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SUMMARY 

Viruses, being obligate intracellular parasites, depend on host cell factors to 

complete their replicative cycle. They are made up of genetic material, either 

double- or single-stranded DNA or RNA, surrounded by a protein coat called capsid. 

They may also contain some pre-synthesized viral proteins, otherwise all the viral 

factors and enzymes needed for completing their reproduction are encoded by the 

viral genome and synthesized inside the host cell by hijacking its metabolic 

machinery. Some viruses also possess an external lipid envelope derived from the 

host cell membrane that exhibits antigenic proteins and glycoproteins1.  

In the fight to infectious disease, traditional therapeutic approaches have mostly 

focused on targeting specific viral components or enzymes. This pathogen-directed 

strategy, while successful in numerous cases, in many others results ineffective due 

to the emergence of drug-resistance; this event derives from the high mutation rate 

of viral genome, which may lead to the selection of resistant strains.  

A different approach, addressed to target host-factors essential for viral replication, 

has recently draw an increasing attention; viruses, as obligated parasites, usurp the 

metabolic machinery of host cells to synthesize some crucial factors and to 

complete replication. Thus, blocking one or more host factors could be effective 

against the pathogen growth, allowing the escape of drug-resistance and could also 

provide broad-spectrum antivirals capable of hitting common targets shared by 

different viruses2. 

My PhD project was aimed at synthesizing new nitrogen heterocycle systems, 

designed especially against RNA viruses, such as those belonging to Flaviviridae, 

Orthomyxoviridae and Paramyxoviridae families. Among them there are, respectively, 

pathogens responsible for diseases with a high epidemiological impact, as BVDV in 

cattle and HCV in humans, influenza A and B viruses and respiratory syncytial virus 

(RSV). 

The Bovine Viral Diarrhea - Mucosal Disease (BVD-MD) is a highly contagious 

infectious disease that affects cattle. The causative agent is the Bovine Viral Diarrhea 

Virus (BVDV), which causes a wide range of symptoms including abortion, 

teratogenesis, respiratory problems, chronic wasting disease, immune system 

dysfunction and predisposition to secondary viral and bacterial infections, thus 

determining significant economic losses to livestock industry3. Besides vaccination, 

currently there is no completely efficacy pharmaceutical options for controlling 
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BVDV infection, thus there is an urgent need to develop novel antiviral drugs in order 

to limit the pathogen diffusion and prevent birth of persistent infected calves. The 

interest towards BVDV is also associated to its similarity with the human pathogen 

HCV. In this case also, the access to the currently available therapy is limited due to 

the limited efficacy and marked side effect of the traditional drugs or by the high cost 

of the therapy with the recently approved drugs (e.g. Sofosbuvir)4. Additionally, as 

Hepaciviruses can hardly be used in routine cell-based assays, antiviral activity 

against HCV was evaluated against BVDV because of similar genome organization 

(sequence homology > 30%) and replication mechanisms. Both BVDV and HCV 

possess an RNA-dependent RNA-polymerase (RdRp) which is the central enzyme in 

the replication of genome, thus it represents an ideal target for small molecule drugs. 

The research group where I develop my Ph.D. research work has previously 

discovered the specific anti-BVDV activity of a series of N-substituted derivatives of 

9-amino-6-chloro-2-methoxyacridine against BVDV5. These results represented the 

starting point of my Ph.D. research work: throughout my first year I synthesized a new 

small library of acridine-based molecules, starting from three prototypes selected 

among the previous series and exploring the variation of the 9-amino side chain, 

including differently functionalized aromatic or heteroaromatic rings, with the aim of 

achieving more effective and safe BVDV inhibitors.  The most potent compounds 

demonstrate to effectively inhibit BVDV replication, (EC50 values in the range 0.8-11.5 

M) and also exhibited a low cytotoxicity and a high safety profile in in vitro cellular 

assays. In addition, in vitro enzymatic inhibition assays against the BVDV RdRp and 

ITC measurements of the binding process and molecular modeling studies 

confirmed the BVDV RNA-dependent RNA-polymerase as the molecular target of 

these compounds6.  

The second part of my PhD project was focused on the research of novel anti-

influenza agents either acting on viral proteins or host factors involved in the viral 

replication processes. 

Respiratory tract infections represent a serious burden with significant morbidity and 

mortality especially occurring in children, elderly and immunocompromised people. 

The vast majority of ARIs have a viral aetiology and may be the result of the infection 

of different respiratory viruses, in particular RNA viruses, such as respiratory syncytial 

virus (RSV), influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), 

rhinovirus (RhV), and coronavirus (CoV)7. 
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Respiratory syncytial virus (RSV) is the etiological agent of many respiratory tract 

infections that represent the major cause of hospitalization of infants and children. 

The virus is highly contagious and re-infection occurs. To date, therapy is restricted 

to Ribavirin, whose effectiveness, however, is highly questionable while humanized 

monoclonal antibody Palivizumab (Synagis®) is used for the prevention in high-risk 

infants, but with only partially efficacy8. RSV has an RNA genome that encodes 11 

viral proteins: the F (fusion) and G (attachment) surface glycoproteins are the main 

antigenic determinants and play an important role in viral entry into host cells, thus 

they represent interesting targets for designing small molecule inhibitors.  

Influenza also causes respiratory tract infections that seasonally occur in epidemic 

form, and sometimes evolves with pandemic proportions. Influenza viruses are 

members of the Orthomyxoviridae family and can be divided into four types A, B, C 

and D. Among them the virus types A and B are the most common human pathogens. 

The influenza viruses are capable of reassorting their genetic material between 

different human and animal strains (antigenic shift) and to continuously evolve to 

evade the host immune system through the mutation of the genes encoding for 

surface glycoproteins (antigenic drift). The current therapy is limited to two classes of 

drugs: neuraminidase (NA) inhibitors and the M2 proton channel blockers. Recently 

research efforts are oriented to the identification of new potential target to be 

inhibited in order to obtain a therapeutic effect, such as the viral factors RNA 

polymerase or hemagglutinin HA inhibitors. Recently, also novel anti-influenza 

compounds directed against host-factors essential for viral replication have been 

developed since they could potentially represent a new strategy to pursue in order 

to resolve the problem of the emergence of mutant resistant viruses and parallelly 

obtain a broad-spectrum antiviral effect9. 

During my PhD I synthesized several molecular series that demonstrated to be active 

against different RNA respiratory viruses. 

The research group of Prof. Tonelli has previously identified a series of 

dihydrotriazines, structurally related to the antimalarial drug cycloguanil, which 

acted as potent inhibitors of influenza B replication in vitro10. These derivatives have 

been demonstrated to achieve the antiviral effect by blocking the host-factor hDHFR. 

Thus, during my PhD I synthesized two novel series of dihydrotriazine-inspired 

compounds: a set of 4-azaspiro-1,2-dihydrotriazines11 and a second smaller series of 

2-amino-3,4-dihydrotriazino[1,2-a]benzimidazoles, in order to further explore the 

effect of different derivatizations of this chemical scaffold. Only few compounds 
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belonging to the first series demonstrated efficacy towards influenza A H1N1, or 

influenza B, or RSV with a lower antiviral potency if compared to the previous series 

prototypes. Despite the general lower activity trend, the enzymatic inhibition assays 

and the molecular modeling calculations allow to better understand the structural 

requirements to optimize the enzyme-ligand interactions in order to guide the design 

of a future series of compounds.  

During the second year and the third year of my PhD I joined Professor S. Vázquez’ 

research group at the University of Barcelona for a six months period. During my stay 

I continued my research in the field of anti-influenza agents by working on the 

synthesis of three series of compounds including a series of anilino-derivatives, and 

a series of benzenesulfonamides, both structurally related to the HA inhibitor CL-

6191712. Unfortunately, only few of these compounds showed only a marginal activity 

against human coronavirus HCoV 229E, while no visible effect has been recorded 

towards influenza viruses. The third set of compounds will not be reported in this 

thesis since some of the derivatives within this series proved nanomolar activity 

towards the influenza A subtype used in the in vitro assays, thus they will be subject 

of a future patent application. 

Finally, during my third year of PhD I completed the synthesis of a series of 

benzimidazole analogues, derivatized with (thio)semicarbazone and hydrazone 

moieties. The novel compounds have been designed taking inspiration from a 

previous series of benzyl- and benzotriazol-1/2-yl- benzimidazoles which proved 

sub-micromolar potency against RSV and also other RNA viruses13. The newly 

synthesized derivatives, although not being endowed with the same potency of the 

previously studied analogues, showed occasional activity against influenza A and 

RSV. Additionally, five compounds exhibited the capability to inhibit the HCoV 229E, 

being the first benzimidazole-derivatives manifesting an activity towards this virus. 
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CHAPTER 1. Introduction 

1.1 The Origin of Viruses 

Viruses are obligate intracellular parasites; they are able to complete their life cycle 

and replicate only inside a host organism. They can be defined as sub-microscopic 

molecular complex constituted of nucleic acids and protein shells surrounding the 

genetic material. Viruses are capable of infecting a wide range of living organisms 

and exploit bacteria, fungi, amoeba, plants and animals to complete their replicative 

cycle1. 

Traditionally, three different hypotheses have been formulated regarding the origins 

of viruses; according to the first one, the “virus early-hypothesis”, viruses are supposed 

to directly descent from the first replicons, DNA or RNA molecules capable of 

replicating from a single origin of replication, existing in the precellular stage of the 

life evolution. As stated by the second theory, the “regression hypothesis” viruses 

might derive from the degeneration of ancestral cells that lost their autonomy and 

became unable to live and replicate without the help of a host organism, turning, in 

effect, into an obligate intracellular parasite. In the last scenario, depicted by the 

“escaped gene hypothesis”, viruses are the product of cellular host genes’ acquisition 

of the ability to infect and replicate in a semi-autonomous way, escaping from the 

parent cells and given rise to the different bacterial, archaeal and eukaryotic viruses.  

These three theories are equally valid but each one if singly considered exhibits 

some inconsistency and cannot satisfy the whole aspects underlying the 

development of all circulating virus strains. The wide differences among viruses, 

exploiting all possible strategies of genome replication and expression, and carrying 

different nucleic acid, has allowed to emerge a recent theory where different groups 

of viruses could be potentially evolved following different routes. 

Recently a new “chimeric hypothesis” have been formulated stating that the structural 

protein and the proteins required for genome replication, both encoded by the viral 

genome, might derive from different ancestors. This theory involves a two-stage 

process in which pre-cellular replicons emerge before the first cellular life forms and 

then capture capsid protein genes from cellular organisms, which enables them to 

form virions. This theory is supported by the fact that many viral enzymes involved 

into the genome replication does not have a cellular counterpart, while the structural 

proteins, whose cellular homologues have been identified, may have evolved from 

ancestral cellular proteins14. 
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1.2 Classification of Viruses 

Traditionally viruses have been classified by their phenotypic features, such as 

morphology, nucleic acid types, mode of replication, host organisms, and the kind of 

disease they can cause.  

 

1.2.1 Baltimore Classification 

The Baltimore Classification, developed by David Baltimore (1971), classifies animal 

viruses on the base of their genome type (RNA, DNA, single or double stranded) and 

method of replication15.  Viruses are called “RNA viruses” or “DNA viruses” depending 

on their nucleic acids; viruses that replicate via reverse transcription are grouped in 

a separate category as “reverse transcribing (RT) viruses,” regardless of whether the 

genome is RNA or DNA. The viral genome could also be a single molecule of DNA 

or RNA or it could be segmented in different parts, each one encoding for different 

proteins. 

This classification divides animal viruses in seven groups, considering the nucleic 

acids species (DNA or RNA), if the genome is a positive-strand or negative-strand 

and whether it is a single-strand or double-strand (Figure 1). The different nature of 

the nucleic acid affects also the mechanism of genome replication and expression, 

and the transcription into mRNA necessary to protein biosynthesis. 

• Group I ― (+/-) dsDNA, double-strand DNA genome, it serves as a template 

to transcript the mRNA. 

• Group II ― (+) ssDNA, positive polarity single-strand DNA genome, these 

viruses first convert their ssDNA genome to dsDNA, then used as a template 

for mRNA transcription. 

• Group III ― (+/-) dsRNA, double-strand RNA genome, it also serves as a 

template to transcript the mRNA. 

• Group IV ― (+) ssRNA, positive polarity single-strand RNA genome, in this case 

the genomic RNA is directly by host’s ribosomes as mRNA. 
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• Group V ― (-) ssRNA, negative polarity single-strand RNA genome, it can’t be 

directly read by ribosomes so it serves as a template for the synthesis of the 

positive strand reciprocal mRNA by the viral polymerases. 

• Group VI ― (+) ssRNA-RT, positive polarity single-strand RNA genome, 

retroviruses are part of this groups, differently from Group IV the RNA genome 

is not directly read by the ribosome but is converted into DNA by a reverse 

transcriptase enzyme. Thereafter, the new DNA is integrated into the host’s 

genome by means of an integrase enzyme. Then it serves as template for the 

hosts polymerases for the synthesis of mRNA. 

• Group VII ― (+/-) dsDNA-RT, double-strand DNA genome, the viral DNA 

serves as template for RNA that acts as mRNA for the protein synthesis but it 

also serves for viral replication. Indeed, the viral reverse transcriptase 

synthesizes the new DNA by retro-transcription from the RNA template.  

 

 

 

Figure 1. Baltimore classification of viruses, divided in DNA viruses (Group I and II), RNA viruses (Group 

III, IV, and V), and RT viruses (Group VI and VII). The figure shows the differences of viral genome 

structure in each group (DNA or RNA), the strandness (ss: single-strand or ds: double-strand), and the 

polarity (+/-). The relationship of the genome to mRNA is indicated by solid line (transcription) or dotted 

line (no transcription)1. RT: reverse transcription 
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1.2.2 ICTV classification 

The International Committee on Taxonomy of Viruses (ICTV) is responsible of 

establishing guidelines for taxonomic classification of viruses and of naming and 

classifying the viral species16. The ICTV recognizes five hierarchical ranks that are 

used to define the universal viral taxonomy, starting with orders (suffix -virales), which 

are divided into families (suffix -viridae), subfamilies (suffix -virinae), genera (suffix -

virus) and then species. Species can be further subdivided into genotypes or subtypes. 

Viruses are classified on the base of their shared characteristics with the other 

members of the groups, sequence similarity and phylogenetic relationships are 

primarily considered in order to assign one virus to a group or another. Hereafter 

viruses with similar properties are grouped together. The characteristics displayed 

by the members of a higher-level class are shared with all the lower-level classes 

that belong to higher level class17. 

