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Abstract

Present day robots are, to some extent, able to deal with high complexity and

variability of real world environment. Their cognitive capabilities can be further

enhanced, if they physically interact and explore the real world objects. For this,

the need for efficient tactile sensors is growing day after day in such a way are

becoming more and more part of daily life devices specially in robotic applications

for manipulation and safe interaction with the environment.

In this thesis, we highlight the importance of touch sensing in humans and robots.

Inspired by the biological systems, in the first part, we merge between neuromor-

phic engineering and CMOS technology where the former is a field of science that

replicates what is biologically (neurons of the nervous system) inside humans into

the circuit level. We explain the operation and then characterize different sen-

sor circuits through simulation and experiment to propose finally new prototypes

based on the achieved results.

In the second part, we present a machine learning technique for detecting the

direction and orientation of a sliding tip over a complete skin patch of the iCub

robot. Through learning and on line testing, the algorithm classifies different

trajectories across the skin patch. Through this part, we show the results of the

considered algorithm with future perspective to extend the work.
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Chapter 1

Introduction

A sense is a physiological capacity of organisms that provides data for perception.

It is paramount for agents (both biological and artificial) to gather information

about their environment and act accordingly.

The integument or skin is the largest organ of the body, making up 12-16% of

bodyweight, with a surface area of 1.5-2 m2 [3]. Consequently, the skin is of

extreme significance for humans. They use touch not only to explore but also to feel

and cohabit with the surrounding, objects, people and also with themselves. It has

also several functions and roles. It gives the brain a wealth of information about the

environment around to analyze and interpret to take suitable actions. Moreover,

it forms a physical barrier to the environment, allowing and limiting the inward

and outward passage of water, electrolytes and various substances while protecting

against micro-organisms, ultraviolet radiation, toxic agents and mechanical insults.

It also provides useful information for stable grasping of objects, accurate and

stable movements.

Mechanoreceptors are sensory receptors that respond to mechanical pressure or

distortion. They encode the spatio-temporal tactile information by generating

trains of action potentials (voltage pulses generated when the stimulus is greater

than a certain threshold [4]).

Mechanoreceptors are classified into three different groups depending mainly on

the temporal dynamics of their response (see Fig. 1.1):

1. Slow adapting: Ruffini Endings, Merkel’s Cells, and Tactile Disks are ex-

amples of slow adapting mechanoreceptors. These receptors are generally

1



Abbreviations 2

Figure 1.1: Mechanoreceptors are a diverse class of sensory endings.

located near the surface of the skin and are responsible for much of the

static perceptive capabilities. The adaptation time scale for these cells can

be from 10 to more than 100 seconds. They could be differentiated also for

structural complexity.

2. Moderate adapting: Free nerve endings and hair follicle receptors are

good examples of mechanoreceptors with moderate adaptation rates. These

receptors can be located near the surface of the skin, and adapt to changes

on periods of order 1 second.

3. Rapid adapting: Pacinian Corpuscles and Meissner corpuscle are rapidly

adapting mechanoreceptors and are often the most sensitive cells to very

small changes in the stimulus. These rapidly adapting cells return to a

normal rate of pulses in less than 0.1 seconds.

Comparable to its importance for humans, tactile sensing is one of the faces and

part of the emerging technology that is gaining importance in different fields of

our daily life issues.
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Even though autonomous robots mainly rely on some form of visual perception to

interact with the surrounding environment, there are tasks that would be impos-

sible or too complicated without the sense of touch. Inferring contact information

from vision requires complex 3D scene reconstruction, which limits the effective

deployment of robots in dynamical environments. Tactile feedback has the po-

tential to improve the interaction skills of robots. For example, in the control

of grasping and manipulating objects, touch provides important information re-

lated to the position of the object in the hand, thereby informing the controller

about the local surface curvature of the object, friction, or the force exerted by

the fingers. Overall, touch helps the robot to deal with uncertainties — about the

object position or its shape — that make purely vision-based approaches difficult

in unstructured environments. Recent research targets algorithms that enable the

learning of control strategies to maintain a stable grip in the presence of uncer-

tainties or perturbations [5]. In particular, slip detection and force control allow

manipulation of fragile objects or those with slippery surfaces. These tasks re-

quire tactile sensors to provide accurate estimation of normal, tangential forces

as well as incipient slip from tiny vibrations. Tactile sensing can also reveal ob-

jects’ properties that are hidden (or difficult to extract) using vision. Combined

with force/torque sensing technologies, tactile sensing allows robots to detect con-

tacts, estimate interaction forces and regulate them for simultaneous whole-body

postural and compliance control [6].

The wide range of application scenarios has boosted research in the different fields

involved in the technological development of tactile sensors, ranging from material

science, electronics, transducers up to communication, sensory encoding and pro-

cessing, aiming at performance, sensitivity, robustness, reliability, compactness,

and power consumption. The possible applications in which this kind of technol-

ogy could be used are many such as prosthesis [7], in domestic houses, supervision

and assistance of elderly people, industrial applications or security and military

and space exploration systems. Otherwise, other fascinating and fundamental ap-

plication fields could be found out in all the disciplines that concern in some sense

health care and medicine in the coming future.

Inspired by biological systems, mainly the human skin, in this thesis, we merged

between between CMOS technology utilizing POSFET based tactile sensors and

neuromorphic circuits to mimic the biological behavior of neurons on circuit level in
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two modes: sustained and transient. Consequently, we implemented the principles

of neurons in biology to achieve suitable tactile sensing circuits for artificial robots.

Besides, we built on the response of capacitive sensors to detect the orientation of

sliding object over the skin patch of iCub robot using a machine learning technique

used currently in the field of autonomous cars. The algorithm aims to classify the

trajectory of the tactile stimuli. s

1.1 Neuromorphic Engineering

The approach of neuromorphic engineering applies the computational principles

discovered in biological organisms to those tasks that biological systems perform

easily. Neuromorphic engineering is based on the use of very-large-scale integra-

tion (VLSI) systems containing electronic analog circuits, that work in weak inver-

sion domain, to mimic neuro-biological architectures present in the nervous sys-

tem; it is a new interdisciplinary field that takes inspiration from biology, physics,

mathematics, computer science and engineering to design artificial neural systems,

such as, for example, vision systems, auditory processors, and autonomous robots,

whose physical architecture and design principles are based on those of biological

nervous systems. Biological sensory systems, responsible for processing the infor-

mation of the outside world, have excellent performances in terms of compactness,

power dissipation, sensitivity, the dynamic range of the response and resistance to

noise and are specific for the function they have to perform. For these reasons,

an efficient approach is to build artificial sensory systems that are inspired by

biological ones.

1.2 Event Driven Approach

The integration of multiple tactile sensing devices into the body robotic plat-

forms, with zones of increased spatial density like the fingertips, generates a huge

amount of data to be collected, communicated and processed. Thus, a need for

efficient encoding of the tactile signals arises. An elegant and smart approach

for such a mission is the neuromorphic event-driven asynchronous encoding and

transmission of sensory data[8]. In event-driven encoding, the sensor is only ac-

tivated and data is collected and processed once the amplitude of the sampled
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signal changes. In this way, the system automatically adapts to the dynamics of

the external environment and removes redundancy at the acquisition level. As a

result, a decrease of the bandwidth, power and computational load of the whole

system is achieved with guaranteed high temporal resolution and low latency[9].

A notable example of event-driven sensing, that is being adopted by the robotics

and computer vision communities, is the Dynamic Vision Sensor (DVS) [10]. It

comprises an array of independent pixels, each responding to local changes of

brightness, once a change is detected, the sensor sends an output digital pulse

that signals wherein the array and when the change has happened, using the

standard Address-Event-Representation (AER) [11]. As each pixel sends a digital

pulse only – and as soon as – a change is detected, without waiting for the whole

array to be scanned (as in traditional imaging), the sensor removes redundancies

and ensures minimum latency.

1.3 Tactile Sensors

The development of the sense of touch in robotics is an engineering challenge.

The so-called electronic skin, which covers different parts of a robot with sensors

that respond to mechanical and other environmental stimuli, requires system level

development that spans from materials and electronics up to communication and

processing.

The current state-of-the-art solutions for tactile sensors provide a wide variety

of different types based on using the various mode of transduction. The major

transduction methods that have been reported in the literature are: resistive,

tunneling effect, capacitive, optical, piezoelectric, and others. Each method has

specific characteristics, advantages/disadvantages and peculiarities.

In the coming sections, I will briefly go through some of the transduction methods

and explain some of their properties and drawbacks [12].

1.3.1 Resistive Sensors

Tactile sensors based on the resistive mode of transduction are of two types: the

resistance that depends on contact location and resistance that depends on the
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applied force or, in other words, piezo-resistive tactile sensors.

Piezoresistive touch sensors are made of materials whose resistance changes with

force/pressure. Piezoresistive tactile sensing is also popular among the MEMS-

based and silicon-based tactile sensors [13]. The sensors are appealing, because of

the low cost, good sensitivity, low noise and simple electronics and can be found in

many experimental tactile systems. One of their drawbacks is the relatively stiff

backing, high power consumption, hysteresis and short lifetime of the materials.

Although examples of advanced robotic hands equipped with such mode of trans-

duction [14], these sensors generally require a serial or manual assembly, provide

a highly non-linear response and suffer from hysteresis.

1.3.2 Tunnel Effect Tactile Sensors

Tactile sensors based on QTC have come up recently and are commercially

available. QTC’s have the unique capability of transformation from a virtually

perfect insulator to metal like a conductor when deformed by compressing, twisting

or stretching of the material. Robot hands with QTC based tactile sensors have

also been reported in literature [15] and [16].

Integration of such method in tactile sensors makes it difficult to be implemented

on fingertip because the size of a sensor (2.5 cm2 size) which is larger than a

typical human fingertip, but, has a spatial resolution better than that of the human

fingertip (40 µm).

1.3.3 Optical Sensors

Tactile sensors with the optical mode of transduction use the properties of opti-

cal reflection between media of different refractive index. The transducer structure

is composed of a clear plate, a light source and a compliant membrane stretched

above, but not in close contact with the plate. The lower surface of the plate

acts as the imaging area. Light is directed along an edge of the plate and it goes

through total internal reflection (when no force is applied) or diffuse reflection

(when force is applied). The light coming out of the plate due to diffuse reflection

can be recorded by CCD or CMOS cameras placed in the imaging area. The inten-

sity of the light (bright or dark patches on image) is proportional to the magnitude
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of the pressure between object and plate. Some cases of large area skin based on

LEDs has also been reported [17]. Also, fusion between touch and vision has been

reported in [18].

Optical based tactile sensors are immune to electromagnetic interference, are flex-

ible, sensitive and fast, but in some situations they are bulky. Besides, they face

a decrease in their performance under strong light conditions and high power con-

sumption.

1.3.4 Capacitive Sensors

Capacitive sensors consist of a capacitor, in which the distance between plates

or the effective area is changed by the applied force by shifting their relative posi-

tion due to their separation by a deformable dielectric material. The measurement

of capacity yields an estimate of pressure [19] and [20]. The compatibility of these

sensors with flexible substrates and the availability of off-the-shelf components for

the readout electronics make capacitive technology suitable for robotics, especially

for large areas.

Capacitive sensors are compact, highly sensitive and have theoretically unlimited

operational bandwidth (in practical cases the choice of the dielectric material often

limits the bandwidth to relatively low-frequency ranges), availability of commercial

A/D chips (technology borrowed from the touch screens), wide range of measurable

forces and performs very well with regard to typical problems of capacitive tactile

sensor such as cross-talk between the taxel and stray capacity [21]. The main

drawbacks are the degradation of the elastomeric materials used for the deformable

dielectric due to mechanical wear and tear, hysteresis, drift of sensitivity due to

temperature, and — depending on the materials — relatively complex production

processes.

In my second part of the thesis, I used the capacitive sensors [19],[22] and [23],

i.e. a complete skin patch of the iCub robot, to detect the orientation of a sliding

object on it.
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1.3.5 Piezoelectric Sensors

The piezoelectric materials have the property of generating charge/voltage pro-

portional to the applied force. Alternatively, they are capable of generating force

due to electrical input. Thus, they can be used both as sensors and actuators and

due to this property they fall under the category of ”Smart Materials”. Piezo-

electric materials are suitable for use as tactile sensors. However, the temperature

sensitivity of piezoelectric materials is a major cause that hinders use as tactile

sensors.

The use of PVDF for tactile sensing was reported for the first time in [24] and

thereafter several works based on PVDF or its copolymers have been reported in

literature [25],[26] and [27].

While quartz and some ceramics PZT have better piezoelectric properties, the

polymers such as polyvinylidene difluoride (PVDF) normally have been used in

touch sensors because of some excellent features, such as flexibility, workability,

and long-lasting chemical stability [28]. Moreover, their response is fast and linear

over a large range of stimuli, making them also suitable for dynamic force sens-

ing. They have been used for the implementation of tactile sensors based on an

integrated device.

