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TOWARDS A CLASSIFICATION OF STABLE
SEMISTAR OPERATIONS ON A PRÜFER DOMAIN

DARIO SPIRITO

Abstract. We study stable semistar operations defined over a
Prüfer domain, showing that, if every ideal of a Prüfer domain R
has only finitely many minimal primes, every such closure can be
described through semistar operations defined on valuation over-
rings of R.

1. Introduction

Semistar operations were defined and studied by Okabe and Mat-
suda in [15] as a more flexible version of the classical notion of star
operation, first introduced by Krull [14] and Gilmer [12, Chapter 32].
Several distinguished classes of star and semistar operations have been
investigated: among these, we can cite finite-type operations, spectral
operations (linked to the spectrum of the ring; see e.g. [3, 2, 9]) and
eab operations (linked with the valuation overrings of the ring; cfr., for
example, [11] and [5, Section 4]).

The aim of the present paper is to study and classify stable semistar
operations, that is, semistar operations that distribute over finite inter-
sections. This class of closure operations is closely linked with spectral
operations and, indeed, the two concepts are often introduced together
[3, 2]. However, while spectral operations, due to their definition, can
be classified in a simple way by studying subsets of the spectrum of
the ring ([9, Remark 4.5] and [8, Corollary 4.4]), stable operations re-
quire more work, and their classification isn’t nearly as clear as the
classification of spectral operations. We prove that, if R is a Prüfer
domain such that every ideal has only finitely many minimal primes,
then stable operations have a standard representation (Corollary 4.6),
but that this result isn’t general enough to cover all cases (Example
4.2); moreover, we show that, if R is a Prüfer domain with Noetherian
spectrum, a stable operation ? such that R = R? is uniquely deter-
mined by a subset of the set M of non-divisorial maximal ideals, and
that the set of this closures is order-isomorphic to the power set of M
(Proposition 4.11).
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2. Preliminaries

Let R be an integral domain with quotient field K, let F(R) be
the set of R-submodules of K and let F(R) be the set of fractional
ideals of R (where a R-submodule I of K is a fractional ideal of R if
dI ⊆ K for some d ∈ K \ {0}). A semistar operation on R is a map
? : F(R) −→ F(R), I 7→ I?, such that, for every I, J ∈ F(R), x ∈ K,

(1) I ⊆ I?;
(2) I? = (I?)?;
(3) if I ⊆ J , then I? ⊆ J?;
(4) (xI)? = x · I?.

If R = R?, then ? is said to be a (semi)star operation; if ? is (semi)star,
then ?|F(R) is said to be a star operation (this is equivalent to the usual
definition, which does not uses semistar operations; see [12, Chapter
32]). A submodule I such that I = I? is said to be ?-closed, while
an integral ideal I such that I = I? ∩ R is said to be quasi-?-closed.
The set of ?-closed submodules, and the set of quasi-?-closed ideals,
are closed by arbitrary intersections.

We will be using the following property of star and semistar opera-
tion: if I is ?-closed, then so is (I : J) := {x ∈ K | xJ ⊆ I}, for every
submodule J of the quotient field K.

The set of semistar (respectively, star) operations has an order, de-
fined by ?1 ≤ ?2 if and only if I?1 ⊆ I?2 for all submodules (resp.,
fractional ideals) I. Every family ∆ of semistar (or (semi)star, or star)
operations has an infimum, given by the map I 7→

⋂
?∈∆ I

?; it also
has a supremum, and a submodule is closed by sup ∆ if and only it is
?-closed for every ? ∈ ∆. Among star operations, the biggest is the
v-operation, defined as v : I 7→ (R : (R : I)). Ideals that are closed by
the v-operations are said to be divisorial.

A semistar (or (semi)star, or star) operation is said to be stable if
(I ∩ J)? = I? ∩ J? for every I, J ∈ F(R). If ? is a (semi)star stable
operation, then ?|F(R) is a stable star operation; moreover, there is a
one-to-one correspondence between stable star operations and stable
(semi)star operations (see [6, Discussion after Proposition 3.10] or [7,
Proposition 3.4]). Two stable semistar operations ?1, ?2 on R are equal
if and only if, for every proper ideal I of R, I?1 = R?1 is equivalent to
I?2 = R?2 (see [3, Theorem 2.6] and [9, p.182]), and thus if and only if,
for every integral ideal I, 1 ∈ I?1 is equivalent to 1 ∈ I?2 .

If ? is a stable semistar operation of R, I and J are R-modules, and
J = j1R + · · · + jnR is finitely generated, then (I : J)? = (I? : J?) =
(I? : J), because (I : J) = j−1

1 I ∩ · · · ∩ j−1
n I.

We denote by SStarst(R) the set of stable semistar operations on R.
Let now V be a valuation domain with quotient field K. Then, there

are at most two star operations on V : the identity (denoted by d) and
the v-operation. Moreover, d 6= v if and only if the maximal ideal M of
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V is not principal, in which case the only fractional ideals I such that
I 6= Iv are those of the form xM , as x ranges in K \ {0} [12, Chapter
31, Exercise 12]. In particular, if xM ⊆ I, then x ∈ Iv.

