple of
[Hm(P ) : L′], as claimed.

The “in particular” part follows immediately. �

Proposition 6.9. Let R be a Dedekind domain with torsion class group,
and let P be an almost cyclic prime ideal. Then, the following hold.

(a) Let X be the closure of pow(q) in the P -topology. If pow(q)
is disjoint from the closure of U(R) (with respect to the P -
topology), then there is an n ≥ 1 and a subgroup H of Hn(P )
such that X = π̃−1

n (H).
(b) If R is Dirichlet at P , then π̃−1

n (H) ∈ X (P ) for every subgroup
H of Hn(P ).

Proof. Let p be the characteristic of R/P .
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(a) If the cardinality of the Hn(P ) is bounded, the claim follows from
Proposition 6.2.

If the cardinality is unbounded, let q be an almost prime element
such that X is the closure of pow(q), and let σn be the order of π̃n(q).
Suppose that {σn}n∈N is bounded, and let σ be its maximum; then,
π̃n(q)σ is the identity in Hn(P ) for all n, i.e., πn(q)σ ∈ U(R) + P n for
every n. However, this implies that qσ is in the closure of U(R) in
the P -topology, a contradiction. Therefore, σn becomes arbitrary large
and the claim follows from Proposition 6.3.

(b) If the cardinality of the Hn(P ) is bounded, then there is an
a ∈ R \ P and an N such that X := π̃−1

N (H) is the closure of pow(a)
in the P -topology; since R is Dirichlet at P there is an almost prime
element q ∈ a+PN , and X is the closure of pow(q) in the P -topology,
as claimed.

Suppose that the cardinality of the Hn(P ) is not bounded. Let
N ≥ n be big enough such that the non-p-component of HN(P ) has
cardinality η(P ), and choose k > N such that |Hk(P )| > |HN(P )|. Let
L be the element of the telescopic sequence of H that is contained in
Hk(P ). Then, L is cyclic, and thus there is an a ∈ R \ P such that
π̃k(a) generates L; as in the proof of Proposition 6.3, the fact that p
divides the cardinality of L implies that every element of the telescopic
sequence of L is generated by the image of a. Since R is Dirichlet at
P , we can find an almost prime element q ∈ a + P k; then, X is the
closure of pow(q), and in particular X ∈ X (P ), as claimed. �

Corollary 6.10. Let R be a Dedekind domain with torsion class group,
and let P be a prime ideal of R. Suppose that U(R) is closed in the
P -topology. Then, the following hold.

(a) If R \ P ∈ X (P ), then P is almost cyclic.
(b) If R is Dirichlet at P and P is almost cyclic, then R\P ∈ X (P ).

Proof. If R \ P ∈ X (P ), then there is an almost prime element q such
that R \P is the closure of pow(q). By Proposition 6.1, each Hn(P ) is
generated by the image of q, and in particular they are all cyclic.

Conversely, suppose P is almost cyclic. By Proposition 6.9(b), π̃−1
n (H) ∈

X (P ) for every subgroup of the Hn(P ); in particular, this holds for
H = Hn(P ), for which we have π̃−1

n (H) = R \ P . �

Corollary 6.11. Let R,R′ be Dedekind domains with torsion class
group and let P be a prime ideal of R; suppose that U(R) is closed
in the P -topology. Let h : G(R) −→ G(R′) be a homeomorphism and
let P ′ := h(P ).

(a) If R is Dirichlet at P and P is almost cyclic then P ′ is almost
cyclic.

(b) If also R′ is Dirichlet at P ′, then P is almost cyclic if and only
if P ′ is almost cyclic.
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Figure 1. The structure of D(pZ) for p = 41. In this
case, η(pZ) = 20 = 22 · 5.
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Proof. If R is Dirichlet at P and P is almost cyclic, then by Corollary
6.10 R \ P ∈ X (P ); hence, R′ \ P ′ = h(R \ P ) ∈ h(X (P )) = X (P ′).
Applying again the corollary we see that P ′ is almost cyclic.

The second part follows by considering the inverse h−1 : G(R′) −→
G(R). �

Set now

D(P ) := {d ∈ N | d divides |Hn(P )| for some n};
then, D(P ) has a natural order structure given by the divisibility re-
lation (i.e., a ≤ b if and only if a|b). From a structural point of view,
the previous proposition implies the following result.