This thesis is divided into two parts.

1. In part I, we present the characterization of two neuromorphic circuits for

readout of the POSFET:

The first is based on the Leaky IF (LIF) neuron [29]. When the POSFET is

touched, its output is transformed into a current and integrated by the LIF

neuron that emits digital pulses at a rate proportional to the input force

or its slope [30–33], reproducing forms of transient and sustained activity

typical of skin mechanoreceptors (Discussed in Chapters 2 and 3).

The second is more compact, with lower latency and area-saving version of

the event-driven POSFET for the encoding of transient activity of the input

signal: it is based on the change detection circuit of the DVS pixel, where

the POSFET output substitutes the input photoreceptor with The design

comprises the self-resetting switched capacitor amplifier and comparators of

the DVS pixel and is driven by a source follower connected to the output
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of the POSFET. This circuit only encodes the transient component of the

signal (Discussed in Chapter 2).

2. In part II, for its importance for robots on the control side and estimation of

the structure and properties of objects, sliding, we present a machine learning

technique suitable for detecting the orientation of a sliding object over the

skin patch of the iCub robot. The algorithm is based on a probabilistic

graphical model (PGM). The latter is divided into parts: offline learning and

online testing. While the first part includes the learning phase of different

paths followed by the sliding object, the second part includes the online

testing where a new path is considered and the algorithm predicts to detect

the orientation of such new path (Highlighted in Chapter 4).





Chapter 2

Neuromorphic Tactile Sensing

Circuits: Properties, Operation

and Simulation

2.1 Introduction to Silicon Neurons

Neuromorphic circuits are hybrid analog/digital very large scale integration (VLSI)

circuits that emulate the electro-physiological behavior of real neurons and con-

ductances.

This type of neuromorphic interface circuits is constituted mainly by MOS devices

working in the sub-threshold regime. The characteristic features of this type of

circuits is event-based asynchronous operation, which differs from the traditional

mode of operation of clock-driven digital circuits.

The event-based approach, instead, responds asynchronously to the set event, as

the relative temporal changes in input intensity, with a redundancy and response

latency reduction and improvement of the bandwidth and dynamic range. To this

just described is added the possibility of exploiting constructive working standard

solutions at low power consumption which does not require an excessive complexity

of the wiring as exploitable with the AER.

11
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Numerous physiological studies have precisely delineated the operation of the prin-

cipal type of cells of the central nervous system. Neurons are highly specialized

for generating electrical signals in response to chemical and electrical inputs and

transmitting them to other cells.. The soma is the ”central process unit” of the

neuron, and it performs an important non-linear processing step: if the total in-

put exceeds a certain threshold, then an output signal, the action potential, is

generated. The electrical relevant signal for the nervous system is the potential

difference across the soma membrane. Under resting conditions, the potential in-

side the cell membrane is about -70 mV relative to that of the surrounding bath,

conventionally defined to be 0 mV, and the cell is said to be depolarized. To

maintain such a potential difference, the current has to flow. This is the activity

of the ion pumps located in the cell membrane which transport ions to maintain

ionic concentration gradients.

Predominantly, sodium, potassium, calcium, and chloride are the ionic species

involved. Ions flow according to their concentration gradient through a variety

of ions channels that open and close in response to voltage changes as well as to

internal or external signals. Current flowing through open channels outside the cell

makes the membrane passes a threshold, a positive feedback process is initiated,

and the neuron generates an action potential. It is roughly a 100 mV fluctuation

of the membrane potential lasting about 1ms. This signal propagates along the

axon where it is actively regenerated to arrive at the synaptic bouton at the end of

the axonal arborization. The generation of action potentials also depends on the

recent firing history of the cell. For a few milliseconds, after an action potential

has been fired, it may be virtually impossible to initiate another spike. This is

called the absolute refractory period.

Hardware emulations of neural systems that use SiNs operate in real-time, and the

speed of the network is independent of the number of neurons or their coupling.

SiNs offer a medium in which neuronal networks can be emulated directly in hard-

ware rather than simply simulated on a general-purpose computer. They are much

more energy-efficient than simulations executed on general-purpose computers, so

they are suitable for real-time large-scale neural emulations. Where SiN circuits

provide a tangible advantage is in the investigation of questions concerning the

strict real-time interaction of the system with its environment. Besides, the tech-

nology developed to build these real-time, low-power neuromorphic systems can be

used to engineer brain-inspired computational solutions for practical applications.
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The term neuromorphic includes a set of analog VLSI circuits that operate using

the same physics of computation used by the nervous system (e.g., silicon neuron

circuits that exploit the physics of the silicon medium to directly reproduce the

bio-physics of nervous cells) and also analog/digital hardware implementations of

neural processing systems, as well as spike-based sensory processing systems [34].

Within this context, many different types of SiNs have been proposed, that emu-

late real neurons at many different levels: from complex biophysical models that

emulate ion channel dynamics and the detailed dendrite or axon morphologies to

basic integrate- and fire (IF) circuits [29].

2.2 Neuromorphic Circuits

2.2.1 Integrate and Fire Neuron

The IF neuron models of spiking neurons have complex dynamics that require

intensive computational resources and long simulation times. This is especially

true for conductance-based models that describe in detail the electrical dynamics

of biological neurons. These models include non-linear voltage-dependent mem-

brane currents and are difficult to analyze analytically and to implement. For this

reason, phenomenological spiking neuron models are more popular for studies of

large network dynamics. In these models, the spikes are stereotyped events gener-

ated whenever the membrane voltage reaches a threshold. The IF model neuron,

despite its simplicity, captures many of the broad features shared by biological

neurons.

This model can be implemented using analog VLSI technology and can be used to

build low power, massively parallel, large recurrent networks, providing a promis-

ing tool for the study of neural network dynamics [35]. Starting from the Hodgkin

and Huxley model (refer to [36] for a more detailed discussion) simplifications

are possible, and they lead to a one-dimensional integrate-and-fire model. The

analytical tractability of this effective description together with its simple silicon

implementation will make it the favorite candidate to realize and study, both the-

oretically and experimentally, controllable neural networks. The reduction of the
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model is based on simplifications on the output and the input side of the Hodgkin

and Huxley model. On the output side, the major consideration is that a Hodgkin

and Huxley neuron will typically emit a spike whenever its membrane potential

reaches a threshold value of about -55 to -50mV. The action potential produced is

roughly always the same independently from the evolution of the input currents

that have triggered the spike.

The spike has a stereotyped shape that seems not to convey important informa-

tion, which will arise from the time of spike occurrences. This suggests that the

generation of the spike can be incorporated from the equations and reduced to

a pure boundary condition so that when the membrane potential V(t) crosses a

given threshold θV , then V(t) undergoes a pulse-like excursion, the spike, before

returning to resting value Vr. The costly numerical integration is then stopped

as soon as the spike is triggered and restarted after the downstroke of the spike

about 1.5 to 2ms later. This interval of time corresponds to an absolute refractory

period (τabs) of the neuron. This reduction simplifies the equations that have to

describe only the sub-threshold behavior of the potential and no more the delicate

equilibrium among conductances dynamics that account for the spike generation.

dV

dt
= F (V ) +

I(t)

C
(2.1)

Equ.2.1 is the generic formulation of the integrate-and-fire model. The function

F(V) could be further simplified and reduced for instance to a linear function:

this is possible discarding all the active conductances and maintaining only the

constant one gl of the leakage current (mainly due to chloride ions). This means

that the membrane potential is stimulated only by the synapse contributions, and

merely discharged through a fixed conductance. This version of the model is

called the passive or leaky integrate-and-fire (LIF) neuron. For small fluctuations

about the resting membrane potential, neuronal conductances are approximately

constant; the LIF model assumes that this constancy holds over the entire sub-

threshold range.
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2.3 Change Detector Neuron

Another possible compact neuromorphic circuit that processes information using

energy- efficient, asynchronous, event-driven methods to detect temporal contrasts

of the input, is outlined in this section. This type of circuit, named asynchronous

change detector neuron is inspired by some work that has focused on visual sensors

([37];[38]; [39]). In particular, one of the distinguishable characteristics between

the various features of this activity-driven event-based vision sensors is that they,

above all, quickly output compressed digital data in the form of events: in fact,

these sensors reduce redundancy, latency and increase dynamic range. Moreover,

the output of these digital sensors is easily interfaced to the conventional digital

post-processing, reducing costs and latency. The exploited key point in thinking

about such an interface circuit to the transducer was trying to take advantage

of the biologically inspired use of asynchronous, exceedingly sparse, data-driven

digital signaling as core aspect of the computational architecture Address-Event

Representation (AER) systems naturally providing a way to incorporate demand-

based computation, where data originating in one place drives computation in

another. The high speed of silicon electronics allows communication of sparse, low

frequency asynchronous digital address-events by sharing high speed digital buses.

The basic feature of the circuit presented is the possibility to, independently and in

continuous time, quantize local relative intensity changes of the input, to generate

spike events. These events appear at the output of the sensor as an asynchronous

stream of digital pulses that signify external force (applied on the transducer)

change and have sub-millisecond timing precision. The output data rate depends

on the dynamic content of the external solicitation and is typically orders of mag-

nitude lower than those of conventional mode of transduction, which also involves

high transmission power dissipation, increased channel bandwidth requirements,

increased memory size and post-processing power. The objective of this pixel de-

sign was to achieve a low mismatch in the transistor elements and low latency. In

general, as well as in this particular case, this type of neuromorphic circuits also

has the important characteristic to easily remove the DC mismatch between pixels

or taxels, caused by the variations of threshold voltage levels of every transistor.

The removal of the mismatch DC is made possible thanks to a particular con-

figuration of the differencing circuit. Other strengths of the configuration under

consideration that deserve to be mentioned, are the reduced power consumption



Abbreviations 16

and the compactness due to the small circuit area which can be thought of as a

good choice in the case of the humanoid robot iCub.

2.4 Neuromorphic Tactile Sensing Circuits

I will highlight the different sensor circuits under study by describing their

functionalities, constituents and finally the simulation results.

The neuromorphic CMOS circuits included within the chip are two. The first

circuit is named: proportional POSFET and the second is differential POSFET

circuit. The two different circuits have been proposed to explore the solution for

the realization of a novel sensing device. The purpose behind these two config-

urations is to find the best candidates to emulate the functioning of the basic

corpuscles that give the sense of touch to humans and implement it employing

electronic circuits in tactile sensors domain for artificial devices.

2.5 Methodology

Before going into the details of the circuits under consideration and their prop-

erties, I would like to describe the different steps followed to achieve the desired

goals listed below. Having the circuits ready for characterization, the plan is

to simulate them at first and then build the suitable experimental setup to fully

characterize them. The schematics for the circuits are implemented using Cadence

6.1.6. Thus, the simulation part started using the latter by performing static and

dynamic analysis. This step provided a good knowledge about the behavior of

the circuits under different inputs and conditions as a result of applying different

simulation trials and tests. Next to that, the work started on building the experi-

mental setup. With the help of the latter, similar to the simulation tests are done

and data is collected for analysis.

From one side, the first goal behind the analysis part is to compare the new col-

lected data to that from [40] (that is the older version of the circuit prototype) to

make sure that the modifications for the new circuit design is suitable for reduc-

ing the disadvantages of the proportional configuration in [40] for what concerns
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the offset, low sensitivity for low input signals, stability and robustness to the

fabrication mismatch. Second, it aims to show that combing the POSFET and

the change detector can replace the differential configuration based on the LIFs

presented in [30] where the peculiarity of this circuit is all represented by the

highlighted NAND port on the feedback loop. This is a classic digital port that

takes the digital AER interface output and bring it back to the offset cancellation

circuit. Therefore, by taking into account the advantages of the change detector

which is the basis of the Dynamic Vision Sensor (DVS) silicon retina being the

artificial synapse for visual applications that is able to encode the variation of the

input force or voltage. From the other side, the plan is to build on the analysis to

plan for future circuit prototypes making use of the current and the older ones.

2.6 Transducer Adopted in Our Sensor Circuits

2.7 POSFET Device

Unlike conventional sensing devices, the POSFET (piezoelectric oxide semi-

conductor field-effect transistor) [41], where the piezoelectric material, deposited

over the gate of complementary metal– oxide–semiconductor transistor, senses the

force-generated charges (refer to Fig.2.1). This device is innovative for the fact

that it presents an integration of the readout circuitry with the sensing material

(i.e. piezoelectric polymer film) being therefore consistent with the ”Sense and

Process at same place” concept. The fusion of the sensing material and the elec-

tronics improves the signal to noise ratio and thus enhance its force sensitivity.