Both the identity and the v-operation are stable since, if I, J ∈ F(V ),
then (without loss of generality) I ⊆ J , and thus (I∩J)v = Iv = Iv∩Jv.

3. The two spectra

Let ? be a stable semistar operation on the domain R. The R-module
D := R? is still a ring, and the closure of every D-module is again a D-
module; it follows that ?|F(D) is again a semistar operation, and clearly
it is stable. It follows that there is no loss of generality in supposing
that R = R?, i.e., that ? is a (semi)star operation.

We start by studying the action of ? on prime and primary ideals.

Lemma 3.1. Let ? be a stable (semi)star operation on R, and let P ∈
Spec(R). Then, P ? ∈ {P,R}.

Proof. Since R? = R, we have P ? ⊆ R. Suppose P 6= P ?; then, there
is an x ∈ P ? \ P , and in particular R ⊆ (P ? : x). Moreover, since P is
prime and x ∈ R, one has (P : x) ∩R = P . Therefore,

P ? = ((P : x) ∩R)? = (P : x)? ∩R? = (P ? : x) ∩R 3 1,

and thus R ⊆ P ?. Hence, P ? = R. �

Lemma 3.2. Let ? be a stable (semi)star operation on R, and let L be
a P -primary ideal of R.

(a) L? = (LRP )? ∩R.
(b) If R is a Prüfer domain, then L is ?-closed if and only if LRP

is ?-closed.

Proof. (a) Since L is P -primary, L = LRP ∩R; therefore,

L? = (LRP ∩R)? = (LRP )? ∩R? = (LRP )? ∩R,

as claimed.
(b) If LRP is ?-closed, then, by the previous point, L? = LRP ∩R =

L.
Conversely, suppose L = L?. The set (LRP )? is a RP -module; since

P is maximal in RP , and RP is a valuation domain, it follows that either
1 ∈ (LRP )? or LRP is PRP -primary. The former case is impossible,
since 1 /∈ L = (LRP )? ∩ R; however, if (LRP )? is PRP -primary and
different from LRP , then (LRP )?∩R cannot be equal to L, since there
is a one-to-one correspondence between the P -primary ideals of R and
the PRP -primary ideals of RP . Therefore, LRP must be ?-closed. �

Let ? be a semistar operation on the integral domain R. The quasi-
spectrum of ?, denoted by QSpec?(R), is the set of prime ideals P of
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R such that P = P ? ∩ R. If ? is a stable semistar operation, and we
suppose that ? is of finite type, i.e., that

I? =
⋃
{J? | J ⊆ I, J is finitely generated},

then ? is uniquely determined by the set QSpec?(R) (see [1, Corollary
4.2] and [9, page 185 and Theorem 4.12(3)]). This does not happen if
we drop the assumption that ? is of finite type: for example, if V is
a one-dimensional valuation domain with nonprincipal maximal ideal
M , then the quasi-spectrum of the v-operation and of the semistar
operation ∧{K} (that sends every nonzero V -submodule of K to K)
are both equal to {(0)}. However, the v-operation closes every M -
primary ideal (except M itself), while ∧{K} does not. This suggests
the following definition.

Definition 3.3. Let ? be a stable semistar operation on the integral
domain R. The pseudo-spectrum PsSpec?(R) of ? is the set of all
prime ideals P such that P ? ∩ R = R (i.e., P ? = R?) and L? ∩ R = L
for some P -primary ideal L of R.

Proposition 3.4. Let R be an integral domain, let P ( Q be prime
ideals of R, and let ? be a stable (semi)star operation on R.

(a) If Q ∈ QSpec?(R), then P ∈ QSpec?(R).
(b) If R is Prüfer and Q ∈ PsSpec?(R), then P ∈ QSpec?(R); in

particular, no two members of PsSpec?(R) are comparable.

Proof. If Q ∈ QSpec?(R), then P ? ⊆ Q? = Q; by Lemma 3.2(a), P ?

must be equal to P , and thus P ∈ QSpec?(R).
Suppose now that R is Prüfer and that Q ∈ PsSpec?(R). By hy-

pothesis, there is a Q-primary ideal L such that L = L?.
We claim that PRQ =

⋂
{xLRQ : x ∈ Q \ P}. Note first that xLRQ

is contained in QRQ for each x ∈ Q \ P . If x /∈ P , then xLRQ * PRQ

and thus (being RQ a valuation domain) PRQ ⊆ xLRQ: thus PRQ is
in the intersection. Conversely, if y ∈ Q \ P , then y /∈ yLRQ (since
1 /∈ LRQ ⊆ QRQ), and thus y is not in the intersection.

