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Abstract

Proprioceptive development relies on a variety of sensory inputs, among which vision is

hugely dominant. Focusing on the developmental trajectory underpinning the integration of

vision and proprioception, the present research explores how this integration is involved in

interactions with Immersive Virtual Reality (IVR) by examining how proprioceptive accuracy

is affected by Age, Perception, and Environment. Individuals from 4 to 43 years old com-

pleted a self-turning task which asked them to manually return to a previous location with dif-

ferent sensory modalities available in both IVR and reality. Results were interpreted from an

exploratory perspective using Bayesian model comparison analysis, which allows the phe-

nomena to be described using probabilistic statements rather than simplified reject/not-

reject decisions. The most plausible model showed that 4–8-year-old children can generally

be expected to make more proprioceptive errors than older children and adults. Across age

groups, proprioceptive accuracy is higher when vision is available, and is disrupted in the

visual environment provided by the IVR headset. We can conclude that proprioceptive accu-

racy mostly develops during the first eight years of life and that it relies largely on vision.

Moreover, our findings indicate that this proprioceptive accuracy can be disrupted by the

use of an IVR headset.

Introduction

From the earliest stages of life, we develop physically, psychologically, and socially through the

interaction between our genes and the environment. We experience this environment via sen-

sory information which comes from both the external world (exteroception) and the self (inter-
oception). Exteroception describes sensory information which comes from the environment

around us (e.g. sight, hearing, touch), while interoception is the perception of our body and

includes “temperature, pain, itch, tickle, sensual touch, muscular and visceral sensations, vaso-

motor flush, hunger, thirst” and other sensations (p. 655 [1]). This information, which comes

from different, complementary sensory modalities, has to be integrated so that we can interact

with and learn from the environment. The multisensory integration that follows takes time to

develop and emerges in a heterochronous pattern: we rely on the various sensory modalities to
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different degrees at different points in the human developmental trajectory, during which the

sensory modalities interact in different ways [2].

Proprioception: An emergent perception arising from a multisensory

process

Both exteroception and interoception drive our discovery of the external world and the self.

One important physical dimension of the concept of self is proprioception, which has a defini-

tion that is particularly complex and debated in the extant literature. Proprioception belongs

to the somatosensory system [3] and has traditionally been defined as the “awareness of the

spatial and mechanical status of the musculoskeletal framework” which includes the senses of

position, movement, and balance (p. 667 [4]). From this perspective, proprioception is the

awareness of the position and movement of our body in space and results from the processing

of information from muscle, joint, tendon, and skin receptors. It arises from static (position)

and dynamic (movement) information, and is crucial to the production of coordinated move-

ments [5]. In general, researchers are now bypassing the study of unimodal sensory processing

to focus on multisensory integration processes. While humans rely on somatosensory infor-

mation to achieve proprioception in blind conditions, vision can lead to proprioception when

proprioceptively informative cues are provided. Indeed, specific visual cues can be considered

to be proprioceptively informative to the extent that they aid proprioception. For example,

research concerning mirror therapy for phantom limb pain indicates that visual representa-

tions of the body (e.g. the lost limb) can be manipulated to induce proprioceptive sensations

and perception of movement, touch, and body ownership, even with a complete absence of

somatosensory input [6]. Moreover, self-motion studies show that global visual landmarks

such as the corners of a room appear to be useful for proprioception, while local visual cues

such as surrounding objects [7] or homogeneous visual textures and patterns [8] are not.

We now know that proprioception is a complex body consciousness which flexibly emerges

from different interdependent sensory inputs, modalities, and receptors. Proprioceptive infor-

mation is combined with information from the vestibular system, which detects movement of

the head in space, and the visual system to give us a sense of motion and allow us to make esti-

mates about our movements [9]. As such, it plays a vital role in everyday tasks such as self-

motion.

As regards the development of proprioception, children up to two years of age tend to

make significant proprioceptive errors [10]. While several studies have shown that propriocep-

tive competence is stably developed by eight years of age [11, 12], others support the finding of

a longer developmental trajectory for proprioception, observing that 8- to 10-year-old children

are less accurate than 16- to 18-year-old adolescents when making proprioceptively guided

movements [13]. Moreover, some studies find improvements in proprioceptive accuracy con-

tinuing up to 24 years of age [14].

This proprioceptive development seems to be strictly dependent on visual calibration. In

general, sensory organization is qualitatively different across development and across different

tasks. In infancy and early childhood, vision appears dominant over somatosensory and vestib-

ular information [15]. Between five and seven years of age, visual influence on proprioception

shows non-linear developmental differences [16], although this has not yet been widely studied

in a broader range of ages [15]. The developmental trajectory of proprioception may be

affected by the fact that across childhood, the sections of the body change in terms of size,

shape, and relative location. Indeed, the early importance of vision over somatosensory infor-

mation could be a result of the lack of reliability of somatosensory input, which is highly unsta-

ble during these childhood physical changes [2].
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IVR as a method of studying proprioception

Immersive Virtual Reality (IVR) can be used to manipulate vision while the user performs pro-

prioceptive tasks. Through IVR, we can manipulate individual sources of sensory information,

be they visual, vestibular, or proprioceptive, which are physiologically bound together. This

makes it possible to study the contribution of these individual sensory inputs and of multisen-

sory integration to self-perception and motor control [17].

