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STAR OPERATIONS ON NUMERICAL SEMIGROUPS

DARIO SPIRITO

Abstract. It is proved that the number of numerical semigroups
with a fixed number n of star operations is finite if n > 1. The result
is then extended to the class of analytically irreducible residually
rational one-dimensional Noetherian rings with finite residue field
and integral closure equal to a fixed discrete valuation domain.

1. Introduction

Star operations are a classical topic in commutative ring theory,
stemming from the work of Krull [14] and Gilmer [7]. The notion of
star operation have been extended to semigroups in order to define
and characterize classes of semigroups (namely, Strong Mori and Krull
semigroups) analogous to some classes of domains (respectively, Strong
Mori and Krull domains) [13].

Another, more recent, topic is the study of divisorial domains [3, 8],
that are, using the star operation terminology, domains which admit a
unique star operation. Characterizations are known for h-local Prüfer
domains [8] and in the Noetherian case (where a domain is divisorial if
and only if it is Gorenstein and one-dimensional) [2]. This approach has
been followed by Houston, Mimouni and Park, extending the results
to domains with two star operations [10] and counting the number of
star operations of some classes of one-dimensional Noetherian domains
[11].

On the other hand, the study of conductive domains has lead in a
natural way to the study of the relation between properties of any such
domain R and properties of its value semigroup v(R), starting from
the result that, if the integral closure of R is local and has the same
residue field of R, then R is a Gorenstein ring if and only if v(R) is
symmetric [15, 17]. Since Gorenstein rings are Noetherian divisorials
ring and symmetric semigroups can be characterized in a similar way
[1, Proposition I.1.15] (see also Propostion 4.9), it is natural to ask
what is the relation between the set of star operations on R and the
set of star operations on v(R).

The goal of this paper is to study the number of star operations on
a numerical semigroup (that is, a semigroup S ⊆ N such that N \ S is
finite). The main result is Theorem 4.15, that says that, if n > 1, then
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2 DARIO SPIRITO

there are only a finite number of numerical semigroups with exactly n
star operations. This fact is proved attaching to any non-divisorial ideal
a star operation, and then showing that the number of star operations
goes to infinity with the Frobenius number of the semigroup (provided
that the semigroup is not symmetric). Section 3 is devoted to the study
of principal star operations, while Section 4 to some bounds on the
number of non-divisorial ideals.

The last section deal with the possible extension of the main the-
orem to the ring case: we show that Theorem 4.15 holds if, instead
of the numerical semigroups, we fix a discrete valuation ring V with
finite residue field, and consider the class of one-dimensional residually
rational domains (the definition will be recalled later) whose integral
closure is V .

2. Background and notation

The notation and the terminology of this paper follow [1]; for further
informations about numerical semigroups, the reader may consult [18].

A numerical semigroup is a subset S ⊆ N closed by addition, con-
taining 0 and such that N \ S is a finite set. (In the following, we will
often call such set simply a semigroup.) The cardinality of N\S is called
degree of singularity of S, and is denoted by δ(S), while the greatest
integer not belonging to S is called the Frobenius number of S, and is
usually denoted by g(S) or F (S) (we will use the former notation).

An ideal of S is a nonempty subset I ⊆ S such that I+S ⊆ I, while
a fractional ideal is a nonempty subset I ⊆ Z such that d+I is an ideal
of S for some d ∈ Z. The fractional ideals contained in S are exactly
the ideals. We denote by F(S) the set of fractional ideals of S. For
simplicity, we will call a fractional ideal of S simply an “ideal”, using
the terminology integral ideal to denote a fractional ideal contained
in S. The intersection of a family {Iα : α ∈ A} of fractional ideals,
if nonempty, is still a fractional ideal, while its union is a fractional
ideal if and only if there is a z ∈ Z such that i ≥ z for every i ∈ Iα,
α ∈ A. In particular, the union of a finite family of fractional ideals is a
fractional ideal, and the union of an arbitrary family of integral ideals
is an integral ideal.

The set of integral ideals of S strictly contained in S has a maximal
element, MS := S \ {0}, called the maximal ideal of S. The smallest
element of MS is called the multiplicity of S, and is denoted by µ(S).

We denote by F0(S) the set of ideals contained between S and N.
Since each fractional ideal I has a minimum element, for every I ∈
F(S) there is a unique I ′ ∈ F0(S) such that I = d+ I ′ for some d ∈ Z.
Note that, since N \ S is finite, so is F0(S).

If I, J are ideals of S, then (I−J) := {x ∈ Z : x+J ⊆ I} is an ideal
of S. The set (S −M) \ S is denoted by T (S), and its cardinality t(S)
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is called the type of S. For every numerical semigroup S, g(S) ∈ T (S),
and hence t(S) is always positive.

3. Principal star operations

Definition 3.1. A star operation on S is a map ∗ : F(S) −→ F(S),
I 7→ I∗, such that, for any I, J ∈ F(S), a ∈ Z, the following properties
hold:

(a) I ⊆ I∗;
(b) if I ⊆ J , then I∗ ⊆ J∗;
(c) (I∗)∗ = I∗;
(d) a+ I∗ = (a+ I)∗;
(e) S∗ = S.

An ideal I is said to be ∗-closed, or a ∗-ideal, if I∗ = I; the set of
∗-closed ideals is denoted by F∗(S), or simply by F∗.

We denote by Star(S) the set of star operations on the numerical
semigroup S.

Star operations are usually defined for ideals of an integral domain:
the definition is exactly the same, except for condition (d), which is
modified into αI∗ = (αI)∗ for every (fractional) ideal I and every α ̸= 0
in the quotient field of the ring. The reader may consult [7, Chapter
32] for properties of star operations on rings.

Proposition 3.2. Let ∗ be a star operation on a numerical semigroup
S, and let F := F(S), F∗ := F∗(S).

(a) F∗ is closed by arbitrary intersections, and, for each I ∈ F ,
we have I∗ =

∩
{J : I ⊆ J, J ∈ F∗}; therefore, ∗ is uniquely

determined by F∗.
(b) F∗ = Z+ (F0 ∩ F∗) = {d + I : d ∈ Z, I ∈ F0 ∩ F∗}; therefore,

∗ is uniquely determined by F∗ ∩ F0.
(c) Star(S) is finite.

Proof. The first point is a general property of closure operations, that
is, maps on a partially ordered set that verifies properties (a)-(c) of
Definition 3.1 (see for instance [4]). The second claim follows from the
fact that I is ∗-closed if and only if d + I is ∗-closed for a d ∈ Z. In
particular, since F0(S) is finite, the number of sets in the form F∗∩F0

for some star operation ∗ is finite, and thus so is Star(S). �
On the set Star(S) of star operations on S it is possible to define

naturally an order: we say that ∗1 ≤ ∗2 if I∗1 ⊆ I∗2 for every I ∈
F(S) or, equivalently, if F∗1(S) ⊇ F∗2(S). This order makes Star(S)
a complete lattice; the infimum of a set {∗λ}λ∈Λ is the star operation
∗ defined by I∗ :=

∩
λ∈Λ I

∗λ for each I ∈ F(S), while the supremum is
the closure ♯ such that F ♯ =

∩
λ∈Λ F∗λ .

Like for rings, the set of star operations has a minimum and a max-
imum: the former is the identity (alternatively called d-operation, and
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denoted by d), while the latter is the divisorial closure (or v-operation)
I 7→ Iv := (S−(S−I)), which could be also defined by Iv =

∩
(−α+S),

where the intersection ranges among the α such that I ⊆ −α+S, that
is, such that α ∈ (S − I). Ideals closed by the v-operation are com-
monly said to be divisorial ; it is straightforward to see that both S and
N (considered as an ideal of S) are divisorial. By definition of maxi-
mum, each divisorial ideal is ∗-closed for every star operation ∗. We set
G0(S) := {I ∈ F0(S) : I ̸= Iv}.