However, since L is ?-closed, so is LRQ (Lemma 3.2(b)); hence, every
xLRQ is ?-closed, and since the intersection of ?-closed ideals is ?-
closed, so is PRQ. Thus, PRQ∩R = P is ?-closed, and P ∈ QSpec?(R).

The last claim follows directly from the previous part and the fact
that QSpec?(R) and PsSpec?(R) are disjoint by definition. �

While every prime ideal can be a in the quasi-spectrum of some
stable operation ? (for example, when ? is the identity), the same does
not happen for the pseudo-spectrum.

Lemma 3.5. Let R be a Prüfer domain, and let ? be a stable (semi)star
operation on R. If PRP is principal over RP , then P /∈ PsSpec?(R).
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Proof. Suppose there is a P -primary ideal L that is ?-closed. By
Lemma 3.2(b), LRP is ?-closed; however, LRP is PRP -primary, and
since RP is a valuation domain and PRP = pRP is principal we have
LRP = aRP for some element a. Therefore, PRP = pa−1LRP is ?-
closed; applying again Lemma 3.2(b), we have that P is ?-closed, and
thus P ∈ QSpec?(R). �

Recall that a prime ideal P of a domain R is branched if there exist
a P -primary ideal different from P (see e.g. [12, Chapter 17]).

Lemma 3.6. Let R be a Prüfer domain, ? a stable (semi)star operation
on R, and let P be a prime ideal of R. Then:

(a) if P ∈ QSpec?(R) ∪ PsSpec?(R), then RP is ?-closed;
(b) if P is branched and RP is ?-closed, then P ∈ QSpec?(R) ∪

PsSpec?(R).

Proof. If P ∈ QSpec?(R) ∪ PsSpec?(R), there is a P -primary ideal L
(possibly equal to P ) that is ?-closed. By Lemma 3.2, it follows that
LRP is ?-closed, and thus (LRP : LRP ) is ?-closed. We claim that
(LRP : LRP ) = RP . Indeed, clearly RP ⊆ (LRP : LRP ), and if
the containment is strict then LV ⊆ LRP for some proper overring
V of RP . However, since LRP is PRP -primary and RP is a valuation
domain, it follows that LV = V , and the inclusion LV ⊆ LRP would
imply 1 ∈ LRP , a contradiction. Hence, RP is ?-closed.

Conversely, suppose that RP is ?-closed and that P is branched.
The latter property implies that there is an element x ∈ RP such that
PRP is minimal over xRP ; hence, xRP is PRP -primary and ?-closed.
Thus, xRP ∩ R is a P -primary ?-closed ideal, and thus P is either in
QSpec?(R) or in PsSpec?(R). �

Our aim is to study how much, if R is a Prüfer domain, the behaviour
of ? on F(RP ) is determined on whether P is contained in QSpec?(R),
in PsSpec?(R) or in neither.

Proposition 3.7. Let ? be a stable (semi)star operation on R, let P ∈
Spec(R) and let I be a fractional ideal of R. Then:

(a) if P ∈ PsSpec?(R), then I? ⊆ (IRP )vRP , where vRP
is the v-

operation on RP ;
(b) if P ∈ QSpec?(R), then I? ⊆ IRP .

Proof. Without loss of generality, we can suppose that I ⊆ R. By
Lemma 3.6, under both P ∈ QSpec?(R) and P ∈ PsSpec?(R) the
overring RP is ?-closed, and thus ?|F(RP ) is a (semi)star operation on
RP : in particular, ?|F(RP ) must be equal to dRP

(i.e., the identity on
RP ) or vRP

.
In both cases, ?|F(RP ) ≤ vRP

, and thus I? ⊆ (IRP )vRP , proving (a).
If, moreover, P ∈ QSpec?(R), then by Lemma 3.2 also PRP is closed,
and thus ?|F(RP ) must be dRP

, and I? ⊆ IRP . (b) is proved. �
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Lemma 3.8. Let R be a Prüfer domain and D an overring of R; let
? ∈ SStarst(R) and let ] := ?|F(D) ∈ SStarst(D). Then,

(a) QSpec](D) := {PD | P ∈ QSpec?(R), PD 6= D};
(b) PsSpec](D) := {PD | P ∈ PsSpec?(R), PD 6= D}.

Proof. Note first that, since R is a Prüfer domain, the prime ideals of
the overring D are the extensions of the prime ideals P of R such that
PD 6= D and, for such ideals, RP = DPD [12, Theorem 26.1].

Let P ∈ Spec(R) be such that PD 6= D. Both the P -primary ideals
of R and the PD-primary ideals of D are in bijective correspondence
with the PRP -primary ideals of RP and, by Lemma 3.2, such corre-
spondence preserves whether the ideals are quasi-?-closed (equivalently,
quasi-]-closed). The claim follows. �

We can now prove the main result of this section.

Theorem 3.9. Let R be a Prüfer domain and let ? be a stable semistar
operation on R. Then, for every I ∈ F(R),

(1) I? ⊆
⋂

P∈QSpec?(R)

IRP ∩
⋂

P∈PsSpec?(R)

(IRP )vRP ,

where vRP
is the v-operation on RP .