Theorem 6.12. Let R be a Dedekind domain with torsion class group,
P an almost cyclic prime ideals, and suppose that U(R) is closed in the
P -topology. Let ΘP be the map

ΘP : X (P ) −→ D(P ),

X = π̃−1
n (L) 7−→ [Hn(P ) : H].

Then, the following hold.

(a) ΘP is well-defined, injective and order-reversing.
(b) If R is Dirichlet at P , then ΘP is surjective, and thus ΘP is an

order-reversing isomorphism.

Proof. For simplicity of notation, let Θ := ΘP .
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Since U(R) is closed in the P -topology, and every pow(q) is disjoint
from U(R), by Proposition 6.9(a) every X ∈ X (P ) is in the form
π̃−1
n (L); by Lemma 6.8, if it is also equal to π̃−1

n′ (L′) then the index of
L and L′ are the same, and thus Θ is well-defined. The same Lemma
6.8 implies also that Θ is injective and order-reversing.

If R is Dirichlet at P , we can apply Proposition 6.9(b), and thus Θ is
also surjective. It follows that Θ is an order-reversing isomorphism. �

The previous theorem implies that, under good hypothesis, the struc-
ture of D(P ) is a topological invariant of the Golomb topology; in par-
ticular, if h : G(R) −→ G(S) is a homeomorphism, then Proposition
6.5 can be extended to a chain of bijections

(2) D(P )
Θ−1

P−−→ X (P )
h−−−→ X (h(P ))

Θh(P )−−−→ D(h(P ))

whose composition gives an order isomorphism between D(P ) and
D(h(P )).

We shall use the following shorthand.

Definition 6.13. Let z, z′ ∈ N, and let z = pe11 · · · p
ek
k and z′ =

qf11 · · · qfrr be their factorizations. We say that z and z′ have the same
factorization structure if k = r and, after a permutation, ei = fi for
every i.

Proposition 6.14. Let R,R′ be two Dedekind domain with torsion
class group, and suppose there is a homeomorphism h : G(R) −→
G(R′). Let P be an almost cyclic prime ideal of R, and let P ′ := h(P );
suppose that R′/P ′ is finite, that U(R) is closed in the P -topology, that
R is Dirichlet at P and that R′ is Dirichlet at P ′. Then, the following
hold.

(a) The sequence {|Hn(P )|}n∈N is bounded if and only if {|Hn(P ′)|}n∈N
is bounded.

(b) If |Hn(P )| = z and |Hn(P )| = z′ for all n ≥ N , then z and z′

have the same factorization structure.
(c) If {|Hn(P )|}n∈N and {|Hn(P ′)|}n∈N are unbounded, then η(P )

and η(P ′) have the same factorization structure.

Proof. Since h is a homeomorphism in the P -topology, U(R′) = h(U(R))
is closed in the P ′-topology; furthermore, by Corollary 6.11, P ′ is al-
most cyclic. By Proposition 6.5, there is an order isomorphism between
D(P ) and D(P ′).

The sequence {|Hn(P )|}n∈N is bounded if and only if it is finite,
which happens if and only if D(P ) is finite. Since D(P ) and D(P ′) are
isomorphic, D(P ′) is finite and thus {|Hn(P )|}n∈N is bounded if and
only if {|Hn(P ′)|}n∈N is bounded.

If |Hn(P )| = z for all large n, then D(P ) is just the set of divisors
of z; in particular, the minimal elements of D(P ) \ {1} correspond to
the distinct prime factors of z. Since the same happens for D(P ′), the
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number of distinct prime factors of z and z′ is the same. Furthermore,
the exponent of p in z is equal to the number of elements of D(P ) that
are divisible only by p; hence, it depends only on the structure of D(P ),
and thus it doesn’t change passing from D(P ) to D(P ′).

On the other hand, if {|Hn(P )|}n∈N is unbounded, the minimal ele-
ments of D(P ) correspond to p (the cardinality of R/P ) and the prime
factors of η(P ). The elements of D(P ) that are larger then exactly
one minimal element are the powers of p and of the prime factors of
η(P ); hence, there are infinitely many such elements larger than p,
while there are only finitely many of them above the factors of η(P ).
Hence, in the chain of bijections (2) p gets sent to p′, the cardinality
of R′/P ′. Similarly, the divisors of η(P ) are the elements of D(P ) that
are not divisible by p, i.e., that are not above p; hence, the chain of
bijection sends them to the elements of D(P ′) that are not above p′,
i.e., to the divisors of η(P ′). As in the previous case, this implies that
η(P ) and η(P ′) have the same factorization structure. �

7. The correspondence at powers of p

Proposition 6.14 gives a very strong restrictions for the image of a
prime ideal under a homeomorphism of Golomb spaces. For example,
suppose R = Z. Then, every prime ideal is almost cyclic, and by
Example 5.2 we have

η(pZ) =

{
1 if p = 2
p−1

2
if p > 2.