In IVR, “the simultaneous experience of both virtual environment and real environment

often leads to new or confounded perceptual experiences” (p.71 [18]). For example, users can

see themselves standing in the empty space between two mountains but, instead of falling, per-

ceive the floor under their feet. Even with a virtual body representation (e.g. visual perception

of an avatar) or without the possibility to see one’s own body, IVR can alter a user’s body

schema [19]. In IVR, users are found to decrease their speed and take smaller steps [20] and

experience greater difficulties orienting themselves [21]. To orient and move in space in differ-

ent environments and tasks, people can switch between reference frames related to the body

(e.g. proprioception) or to the external world (e.g. vision). It has been suggested that IVR pro-

vides unexpected incongruent stimuli and induces a sensory conflict between vision and pro-

prioception which differently affects users (e.g. sometimes causing motion sickness)

depending on their dominant reliance on one of these two reference frames [22]. The possibil-

ity to make active movements during the interaction with IVR improves proprioception, even

without proprioceptively informative visual landmarks [23, 24]. However, despite the impor-

tance of the body senses, the physical feedback (derived, for example, from actively walking

during the virtual immersion) is not sufficient to eliminate errors in self-motion and spatial

orientation while wearing an HMD [25]. These findings show that HMD-delivered IVR has

particular visuo-proprioceptive features that can disrupt proprioception in adults.

However, there is a lack of research regarding how IVR features interact with age-related

proprioceptive accuracy, visuo-proprioceptive integration, and self-motion. A recent experi-

mental study with children (8–12 years old) and adolescents (15–18 years old) provides evi-

dence about children’s use of vision during self-motion in IVR [26]. The authors intentionally

created a mismatch between visual feedback (visual flow) and proprioceptive feedback (active

motion) during different motor tasks. They measured children’s ability to recalibrate (to adapt

their motor actions to the provided abnormal visual input) and re-adapt to the normal charac-

teristics of the real environment. As with adults in previous studies [27, 28], children and ado-

lescents showed the ability to recalibrate in a few minutes. However, children re-adapted to

reality significantly more slowly than adolescents, demonstrating more pronounced post-

exposure effects. These findings indicate that the motor performance of children, more so than

adolescents, could be driven by vision and modified by IVR. As different age groups may be

differently affected by IVR, it is necessary to shed light on how age might affect one’s interac-

tion with this technology.

Another recent study used IVR to decouple visual information from self-motion and inves-

tigate whether adults and 10- and 11-year-old children can optimally integrate visual and pro-

prioceptive cues [29]. An HMD was used to make participants learn a two-legged path either

in darkness (“only proprioception”), in a virtual room (“vision + proprioception”), or staying

stationary while viewing a pre-recorded video of walking the path in the virtual room (“only

vision”). Participants then reproduced this path in darkness. In contrast to what was expected,

the authors found that adults failed to optimally integrate visual and proprioceptive cues to

improve path reproduction. However, children did integrate these cues to improve their per-

formance. The authors suggest that this may be because children cannot help but rely on visual

cues in spatial tasks even when the nature of the task does not require it. We previously
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discussed findings demonstrating that HMDs disrupt proprioception, which adults and chil-

dren rely on in different ways. It may be the case that IVR imparts different effects on adults’

and children’s performance. We could speculate that, if IVR causes some sort of conflict

between vision and proprioception, adults’ lack of multisensory integration in these environ-

ments could be due to their reliance on proprioception and ability to ignore visual cues. Since

this ability to ignore irrelevant visual cues seems not to be mature in children [30], they could

benefit from IVR motor training because they would still be using vision to calibrate their less

accurate proprioception. It is only recently that the field of IVR research is beginning to focus

on the developing child to study developmental differences in relation to their interaction with

IVR [31]. Further research is needed to investigate how sensorimotor interaction with IVR

changes depending on age-related sensorimotor functioning.

Statistical approach for exploratory investigations: Bayesian model

comparison

Given the lack of evidence concerning the complex interaction between developmental stages,

visuo-proprioceptive integration, and IVR, exploratory studies are needed and can benefit

from assuming a model comparison approach. Model comparison allows for the selection of

the most plausible model given data and a set of candidate models [32]. Firstly, the different

research hypotheses are formalized as statistical models. Subsequently, the obtained models

are compared in terms of statistical evidence (i.e. support by the obtained data), using informa-

tion criteria [33]. Information criteria enables the evaluation of models considering the trade-

off between parsimony and goodness-of-fit [34]: as the complexity of the model increases (i.e.

more parameters), the fit to the data increases as well, but generalizability (i.e. ability to predict

new data) decreases. The researchers’ aim is to find the right balance between fit and generaliz-

ability in order to describe, with a statistical model, the important features of the studied phe-

nomenon, but not the random noise of the observed data.

A Bayesian approach is a valid alternative to the traditional frequentist approach [35, 36],

allowing researchers to accurately estimate complex models that otherwise would fail to con-

verge (i.e. unreliable results) in a traditional frequentist approach [37, 38]. Bayesian inference

has some unique elements that make the meaning and interpretation of the results different

from the classical frequentist approach [39]. In particular, in the Bayesian approach, parame-

ters are estimated using probability distributions (i.e. a range of possible values) and not a sin-

gle point estimate (i.e. a single value). Bayesian inference has three main components [40]: (1)

Priors, the probability distributions of possible parameter values considering the information

available before conducting the experiment; (2) Likelihood, the information given by the

observed data about the probability distributions of possible parameter values; (3) Posteriors,
the resulting probability distributions of possible parameter values, obtained by combining

Priors and Likelihood through Bayes’ Theorem. As a result, a Bayesian approach assesses the

variability (i.e. uncertainty) of parameter estimates and provides associated inferences via 95%

Bayesian Credible Intervals (BCIs), the range of most credible parameter values given the prior

distribution and the observed data. Thus, a Bayesian approach allows researchers to describe

the phenomenon of interest through probabilistic statements, rather than a series of simplified

reject/not-reject dichotomous decisions typically used in the null hypothesis significance test-

ing approach [32].