Proof. Since R is Prüfer, its overring D := R? is again a Prüfer domain,
and I? = (ID)?. By Lemma 3.8, and since RP = DPD if PD 6= D, we
can thus suppose D = R.

Let x ∈ I?; then, 1 ∈ x−1I?∩R = (x−1I ∩R)?. However, x−1I ∩R is
a fractional ideal of R; therefore, by Proposition 3.7, 1 ∈ (x−1I ∩R)RP

if P ∈ QSpec?(R), while 1 ∈ [(x−1I ∩ R)RP ]vRP if P ∈ PsSpec?(R).
In the former case, we have 1 ∈ x−1IRP ∩ RP , and thus x ∈ IRP ; in
the latter, 1 ∈ (x−1IRP )vRP ∩ RP , and thus x ∈ (IRP )vRP . The claim
follows. �

4. Classifying stable operations

In the statement of Theorem 3.9, the right hand side of (1) is itself
a semistar operation. Therefore, it is worthwhile to abstract it: given
a stable semistar operation ? on the Prüfer domain R, we define the
normalized stable version of ? as the semistar operation ?̂ such that,
for all I ∈ F(R),

I ?̂ :=
⋂

P∈QSpec?(R)

IRP ∩
⋂

P∈PsSpec?(R)

(IRP )vRP .

We collect the main properties of ?̂ in the following proposition.

Proposition 4.1. Let R be a Prüfer domain and let ? be a stable
semistar operation on R; let ?̂ be its normalized stable version. Then:

(a) ?̂ is a stable semistar operation;
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(b) ? ≤ ?̂;
(c) if P ∈ Spec(R), then 1 ∈ P ? if and only if 1 ∈ P ?̂;

(d) QSpec?̂(R) = QSpec?(R);

(e) PsSpec?̂(R) = PsSpec?(R);

(f) (̂?̂) = ?̂.

Proof. (a) Since the infimum of a family of stable operations is stable,
we need to show that the semistar operations dP : I 7→ IRP and
vP : I 7→ (IRP )vRP are stable. By the flatness of RP over R,

(I ∩ J)dP = (I ∩ J)RP = IRP ∩ JRP = IdP ∩ JdP ,

and thus dP is stable. Analogously, using the results at the end of
Section 2,

(I ∩ J)vP = ((I ∩ J)RP )vRP = (IRP ∩ JRP )vRP =
= (IRP )vRP ∩ (JRP )vRP = IvP ∩ JvP ,

and vP is stable.
(b) is exactly Theorem 3.9.
From now on, let P be a prime ideal of R.
(c) If 1 ∈ P ? then 1 ∈ P ?̂ by Theorem 3.9; suppose 1 ∈ P ?̂. Then,

P /∈ QSpec?(R), and thus, by Lemma 3.1, 1 ∈ P ?.
(d) If P ∈ QSpec?(R) then P ?̂ ∩ R ⊆ PRP ∩ R = P , and thus P ∈

QSpec?̂(R). Conversely, suppose P ∈ QSpec?̂(R). By the definition of
?̂, this implies that P ⊆ Q for some Q ∈ QSpec?(R) or that P ( Q for
some Q ∈ PsSpec?(R). In both cases, P ∈ QSpec?(R) by Proposition
3.4.

(e) By (c), P /∈ QSpec?(R) if and only if P /∈ QSpec?̂(R); therefore,
we must prove that, if L is a P -primary ideal, then it is quasi-?-closed
if and only if it is quasi-?̂-closed.

Suppose P ∈ PsSpec?(R); then, L = L? ∩ R for some P -primary
ideal L. By Lemma 3.2(a),

L?̂ ∩R ⊆ (LRP )? ∩R = L? ∩R = L,

and thus P ∈ PsSpec?̂(R). Conversely, if P ∈ PsSpec?̂(R), then L?̂ ∩
R = L for some P -primary ideal L. In particular, L must be contained
in some prime ideal Q ∈ QSpec?(R)∪PsSpec?(R), and also P must be

contained in Q. If Q ∈ QSpec?(R) then P ∈ QSpec?̂(R) = QSpec?(R),
a contradiction; if Q ∈ PsSpec?(R), then Q = P , since otherwise Q
and P would be comparable ideals in PsSpec?(R), contradicting Lemma
3.2(b). Thus, P ∈ PsSpec?(R).

(f) follows by the previous two points. �

Our wish is that ?̂ is actually equal to ?; however, this is not true in
general, as the next example shows.
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Example 4.2. Let R := A be the ring of all algebraic integers, and,
for every P ∈ Max(R), let ?P be the semistar operation defined by

I?P :=
⋂

M∈Max(R)
M 6=P

IRM .