Lemma 3.3. Let S be a numerical semigroup, and let ∆ ⊆ F0(S).
Then ∆ = F0(S) ∩ F∗(S) for some star operation ∗ on S if and only
if S ∈ ∆, ∆ is closed by intersection and (−α + I) ∩ N ∈ ∆ for every
I ∈ ∆, α ∈ I.

Proof. The necessity of the conditions is clear. For the sufficiency, con-
sider Z + ∆ := {d + L : d ∈ Z, L ∈ ∆}; the hypotheses imply that
(Z+∆)∩F0 = ∆. Let I be an ideal such that I =

∩
J∈J J for a family

J ⊆ Z+∆. Hence

I −min(I) =
∩
J∈J

(J −min(I)) =
∩
J∈J

((J −min(I)) ∩ N)

and, in particular, 0 ∈ J − min(I) for every J ∈ J . Hence, ((J −
min(I)) ∩ N) ∈ F0(S) for every J ∈ J . Moreover, every J −min(I) is
in Z + ∆, and thus (J − min(I)) ∩ N ∈ (Z + ∆) ∩ F0 = ∆ for every
J ∈ J . Since ∆ is closed by intersections, also I − min(I) ∈ ∆, and
thus I ∈ Z+∆. It follows that Z+∆ is closed by intersections. Defining
I∗ :=

∩
{J : I ⊆ J, J ∈ Z +∆}, we have that ∗ is a star operation on

S, and that Z+∆ = F∗. �

Thus, to evaluate explicitly the number of star operations on a given
numerical semigroup S, we only need to test all the possibile ∆ ⊆
F0(S): moreover, if I ∈ ∆ and n > g, then (−n + I) ∩ N = N, so
that verifying if ∆ satisfies the hypotheses needs only a finite number
of calculations. Since there are only finitely many possible ∆ (since
F0(S) is finite), the calculation of the number of star operation on a
semigroup S can be, in principle, be completed in finite time. However,
this brute-force algorithm is in general highly impratical, and such a
computation is unrealistic if |N \S| (and, consequently, the cardinality
of F0(S) and the number of possible ∆) is large.

Example 1. Consider the semigroup S := ⟨3, 5, 7⟩ = {0, 3, 5, 6, 7, . . .}.
Then, F0(S) = {S,N, I1, I2, I4, J}, where I1 := S ∪ {1, 4} = N \ {2},
I2 := S ∪ {2}, I4 := S ∪ {4} and J := S ∪ {2, 4} = N \ {1}. Suppose
∆ ⊆ F0(S). By the remark before Lemma 3.3, if ∆ = F0(S) ∩ F∗(S)
for some star operation ∗, then ∆ contains all the divisorial ideals of
S; therefore, S,N ∈ ∆, and also J ∈ ∆, since J is divisorial. More-
over, there are no other divisorial ideals in F0(S), since I

v
1 = N and
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Iv2 = J = Iv4 . Therefore, {S,N, J} = F0(S) ∩ Fv(S). Let us consider
the other subsets ∆ contained between {S,N, J} and F0(S).

(1) ∆ = {S,N, J, I1} is not acceptable, since I1 ∩ J = I4 /∈ ∆.
(2) ∆ = {S,N, J, I1, I2} is not acceptable, as above.
(3) ∆ = {S,N, J, I1, I2, I4} = F0(S) is acceptable, and corresponds

to the identity star operation.
(4) ∆ = {S,N, J, I1, I4} is acceptable, since

• I1 ∩ I4 = I1 ∩ J = I4 ∩ J = I4;
• (I1 − 1) ∩ N = J ;
• (I1 − 4) ∩ N = (I1 − 3) ∩ N = N;
• (I4 − 3) ∩ N = (I4 − 4) ∩ N = N.

(5) ∆ = {S,N, J, I2} is not acceptable, since (I2− 2)∩N = I1 /∈ ∆.
(6) ∆ = {S,N, J, I2, I4} is not acceptable, as above.
(7) ∆ = {S,N, J, I4} is acceptable, since I4 ∩ J = I4 and (I4 − 3)∩

N = (I4 − 4) ∩ N = N.
Therefore, |Star(S)| = 4.

Definition 3.4. Let S be a numerical semigroup. For every I ∈ F(S),
the star operation generated by I, denoted by ∗I , is the supremum of
all the star operations ∗ on S such that I is ∗-closed (that is, I = I∗).
If ∗ = ∗I for some ideal I, we say that ∗ is a principal star operation.

Since F∗I =
∩
{F∗ : I = I∗} =

∩
{F∗ : I ∈ F∗}, the ideal I is

∗I-closed, and thus the supremum in the above definition is, in fact, a
maximum.

Lemma 3.5. Let S be a numerical semigroup and I ∈ F(S).

(a) ∗I = v if and only if I is divisorial.
(b) ∗I ≤ ∗J if and only if J is ∗I-closed.
(c) ∗I = ∗J if and only if I is ∗J-closed and J is ∗I-closed; in

particular, ∗I = ∗α+I for every α ∈ Z.

Proof. (a) If I is divisorial, then by definition v closes I, and being
v the maximal star operation we have ∗I = v. Conversely, if I
is non-divisorial, then I ∈ F∗I \ Fv, and thus ∗I ̸= v.

(b) If ∗I ≤ ∗J , then J∗I ⊆ J∗J = J , and thus J is ∗I-closed. Con-
versely, if J is ∗I-closed, then ∗J is the supremum of a set con-
taining ∗I , and thus ∗J ≥ ∗I .

(c) Immediate from (b). �
To work with the principal star operations, we need a more explicit

representation.

Proposition 3.6. Let S be a numerical semigroup and I be an ideal
of S. For every J ∈ F(S),

J∗I = Jv ∩
∩

α∈(I−J)

(−α + I) = Jv ∩ (I − (I − J)).
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Before going on with the proof, we note that this proposition links
principal star operations to the study of m-canonical ideals in the sense
of Heinker-Huckaba-Papick [9]. Translating their definition from rings
to semigroups, an m-canonical ideal of S is an I ∈ F(S) such that
J = (I − (I − J)) for every ideal J of S. In our terminology, I is
m-canonical if and only if (I − I) = S and ∗I is the identity.

Proof. For the first equality, let ∗ be the map J 7→ Jv ∩
∩

α∈(I−J)(−α+
I). It is clear that ∗ is a star operation (since both v and the intersection
are extensive, order-preserving, idempotent, both respect translation
and Sv = S), and that I∗ = I (since 0 ∈ (I − I)), so that ∗ ≤ ∗I .
Moreover, if ∗′ is another star operation that closes I, then Jv and
every −α + I are ∗′-closed, and thus I∗

′ ⊆ I∗, that is, ∗′ ≤ ∗. By
definition of ∗I , we have ∗ = ∗I .

To show the second equality, it is sufficient to prove that∩
α∈(I−J)

(−α + I) = (I − (I − J)).

We merely translate the proof of [9, Lemma 3.1] into the language of
semigroups. If x ∈ (I− (I−J)) and J ⊆ −α+ I, then x+(I−J) ⊆ I,
so that x+ α ∈ I and x ∈ −α+ I. Conversely, if x ∈

∩
(−α+ I), then

x+ α ∈ I for every α ∈ (I − J), that is, x+ (I − J) ⊆ I, which means
x ∈ (I − (I − J)). �

The construction that yield principal star operations can also be
applied if, instead of a single ideal, we start from a set ∆ ⊆ F(S): the
star operation ∗∆ generated by ∆ is the supremum of the star operations
that close each member of ∆ or, equivalently,

J∗∆ := Jv ∩
∩
I∈∆

∩
α∈(I−J)

(−α + I) = Jv ∩
∩
I∈∆

(I − (I − J)).

In other words, this is equivalent to ∗∆ = inf
I∈∆

∗I .
In particular, if ∆ = F∗ is the set of closed ideals of a star operation

∗, then ∗ = ∗∆; hence, each star operation is the infimum of a family
of principal star operations.