 

1.3 Viral Structure 

Viruses are sub-microscopic particles since most viruses vary in diameter from 20 

nm to 250–400 nm. The virus particle, called virion, is composed of a nucleic acid 

surrounded by a protective protein coat called capsid, that is formed by structural 

proteins arranged together, called capsomeres, which are encoded by the viral 

genome. Nucleocapsid is the term referring to a viral capsid associated with the viral 

genome. Some viruses might also have a lipid bilayer surrounding the capsid, called 

envelop, that derives from the host cell membrane that previously supported virions 

replication; the viral envelop is studded with viral proteins and glycoproteins. Viral 

proteins can be divided in “structural proteins”, as the capsid proteins and all the 

proteins that constitute the virus particle, and “non-structural proteins”, all the 

proteins that are absent in the virion structure (i.e. many virus-coded enzymes such 

DNA/RNA polymerase and proteases) and that are synthesized only in the 

replicative phase by exploiting the host’ cell machinery. 
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Figure 2. Different shapes of virion structures: nonenveloped (naked) virus with an icosahedral capsid, 

the most common type in naked viruses. Enveloped viruses have a membrane that surrounds the 

nucleocapsid, which can have an icosahedral, icosa(delta)hedral, or helical shape. Source: 

https://clinicalgate.com/viral-structure-classification-and-replication/ 

 

Different classes of viruses have distinctive shapes depending on the capsid 

arrangement (Figure 2):  in animal viruses, two kinds of capsid structures are the most 

common, such as the spherical capsid and the helical capsid. Structural proteins 

assembly into subunits that serve as building blocks for the build of viral capsid; they 

are organised in a symmetric manner, which can acquire either icosahedral or helical 

symmetry. Spherical shaped viruses possess an icosahedral structure geometry, 

while helical capsids possess an elongated capsid structure1 (Figure 3). 

 

Figure 3. Different organization of the viral capsomers into helical and icosahedral geometries. Source: 

https://www.ck12.org/book/CK-12-Biology/section/13.2/ 

 

1.4 Virus Life Cycle in Animal Hosts 

Viruses, as intracellular obligate parasites, are forced to usurp the metabolic 

machinery of their hosts to complete their life cycle. The virus life cycle can be 

divided into three main stages: entry, genome replication, and exit. 

https://clinicalgate.com/viral-structure-classification-and-replication/
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1.4.1 Virus Entry Phase 

This phase can be further sub-divided in four different steps: attachment, 

penetration, cytoplasmic trafficking, and uncoating. 

• In the attachment phase the virus particle needs to recognise some attachment 

factors (i.e. glycosaminoglycans) on the host cell surface; these factors help the 

virus to interact with some specific membrane receptors which recognise and 

bind the viral structural proteins. These viral receptors may have different 

molecular composition (i.e. protein, glycoproteins phospholipids) and function; 

indeed, that the virus exploit them as receptors for entry process. For instance, 

the physiological function of LDL receptor is to uptake LDL particles into cells, 

but is also serves as entry receptor for Rhinovirus18. 

• To entry the host cell the virus needs to permeate the phospholipidic membrane. 

Enveloped viruses enter into the cell by using two mechanisms: direct fusion of 

the viral envelop with the cell membrane followed by the release of the 

nucleocapsid in the cytoplasm or receptor-mediated endocytosis where the virus 

enters the cell inside an endosome. Non-enveloped viruses use only the 

receptor-mediated endocytosis mechanism. 

• Inside the cell the virion needs to get to an appropriate site for genome 

replication that could be located either in cytoplasm or in the nucleus. 

Regardless the site of replication, the viral particle makes use of the host’s 

microtubule-mediated transport to reach the replication site19. If viruses have to 

reach the nucleus for replicating, they often employ nuclear pore complexes 

(NPCs) — large protein complexes that act as passageways for the transport of 

molecules into and out of the nucleus20. 

• The uncoating phase allows the viral genome to be exposed to cellular 

machinery for viral gene expression. This process may occur in different sites 

depending on the virus type. For viruses that replicate in the nucleus, the 

uncoating may occur in the cytosol or inside the nucleus, depending on the size 

of the viral genome: in the case of human immunodeficiency virus 1 (HIV-1) and 

influenza A virus the capsid goes toward dismantling before accessing the 

nucleus and only their genome passes through the NPCs, while other viral 

capsids, such as those of hepatitis B virus (HBV) are small enough to cross the 

NPC and genome release occurs when inside the nucleus20. 
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1.4.2 Genome Replication Phase 

This phase varies among the different virus families, since viruses are endowed with 

different replication mechanisms, even though they are in common with the 

members of the same family. Moreover, the dependency on host machinery to 

complete the replication process varies among the different families, ranging from 

viruses that entirely depends on host machinery for replication to ones that rely more 

on self-enzymes1. 

 

1.4.3 Virus Exit Phase 

In this final phase the new assembled virion is released from the host cell membrane. 

The exit stage can be divided into three steps: capsid assembly, release, and 

maturation (Figure 4).  

• The capsid assembly is composed of two stages: capsid assembly and genome 

packaging. These two processes can occur sequentially or simultaneously 

depending on the virus type. In the case of picornavirus, for instance, an empty 

capsid is first assembled without the RNA, that is next inserted passing through 

a pore formed in the procapsid structure21. In other viruses the capsid assembly 

at the same moment of the genome packaging.  The virus is able to selectively 

package its genome since the viral capsid proteins contain a binding site that 

recognizes a specific sequence of the genome22. 

• The release of the assembled virions follows different ways on the base of virus 

strain. Naked viruses exit via cell lysis, the host membrane is disrupted and the 

virions are released from the host cell. In the case of enveloped viruses, the 

envelopment of the capsid is required to occur before the release. The 

envelopment may take place after the capsid assembly by interaction of the viral 

capsids with viral envelope glycoprotein (i.e. HBV)23, or in parallel to the capsid 

assembly (i.e. retroviruses). Besides, the envelopment site changes among 

different viruses. The plasma membrane is the site of envelopment for some 

viruses, such as retrovirus and influenza virus, whereas endoplasmic reticulum 

(ER) and Golgi bodies are the sites of envelopment for others, such as 

herpesvirus and HBV. In any case, enveloped viruses are usually released 

extracellularly via exocytosis; this process is called “budding”1. 
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• The maturation step does not occur in all viruses but for some of them is 

essential to acquire infectious potential. Maturation induces structural and 

physical changes in the viral particle that may restart the cycle in a new host cell. 

In the case of HIV, the virion particles released in the extracellular space contain 

the GagPol polyprotein, which comprises three enzymes critical for the 

infectious cycle: integrase, reverse transcriptase, and protease. During the 

maturation phase the viral protease cleaves GagPol into the individual 

polypeptides, triggering a conformational change and producing the mature 

virion24. 

 
Figure 4. General representation of a virus life cycle. Source: https://www.khanacademy.org by 

Anderson Brito, CC BY-SA 3.0.4. 

 

 

The present PhD thesis has been then organised in three main issues related to three 

virus strains which have represented the main targets of the compound series here 

developed as potential antiviral agents.  



13 
 

CHAPTER 2. Flaviviridae Family Viruses 

Flaviviridae is a family of small enveloped viruses with positive stranded, non-

segmented RNA genomes of 9.000–13.000 bases. This family includes several 

viruses capable of infecting mammals and birds such as yellow fever virus YFV, 

Japanese encephalitis JEV, Dengue virus DENV, West Nile virus WNV, Zika virus, 

human hepatitis C virus HCV and bovine viral diarrhea virus BVDV, and can cause 

many diseases, such as hepatitis and fatal mucosal disease. At present, more than 

100 species have been identified in this family and they can be divided among four 

genera, genus Flavivirus, genus Hepacivirus, genus Pegivirus, as well as genus 

Pestivirus25 (Figure 5). 

 

Figure 5. Phylogenetic Relationships within The Family Flaviviridae. (Roby J.A, et al, 2014) 

 

2.1 Pestiviruses 

Viruses in the genus Pestivirus infect pigs and ruminants, including cattle, sheep, 

goats, and wild ruminants. Pestivirus genus comprises three species, Bovine viral 

diarrhea virus (BVDV), Border disease virus (BDV) and Classical swine fever virus 

(CSFV)26. Along these, in the past decades, new members of pestiviruses have been 

found infecting animal either causing clinical manifestations or asymptomatic 

infections. These currently unclassified pestiviruses have been isolated in the past 

decade from giraffes (Giraffe-1 pestivirus), cattle (Atypical ruminant pestiviruses or 

Hobi-like viruses), antelopes (Pronghorn antelope pestivirus), piglets (Bungowannah 

virus; Atypical porcine pestivirus, APPV; Lateral‐shaking Inducing Neurodegenerative 
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Agent (Linda) virus), small ruminants (Aydin-like pestivirus, Tunisian sheep 

pestiviruses), rats (Norway-rat pestivirus) and bats (bat pestivirus)27,28 (Figure 6).  

 

 
 

Figure 6. Phylogenetic classification of pestiviruses. Roby J.A, et al. (2014). “Noncoding sub-genomic 

flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses.” 

Viruses. 6(2), 404-27. 

 

Differentiation based on comparison of conserved genomic sequences has led to 

the division of BVDV, CSFV and BDV into different genotypes (Figure 7). The most 

conserved portion of the pestivirus genome is located in the untranslated sequences 

that proceed the open reading frame (5’-untranslated region or 5’-UTR). This 

sequence has been compared among the different viruses within each species in 

order to define distinct genotypes, thus it has been observed that these 5’-UTR 

sequences are conserved among viruses within the same pestiviral genotype26,29. 
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Figure 7. Phylogenetic analysis of some pestiviruses based on comparison of the 5′ untranslated region 

showing the similarity percentage among different genotypes30. 

 

Pestiviruses are capable of causing zoonotic infections that may be subclinical or 

cause enteric, haemorrhagic or wasting diseases, such as the Bovine Viral Diarrhoea, 

related to important economic losses for livestock industry worldwide31. 

 

2.2 Bovine Viral Diarrhea Virus (BVDV) 

Bovine viral diarrhea viruses (BVDVs) are a heterogeneous group of viruses with 

global distribution that vary in antigenicity, cytopathology and virulence. BVDV has a 

positive sense, single stranded RNA genome that is prone to mutation. The high 

mutation rate of its genome helps BVDVs to adapt and to bypass the host immune 

system, thus complicating the development of efficient therapeutic options to fight 

it and also make difficult the proper classification for these viruses30. Traditionally, 

pestiviruses are named after the affected host species and/or the diseases they 

cause. BVDVs are able to cross species barriers to infect a wide range of hosts, thus 

BVDV’s infections have been detected in diverse domestic, and wildlife animal 

species, including cattle, sheep, goat, pig, deer, buffalo, bison, and alpaca26.32. 

Among these species may be distinguished two different genotypes BVDV-1 and 

BVDV-2, which can cause infections characterized by mild or subclinical symptoms 

in adult animals.  

The viruses isolated from either genotype can be distinguished in two biotypes, 

cytopathic (cp) and non-cytopathic (ncp), based on their activity in cell cultures: cp 

biotypes, unlike ncp, induce apoptosis in cultured cells. The non-cytopathic biotype 

predominates in nature and possess the ability to establish persistent infections 
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(PIs)30. These persistent infected animals are the result of the fetus’ infection by the 

ncp BVDV strains in the early stage of gestation, and they represent the main source 

of viral spread and the perpetuation of BVDV within herds33,34.  

Further characterization of the BVDV-1 genotype has revealed two distinct sub-

genotypes (BVDV-1a and BVDV-1b). Studies on South American BVDV2 disclosed the 

existence of two diverse BVDV-2 sub-genotypes (BVDV-2a and BVDV-2b)35. More 

recent studies identified at least 11 BVDV-1 sub-genotypes and 3 BVDV-2 sub-

genotypes indicating considerable genetic diversity within this species36. 

Polyclonal sera and monoclonal antibodies distinguish between BVDV genotypes, 

that can be translated into clear antigenic differences between BVDV-1 and BVDV-2 

strains (Figure 8). Many studies suggest the clear antigenic diversity among BVDV 

sub-genotypes, since have been observed that calves vaccinated with killed or 

modified live vaccines derived from BVDV-1a strains showed clear differences in 

serum neutralization (SN) titres to a panel of BVDVs, besides consistently lower SN 

titres were observed against viruses from the BVDV-1b sub-genotype30. 

 

 
 

Figure. 8. Differences and similarities among BVDV1 and BVDV2. MD = mucosal disease30. 

 

The interest for this virus is strongly encouraged by its similarity with the human 

pathogen hepatitis C virus (HCV). Due to the difficulties in preparing in vitro HCV 

cultures, BVDV has been largely used as HCV surrogate model for the identification 

and development of anti-HCV agents37. 
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2.2.1 BVDV Virion Structure and Genome organization 

The intact BVDV virion has a diameter of about 40-60 nm and it is composed of a 

nucleocapsid carrying the genomic RNA coated with the capsid proteins. It is an 

enveloped virus, that is surrounded by a lipid bilayer supporting virus-encoded 

glycoproteins (Figure 9). 

The genome of BVDV is a single-stranded, positive-sense RNA molecule of 

approximately 12,300 bases in length in non-cytopathic strains, though the genome 

length is variable, strain-dependent and may vary between cp and ncp biotypes. 

 

 

 

Figure 9. Structure of BVDV. Source: https://www.bode-science-center.com/center/glossary/bvd-

virus.html. 

 

BVDV’s genome is not polyadenylated at the 3’ end and is organized in a large open 

reading frame (ORF) region that encodes all viral proteins (Npro, Cap, Erns. E1, E2, p7, 

NS2, NS3, NS4a, NS4b, NS5a, NS5b). The two nucleotide tracts at both the 5’ and 3’ 

ends are the 3’/5’-untranslated regions (UTR), thus they do not encode for proteins. 

However, these two regions possess an important function since they can fold to 

form secondary structures capable of interacting with both viral and cellular proteins 

and the RNA itself to regulate replication/transcription as well as translation of ORF 

polyprotein. The 5’-UTR plays also a fundamental role in the ribosome binding to the 

IRES region and protein translation processes of the ORF sequence into a large 

polyprotein, subsequentially cleaved into the single viral proteins38 (Figure 10). 

 

 

https://www.bode-science-center.com/center/glossary/bvd-virus.html
https://www.bode-science-center.com/center/glossary/bvd-virus.html
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Figure 1o. BVDV genome organization and differences between cytopathic and non-cytopathic 

biotypes39. 

 

2.2.1.1 BVDV Structural Proteins 

The encoded proteins Cap, Erns. E1, E2 are all viral structural protein; the Cap region 

encodes for the capsid or core proteins while Erns, E1 and E2 are three envelope 

glycoproteins. 