By [7, Example 4.5], each ?P is a (semi)star operation, and thus also
? := sup{?P | P ∈ Max(R)} is a (semi)star operation, and it is such
that, for every P -primary ideal L, L? = R (since L?P = R).

Consider the stable operation ?, defined by [3, Definition 2.2]

I? :=
⋃
{(I : E) | E ∈ F(R), E? = R?}.

Then, 1 ∈ I? if and only if 1 ∈ I?; hence, L? = R for every primary
ideal L. This means that QSpec?(R) = {(0)} and PsSpec?(R) = ∅;
it follows that ?̂ is nothing but the trivial extension I 7→ K (where
K = Q is the quotient field of R). However, ? closes R (this follows,
for example, from the fact that ?|F(R) is a star operation [3, Theorem

2.4]); hence, ? 6= ?̂.

Thus, to obtain good results about ?̂, we need to restrict either the
class of ideals or the class of domains we consider.

Proposition 4.3. Let R be a Prüfer domain and let ? be a stable
(semi)star operation on R. If L is a primary ideal of R, then L? =
L?̂ ∩R.

Proof. Let P be the radical of L. We distinguish three cases.

• P ∈ QSpec?(R). Then, L?̂ ∩ R ⊆ LRP ∩ R = L, and thus L =
L?̂ ∩R = L?.
• P ∈ PsSpec?(R). Then, by Proposition 3.4,

L?̂ ∩R = (LRP )vRP ∩R.

If LRP = PRP , then L must be exactly P , and thus L? = R = L?̂∩R.
Analogously, if LRP = xPRP for some x, then by Lemmas 3.2(a) and
3.6(a)

L? = (LRP )?∩R = (xPRP )?∩R = x(PRP )?∩R = xRP ∩R = L?̂∩R,
with the last equality coming from the definition of ?̂. Suppose
LRP 6= yPRP for all y. Then, LRP is divisorial in RP , and thus
L?̂∩R = L. Since L? ⊆ L?̂∩R always, the two ideals must coincide.
• P /∈ QSpec?(R) ∪ PsSpec?(R). If P = L then the result follows by

Proposition 4.1(c). If P 6= L, then P is branched; by Lemma 3.6, RP

is not ?-closed, and thus no PRP -primary I ideal can be ?-closed (by
the proof of Lemma 3.6), and 1 ∈ I? for any such I. In particular,
1 ∈ L? and L? = R.

In all cases, L? = L?̂ ∩R. The claim is proved. �
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The previous proposition shows that ?̂ behaves well on primary
ideals. In view of the definition of stability, the previous result can also
be extended to ideals that are finite intersections of primary ideals, i.e.,
ideals that have a primary decomposition. In the next proposition, we
prove a slightly weaker property for a slightly larger class of ideals.

We start with a lemma.

Lemma 4.4. Let R be a Prüfer domain, and let I be a proper ideal of
R whose radical is equal to P ∈ Spec(R).

(a) If L is an ideal with radical P and LRP ( IRP , then L ⊆ I.
(b) I contains a a P -primary ideal.

Proof. (a) Suppose L * I. Then, there is a maximal ideal M of R such
that LRM * IRM ; since RM is a valuation domain, this implies that
IRM ⊆ LRM , and thus IRMRP ⊆ LRMRP . Since rad(I) = rad(L) =
P , M contains P , and thus RMRP = RP ; therefore, IRP ⊆ LRP ,
against the hypothesis LRP ( IRP . Hence, L ⊆ I.

(b) If P is not branched, then P = I [12, Theorem 23.3(e)], and P
is the requested primary ideal. If P is branched, it is minimal over
a principal ideal xR, and thus PRP is the radical of xRP . Moreover,
rad(IRP ) = PRP , and thus xn ∈ IRP for some integer n; let L :=
xn+1RP ∩ R. We claim that L is the requested ideal. Indeed, it is
P -primary since it is the restriction of a PRP -primary ideal (since
rad(xn+1RP ) = rad(xRP ) = PRP and PRP is maximal in RP ), and
LRP = xn+1RP ( IRP since xn+1RP ( xnRP ⊆ IRP . Hence, we can
apply the previous point. �

If I is an ideal of R, we denote by V (I) the set of prime ideals of R
containing I, and by Min(I) the set of its minimal primes.

Theorem 4.5. Let R be a Prüfer domain, ? a stable semistar operation
on R, and let I be a proper ideal of R such that Min(I) is finite. Then,
1 ∈ I? if and only if 1 ∈ I ?̂.