The first problem that arises is to try to understand when two fam-
ilies of ideals ∆ and Λ give rise to the same star operation. While the
case of ∆ and Λ composed by a single ideal has a simple solution, the
general case is considerably more nuanced, and we will not study it
here.

Lemma 3.7. Let S be a numerical semigroup and I, J ∈ F(S). If
∗I = ∗J then

I = Iv ∩
∩

γ∈(I−J)+(J−I)

(−γ + I).
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Proof. By Lemma 3.5(c) and Proposition 3.6,

J = Jv ∩
∩

α∈(I−J)

(−α + I), and I = Iv ∩
∩

β∈(J−I)

(−β + J).

Thus,

I = Iv∩
∩

β∈(J−I)

(−β+J) = Iv∩
∩

β∈(J−I)

−β+

Jv ∩
∩

α∈(I−J)

(−α + I)

 =

= Iv ∩
∩

β∈(J−I)

(−β + Jv) ∩
∩

β∈(J−I)

−β +
∩

α∈(I−J)

(−α + I)

 =

= Iv ∩
∩

β∈(J−I)

(−β + Jv) ∩
∩

γ∈(I−J)+(J−I)

(−γ + I).

However, for every β ∈ (J − I), we have I ⊆ −β + J ⊆ −β + Jv,
and so Iv ⊆ −β + Jv = (−β + J)v. Therefore, the second term can be
dropped. �
Theorem 3.8. Let S be a numerical semigroup and I, J ∈ G0(S). Then
∗I = ∗J if and only if I = J .

Proof. The sufficiency is trivial.
Assume ∗I = ∗J and suppose I ̸= J . Let ψ := sup(Iv \ I). Since

(I − J) + (J − I) ⊆ (I − I), for every γ ∈ (I − J) + (J − I) we have
γ + I ⊆ I, and thus γ + Iv ⊆ Iv; in particular, γ + ψ ∈ Iv. However,
since I, J ∈ F0, both (I−J) and (J− I) are contained in N. Moreover,
0 ∈ (I − J) if and only if J ⊆ I and thus, if I ̸= J , each member of
(I − J) + (J − I) is positive. Therefore, γ + ψ > ψ, and thus γ + ψ
must be in I. This shows that

ψ ∈ Iv ∩
∩

γ∈(I−J)+(J−I)

(−γ + I).

However, we have chosen ψ /∈ I, and therefore ∗I ̸= ∗J by Lemma
3.7. �
Corollary 3.9. Let S be a numerical semigroup and I, J ∈ F(S) be
non-divisorial ideals. Then ∗I = ∗J if and only if I = α + J for some
α ∈ Z.

Corollary 3.10. For every numerical semigroup S, |G0(S)| + 1 ≤
|Star(S)| ≤ 2|G0(S)|.

Proof. Each non-divisorial ideal generates a different star operation on
S. Moreover, we have the v-operation, which is different from all these
star operations. Thus |G0(S)|+ 1 ≤ |Star(S)|.

The other estimate is just a numerical translation of Lemma 3.3,
since each star operation is determined by a subset of G0(S). �
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A first test of non-divisoriality, useful in some special cases, is the
following result.

Proposition 3.11. Let S be a numerical semigroup and S ( I ∈
F0(S). Then (S −M) ⊆ Iv.

Proof. Since S ⊆ I, (S − I) ⊆ (S − S) = S and, since S ̸= I, we
have 0 /∈ (S − I), so that (S − I) ( S and (S − I) ⊆ M . Thus
Iv = (S − (S − I)) ⊇ (S −M). �

Example 2. Consider the semigroup S := ⟨4, 5, 6, 7⟩ = {0, 4, 5, 6, 7, . . .}.
Then, every set comprised between S and N is an ideal of S; moreover,
since (S −M) = N, Proposition 3.11 implies that the unique divisorial
ideals in F0(S) are S and N.

For every a, b ∈ {1, 2, 3}, a ̸= b, let I(a) := S∪{a} and I(a, b) := S∪
{a, b}; with this notation, G0(S) = {I(1), I(2), I(3), I(1, 2), I(1, 3), I(2, 3)}.
By Theorem 3.8, each I(a) and each I(a, b) generates a different star
operation, and thus, by Corollary 3.10 we have 7 ≤ |Star(S)| ≤ 26 = 64.

There are star operations on S that are not principal: for example,
consider the semigroups T1 := ⟨3, 4⟩ and T2 := ⟨2, 5⟩, and let ∗ be the
star operation such that I∗ = IT1 ∩ IT2 for every I ∈ F(S) (note that
T1∩T2 = S and thus ∗ is actually a star operation). A direct calculation
shows that F∗(S)∩F0(S) = {S,N, I(2), I(3), I(1, 3), I(2, 3)}, and thus
∗ = ∗I(2) ∧ ∗I(3) ∧ ∗I(1,3) ∧ ∗I(2,3).

To see that ∗ is not principal, consider the sets ∆1 := {S,N, I(2), I(2, 3)}
and ∆2 := {S,N, I(1, 3), I(2, 3), I(3)}. Both verify the hypotheses of
Lemma 3.3, and thus there are star operations ∗1, ∗2 such that F∗i(S)∩
F0(S) = ∆i, for i ∈ {1, 2}, and ∗1, ∗2 > ∗. Moreover, every ∗-closed
ideal I ∈ F0(S) belongs to ∆1 or to ∆2, and thus, by definition, ∗I
must be bigger or equal than ∗1 or ∗2, and in particular strictly bigger
than ∗. Hence ∗ is not principal.

The previous example shows that the analogue of Theorem 3.8 does
not hold for sets with more than one element, that is, given two different
subsets ∆,Λ ⊆ G0(S), it is possible that ∗∆ = ∗Λ. For example, if
S = ⟨4, 5, 6, 7⟩, then I(2, 3) and I(3) are ∗I(2)-closed, and thus the
sets {I(2), I(1, 3), I(2, 3)} and {I(2)} generate the same star operation.
More generally, this happens whenever ∆ = G0(S) ∩ F∗I (S) and Λ =
{I}. However, this is not the only case, as the next example shows.

Example 3. Let S := ⟨6, 7, 8, 9, 10, 11⟩ = {0, 6, . . .}, I := S ∪
{3, 4, 5}, J := S ∪ {1, 3, 5}, L := S ∪ {4, 5}, ∆ := {I, J}. By direct
calculation we can see that I∗J = I ∪ {2} and that J∗I = N, so that ∗I
and ∗J are incomparable star operations. Moreover, L∗I = L∪{3} = I
and L∗J = L ∪ {2}, so that L is nor ∗I nor ∗J -closed. However,

L∗∆ = L∗I ∩ L∗J = L

and thus L is ∗∆-closed.
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4. Main theorem

Our main goal is to show that the number of star operations of a
numerical semigroup S “goes to infinity” with the semigroup S or, in
a more precise form, that the number of semigroups having a given
number n ∈ N of star operations is finite. It turns out that we have to
exclude one case, namely n = 1.

It is easy to see that the number of semigroups such that g(S) = g
(where g is a fixed integer) is finite: since all integers bigger than g(S)
are in S, any such semigroup is determined by the subset S∩{1, . . . , g}
of {1, . . . , g}, and there are only a finite number of such subsets. Since
δ(S) = |N \ S| ≥ g/2, moreover, also the number of semigroups such
that δ(S) = δ, for a fixed δ, is finite. Therefore, it is enough to bound
|Star(S)| with an increasing and unbounded function of g, or with an
increasing and unbounded function of δ.

By the results of the previous section, the number of star operations
is bounded below by the number of non-divisorial ideals in F0(S); thus,
we would like to attach to every element of N\S a non-divisorial ideal.

Definition 4.1. Let S be a numerical semigroup and a ∈ N\S. We de-
fine Ma as the biggest ideal in F0(S) not containing a. More explicitly,
Ma :=

∪
{I ∈ F0 : a /∈ I}.