Erns is a glycosylated protein, organized in homodimers, that is linked with weak 

interactions of its C-terminus to the virion’s surface in order to be able to dissociate 

from the virus particle and be secreted in soluble form from the infected cells. Erns 

protein is also endowed with RNase activity, degrading both single-stranded and 

double-stranded RNAs. This function is thought to be important in limiting the host 

interferon (IFN) mediated innate immune response to the viral ssRNA40.  

On the other hand, E1 and E2 are integral membrane proteins that can be organized 

in homodimers of E2 and heterodimers of E1/E241. The heterodimers of E1 and E2 are 

necessary for infectivity of the virus particle: the E2 glycoprotein contains the major 

antigenic determinants and possess a receptor binding function as well as 

membrane fusion domain, playing a pivotal role into the virus attachment and entry 

phases; the E1 protein is believed to possess a regulation function in preventing the 

premature activation of the membrane fusion domain of E239. 

 

2.2.1.2 BVDV Non-structural Proteins 

The genomic RNA encodes for non-structural proteins that are necessary for the viral 

replication and infectivity processes.  
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The autoprotease Npro is a protein only expressed within the Pestivirus genus; it is 

endowed with protease activity and cleaves itself from the BVDV polyprotein. It is 

also involved into the proteasomal degradation of the host factor IRF-3, an important 

inducer of interferon production in virus infected cells42. 

The p7 protein is cleaved from the polyprotein by the activity of a cellular peptidase 

and it exists in infected cells as free p7 or as E2-p7 dimers. It is thought to play a 

similar role to that of HCV p7 protein by inducing the formation of ion channels in the 

host cell’s membrane in order to facilitate the cell-to-cell movement of the virus. 

The NS2 and NS3 proteins are the key enzymes involved in viral RNA replication. 

These proteins are mainly present in unprocessed form NS2/3 in cells infected by 

ncp biotypes, while in cell infected by cp biotypes, they are primarily cleaved in the 

two separate enzymes. The cleavage of NS2/3 is mediated by the autoprotease 

activity of the NS2 protein and is fundamental for replication; Lackner, T. et al. 

demonstrated that there is a temporal modulation in ncp viruses, thus the NS2/3 

cleavage is performed only in the early stages of infection and drastically drops off 

later in the infection process, resulting in mainly unprocessed  NS2/3 present in the 

ncp virus infected cells. This is thought to be related to the incapability of the cp 

BVDV biotypes of establishing persistent infections, while the temporal modulation 

may help the ncp viral strains to adapt to its animal hosts causing persistent 

infections43. 

The NS2 protein is endowed with a protease activity and is involved into NS2/3 

cleavage, it also contains two internal signal peptides that are necessary for protein 

translocation to the endoplasmic reticulum. 

The NS3 protein possesses different enzymatic activities. The N-terminus portion 

contains a serine protease domain responsible for many cleavages in the viral 

polyprotein i.e., NS3/NS4A, NS4A/NS4B, NS4B/NS5A, and NS5A/NS5B. The C-

terminus of the protein contains an RNA helicase domain that unwinds the secondary 

structure of the viral genome in order to start the translation process, associated with 

nucleoside triphosphatase (NTPase) domain, both fundamental for RNA replication44. 

The NS4a is a 63 aa protein and functions as cofactor for the NS3 serine protease 

activity. The hydrophobic protein NS4b is a membrane associated protein placed on 

the Golgi compartment membrane that interacts with the viral RNA replication 

complex by anchoring it to the cellular membrane. 
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The NS5A protein is part of the replicase complex; it is a large hydrophilic 

phosphoprotein similar to the hepaciviruses NS5A, whose functions are not 

completely clear yet. The NS5b protein is the RNA-dependent RNA-polymerase and 

is the major protein in replication of the genomic RNA taking place in the host cell 

cytoplasm. This protein contains the GDD amino acid motif (Gly-Asp-Asp) present in 

all positive-strand viral RNA polymerases and NTPase domains39,45. 

 

2.2.1.2.1 BVDV RNA dependent RNA polymerase 

The RNA dependent RNA polymerase is the key enzyme involved in RNA viruses’ 

genome replication. Polymerase enzymes of different viral strains have common 

features along with peculiar tracts and structural features shared by the members of 

the same family or genus. 

The core RdRp domain is composed by the thumb, palm and the fingers subdomains. 

These regions are fundamental for template binding, polymerization and nucleoside 

triphosphate (NTP) entry. A comparative analysis of the RNA polymerases of different 

RNA viruses highlighted eight conserved sequence motifs, I-VIII. Five of these motifs 

are in the palm domain, including the GDD motif (VI).  

BVDV polymerase is a protein of 688 aminoacids and presents all the typical RdRp 

domains. In the core region, the fingers domain presents also a three stranded 

fingertip subdomain directly associated with the thumb domain (Figure 11). The palm 

domain, placed at the junction of the fingers and the thumb domains, comprehends 

the RNA Recognizing Motif (RRM) which selects NTPs over dNTPs and catalyses the 

phosphoryl transfer reaction by coordinating two metal ions. The thumb domain 

contains the GTP-binding site that is specifically required for the initiation of RNA 

synthesis in BVDV, regardless of the nucleotide at the 3’ end of the RNA template. 

Finally, the finger domain is responsible for the translocation of the template or the 

products during replication. 

BVDV polymerase has high structural similarity to HCV polymerase even if it presents 

some differences in the fingertip region, which is three stranded in the BVDV 

polymerase, whereas has 4 strands in the HCV RdRp. In addition, the BVDV 

polymerase is about 130 amino acids longer at the N-terminus than HCV polymerase. 
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Flaviviridae RNA replication process uses a primer-independent (de novo) 

mechanism, in which the polymerization directly starts at the 3’ end by direct addition 

of NTPs to the new RNA chain without primer intervention46. 

 

Figure 11. 2.6 Å X-ray crystal structure of BVDV polymerase. The N-terminal, fingers, palm, and the 

thumb domains are coloured yellow, blue, green, and red, respectively47. 

 

2.2.2 Bovine Viral Diarrhea: Pathogenesis 

BVDV-1 and BVDV-2 genotypes are capable of causing both acute and persistent 

infections related to a wide range of symptoms and different clinical manifestations. 

Cattle represent the BVDV natural hosts, nevertheless infection by BVDV has been 

demonstrated in numerous other species27. 

Type 1 is the most prevalent genotype, whilst type-2 genotype is less common but 

it is more virulent, provoking severe diseases including thrombocytopenia48. 

Acute infection in cattle result in transient clinical manifestations that begin on day 3 

post-infection and last 10-14 days. The infection usually occur by contact with 

persistently infected cattle since the virus can be transmitted through a wide range 

of body fluids. The acute infection can be associated with several clinical 

manifestations such as leukopenia, lymphopenia, thrombocytopenia, 

immunosuppression, pyrexia and diarrhea, in addition the resultant 

immunosuppression can ease the emergence of co-infections34. Highly virulent 

strains of BVDV may also cause severe ulceration of the oropharynx, larynx, and 

oesophagus and haemorrhagic enteritis48. 

Fetal infection in the first trimester with ncp BVDV will cause the born of new 

persistent infected PI calves. After birth, these PI animals will shed large amounts of 

virus in all excretions and secretions including milk, semen, saliva, nasal secretions, 
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urine, blood and aerosols, contributing to the spread of infection. These animals may 

be clinically healthy but often they appear smaller and weaker compared to the 

other calves and are also more susceptible to secondary infections. Moreover, if PI 

animals are subsequently infected during their life with a cp strain of a closely related 

or homologous virus, may develop severe disease with widespread lesions of the 

mucosal surfaces and lymphoid tissues, referred to as mucosal disease (MD): the 

mucosal ulceration and fluid leakage in the gastrointestinal tract provoke diarrhea 

and dehydration; the damaged tissue become sensitive to bacterial infection and 

inflammation leading to fatal outcome34,48. 

 

2.2.3 BVDV Infections: Therapeutic approaches 

Two main strategies are pursued in order to limit the virus transmission within herds: 

eradication of the pathogen’s reservoirs, mainly represented by the PI animals and 

to limit the transmission from the infected cattle to susceptible animals. However, 

the first strategy can be costly and difficult to pursue, considering the expense of 

diagnostic testing and taking into account that only less than 1% of the cattle 

population are PI. In order to limit the transmission of the pathogen among cattle, 

vaccination represent an essential tool to control the disease’ spread; even if 

currently available vaccines are not completely effective against all the viral 

genotypes and sub-genotypes they indeed represent a valuable weapon in order to 

limit the pathogen diffusion and prevent birth of PI calves.  

 

2.2.3.1 Vaccination 

The vaccines available can be distinguished among inactivated and modified-live 

viral (MLV) vaccines. Inactivated vaccines are safer, since they contain viral antigen 

incapable of replication, on the other hand they need to be administered multiple 

times to achieve protective antibody levels in the animal. The onset of immunity is 

delayed of about six weeks, with the possibility of vaccine program failure. 

Differently, MLV vaccines stimulate immune system and trigger the production of 

higher levels of antibodies achieving a rapid onset of immunity in the treated 

animals49.  

Due to the existence of two genotypes and several sub-genotypes of BVDV as well 

as the two distinct biotypes, cytopathic and non-cytopathic, thus the ability of BVDV 
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vaccines to cross-protect against the different genotypes and sub-genotypes is 

fundamental. Historically, BVDV vaccines were developed as monovalent vaccines 

containing only BVDV-1a as the viral antigen, even though the most diffuse sub-

genotype is BVDV-1b; R.W. Fulton et al. demonstrated that MLV vaccination with 

BVDV-1a vaccines also induce antibody production against BVDV-1b even if in lower 

titres, that might be translated in a diminished  protection against BVDV-1b 

exposure50. Consequently, the development of multivalent vaccines, containing 

antigens from different viral genotypes and sub-genotypes is recommended to 

prevent infection by different strains of BVDV49. 

 

2.2.3.2 Antiviral Drugs 

Currently there is no approved antiviral therapy available besides vaccination, thus 

there is an urgent need to develop new small-molecules to control BVDV infections. 

The research of new anti-pestivirus agents is complicated by the high mutation rate 

of the genomic RNA due to the absence of proof-reading activity of its RNA-

dependent RNA-polymerase. Therefore, the research of BVDV inhibitors is moving 

forward and currently many compounds have been discovered endowed with 

antiviral activity by interfering with different potential targets. 

The RNA-dependent RNA polymerase (RdRp), the key-enzyme involved in genome 

replication, is the most frequent target for the design of antiviral compounds, with 

many efficient inhibitors reported in literature, divided in nucleoside NI and non-

nucleoside NNI inhibitors. While NIs have generally a broad-spectrum activity, NNIs 

are usually specific toward a single genus and in few cases they could also be active 

against different genera within the same family51. 

Among the NIs, the inhibitory effect against the viral RdRp of the two highly hindered 

adenine derivatives FEVB28 and FEG118 and their analogues have been described52. 

In addition, several RdRp non-nucleoside inhibitors NNIs belonging to diverse 

chemical classes have been identified. Among the non-nucleosidic compounds the 

nitrogen heterocyclic drugs represent the largest subgroup51. 

 

2.2.3.2.1 RdRp non-nucleosidic inhibitors NNIs: Nitrogen Heterocycles. 

The nitrogen heterocyclic compounds represent a subgroup of anti-BVDV 

molecules acting as RdRp inhibitors (Figure 12). These compounds have been tested 
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in vitro against BVDV infected cell lines and revealed an interesting antiviral activity. 

Currently, due to the paucity of in vivo data, the application in therapy of these 

compounds have been hindered51. 

Baginski, S. G. et al. identified a triazinoindole based molecule, VP32947, that showed 

in vitro antiviral activity against virus isolates from pestivirus species, including 

cytopathic and noncytopathic isolates of BVDV-1 (NADL, NY1 sub-genotypes), 

BVDV-2 (125C, 125NC sub-genotypes), BDV and CSFV. In particular, regarding its anti-

BVDV activity its molecular target have been identified in the viral RdRp. By testing 

the compound in drug-resistant virus variants, the site of action have been confirmed 

to be located in a turn region between two α-helix domains in the finger portion of 

the enzyme involving a key contact with the F22453.  

Paeshuyse, J. et described the anti-BVDV activity of the 5-[(4-bromophenyl)methyl]-

2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) and this discovery has been followed by 

further studies on different series of imidazo[4,5-c]pyridines54,55,56. These compound 

class proved to be effective in blocking the RdRp of BVDV by binding the same 

portion of the finger region involved into the VP32947 interaction.  Molecular docking 

studies highlighted the key contacts within the site of action, such as the 

establishment of three hydrophobic contacts of the inhibitor with A221, A222, and 

F224, and of an hydrogen bond between N3 of the imidazole ring with the backbone 

oxygen of residue F22454. Interestingly, some of the imidazo[4,5-c]pyridines 

demonstrated to be also endowed with an anti-HCV activity56. 

Paeshuyse, J. et al discovered also the anti-BVDV activity of a series of imidazo[1,2-

a]pyrrolo[2,3-c]pyridine57,58. Among them, compound AG110 demonstrated the ability 

to interfere with the functioning of the replication complex of the virus by binding to 

the finger domain of the RdRp, besides it showed no activity against RdRp E291G and 

F224S mutants suggesting the possible establishment of key contacts with those 

residues in the active site57. 

More recently, compound LZ37, a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine 

formerly known as an A2A adenosine receptor antagonist, was identified as a 

selective inhibitor of in vitro BVDV-1 (NADL strain) replication by interfering with the 

formation of the replication complex and the RNA synthesis processes. The viral 

strains carrying the F224Y mutation revealed to be significantly less sensitive to LZ37, 

confirming the hypothesized binding site as the tip of the finger domain59. 
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The capability of inhibiting the BVDV RNA synthesis has been described for some γ-

Carboline derivatives60 and quinoline derivatives61. The anti-BVDV activity of the 

acridine nucleus, by blocking the viral RNA synthesis, have been also reported5,62.  

The benzimidazole derivative 227G has been reported as the first benzimidazole 

derivative endowed with potent and selective activity against both BVDV and HCV. 

Enzymatic assays along with docking calculations disclosed the mechanism of 

action of this compound as a RdRp inhibitor by binding the BVDV polymerase finger 

domain establishing key interactions with residues I261, N264 and A39263. 

Finally, in a recent paper, the antiviral activity of a series of imidazole derivatives have 

been evaluated in vitro against a panel of viruses, revealing some potent anti-BVDV 

compounds capable of inhibiting viral replication with a better potency than the 

reference drug ribavirin (i.e. compound 8a)64. 

 

Figure 12.  Chemical structure of some nitrogen heterocyclic compounds that demonstrated anti- BVDV 

activity in vitro. 