The concept of the POSFET is based on the knowledge and potentiality of piezo-

electric materials. In particular, it is known that a piezoelectric film working in

the sensing mode generates a charge/voltage as a matter of applying a force/stress

on it. This charge/voltage is proportional to the applied force/stress.

As the first part of the sensor, the POSFET is maintained in common drain config-

uration. The underlying MOS transistor of the POSFET is smaller in dimensions

(see Table 2.1). This change in return saves the occupied area by this big transis-

tor on the fabricated chip. The bias current of the POSFET is set by a cascoded

current mirror, that can be changed by tuning the corresponding input gate volt-

ages of the current source transistors, sets its biasing point in the saturation region
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Figure 2.1: (a) POSFET device structure. (b) Depositing the piezo-electric
material on the gate of a MOS transistor [1].

providing a precise supply current to the sensor stage. According to the dimen-

sions and configuration, the POSFET acts as a voltage buffer stage copying at

its source terminal the voltage signal applied to its gate with a gain '1 on one

side, and decouples the piezo-electric material (PVDF-TrFE) from the electronic

circuitry from the other side.

2.8 The Proportional POSFET Sensor Circuit:

Structure and Operation

Figs. 2.2 and 2.3 shows the block diagram and circuit schematics of the

fabricated ED taxel. The POSFET is composed of the PVDF-TrFE, deposited on

a gate of an underlying MOS transistor. Usually, the PVDF-TrFE is deposited on

the silicon oxide utilizing spin coating, resulting in a compact sensotronic device

with no wiring requirements and less sensitive to noise. In our test prototype,

however, the characterization is performed with a PVDF-TrFE layer remotely

connected to the gate of the POSFET transistor.

In the proposed implementation, the POSFET response to the mechanical stimulus

is linearly transformed into trains of digital pulses with frequency proportional to

the applied input force/pressure.
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Figure 2.2: Block diagram: The POSFET in source-follower configuration
converts pressure into a voltage signal. A Wide Range OTA (WROTA) com-
pares the output of the POSFET to the reference voltage stored across a ca-
pacitor. The latter voltage of the WROTA is regularly restored by the RESET
circuit, to remove slow drifts. The output current – Io− (for decreasing pres-
sure) and Io+ (for increasing pressure) – feeds the corresponding LIF circuit.
The AER block manages the protocol handshake by sending digital pulses out

off chip.

The POSFET is in common drain configuration with tunable biasing current

IPOSFET provided by a cascoded current sink to provide a more reliable and precise

supply current to the sensor stage. This biasing configuration of the MOS ensure

that the POSFET operates in strong inversion and is always in saturation. The

small voltage excursion due to the pressure applied to the PVDF does not change

the operating point of this structure. The POSFET output voltage is amplified

by a symmetric Wide Range Operational Transconductance Amplifier (WROTA)

to obtain a current signal proportional to the applied contact force/pressure.

2.8.1 The Differential Stage: WROTA and Offset Cancel-

lation Circuits

The second part of the sensor circuit, i.e. the Differential stage, is composed

of the WROTA and the Reset in pink and blue respectively as shown in Fig. 2.3.

The second stage shares with the POSFET device the bias circuit.
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Figure 2.3: Circuit schematics: the POSFET, WROTA and Reset circuits.
For clarity, only the OTA branch with the output for the negative LIF V −

mem is
shown.

In general, for all applications which need a precise translation from a voltage

signal to a current one, the transconductance must be as constant as possible to

prevent the introduction of non-linearities across the generated current at its out-

puts. Thus, the implementation of the Krummenacher design [42] is chosen in this

WROTA design. This allows enlarging significantly the input range in which the

transconductance is almost constant improving the linearity of the transfer func-

tion of the WROTA compared to the classic OTA where the transconductance is

considered to be constant only in a small neighborhood of the differential input

voltage where it is zero. Besides, the branches of the differential pairs are cascoded

using the low-voltage cascode mirrors (see Fig. 2.3). The two current sinks of

the differential pair and the auxiliary branches are equipped with this configura-

tion to ensure the largest current matching possible to the output to achieve the

possible symmetric currents for the positive and negative LIFS in case of pressure

and release. The fully cascoded output provides also a balanced output resistance

reducing considerably the output voltage lowering. The transmission gate is de-

signed with balanced transistor dimensions and double dummy switches on both

terminals for the reductions of disturbances caused by the charge injection on

the source terminal of the POSFET device. A greater capacitance in length and

width is used to reduce the noise effects and the drift disturbances on the second

differential input of the WROTA. Finally, implementing a series of inverters to
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produce a better reset signal from a generic source. By this way, the switches are

synchronized to reduce the residual charge injection.

A transfer-gate switch (in the lower part of the Diff block) shorts the POSFET

output terminal with the gate of a MOS capacitor connected to the negative input

of the WROTA in order to track the bias voltage of the first stage. When the

transfer-gate opens, the input voltage is sampled across the MOS capacitor and

this allows to polarize the WROTA negative terminal and to obtain an output

current proportional to the variations. This configuration implements a sample

and hold circuit aimed at implementing an offset cancellation device that can

be periodically controlled by a digital pulse to remove low-frequency steady-state

fluctuations. The output of the WROTA drives two identical LIF circuits that

translate their input current into spike trains. As the LIF circuits are rectifying,

the current output signals are Io+, which corresponds to a positive input stimulus

(pressure on the sensor) and Io− for a negative one (release). The two current

signals are in turns integrated by the membrane capacitors of two LIFs (one en-

coding for pressure, named LIF POS, and one encoding release, named LIF NEG,

respectively).

The membrane potential of the LIF neurons (nodes corresponding to Io− and Io+)

increases at the increase of the input current, and then it generates an action po-

tential when it crosses a tunable threshold. By changing Vsf (i.e. the gate voltage

of the biasing MOS transistor of a common drain included in the neuron’s cir-

cuit), it is possible to change the neuron’s threshold voltage, for more information

refer to [29]. The membrane potential is transformed into digital pulses by the

”AER” block that handles the digital pulses (nReq+ and nReq-) and the hand-

shake for the management of the Address Event Representation protocol (nAck+

and nAck-) [11].

To reduce low-frequency disturbances and drifts, the “Diff” block comprises an

offset cancellation circuitry activated by the external reset signal Vrst.

The digital pulses are sent off-chip through of a small handshake circuit that

allows the transmission of the pulse only after the receiver has acknowledged the

request signal. This structure will be necessary when the multiple ED taxels will

be integrated on a single die to form a matrix of sensing elements, whereby the

digital pulses from each taxel will be multiplexed over time on a single bus, using

the standard Address-Event Representation (AER) [11].
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The LIF and AER circuits are the same used in [40], with updated size to adapt to

the 180-nm process. In Table 2.1, we show the dimensions of the main transistors

for the first two stages of the sensor circuit where the four output transistors of

the WROTA have a double size to increase the transconductance.

Table 2.1: Dimensions of Most Critical Transistors

Transistors W [µm] L [µm]

M0 651 1
M1- M8, M19,M22 5 1.3
M13, M18 5.4 1.3
M14, M15 1.35 1.3
M9-M12, M16,M17 7.6 1.3
M20, M21 15.2 1.3
M24, M28 0.22 0.18
M26 0.44 0.18
M30,M32,M34,M36 0.26 0.18
M31,M33,M35,M37 0.22 0.18
M23 41.5 41.5

2.9 Sensor Circuit Simulation Results

Through simulations on SPECTRE Cadence 6.1.6, we show the behavior of

the overall sensor and highlight the improvements concerning the sensitivity and

neuron firing rate. To examine the overall behavior of the sensor and to prove it

quantitatively, we applied trapezoidal and sinusoidal input waveforms along with

a sweep on the input amplitudes.
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(a) (b) (c)

Figure 2.4: (A) The response of the positive and negative LIFs to an input
voltage of 100 mV amplitude with frequency 20 Hz. (B) Results of five simu-
lations with an amplitude sweep on the input voltage: Instantaneous frequency
for a positive half period of the sinusoidal input for the positive LIF fit with
sine waves. (C) Peak firing rate of the positive LIF for different amplitudes of

the sinusoidal input voltage.

(a) (b) (c)

Figure 2.5: (A) The response of the positive and negative LIFs to an input
trapezoidal voltage of 100 mV amplitude with frequency 20 Hz. (B) Results of
five simulations with an amplitude sweep on the input voltage: Instantaneous
frequency for a positive half period of the sinusoidal input for the positive LIF.
(C) Peak firing rate of the positive LIF for different amplitudes of the trapezoidal

input voltage.

Figs. 2.4a and 2.5a show the response of the sensor circuit to sinusoidal and

trapezoidal inputs of 100 mN amplitude at 20-Hz respectively. The cyan curves

show the input voltage, the green and gray show the positive and negative neuron

membranes and the corresponding digital outputs, obtained by the combination
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(logic OR) of the two request signals of the ”AER” block over time in red and

cyan. Both neurons respond to the input voltage once its amplitude is constant

and stay silent once the latter changes (a sign of proportional behavior), unlike the

two comparators that respond only to the variation in the input amplitude [43].

Figs. 2.4b and 2.5b show the instantaneous firing rate of the positive neuron for

different values of the input voltage amplitude over a positive half period of the

input waveform. In Fig. 2.4b, the output follows a sine function as shown through

the fit with the dashed sine functions. This proves that the output firing rate of

the circuit responds proportionally to the input voltage, rather than to its rate of

change over time. The peak instantaneous firing rate of the curves in Figs. 2.4b

and 2.5b are displayed in Figs. 2.4c, and 2.5c versus the input voltage amplitude

respectively. The circuit transfer function illustrates the linearity between the

output firing rate with the input voltage to the POSFET.
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2.10 The Differential POSFET Sensor Circuit:

Structure and Operation

Fig. 2.6 shows the schematic of the tactile sensor circuit – or taxel – equipped

with the change detection and pulse generator circuits from the Dynamic Vi-

sion Sensor pixel. The photo-receptor, that responds to brightness variations,

is replaced by the POSFET in common drain configuration biased by the cur-

rent IPOSFET . The POSFET copies the input force signal to its output with

approximately unity gain. Thus, it drives the capacitive input of the differencing

circuit. The following capacitive feedback inverting amplifier is balanced with

a reset switch that shorts its input and output together, resulting in a reset

voltage level. The self-resetting switched capacitors C1 and C2 differential cir-

cuit [10] removes the DC signal from the input and generates the derivative of

the output voltage signal coming from the POSFET. Concerning the DVS photo-

receptor stage, the logarithmic amplifier is removed and the buffer stage is con-

verted into a common source configuration based on Msfb and Msf , where Msf is

no more a PMOS but rather an NMOS. The input stage of the differential circuit

is hence an inverting amplifier rather than a source follower. The comparators

(MONn,MONp,MOFFn,MOFFp) compare the output of the inverting amplifier

against global thresholds arbitrary tuned that are offset from the reset voltage to

detect increasing and decreasing changes. If the input of a comparator overcomes

its threshold, an ON or OFF event is generated. The “ON” and “OFF” compara-

tors produce digital pulses when the differential circuit output exceeds (or goes

lower than) an externally tuned threshold (Vdon and Vdoff ), respectively. As one

of the two comparators switches, the AER block sends a digital pulse to the out-

put arbitration and implements taxel level handshake that resets the differential

amplifier.

The ON and OFF events are communicated to the periphery by the circuits that

implement the 4-phase AE handshaking with the peripheral AE circuits. For

further information concerning the peripheral AE circuits, please refer to [37].

Table 2.2 shows the dimensions of transistors and capacitors capacitance used in

the simulations and for a prototype test circuit sent to production, in AMS 180

nm technology. In particular, the POSFET is much smaller than in the previous

implementation [32] reducing the overall area occupied. Further, with respect to

the previous design (in AMS 350 nm), capacitors C1, C2 and C3 are implemented
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Figure 2.6: Circuit Schematic of: the POSFET, change detector, pulse gen-
erator and the AER

as Metal Insulator Metal (MIM) capacitors, featuring more linear capacitance,

more accurate proportions and a much smaller structure that could be overlapped

to the the circuit itself, saving additional area.

Transistors W [µm] L [µm]

MPOSFET 651 1
Msfb 0.6 0.6
Msf 9 0.22
Mr,Mgr 0.5 0.180
Mdp,MONp,MOFFp 0.8 1.6
Mdp,MONn,MOFFn 0.8 1.6
MR1a,Mf1p 0.22 0.3
Mf1n 0.6 1.2
MR1b,Mn1p,Mn2p,Mac2,Mac1 0.22 0.3
MRef 0.6 1.1
MRA,MCA 0.5 0.3

Capacitors Capacitance [fF]

C1 602.13
C2 30.95
C3 32.54

Table 2.2: Transistors Dimensions and Capacitors Capacitance.
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2.11 Circuit Characterization Through Simula-

tion

To validate the behavior of the overall sensor, we performed simulations on

SPECTRE Cadence 6.1.6. The simulation comprises mechanical, electro-mechanical

and electrical models of the PVDF-TrFE [31]. We used sinusoidal and trapezoidal

input waveforms to characterize the circuit behavior for changing input force am-

plitude and slope. This quantitative analysis provides an evaluation of the overall

system functionality and proves the feasibility of the approach used to realize a

differential – or transient – encoding system.