Note that, if a ̸= b, thenMa ̸=Mb, since the ideal S∪{x ∈ Z : x > a}
does not contain a, and thus max(N \Ma) = a.

Lemma 4.2. Let S be a numerical semigroup and let a ∈ N\S. Then:
(a) Ma = {b ∈ N : a− b /∈ S};
(b) if b ∈ N \ S and a < b, then Ma = (a− b+Mb) ∩ N.

Proof. (a) Let b ∈ N. If a− b ∈ S, then a ∈ b+S and thus b /∈Ma,
while, if a − b /∈ S, then a /∈ S ∪ (b + S), that is, there is an
ideal of F0(S) containing b but not a, and thus b ∈Ma.

(b) Let c ∈ N. Then,

c ∈ a− b+Mb ⇐⇒ b− a+ c ∈Mb ⇐⇒ b− (b− a+ c) /∈ S ⇐⇒

⇐⇒ a− c /∈ S ⇐⇒ c ∈Ma

and thus Ma = (a− b+Mb) ∩ N. �

The following proposition gives a simple test to see ifMa is divisorial.

Proposition 4.3. Let S be a numerical semigroup and a ∈ N \S. The
following statements are equivalent:

(i) Ma =M v
a ;

(ii) Ma = (−γ + S) ∩ N for some γ ∈ S;
(iii) Ma = (a− g + S) ∩ N.
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Proof. (i =⇒ ii) Since Ma is divisorial,

Ma =
∩

γ∈(S−Ma)

(−γ + S) =
∩

γ∈(S−Ma)

((−γ + S) ∩ N).

If Ma ̸= (−γ + S) ∩ N for some γ ∈ (S −Ma), then, by maximality
of Ma, we have a ∈ (−γ + S)∩N. Hence, if Ma ̸= (−γ + S)∩N for all
γ ∈ (S −Ma), we would have a ∈

∩
γ∈(S−Ma)

(−γ + S) = M v
a , and in

particular Ma ̸=M v
a , against the hypothesis.

(ii =⇒ iii) The greatest element in N\Ma is a, while the the greatest
element in N\((−γ+S)∩N) is−γ+g. Hence a = −γ+g and−γ = a−g.

(iii =⇒ i) Trivial, since both N and a− g + S are divisorial. �
Corollary 4.4. Let S be a numerical semigroup. If a, b ∈ N \ S, a < b
and Ma is not divisorial, then ∗Ma > ∗Mb

, and in particular Mb is not
divisorial.

Proof. By Lemma 4.2(b), Ma = (a− b+Mb) ∩ N, and both the ideals
on the right hand side are ∗Mb

-closed; hence ∗Ma ≥ ∗Mb
. Moreover, if

Ma is not divisorial, the inequality must be strict by Theorem 3.8.
For the “in particular” statement, if Mb were divisorial we would

have v > ∗Ma > ∗Mb
= v, which is impossible. �

Among these ideals, a distinguished one isMg, which is usually called
the canonical ideal (or the standard canonical ideal) of S, and is de-
noted by K(S) (see for instance [12] or [5]). Corollary 4.5 and Propo-
sition 4.6 can be seen as a reformulation of [12, Satz 4 and Hillsatz
5].

Corollary 4.5. Let S be a numerical semigroup, g = g(S). Then ∗Mg

is the identity.

Proof. For every I ∈ F0(S), we have I =
∩

b∈N\I Mb. In fact, by defini-

tion of Mb we have I ⊆ Mb for every b /∈ I, while, if a ∈ N \ I, then
a /∈Ma and thus a is not in the intersection.

Since b ≤ g for every b /∈ S, each Mb is ∗Mg -closed, and thus I is
∗Mg -closed. Therefore, ∗Mg is the identity. �
Proposition 4.6. Let S be a numerical semigroup, g = g(S). Then:

(a) (Mg −Mg) = S;
(b) Mg is an m-canonical ideal of S;
(c) if ∆ is a set of semigroups contained properly between S and N

such that
∩

T∈∆ T = S, then the map ∗ : I 7→
∩

T∈∆ I + T is a
star operation different from the identity.

Proof. (a) T := (Mg −Mg) is a semigroup contained between S and N;
note that, since 0 ∈ Mg, we have T ⊆ Mg and in particular g /∈ T . If
a ∈ T \ S, then g− a /∈ T , and thus a, g− a /∈ S: hence, a, g− a ∈Mg,
and thus g = a+ g−a ∈ T +Mg ⊆Mg, which is absurd. Hence T = S.
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(b) It is enough to recall the definition of m-canonical ideal (see the
remark after the statement of Proposition 3.6) and use Corollary 4.5.

(c) It is straightforward to see that ∗ is a star operation. For every
T ∈ ∆, the set Mg + T is a S-ideal, and is bigger than Mg since
T * (Mg −Mg). Hence, by definition, g ∈ T +Mg and thus g ∈ M∗

g .
In particular, ∗ is not the identity on S. �

Lemma 4.7. Let S be a numerical semigroup, I ∈ F0(S) and a :=
sup(N \ I). If g − a /∈ S, then a ∈ Iv, and in particular I is not
divisorial.

Positive integers a such that a, g − a /∈ S are known as holes of S,
or gaps of the second type (while, if a ∈ N \ S and g − a ∈ S, then a is
called a gap of the first type).

Proof. Let I ⊆ −γ+S for some γ ∈ Z. Since I contains all the integers
bigger than a, so does −γ + S; hence γ ≥ g − a. If γ = g − a, then
0 /∈ −γ + S (since, by hypothesis, g − a /∈ S); hence γ > g − a, and
a ∈ −γ + S. However, Iv =

∩
(−γ + S), where the intersection ranges

among the integers γ such that I ⊆ −γ+S. In particular, each of these
contains a, and so does Iv. �

Corollary 4.8. Let S be a numerical semigroup, and let a ∈ N \ S be
an hole of S. If b ∈ N \ S and b ≥ a, then Mb is not divisorial.

Proof. By Lemma 4.7, Ma is not divisorial. By Corollary 4.4, it follows
that neither Mb is divisorial. �

Example 4. Consider the semigroup S := ⟨4, 5, 7⟩ = {0, 4, 5, 7, . . .}.
Then, g = 6 and N \ S = {1, 2, 3, 6}, and so the unique hole of S is 3.
Hence, M3 = S ∪ {1, 2, 6} and M6 = S ∪ {3} are not divisorial.

On the other hand, we have M1 = S ∪ {2, 3, 6} = (−5 + S) ∩ N
and M2 = S ∪ {1, 3, 6} = (−4 + S) ∩ N; hence both M1 and M2 are
divisorial.

Example 5. Let S := ⟨3, 10, 11⟩ = {0, 3, 6, 9, 10, 11, . . .}. Then g = 8
and N \ S = {1, 2, 4, 5, 7, 8}, and the holes of S are 1, 4 and 7. Thus,
no Ma is divisorial.

Example 6. Preserve the notation of Lemma 4.7. Then, it is possible
that I is not divisorial but a /∈ Iv: for example, if S = ⟨3, 8, 13⟩ and
I := S ∪ {10}, then max(N \ I) = 7, but Iv = (S −M) = S ∪ {5, 10}.
More generally, the same happens when there is a τ ∈ T (S) such that
τ < g − µ: if I := S ∪ {g}, we have Iv = (S −M) = S ∪ T (S), but
g − µ > g/2 does not belong to I.

Not every semigroup has holes: semigroup without holes are said to
be symmetric, and can be characterized as those numerical semigroups
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of type 1 or, equivalently, those such that T (S) = {g} [6, Proposi-
tion 2]. All semigroups generated by two integers, and in particular all
semigroups of multiplicity 2, are symmetric (see for instance [6]).

Lemma 4.7 allows to re-prove another characterization of symmetric
semigroups.

Proposition 4.9 [1, Proposition I.1.15]. Let S be a numerical semi-
group. The following are equivalent:

(i) S is symmetric;
(ii) Iv = I for each fractional ideal I of S (that is, d = v);
(iii) Iv = I for each integral ideal I of S;
(iv) T v = T for each semigroup T ⊇ S.