Research goals and hypotheses

The aim of the present study is to investigate the extent to which the reliability of visual infor-

mation aids proprioceptive-based self-motion accuracy across the lifespan. We also aim to
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explore whether HMD-delivered IVR, compared to equivalent real environments, affects pro-

prioceptive accuracy. Given that findings in the area of multisensory interaction with IVR

across development are still conflicting and unexplained with respect to the use of HMDs, the

current study seeks to clarify how using an HMD affects children’s and adults’ self-motion per-

formance, and how these effects could be related to the reliability of the provided visual and

proprioceptive information. Research has broadly considered the computer side of IVR fea-

tures affecting human-computer interaction, but there is a lack of research investigating how

individual characteristics of users interact with IVR. To compare performances in reality and

IVR, all sensory conditions being equal, would clarify the role of both sensory manipulation

and IVR. How might different users, with different levels of multisensory functioning, interact

with IVR? The present study explores this question, examining how IVR differs from reality in

affecting visuo-proprioceptive integration in adults and children at different developmental

stages. Furthermore, the study aims to open new avenues of analysis in this area of research by

using a model comparison approach to analyze each hypothesis.

Based on the extant literature described in the introductory section of this work, we hypoth-

esized that children’s proprioceptive accuracy would be globally lower than that of adults, but

that children would be less impaired than adults by the disruption of proprioception. We fur-

ther hypothesized that IVR would disrupt proprioception and impact proprioceptive accuracy

more in adults than children.

Materials and methods

Participants

In order to capture a range of developmental stages, we included primary and secondary

school-aged children and adults. We collected data from young children aged from 4 to 8

years old, and older children aged from 9 to 15 years old. This distinction was made to clarify

contradictory findings about how long it takes to develop stable proprioceptive accuracy. With

regard to the adult group, we included participants within the age range of 18 to 45 years. We

excluded older participants based on literature reporting deterioration of proprioceptive accu-

racy from middle age [41, 42]. For this study, we collected data from 55 participants. In line

with our a priori exclusion criteria, we excluded six participants who reported that they had

received a diagnosis for any kind of neuropsychological, sensory, or learning disorder from

the final analysis. The final sample included 49 participants, distributed across age groups as

reported in Table 1.

In a within-subjects design, all participants were exposed to all conditions in a randomized

order.

Materials and set-up

We designed and built a testing room in which different sensory stimulations could be pro-

vided and the availability of visual and proprioceptive information could be manipulated while

Table 1. Participants according to age groups.

Age group Years Range Sex

N Mean SD Min Max Male Female

Young Children 13 7.1 1.3 4 8 9 4

Older Children 13 11.3 2.1 9 15 5 8

Adults 23 32.4 6.7 20 43 12 11

https://doi.org/10.1371/journal.pone.0222253.t001
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completely excluding unwanted external stimuli (Fig 1). In the centre of the room, a custom-

ized swivel chair on a round platform was fixed to the floor (Fig 2A). A 360˚ protractor under

the seat was visible to experimenters via a dedicated camera which allowed the measurement

of the degree of each rotation. One 50 cm white LED strip (12V DC, 24 Watt per meter)

allowed sufficient illumination for a clear and realistic visual experience of the room. One UV

lamp (E27 26W) was used to obscure other visual stimuli such that the white clouds on the

walls were the only visual cues available. With the UV light on, participants were asked to wear

a black poncho which covered their bodies, making them not visible (Fig 2B). One infrared

LED spotlight (BIG BARGAIN BW103) enabled clear video recordings of the inside of the

room even when it was completely in darkness. This light system was anchored to the ceiling,

over participants’ heads, and was covered by a black panel which prevented participants from

directly seeing the lights.

We provided the IVR simulation through the HMD Oculus Gear VR 2016, 101˚ FOV, 345

g weight, interfaced with a Samsung Galaxy S7 (ANDROID 8.0.0 operating system).

Fig 1. Experimental room. The room measured 2 x 2 meters and was soundproof, with black interior walls and equal

numbers of white clouds randomly fixed on each wall. The external walls were painted with a child-friendly landscape

which was designed to encourage children to enter the room.

https://doi.org/10.1371/journal.pone.0222253.g001

Fig 2. Experimental room, interior. A: The swivel chair in a visuo-proprioceptive real environment. B: A participant

wearing the black poncho in a vision-only real environment.

https://doi.org/10.1371/journal.pone.0222253.g002
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A Nikon KeyMission 360 camera was used to create 360˚ images of the room and to build

the IVR. The room was monitored via one USB 2.0 DirectShow webcam, and one USB 2.0

DirectShow webcam with integrated infrared LED.

To monitor the video recordings and IVR simulations, we used a SATELLITE Z30-B, Win-

dows 10, 64bit, Intel Core i5-5200U CPU @ 2.20 Ghz, 8.0 GB RAM, Intel HD Graphics 5500.

The communication between people inside and outside the room was enabled via a system of a

USB speaker, microphone, headphones, and one USB soundcard. The VR server application

developed for this experiment is an Android application with VR environments, developed in

Unity. A remote interface, also developed in Unity for Windows or Android OS, allowed

experimenters to control the VR server application. Software for audio-video recording and

real-time communication was developed in TouchDesigner.