(a) (b) (c)

Figure 2.7: (A) The response of the ON and OFF comparators to an input
sinusoidal force of 300mN amplitude and frequency 20 Hz. (B) Results of five
simulations with an amplitude sweep on the input wave force: Instantaneous
frequency for a positive half period of the sinusoidal input for the OFF com-
parator fit with cosine waves. (C) Peak firing rate of the OFF comparator for

different amplitudes of the sinusoidal input force.
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(a) (b) (c)

Figure 2.8: The response of the ON and OFF comparators to an input trape-
zoidal force of 300 mN amplitude and frequency 20Hz. (B) Results of five simula-
tions with an amplitude sweep on the input wave force: Instantaneous frequency
for a positive half period of the trapezoidal input for the OFF comparator. (C)
Peak firing rate of the OFF comparator for different slopes of the trapezoidal

input force.

Figs. 2.7a and 2.8a show the response of the circuit to sinusoidal and trapezoidal

forces applied to the piezoelectric material of 20Hz frequency with a 300 mN am-

plitude. The top curves show the input force, the middle and bottom curves show

that positive and negative charges of the input signal are transformed into output

digital pulses by the ON and OFF comparator, respectively. The comparators

do not respond to the constant input amplitude. Figs. 2.7b and 2.8b show the

instantaneous firing rate of the OFF comparator for different values of the input

force amplitude over a positive half period of the input waveform. The output

in Fig. 2.7b follows a cosine function as shown through the fit with the dashed

cosine functions, confirming that the output firing rate of the circuit responds to

the derivative (i.e. rate of change) of the input force, rather than to its absolute

value. Figs. 2.7c and 2.8c show the peak instantaneous firing rate of the curves

shown in Figs. 2.7b and 2.8b versus the input force amplitude, in both experi-

ments the amplitude of the applied force was used to effectively change the slope

of the applied force, but the results cannot rule out an effect of the force absolute

value in effecting the output firing rate, for this reason, we performed another set

of experiments where we changed only the input frequency of the sinusoidal wave

and the rise time of the trapezoidal wave, while keeping the amplitude constant

at 300 mN.
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(a) (b) (c)

Figure 2.9: Instantaneous frequency for a positive half period with different
input force frequencies for: (A) OFF comparator. (B) ON comparator. (C)
Peak firing rate of the OFF and ON comparators for different input force fre-

quencies.

Figs. 2.9a and 2.9b show the instantaneous firing rate of the OFF and ON com-

parators while changing the input force-frequency over a half period respectively.

The dashed lines show a good fit with a cosine function, as an evidence of the

dependence of the output instantaneous firing rate on the derivative of the input

signal. Furthermore, Fig. 2.8c shows the peak of the instantaneous firing rate

with the mismatch between the two comparators. It shows the linearity with the

input force-frequency (i.e. rate of change) The same applies for a trapezoidal

waveform, as shown in Figs. 2.10a and 2.10b.

(a) (b)

Figure 2.10: (A) Instantaneous frequency of the trapezoidal input for the OFF
comparator over a positive half period with different raising edges duration. (B)

Peak firing rate of the OFF comparator for different raising edges slopes.
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2.12 Discussion

Our simulations show that, as expected, the instantaneous firing rate of the

proposed event-driven POSFET readout encodes for the rate of change of the

input force applied to the piezoelectric material. Concerning the circuit based on

the LIF neuron [30], the proposed implementation based on the change detector

circuit from the DVS sensor improves the sensitivity to lower input forces, ranging

from 0.2 N (instead of 0.3 N).

Moreover,the absence of an integration stage – needed in the LIF based implemen-

tation – limits the latency of the communication (i.e 0.7s compared to approxi-

mately 6 seconds for the first spike in [32]) because the design avoids the current

integration into the LIF membrane capacitance over time and the circuit response

time depends also on the sensitivity threshold. This is accompanied by a decrease

of the instantaneous firing rate of the circuit in response to the same input [32],

leading to lower power and bandwidth consumption, coupled with high temporal

resolution and low latency.

Besides, simplifying the design of the comparators improves the compactness of

the circuit. Concerning the area saving, the area of the new version is 62×84 µm2

compared to 68 × 178 µm2 in [33].





Chapter 3

Neuromorphic Tactile Sensing

Circuits: Experimental

Characterization

Done with the simulation part, this chapter comes to complete the characteriza-

tion of the sensor circuits. The experimental characterization part is divided into

two parts: electrical and electromechanical. While in the first part, the stimulus

is considered to be either a fixed potential difference input using a DAC or an

arbitrary waveform through a function generator, the second part considers the

real PVDF-TrFE material as a stimulus for the sensor circuit.

3.1 Electrical Characterization

3.1.1 Experimental Setup

Fig.4.5a shows the experimental setup used for the electrical characterization of

the sensor circuit along with the block diagram of the circuit. The test chip is

mounted on a daughter-board as an interface between the chip and the mother-

board. The latter is equipped by a 54 digital-to-analog converters (DACs) that set

the biases needed for the correct functioning of the circuits included inside the test

chip. Besides, it provides the daughter-board with the required power supply (1.8

V in this case). Using a Linux operating system, the computer communicates with

32



Abbreviations 33

the motherboard through the Linux based Zed-Board in which the commands are

sent using Python scripts utilizing an Ethernet connection.

(a)

(b)

Figure 3.1: (A) Electrical characterization experimental setup with the device
under test (in white) mounted on the daughter-board (in yellow) connected to
the Zed-Board (in cyan), the Tektronix MSO4104B as an acquisition tool and
the Agilent 33522A arbitrary waveform generator. (B) Electrical characteri-
zation experimental setup: the device under test is characterized by a ground
truth stimulus generated by the programmable function generator (that substi-
tutes the PVDF-TrFE input). The output of the source follower (VsPOS) and

LIF (V +
mem, V −

mem) are measured by means of the oscilloscope.
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The VXI-11 protocol is an RPC-based communication protocol primarily designed

for connecting instruments (such as oscilloscopes) to controllers (e.g., PCs). Using

this protocol as a means of communication with the oscilloscope, the Python

scripts ensure the synchronization of the signal generation and the acquisition of

the output with an Ethernet-controlled oscilloscope (Tektronix MSO4104B) (see

Fig. 4.5a). Using the scripts and the communication protocol, it is possible to

control the oscilloscope during the experiment and acquisition phase such as setting

the acquisition length, the sampling frequency, the triggering modality, and many

other available options the experimental procedure needs and the oscilloscope is

equipped with. In this characterization part, the piezoelectric material is excluded

and replaced by either a constant voltage source through a DAC and an arbitrary

waveform generator (Agilent 33522A 2-Ch, 250 MSa/s shown in Fig. 4.5a as

stimuli for the static and dynamic analysis respectively. Fig. 3.1b shows the

test setup with the block diagrams of the sensor circuit together with the probed

signals.

3.1.2 Experimental Results

This characterization is done by applying a constant controlled voltage to the

gate of the POSFET excluding the piezoelectric film. A large NMOS transistor,

in common drain configuration with its gate, is pinned out of the chip. Its gate

voltage is set by providing a DAC from the ZedBoard through the motherboard to

the daughter-board with specific values spreading over the entire range from 0 V

to 1.8 V. The parts characterized within the coming subsections follow the main

parts of the sensor(POSFET and WROTA) at first and then the whole sensor.

3.1.2.1 POSFET Characterization

With the availability of both fabricated chips produced in AMS 180-nm and 350-

nm processes, the POSFET is characterized separately and deeply to understand

its behavior concerning constant voltages and ramp signal inputs across its input

gate from one side and to show the improvements achieved in the new designed

one from the other side.
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Due to the new technology (i.e. AMS 180-nm) where the input gate voltages

are half compared with the previous one (i.e. AMS 350-nm), the bias current

set by the enhanced cascoded current sink is 100 nA while it was 1 µA in the

previously designed prototype. This biasing and the diode-connected configuration

of the MOS transistor of the POSFET ensure that the POSFET operates in strong

inversion and is always in the saturation region. Being a common biasing current

with the WROTA, both of them need one order of magnitude less to be biased and

drive the whole sensor to function properly, which serves in low power consumption

as they constitute almost two-thirds of the whole sensor circuit.
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(a)

(b)

(c)

Figure 3.2: Electrical Characterization: (A) Source follower output voltage
(VsPOS) for a constant electric signal applied to the gate of the POSFET. (B)
The output voltage of the POSFET (VsPOS) for a ramp input signal applied
to its gate (C) The gain of both POSFET implementations where this figure
extends from both traces in Fig. 3.2b. The latter are normalized by dividing
them with the power supply (i.e. Vmax). Experimental results are shown
for the device under test (green) and for a previous implementation (red) for

comparison [2].
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Fig. 3.2a shows the transfer functions. The DAC provides the input gate volt-

age over the entire available range and the output is recorded accordingly. The

usual response of a common drain configuration is shown where the non-linearity

is present at small input voltages due to the biasing current and the linearity be-

tween the input and the output is clear afterward where the gain factor multiplied

by the input voltage dominates compared to the biasing current effect.

Fig. 3.2b shows the instantaneous response of both POSFETs to ramp signals

of 25-Hz, 1.8 Vp-p and 3.3 Vp-p with an offset of 900 mV and 1.75 V from a

function generator to the input of the POSFET. The experiment is controlled by

a Python script setting the acquisition length to 40 ms and triggering when the

output of the POSFET drops below a specified value. Fig. 3.2c extends from

Fig. 3.2b where each acquired value is divided by the maximum voltage supply

for both prototypes. The new POSFET with the new technology shows a better

gain factor and thus better performing its role in sensing input signals and copying

them to its output.

3.1.2.2 WROTA Drift with Time

By considering the previous sensor version that suffered from the drift across its

analogue memory capacitance connected to the positive input terminal of the

WROTA (i.e OTA+) [5], the same procedure considered is replicated to detect if

this problem is solved with the new modifications applied to the offset cancellation

circuit in the modified prototype.

Four different input signals are applied to the gate of the POSFET and the evo-

lution of the memory capacitance voltage in blue along with the output of the

POSFET (i.e OTA-) in red over time are shown in Fig.3.3. The acquisition was

performed for 1000s imposing the output bias voltage of the POSFET stage at

the beginning and then observing the evolution of the memory voltage after the

reset pulse (Vrst). For each input bias point, the voltage drifts with a pseudo-

exponential slope to a value of about 0.6 V with a time constant of about 300s.

Scaling down of the technology to half leads to the saturation of the WROTA+

to half the value of that in the previous technology (i.e. 0.6 V). As the problem is
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still present, an extra effort has to be exerted to find the possible causes and take

the appropriate steps accordingly.

Figure 3.3: Voltage drift across the analogue memory capacitance (i.e.
WROTA+).

3.1.2.3 WROTA Offset

Due to the modifications mentioned above concerning the WROTA, here comes

a test measurement across the latter to show the difference in the offset between

both versions. Using a Python script, the input gate voltage is set to a specific

value starting from 0.1 V to 1.8 V and 3.3 V depending on the circuit included

inside the chip under test. In addition, the two LIFs circuits are disabled in such

a way that the NMOS transistors gate biased by 0 V and PMOS with either 1.8

V or 3.3 V. For each input value, the LIFs membrane voltages are recorded after

the oscilloscope is programmed to trigger once the input voltage crosses a value

greater than a fixed value over. The results are shown in Fig. 3.4 where both

are normalized by dividing each acquired value by its corresponding power supply

value for direct comparison. As shown, both negative terminals of the OTA share
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the same offset, however, there is an improvement concerning the positive terminal

in the new sensor version compared to the previous one where the offset is lower.

Figure 3.4: The WROTA offsets for both prototypes.

3.1.2.4 Sensor Circuit Transfer Function

Fig. 3.5 shows the overall transfer function of the sensor circuit by measuring

the mean output firing rate with its corresponding standard deviation of both

neurons; where a constant voltage is applied to the gate of the POSFET from

three different chips. Each measurement was performed 10 times for every value

of the input voltage to the gate of the POSFET. We did the measurements with

the help of a Python script that sets the values of the biases specifically the input

gate voltage to the POSFET and the triggering mode, collects the data from both

neurons outputs and saves them in a text file, and calculates the mean firing

rate after calculating the inter-spike interval and finally displaying the plots. The

biases of the circuit constituents were tuned to have the most coherent transfer

function among the various instances, obtaining a trade-off between sensitivity

and linearity.
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Figure 3.5: Output firing rate of both neurons versus constant input voltages
from three different chips.