 

2.2.3.3 Interferons 

Interferons (IFNs) are multifunctional proteins released from host cells in response 

to the presence of viruses. Interferons have been studied as nonspecific anti-BVDV 
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agents both in vitro and in vivo. Both cytopathic and non-cytopathic biotypes of BVDV 

revealed to be susceptible in vitro to the treatment with recombinant human 

interferons. However, the in vivo administration of IFN to treat the infection has been 

difficult to demonstrate, since, in many cases, interferon treatment revealed poor in 

vivo efficacy65. 
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CHAPTER 3. Respiratory Viruses RVs 

Acute respiratory infections (ARIs) represent a major health problem with significant 

morbidity and mortality, especially in children, elderly and immunocompromised 

people. ARIs manifest as Upper (URI) or Lower (LRI) respiratory tract infections and 

may move between the two compartments. These infections are associated with a 

wide range of diseases and symptoms, varying from mild and self-limiting to severe 

clinical manifestations7,66. Respiratory tract infections represent a serious burden 

with significant morbidity and mortality especially occurring in children, elderly and 

immunocompromised people. The severity of this infections, especially in children 

under five, is worse in low-income countries due to poor hygiene conditions, 

malnutrition and lack of adequate diagnosis and treatment facilities, resulting in a 

higher case-fatality rate. The vast majority of ARIs have a viral aetiology and may be 

the result of the infection of different respiratory viruses, in particular RNA viruses, 

such as respiratory syncytial virus (RSV), influenza virus (IV), parainfluenza virus (PIV), 

metapneumovirus (MPV), rhinovirus (RhV), and coronavirus (CoV)7 (Table 1).  

 

 

 

 

 

 

 

 

 

 
 

Table 1. Taxonomy and virologic properties of the major human respiratory RNA viruses7. 
ss(-), single-stranded negative-sense RNA; ss(+), single-stranded positive-sense RNA; SARS-CoV, severe acute respiratory 

syndrome-coronavirus; MERS-CoV, Middle East respiratory syndrome-coronavirus. 

 

VIRUS FAMILY 
SIZE 
(nm) 

RNA 

GENOME 
ENVELOPE 

GENETIC OR ANTIGENIC 

TYPES 

RSV 
Respiratory 

Syncytial 
Virus  

Paramyxoviridae 120–200 Linear ss(-) Yes 
Antigenic subgroups A and 
B with 10 A genotypes and 

13 B genotypes 

IV 
Influenza 

Virus 

Orthomyxoviridae 80–120 
Segmented 

ss(-) 
Yes 3 antigenic types (A, B, C) 

PIV 
Parainfluenza 

Virus 

Paramyxoviridae 120–180 Linear ss(-) Yes 
4 serotypes (1, 2, 3, 4); 

subtypes 4a and 4b 

MPV 
Meta- 

-pneumovirus 

Paramyxoviridae 120–180 Linear ss(-) Yes 
Subtypes A and B; 

subgroups A1/A2 and 
B1/B2, respectively 

RhV 
Rhinovirus 

Picornaviridae 20–27 Linear ss(+) No >100 antigenic types 

CoV 
Coronavirus 

Coronaviridae 80–160 Linear ss(+) Yes 
6 genotypes  

(229E, OC43, NL63, HKU1, 
SARS-CoV, MERS-CoV) 
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3.1 Upper Respiratory Tract Infections URIs 

Upper respiratory tract infections involve the nose, sinuses, pharynx, larynx, and the 

large airways. Approximately 90% of these infections are caused by respiratory 

viruses while only the 10% has bacterial aetiology; the most common aetiological 

cause is the rhinovirus (RhV) infection, but acute upper respiratory tract infections 

can also be caused by influenza virus, adenovirus, enterovirus, and RSV67.  

These infections are often associated with clinical manifestations as rhinitis, 

pharyngitis, tonsillitis, and laryngitis with self-limiting symptoms that commonly 

include: cough, sore throat, nasal congestion, headache, low-grade fever and 

myalgias. The onset of symptoms usually begins one to three days after exposure 

and lasts approximately 7–10 days68. URIs are accountable for generating a large 

economic burden in terms of missed days of work69. Even if these infections are 

usually mild and self-limiting in adults in some cases if neglected, they can extend 

to the lower respiratory tract, predispose to secondary bacterial infections and cause 

the exacerbation of pre-existing medical conditions, such as asthma and chronic 

obstructive pulmonary disease (COPD). Among these possible complications 

pneumonia and bronchitis contributes significantly to morbidity and mortality, 

especially among children and high-risk population68,70. 

 

3.2 Lower Respiratory Tract Infections LRIs 

Lower respiratory tract infections differ from upper respiratory tract infections by the 

area of the respiratory tract they affect, thus they involve the airways below the 

larynx. Lower respiratory tract infections include: bronchitis, pneumonia and 

bronchiolitis. The main aetiological causes of LRIs are bacterial infections of 

Streptococcus pneumoniae or Haemophilus influenza along with viral infections, in 

particular of influenza virus, rhinovirus (RhV), human adenovirus (HAdV), respiratory 

syncytial virus (RSV), and human metapneumovirus (hMPV)71,72.  

Symptoms of lower respiratory tract infections vary and depend on the severity of 

the infection, ranging from symptoms similar to the common cold, to more severe 

clinical manifestations including, severe cough, fever, difficulty breathing and chest 

pain. When neglected, complications may occur including congestive heart failure, 

respiratory failure, respiratory arrest, sepsis and lung abscesses, often with fatal 

outcome73.  
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The risk of complication is major for children, adults over 65 years of age, 

immunocompromised people, and also for patient with underlying medical 

conditions, such as asthma and COPD74.  

Nearly 2.38 million deaths resulted from lower respiratory infections in 2016, making 

LRIs the sixth leading cause of mortality for all ages and the leading cause of death 

among children younger than 5 years and adults over 65 years old71. 

 

3.3 Respiratory Syncytial Virus, RSV 

Human respiratory syncytial virus (RSV) is one of the most common causes of 

respiratory infections in children, and may manifests as upper respiratory infection or 

as bronchiolitis, a lower respiratory tract illness with small airway obstruction that can 

rarely progress to pneumonia.  

Human RSV belongs to the Pneumoviride family, and is in the genus 

Orthopneumovirus. The former Pneumovirinae subfamily have been recently 

promoted to family, before that the RSV belonged to the Paramyxoviridae family, 

Pneumovirinae subfamily, Pneumovirus genus75. 

It is an enveloped virus with a single-stranded negative-sense RNA genome. 

Paramyxoviridae family includes several highly contagious viruses including the 

human pathogens measles, mumps, as well as the zoonotic viruses Hendra and 

Nipah76.  

RSV is a medium diameter virus (120-300 nm) and its virion particle consists of a 

helical nucleocapsid containing the negative-sense single-stranded RNA, tightly 

bound to the nucleoprotein (N) (Figure 13). The capsid is surrounded by a lipidic 

membrane containing the integral glycoproteins G (receptor binding), F (membrane 

fusion), and the short hydrophobic protein SH. The M (matrix) protein at the inner 

surface of the envelope is important in viral morphogenesis. The virions also contain 

an RNA-dependent RNA polymerase (L), a phosphoprotein (P), and the matrix protein 

M2-1. The RdRp (L) along with the N, P and M2-1 proteins compose the 

ribonucleoprotein complex (RNP). In addition, three non-structural proteins (NS1, 

NS2, and M2-2) are produced in infected cells77,78. 

Human RSV can be divided into two antigenic groups A and B, originally 

distinguished based on the antigenic differences in the attachment glycoprotein G. 

Later, further studies of the viral genome allowed the subdivision of the two groups 
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into at least 13 A genotypes and 20 B genotypes. Differently, the F glycoprotein is 

highly conserved between strains and is one of the antibodies targets; it is therefore 

a potential candidate as an RSV vaccine antigen78.  

 

Figure 13. Structure of the human respiratory syncytial virus RSV and its genome organization78. 

 

3.3.1 RSV: virion structure and replicative cycle 

RSV binds the cellular membrane thanks to the G glycoprotein which mediates virus 

attachment by binding the surface glycosaminoglycans of the ciliated cells of the 

airways. However, the fusion process requires the participation of all the three 

surface glycoproteins jointly. These surface glycoproteins represent also the main 

antigenic determinants for host protective antibodies and may also represent a 

potential target for therapeutic agents. Following the G binding, the F protein 

undergo a conformational change that allows viral penetration by fusing the cellular 

and viral membranes, switching from one metastable structure called pre-fusion 

(pre-F), to another stable post-fusion (post-F) structure79. In the infected cells, F 

protein is expressed on the cellular membranes and promotes the fusion of the 

infected cell membrane to the uninfected cells triggering the formation of the 

characteristic RSV syncytia77,80.  The SH protein is another envelop protein that forms 

pentameric pore-like structures that confer cation-selective channel-like activity, 
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thus the SH protein appears to be a viroporin, a class of small viral proteins that can 

modify membrane permeability and can affect budding and apoptosis, although its 

particular function in RSV life cycle is not completely clear81. 

Once inside the host cell the (-)ssRNA is transcribed by the viral RNA dependent RNA 

polymerase (L), with participation of the nucleoprotein (N), the phosphoprotein (P) 

and the M2-1 protein. The M2-1 protein functions as a transcription anti-termination 

factor allowing the synthesis of complete RNA, it is also responsible of the binding 

of the ribonucleoprotein complex RNP with the M protein which initiates assembly 

and budding processess82,83. 

The nucleoprotein N tightly binds the RNA genome forming a left-handed helical N-

RNA ribonucleoprotein complex (RNP). The RSV genome replication takes place in 

the host cell cytoplasm where the viral RdRp (L) interacts with the multifunctional 

phosphoprotein (P). The P protein mediates the interaction between the L protein 

and the nucleoprotein (N) allowing the specific recognition of the RNP template by 

the RdRp and subsequent RNA polymerization. The N protein consists of a N- and C-

terminal domain linked with a hinge region; N forms the helical RNP complex due to 

the establishment of intermolecular interactions between different N proteins and 

the viral genome. The P protein is multimeric and establish a contact with the RNP 

complex with its C-terminal domains by a hydrophobic interaction within a binding 

pocket located in the N protein N-terminal84. 

The RdRp (L) is a large protein that mediates transcription and replication of RSV 

genome and also intervene in capping and methylation of mRNA. The active form of 

L is a heterodimer of the L and P proteins83. During the transcription phase the viral 

genome is transcribed in a set of in 10 capped, methylated and polyadenylated 

mRNAs, which then direct the synthesis of viral proteins by hijacking the cellular 

ribosome machinery. Glycoproteins are subsequentially translated and traffic 

through the secretory pathway to the apical surface, while internal virion proteins 

remain in the cytoplasm85. 
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Figure 14. Replicative cycle of Respiratory Syncytial Virus inside the host cell77. 

RSV genome replication requires the production of a complete positive sense anti-

genome as intermediate. The non-structural protein M2-2 is involved into the 

switching of the replication complex from gene transcription to replication.  

After replication, the newly synthesised viral genomes are associated with the N 

protein and wrapped around a nucleocapsid core containing L and P proteins 

forming the ribonucleoprotein complex (RNPs), that associate with the M protein. 

These cytoplasmatic inclusions then then traffic to the apical cell surface where the 

glycoproteins are present already. The translocation of the cytoplasmatic inclusions 

from the cytosol to the apical membrane requires the cytoskeleton intervention, 

which is also involved into the filamentous virions formation and budding 

processess85. 

At the apical membrane the interaction of the cytoplasmatic inclusions with the 

membrane glycoprotein complex takes place, and the M protein helps determine 

the shape of virus particles in order to complete viral assembly and initiate budding 

hijacking cellular apical recycling endosomes to release the new viral particles81. 

The NS1 and NS2 non-structural proteins are not included into the virion particle and 

are synthesized only inside the host cell, they both interfere with innate immune 

responses including interferon induction and signalling and also inhibit apoptosis, 

prolonging the life of the cell, thus increasing viral yield81,83. 
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3.3.2 RSV Infections: Therapeutic approaches 

Despite the huge economic impact and the medical needs associated with severe 

RSV infection there are only few antiviral drugs approved for the treatment or 

prevention of serious respiratory tract infections caused by RSV, thus there is a clear 

need for new therapeutic options to prevent and treat this infection. 

 

3.3.2.1 Antiviral Drugs 

The only licensed drug approved for the treatment of RSV infections in selected 

cases is the non-specific antiviral ribavirin in inhaled formulation (Figure 15). 

Therefore, due to its side-effects and lack of reproducible data on efficacy its routine 

use it is no longer recommended in the treatment of RSV bronchiolitis in UK and USA, 

thus is still used to treat RSV infections only in selected immunocompromised 

patient8. 

 

Figure 15. Chemical structure of the unspecific antiviral drug Ribavirin. 

 

Therefore, numerous studies have been made to identify the viral and host factors 

that contribute to replication of viruses in order to develop new small molecules with 

the final aim to develop new potential anti-RSV drugs. Several anti-RSV molecules 

have been discovered and studied, nonetheless none of them have already been 

approved yet. Many of them are being evaluated in clinical trials, while many others 

failed to show the expected efficacy either in pre-clinical tests or clinical trials. Most 

of these new anti-RSV small molecules discovered are directed against the viral F 

protein, blocking the membrane fusion and viral penetration9. 
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3.3.2.1.1 Fusion Inhibitors 

GS-5806 (Presatovir®) (Figure 16) is a potent small molecule inhibitor that targets the 

RSV F protein by inhibiting F protein-mediated cell-to-cell fusion. GS-5806 was 

found to be active in vitro to a wide range of RSV clinical isolates, even if appeared 

to be involved in the selection of RSV resistant strains carrying mutations L138F and 

F140L/N571I in the F protein for RSV-A and F488L or F488S for RSV-B. GS-5806 has 

been evaluated in clinical trials and it showed efficacy in a phase 2a challenge model 

(attenuated virus in healthy adults) in patients with URIs reducing lower respiratory 

tract complication progression rate, on the other hand it failed to reach pre-specified 

efficacy thresholds when infection has already evolved into LRI. However, the phase 

2a study showed also the appearance of treatment-emergent GS-5806 resistant RSV 

variants in which the F140L and T400I mutations were most frequently observed84. 

Thus in order to confirm the beneficial effects of this drug in treating RSV infections, 

further studies are required9,86,87. 

 

Figure 16. Chemical structure of Presatovir®, GS-5806. 