Proof. (ii ⇐⇒ iii) and (ii =⇒ iv) are clear (since a semigroup T ⊇ S
is a fractional ideal of S).

(i ⇐⇒ ii). By Corollary 4.5, d = v if and only if Mg is divisorial; by
Proposition 4.3 and Lemma 3.5(a), this happens if and only ifMg = S,
if and only if S is symmetric.

(iv =⇒ i). If not, let {a, g−a} ⊆ N\S. Then T := S∪{x ∈ N : x > a}
is a semigroup containing S such that g(T ) = a and thus, by Lemma
4.7, it is not divisorial (as an ideal of S). �
Corollary 4.10. Let S be a numerical semigroup of type t = t(S).
Then, |Star(S)| ≥ 2t − 1, and in particular there are no numerical
semigroups with exactly two star operations.

Proof. Since a+M ⊆M for every a ∈ T (S), the set IA := S ∪A is an
ideal for every subset A ⊆ T (S). By Lemma 3.11, IA is not divisorial if
A is nonempty and different from T (S), and, by Theorem 3.8, it follows
that ∗IA ̸= ∗IB if A ̸= B. Moreover, each star operation ∗IA is different
from the divisorial closure, and thus |Star(S)| ≥ 2t − 2 + 1 = 2t − 1.

For the “in particular” statement, the condition |Star(S)| ≤ 2 implies
that 2t−1 ≤ 2, and thus t = 1. Hence, S is symmetric, and Proposition
4.9 yields |Star(S)| = 1. �

Corollary 4.8 is a first source of estimates on |Star(S)|.

Proposition 4.11. Let S be a non-symmetric semigroup. For every
a ∈ N \ S, a ≥ g/2, the ideal Ma is not divisorial. In particular,

|Star(S)| ≥
⌈
g

2µ

⌉
.

Proof. By the above proposition, there is a pair of integers {α, g−α} ∈
N \S; without loss of generality, α ≤ g−α. In particular, α ≤ g/2 and
α ≤ a for every a ≥ g/2: by Corollary 4.8, it follows that Ma is not
divisorial.

Let µ := µ(S). For every integer n such that 0 ≤ n ≤
⌊

g
2µ

⌋
, the

number an := g − nµ is not contained in S, and an > g
2
≥ α. By
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the above paragraph, Man is not divisorial, and thus S admits at least⌊
g
2µ

⌋
+ 1 =

⌈
g
2µ

⌉
star operations. �

Let I ∈ F0(S), and suppose that a := sup(N \ I) is an hole of S. For
every positive integer x between a − µ and a (where µ = µ(S) is the
multiplicity of S), such that x /∈ I, the set I∪{x} is again an ideal, and
a is the biggest integer not contained in I ∪ {x}; the same happens if,
instead of a single x, we take a set A of elements out of S and between
a− µ and a. By Proposition 4.8, I ∪A is not divisorial; moreover, it is
clear that I ∪ A ̸= I ∪B if A ̸= B.

We need to consider separately two cases: when we can find an hole
a < µ and when we can find an hole a > µ. Note that the two cases
are not mutually exclusive.

Proposition 4.12. Let S be a numerical semigroup, and let µ = µ(S),
δ = δ(S). Suppose that there is an hole a < µ. Then, |Star(S)| ≥
δ + 1 ≥ µ.

Note that, if a < µ, then a /∈ S and g − a ∈ T (S).

Proof. Let B := {1, . . . , a−1}, C := {x ∈ N\S : x ≥ a}. For every x ∈
C, Mx is not divisorial (Corollary 4.8); the same happens (by Lemma
4.7) for the sets Ib := {0, b} ∪ {x ∈ N : x > a}, when b ∈ B, which are
easily seen to be fractional ideals of S. All such ideals are different from
each other, and thus each one generates a different star operation. In
particular, since B and C are disjoint, |Star(S)| ≥ |B|+ |C|+1 (the +1
is due to the v-operation). On the other hand, B∪C = N\S; therefore
|B|+ |C| = δ and |Star(S)| ≥ δ + 1.

Moreover, since {1, . . . , µ − 1} ∩ S = ∅, the inequality δ ≥ µ − 1 is
true regardless of the existence of a. �

Next we turn to the case a > µ.

Lemma 4.13. Let S be a numerical semigroup and let µ = µ(S).
For every a ∈ N \ S, let Ba := {n ∈ N : a − µ ≤ n < a} and
B′

a := Ba \ {a− µ}. Suppose that µ < a ≤ g/2.

(a) |Ba \ S| ≥
⌈µ
2

⌉
.

(b) If g − a /∈ S, then |B′
a \ S| ≥

⌈
µ− 1

2

⌉
.

Proof. Let a /∈ S, µ < a ≤ g/2. For every integer m, let [m]Ba
µ be the

(necessarily unique) element of Ba congruent to m modulo µ: the exis-
tence of [m]Ba

µ is guaranteed since Ba is a complete system of residues
modulo µ. Define

ϕ : Ba −→ Ba,

x 7→ [g − x]Ba
µ .
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The map ϕ is well-defined, and it is a bijection since g−x ̸≡ g−y mod µ
whenever x ̸≡ y mod µ, and in particular if x, y ∈ Ba and x ̸= y.

If now x ∈ S ∩ Ba, then g − x /∈ S; but since a ≤ g/2, we have
g − x > g/2 ≥ ϕ(x), and thus ϕ(x) = g − x − kµ for some k ∈ N
(depending on x). Hence, ϕ(x) /∈ S, that is, ϕ(Ba ∩ S) ⊆ Ba \ S. In
particular, |Ba ∩ S| ≤ |Ba \ S|, and thus |Ba \ S| ≥ |Ba|

2
= µ

2
.

Suppose g − a /∈ S. Since Ba \ S = (B′
a \ S) ∪ {a − µ}, we have

ϕ(B′
a∩S) ⊆ (B′

a\S)∪{a−µ}. If ϕ(x) = a−µ, then g−x ≡ a−µ mod µ,
and thus x ≡ g − a mod µ. Since g − a ≥ g/2 and g − a /∈ S, then
x /∈ S, and thus ϕ(B′

a ∩S) ⊆ B′
a \S. In particular, |B′

a ∩S| ≤ |B′
a \S|,

and thus |B′
a \ S| ≥

|B′
a|
2

= µ−1
2
. �

Proposition 4.14. Let S be a numerical semigroup, µ = µ(S). Sup-
pose there is an a ∈ N \S such that g− a /∈ S and µ < a ≤ g/2. Then,

|Star(S)| ≥ 2⌈
µ−1
2 ⌉ ≥

⌈
µ− 1

2

⌉
.

Proof. Lemma 4.13 implies that there are at least
⌈
µ−1
2

⌉
elements in

C := {a − µ + 1, . . . , a − 1} \ S. For each subset D ⊆ C, the set
ID := D ∪ S ∪ {x ∈ N : x > a} is a non-divisorial ideal of S, and
ID ̸= ID′ if D ̸= D′. Thus, S has at least 2|C| different non-divisorial
ideals, and in particular there are at least 2|C| star operations on S. �
Theorem 4.15. For each n > 1, there are only a finite number of
numerical semigroups S such that |Star(S)| = n.

Proof. Fix an integer n > 1, and let A be the set of semigroups with
exactly n star operations. Let A1 be the set of S ∈ A such that there
is an hole a such that a < µ, and let A2 be the set of S ∈ A such that
there is an hole a such that µ < a ≤ g/2. Moreover, since A does not
contain symmetric semigroups (by Proposition 4.9), and at least one
between a and g−a is smaller or equal than g/2, we have A = A1∪A2.

Let S ∈ A1: by Proposition 4.12, n = |Star(S)| ≥ δ(S). Since there
are only a finite number of semigroups such that δ(S) ≤ n (see the
discussion at the beginning of this section), A1 is finite.