The transfer function shows an expected linear behavior of the output firing rate

of both neurons concerning the applied voltage at the POSFET gate. Compared

to[40], the firing rate in the newly designed sensor circuit is one order of magnitude

smaller. This in return results in a lower bandwidth, power-saving and better

sensitivity to events under which the neuron is triggered to generate a spike as a

sign of either pressure or release on or from the POSFET respectively.

3.1.3 Electric Characterization: Dynamic Analysis

In this part, we aim to show the dynamical behavior of the sensory circuit response.

With this kind of analysis, the input to the gate of the POSFET is sinusoidal and

square waveforms supplied by an arbitrary function generator (i.e. Agilent 33522A

2-Ch, 250 MSa/s) that handles also the bias voltage. The response of the POSFET

output (VsPOS), the positive neuron membrane potential (V +
mem) and the negative

one (V −
mem), is recorded and plotted versus a square and sinusoidal waveforms in

blue, green and gray as shown in Figs. 3.6 and 3.7 respectively.
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Figure 3.6: The response of both LIFs to a square input signal of 25-Hz and
80 mV p-p.

The resulting plots show the constant output firing rate of the LIFs and its pro-

portionality to the input voltage. In the intervals when the input signal is constant

in value, one of the neurons is driven to generate spikes while the second remains

silent. This proves the proportional behavior of the sensory circuit to the voltage

applied to the gate of the POSFET employing a time-varying waveform.

Compared to what is achieved in [40], the sensitivity to the input signals has

improved. While the smallest sensed signal reached was of 600-Hz and 100 mV

p-p, the smallest achieved sensed signals in the case of the square input signal and

sinusoidal are of 25-Hz and 80 mV p-p and 90 mV p-p respectively. These two

results confirm the ability of the new sensor to sense small-amplitude input signals

and drive both neurons to generate spikes accordingly.
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Figure 3.7: The response of both LIFs to a sinusoidal input signal of 25-Hz
and 90 mV p-p.

3.2 Experimental Setup for Electro-Mechanical

Characterization

This section describes the electro-mechanical setup for the characterization of the

sensor circuit where the stimulus is replaced by the real piezo-electric material (i.e.

PVDF-TrFE) instead of the DAC or the arbitrary waveform generator. The ex-

perimental set up developed for testing the tactile sensing chip shown in Fig. 3.8.

This set up is intended to test the tactile sensing chip for the forces applied in the

normal direction.

The piezo-film is 1×1 cm2 rectangle of metalized PVDF-TrFE film. With a thick-

ness of 110 µm electrodes of Cu-Ni, which is about 700 Å (thickness) of copper

covered with 100 Å (thickness) of Ni-Cu alloy. With this configuration, the film

allows considering its mechanical action negligible for the sensor electromechanical

modeling. To drive the sensor through the output signal of the film, one face of
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Figure 3.8: Electromechanical characterization setup: The PVDF-TrFE is
shown in the part and the interchangeable impact tip with the TIRA shaker
(in red), the ICP force conditioner and TIRA amplifier and the chip with the

daughter and motherboards.

the film is connected directly to the pinned out gate of the POSFET and the other

face to a pin supplied by a DAC that sets that handles the biasing of the POS-

FET through two shielded cables, glued to the top and bottom electrodes, using

a conductive glue (Chemtronics Silver 0.25 oz Tube Epoxy Conductive Adhesive).

Such connection provides the extended gate POSFET configuration (see Fig. 3.8)

(for further information about the POSFET, refer to [40]).

The film is stimulated by the TIRA shaker (Model TV50018), labeled in Fig. 3.8

which is driven by TIRA power amplifier Type BAA 60. The latter is provided

by the input waveform (Agilent 33522A 2-Ch, 250 MSa/s). The shaker can ap-

ply random dynamic forces up to 18 N with frequency in the range 2 Hz - 18

kHz. The force generated by the shaker is measured by a piezoelectric load cell

(Model–208C01, from PCB Piezotronics of ICP type) which is fixed on a platform

that can move along the z-axis. The load cell has a sensitivity of 108.7 mV/N.

The latter is displaced so that the interchangeable impact tip is touching the film

making sure that the mini-shaker does not lose contact during the stimulation,

thus the preload has to be at least as large as the maximum amplitude of the
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applied force.

A Python script is used as before to set the biases of the circuit under test where

the digital reset signal was set low immediately before the beginning of the tactile

stimulation. Also, the Ethernet-controlled oscilloscope (Tektronix MSO4104B)

was considered to be the tool for the acquisition of the film output, POSFET

output, and both neurons membrane potentials.

Figure 3.9: Electromechanical characterization: Response of the main circuit
to an 80-Hz sinusoidal force 313 mN of magnitude applied to the PVDF-TrFE

film.

3.3 Electro-mechanical Results

In this section, we introduce the experimental results of the electromechanical

characterization of the neuromorphic POSFET with the real piezo-electric mate-

rial being used as a stimulus. Using the mini-shaker described above, we applied

a sinusoidal waveform with different amplitudes and recorded the response of the
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circuit parts accordingly.

Fig. 3.9 shows the response of the circuit when an 80-Hz sinusoidal force 313 mN

of magnitude is applied to the PVDF-TrFE film. The top graph in red represents

the force applied to the film, the one in blue represents the output voltage of the

POSFET following proportionally the slope of the input force, the response of the

positive neuron (V +
mem) and the negative neuron (V −

mem) in green and gray respec-

tively. The membrane potential of the LIF neurons increases with the increase

of the input integrated current, and then it generates an action potential when it

crosses a tunable threshold. Both neurons are silent for stimuli below their acti-

vation threshold. This observation in return is an additional confirmation of the

proportional behavior of the circuit when the film is used as a stimulus.

A difference between the firing rate of both neurons is observed. In addition to

the mismatch between the output positive and negative branches of the WROTA

that provide both neurons with a current to be integrated over time, the mismatch

between the positive and negative neuron circuits, the difference in their spiking

thresholds and leakage are responsible for the noticed difference. Moreover, the

mean output firing rate of the neuron is lower than in the previous implementation.

Fig. 3.10 shows the system transfer function of the positive neuron over a positive

half period of an 80-Hz input sinusoidal. The measurements at nine different input

force values are done, and the number of spikes generated by the neuron is recorded

from which the frequency is calculated for two different chips. The mean output

frequency and its corresponding standard deviation from six trials are plotted

versus the input force values.

Increasing the input force yields more current integrated into the neuron mem-

brane over time and thus leading to the higher output frequency. The linearity

between the firing rate and the input force on the film is again obvious. Also, the

difference in the output of both circuits is also due to the mismatches discussed

before.

Table 3.1 summarizes the main improvements that the new sensor version (i.e.

First Prototype) achieved compared to the previous prototype (i.e. Second Pro-

totype) [40] in simulations and measurements performed.
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Figure 3.10: Electromechanical characterization: Circuit transfer function:
The firing rate of the positive neuron over a half positive period for different

input force values.

Table 3.1: Comparison between Both Fabricated Prototypes

First Prototype[40] Second Prototype

Technology AMS CMOS 350 nm AMS CMOS 180 nm
Circuit Size 75 × 227 µm2 68 × 178 µm2

POSFET Size (W,L) (1250 µm, 2.5 µm) (651 µm, 1 µm)
Bias Current 1 µA 100 nA
Max Output Frequency 33 kHz 3.5 kHz
Input Square Signal 100 mV 80 mV





Chapter 4

Edge Orientation Detection

Future robots are expected to work closely and interact safely with humans

as well as real-world objects. Among various sensing modalities needed for this

purpose, the sense of touch is particularly important. Unlike other senses (e.g.,

vision,audio), it involves complex physical interaction, and plays a fundamental

role in estimating properties such as shape, texture, hardness, material type and

many more. Such properties can be better estimated by touching or physically

interacting with the objects—as humans do. The sense of touch also provides

action related information, such as slip, and helps in carrying out actions, such as

rolling an object between fingers without dropping it. Therefore, tactile informa-

tion is needed during trajectories like manipulation and exploration [44]. Thus,

the interactive way of robots with real-world objects is an important issue - as such

interactions depend on how heavy or light and smooth or hard the objects and in

which direction it is moving across the sensors. Acquiring the proper information

through the acquisition system in time and space lead the robot to accurately

perform the trajectories and missions assigned to it in a proper way.

Edge orientation detection of moving objects is one of the hot topics these days

for the impact of the latter on the behavior of artificial devices in controlling the

movement, activating the useful and needed sensors for enabling the device to

precisely control and manage the interactive way with the sliding edge in different

parts of the device [45].

In the following sections, I will include the work done for detecting the orientation

of a sliding object on a complete skin patch of capacitive sensors of the iCub robot

using a machine learning technique.

48
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4.1 Methodology

To achieve the desired goal, the work is divided into three stages (see Fig. 4.1).

The work combines electronics through the acquisition system, mechanics by using

and controlling the Omega.3 device, and programming through ROS software [46]

using C-language and Brian, a module in Python as a simulator for neural network,

and MATLAB using machine learning technique.

The skin patch was stimulated by sliding a tip at different speeds ranging from

1.27 cm/s to 17.873 cm/s and forces from 0.4 N to 2.1 N. The output of each taxel

is the analog value of the capacitance and is sent every 10 µ. The conversion of

this value to a spiking encoding by means of a software implementation of LIF

neuron using Brian simulator. The analog value is treated as an input current

injected into the membrane of the neuron. The resulting spike trains are fed to a

machine learning pipeline in MATLAB. The algorithm is composed of offline and

online parts. The former serves for training of the dataset and the latter decides

in which direction and angle the object is sliding over the skin patch. As a result,

it classifies the trajectory of the tactile input.

With the presence of Brian simulator (i.e. a simulator for neural spiking neurons),

the latter paves the way to test the feasibility of a neuron model that mimics its

biological behavior on software side. So, I used the simulator to characterize the

mathematical model and try to match its membrane profile to that in [2] and

[43] by omitting the adaptation part. To bridge between the real setup and the

simulation part, I did a one-to-one mapping between taxels in the real setup and

the neurons set in Brian in a way that each neuron holds the same address and

position of its corresponding taxel and is fed by a scaled current from it. By this

way, we coupled what is in software with what is available in hardware.

Fig. 4.1 block diagram summarizes the workflow followed to achieve the desired

goal.

4.2 Experimental Setup

The experimental setup used for collecting the responses of the taxels is made

up of three main parts: electronics, mechanics and software (see Fig. 4.2).
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Figure 4.1: Work Flow.

Figure 4.2: Elements of the Experimental Setup.

4.2.1 Electronics

Fig. 4.2 shows the skin patch during the experiments. It consists of 16 trian-

gles, each containing 10 sensitive areas (see Fig. 4.3). The patch is mounted on

a rigid support with holes in correspondence of the readout chip, allowing for a

planar setup where electronics cannot be damaged (see Fig.4.3)

The capacitive skin sensors are sampled by a capacitance-to-digital converter (Ana-

log Devices AD7147) every 36 ms. The 16 bits digital samples are transmitted via

a shared clock 4-channel I2C interface. The peripheral board receives this data
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Figure 4.3: Diagram of the skin patch considered for doing the experiments
and acquiring the dataset from: front and back parts.

and retransmits them in two subsequent 20-bit data packets, containing half data

each (see Fig. 4.2). The peripheral board issues a Xilinx Artix-7 FPGA (Part n.

XC7A35T-L1), which is programmed to rearrange the data and transmit them to

the mainboard via a custom high-speed serial protocol [47].

The main board, shown in Fig. 4.2, issues a Xilinx Zynq-7000 SoC, which receives

the data and timestamps them. The main board communicates with the periph-

eral one by a single-channel I2C interface. This is used to configure the registers

available in the hardware of the Xilinx Artix-7 FPGA. Moreover, the Zynq-7000

Soc has an Ethernet port to communicate with a PC and runs a Linux-based oper-

ating system. Therefore, a high-level user can connect to the Xilinx Zynq-7000 via

Ethernet and configure, using Linux I2C utilities, the registers of the peripheral

board and read their values back.

4.2.1.1 Mechanics Part

The mechanical part includes the use of an Omega.3 device, shown in Fig. 4.2,

that carries the object that is aimed to slide the patch. The role of the device is

to make the object (the tip in our case) to scan the patch from different end to

end and control its movement (i.e. the direction) with defined speeds through the

horizontal force Fy and the pressure applied on the patch through the vertical force

Fz (setting their values will be clarified in the Results section). All of this is done

using the ROS software (that will be highlighted later) through a C script using a

Qt creator editor in Ubunto-Linux based operating system. Through the C script
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using Qt Creator, the position of the tip mounted on the FT-sensor attached to

the omega.3 is set between two endpoints. The chosen tip has a diameter that

is good enough to fully cover and press the underlying taxel and partially the

adjacent taxels (immediately next to the pressed ones).