 

MDT-637 (VP-14637) (Figure 17) is an RSV fusion inhibitor targeting the virus F-protein 

by binding a hydrophobic pocket. The compound demonstrated a good efficacy in 

reducing RSV infection in cotton rats, administered by small droplet aerosol. MDT-

637 have been reformulated in order to be deliverable to humans, administered by 

powder inhaler with a quick delivery to the respiratory tract (VP-14637). The results 

of a phase 1 clinical trial on healthy adults also confirm a good pharmacokinetic 

profile, that along with MDT-637 in vitro potency on both RSV A and RSV B subtypes, 

thousand-fold higher than the reference drug ribavirin, suggests the possibility to 

produce a superior clinical effect compared to ribavirin on natural human RSV 

infections9,88. 
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JNJ-53718678 (Figure 17) is a small-molecule RSV fusion inhibitor interacting with the 

pre-fusion F protein in a similar manner as MDT-637, despite their structural 

dissimilarity. It exhibited a high potency against RSV in in vitro tests89. JNJ-53718678 

also demonstrated to be well tolerated and to have a good pharmacokinetic profile 

in a phase 2a trial on healthy adult volunteers infected with RSV, showing also 

efficacy in reducing the symptoms and disease severity and duration. Further studies 

are needed in infants and children to prove the usefulness of the administration of 

this new anti-RSV agent in future therapies90,91.  

 

    MDT-637    JNJ-53718678 

Figure 17. Chemical structures of the small molecules drug candidates as anti-RSV fusion inhibitors 

MDT-637 (VP-14637) and JNJ-53718678. 

 

Johnson & Johnson also identified benzimidazole-based compound exhibiting 

extremely potent anti-RSV activity (EC50 = 0.16 nM). JNJ-2408068 (Figure 18) also 

inhibits RSV fusion by binding to a hydrophobic pocket of the protein F core in a 

similar manner to MDT-63792. Despite its high potency against different RSV A and 

RSV B strains and its anti-inflammatory activity, JNJ-2408068 was later found to be 

unsuitable for further development because of its long tissue retention in several 

animal species, such as rats, dogs and monkeys93. 

Thus, further optimization of JNJ-2408068 resulted in identification of the 

(morpholino)propyl- derivative TMC-353121 (Figure 18), with an improved 

pharmacokinetic profile, shorter half-life, a high potency in vitro blocking both the 

virus-cell fusion and cell-cell syncytia formation. It also demonstrated the capability 

of reducing the viral load in in several animal models such as cotton rats, mice, and 
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primates94. TMC353121 could be a drug candidate for treatment of RSV infection; 

however, safety studies and clinical evaluations are still needed9. 

 

Figure 18. Chemical structures of the benzimidazole derivatives JNJ-2408068 and TMC353121. 

 

AK-0529 Ziresovir® (Figure 19) is a novel compound developed as RSV protein F 

inhibitor. It has been subject of several clinical trials, which confirmed its safety and 

good pharmacokinetic profile after oral administration in healthy volunteers (phase 

1)95. A phase 2 clinical trial (NCT02654171) in hospitalized infants infected with RSV 

have been recently completed but the results have not yet been published9. 

 

Figure 19. Chemical structure of AK-0529 Ziresovir®. 

 

3.3.2.1.2 L-protein Nis and NNIs Inhibitors 

RSV L-protein is an RNA-dependent RNA polymerase with several enzymatic 

activities, it replicates the viral genome and transcribes mRNAs, it is also a capping 

enzyme that guanylylates and methylates the 5’ end of the viral mRNA transcripts. 

Moreover, it is also responsible for the polyadenylation at the 3’-ends of the viral 

mRNAs96. The only licensed drug for the treatment of RSV infections is the broad-

spectrum antiviral ribavirin, that also inhibits RSV RNA synthesis by interfering in the 



37 
 

viral infection processes at different phases; several mechanism of action have been 

purposed including inhibition of the cellular enzyme inosine 5-monophosphate 

dehydrogenase (IMPDH), immunomodulation of antiviral innate and cellular 

responses, chain termination during viral RNA synthesis, inhibition of viral mRNA 

capping and accumulation of mutations in viral genomes. This enzyme could also 

represent a potential new target for the development of new antiviral agents; thus, 

several nucleoside and non-nucleoside RSV L-protein inhibitors have been 

developed and are currently under evaluation. 

ALS-008176 (Lumicitabine) (Figure 20), a cytidine nucleoside analogue, is a potent 

and selective inhibitor of RSV RNA-dependent RNA-polymerase activity via a classic 

chain termination mechanism. ALS-008176 showed also a high level of oral 

bioavailability and a good pharmacokinetic profile in preclinical studies in primates84. 

A clinical trial in healthy adults inoculated with RSV demonstrated a greater 

reduction of viral load in the groups treated with ALS-008176 than in the placebo 

group97. Following these promising results clinical trials in infants hospitalized with 

RSV infection are currently ongoing9,84. 

 

Figure 20. Chemical structure of the nucleoside inhibitor ALS-008176 (Lumicitabine). 

 

BI-D (Figure 21) is a non-nucleoside inhibitor of RSV L-protein that interferes with the 

viral mRNA guanylylation activity. It demonstrated a sub-micromolar potency in vitro 

against both RSV-A and RSV-B strains and it also proved to reduce the viral load in 

vivo in tested mice98. Further studies elucidated the mechanism of action of this 

compound that but that causes premature abortion of transcription leading to 

increased amounts of short RNA species (<50 nt) and seems also to interfere in the 

capping activity of the RSV polymerase. Indeed, in vitro selected BI-D resistant 

mutants carried mutations at positions 1269, 1381 and 1421 of the L-protein, and a 
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sequence motif around the aa 1269 has been identified as responsible of the 

formation of a binding pocket essential for the RNA capping activity84. 

AZ-27 (Figure 21) is a non-nucleoside inhibitor of RSV L-protein derived from the 

structural optimization of the previous developed YM-5340399. It interferes in RSV A 

replication mechanisms, while the in vitro activity against RSV B strains is significantly 

lower. The selected resistant mutants after in vitro inoculation are endowed with the 

Y1631H mutation that is located in a linker region between the capping domain and 

the methyltransferase domain that is important for protein flexibility. Thus, AZ-27 

probably hinders the structural modification of the polymerase in the form required 

for the RNA synthesis84. Unfortunately, further in vivo studies in rats revealed that AZ-

27 was not retained to a significant extent in lung tissue after administration of 

different formulations but was, instead, rapidly absorbed into the systemic 

circulation. Thus, AZ-27 will be unlikely a suitable candidate for development as 

future anti-RSV drug100.  

 

     BI-D     AZ-27 

Figure 21. Chemical structures of the non-nucleoside inhibitors BI-D and AZ-27. 

 

3.3.2.1.3 Nucleoprotein (N) inhibitors 

RSV nucleoprotein (N) is essential for virus replication and is one of the most 

conserved genes among RSV A and B subtypes, thus represents an attractive target 

for antiviral therapy. 

RSV-604 (Figure 22) is a small molecule inhibitor of both RSV A and B replication by 

targeting the nucleoprotein N, thus blocking the RNA synthesis and inhibiting the 
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infectivity of the released virions. Drug-resistant variants selected in vitro carry 

mutations I129L and L139I in the N-protein sequence. In a Phase I study orally 

administered RSV604 shown a good safety profile in healthy volunteers. The 

compound has also been administered in a phase 2a clinical trial hematopoietic stem 

cell transplant patients with concomitant RSV infection. During the trial most patients 

had lower RSV604 drug levels than anticipated and no significant difference in viral 

load with placebo could be observed, in addition, the limited number of patients and 

their underlying clinical conditions further complicated the trial development. Only 

the patients whose plasma exposure to the drug reached the 90% effective 

concentration (EC90) a significative drop in viral load was reached9,84. 

 

Figure 22. Chemical structure of the nucleoprotein inhibitor RSV-604. 

 

ALN-RSV01 (Asvasiran) is a small interfering RNA (siRNA) of 19 nucleotides that 

targets a highly conserved sequence of the RSV nucleoprotein gene and inhibits viral 

replication. Intranasal administration of ALN-RSV01 in healthy adults infected with 

RSV significantly inhibited the rate of the infection. The siRNA proved to be safe and 

well-tolerated in a phase 2b clinical trials in lung transplant recipients with a 

promising risk/benefit profile9,101. 

 

3.3.2.1.4 N-P, SH and M2-1 inhibitors 

In the search of potential new viral factor to be inhibited in order to develop novel 

anti-RSV compounds the hypothesis to interfere into the N-P proteins interactions 

have been advanced, also encouraged by the improved knowledge of the key 

interactions between these two viral components. The x-ray structure of the N 

protein in complex with C-terminal peptides of P-protein has allowed to gained 

detailed insight into the N-P interactions that revealed to identify a pocket on the N 

protein structure that interacts with the P protein N-terminal; this pocket could 
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represent a potential new target for the development of antiviral compounds. Virtual 

screening studies has allowed the identification of a chemical series of compounds 

with a 1-benzyl-1H-pyrazole-3,5-dicarboxylate (BPdC) scaffold that bind this pocket 

that has also shown promising in vitro anti-RSV activities102,103. 

Among the RSV structural proteins, the SH (small hydrophobic protein) is, along with 

F and G, one of the three envelop proteins. The SH protein is a viroporin which forms 

hydrophilic pores in the virus infected cells and whose specific function in promoting 

viral infection is not completely clear yet. The role of SH in RSV pathogenesis is 

evidenced in strains lacking SH that behave similar to the wild-type in cell culture, 

but showed severe attenuation upon infection in primates. This could be due to an 

increased IL-1b mediated immune response to RSV in vivo supporting the possibility 

that the ionic changes sprung by the SH pore structures could counteract the 

immune system response to infection. Recently a small molecule inhibitor of the SH 

protein has been identified; the compound, pyronin B (Figure 23), binds the 

hydrophobic side of the protein in an allosteric binding pocket, causing a 

conformational change that is reflected in the pore lumen closure. The compound 

has also shown a good antiviral activity (EC50 = 100 nM) in RSV infected cells in in vitro 

assays84,104. 

Finally, a potential new therapeutic target for anti-RSV therapy could be represented 

by the M2-1 protein. This protein has a pivotal role in RSV RNA synthesis as 

transcription anti-termination factor thus is essential for the efficient processing of 

viral RNA. A small molecule compound, cyclopamine (CPM) (Figure 23), has been 

identified as a potent inhibitor of RSV infection both in vitro as in vivo. This steroidal 

alkaloid is reported as anti-tumoral agent as an antagonist of the smoothened 

protein (Smo) involved in cell differentiation processes. Nonetheless, its anti-RSV 

activity is not related to this cellular receptor and it depends only on the specific 

inhibition of the M2-1 protein83,105. 

 

Figure 23. Chemical structures of pyronin B and cyclopamine CPM. 
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3.3.2.2 Intravenous Immunoglobulins IVIGs and monoclonal antibodies 

Intravenous immunoglobulins (IVIG; RespiGam®) have been also administered in 

order to control RSV infection, although it may be effective at lowering viral titres, 

they did not appear to correlate with improved clinical outcomes along with the 

disadvantage of requiring intravenous infusion106,107. Ribavirin and immunoglobulins 

administered in association has also been investigated as a therapeutic option to 

treat RSV infections in in adult bone marrow transplant recipients, but even in this 

case with controversial effectiveness108. Due to this lack of effectiveness, further 

studies have been made and have brought to the development of RI-001 and RI-002, 

which are aqueous intravenous polyclonal human immunoglobulin G (IgG) from 

pools of source plasma of screened healthy adult donors with high levels of RSV-

neutralizing antibodies. Promising data deriving from in vitro tests, preclinical studies 

and clinical trials demonstrate that RI-001 and RI-002 could be used as new potential 

therapeutic agents for the treatment of RSV infections in immunocompromised 

patients109. 

Palivizumab (Synagis®), a humanized mouse monoclonal antibody, even if has not 

shown appreciable effectiveness when used to treat RSV infections, is currently 

recommended as a prophylactic agent in high-risk population, with good success 

rates in preventing the infection110. Palivizumab have been designed to identify a 

shared antigenic epitope between pre-F and post-F, called site II, in order to increase 

its spectrum of action. The use of Palivizumab as prophylactic agent is limited by the 

high cost of the treatment, thus is administered only to high-risk premature infants, 

restricted for adults with immunodeficiency or elderly people, and also by its low 

neutralizing potency79.  

Motavizumab is a humanized antibody, developed as a higher affinity variant of 

palivizumab, which demonstrated a 20-fold higher in vitro potency compared to 

Palivizumab, its activity in vivo have been evaluated in two different clinical trials but, 

the FDA rejected the license application for motavizumab, due to incapability to 

demonstrate a greater efficacy than palivizumab as prophylactic agent, in addition 

to an increased hypersensitivity reactions relative to palivizumab111. 

Suptavumab (REGN2222) is a humanized monoclonal antibody designed to bind 

specifically the F protein of RSV, that nevertheless failed to meet the endpoint to 

prevent RSV infections in preterm children in a recent phase III clinical trial, thus it 

has not been approved for prophylactic use9,87. 
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Nb017 and its trimeric derivative ALX-0171, are two nanobodies, therapeutic proteins 

derived from the heavy chain variable domains (VHH) that are present in heavy chain-

only immunoglobulins of the Camelidae, that specifically bind the hRSV F antigenic 

site II, are currently under evaluation as post infection treatment112,113. 

Recently new highly potent antibodies that target specifically antigens of the pre-F 

protein have been discovered, such as the recombinant mouse 5C4 antibody, 

targeting the F protein site Ø, that had demonstrated high neutralizing potency 

decreasing RSV titres by 1000-fold more than Palivizumab in mice, and that is 

currently being evaluated in different clinical trials as a passive immunisation 

strategy114. Another pre-F specific human antibody, AM14, have been demonstrated 

to neutralize with higher potency than Palivizumab, all the tested RSV A and B strains, 

by binding a novel epitope in the pre-F protein, called site V115. Recently, another pre-

F epitope, designated as site VIII, have been discovered, and its specific antibody 

mAb hRSV90 neutralized all the tester RSV strains with a potency 1000-fold more 

than Palivizumab116. MEDI8897 is a recombinant human monoclonal antibody that 

also targets a prefusion conformation of the RSV F protein and neutralizes in vitro a 

diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab117. 

The discovery of these new potent antibodies specifically targeting the pre-F protein 

could represent an improvement into the control and prevention of RSV infections, 

on the other hand the discovery of pre-F protein important role into RSV infectivity 

could prompt to the development of new pre-F protein vaccines79. 