Proof. If 1 ∈ I?, then 1 ∈ I ?̂ by Theorem 3.9.
Suppose 1 ∈ I ?̂, and let Min(I) := {P1, . . . , Pn}. For each i =

1, . . . , n, let Ti :=
⋂
{RQ | Q ∈ V (P )}; then, each maximal ideal

containing I survives in some Ti, and thus I = IT1 ∩ · · · ∩ ITn ∩ R.
Hence, I? = (IT1)? ∩ · · · ∩ (ITn)? ∩R?, and analogously for ?̂; hence, it
is enough to show that 1 ∈ (ITi)

? for every i.
Fix an i, and let P := Pi and T := Ti. Since V (P ) is compact,

the map [ : I 7→
⋂
{IRM | M ∈ V (P )} is a finite-type semistar

operation on R [8, Corollary 4.4] and thus also on T ; moreover, since
T is Prüfer (being an overring of a Prüfer domain) and closed by [,
the map [|F(Ti) must be the identity. In particular, the prime ideals
of T are exactly the extensions of the prime ideals of R contained in
some M ∈ Max(R) ∩ V (P ); therefore, Q := PT is contained in every
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maximal ideal of T , and (being Spec(T ) a tree) any prime ideal of T is
comparable with Q.

Let now J := IT and ] := ?|F(T ); then, Min(J) = {Q} (i.e., rad(J) =

Q). Since QSpec](T ) and PsSpec](T ) are, respectively, the extensions
of the prime ideals in QSpec?(R) and PsSpec?(R) that survive in T

(Lemma 3.8), we have ]̂ = ?̂|F(T ).

Since 1 ∈ J ]̂, we have Q /∈ QSpec](T ). On the other hand, if Q /∈
QSpec](T ) ∪ PsSpec](T ), 1 ∈ L] for every Q-primary ideal L. By
Lemma 4.4(b) we can find a L ⊆ J , and thus 1 ∈ J ].

Suppose now Q ∈ PsSpec](T ). Then J ]̂ ⊆ (JRQ)vRQ , and thus (since

1 ∈ J ]̂) JRQ = QRQ. For every q ∈ QRQ, we have qQRQ ( JRQ; in
particular, if q ∈ Q, by Lemma 4.4(a) we have qQ ⊆ J . Therefore,

q = q · 1 ∈ qQ] = (qQ)] ⊆ J ],

and so Q ⊆ I]. Hence, Q] ⊆ J ], and so 1 ∈ J ].
Therefore, 1 ∈ J ] in every case, as requested. �

In a global perspective, we get immediately the following result.

Corollary 4.6. Let R be a Prüfer domain such that every proper ideal
has only a finite number of minimal primes. Then, ? = ?̂ for every
stable semistar operation ? on R.

Proof. Since ? and ?̂ are both stable, it suffices to show that the set of
(proper) ideals I of R such that 1 ∈ I? coincide with the set of ideals
such that 1 ∈ I ?̂. However, this follows from Theorem 4.5. �

Corollary 4.7. Let R be a semilocal Prüfer domain. Then, ? = ?̂ for
every stable semistar operation ? on R.

Proof. Let I be a proper ideal of R; then, V (I) ∩ Max(R) is finite.
Moreover, every M ∈ V (I)∩Max(R) contains only one minimal prime
of I, since Spec(R) is a tree. The claim follows from Corollary 4.6. �

Recall that a topological space is Noetherian if every subset if com-
pact, or equivalently if every ascending chain of radical ideals stabilizes.

Corollary 4.8. Let R be a Prüfer domain with Noetherian spectrum.
Then, ? = ?̂ for every stable semistar operation ? on R.

Proof. If Spec(R) is Noetherian, then every ideal has only finitely many
minimal primes [4, Chapter 6, Exercises 5 and 7]. We can apply Corol-
lary 4.6. �

Hence, classifying the stable semistar operations on the Prüfer do-
mains considered above amounts to characterize the different ?̂.

We denote by Zar(R) the set of valuation overrings of R, and by
SStarsv(R) the set of semistar operations ? such that R? is a val-
uation domain; if X ⊆ SStarsv(R), let X↑ := {? ∈ SStarsv(R) |
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? ≥ ?1 for some ?1 ∈ X}. Denote also by X (R) the set of subsets
X ⊆ SStarsv(R) such that X = X↑.

From now on, with a slight abuse of notation, given a V ∈ Zar(R),
we denote by dV both the identity star operation on V and the semistar
operation (on R) I 7→ IV , and by vV both the v-operation on V and
the semistar operation (on R) defined by I 7→ (IV )vV .

There is a natural map π : SStarsv(R) −→ Zar(R), ? 7→ R?: by the
results recalled at the end of Section 2, for any V ∈ Zar(R), the fiber
π−1(V ) contains exactly dV and vV , and thus it is either a singleton
(when the maximal ideal of V is principal) or it is composed of two
elements.

Lemma 4.9. Let R be an integral domain, and let V be a valuation
overring of R with maximal ideal M ; let dV and vV as above. Let ? be
a semistar operation on R. Then:

(a) V is ?-closed if and only if ? ≤ vV ;
(b) M is ?-closed if and only if ? ≤ dV .

Proof. If ? ≤ vV , then V ? ⊆ V vV = V and V = V ?; similarly, if ? ≤ dV
then M? ⊆MdV = M , so that M = M?.