4.2.1.2 Omega.3 Device

Shown in Fig.4.2, the Omega.3 relies on a unique kinematic design that has

been optimized for high-end force feedback. It is specifically designed for demand-

ing applications where performance and reliability are critical. Perfect for use

within robotics, virtual simulation and nano-manipulation environments amongst

others, the omega.3 warrants looking when considering haptic devices. A pow-

erful SDK provides highly advanced control for the omega.3 in both haptics and

robotics mode. The Haptics SDK offers all the basic functions to read positions

and to program desired forces in Cartesian space. Expanding these fundamen-

tal capabilities, the Robotics SDK leverages the Haptic SDK by introducing an

advanced set of real-time routines to precisely control the position of the device.

The combination of both haptics and robotics capabilities into a single unified

framework allows developers to create powerful collaborative interfaces between

people and machines. This device is used in a wide range of applications including:

medical and space robotics, micro and nano manipulators, virtual simulations and

training systems.

4.2.1.3 Force Torque Sensor: Nano17

The force torque (FT) sensor, shown in Fig. 4.2, used is the Nano17-E trans-

ducer. It has a list of properties that makes it a good choice for this experimental

setup and goal. One of them is that it is the smallest commercially available 6-axis

transducer in the world. For further information, please refer to (https://www.ati-

ia.com).

4.2.2 Software Part

Done with the electronics and the mechanics part in the experimental setup,

the following section shows the software used mainly in the mechanics part.

(
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(a) Force detected by the FT sensor visualized
using Yap scope.

(b) The force over time plotted using MATLAB.

Figure 4.4: Two examples of the membrane potential profiles.

4.2.2.1 ROS Software

Robot Operating System (ROS) is a collection of software frameworks for robot

software development. Although ROS is not an operating system, it provides ser-

vices designed for a heterogeneous computer cluster such as hardware abstraction,

low-level device control, implementation of commonly-used functionality, message-

passing between processes, and package management. Running sets of ROS-based

processes are represented in a graph architecture where processing takes place

in nodes that may receive, post and multiplex sensor, control, state, planning,

actuator, and other messages [46].

4.3 Results of the First Stage

After highlighting the different parts of the experimental setup and before

going to the results, it is time to describe the steps followed to generate the coming

figures.

As the forces, along the z and y-axis responsible for the speed and the pressing

force respectively, are set through the C-script by numbers, the need to exactly

know the correspondence between these numbers and their actual force magnitudes

applied arises. The idea comes as follows. The Fy is set to a small value and the Fz

is set to a large value. So the tip gets stuck to the patch at a defined position and
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(a) (b)

Figure 4.5: (A) The output of the taxels with the applied force.(B) Real force
sensed by the FT-sensor versus the force values set in the C-script.

unable to overcome the friction force and thus becomes stuck with the patch. By

this way and with the help of the yarpscope shown in Fig. 4.4a through reading

the Fy and Fz forces from the FT-sensor, I became able to get the real value of the

force by saving the signal in a CSV file and getting its average (see Fig. 4.4b).

With the properties of the latter device mentioned above, the time the sliding tip

takes between its path between two endpoints is calculated. Through the C-script,

an initial time is set once the tip hits one end of the patch and final time when it

leaves the patch. The difference between these two instants represent the duration

that the ip takes to scan the patch from one end to another. This serves for the

calculation of the average speed. To change the latter, the horizontal force Fy

applied by the FT-sensor is changed. Concerning the pressing force of the tip

on the patch, there exists a force value correspond. Through the C-script, the

magnitude of the horizontal and vertical force can be changed that will modify

the average speed and the pressing force of the tip accordingly.

Fig. 4.5a shows the behavior of the capacitance to digital converter as a function

of the input force. The former shows a linear relation in which the increase in the

force applied by the tip leads to an increase in the capacitance due to the decrease

in the separation of the parallel plates. Consequently, the capacitance to digital

samples increase in value as shown in Fig. 4.5a.

Sweeping over the force values and getting the average over the readings from
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the yarpscope, Fig. 4.5b shows the relationship between the pressing force set as

numbers in the C-script and the real values sensed by the FT-sensor attached to

the Omega.3 device.



Abbreviations 56

4.4 Second Stage: Brian Simulator

After covering the constituents of the first stage, it is time to go ahead towards

the second stage composed of the Brian simulator to clarify the properties of

such simulator and the model considered in addition to the results. Besides, the

following sections include the way the simulator is used to serve in achieving the

global goal through the link with the first and third stage.

To achieve this, the presence of a simulator at first helps to test the feasibility

of a neuron model that mimics its biological behavior as a starting phase. With

the electronic system and using a Linux based operating PC, the data is acquired

across each taxel and then scaled utilizing feature scaling.

4.5 Brian Simulator for Spiking Neurons: Brief

Description

Brian is a fast event-driven software simulator developed for simulating large

networks of spiking neurons and synapses. The primitive network elements are

designed to exhibit biologically realistic behaviors, such as spiking, refractoriness,

adaptation, axonal delays, summation of post-synaptic current pulses, etc. The

efficient event-driven representation allows large networks to be simulated in a

fraction of the time that would be required for a full compartmental-model simu-

lation. Besides, it is an intuitive and highly flexible tool for rapidly developing new

models, especially networks of single-compartment neurons. In addition to using

standard types of neuron models, users can define models by writing arbitrary

differential equations in ordinary mathematical notation.

Two important points are behind using the simulator. Through Brian, a neuron

model can be used to simulate it. Thus, this is linked to the idea of neuromorphic

engineering and to event driven approach. Moreover, having the one-to-one cor-

respondence between the taxels and the neurons plays a vital role in the machine

learning algorithm. Since the latter is based on probabilistic approach, feeding

the neurons in Brian by the outputs of the taxels gives each neuron a certain

probability depending on its firing rate. By other words, the neuron with higher

rate will have a different probability than the one with lower one. This in return
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gives a higher weight of the former compared to the latter. Therefore, using the

simulator output and using them in the third stage enhances the accuracy of the

latter in the detection of the path followed by the tip while scanning the patch.

4.6 Neuron Mathematical Model: General De-

scription

The mathematical model is built in Brian using Python object-oriented pro-

gramming language. Computationally, the former is based around the concept of

code generation: users specify the model in Python but behind the scenes, Brian

generates, compiles and runs code in one of several languages (including Python,

Cython and C++). The simulator is aimed to develop models based on networks

of spiking neurons for a wide range of applications.

Users specify neuron models by stating their differential equations in standard

mathematical form as strings, create groups of neurons and connect them via

synapses. This approach differs greatly from many neural simulators in which

users select from a predefined set of neuron models. Such general design is

aimed at maximizing flexibility, simplicity and users’ development time. (refer

to (https://brian2.readthedocs.io/en/2.0rc/index.html).

4.7 Workflow Accompanied by the Use of the

Simulator and the Model.

The work in this part started by implementing the model taken from [48]. After

that, analyzing the different parameters of the model considered and comparing its

output (i.e the profile of the neuron achieved by the simulation and experimental

results in both chapters two and three). The first step I did is eliminating the

adaptation part (see Fig. 4.6a) to reach the desired behavior (see Fig. 4.6b).

By comparing both figures, the neuron in Fig. 4.6b shows that its membrane

potential has a fixed interval of charging while in Fig. 4.6a this is missing where

at different time intervals (say every 30 ms), the charging phase differs in its

duration because of the presence of adaptation. The latter step is done by tuning

(
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the suitable list of input parameters for the model to match the response of a

single (LIF) neuron [29].

(a) Neuron membrane profile with adaptation. (b) Neuron membrane profile without adapta-
tion.

Figure 4.6: Two example of membrane potentials profiles.

Specifying the differential equation with the set of state variables and the numerical

integration method makes the contents of a single or group of neurons ready to be

initiated. With the capabilities of the simulator for transient analysis, the latter

makes it possible to show the input current also the membrane potential over the

time duration. Moreover, having the ability to save the spiking instants, spike

trains associated with each neuron included within the group can be represented

versus the instant the spike is generated.

Thus, after all, what is done concerning the analysis and modification phases,

the membrane potential model is expressed by a differential equation shown in

Equ. 4.1. The latter mimics its real behavior vm, with a set of state variables

such as the input current to the neuron I, reset potential EL, leak conductance

gL, membrane capacitance C, slope factor 4T , and spike threshold VT .

dvm
dt

= (gL ∗ 4T ∗ exp(
(vm− VT )

4T
) + gL ∗ (EL − vm) + I)/C (4.1)

Knowing that working with a single neuron is not sufficient for detecting the ori-

entation of a sliding object, we extended the scope to use through the simulator

a group of neurons that are capable of achieving this goal with defined indexes,
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spatial positions and response over time. This step helps in recording their re-

sponses over time utilizing spike trains and build on that to set them as inputs to

the machine learning technique discussed latter.

4.8 Results of the Second Stage

Before going to the outputs of the mathematical model in Brian, there is a need

to link between the first stage and the second concerning the output of the former

and the input to the latter. Thus, Fig. 4.7 shows the linear relation between

current as input after applying the feature scaling step and the output of the

taxels (called CDC). This step shows that the increase in the output of the taxels

will in return gives a sign that the force increased and as a result an increase in

the current fed to the neuron. That is why the relation appears as proportional.

Figure 4.7: The transfer function of the first stage.

After stating the different steps for matching the behavior in the mathematical

model to that in the electronic circuit model through simulation and measurement,

now it is time to highlight different results coming out from the simulation using
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the considered model. As the model includes a group of neurons, the following

results show the response of one neuron at first and a group of neurons after being

fed by constant input, their outputs and the spike train corresponding over time

as a second step.

Starting with a single neuron, Fig. 4.8a shows a constant input current fed to the

neuron along with its response through its membrane potential (see Fig. 4.8b).

The latter is considered the profile of the LIF neuron. Fig. 4.8b comes as result of

Fig. 4.8b where each spike generated is associated with a digital pulse as shown

in Fig. 4.8c.

Fig. 4.9a shows a variable input current fed to the single neuron along with its

response by means of its membrane potential (see Fig. 4.9b) and spike trains

associated to it in Fig. 4.9c.

In Fig. 4.10a, a group of three neurons is considered (i.e. three are included);

where different input currents are fed to Fig. 4.10a shows their responses by

means of their membrane potentials. In Fig. 4.10b, a raster plot is displayed.

Fig. 4.10c includes the transfer function of the model having the firing rate (as

output) as function of the current (as input).

After the testing process of the model, the link between the hardware (i.e. in this

case the output of the taxels) and Brain simulator is emphasized in Fig. 4.11.

The current coming out from the taxel output is fed to the corresponding neuron

utilizing one-to-one correspondence. As noticed from Fig. 4.11, th transfer function

of the model used in Brian shows that the firing rate varies linearly with the input

current. This proves the linearity between the input force and the firing rate of

the neurons starting from the first stage and ending with the second one.

4.9 Discussion

Concerning Fig. 4.8a, the neuron starts charging as the input current is in-

tegrated into its membrane until the reset voltage is crossed and it sharply dis-

charges. It continues with this behavior all over the duration of time (i.e. 200ms).

Also, this behavior proves the modifications done to the model in such a way that

the normal behavior of the LIF neuron is achieved and resembles that found in

literature [29] without adaptation.
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(a)

(b)

(c)

Figure 4.8: (A) Input current to the neuron versus time. (B) Membrane
potential as a response of the integrated input current over time. (C) Spike

train displaying the different instants of each spike.

In Fig.4.9a, the duration is divided into four intervals, 50ms per each. The

response of the neuron shows that the more current is integrated, the more spikes

are generated over the time interval considered.

To show the response of different neurons as a matter of the input current,

Fig. 4.10a serves for this. Three neurons are considered and fed by three different
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(a)

(b)

(c)

Figure 4.9: (A) Variable input current to the neuron versus time. (B) Mem-
brane potential as a response of the integrated input current over time. (C)

Spike train displaying the different instants of each spike.

input values (0.5 nA,1 nA,1.5 nA) are set. The response for this of neurons is

compatible with that in Fig. 4.9a.

Fig. 4.10b shows the raster plot for the three neurons that highlights the instant

a spike is generated and the index of its corresponding neuron. The importance

of Fig.4.10c is to emphasize that the increase in the firing rate of the neuron



Abbreviations 63

(a)

(b)

(c)

Figure 4.10: (A) Membrane potential of three neurons as a response of the
input integrated current over time. (B) Raster plot. (C) The transfer function

of the model.

comes out as a result of increasing the input current. That is why the firing rate

increases proportionally with the increase in the input current.
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Figure 4.11: The transfer function of the model.