Thus, the only prime ideals pZ such that η(pZ) = 1 (and so η(pZ)
has an empty factorization) are 2 and 3; it follows that, for every
self-homeomorphism h of G(Z), h(2Z•) can be equal only to 2Z• or
3Z•. Likewise, η(5Z•) = 2 is prime, and thus h(5Z•) must be equal to
(2q + 1)Z• for some prime number q such that 2q + 1 is prime.

In this section, we use a finer analysis of the structure of D(P ) to
obtain even more. We concentrate on sets in the form

Yk(P ) := Θ−1
P (η(P )pk)

where ΘP is the map of Theorem 6.12.

Proposition 7.1. Preserve the hypothesis and the notation of Proposi-
tion 6.14, and suppose that {|Hn(P )|}n∈N is unbounded; let p := |R/P |
and p′ := |R′/P ′| . Then, the following hold.

(a) Let h? := ΘP ′ ◦ h ◦ Θ−1
P . Then, h?(η(P )pk) = η(P ′)(p′)k for

every k ≥ 0.
(b) h(Yk(P )) = Yk(P

′).

Proof. As we saw in the proof of Proposition 6.14, the minimal elements
of D(P )\{1} correspond to p and the prime factors of η(P ); moreover,
p is the unique minimal element of D(P ) \ {1} with infinitely many
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multiples that are not divisible by any other prime. Hence, h?(p) = p′.
Furthermore, η(P ) is the largest element of D(P ) that is not a multiple
in p, and thus h?(η(P )) is the largest element of D(P ′) that is not a
multiple of h?(p) = p′; that is, h?(η(P )) = η(P ′).

Consider now the multiples of η(P ) in D(P ): they are all in the form
η(P )pk for some k ≥ 0. The map h? restricts to an order isomorphism
between the multiples of η(P ) and the multiples of η(P ′); hence, it
must be h?(η(P )pk) = η(P ′)(p′)k, as claimed.

By turning (2) inside-out and using the previous part of the proof,
we see that

h(Yk(P )) =(Θ−1
P ′ ◦ h

? ◦ΘP )(Yk(P )) =

=(Θ−1
P ′ ◦ h

?)(η(P )pk) = Θ−1
P ′ (η(P ′)(p′)k) = Yk(P

′).

The claim is proved. �

Proposition 7.1 is rather close to our hope that a homeomorphism
sends cosets into cosets, since both Yk(P ) and Yk(P

′) are union of
cosets. Further improvements of this result hinge on the explicit de-
termination of the sets Yk(P ); however, this will depend closely on the
actual structure of the prime ideals and the units of R, and in particular
on the image of U(R) in R/P n.

Proposition 7.2. Let R be a Dedekind domain with torsion class group,
and let P be an almost cyclic prime ideal; let p := |R/P |. Suppose that
U(R) is finite. Then, the following hold.

(a) There are m ≥ 0 and t ≥ 1 such that, for every N ≥ m, we
have YN(P ) = U(R) + PN+t.

(b) If |U(R)| is coprime with p, then we can take m = t = 1.
Furthermore, in this case

η(P ) = |H1(P )| = p− 1

|π1(U(R))|
.

Proof. (a) By Lemma 5.4, the cardinality p of R/P is a prime number.
Since U(R) is finite, we can find M ′ such that the kernel of the map

π̃n : U(R) −→ Hn(P ) is equal to the kernel of π̃M ′ for every n ≥ M ′.
Furthermore, by Lemma 5.3 there is an M ′′ such that η(P ) divides
|HM ′′(P )|. Take M := max{M ′,M ′′}; then, |HM(P )| = pmη(P ) for
some 0 ≤ m < M , and thus |HM+k(P )| = pm+kη(P ) for every k ≥ 0.