Conversely, using the same proof of [13, Lemma 3.1] we see that, for
any L ∈ F(R), the biggest semistar operation ? such that L is ?-closed
is the map I 7→ (L : (L : I)).

If L = V , then for any I ∈ F(R) we have

(V : (V : I)) = (V : (V : IV )) = (IV )vV ;

hence ? ≤ vV . On the other hand, if M is ?-closed then so is (M :
M) = V ; hence, I 7→ (M : (M : I)) is a semistar operation that closes
every V -submodule of the quotient field of R, and thus it must be dV .
Hence, ? ≤ dV . �

Proposition 4.10. Let R be a Prüfer domain, and let Ψ be the map

Ψ: X (R) −→ SStarst(R)

X 7−→ inf X.

Endow X (R) with the reverse inclusion (i.e., X ≤ Y if X ⊇ Y ).
Then:

(a) Ψ is well-defined and order-preserving;
(b) if Min(I) is finite for every proper ideal I of R, then Ψ is sur-

jective;
(c) if Spec(R) is Noetherian, then Ψ is an order isomorphism.

Proof. (a) With the same proof of Proposition 4.1(a), and since every
V ∈ Zar(R) is in the form RP for some P ∈ Spec(R), we see that every
? ∈ X (R) is stable, and thus Ψ is well-defined. Moreover, if X ⊇ Y
then clearly inf X ≤ inf Y , and thus Ψ is order-preserving.
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(b) Given a stable semistar operation ?, let X := {dRP
| P ∈

QSpec?(R)} ∪ {vRP
| P ∈ PsSpec?(R)}. By definition, inf X = ?̂; by

Corollary 4.6, ?̂ = ?. Moreover, inf X = inf X↑, and thus ? = Ψ(X↑).
(c) We show that, for every X, Y ∈ X (R), X 6= Y , if inf X ≥ inf Y

then X ⊆ Y . Suppose not: then, there is a ? ∈ X \ Y . Let V := R?,
and let M be the maximal ideal of V .

The map ?|F(V ) is a star operation on V , and thus ? is either equal
to dV or to vV . In the former case, M? = M , and so M inf X = M ;
moreover, for any semistar operation ], M ] is a V -module, and thus
if M ] 6= M then V ⊆ M ]. Therefore, since inf X ≥ inf Y , there must
be a [ ∈ Y such that M = M [. By Lemma 4.9, [ ≤ dV = ?. This
contradicts the hypotheses ? /∈ Y and Y = Y ↑, and thus this case is
impossible.

Suppose ? = vV . Since Spec(R) is Noetherian, M is branched; in
particular, V has a smallest proper overring, say W . As in the previous
case, V ? = V inf X = V , and V ] is an overring of V for every semistar
operation ] on R. Hence, if V ] 6= V then W ⊆ V ]; thus, V [ = V
for some [ ∈ Y , and again by Lemma 4.9 [ ≤ ?. This contradicts
? /∈ Y = Y ↑.

Hence, inf X ≥ inf Y implies X ⊆ Y . In particular, if inf X = inf Y
then X ⊆ Y and Y ⊆ X, and thus Ψ is injective. Since, by the previous
point, Ψ is surjective, it is bijective. Moreover, this also shows that the
inverse of Ψ is order-preserving; hence, Ψ is an order isomorphism. �

Note that the Noetherian hypothesis in part (c) is necessary: for ex-
ample, consider a valuation domain V whose maximal ideal is branched.
If X := SStarst(V ) \ {dV , vV }, and Y := SStarst(V ) \ {dV }, then
inf X = inf Y = vV , but X 6= Y .

Proposition 4.11. Let R be a Prüfer domain with Noetherian spec-
trum. Let (S)Starst(R) be the set of stable (semi)star operations on R
and let M be the set of nondivisorial maximal ideals of R.

(a) For any ? ∈ (S)Starst(R), there are disjoint subsets ∆1,∆2 ⊆
Max(R) such that Max(R) = ∆1 ∪∆2 and such that

I? =
⋂

P∈∆1

IRP ∩
⋂

P∈∆2

(IRP )vRP

for every I ∈ F(R).
(b) Endow the power set P(M) with the containment order. The

map

Φ: (S)Starst(R) −→ P(M)

? 7−→ PsSpec?(R)

is an order isomorphism.
(c) |(S)Starst(R)| = 2|M|.
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Proof. (a) We set ∆1 := QSpec?(R) ∩Max(R) and ∆2 := PsSpec?(R),
and proceed to show that they fulfill our claim. We first claim that
∆2 = Max(R) \∆1. Indeed, by Corollary 4.8, we have

R = R? =
⋂

P∈QSpec?(R)

RP ∩
⋂

P∈PsSpec?(R)

RP =
⋂

P∈QSpec?(R)∪PsSpec?(R)

RP .

However, since Spec(R) is Noetherian, QSpec?(R) ∪ PsSpec?(R) must
contain Max(R) (this is implied by [10, Theorem 4.2.34]); since they
are disjoint, the claim follows.