If S ∈ A2, then by Proposition 4.14 n ≥ µ−1
2
, and µ ≤ 2n + 1.

However, by Proposition 4.11, n ≥ g
2µ
, and thus n ≥ g

4n+2
, that is,

g ≤ n(4n+ 2). Hence A2 is finite, and also A1 ∪ A2 is finite. �

5. The ring version

We now deal with extensions of the above results (and, in particular,
of Theorem 4.15) to ring theory. We will always assume all rings com-
mutative, unitary and without zero-divisors, that is, integral domains.

A star operation on an integral domain R is defined is a map ∗
from the set of fractional ideals F(R) to itself that is extensive, order-
preserving, idempotent, fixes R and is such that (αI)∗ = αI∗ for every
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α ∈ K \ {0} (where K is the quotient field of R) and I ∈ F(R). Note
that, often, ∗ is defined only on the nonzero fractional ideals of R,
but this restriction is unnecessary since the definition already implies
that (0)∗ = (0) for every star operation ∗. Any star operation on R is
uniquely determined by the set F∗ of the ∗-closed ideals. There is an
order on the set Star(R) of star operations, where ∗1 ≤ ∗2 if and only
if I∗1 ⊆ I∗2 for every I ∈ F(R), if and only if F∗1 ⊇ F∗2 ; this order
makes Star(R) into a complete lattice.

Like in the semigroup case, for any given ideal I ∈ F(R), we can
define ∗I as the maximum of the star operations ∗ such that I∗ = I.
Lemma 3.5 remains valid (with the only difference that a+ I must be
changed to αI, and we exclude α = 0) while, reasoning in the same
way of Lemma 3.6, we can prove that, for every integral domain R and
every fractional ideals I, J of R, we have

J∗I = Jv ∩
∩

α∈(I:J)\{0}

(α−1I) = Jv ∩ (I : (I : J)).

Note that we can apply directly [9, Lemma 3.1].
The next step is understanding when two ideals generate the same

star operation.

Proposition 5.1. Let R be an integral domain and I, J be non-divisorial
ideals of R. If ∗I = ∗J then

I = Iv ∩
∩

γ∈(I:J)(J :I)\{0}

(γ−1I).

Proof. Repeat the argument of the proof of Lemma 3.7. �
Analogously, the star operation generated by a set ∆ of fractional

ideals of R is just the biggest star operation that closes all the members
of ∆ or, equivalently, the infimum of the ∗I , as I ranges among ∆.
However, in general, the analogue of Theorem 3.8 does not hold, even
for non-divisorial ideals: for example, if L is an invertible ideal, then
∗IL = ∗I , but in general there is no α ∈ K such that I = αIL. We will
show in Proposition 5.4 that the analogue is true in the case we will be
considering.

Among rings, a close analogy of the relationship between N and the
numerical semigroups is the relationship between the power series ring
K[[X]] (where K is a field) and its subrings of the form K[[S]] :=
K[[XS]] := K[[{Xs : s ∈ S}]], where S is a numerical semigroup.
(Such rings are called semigroup rings.) Each K[[S]] is a Noetherian
local domain of dimension 1, its integral closure is K[[X]], and K[[X]]
is a fractional ideal of K[[S]]; moreover, the invariants of S (like the
Frobenius numer and the type) are reflected in analogous invariants
of K[[S]]. However, there are many subrings of K[[X]] which, despite
being Noetherian and having K[[X]] as integral closure, are not of the
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form K[[S]], nor are isomorphic to one of this form: for instance, those
of the form F +XK[[X]], where F ⊆ K is an algebraic field extension.
It is thus natural to ask that an analogue of Theorem 4.15 for K[[X]]
should cover not only semigroup rings, but a larger class of subrings.
It is useful to generalize this situation.

Let (V,MV ) be a discrete valuation ring and v the corresponding
valuation. For every subset A of the quotient field of V , let v(A) :=
{v(a) : a ∈ A, a ̸= 0}. Let C(V ) be the set of all subrings R of V such
that:

• R and V have the same quotient field;
• V is the integral closure of R;
• R is Noetherian;
• the conductor ideal (R : V ) is nonzero.

Equivalently, C(V ) is the set of the analitically irreducible Noetherian
one-dimensional domains whose integral closure is V [1, Chapter II].
Note that, if R ∈ C(V ), then R is local and of dimension 1, v(R) is a
numerical semigroup (called the value semigroup of R) and v(I) is an
ideal of v(R) for every ideal I of S. In C(V ), we consider the set V(V )
of rings R ∈ C(V ) such that the inclusion map i : R −→ V induces an

isomorphism R/MR
≃−→ V/MV (where MR is the maximal ideal of R).

Such rings are said to be residually rational.
The last hypothesis, intuitively, guarantess that the value semigroup

captures as much information about R as possibile: for example, if
R = F +XK[[X]], then any relationship between two ideals comprised
between R and V is undetectable under the passage to S. Technically,
the condition implies the following pivotal result.

Theorem 5.2 [17]. Let V be a discrete valuation ring, v its valuation,
R ∈ V(V ), and S := v(R). Let I ⊆ J be ideals of R, ℓR and ℓS be the
length of a R-module and of a S-module, respectively. Then,

ℓR

(
J

I

)
= |v(J) \ v(I)| = ℓS

(
v(J)

v(I)

)
.

Let R be a local ring and M be its maximal ideal. The type of

R is t(R) := dimR/M
(R:M)

R
, and t(R) > 0 if and only if M is divi-

sorial, and in particular if R is Noetherian and one-dimensional. If
R ∈ V(V ), then we have always t(R) ≤ t(v(R)), but the inequality
can be strict: for instance, let R := K[[X4, X6 + X7, X10]], where K
is a field whose characteristic is different from 2 [1, Example II.1.19].
Then S := v(R) = ⟨4, 6, 11, 13⟩, so that T (S) = {2, 7, 9} and t(S) = 3.
On the other hand, there are no elements in (R : M) of valuation 2,
and thus t(R) = 2. In particular, S ∪ {2} is a fractional ideal of S, but
v(I) ̸= S ∪ {2} for every ideal I of R. Note that, if T = K[[U ]] for
some numerical semigroup U , the correspondence becomes much nicer:
indeed, in this case (T : MT ) is the ideal generated by the Xu, for
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u ∈ (U−MU), and if J is an ideal of S, then the ideal I = (Xj : j ∈ J)
is such that v(I) = J . In particular, t(T ) = t(U). Hence, the ring R
defined above is not isomorphic to K[[S]].

For every R ∈ V(V ), we define g(R) := min{n ∈ N : Mn
V ⊆ R},

where MV is the maximal ideal of V . The condition (R : V ) ̸= 0
guarantees that g(R) exists, and the equality of the residue fields that
g(R) = g(v(R)) [15]. Note also that (R : V ) =M g+1

V ; in the same way,
(S − N) = {g + 1, . . .} = (g + 1)MN, where MN = {1, 2, . . .} is the
maximal ideal of the semigroup N. For this reason, g(S) + 1 is called
the conductor of S.

Using the theory of the Hilbert-Samuels function, it is also possible
to define a notion of multiplicity µ(R) of R, and the hypothesis R ∈
V(V ) guarantees that µ(R) = µ(v(R)) (see [16] and [1, Section II.2]).
However, we won’t need it, since we will use directly the multiplicity
of the semigroup.

In the basic case, we have the following result.

Theorem 5.3 [2, 15]. Let R be a Noetherian one-dimensional local
domain. Then the v-operation on R is the identity if and only if t(R) =
1, if and only if R is a Gorenstein domain. If R ∈ V(V ), then this
happens if and only if t(v(R)) = 1, that is, if and only if the numerical
semigroup v(R) is symmetric.