By Theorem 6.12, YN(P ) correspond to the subgroup of index pNη(P )
in Hk(P ), for k � 0. If N ≥ m, let N := m + k; then, |HM+k(P )| =
pNη(P ), and thus YN(P ) corresponds exactly to the identity subgroup
of HM+k(P ), i.e., YN = U(R) +PM+k. However, M +k = M +N −m;
setting t := M −m we have our claim.

(b) If the cardinality of U(R) is coprime with p, then for every n ≥ 1
the natural map from Hn(P ) to H1(P ) reduces to an isomorphism
between their non-p-components, and the image of U(R) in H1(P ) is
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sent onto the image of U(R) in Hn(P ); in particular, |πn(U(R))| =
|π1(U(R))| and the formula holds.

With the notation of the previous part of the proof, we have M ′ =
M ′′ = 1, m = 0 and t = 1− 0 = 1. The claim is proved. �

We now restrict to the case R = Z; we first specialize the previous
proposition.

Proposition 7.3. Let p be a prime number, and let k ≥ 0. Then, the
following hold.

(a) If p = 2, then Yk(2Z) = (1 + 2k+2Z) ∪ (−1 + 2k+2Z).
(b) If p > 2, then Yk(pZ) = (1 + pk+1Z) ∪ (−1 + pk+1Z)

Proof. For p > 2 the claim is exactly the one in Proposition 7.2(b). For
p = 2, we can take M = 2, so m = 0, t = 1 and thus Yk = ±1 + 2k+2Z,
as claimed. �

A different way to express the previous proposition is the following.

Proposition 7.4. Let p be a prime number, a an integer coprime with
p, and k ≥ 0. Then:

(a) if a is even, then a ∈ Yk(pZ) if and only if pk+1 divides a2 − 1;

(b) if a is odd, then a ∈ Yk(pZ) if and only if pk+1 divides a2−1
4

.

Proof. If a is even, then p is odd. Then, a ∈ Yk(pZ) if and only if pk+1

divides a − 1 or a + 1. Since p cannot divide a − 1 and a + 1 at the
same time, this happens if and only if pk+1 divides a2 − 1.

If a is odd and p is odd, the same reasoning applies (noting that pk+1

divides a2− 1 if and only if it divides a2−1
4

). If p = 2, then one of a− 1
and a+ 1 is in the form 2b for b odd, while the other is in the form 2jc
with c odd and j ≥ 2. Hence, a ∈ Yk(2Z) if and only if j ≥ k + 2, i.e.,
if and only if 2k+3 divides a2− 1. Dividing by 4 we have our claim. �

For any n ∈ Z, let now

n? :=

{
n2 − 1 if n is even,
n2−1

4
if n is odd.

This notation allows to simplify the previous proposition.

Corollary 7.5. Let h be a self-homeomorphism of G(Z), and let n ∈ Z
such that |n| > 1. If n? factors as pe11 · · · pett , then h(n)? factors as
qe11 · · · qett , where h(piZ•) = qiZ•.
Proof. For every n, let X(n) be the set of all pairs (p, k) where p is a
prime factor of n? and k is the largest integer such that pk+1 divides n?.
By the previous proposition, (p, k) ∈ X(n) if and only if n ∈ Yk(pZ);
hence, X(n) = {(p1, e1 − 1), . . . , (pt, et − 1)}.

Since h is a homeomorphism, h(Yk(piZ•)) = Yk(qiZ•); thus, X(h(n)) =
{(q1, e1 − 1), . . . , (qt, et − 1)}. It follows that h(n)? = qe11 · · · qett , as
claimed. �
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Note that the previous corollary is similar to Proposition 6.14, in the
sense that both compare the factorization structures of two elements
linked by a homeomorphism h. However, this result is much more
precise, since it applies to every integer (instead of only the η(P )) and,
more importantly, the relationship between the corresponding factors
pi and qi does not depend on n.

Lemma 7.6. Let n,m ∈ Z.

(a) If n and m are both even or both odd, then n? = m? if and only
if |n| = |m|.

(b) If |n| > 1 and n? is prime, then |n| ∈ {2, 3}.

Proof. The first claim follows directly from the definition. For the
second one, since n? = |n|? we can suppose without loss of generality
that n > 0. If n > 3 is even, then both n − 1 and n + 1 have an odd
prime factor, and thus n? = n2 − 1 = (n − 1)(n + 1) has at least two
factors. If n > 3 is odd, then one of n − 1 and n + 1 is divisible by 4
and the other one by 2, so that n? is even; however, since n − 1 > 2,
there is at least one odd prime dividing n− 1 or n+ 1, and thus n? has
at least two prime factors. The claim is proved. �

Theorem 7.7. The unique self-homeomorphisms of G(Z) are the iden-
tity and the multiplication by −1.