Procedure

Adult participants were welcomed into the lab and asked to sign a consent form. Parents of

children were asked to sign the form on their child’s behalf. The study was approved by the

Ethics Committee of Psychology Research, University of Padua. At least two experimenters

conducted the experiment. On commencing the experiment, participants were asked to sit on

the swivel chair which was fixed in the middle of the recording area inside the room. Experi-

menter 1 would close the door and stay inside near the participant for the duration of the

experiment. Experimenter 2 managed the experiment from outside the room: they switched

the lights on and off, changed the visual stimuli which were presented through the HMD, and

gave verbal instructions to Experimenter 1 and to the participants. Although the room is

soundproof, Experimenter 2 could communicate with the people inside through a microphone

and speaker system. During the experimental task, Experimenter 1 managed the passive rota-

tion and remained silent behind the participant, providing no visual or auditory cues.

Experimental task

We adopted a self-turn paradigm in which the experimenter rotates the chair a certain degree

(passive rotation) from a start position to an end position. After each passive rotation, partici-

pants were asked to rotate back to the start position (active rotation). The position at which

the participant stopped their active rotation is recorded as the return position. During the pas-

sive rotation, participants sat still and kept their feet on a footrest which rotated with the chair.

To perform the active rotations, participants could use their feet on the still platform under the

chair to move themselves. Within a given experimental condition, during both the encoding

(passive rotation) and the recall (active rotation) phase, all sensory information was consistent.

During the recall phase, proprioception derived from the active movement was involved in

performing the active rotation and recalling the start position. This constitutes the accuracy

measure in our task, in line with the extant literature [43–45]. We did not manipulate vestibu-

lar information, which was consistent across all experimental conditions. On the other hand,

we manipulated vision across the three experimental conditions as described in the following

section.

Conditions

The experiment had a multifactorial design with one between-subjects factor (Age) and four

within-subjects independent variables (Environment, Perception, Amplitude, Direction).

Therefore, we had a 3 (young-children/older-children/adults) x 2 (Reality/IVR) x 3 (Proprio-

ception/Vision/Vision+Proprioception) x 2 (clockwise/counterclockwise) design, with an

additional continuous independent variable of rotation amplitude. Within the environment

Proprioceptive accuracy in Immersive Virtual Reality
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variable, there were reality conditions in a real environment (the interactive room) and IVR

conditions with participants wearing the HMD that showed 360˚ pictures of perceptually

equivalent versions of the reality conditions. Within the perception variable, there were three

conditions. One blind condition removed all visual information such that only proprioceptive

information could be used (P). One visual condition limited the access to proprioceptively

informative visual landmarks (hiding the participants’ body and the room corners) in order to

disrupt proprioception, while providing a proprioceptively uninformative visual texture (a pat-

tern of small bright clouds on the walls) (V). Indeed, previous research has found that after

being disorientated by a passive rotation in a real environment, people could still detect the

position of global landmarks (the room’s corners), while making huge errors locating sur-

rounding objects [7]. Our intention was to disrupt proprioception through altering the visual

information available, without making changes to the proprioceptive information arising from

participants’ bodies during the passive and active movements, which are consistent within par-

ticipants. The last condition allowed the participant to access reliable visual and proprioceptive

information (VP). We aimed to check whether the equivalent visual information would lead to

equivalent proprioceptive accuracy when comparing reality and IVR conditions. In fact, the

degree to which visual cues aid proprioception seems to be environment-specific. For instance,

in HMD-delivered IVR, users’ self-motion could not benefit so much from global landmarks

[46]. Although it was not a main aim of the experiment, we aimed to control whether the rota-

tion direction and amplitude would affect performance. For this purpose, the passive rotation

of each condition was made in both directions (clockwise—“R”, counterclockwise—“L”), and

with two angle amplitudes (90 and 180 degrees). As the passive rotation was manually per-

formed by the experimenter, perfect accuracy in reaching 90 and 180 degrees was not possible.

Given the variability in the actual passive rotations, we considered amplitude as a continuous

variable. In this way, we controlled for this potential source of noise. The order of conditions

was randomized. Participants performed two trials per Environment X Perception condition,

resulting in 12 observations per participant.

The experimental conditions are as follows:

1. R_P (Reality; only proprioception: no visual information available).

2. R_V (Reality; only vision: proprioceptively uninformative visual texture of small bright

clouds on the walls. No first-person view of the body or room corners in order to disrupt

proprioception by manipulating vision).

3. R_VP (Reality; proprioceptively informative visual cues available, including first-person

view of the body and room corners. The visual texture of clouds on the walls is available).

4. IVR_P (HMD on; only proprioception: no visual information available).

5. IVR_V (HMD on; only vision: proprioceptively uninformative visual texture of small bright

clouds on the walls. No first-person view of the body or room corners in order to disrupt

proprioception by manipulating vision).

6. IVR_VP (HMD on; proprioceptively informative visual cues available, including visible

room corners, although the first-person view of the body is not visible. The visual texture of

clouds on the walls is available).

Measures of task performance

The proprioceptive accuracy of self-turn performances was calculated in terms of error as the

absolute difference between the start position (from which the experimenter started the passive
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rotation) and the return position (in which the participant stopped the active rotation). In this

way, greater values indicated a less accurate performance, where a value of 0 would indicate

that the participant actively rotated back to the exact start position, and a value of 100 would

indicate that the participant actively rotated back to a position that was 100 degrees away from

the start position.