4.10 Properties of the Machine Learning Method

4.10.1 Supervised Learning

The algorithm gives each trajectory (i.e. the movement from one end to another

with a certain angle) a specific label. Once the direction is figured out, a pop-up

message appears showing the specifications of each trajectory concerning direction

and orientation. Besides, the algorithm decides whether the current trajectory is

previously learned or not by comparing with the learned data set collected during

the learning phase where the algorithm learns L trajectories where each trajectory

has a label identifying the direction and orientation of the object moving. Given

the following details, the algorithm takes into account supervised learning in its

classification method.
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4.10.2 Based on Probabilistic Approach

Contrary to the deterministic approach that some algorithms are based on, my

algorithm uses a probabilistic approach. It uses probability and random variables

in its learning process (i.e. it is the first part) and in the online testing through

the particle filter. The main principle in the probabilistic approach is to learn a

probabilistic graphical model (PGM). A detailed explanation will be included in

the offline part latter on.

4.10.3 Dynamic Concerning the Learning Capabilities

As the algorithm predicts at first to estimate the direction and orientation

of the sliding tip, so the learning phase may not be sufficient to include all the

possibilities of trajectories. That is why such an algorithm has the capability of

making use of the incremental learning principle. So in case of the decision after

the comparison of the new trajectory with the learned trajectory came to be not

one of the learned trajectories, the algorithm will send a notification saying that

such a new trajectory is unfamiliar to it and then takes an extra step in adding the

latter to its learned data set trajectories. Therefore, the new unknown trajectory

once tested again, becomes known to the algorithm and a Transition Matrix (TM)

will be assigned to it. Moreover, it will be added to the list of trajectories upon

which the classification process refers to for the detection purposes.

In this way, the learning process is extended to cover trained or untrained trajec-

tories and would be able to generate for each trajectory a unique TM suitable for

the online testing phase.

4.10.4 General concerning the Patch Geometry

One of the advantages of the considered algorithm is its independence of the

geometry of the skin patch considered. In other words, the algorithm functions

properly in case we introduce a triangular or square distribution of the taxels

within a patch. The reason behind this comes from the way the algorithm is built

where it considers the spatial position and the instant of activation of the taxels

regardless of the shape of patch carrying the taxels is.
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4.11 Detailed Machine Learning Technique

Given the output of the Brian simulator (i.e. the index and instance of the firing

for each neuron along with its spatial location), the next step is to set the latter

as input to the ML algorithm in MATLAB. In other words, the latter considers

the output of the second stage as its own inputs.

Before going into the details of the algorithm, I would like to show the schematic

of the skin patch (drawn and real ones) as shown in Fig. 4.12. The figure on the

right shows the distribution of the taxels with a given label for each in the x-y

plane. So as a remark, whenever it is mentioned that a neuron of index i, then

this is considered to be taxel i shown to the left in Fig. 4.12.

The proposed algorithm is split into two parts: offline learning and online testing

where both are discussed in the following two sections.

Figure 4.12: The real and drawn schematics of the taxels in the skin patch.

4.11.1 Off line Part: Learning Phase

In this part, the offline part is highlighted. This part is dedicated to the

learning phase. The algorithm learns L trajectories where each trajectory has a

defined label identifying the direction of the object moving and the angle it makes

with the x-axis (discussed above in the supervised learning paragraph).

The inputs are the position of the neurons, the index of the activated ones and

the instant of activation (see Fig. 4.13). The main idea in this part is to learn a

Probabilistic Graphical Model PGM that can be represented by a TM. For each

trajectory, there corresponds an input as above, the algorithm learns a PGM model
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Figure 4.13: First basic part of the model.

as shown in the block diagram where PGM explains the relationship between

activated neurons over time in a probabilistic way (refer to Fig. 4.14).

In such a part, after each trajectory, the algorithm generates a TM related to each

trajectory. The latter is a n by n matrix where n represents the number of taxels

under consideration in the skin patch. The entities forming the latter show the

conditional probability and the relationship between activated neurons over time.

In other words, the elements of the matrix give the dependency of the transition

between taxels in terms of conditional probability. The latter is calculated from

the response of the neurons in Brian. The algorithm receives a list of activated

neurons over time. So, in cases where the taxel is pressed more than its neighbors,

the corresponding neuron generates more spikes over a considered time interval.

Thus, the same neuron is repeated more than once in the spike train. Therefore,

the corresponding taxel will be repeated more in the list. Given this, for each

trajectory, each taxel within the n by n matrix, will have a specific probability

showing the possibility of staying at it or moving to a neighbor one.

That is why for each value included in this matrix, it shows the probability of

staying at its current taxel denoted by i or moving to one of the neighborhood

taxels denoted by i+1 (refer to Fig. 4.15 where S represents the state or taxel,

160 states or taxels in our study).
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Figure 4.14: Probabilistic Graphical Model (PGM).

Figure 4.15: TM associated with each trajectory.

Here is a more detailed explanation of how the algorithm transforms the movement

of the sliding tip in each trajectory into a TM. Imagine we have a sequence

of activated neurons over time. So this will give information about the neuron

number and time of its activation. Generating the TM originates from these two

given points. For example, assume that we received a list of neurons activated

where neuron i is repeated 7 times in the data file. So, the algorithm will convert

the number of counts of neuron i in addition to other neurons considered into a

probabilistic matrix by doing the normalization over all the neurons. By this, the

TM gives us information about how the activation of neurons evolves over time.

Moreover, it gives us the dependency of the transition between variables in terms

of a conditional probability for each trajectory in the learning process.
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Figure 4.16: The inputs and output of the on line testing.

4.11.2 On Line Testing with State Estimation

After learning a set of trajectories, now it is time to predict to detect the

orientation of a new trajectory (i.e. a new trajectory of the sliding tip in a certain

direction on the skin patch).

The output of the offline learning is set as input to the online testing. In addition

to that, a distance matrix (DM) is calculated based on the spatial separation

between each taxel and all the others. After that, the entities of the latter are

normalized to perform as probabilities. So, the new values are considered to be

probabilities as a function of the distance separating the taxels. This implies that

the closer taxels will have a higher probability to go to while the far away will

have almost zero probability for the fact that the tip is pressing on one of the

neighborhood taxels instead of jumping to far away ones. The importance of the

DM is for two main reasons: its role in the estimation of the error in the online

testing part and in giving accurate differences in the case of very close trajectories

(for example nearly activated taxels in two different trajectories).

After learning a set of trajectories, which are represented by TM and DM, the

new observation is set as a new trajectory. So, in this way, I have two sides: the

learned trajectories that I can consider as my reference and the new trajectory

that I need to classify it according to the learned ones. This step needs an agent
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that is capable of differentiating both and decides whether the new trajectory is

something learned by the algorithm or it is new. That is why I chose the particle

filter for this purpose.

4.11.2.1 Particle Filter

While the PGM algorithm is clarified and exploited in the offline learning,

the PF algorithm is adopted. The role of the PF is to predict the future state

(i.e. the next taxel i after being at taxel i-1). Therefore, I apply a particle filter

to predict the future state and then to calculate the corresponding error to decide

finally which trajectory the new one is (either one of the learned or new).

Particle filtering uses a set of particles (also called samples) to represent the poste-

rior distribution of some stochastic process given noisy and/or partial observations.

The state-space model can be nonlinear and the initial state and noise distributions

can take any form required. Particle filter techniques provide a well-established

methodology [49][50] for generating samples from the required distribution without

requiring assumptions about the state-space model or the state distributions. How-

ever, these methods do not perform well when applied to very high-dimensional

systems.

Particle filters update their prediction in an approximate (statistical) manner. The

samples from the distribution are represented by a set of particles; each particle has

a likelihood weight assigned to it that represents the probability of that particle

being sampled from the probability density function. Weight disparity leading

to weight collapse is a common issue encountered in these filtering algorithms;

however it can be mitigated by including a re-sampling step before the weights

become too uneven. Several adaptive re sampling criteria can be used, including

the variance of the weights and the relative entropy with respect to the uniform

distribution [51]. In the re-sampling step, the particles with negligible weights are

replaced by new particles in the proximity of the particles with higher weights.

The objective of a particle filter is to estimate the posterior density of the state

variables given the observation variables.

Once there is a new trajectory, then we talk about new states or observations (i.e.

Zi
t where Z refers to a current observation, i to the taxel index and t to a certain
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instant). The PF role is to predict the new state of the sliding tip based on the

DM from a probabilistic approach (see Fig. 4.17).

Figure 4.17: Particle filter functionality.

The launching state for the particle filter is based on the first state of the new

trajectory. So given that the real state Z is at taxel i, then the PF chooses

the launching state S by referring to the DM. It draws a PDF and chooses a

random variable. With such a random number within the PDF, the intersection

corresponds to a given state S. After that, given the current observation, the

particle filter estimates the future state. This estimation is based on the TM of

the learned trajectories. It does the same as the first launching state by drawing a

PDf and choosing a random number. However, instead of referring to the DM, in

such a case, it refers to the TM corresponding to each state. In this way, the PF

calculates the error between the current and the predicted based on the distance

separating by referring to the DM previously determined in the offline learning.

Based on the local error between every two states (real and predicted), an average

is calculated and compared to the threshold previously set as shown in Fig. 4.18.

For example, if the new trajectory contains 10 activated taxels, the PF predicts

9 future states. As a consequence, the former calculates 9 local errors for each

predicted state. By getting the average, a global error is achieved. Comparing

this global error with a threshold, the PF will be able to find if the new trajectory

under test matches or not a trajectory from the learned trajectories. A pop-up

message will be displayed to convey this. As a result of this, we can deduce whether

the new trajectory is strictly comparable to the learned models or a purely a new

and unobserved trajectory.
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Figure 4.18: Particle filter functioning zone with the observed trajectory.

4.12 Third Stage Results

4.12.1 Offline Part

In this section, the first step that I did is to generate a schematic view for

the taxels in the real patch using MATLAB. As shown in Fig. 4.19, each taxel is

given a specific number along with a spatial position along the x and y-axis. This

resembles exactly the real skin path.

Done with the distribution of the taxels scheme, now it is time to highlight the

off line learning by giving different outcomes of the algorithm used. I consider in

the coming part a limited number of training and testing trajectories for the aim

of clarifying the work done and then extending it later ons.

Fig. 4.20 shows two of the movements done by the sliding tip along with their

corresponding TMs. The training data are in red contour circles, trajectory 1 in

Fig. 4.20a and trajectory 2 in Fig. 4.20c respectively, and in blue the direction

of the tip over time. As shown in both figures, the tip while scanning the patch

has almost a linear path from one to the other. Besides, it is clear the activation

of more than one taxel at a time. This due to the position of the tip while

scanning the patch in case it crosses between two taxels and touching them at
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Figure 4.19: Schematic view for the taxels distribution in the skin patch.

once. In addition, the fabric, being pressed by the tip, bents a little toward the

neighborhood taxels making them activate even if not touched completely.

Utilizing the PGM method through its algorithm, the latter represents each tra-

jectory with its corresponding TM through a color map. Figs. 4.20b and 4.20d

show the TMs for the movements of the tip. The x and y axis are of 160 point

that count for the number of taxels under consideration.

As shown in both figures, the TM shows the conditional probability of a transition

between one taxel and another (i.e. 160 taxels in this case). The horizontal axis

represents the taxels numbers of the next taxel after being in a previous taxel

shown in the vertical axis. It also shows an example concerning the situation in

being at taxel number 64 and moving to taxel number 49. In such a trajectory,

with the probabilistic approach adopted in such an algorithm, the probability

computed is 0.6.

Furthermore, looking at the two trajectories and their corresponding TMs, we

notice that these two trajectories are different which leads the PGM to generate

two different TM. This in return proves the idea behind the classification way the

algorithm does that is the supervised learning way.
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(a) (b)

(c)
(d)

Figure 4.20: (A) The training data for the movement of the sliding tip from
left to right and activating specific taxels over time.(B) The TM resulting from
the movement of the tip in left to right direction.(C) The training data for
the movement of the tip along the diagonal.(D) The TM resulting from the

movement of the tip along the diagonal.

Fig. 4.21 extends from Fig. 4.20a. The former shows the linear fit to the trajec-

tory of the tip and the angle separating the linear fitted line with the horizontal

axis.
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Figure 4.21: The linear fitting to the path followed by the tip during its
movement from left to right.

4.12.2 Online Part

Done with the learning part using the offline algorithm, now I will shift to the

online testing part. I include in this part the testing data and perform an online

testing on them.

Figs. 4.22 and 4.23 show the online analysis of 4 different trajectories performed

and the resulting performance. Fig. 4.22a shows the activated sensors of trajec-

tories 1 and 2 (previously trained in the offline learning phase) colored in red and

magenta respectively. The yellow contoured taxels represent the testing data, and

the blue arrow shows the activation of the taxels over time continuously. In such

figure, the testing data corresponds to the movement of the tip horizontally from

left to right.