Proof. Let h : G(Z) −→ G(Z) be a self-homeomorphism of G(Z). We
first claim that, for every n ∈ Z, |h(n)| = n; we proceed by induction
on n.

If |n| = 1 then n is a unit and thus h(n) ∈ U(Z) = {±1}.
Suppose |n| = 2. Then, n? = 3, and thus h(n)? must be a prime

number; by the previous lemma, h(n) ∈ {±2,±3}. Suppose that
|h(n)| = 3, so in particular h(2Z•) = 3Z• and h(3Z•) = 2Z•. Con-
sider m = 7: then, m? = 12 = 22 · 3, and thus by Corollary 7.5 h(m)?

must be equal to 32 · 2 = 18. Since h(m) /∈ 2Z• = h(3Z•), we have
m2 = 18 · 4 + 1 = 73, a contradiction. Hence h(n) ∈ {±2}, and at the
same time h(±3) ∈ {±3}.

Suppose now the claim holds for |m| < |n|, with |n| ≥ 4. In par-
ticular, h(pZ•) = pZ• for all prime numbers p with p < |n|; since
h(2Z•) = 2Z•, n and h(n) are either both even or both odd. Let
a := |n| + 1 and b := |n| − 1; then, n? = ab or n? = ab

4
(according to

whether n is even or odd). If a is not prime, then all prime factors
of a and b are smaller than |n|; hence, if n? = pe11 · · · penn by Corollary
7.5 then also h(n)? = pe11 · · · penn , and thus n? = h(n)?; by Lemma 7.6,
|n| = |h(n)|.

Suppose that a is prime: then, n must be even. Hence, n? = (n−1)a,
and by Corollary 7.5 and inductive hypothesis we have h(n)? = (n−1)a′

for some prime number a′. If |h(n)| 6= |n|, then |h(n)| > |n| (since all
m with |m| < |n| are image of m or −m), and since h(n) is even both
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|h(n)| − 1 and |h(n)| + 1 are bigger than b. Since h(n)? = (|h(n)| −
1)(|h(n)| + 1) = (n − 1)a′ and a′ is prime, it follows that a′ should
divide both |h(n)| − 1 and |h(n)| + 1, and thus that a′ = 2. However,
h(n)? is odd; this is a contradiction, and thus |h(n)| = |n|.

Set now X := {n ∈ Z• | h(n) = n} and Y := {n ∈ Z• | h(n) = −n}:
by the previous part of the proof, X ∪ Y = Z•, and since 0 /∈ Z• they
are disjoint.

Both sets are closed in G(Z): indeed, X is the set of fixed points of
h, which is closed since G(Z) is Hausdorff, while Y is the set of fixed
point of −h (i.e., the homeomorphism that sends n to −h(n)). Since
G(Z) is connected [7, Theorem 8(b)], they can’t be both nonempty:
hence, either X = ∅ (and thus h is the multiplication by −1) or Y = ∅
(and thus h is the identity). The claim is proved. �

Theorem 7.8. Let K be an algebraic extension of Q, and let R be a
Dedekind domain with quotient field K. If G(R) ' G(Z), then R = Z.

Proof. By [7, Theorem 13], the number of units is an invariant of the
Golomb topology, and thus |U(R)| = 2. By Dirichlet’s Unit Theorem
(see e.g. [16, Chapter 1, §7]), [K : Q] ≤ 2. Furthermore, if R is not
the ring of integers OK of K, then there is a prime ideal of OK such
that PR = R; since OK has torsion class group, there are elements of
OK generating a (P ∩ OK)-primary ideal, and they would be units of
R, a contradiction. Hence R = OK .

If K 6= Q, then (since [K : Q] = 2) there exist a field automorphism
σ of K, which reduces to a ring automorphism of OK . Therefore, the
restriction σ0 of σ to O•K is a self-homeomorphism of G(OK) which
fixes all elements of Z. In particular, G(OK) has at least four distinct
self-homeomorphisms: the identity, the multiplication by −1, σ0 and
the composition of the latter two. By Theorem 7.7, G(OK) cannot
be homeomorphic to Z; thus we must have K = Q and R = Z, as
claimed. �
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