Proprioceptive accuracy was manually measured during an offline coding of the video

recording. The video shows two matched recordings of both the entire room (with the partici-

pant and Experimenter 1 in frame) and the protractor positioned under the seat of the swivel

chair. A vertical green line was superimposed on the protractor image to facilitate detection of

the specific degree of each rotation. Two independent evaluators coded the videos and entered

the start and return positions in the dataset. Values which were divergent for more than two

degrees were a priori considered disagreement values. That was the case for 82 out of 578 obser-

vations (14.2%). A third coder examined the video recordings of the disagreement values to

make the final decision. In case of a disagreement value, the third coder’s value was used instead

of the value that differed most from the third coder’s value. We obtained a dataset with two cod-

ings for each piece of data. We evaluated the intercoder agreement by conducting an intra-class

correlation (ICC), which is one of the most commonly used statistics for assessing inter-rater

reliability (IRR) for ratio variables [47]. On the double values indicating the start, end, and return

positions of each rotation, the ICC index has been calculated. The analysis estimates an ICC =

.99. This nearly perfect inter-coder agreement derives from the small mean difference between

the two coders’ values (MeancoderA−coderB< .16), within the huge range of possible values (0/360).

We carried out the data analysis on the final dataset with the average of the two values.

Statistical approach

In order to explore how Age, Perception conditions, and Environment conditions interact to

affect proprioceptive accuracy, a model comparison approach was used. Firstly, each research

hypothesis was formalized as a statistical model. Subsequently, the obtained models were com-

pared in terms of statistical evidence (i.e. support by the data) using information criteria [33].

Given the complex structure of the data, Bayesian generalized mixed-effects models were

used [35, 48]. Specifically, data were characterized by: (1) a continuous non-normally distrib-

uted dependent variable (i.e. rotation error); (2) a between-subject factor (i.e. Age); (3) within-

subject factors (i.e. Perception condition and Environment condition); (4) a quantitative inde-

pendent variable (i.e. rotation Amplitude). Mixed-effects models allow us to take into account

the repeated measures design of the experiment (i.e. observations nested within participants).

Thus, participants were treated as random effects, with random intercepts that account for

interpersonal variability, while the other variables are considered as fixed effects. Generalized

mixed-effects models were used considering the Gamma distribution, with logarithmic link

function, as the probability distribution of the dependent variable. Generalized mixed-effects

models allow us to model non-normally distributed data using appropriate probability distri-

butions that reflect the characteristics of the data [49]. Selecting an appropriate probability dis-

tribution provides better fit to the data and more reliable results [50]. Gamma distribution is

advised in the case of positively skewed, non-negative data, when the variances are expected to

be proportional to the square of the means [51]. These conditions are respected by our depen-

dent variable: we only have positive values, with a positive skewed distribution, and we expect

a greater variability of the possible results as the model predicted mean increases (i.e. a greater

dispersion of participants’ scores when greater mean values are predicted by the model).

Analyses were conducted with the R software version 3.5.1 [52]. Models were estimated

using the R package ‘brms’ [53] which is based on STAN programming language [54, 55] and
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employs the No-U-Turn Sampler (NUTS; [56]), an extension of Hamiltonian Monte Carlo

[57]. All our models used default prior specification of the R package ‘brms’ [53]. Detailed

prior specifications are reported in the Supplemental Materials. These priors are considered

non-informative since they leave the posterior distributions to be mostly influenced by the

observed data rather than by prior information. Each model was estimated using 6 indepen-

dent chains of 8,000 iterations with a “warm-up” period of 2,000 iterations, resulting in 36,000

usable samples.

Convergence was evaluated via visual inspection of the trace plots (i.e. sampling chains)

and R-hat diagnostic criteria [58]. All tested models showed satisfactory convergence with all

R- hat� 1.0008, where values close to 1 indicate convergence, and none exceed the 1.100 pro-

posed threshold for convergence [35]. All R-hat values and trace plots are reported in the Sup-

plemental Materials.

The Watanabe-Akaike information criterion (WAIC; [59, 60]) was used as information cri-

teria to select the most plausible model among the tested models, given the data. WAIC is the

corresponding Bayesian version of the commonly used Akaike information criterion (AIC;

[61]). WAIC weights were computed to present the probability of each model of making the

best predictions on new data, conditional on the set of models considered [32]. This allows for

the comparison of models with a continuous informative measure of evidence. Finally, the

most plausible model was interpreted considering the estimated posterior parameter distribu-

tions. Main effects and interaction effects were evaluated using planned comparison and

graphical representations of the predicted values by model.

The full analysis report is available in the S1 Appendix.

Results

Descriptives

Out of the 49 participants, 43 participants completed the task in all 12 trials, 4 participants

completed 11 trials, 1 participant completed 10 trials, and 1 participant completed 8 trials.

This failure to complete all trials with some participants was due to technical problems which

occurred with the experimental apparatus. Thus, the final data consist of 578 observations

nested in 49 participants. The number of observations in each condition is reported in S1

Table.

We considered Amplitude of the passive rotations as a continuous variable whose distribu-

tion is shown in Fig 3. To obtain interpretable results in the analyses, the Amplitude variable

was standardized (i.e., Z scores were obtained).

The mean self-turn error in the present sample was 17.1 degrees (SD = 8.0). The frequency

of the observed values is reported in Fig 4. Considering how we computed the self-turn error,

only positive values are possible and from visual inspection, the dependent variable has an evi-

dent positive skewed distribution.