Several studies have also reported broadly-neutralizing monoclonal antibodies 

(bnmAbs) against RSV protein G, although its protein sequence considerably vary 

among different viral strains, it presents a highly conserved CCD sequence that could 

be exploited to develop specific recombinant antibodies. CCD sequence represents 

a promising target since is fundamental for the viral infectivity and involved into the 

viral attachment to airway epithelial cells and has a CX3C chemokine motif that binds 

to the corresponding chemokine cellular receptor CX3CR187. Several monoclonal 

antibodies have been developed targeting the RSV G protein, such as the mAb 131-

2G. The monoclonal antibody 131-2G by binding the CCD sequence, blocks G protein 

binding to CX3CR1, and decreases several disease manifestations in RSV infected 

mice. The comparison between 131-2G and a Palivizumab-like mouse anti-F protein 

mAb, 143-6C demonstrate that treatment with the anti-G protein mAb is more 

effective in reducing the RSV disease manifestation in preclinic studies, prompting 

the possibility that anti-G directed mAb might be more effective than anti-F 
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neutralizing antibodies in treating active RSV infection118. In addition, two anti-G 

protein mAbs 3D3 and 2B11, also react with the CCD sequence and have been shown 

to neutralize the virus in primary cell-culture systems and also to reduce G-mediated 

lung inflammation in mice. Thus, these G protein-directed mAbs could be strong 

candidates for development as anti-RSV therapies combining a high potency in 

reducing RSV titres and an anti-inflammatory activity119.   

 

3.3.2.3 Vaccines 

To date, there is no approved vaccine to prevent RSV infection. In mid-1960s a 

clinical trial of a formalin-inactivated RSV vaccine (FIRSV) failed due to the 

enhancement of the disease following natural RSV infection in vaccinated infants and 

children, followed by two deaths120. Thus, the development of new RSV vaccines has 

been subsequentially hampered by the need to create robust immune responses 

avoiding side effects and complications. However, the possibility to establish 

immunization due to a future RSV directed vaccine is supported by several studies 

that demonstrated that RSV is relatively stable antigenically and most previously-

infected adults are seropositive; in addition, the monoclonal antibody palivizumab is 

associated with a prophylactic activity in preventing hospitalisation secondary to RSV 

infection. Nevertheless, re-infections occur repeatedly throughout life, even if the 

frequency of severe disease decreases in second and subsequent infection. This 

suggests that immunity from infection is neither sufficient nor long-lasting121.  

However, it’s well known that the infection outcomes are more concerning in new-

born children, representing a challenge for the implementation of an efficient 

vaccination program at this stage, considering the immature neonatal immunity, the 

presence of maternally derived antibodies, and the impact of primary RSV infection. 

Infants are generally protected against RSV for 3 months by maternal antibodies. 

Thus, the peak incidence of RSV in infants has been observed around 2-8 months of 

age, when maternal antibodies begin to reduce their protective effect79. In order to 

protect infants at this critical age two possible vaccination strategies have been 

proposed: direct vaccination of infants or vaccination of pregnant mothers prior to 

transfer maternal antibodies122. 

The most advanced current strategies for RSV vaccine development are live 

attenuated RSV vaccine strains and recombinant viral vectors expressing RSV 

antigens. To date, several subunit RSV vaccines have been developed and tested 
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often derived from the prefusion conformation of the viral F protein; the choose of 

this specific protein conformation for the development of subunit vaccines is 

supported by several studies which demonstrated that pre-F-specific antibodies are 

at least 80-fold more potent than post-F-specific antibodies in terms of virus titres 

reduction79. 

 

3.3.2.3.1 Live-attenuated RSV vaccines 

Live attenuated RSV vaccines have been studied for several decades, representing 

attractive candidates for young children because they can be administered 

intranasally, and are immunogenic even in the presence of maternal antibodies. 

However, these vaccines development have been hindered by the challenge of 

obtaining a sufficient attenuation, in terms of safety, and at the same time the 

capability to determine a protective immune response.  

Several candidates are currently undergoing or recently completed clinical trials. 

Among these live attenuated vaccines, a group of vaccine candidates carries the 

deletion of a large segment of the M2-2 gene. The M2-2 non-structural protein 

mediates the transition from transcription to RNA replication. 

The strain A2 vaccine candidate RSV rA2cp248/404/1030∆SH contains attenuating 

mutations in different genes. In particular, the 404 nucleotide point mutation in the 

gene-start transcription signal of the gene encoding the M2-1 and M2-2 proteins, the 

248 and 1030 aminoacids point mutations in the L protein and the deletion of the SH 

gene, generated a highly attenuated virus. This vaccine has been evaluated in 

several clinical trials and appeared to be well tolerated in young children, but 

evaluation of nasal wash isolates from recipients identified a number of specimens 

exhibiting a partial loss of the attenuating mutations, primarily the 248 or 1030 

mutations123, Thus, two genetically stabilized versions of this vaccine RSVcps2 and 

RSVDNSD1313/1314L have been developed and evaluated in a clinical trials 

confirming an increased genetic stability121,124. Furthermore, two other RSV vaccine 

candidates carrying a M2-2 gene deletion, MEDI/ΔM2-2, and LID/ΔM2-2, have been 

evaluated in phase 1 studies in 6–24-month old children. 
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3.3.2.3.2 Inactivated RSV vaccines 

The development of inactivated vaccines has been hindered by the failure of FI-RSV 

vaccine clinical trial, thus only few vaccines of have been developed in this form123.  

However, recently an RSV-L19 inactivated vaccine has been developed in a 

nanoemulsion (NE) adjuvant formulation and preclinical studies in cotton rats proved 

to generate a considerable immune response and also cross-protective immunity 

from a different RSV-A2 strain has been observed125. 

 

3.3.2.3.3 Particle based vaccines 

New vaccine strategies can take advantage of particulate compounds such as 

microspheres or nanoparticles to target antigen-presenting cells in order to trigger a 

directed immune response. These particles can carry viral proteins, peptides or 

protein epitopes. 

Novavax Inc. (Gaithersburg, MD, USA) has modified and cloned the RSV F protein 

(post-F conformation). The recombinant protein glycosylated and cleaved into 

covalently-linked F2 and F1 polypeptides form homotrimers, that further assemble 

into nanoparticles. This vaccine demonstrates a strong induction of anti-RSV 

antibodies in preclinical studies and has also been tested in several clinical trials in 

different populations including elderly, adults, pregnant and non-pregnant women, 

and infants. A phase III study to determine the safety and efficacy of the vaccine to 

protect infants via maternal immunization have been recently completed (NCT 

02624947). 

In addition, GlaxoSmithKline (GSK, Phase 2), GSK (legacy Novartis, Phase 1), and 

MedImmune (Phase 2) are currently testing RSV F vaccine candidates for use in 

maternal immunization and for the vaccination in elderly people. 

 

3.3.2.3.4 Subunit-based vaccines 

Subunit-based RSV vaccine are produced using the viral envelope glycoproteins as 

antigens. The development of these vaccines presents some challenges due to the 

fact that are composed by non-replicating parts of the virus, thus they are often 

poorly immunogenic126. Recently new subunit-based vaccine candidates most 

commonly use the RSV fusion (F) protein of the virus as the antigen, often in its pre-
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fusion conformation, due to its capacity to generate most of the RSV neutralizing 

antibodies and its high level of conservation among different RSV strains. 

GlaxoSmithKline has recently developed a recombinant RSV glycoprotein F vaccine, 

engineered to preferentially maintain prefusion conformation (RSV-PreF), that have 

been evaluated in clinical trials in pregnant women in order to assess its safety, 

reactogenicity, and immunogenicity profiles. The vaccine generated the anticipated 

immune response that, however, was seen to gradually decline in all study groups 

on the months after the administration123,127. 

 

3.3.2.3.5 Gene-based and vectored vaccines 

Gene based vaccines include nucleic acid vaccines (naked DNA or RNA) and 

replication-deficient vectors of nucleotide sequences such as human and primate 

adenovirus vectors, that are reporter to cause immunization leading to induction of 

cytotoxic T helper123.  

Janssen Pharmaceutical has developed vectored vaccines consisting of low 

serovalent adenoviral vectors Ad26 and Ad35, expressing the RSV fusion protein in 

the pre-F configuration128. In addition, Bavarian Nordic also produced a vectored 

vaccine MVA (Modified Vaccinia Ankara) MVA-BN® engineered to produce immune 

responses against both RSV A and B subtypes, that expresses 5 RSV proteins such 

as the F, the G protein from RSV A and B type, the N, and the M2 proteins. MVA-BN® 

evaluation in a clinical study proved the establishment of a persistent antibody 

response against multiple RSV targets122,123. 

GSK has also developed its adenovirus for RSV vaccine for children administration, 

based on a chimpanzee adenovirus subtype 155 vector expressing the RSV F, N, and 

M2-1 proteins. At date, preclinical data demonstrated a in vivo efficacy in increasing 

the immune response in several tested animal species, thus clinical trials are 

currently underway122. 

Vaxart developed an anti-RSV vaccine that contains a nonreplicating E1-, E3-deleted 

Adenovirus subtype 5 (Ad5) vector encoding the RSV F protein, adjuvanted with 

double stranded RNA. This vaccine candidate has been recently evaluated in a phase 

1 clinical trial to assess its effectiveness and tolerability profile122. 
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3.4 Influenza Virus IV 

Influenza viruses belong to the Orthomyxoviridae family, which was historically 

divided into five genera: influenza A virus (IAV), influenza B virus, influenza C virus, 

influenza D virus, isavirus, and thogotovirus. The International Committee on 

Taxonomy of Viruses (ICTV), has recently revised the classification of the 

Orthomyxoviridae family including eight genera and nine species: genus 

Alphainfluenzavirus comprising the species influenza A virus, Betainfluenzavirus 

comprising the species influenza B virus, Gammainfluenzavirus comprising the 

species influenza C virus, and Delatinfluenzavirus comprising the species influenza 

D virus, genus Isavirus, genus Quaranjavirus and genus Thogotovirus129. 

Among the influenza viruses, influenza B and C natural hosts are represented by 

humans even if occasional transmissions to other animal species have been 

described130. Their infection in human hosts causes the respiratory disease, although 

influenza B is responsible of more severe clinical manifestations compared to 

influenza C131.  

Influenza D virus (IDV), was first isolated in 2011 from swine and cattle in North 

America and consequently found also in Europa and Asia. It is also capable of 

infecting other mammalian species, such has ferrets, pigs and guinea pigs, but it has 

been never reported infecting humans. It phylogenetically derives from ICV, showing 

about 50% amino acid homology with influenza C virus132.  

Influenza A viruses originate from birds and swine hosts and subsequently adapted 

to humans. IVA is associated with a high mutation rate of its genome, thus is capable 

of acquiring the ability to switch from animal to human hosts and generate 

pandemics131. Over the past 100 years, there have been four flu pandemics 

associated with several deaths worldwide: 1918 H1N1 Spanish flu, 1957 H2N2 Asian 

flu, 1968 H3N2 Hong Kong flu, and 2009 H1N1 swine flu133. In addition, IVAs are 

responsible of seasonal epidemics occurring every year; the vast majority of the 

seasonal influenza virus burden is associated with influenza types A and also type 

B134. 

Influenza viruses have negative-sense, single-stranded RNA genomes that are 

divided in either eight or seven segments depending on the genus. Genome 

sequencing confirmed that IVs share a common genetic ancestry, then they have 

genetically diverged in the four genera. The exchange of RNA sequences between 

viruses, genetic reassortment, still occurs within each genus, but not across types135.  
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Influenza A can be further classified in different subtypes based on the 

characteristics of its surface glycoproteins: different combinations of haemagglutinin 

(HA) and neuraminidase (NA) glycoproteins identify the distinct subtypes. There are 

currently at least 18 HA subtypes and 11 NA subtypes, but only three combinations 

are known to have circulated widely in humans: A/H1N1, A/H2N2 and A/H3N2131. 

Differently, influenza B viruses can be antigenically divided in only two lineages, 

identified in 1970s, named, B/Victoria/2/87 and B/Yamagata/16/88136, 

Influenza A and B could be spherical or filamentous in shape, the spherical forms are 

on the order of 100 nm in diameter and the filamentous forms could reach up to 300 

nm in length. Influenza A and B genome consists of eight segments and encodes 13 

proteins: Hemagglutinin (HA), neuraminidase (NA), M1 matrix protein (M1), M2 ion 

channel protein (M2 or AM2), nuclear protein (NP), non-structural proteins (NS1, NS2), 

and RNA polymerase complex (PB1, PB2, PA). Each genome segment possesses 

untranslated regions (UTRs) at both 3′ and 5′ ends which serve as promoters for 

replication and transcription by the viral polymerase complex and also include the 

mRNA polyadenylation signal and the packaging signals for virus assembly (Figure 

24). 

The influenza A virus is surrounded by an envelope that supports glycoprotein spikes 

of hemagglutinin HA and neuraminidase NA, in a four to one ratio, and a smaller 

number of matrix (M2) ion channels (M2/HA ratio 1:100). Below the envelop a matrix 

composed of M1 protein protects the virion core containing the non-structural 

protein 2 NS2 (also called nuclear export protein NEP) and the ribonucleoprotein 

(RNP) complex. The RNP complex is composed by the each segment of the viral 

genome along with the nucleoprotein NP and the RNA dependent RNA polymerase, 

composed by three subunits forming an heterotrimer: two “polymerase basic” and 

one “polymerase acidic” subunits (PB1, PB2, and PA)135. 

The organization of the influenza B virion is similar to the influenza A virion 

organization with few differences; for example, it has four envelop protein, HA, NA 

and two proteins, NB and BM2 instead of the ion channel M2. The NB protein is 

encoded by RNA segment 6, which also encodes NA, while BM2 is encoded by 

segment 7137.  The NB protein forms a cation-permeable channel, BM2 also forms ion 

channels and its activity is essential for IBV replication since it triggers the virus 

uncoating in endosomes in the cell entry process. BM2 also mediates the new virions 
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assembly process by capturing the M1-ribonucleoproteins complex during virus 

budding from the host cell138. 

 

Figure 24. Structure and genome organization of influenza A and B viruses. A) Shows the eight viral RNA 

segments along with the 5′ and 3′ UTRs, which contain the viral promoters. B) Diagram of the viral 

mRNAs that are transcribed from the IAV and IBV genomes. C) Structure of an influenza A or B virus 

with its membrane proteins HA, NA, and M2, the eight viral ribonucleoproteins (vRNPs, represented 

more in detail below the virion), and the matrix protein M1 that supports the viral envelope. D) Top view 

of an influenza virus cross-section in which vRNPs are represented with black circles139. 