Let F0(R) be the set of nonzero fractional ideals between R and
V . For every ideal I of R and every i ∈ I of minimum valuation,
i−1I ∈ F0(R), but there could be a j ∈ I such that j−1I ∈ F0(R) and
i−1I ̸= j−1I. For example, if I ∈ F0(R), u ∈ I, u2 /∈ I and v(u) = 0,
then u−1I ̸= I, but u−1I is still contained between R and V . This means
that, even if we suppose I, J ∈ F0(R), it is possible that I ̸= J and
∗I = ∗J . The next proposition shows that this is the unique possibility
(compare the remark after Proposition 5.1).

Proposition 5.4. Preserve the notation of Theorem 5.2, let L be the
quotient field of V and let I, J be non-divisorial ideals of R. Then
∗I = ∗J if and only if I = uJ for some u ∈ L \ {0}. In particular, if
I, J ∈ F0(R), this can happen only if v(I) = v(J).

Proof. We can suppose that I, J ∈ F0(R). In this case, (I : J) and
(J : I) are both contained in V .

Suppose 0 /∈ v((I : J)(J : I)). Since I is not divisorial, ℓR(I
v/I) ≥ 1,

and thus, by Theorem 5.2, v(Iv) ̸= v(I). Let ϕ ∈ Iv be an element such
that v(ϕ) = sup(v(Iv) \ v(I)). Since (I : J)(J : I) ⊆ (I : I), γIv ⊆ Iv

and thus γϕ ∈ Iv for every γ ∈ (I : J)(J : I). But since 0 /∈ v((I :
J)(J : I)), we have v(γ) > 0, and thus v(γϕ) = v(γ) + v(ϕ) > v(ϕ),
and γϕ ∈ I. However, if ∗I = ∗J , then by Proposition 5.1

I = Iv ∩
∩

γ∈(I:J)(J :I)\{0}

(γ−1I).
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On the other hand, ϕ is contained in the right hand side but not in I,
and thus ∗I ̸= ∗J .

If 0 ∈ v((I : J)(J : I)), then (since (I : J), (J : I) ⊆ V ) there
is a x ∈ (I : J) such that v(x) = 0. Hence, v(I) = v(xI) ⊆ v(J),
and simmetrically v(J) ⊆ v(I). Therefore, v(xI) = v(J) and, since
xI ⊆ J , Theorem 5.2 implies that xI = J . �

Corollary 5.5. Let K be a field. If n > 1, there are only a finite
number of rings in the form K[[S]] (with S a numerical semigroup)
with exactly n star operations.

Note that we are not considering rings isomorphic to a K[[S]], but
rings exactly in the form K[[S]] (see the remark after Theorem 5.14).

Proof. Let R = K[[S]]. If |Star(R)| = n > 1, we can suppose by Theo-
rem 5.3 that S is not symmetric.

For every ideal I of S, let XI := (X i : i ∈ I). Then, v(XI) = I,
and a straightforward calculation shows that (XI)v = X(Iv) (indicating
with v both the divisorial closure of R and the divisorial closure on S).
Hence, XI is divisorial in R if and only if I is divisorial in S.

In particular, the set {XI : I ∈ G0(S)} contains only non-divisorial
ideals; by Proposition 5.4, we have ∗XI ̸= ∗XJ if I ̸= J . Therefore,
|Star(R)| ≥ |G0(S)|, and if |Star(R)| = n then |G0(S)| ≤ n. However,
the proof of Theorem 4.15 shows that there are only a finite number of
nonsymmetric semigroups with |G0(S)| ≤ n; therefore, there are only a
finite numer of semigroup rings with n or less star operations. �

When R ̸= K[[S]], we cannot apply the same method of the above
corollary, since it is not possible in general to find an ideal of R corre-
sponding to an arbitrary ideal of S. Therefore, we have to mimic the
proof of Theorem 4.15, translating the method to the ring case.

The following is an analogue of Lemma 4.7.

Lemma 5.6. Preserve the notation of Theorem 5.2. Let I ∈ F0(R) and
a := sup(N \ v(I)). If g − a /∈ v(R), then a ∈ v(Iv), and in particular
I is not divisorial.

Proof. Let I ⊆ γ−1R for some γ ̸= 0 in the quotient field of R. Since
v(I) contains all the integers bigger than a, so does v(γ−1R) = −v(γ)+
v(R), and hence v(γ) ≥ g − a. However, if v(γ) = g − a, then 0 /∈
v(γ−1R) (since, by hypothesis, g − a /∈ v(R)), and this would imply
that I * γ−1R, against the hypothesis. Hence v(γ) > g − a. However,
R contains all the elements of valuation bigger than g, and thus γ−1R
contains all the x such that v(x) > g − v(γ), and in particular all the
elements of valuation a. Finally, Iv =

∩
γ−1R, where the intersection

ranges among the γ such that I ⊆ γ−1R. In particular, each of these
contains all the elements of valuation a, and so does Iv. �
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However, Lemma 4.2(b) and Corollary 4.4 have not a satifactory
analogue, and so we must distinguish two cases even for the estimate
in g/(2µ).

Lemma 5.7. Preserve the notation of Theorem 5.2, and let M be the
maximal ideal of R. There is a set {τ1, . . . , τn} ⊆ (R : M) such that
v(τi) /∈ v(R) for every i, v(τi) ̸= v(τj) whenever i ̸= j and such that
{τ1 +R, . . . , τn +R} is a R/M-basis of (R :M)/R. In particular, if R
is not Gorenstein, there is a τ ∈ (R :M) such that v(τ) /∈ v(R)∪{g}.

Proof. For each a ∈ v((R : M)) \ v(R), we can choose τa ∈ (R : M)
such that v(τa) = a. The set T := {τa + R : a ∈ v((R : M)) \ v(R)}
is linearly independent in (R : M)/R, for otherwise there is a b and
there are a1, . . . , an ∈ v((R : M)) \ v(R), ai ̸= b, x0, x1, . . . , xn, r ∈ R,
x0 /∈M such that x0τb = x1τai + · · ·+ xnτan + r. However, each xiτai is
either inM or it has valuation ai (depending on xi ∈M or not); by the
properties of valuations, it follows that either x1τai+· · ·+xnτan+r ∈ R
or v(x1τai + · · · + xnτan + r) = ai for some i. Anyhow, its valuation
is different from b, and thus T is linearly independent. Moreover, by

Theorem 5.2, |T | = |v((R :M)) \v(R)| = dimR/M
(R:M)

R
, and thus T is

a basis.
For the “in particular” statement, note that Theorem 5.3 implies

that t(R) ≥ 2, and thus there is a τ ∈ (R :M) such that v(τ) /∈ v(R),
v(τ) ̸= g. �

For every a ∈ N \ v(R), we define Ma as the set of ideals I ∈ F0(R)
such that a /∈ v(I) and such that, if x ∈ V and v(x) > a, then x ∈ I.
The set Ma contains R + Ma+1

V = R + {x ∈ V : v(x) > a}, and
thus it is nonempty. Since every chain in Ma is finite (their length is
bounded by |N \v(R)|), Ma contains maximal elements, and these are
also maximal among the ideals not containing elements of valuation
a. Moreover, if Ma is maximal in Ma and Ma ( I, then I contains
all the elements of valuation a: by maximality, there is a ϕ ∈ I such
that v(ϕ) = a and, if v(ψ) = a, then v(ψ − βϕ) > a for some β ∈ R
of valuation 0, so that ψ − βϕ ∈ Ma and ψ ∈ I. (β exists since R is
residually rational.)

Proposition 5.8. Preserve the notation of Theorem 5.2, let a ∈ N \
v(R) and let Ma be a maximal element of Ma. Then, Ma is divisorial
if and only if Ma = γ−1R ∩ V for some γ ∈ R. If this happens, then
v(γ) = g − a.