The means and standard deviations of the self-turn error for the three age groups in the six

different experimental conditions are reported in Table 2 and the distributions of the observed

data are presented in Fig 5. For the sake of interpretability, descriptive statistics were computed

according to Age, Environment, and Perception, without taking into account the variable

Amplitude (i.e., all observations in the same condition were considered independently of the

Amplitude values), which will be considered later on in the analysis. Considering the observed

values according to Age, adults (M = 12.8, SD = 4.4) made less self-turn errors than older chil-

dren (M = 16.4, SD = 7.5) and young children (M = 25.3, SD = 7.7). Looking at the Environ-

ment conditions, participants made less errors and were thusly more accurate in the reality

condition (M = 13.9, SD = 8.0) than in the IVR condition (M = 20.2, SD = 10.3). Finally,
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considering the different levels of the variable Perception, participants made less self-turn

errors when they could rely on both vision and proprioception (M = 13.9, SD = 11.3) than

when they could use only vision (M = 14.5, SD = 9.3) or proprioception (M = 22.8, SD = 14.1).

Model comparison and interpretation

Seven different Bayesian generalized mixed-effects models were performed to analyze the data

(see S2 Table). In each model the dependent variable was the error in the self-turn task. WAIC

Fig 4. Frequencies of the observed self-turn errors. (nparticipants = 49; nobservations = 578).

https://doi.org/10.1371/journal.pone.0222253.g004

Fig 3. Estimated distribution of the actual amplitude in the passive rotation. (nparticipants = 49; nobservations = 578).

https://doi.org/10.1371/journal.pone.0222253.g003
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results indicated that m.2 was the most plausible model for the observed data. It evaluated the

2-way interaction effect between Perception and Environment conditions, and had the lower

WAIC value (WAIC = 4345.3) and a probability of being the best of.67. WAIC values and rela-

tive WAIC weights of all models are reported in S3 Table.

In order to interpret the effects of model m.2, 95% Bayesian Credible Intervals (BCI) of the

parameters posterior distribution were evaluated (S4 and S5 Tables). Ninety-five percent BCI

represent the range of the 95% most credible parameters values given the prior distribution

and the observed data. Thus, an effect is considered plausible if the value zero is not included

in the 95% BCI, whereas if the value zero is included in the 95% BCI, it is interpreted as not

plausible.

Self-turn error was moderated by Amplitude, by Age, and by the interaction between Per-

ception and Environment conditions. On the contrary, the direction of rotations seems to

have no effect on the participants’ performance (β = .10; 95% BCI = -.04; .23).

To evaluate the model fit (i.e. the model’s ability to explain the data) we used a Bayesian def-

inition of R-squared [62] to estimate the proportion of variance explained. The estimated

value of Bayesian R-squared for the model m.2 is.26 (95% BCI = .19; .34), that is the model

explains 26% of the variability of the data.

Rotation amplitude. Self-turn error was moderated by Amplitude (β = .22; 95% BCI = .14;

.29), for which increasing rotation amplitude is associated with a worse performance (Fig 6).

Group age. To evaluate the role of Age, the distributions of predicted mean values for the

three groups were considered (Fig 7). BCI values are reported in S4 Table. The predicted mean

error for adults was 12.8 degrees (95% BCI = 10.6; 15.1), for older children was 15.5 degrees

(95% BCI = 12.1; 19.2) and for young children was 24.8 degrees (95% BCI = 19.3; 30.8). Bayes-

ian pairwise comparisons (i.e., predicted score differences between groups) showed that over-

all, young children are expected to make more self-turn errors than adults (95% BCI = 6.3;

Table 2. Descriptive statistics. Means and standard deviations of self-turn error according to age and the experimental

conditions.

Perception Total

Proprioception Vision Vision

+ Proprioception

Mean SD Mean SD Mean SD Mean SD

Reality

Adults 16.2 8.6 9.8 12.6 6.1 4.1 10.7 6.0

Older Children 19.6 10.5 14.0 18.2 6.7 3.6 13.5 7.3

Young Children 30.6 22.4 8.2 5.2 20.7 20.5 19.8 9.0

Total 20.9 15.0 10.5 12.9 10.1 12.5 13.9 8.0

IVR

Adults 17.6 10.6 13.5 7.6 13.7 9.1 14.9 6.3

Older Children 23.6 19.1 17.5 10.1 16.9 18.6 19.3 9.5

Young Children 37.8 16.2 28.5 16.5 25.1 16.5 30.3 9.9

Total 24.7 16.8 18.5 12.6 17.4 14.6 20.2 10.3

Total

Adults 17.1 6.4 11.8 8.0 9.9 4.8 12.8 4.4

Older Children 21.6 13.7 15.7 11.8 11.7 9.4 16.4 7.5

Young Children 34.2 18.0 18.2 7.9 23.4 15.8 25.3 7.7

Total 22.8 14.1 14.5 9.3 13.9 11.3 17.1 8.0

Note: nparticipants = 49; nobservations = 578.

https://doi.org/10.1371/journal.pone.0222253.t002
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18.2) and also more than older children (95% BCI = 2.8; 16.0). However, we cannot state that

older children are expected to make more self-turn errors because the 95% BCI of the differ-

ence includes the value zero (95% BCI = -1.4; 6.9).

Perception and environment. To interpret the interaction between the Perception and

Environment conditions, the distributions of predicted mean values for all six conditions were

considered (Fig 8). BCI values are reported in S5 Table. In the Reality conditions, the predicted

mean error for proprioception was 22.4 degrees (95% BCI = 18.0; 27.2), for vision was 11.3

degrees (95% BCI = 9.0; 13.9) and for vision + proprioception was 9.8 degrees (95% BCI = 7.8;

Fig 5. Estimated distributions of the observed self-turn errors in the different conditions according to age.