Hence, we can write, for every I ∈ F(R),

I? =
⋂

P∈∆1

IRP ∩
⋂

P∈∆2

(IRP )vRP ∩
⋂

P∈Spec(R)\Max(R)

IRP .

Since Spec(R) is Noetherian, every nonmaximal prime P is divisorial
[10, Corollary 4.1.11] and thus (being R = R?) in QSpec?(R); moreover,
if P ⊆ M , then IRP ⊆ IRM , so that the third big intersection of the
above formula can be thrown out. The claim is proved.

(b) Let ? ∈ (S)Starst(R): by the previous point, PsSpec?(R) ⊆
Max(R). Moreover, since ? is a (semi)star operation, every diviso-
rial ideal must be ?-closed, and in particular cannot belong to the
pseudo-spectrum; hence, Φ is well-defined. Note also that, if ?1 ≤ ?2,
then QSpec?1(R) ⊇ QSpec?2(R); by the previous point, it follows that
PsSpec?1(R) ⊆ PsSpec?2(R). Therefore, Φ is order-preserving.

Let now Λ ⊆M. Define a semistar operation ?Λ by

I 7→
⋂

P∈Max(R)\Λ

IRP ∩
⋂
P∈Λ

(IRP )vRP .

Then, each ?Λ is a stable (semi)star operation on R, and by the previous
part of the proof every stable (semi)star operation must be equal to ?Λ

for some Λ; thus, the assignment Λ 7→ ?Λ defines a surjective map Φ0

from P(M) to (S)Starst(R). Moreover, IRP ⊆ (IRP )vRP for every I
and every prime P , and thus if Λ1 ⊆ Λ2 then ?Λ1 ≤ ?Λ2 . Hence, Φ0 is
order-preserving.

To show that it is the inverse of Φ, it is enough to show that PsSpec?Λ(R) =
Λ for every Λ ⊆M. Clearly, if P ∈ Max(R)\Λ then P ∈ QSpec?Λ(R).
On the other hand, let P ∈ Λ; since Λ ⊆M, the ideal P is not diviso-
rial over R, and we claim that PRP is not divisorial over RP . If it is
divisorial, then PRP = pRP for some p ∈ P ; moreover, since Spec(R) is
Noetherian, there is a finitely generated ideal I such that V (I) = {P}.
If J = (I, p), then J is a P -primary ideal such that JRP = PRP ; hence,
J = P is invertible, and P is divisorial, a contradiction.

By definition, P ?Λ = (PRP )vRP ∩ R. However, by the previous rea-
soning (PRP )vRP = RP , and thus P ?Λ = R; by the previous point, it
must be P ∈ PsSpec?Λ(R). Hence, Φ0 is the inverse of Φ, and both are
order isomorphisms.
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(c) is an immediate consequence of (b). �

Remark 4.12. (1) In the previous proposition, “(semi)star oper-
ation” can be substituted with “star operation” without prob-
lems, since there is a one-to-one correspondence between stable
star and stable (semi)star operations.

(2) If we focus on semistar operations, the natural extension of the
first part of the previous proposition would be to ask for the
existence of ∆1,∆2 ⊆ Spec(R). However, this is essentially
Corollary 4.6.

(3) Since each stable semistar operation ? on R can be seen as
a stable (semi)star operation on R?, the previous proposition
shows that SStarst(R) is the disjoint union of a family of sets
order-isomorphic to power sets (namely, the (S)Starst(D), as D
ranges among the overrings of R). It is not clear if it is possible
to obtain a good description of the whole set SStarst(R) from
this point of view.

The following is a small extension of Corollary 4.8, allowing the
possibility of a “small” deviation from the Noetherianity of Spec(R).

Proposition 4.13. Let R be a Prüfer domain, and let ? be a stable
(semi)star operation on R. If Spec(R) \ QSpec?(R) is a Noetherian
space, then ? = ?̂.

Proof. Again, we have to prove that 1 ∈ I? if and only if 1 ∈ I ?̂,
and one implication follows from Theorem 3.9. Suppose 1 ∈ I ?̂; then,
I is not contained in any P ∈ QSpec?(R), and thus all the minimal
prime ideals of I are in Spec(R) \QSpec?(R). Since the latter space is
Noetherian, Min(I) is finite, and thus we can apply Theorem 4.5. �

Recall that a semistar operation is spectral if is in the form I 7→⋂
{IRP | P ∈ ∆} for some ∆ ⊆ Spec(R).

Corollary 4.14. Let R be a Prüfer domain with Noetherian spectrum
such that PRP is principal for every P ∈ Spec(R). Then, every stable
semistar operation is spectral.

Proof. By Corollary 4.8, every stable semistar operation is equal to its
normalized stable version. By Lemma 3.5, PsSpec?(R) = ∅; hence,
? can be written as I 7→

⋂
{IRP | P ∈ QSpec?(R)}, and thus ? is

spectral. �
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