Proof. Use the same method of Proposition 4.3. �
Proposition 5.9. Preserve the notation of Theorem 5.2, let M be the
maximal ideal of R and let a ∈ N \ v(R). Suppose there is an element
τ ∈ (R : M), τ ̸= 0, such that v(τ) /∈ v(R) ∪ {g} and g − v(τ) < a <
v(τ). If Ma is maximal in Ma, then Ma is not divisorial.
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Proof. Suppose Ma is divisorial, and let ϕ ∈ V such that v(ϕ) = a.
Then, by Proposition 5.8, Ma = γ−1R ∩ V for some nonzero γ ∈ R. In
particular, since g− v(τ) < a < v(τ), we have that g− v(τ) < v(γ) <
v(τ). Let ϵ := γ−1τ : then ϵ /∈ γ−1R because τ /∈ R, and thus ϵ /∈ Ma.
Therefore, ϕ ∈Ma+ ϵR, and hence there are m ∈Ma, r ∈ R such that
ϕ = m+ ϵr. Two cases are possible:

• v(r) = 0. Then v(ϵr) = v(ϵ) = v(γ−1τ) /∈ v(γ−1R) (since
v(τ) /∈ v(R)), and thus v(γ−1τ) ̸= v(m). Hence a = v(ϕ) =
v(m+ ϵr) = min{v(m),v(ϵr)}. Since v(m) ̸= a, we must have
v(γ−1τ) = v(ϕ), that is, v(τ) = v(ϕ) + v(γ) = g, against the
choice of τ .

• v(r) > 0. Then r ∈ M , and thus τr =: r′ ∈ M . Hence ϕ =
m + ϵτ−1r′ = m + γr′ ∈ (Ma + γ−1R) ∩ V = γ−1R ∩ V = Ma,
which is absurd. �

Proposition 5.10. Preserve the notation of Theorem 5.2, let M be the
maximal ideal of R and I ∈ F(R). If R ( I ⊆ V , then (R :M) ⊆ Iv.

Proof. Repeat the argument of Lemma 3.11, using the fact that R is
local. �
Proposition 5.11. Preserve the notation of Theorem 5.2, and let g :=

g(S), µ := µ(S). If R is not Gorenstein, then |Star(R)| ≥
⌈
g

2µ

⌉
.

Proof. By Lemma 5.7, there is a τ ∈ (R : M), τ ̸= 0, such that
v(τ) /∈ v(R) ∪ {g}. Let a ∈ N \ v(R) such that a ≥ g/2.

If g−v(τ) < a < v(τ), then define Ia :=Ma; if a > v(τ), then define
Ia := R +Ma+1

V .
In both cases, Ia is not divisorial (in the former case by the Propo-

sition 5.9, in the latter case because Ia does not contain τ and thus
does non contain (R : M)). Moreover v(Ia) ̸= v(Ib) if a ̸= b, since
max(N \ v(Ia)) = a. Therefore, each Ia generates a different star oper-
ation. Since each g− kµ (for 0 ≤ k ≤ g

2µ
) satisfies these conditions, the

∗Ig−kµ
are

⌊
g
2µ

⌋
+ 1 =

⌈
g
2µ

⌉
different star operations on R. �

Suppose now that a, g − a /∈ v(R). Lemma 5.6 shows that each I ∈
F0(R) such that sup(N \ I) = a is not divisorial. Like for semigroups,
if b is a positive integer and a− µ < b < a, it follows that I + βR (for
any β such that v(β) = b) is not divisorial, and thus each integer in
(a−µ, a) \v(R) generates a different star operation. Applying Lemma
4.13, we get analogous statements of Propositions 4.12 and 4.14.

Proposition 5.12. Preserve the notation of Theorem 5.2, and let g :=
g(S), µ := µ(S), δ := δ(S).

(a) Suppose that there is a positive integer a such that a < µ and
g − a /∈ S. Then |Star(R)| ≥ δ + 1 ≥ µ.
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(b) Suppose that there is an a ∈ N such that µ < a ≤ g/2 and

g − a /∈ S. Then |Star(R)| ≥ 2⌈
µ−1
2 ⌉ ≥

⌈
µ− 1

2

⌉
.

Proof. (a) For each s ∈ N \S, let βs be an element of V of valuation s.
If s < a, let Is := R+Ma+1

V +βsR; if s > a, let Is be a maximal element
of Ms. Then, each Is is a non-divisorial ideal of R, contained between
R and V , and v(Is) ̸= v(It) is s ̸= t, so that Is and It generate different
star operations. Hence, R has at least δ star operations different from
v, and thus at least δ + 1 star operations.

(b) By Lemma 4.13, there are ν := ⌈µ−1
2
⌉ integers x1, . . . , xν ∈ (a−

µ, µ) \ S. For any xi, let βi be an element of V of valuation xi. Then,
for each subset B := {βi1 , . . . , βik} of {β1, . . . , βν}, the set IB := R +
Ma+1

V +βi1R+ · · ·+βikR is an ideal such that max(N\v(IB)) = a, and
thus each IB is non-divisorial. Moreover, if x ∈ IB and a−µ < v(x) < a,
then v(x) ∈ S ∪ {xi1 , . . . , xis}, and thus v(IB) ̸= v(IC) (and hence
∗IB ̸= ∗IC ) if B ̸= C. �

So far, we have shown that the number of star operations on rings
on residually rational rings that are not Gorenstein grows with the
multiplicity and the Frobenius number of its value semigroup. To get
an analogue of Theorem 4.15, we need to show that each semigroup
corresponds to only a finite number of rings in V(V ). Moreover, we
have not yet shown that Star(R) is finite, so that it could be that the
analogue of Theorem 4.15 holds, but for trivial reasons. Both problems
are resolved with the same hypothesis.

Lemma 5.13. Let V be a discrete valuation ring with residue field K
and quotient field L; suppose that K is finite. Let S be the class of
numerical semigroups.

(a) The map v : C(V ) −→ S, R 7→ v(R) has finite fibres, that is,
for every S ∈ S, v−1(S) is finite.

(b) For every R ∈ C(V ), the cardinality of F(R) is finite, and thus
Star(R) is finite.

Proof. (a) Let S be a semigroup. If v(R) = S, then R contains
all the elements x such that v(x) > g(S). Let H = M g+1

V be
this set. Since a ring is an additive group, every ring belonging
to v−1(S) defines uniquely a subgroup of V/H, which is finite
since its cardinality is bounded by |K|g+1. Hence also v−1(S) is
finite.

(b) See the proof of [11, Theorem 2.5]. �

Theorem 5.14. Let V be a discrete valuation ring with finite residue
field. For any n > 1, the set {R ∈ V(V ) : |Star(R)| = n} is finite.

Proof. By Theorem 5.3, we can suppose that no v(R) is symmetric.



22 DARIO SPIRITO

Propositions 5.11 and 5.12 show that, like in the proof of Theorem
4.15, there are a finite number of possible semigroups for a given n. By
Proposition 5.13, each semigroup gives rise to only a finite number of
possible rings in V(V ), and thus the number of rings in V(V ) with n
star operations is finite. �

Theorem 5.14 fails when the residue field of V is infinite. Indeed, sup-
pose V := K[[X]], and let R := K[[X3, X4, X5]]. Then, by [11, Theo-
rem 3.8], |Star(R)| = 3. For any t ∈ K, consider the ring isomorphisms
ϕt : V −→ V such that ϕt(X) = X + t. Then, if t ̸= 0, ϕt(R) is a
ring isomorphic to R but different from R, since it contains elements
in the form a0 + a1X + a2X

2 + a3X
3 + · · · with a1 ̸= 0. Similarly,

ϕt(R) and ϕs(R) are isomorphic but different if t ̸= s, since otherwise
R = ϕ−s(ϕs(R)) = ϕ−s(ϕt(R)) = ϕt−s(R). Therefore, if K is infinite,
{ϕt(R) : t ∈ K} is an infinite set of rings in V(V ), and each one has
exactly three star operations.

It is also worth noting that, if R ∈ V(V ) and the residue field K of V
is infinite, then Star(R) may be infinite: for example, if t(R) ≥ 3, then
by [11, Theorem 2.7] we have |Star(R)| ≥ 1

2
|K| + 3, and in particular

it is infinite if K is.
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