(nparticipants = 49; nobservations = 578).

https://doi.org/10.1371/journal.pone.0222253.g005
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12.0). In the IVR conditions, the predicted mean error for proprioception was 24.3 degrees

(95% BCI = 19.3; 29.2), for vision was 18.0 degrees (95% BCI = 14.4; 21.8) and for vision + pro-

prioception was 17.8 degrees (95% BCI = 14.2; 21.7). Bayesian pairwise comparisons (i.e pre-

dicted error differences between conditions) showed that in both Reality and IVR, participants

are expected to make more self-turn errors when they rely only on proprioception than when

they can use only vision (Reality: 95% BCI = 6.5; 15.8; IVR: 95% BCI = 0.9; 11.7) or vision

Fig 6. Predicted mean of self-turn error according to amplitude (nparticipants = 49; nobservations = 578). The line

represents the mean value, the shaded area the 95% BCI values.

https://doi.org/10.1371/journal.pone.0222253.g006

Fig 7. Distributions of the predicted means of self-turn error according to age. (nparticipants = 49; nobservations = 578).

https://doi.org/10.1371/journal.pone.0222253.g007
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+ proprioception (Reality: 95% BCI = 8.0; 17.2; IVR: 95% BCI = .08; 11.7). In addition, in both

environments there is no difference between the use of vision and vision + proprioception

(Reality: 95% BCI = -1.4; 4.4; IVR: 95% BCI = -4.3; 4.9). Moreover, comparing IVR to Reality

conditions, results show that while wearing the HMD the self-turn errors increase when partic-

ipants rely only on vision (95% BCI = 2.8; 10.6) or on vision + proprioception (95% BCI = 4.3;

11.9). On the other hand, participants are not expected to make more errors than in Reality

when they rely only on proprioception (95% BCI = -4.3; 7.5).

Effect size. To quantify the differences between the various age groups and conditions, we

expressed the effects as the ratio between the two scores of the comparison of interest (see S6

Table). Thus, for example, young children are expected to make 88% more errors than adults

and 58% more errors than older children. Considering the Reality environment conditions,

when using only proprioception participants are expected to make 92% more errors than

when they rely only on vision and 118% more errors than when using vision + proprioception.

Considering the IVR conditions, when using only proprioception participants are expected to

make 34% more errors than when they rely only on vision and 35% more errors than when

Fig 8. Distributions of the predicted means of self-turn error according to the different conditions. (nparticipants = 49; nobservations = 578).

https://doi.org/10.1371/journal.pone.0222253.g008
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using vision + proprioception. Moreover, comparing IVR to the Reality condition, in IVR par-

ticipants are expected to make 56% more errors when using only vision and 75% more when

using vision + proprioception.

Discussion

This experiment explored the extent to which visual information aids proprioceptive-based

self-motion accuracy across the lifespan, and specifically in three developmental groups: 4–-

8-year-old children, 9–15-year-old children, and adults. Moreover, the experiment assessed

whether HMD-delivered IVR affects accuracy.

As expected, we found a main developmental trend in the improvement of proprioception

across conditions. In particular, as hypothesized, we found differences between the young

child group (4–8 years old) and the older child and adult groups (9–15 and 20–43 years old),

with this youngest group showing lower proprioceptive accuracy than the two older groups.

This indicates that proprioceptive development predominantly takes place in the first eight

years of life, such that adolescent and pre-adolescent children make more accurate propriocep-

tive judgements than younger children.

In line with our hypotheses, we also found an interaction effect between Perception and

Environment. Our findings indicate that proprioceptive accuracy was markedly impaired

when participants could rely only on proprioceptive input, regardless of the environment. In

the conditions which forced participants to rely solely on proprioception by removing all

visual information, all groups were less accurate than in conditions where visual information

was provided, regardless of the proprioceptive salience of this visual information. This finding

is consistent with the assertion that visual and vestibular information combine with proprio-

ceptive information to allow accurate self-motion [9]. Moreover, it indicates that typically

developing child and adult populations rely specifically on vision to calibrate proprioception

in order to accurately judge their movements. Regarding the role of different visual landmarks,

no differences were found between vision + proprioception and vision only conditions, that is,

conditions in which participants could view all aspects of the real or virtual room versus condi-

tions in which participants only saw a visual texture of randomly placed clouds but were

unable to see proprioceptively informative visual cues such as the corners of the room or their

body. Moreover, IVR, compared to Reality, disrupted proprioception only when visual input

was provided (vision + proprioception and vision only conditions). There were no differences

between IVR and Reality in only proprioception (blind) conditions. This allows us to exclude

the possibility that wearing the HMD alone, and the corresponding weight and head restric-

tion, might have disrupted proprioception. We did find that performance worsened in IVR

conditions where visual information was available relative to corresponding reality conditions.

The way in which the HMD delivers visual information has a complex (and essentially

unknown) effect on self-motion perception and the kinematics of movement [63]. Factors

such as display type, field of view, visual content (peripheral cues, high-low visual contrast,

etc.), temporal lag between the user’s action and the HMD’s reaction, and so on could be the

means by which IVR disrupts proprioception through vision. This is an important finding,

given that few IVR experiments have considered that performance may be affected simply due

to the use of HMD-delivered IVR. Many previous IVR experiments seem to implicitly assume

that performance in IVR constitutes an appropriate corollary for real-world performance, but

our findings indicate that this may not be the case. Despite this HMD effect, our results pro-

vide evidence that IVR may be a useful means of studying multisensory integration and accu-

racy. Indeed, the same general Perception trend in self-motion accuracy (proprioception only,

vision only, vision + proprioception) was found both in IVR and Reality environments.
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In contrast to our expectations, we failed to find any Age x Perception interaction effect.