Influenza C and D viruses are structurally different from A and B viruses; they present 

a lipid envelope overlying a protein matrix and the RNP complex. The genomes of 

ICV and IDV consist of 7 gene segments and encode only one envelop glycoprotein 

(HEF), which combines both the function of HA and NA, along with PB1, PB2, P3, 

matrix (M1) protein, the ion channel protein (CM2 and DM2, respectively) , and the 

non-structural proteins NS1 and NS2140. Based on the differences into the 

hemagglutinin‐esterase‐fusion (HEF) gene, ICV has been divided into six lineages, 

designated C/Taylor, C/Mississippi, C/Aichi, C/Yamagata, C/Kanagawa, and C/Sao 

Paulo141 while ICV can be distinguished in two lineages: the 

D/swine/Oklahoma/1334/2011 (D/OK) and D/bovine/Oklahoma/660/2013 

(D/660)139. 

 

3.4.1 Antigenic Shift and Antigenic Drift 

Influenza viruses A and B are capable of causing seasonal epidemics and re-

infections in humans due to their capability of evade the host immune system by 
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evolving and mutating their antigenic determinants. In particular, influenza virus A 

presents a very high mutation rate and its capability to differentiate and generate 

new viral strains to which the population has limited immunity, could lead to 

increased transmission and might evolve into a pandemic142. 

The capability of these viruses to evolve and evade the host immune defences by 

changing its antigenic determinants, represented by the surface glycoproteins the 

hemagglutinin and neuraminidase, is due to two different processes: antigenic shift, 

which occurs only in influenza A virus and antigenic drift, which may occur in both 

influenza A and B viruses. 

Antigenic drift is associated to minor variations into the antigenicity of the envelop 

glycoproteins compared to antigenic shift. Influenza virus RNA-dependent RNA 

polymerase lack proofreading capability and tend to make errors during replication 

causing point mutations in the genome. Relevant changes in antigenicity occur only 

by the accumulation of point mutations of the gene encoding for HA or NA 

glycoproteins. Single point mutations are not enough to determine a noticeable 

change in antigenicity, thus aminoacids changes in at least two or more epitopes of 

the glycoproteins are necessary for a significant antigenic change143. This process 

may occur in both influenza A and influenza B viruses and these antigenic variants 

are responsible for annual epidemics, due to the accumulation of point mutations 

that allow viruses to escape neutralization by antibodies directed against previously 

circulating strains144. 

Antigenic shift only occurs within influenza A viruses, it is less frequent but causes 

dramatic changes of the antigenic profile and infectivity of the virus. Antigenic shift 

occurs when two different IAV viruses, also from a different host species, co-infects 

a single host; these two viruses may reassort their genomes within the infected cells 

creating a completely new virus and generating a new viral strain. The new strain 

may possess the new ability to infect different hosts and also humans and potentially 

cause a pandemic, since as no neutralizing antibodies are present in the human 

population against the new shift variant145. For example, the A/H1N1 pandemic in 

2009 originated from the generation of a new IAV strain capable of infecting humans 

due to a triple-reassortment antigenic shift, where HA, NP and NS, NA and M genes 

derive from swine lineages, PB2 and PA are of avian origin and PB1 gene derives from 

the human IAV strain H3N2145. 
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3.4.2 Influenza Virus Replication 

3.4.2.1 Influenza Virus Attachment and Entry processes 

Influenza infection starts when the virus specifically binds and recognizes the N-

acetylneuraminic acid (sialic acid) on the host cell membrane. Sialic acids are acid 

monosaccharides deriving from neuraminic acid, an acidic sugar with a nine-carbon 

backbone; they can be found as components of oligosaccharide chains of mucins, 

glycoproteins and glycolipids occupying terminal positions of complex 

carbohydrates that may be exposed on both external and internal membrane areas 

of many animal species. The N-acetylneuraminic acid is capable of forming carbon-

carbon bonds between the carbon-2 of the terminal sialic acid and the carbon-3 or 

carbon-6 of galactose forming -2,3 or -2,6 linkages. These different bonds confer 

a specific steric configuration to the terminal sialic acid, that is specifically recognised 

by the viral HA. Different viral strains may recognise specifically only one of the two 

types of linkages, i.e. the human IAV and IAB strains specifically bind the -2,6-

linkages which are the most common terminal sialic acids in humans. However, 

human cells may also express -2,3-linkages in minor quantity, thus also avian 

viruses whose HA specifically binds the -2,3-bonded sialic acids possess the 

capability to infect also human hosts, even if with less efficiency compared to IV 

human strains135. 

 

3.4.2.1.1 IAV and IBV Hemagglutinin HA 

The influenza virus interacts with the sialic acid by mean of the hemagglutinin 

glycoprotein HA (in the case of influenza A and B strains), or via the hemagglutinin‐

esterase‐fusion HEF protein (in the case of influenza C and D strains)138. The HA is 

polypeptide of 550 aminoacids organized in homotrimers, positioned on the virus 

envelop. The homotrimer presents two structurally distinct regions, a stem, a region 

rich of −helices, and a globular head of antiparallel −sheet, that also contains the 

sialic acid receptor binding site. The hemagglutinin glycoproteins present the main 

antigenic determinants of IV which are designated by different letters in diverse HA 

subtypes, i.e. in H3 subtype these sites are identified as A, B, C, and D, in the H1 

subtype these are named Sa, Sb, Ca1, Ca2, and Cb. Antibodies specifically recognises 

the HA antigenic sites, neutralizing IV infectivity, thus HA is primarily involved into the 

antigenic drift process, where accumulated pointed mutations may generate a new 
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strain allowing the virus to evade the host immune response. However, the stem-

head configuration of the HA molecule remains conserved among the different 

strains and subtypes135.  

In IAV and IBV the hemagglutinin is synthesized by the ribosome machinery of the 

infected cell in the form HA0, once transported to cell membrane, is subsequently 

cleaved by host serine proteases into two segments, HA1 and HA2 linked by a 

disulphide bridge, then incorporated into the newly formed virus particle envelop 

due to a membrane-anchor sequence near its C terminus. The HA1 portion contains 

the receptor binding and antigenic sites while the HA2 is involved in the fusion 

process with the cell membrane146. The pre-fusion HA1–HA2 recognises and binds 

the sialic acid on the cell membrane due to the HA1 binding site. Then, the virion 

undergoes endocytosis due to the physiological plasma membrane recycle. The low 

pH inside the endosome triggers a conformational change in which HA2 loses contact 

with HA1, except for the disulphide bridge, then refolds and undergoes a loop-to-

helix transition in its sequence exposing the N-terminal portion (fusion peptide) and 

translocating it towards the host membrane, generating an “extended intermediate”. 

The fusion peptide forms an amphipathic helix that is responsible for the interaction 

with the cell lipidic bilayer. The extended intermediate collapses to generate the 

post-fusion conformation, in which the HA folding leads to the two membranes (viral 

and cellular) fusion, followed by the virus release in the cytoplasm. This transition 

results in a stable trimeric coiled-coil conformation147 (Figure 25). 

 

Figure 25. IV hemagglutinin fusion process and conformational changes. a) pre-fusion conformation; b) 

conformational change from the pre-fusion form to the extended intermediate; c) extended 

intermediate; d) post-fusion conformation147. 
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3.4.2.1.2 Hemagglutinin‐esterase‐fusion HEF protein  

In IVC and IVD the hemagglutinin-esterase-fusion (HEF) protein combines the 

functions of both HA and NA. The HEF protein, like HA, recognises the sialic acid on 

the host cell membrane and specifically binds it. It also mediates the membrane 

fusion process inside the endosome following a mechanism similar to HA’s. In 

addition, HEF also fulfils the NA enzymatic function, that consists in an esterase 

activity removing the 9-acetyl group of the N-acetyl-9-O-acetylneuraminic acid. This 

process is fundamental in the virus exit phase since it results in the release of the 

newly synthesized virus particles from the infected cell148. 

 

Figure 26. Comparison of the crystal structure of ICV HEF protein and IAV hemagglutinin highlighting 

the catalytic esterase domain of HEF which is absent in HA, the fusion peptides and the receptor binding 

sites148. 

 

3.4.2.2 Ribonucleoprotein RNP pH-induced release 

The acidic environment inside the endosome is not only important for inducing the 

HA or HEF conformational change, but also activates the envelop ion channel 

proteins: influenza A M2 proton channel, the NB and BM2 ionic channels of IBV, the 

CM2 and DM2 channels of influenza C and D respectively. 

 

3.4.2.2.1 A/M2 ionic channel 

Influenza A M2 protein is a 97 aminoacids glycoprotein that passes through the viral 

envelop in a single-pass (NinCout) encoded by a spliced mRNA derived from the RNA 

segment 7 of IAV149. It’s a type III membrane protein organised in a 23-aminoacid N-
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terminal ectodomain, a transmembrane TM segment (residues 24-46) and a C-

terminal cytoplasmatic domain (from 46 to 97), which is involved into the virus 

assembly process. These proteins are organised in a homo-tetramer forming the 

ionic channel, in which two dimers are covalently linked by mean of disulphide 

bridges. The A/M2 channel is highly selective for protons and preferentially 

conducts protons from the viral exterior (N-terminus) to the interior (C-terminus). 

Thus, it is responsible for the generation of the low pH environment inside the virus 

particle that triggers the RNP release and the HA conformational change. The 

acidification inside the virus particle causes the matrix M1 protein to lose interaction 

with the RNP complexes, thus after HA-induced membrane fusion the uncoated 

RNPs are released into the cytoplasm and trafficked to the nucleus150,151. In addition, 

the M2 channel also regulates the pH in the host Golgi lumen during virus assembly 

processes in order to keep the neo-synthesized HA in its pre-fusion form, avoiding 

low pH-induced premature activation151. 

The TM segment are organised into a four-helix bundle with a left-handed twist 

angle of ∼ 23° shaping the channel pore that may switch from a close conformation 

to an open conformation due to the key residues His37, that acts as a pH sensor and 

the Trp41 that works as channel gate152. 

The channel entrance at N-terminus is narrow (3.1 Å) due to the presence of a ring of 

methyl groups from Val27, not allowing water molecules to enter the channel. 

However, water molecules are required inside the channel pore to support proton 

conduction, thus small motions of the protein are required for water to enter the 

channel. In the inner part of the channel the pore further narrows towards the C-

terminus due to the presence of the His37 and Trp41 that restrict the diameter to 1.7 

and 1.4 Å respectively. The Trp41 is believed to interact with the Asp44 establishing 

inter-subunit hydrogen bonds that lock the channel gate in the closed conformation. 

The closed state of the channel is structurally rigid, however when the low pH 

environment triggers the channel opening, the tetramer evolves to a dynamic open 

state, with a loose quaternary structure.  

At low pH (5 to 6), the His37 imidazole switches to the protonated form resulting in 

electrostatic repulsion of the charged residues and in losing the H-bond interaction 

between Asp44 and Trp41. That consequentially loosens the rigid protein packing in 

the TM domain, opening the channel pore in the conductive state to admit water 

molecules and allowing the proton flux (Figure 27). The inner channel relies to a 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-quaternary-structure
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series of polar residues that facilitate the proton flux and the channel hydration; 

A/M2 channel has four polar residues within the TM, Ser31, His37, Asp44, and Arg45 

which are involved in this function151. 

 

Figure 27. pH dependent conformations of the influenza A M2 proton channel. 

 

3.4.2.2.2 IBV, BM2 ionic channel 

The RNA segment 7 of IBV encodes for both M1 and BM2 protein. The unspliced 

mRNA is traduced into a polyprotein that is subsequentially cleaved into the two 

virus structural proteins. BM2 protein is similar to A/M2, forms homotetramers in the 

envelop membrane and selectively conducts protons inside the virion particle, 

nonetheless they present only few similarities in the aminoacidic sequence, in 

particular in the TM domain. BM2 is essential for virus uncoating in the endosome 

and for pH equilibration between Golgi lumen and cytoplasm during virus protein 

transport and virion assembly. Unlike M2, the TM domain of BM2 channel presents a 

characteristic coiled-coil assembly with heptad repeats. The tetramer presents a 

hydrophilic pore that is occluded by Phe5 and Trp23 at the N-, and C-terminal sides 

respectively. Despite the low sequence similarity, the TM domain also presents the 

characteristic M2 motif HXXXW, thus His19 and Trp23 are responsible in BM2 of 

proton selectivity and gating, allowing the channel to switch between the two 

conformations depending on the external pH150,153. 
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3.4.2.2.3 ICV, CM2 ionic channel and IDV, DM2 ionic channel 

Influenza C and D ionic channels CM2 and DM2 share many similarities in their 

aminoacidic sequence and functionality. They are type III membrane proteins 

forming disulphide linked homodimers which are further organised in tetramers, 

presenting a N-terminal ectodomain, a TM domain and a C-terminal domain in the 

internal part of the membrane153. 

CM2 protein is encode by ICV, RNA segment 6 which produces a p42 polyprotein, 

subsequentially cleaved in two segments generating CM2 composed of the C-

terminal 115 amino acids, and the CM1 protein composed of the N-terminal 259 amino 

acids. The protein is post-translationally modified by N-glycosylation (Asn11), 

palmitoylation (Cys65), and phosphorylation154. 

Both CM2 and DM2 The CM2-associated ion channel activity is preferentially 

permeable to Cl- but not to cations (Na+ or K+), and also presents a small proton 

channel activity149. However, they are capable of altering the pH within the Golgi 

network, avoiding HEF activation and to trigger the pH modification inside the virus 

particle in the endosome to activate HEF and initiate the RNP uncoating. 

Nevertheless, the mechanism of activation and the proton and chloride 

permeabilities roles require further investigations. Finally, neither CM2 nor DM2 

contain the characteristic HXXXW motif of A/M2 and BM2, but probably a YXXXK 

motif in their TM domain fulfils the same role in sensing pH and gating the channel 

pore153. 

IAV and IBV genomes also encode for other viroporins, PB1-F2 and NB, respectively, 

forming ion channels. PB1-F2 forms nonselective ion channels in lipid bilayers and is 

known to localize to the mitochondria of infected cells. NB protein form ion channels 

in lipid bilayers however NB seems to not be fundamental for viral replication138. 

 

3.4.2.3 Entry of influenza virus RNPs into the nucleus 

Influenza virus ribonucleoproteins RNPs are released into the cytosol, then thy need 

to be translated into the nucleus where the transcription and replication processes 

take place. Each viral RNP is composed by an (-) ssRNA segment complexed with 

the NP, PB1, PB2 and PA (in IAV and IBV) or P3 proteins (in ICV and IDV). To enter the 

nucleus proteins and protein-RNA complexes have to be recognised by the nuclear 

pore complex (NPC) by presenting specific aminoacidic signals. For nuclear import a 
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protein needs to expose a Nuclear Localization Signal (NLS) and for export a protein 

needs to have a Nuclear Export Signal (NES). Nuclear pores are very large molecular 

complexes), structurally composed by nucleoporins. These nucleoproteins presents 

some aminoacidic sequences that specifically binds the proteins of the importin β 

family or from the exportin family in order to allow the molecules inside the 

nucleus155. All individual protein components of the RNP presents different NES 

sequences that can be recognised by importin α. Upon binding to the vRNP, 

importin-α is recognized by the importin-β receptor, which then interacts with the 

nuclear pore complex to enter the nucleus156,157. 