Fig. 4.22b comes as an extension of Fig. 4.22a for the trajectories prediction

and detection of the direction and orientation. It shows the performance of the

testing data relative to the trained data versus time. As shown, it is compatible

with Fig.4.22a where there are two trajectories (1 and 2). Just for a quick note,

the performance is considered to be opposite to the error (refer to Fig .4.18 for

more information). So, once the local error is high, then the performance is low
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(a) (b)

(c)
(d)

Figure 4.22: (A) The testing data of the sliding tip from left to right.(B) The
online performance analysis of the left to right movement.(C) The testing data
along the diagonal.(D) The online performance analysis of the down left to top

right movement along the diagonal.

and vice-versa. The latter gives an idea about how much the tested trajectory

matches the trained trajectories or not.

The blue and red lines show the performance of trajectories 1 and 2 respectively.

Concerning the blue line, the performance exceeds the threshold while that for

trajectory 2 is below it. Since the averaging over the local error (26 local error

computed by the PF in this case because 27 taxels are activated during trajectory

1). The error concerning trajectory 1 is low while trajectory 2 is high. Thus, the

global error is greater than the threshold and almost 97% comparable to trajectory

1, then the pop-up message is ”trajectory 1” and not ”trajectory 2”. There is a

special jump in the performance of trajectory 2. In this region, called confusion

region, the taxels activated are common in both the testing and learning data.

Thus, the error is small and the performance is high. That is why the red line
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(a)
(b)

(c)
(d)

Figure 4.23: (A) Movement of the sliding tip from left to right and activating
specific taxels over time.(B) The color map shows the transition between taxels
for the path of the tip from left to right in terms of probability.(C)The movement
of the tip along the diagonal.(D) The TM resulting from the movement of the

tip along the diagonal.

crosses the threshold. The same applies to figures Figs .4.22c and 4.22d. The

new in Fig .4.22c is the new trajectory being across the diagonal.

Fig. 4.23 differ from the previous one by including new trajectories that were

not included in the training phase. The same is done by showing the activated

taxels and the and the online performance. In such case, the error is high and

thus the performance is low except for the common region where common taxesl

are shared between the training and testing trajectories. Consequently, the error

is high leading the algorithm to display a message that the new trajectory is not

one of the trained ones.
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4.13 Statistical Validation of the Learning Method

To statistically validate the proposed ML method, I considered a data set com-

posed of 78 trajectories. Splitting the former into training and testing data, I

considered 56 to be training data and 22 as testing data. I did a set of trials by

which I did a training on the training data (call it first case) and testing on the

testing data (call it the second case). I computed the error and how it changes

during the first and the second cases.

4.13.1 Testing on the Training Data

Concerning the training on the training data, I considered to do the same proce-

dure for 10 times. Fig.4.24a shows the path followed by the tip from bottom to

top. Fig. 4.24b presents the performance of the latter in accordance to the TM

combining the TMs of the 55 training trajectory for one execution. Fig. 4.24c

presents the change in the performance after doing the online testing for 10 times.

AS noticed, the performance is almost the same over the 10 trials (average =

0.908789877 out of 1), and thus the algorithm is quite accurate considering the

training data as testing data.

Fig.4.25 shows the average and the standard deviation for each of the 56 training

data considered as testing data. The average performance across all data is drawn,

and it is calculated to be 0.876247575 out of 1.

4.13.2 Testing on the Testing Data

Done with the testing on training, now I shift to test using new data. Fig.4.26

shows the average of the performance along with the standard deviation for 22

testing data corresponding to 22 new trajectory. The average for all the trajectories

is also plotted and shown as dashed line in the plot. The good performance of

the new trajectories reflects the idea of the confusion presented between the new

trajectory and the trained trajectories.

In Fig.4.28, I set the omega device to scan the patch along the same path (from

left to right) with different pressing forces and sliding speeds. The aim behind this
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(a)

(b)

(c)

Figure 4.24: (A) Movement of the sliding tip from bottom to top.(B) The
performance of the trajectory in Fig.(A). (C) The performance over 10 trials of

the trajectory in (A).

method is to test the response of the algorithm towards the same trajectory but

with different force and speed for the tip.

I collected the responses of the taxels and tested them following the work flow until

the machine learning algorithm. What I realized is that as a matter of increase

in the force set value, the tip is able to press the taxels more and hence more

spikes are generated by the corresponding neurons in Brian. In addition to that,

the number of activated taxels is proportional to the applied force. That is why

their number is affected by the force value set for the tip to scan the patch with.

The data tested concerns the path from left to right. The largest force value (i.e.
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Figure 4.25: The average performance over the 10 trials.

Figure 4.26: The average performance over the 10 trials for testing data (i.e.
new trajectories).

2.1 N) activated 21 different taxels whereas smallest force value (i.e. 0.612 N)

activated 8 taxels (refer to Fig. 4.27).
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(a) (b)

(c) (d)

(e)

Figure 4.27: Movement of the sliding tip from left to right with: (A) F =
0.612 N and V =6.21 cm/s activating specific taxels over time.(B) F= 0.8 N
and V = 6.98 cm/s. (C) F= 1.01 N and V = 14.1 cm/s. (D) F= 2.1 N and V

= 3.1 cm/s.

The average performance for each new trajectory with different force and speed is

shown in Fig. 4.28. It shows that the highest force has the highest performance.



Abbreviations 82

The reason is that the algorithm acquired more knowledge about such trajectory

due to the large number of activated taxels making the error in the detection lower

and thus high performance. That is why we notice the compatibility between

Figs. 4.27e and 4.28.

Figure 4.28: The average performance over the 10 trials for testing data (i.e.
new trajectories).





Chapter 5

Conclusion and Future

Perspective

Tactile sensing, like vision, is an important and integral part of the perceptual

mechanisms of humans and, for that matter, of artificial devices such as robots.

For this reason, the latter tactile sensors are acquiring a valuable role in the

contemporary growing technologies and applications; contributing effectively and

specifically to a large extent in robotic and prosthesis domains for contact and

force feedback. In general, their suitability and development to be implemented

on the body of the robot require a lot of studies, techniques, and methods in the

fields such as material science, electronics, transducers, and communications based

on the aimed application. We are concerned about the study of these sensors, their

designs and applications to mimic the sense of touch in humans, specifically and

efficiently on the circuit level.

This thesis is divided into two parts: circuit characterization utilizing simulation

and experiments and detection of the direction and orientation of a sliding object

on iCub skin patch using machine learning technique.

Concerning the first part, we merged in our circuit designs between CMOS tech-

nology and neuromorphic circuits being inspired by the biological system inside

the human body. We presented the design and the functionality of an event-driven

touch CMOS sensor circuit for artificial devices. The latter is designed in CMOS

AMS 0.18 µ m technology with modifications across its constituents compared to

a previously fabricated and tested prototype. As real-world tasks involve both

static and dynamic contact events, the extensive characterization, clearly stated

84
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and discussed of the new sensor circuit, confirmed the goal behind its design and

highlighted its response to static and dynamic input potential difference and pres-

sure. The pressure on the POSFET is converted to a proportional current fed

to two separate neuromorphic neuron circuits that generate spikes as signs of an

event (either pressure or release), driving the whole sensor circuit. As it encodes

for the absolute value of the applied force, this encoding of pressure levels loosely

recalls the sustained type of skin mechanoreceptors (Merkel cells) inside the hu-

man body. The included results showed the better sensitivity to smaller input

potential difference and force amplitudes compared with the previous circuits de-

signed, area saving and smaller bandwidth and built with newer technology, were

the key features of the new sensor circuit design. Rich with these capabilities and

improvements, the sensor circuit can be an integral part especially in robotics,

prosthesis and bioengineering domains.

We also presented another event-driven tactile sensing element based on the change

detector circuit of a vision sensor. The proposed architecture encodes the value

of the input force variation over time across two separate outputs using the AER

protocol. Working in the “transient” mode, the encoding of pressure levels recalls

the skin Meissner Corpuscles based mechanoreceptors. Preliminary simulation

results presented in this work confirm the suitability of the new proposed event-

based tactile sensor. As a consequence of its ability to encode the variation of the

input pressure or force through two separate output trains of spikes [37], it can be

considered as an alternative for the event-driven ”transient” taxel proposed in [30].

The Dynamic Tactile Sensor (DTS) design opens a new approach towards a novel

artificial tactile sensor that fits properly into robots and autonomous devices where

power consumption and high temporal resolution are key design specifications.

In the second part, we worked on a method to detect the orientation of a sliding

object on the iCub skin patch. Since working with one sensor is not sufficient to

reach the desired goal, we used a kin path full of sensors to achieve this aim. I

prepared an experimental setup suitable for scanning the skin patch by an object

with different force and speed. After collecting the response of the sensors (i.e.

taxels), I set them as input to Brian simulator. The latter is dedicated to neurons

and neural networks. The neurons are fed by the output of the taxels output

and on in return generate spike once their corresponding sensor on the patch gets

activated. The outputs of the neuron model are set as input to the machine

learning method. The latter is composed of two main parts: offline learning and
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online testing. The learning part considers Probabilistic Graphical Model PGM

that assigns to each path followed by the tip a Transition matrix TM. So, for

each path followed by the object sliding on the patch will have a specific TM that

differentiates it from other paths. Based on that, each path is given a label that

gives such an algorithm the principle of supervised learning. The online testing

comes as the last step to achieve the desired goal. In this part, a new path is

introduced and the algorithm with the help of the Particle Filter PF can predict

first the orientation and then detects it. The algorithm finds a local error between

the predicted state (i.e. a future position computed by the PF) and the real state

(i.e. the number of the taxel activated). Averaging over all the local errors for

different states yields a global error. The latter is compared to a threshold. Once

it exceeds it, its performance becomes high and thus it can detect its orientation.

I tested the proposed ML algorithm by setting different paths followed by the

sliding object and computed the corresponding performances. It showed good

results in two cases: testing on the training data and testing on testing data.

Moreover, I examined the effect of different force and speed on the output of the

algorithm. What I did is to set different input force magnitudes on the tip and

its speed while scanning the patch for the same path. The results showed what

is expected. In case the force is low in magnitude, a lower number of taxels gets

activated and vice-versa. That is why in the testing part, the highest performance

of the algorithm was with the highest force magnitude. It is because a higher

number of taxels makes the path complete and with more probabilities among

each taxel. Consequently, the global error becomes smaller and the performance

becomes higher. Therefore, the algorithm becomes more accurate in detecting the

direction and orientation of a sliding object.

5.1 Future Work

Concerning the first part related to the circuit design, all circuits before sending to

fabrication have to be extensively characterized and tested by professional circuit

designers with good experience. Some of the tests to be done such as Layout

versus schematic, power and ground nets, corner analysis, parasitics extraction,

temperature effect and more.
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For the proportional POSFET circuit, the circuit worked well during simulation

and experimental characterization even though the prefabrication tests are miss-

ing. However, the problem in the drift across the analog memory capacitor has to

be solved. One of the possible solutions is to use a floating gate MOS capacitor

instead of the current MOS capacitor. Floating Gate MOSFETs (FGMOS) are

popular and widely used devices in every single PC, programmable voltage/cur-

rent references, digital potentiometers, single-transistor DACs, adaptive/learning,

and as nonvolatile memory elements in flash memories. Therefore, including this

technique in designing the future circuit will solve the problem in the drifting of

the saved voltage value and thus stays the same for the long term.

Regarding the differential POSFET circuit, the mentioned tests above should be

done to make sure that the circuit functions similar to the simulation results after

fabrication. I came up with this conclusion since when I tried to characterize the

circuit experimentally, I was not able at all to have something comparable to the

simulation results. An additional solution is to try a better dimensioning of the

MOSFET transistor and more accurate tuning of the biasing voltage accordingly.

Concerning the edge orientation part, a list of ideas can be added to improve it.

One of the things that can be done is to directly connect the output of the taxels

to MATLAB script. This step will save time and computation and the idea of

online testing will in real-time. For example, achieving such a step will enable

the user to slide an object on the patch and the latter will be connected to a PC.

The PC will post-process the data collected and visualizes the path followed on

its screen at the same time the object is sliding. Meanwhile, the algorithm will

be computing the performance of such a task and figuring out its direction and

orientation.

Another interesting point is to use a rigid transformation in the algorithm. With

the help of the latter, the computation will faster in detecting the orientation and

direction of the sliding object. This happens because all the tasks from left to

right to be considered having a unique label, and the same applies to other tasks

in different directions.

Third interesting point is to use such an algorithm in real-time to resemble Google

translator. Using the direct path from taxels to the PC with the algorithm and

the rigid transformation principle, the user presses with his hand on the taxels
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and the algorithm after being trained figures out the letter or number as a result

of the path implemented by the user’s hand.
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