We expected that adults would be more affected by disrupted proprioception than children,

but this was not the case. Various aspects of the experimental design should be taken into

account to discuss this result. Firstly, our manipulation of the multisensory input in different

conditions could have been insufficient to uncover the expected differences. We found the

expected general trend of reduced proprioceptive accuracy in vision conditions relative to

vision + proprioception conditions. However, this difference failed to reach a meaningful mag-

nitude. As previous studies highlight, relative dominance of visual and proprioceptive input

and visuo-proprioceptive integration are task-dependent [2, 26]. For example, proprioception

has been reported to be more precise in the radial (near-far) direction and vision in the azi-

muthal (left-right) direction [64–66]. It could be suggested that our azimuthal proprioceptive

task was too dependent on vision to allow the detection of differences that were due to the dis-

ruption of proprioception. In fact, our “only vision” conditions were designed to disrupt pro-

prioception by removing proprioceptively informative visual cues (the room corners and

participant’s body), while still providing proprioceptively uninformative visual landmarks

(surrounding texture of clouds). It could be the case that proprioceptively uninformative visual

landmarks are sufficient to allow accurate performance in our task. In addition, we based our

research on similar studies that used a standing self-turn paradigm [7, 67]. We utilized a seated

self-turn paradigm so that we could use the chair position as a precise and consistent measure-

ment point of reference, independently from the participants’ individual postures which may

vary. However, this seated task could be less challenging than a standing one, resulting in a

ceiling effect, particularly for older children and adult groups. Moreover, we failed to find any

Age x Environment interaction, which prevents us from providing evidence on age-dependent

user-IVR interactions. Increased knowledge in this area could have meaningful implications

for fields such as IVR education, rehabilitation, and therapy, shedding light on when and how

IVR interventions could be effective at different developmental stages. Future research could

focus specifically on children younger than eight years old to explore the early development of

visuo-proprioceptive integration, as well as potentialities and threats related to IVR use.

We also found a main effect of rotation Amplitude, with proprioceptive accuracy consis-

tently decreasing as rotation amplitude increased. It is possible that this effect is specifically

due to working memory constraints [43, 44]. In our task, accuracy largely depends on partic-

ipants’ ability to actively maintain the start position in memory, and it may be the case that

differences in working memory capacity across age groups and conditions could have

affected results. As the study of the effect of rotation amplitude was not a primary goal of

this work, we did not explore interaction effects between Amplitude and other variables (i.e.

Age, Perception, or Environment). Remarkably, working memory limitations have been

found up to pre-adolescence [68] and age-related lower visuo-spatial working memory

capacity can be associated with lower proprioceptive accuracy in body position-matching

tasks [69]. A more in-depth look is also necessary to investigate potential implications of

both the proprioceptive and visual sensory register and its influence on performance, as

individual sensory registers have been shown to affect working memory in multisensory

environments (for a review, see [70]).

The present study opens intriguing perspectives for future research, despite having some

limitations. Firstly, the experimenter manually rotated the participant, so although experi-

menters were trained to keep a similar speed and method of rotating, the rotation velocity was

not perfectly consistent across trials and participants, potentially influencing participants’ per-

formance as in previous research [67]. Another limitation concerned the manipulation of

visual conditions distinguishing between “only vision” and “vision + proprioception”. As we

found no meaningful differences between these two Perception conditions, the “only vision”
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condition could have been insufficient to isolate vision and disrupt proprioception as we

aimed to. It would be interesting to see how similar but more effective manipulations of visual

information aimed at disrupting proprioception would affect performance. Moreover, the age

groups could be too broad to clearly show early developmental trends and changes.

One of the most intriguing yet unexplored perspectives that led to this work concerns the

possibility of intentionally disrupting proprioception through HMD-delivered IVR. This

method could be employed to study the degree to which different developmental populations

rely on proprioception, vision, and visuo-proprioceptive integration. From an applied perspec-

tive, disrupting proprioception could comprise an innovative intervention for use with clinical

populations which demonstrate an atypical reliance on specific senses and atypical integration

of vision (exteroception) and proprioception. For example, people with Autism Spectrum Dis-

order (ASD) seem to show an over-reliance on proprioception and hypo-reliance on vision

[71–73]. This perceptual strategy might not only lead to impaired motor skills in ASD (e.g.

dyspraxia and repetitive behaviors), but also seems to be related to core features of impaired

social and communicative development. Interventions could be aimed at increasing the reli-

ance on vision in children with ASD by disrupting proprioception. In this respect, a possible

speculation is that IVR interventions could constitute a useful training method to achieve a

therapeutic purpose.

Conclusion

In sum, the present study offers useful insights regarding the use of IVR in research on multi-

sensory integration and sensorimotor functioning. When visual information is provided, pro-

prioceptive accuracy in IVR seems to be impaired relative to performance in reality. As

proprioception is fundamental to performance in any motor task, this has to be taken into

account when interpreting the results of IVR studies which involve proprioceptive abilities.

However, IVR could still be a useful tool for detecting multisensory trends. In fact, we found

the same condition-specific trend in IVR as in reality. Both in reality and IVR, the conditions

which allowed a reliance solely on proprioception led to the lowest proprioceptive accuracy,

and minimal differences emerged between vision only and vision + proprioception conditions.

The exploratory nature of the present study could contribute to the undertaking of more con-

firmatory future studies, which would benefit from the estimated effect sizes provided here, to

develop and test further hypotheses.
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