 

3.4.2.4 Transcription and replication of the IV RNAs 

The transcription and replication processes of vRNAs occur in the host cell nucleus 

where the viral RNA-dependent RNA-polymerase, part of the RNP complexes, 

mediates the two processes. The influenza viruses RNP complexes are composed 

by an antiparallel double helix of NP-coated vRNA that contains a polymerase at one 

end and an NP loop at the other end. The influenza virus RdRp consists of three 

subunits: polymerase basic 1 (PB1) and polymerase basic 2 (PB2) are present in all 

influenza viruses, whereas the third subunit is polymerase acidic (PA) in influenza A 

and influenza B viruses, and polymerase 3 (P3) is characteristic of influenza C 

viruses158. 

 

3.4.2.4.1 Transcription of the vRNAs 

Influenza viruses’ genomes are negative-sense single stranded RNAs and they 

cannot be directly recognised by the cellular ribosomes, thus the RdRp synthesised 

the positive-sense mRNAs for the viral proteins’ synthesis.  The viral mRNAs are 

capped at the 5’ end and polyadenylated at the 3’ end. Transcription is a primer-

dependent process, nonetheless the viral RdRp does not possess intrinsic capping 

activity, thus the polymerase obtains the 5’-caps, that act as primers, from the host 

cell’s capped mRNAs in a process called cap-snatching. This process is aided by the 

association of the viral polymerase with the C-terminal domain of the host RNA 

polymerase II, and occurs when the conserved 5'-end of the template vRNA interacts 

with the polymerase complex activating the cap-binding function of PB2. The PB2 

binds the 5’ end of host capped mRNAs and cleaves 10-13 nucleotides downstream 

of the 5’ cap, that the polymerase uses as a primer to start the transcription of the 
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viral mRNA138. The mature viral mRNA needs to be polyadenylated at the 3’ end; the 

poly(A) tail of influenza virus mRNA is encoded in the negative-sense vRNAs as a 

sequence of 6-7 uracil residues, which are recognised by the viral polymerase and 

translated into a string of adenosines. Once polyadenylated and capped, the viral 

mRNA needs to reach the host ER membrane in order to star viral proteins’ 

synthesis135. The M1 protein mediates this process by binding the (+) viral mRNAs and 

the NP proteins promoting NP-RNA core formation. At this stage, the viral NS2 

protein also binds M1 and recognises a NEP sequence on the nucleoporins of a 

nuclear pore complex, promoting the export of the viral mRNA155. 

 

3.4.2.4.2 Replication of the vRNAs 

The nucleus is also the location of the synthesis of the vRNA segments that form the 

genomes of progeny viruses. The viral RNA-dependent RNA polymerase 

synthesises complementary RNA (cRNA) intermediates that serve as templates for 

the synthesis of more copies of negative-sense, genomic vRNA. Likewise, nuclear 

export of the viral genome vRNPs is mediated by the viral proteins M1 and 

NEP/NS2158. 

 

3.4.2.4.3 IVs RNA-dependent RNA-polymerase 

Influenza viruses RdRps structures has been studied thoroughly due to the 

availability thoroughly of X-ray crystallography structures of the heterotrimers of the 

polymerases of influenza A virus and human influenza B and influenza C viruses. 

The influenza virus polymerase is a complex composed by a core, consisting of PB1, 

the C-terminal domain of PA (or P3) and the N-terminal region of PB2, and flexible 

peripheral appendices formed by the PA (or P3) endonuclease domain and the PB2 

cap-binding, mid, linker, 627- and NLS domains. 

The core of the polymerase is represented by the PB1 subunit which contains 

characteristic motifs such as the pre-A motif, and motifs A-E, that are a common 

feature of the RNA-dependent RNA polymerases. PB1 possess the typical right-

hand-like fold, in which the fingers and fingertips, palm and thumb domains. In 

addition, the N-terminal and C-terminal extensions play a fundamental role, 

interacting with the PA or (P3) and PB2 subunits respectively. The PB2 subunit 
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consists of several flexible domains, whose are arranged differently in influenza A 

and B polymerases compare to C and D polymerases. PB2 domains include the mid 

domain, the cap-binding domain, the cap-627 linker, the 627-domain, the C-terminal 

nuclear-localization signal (NLS) domain and the N-terminal, which includes the lid 

subdomain, that interacts with the PB1 C-terminal and thumb domain (Figure 28). 

 

 

Figure 28. Structure of the influenza A virus polymerase (PDB = 4WSB) bound to genomic vRNA158. 

 

3.4.2.5 Viral proteins synthesis  

The viral mRNAs of influenza viruses are traduced into the many viral encoded 

proteins exploiting the host cell translation machinery. Part of the viral proteins are 

synthesized by cytosolic ribosomes (proteins PB1, PB2, PA or P3, NP, NS1, NS2 and 

M1), while the membrane proteins HA, NA (or HEF) and M2 are formed by the 

endoplasmic reticulum (ER)-associated ribosomes. The envelop proteins 

synthesized in the ER are folded and trafficked to the Golgi apparatus where they are 
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subject of post-translational modification, then specific signal residues on the 

proteins direct them to the cell membrane where the virus assembly process takes 

place. The RNA-binding protein NS1 is synthesized in the cytosol, then imported into 

the nucleus where act as an inhibitor of interferon signalling. In addition, also the NS2 

and M1 proteins are directly imported in the nucleus right after their synthesis157. 

 

3.4.2.6 Virion assembly and budding 

The M1 protein inside the nucleus binds the viral RNAs and the NP proteins 

promoting NP-RNA core formation. After being exported in the cytoplasm, the RNP 

complex is transported to the budding site where the M1 proteins interacts with 

specific binding sites on the HA and NA proteins for packaging at the host cell 

membrane. To obtain an infective virus particle incorporation of all eight or seven 

vRNA segments is required, thus after budding only the virion possessing the 

complete genomic inheritance are capable of infecting new cells135. 

Several viral and host components are involved into the budding process, and may 

be involved in one or more different stages of bud initiation, bud growth or bud 

release. Viral budding is probably triggered by an accumulation of M1 protein at the 

cytoplasmatic side of the host membrane. The M1 protein’s role is crucial for the 

virions budding since it is involved both in the bud initiation and bud release 

processes. It provokes budding initiation by interacting with the lipidic bilayer causing 

a membrane bending that facilitates the bud formation. M1 is also crucial in the final 

stage, the bud release, mediating bud closing and virion release159.  

The surface glycoproteins are directly involved not only in the assembly process (HA, 

NA or HEF, M2), but also in the budding process, in particular the viral NA 

neuraminidase of IAV and IBV is necessary in the final stage of virion release since, 

after budding the HA envelop glycoprotein remain bonded to the cell membrane 

sialic acid. Thus, the NA possess a sialidase activity that is necessary to cleave the 

terminal sialic acid residues on the host cell membrane and release virus particles160. 

NA also removes sialic acid residues from the virus envelope, preventing 

aggregation of the viral particles. The sialidase activity of NA proved also to be crucial 

in the entry phase of the virus, by easing the virus’ access at the host cell membrane; 

the NA cleaves the sialic acid of the mucins, highly sialylated secretions composing 

the protective mucus that covers the host cells of the respiratory epithelia161. 
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3.4.2.6.1 Neuraminidase NA 

The NA is a tetrameric IVs envelop glycoprotein, composed by 4 identical subunits, 

of approximately 470 aminoacids each. In the monomers, three structural domains 

can be found: the cytoplasmic tail, the transmembrane region, the stalk, and the 

catalytic head (Figure 29). The cytoplasmatic tail is thought to be involved in NA 

interaction with M1 protein in the assembly process, while the transmembrane region 

at the N-terminal anchors the protein to the viral envelop. The TM domain, which is 

organized as an α-helix, also possess signals for translocation from the ER to the 

apical surface. The stalk domain aids tetramer stabilization thanks to the disulphide 

bonds formed between the cysteine residues of each monomer. The length of this 

region may vary in the different subtypes affecting the virus infectivity; a short NA 

stalk domain could hinder the contact of its catalytic site with the sialic acids of host 

cell membrane receptors. The head of the NA hosts the catalytic site which 

possesses the sialidase enzymatic activity. The active site e is highly conserved in 

both spatial orientation and sequence properties and includes eight highly 

conserved aminoacids that are involved into the NA-sialic acid interaction: Arg118, 

Asp151, Arg152, Arg224, Glu276, Arg292, Arg371, and Tyr406. In particular the three 

arginine residues Arg118, 292 and 371 are involved in a stabilizing interaction with the 

carboxylic acid of the substrate160. 

 

Figure 29. Structure and organization of the influenza A neuraminidase NA160 
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3.4.3 Influenza Virus Infections: Therapeutic approaches. 

Nowadays, influenza therapy is restricted to two classes of virus-directed drugs: M2 

ion channel blockers and neuraminidase inhibitors. However, the first class, including 

drugs like amantadine and rimantadine, is associated with virus resistance 

phenomena and neurological side effects, while the licensed NA inhibitors can also 

induce resistance and only provides rather modest clinical outcomes162.  

Besides antiviral drugs, seasonal vaccination represent the most efficacious way to 

reduce the influenza impact, even if the development of effective vaccines is 

complicated by the genetic variation, since influenza viruses vary continuously 

through antigenic drifts and antigenic shifts, acquiring the ability to evade the host 

pre-existing immunity. Therefore, continuous reformulation of vaccine compositions 

and annual immunization are needed. In addition, the immune responses induced by 

the influenza vaccines could be suboptimal in many treated people, especially in 

younger children and the elderly, who are at risk of severe influenza84. 

Thus, there is an urgent need to develop new antiviral strategies with entirely novel 

action principles and reduced risk for drug resistance. Currently, the search of novel 

anti-influenza small molecules could be directed towards different potential viral 

and host targets; novel antiviral agents are in different stages of development, 

fulfilling their antiviral activity either by targeting viral proteins or the viral genome, 

or by inhibiting host factors which are directly exploited by the virus in order to 

complete its life cycle163. 

 

3.4.3.1 Licensed Anti-influenza Virus Drugs 

3.4.3.1.1 Proton channel M2 inhibitors: adamantanes 

Among the traditional anti-influenza licensed drugs, amantadine and rimantadine are 

adamantane derivatives (Figure 30), that inhibit viral replication by blocking the M2 

proton channel, thus inhibiting the release of the RNP complex in the host cell 

cytoplasm. Along with the problem of the increased viral resistance to these drugs, 

the therapeutic application of these compounds is also limited by their specificity for 

influenza A viruses M2 channels, thus they are not useful in IBV infections. For these 

reasons, and also for the sporadic occurrence of CNS side effects, the use of 

adamantanes as antiviral therapeutics is no longer recommended9,164. 
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Figure 30. Structure of the adamantane drugs, amantadine and rimantadine. 

 

3.4.3.1.2 NAI neuraminidase inhibitors 

Another class of licensed anti-influenza drugs are the viral neuraminidase inhibitors 

(NAIs). These compounds are structural analogues of the sialic acid, which is 

physiologically present on the host cells’ surface9. Sialic acid is most commonly 

present in the form of N-acetyl-9-O-acetylneuraminic acid (NANA). Since the viral 

neuraminidase possess a sialidase enzymatic activity, it facilitates the virus entry 

process by removing the NANA from the host cells surface and is also involved in 

the release of the newly synthesized virus particles from the infected cell148. 

Currently, four NAI are used in clinical practice: zanamivir, oseltamivir, laninamivir and 

peramivir (Figure 31). Oseltamivir is an orally available pro-drug, which is well 

absorbed and rapidly cleaved in the gastrointestinal tract releasing its active 

metabolite oseltamivir carboxylate. Due to their poor oral bioavailability, zanamivir is 

approved for inhalation delivery while peramivir has been approved for intravenous 

administration only. To date, Laninamivir is only approved for use in Japan to treat 

and prevent influenza A and B infection and is administered by inhalation as 

laninamivir octanoate prodrug, subsequentially converted by endogenous esterases 

in the airway to obtain laninamivir165. 

The therapeutic use of NAI has been limited by the emergence of viral resistance, 

especially to the orally bioavailable oseltamivir. These NAI-resistant variants of 

influenza A viruses of N1 NA subtype most frequently carry H274Y and N294S NA 

amino acid mutations, while viruses of N2 NA subtype carry E119V and R292K NA 

mutations, and NAI-resistant variants of influenza B viruses carry R152K and D198N 

NA mutations. However, generally cross resistance among oseltamivir and other 

NAIs has not been observed, thus oseltamivir-resistant infections could be 

successfully treated with other NAI163. 
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In addition, the efficacy of these NAI is reported to be time-dependent, since 

therapeutic effect of these drugs can be observed mainly in subjects who receive 

the treatment within the first 48 h of symptom onset166. 

 

 

 

Figure 31. Structure of the NAI inhibitors currently approved for therapeutic use. 

 

3.4.3.1.3 IV polymerase inhibitors 

More recently, two novel anti-influenza drugs directed against different viral targets 

have been approved for therapeutic use. In particular, the influenza virus RdRp 

complex is the molecular target of baloxavir marboxil (BAM) and favipiravir (FP) two 

recently approved drugs that have reached the market (the first in Japan and the 

USA and the second only in Japan)166. 

Baloxavir marboxil (Xofluza®) (Figure 32) is a pro-drug that is hydrolysed in vivo to its 

active form which acts by inhibiting the cap-dependent endonuclease activity of the 

influenza A and B virus PA protein, which is part of the polymerase complex. It is 

licensed only in Japan and the USA for the treatment of uncomplicated influenza in 

subjects aged ≥ 12 years with influenza clinical manifestations for ≤48 h. Baloxavir is 

administered orally as a single dose, and is also reported to be effective against 

viruses resistant to NAIs. On the other hand, the high cost of the treatment and the 
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observed rapid and substantial emergence of resistant strains need to be monitored 

and could limit the use of this drugs in the future9,166. 

 

Figure 32. Structure of baloxavir marboxil (Xofluza®). 

 

Favipiravir (FP) (Figure 33) is a nucleoside analogue administered orally and 

transformed in vivo in its active form, FP ribofuranosyl-5′-triphosphate (FRTP). FP 

directly inhibits the RNA-dependent RNA polymerase (RdRp) of RNA viruses by 

interacting with a highly conserved region among the different viral polymerases. 

Thus, it its activity is extended to several RNA viruses including all of the influenza 

virus subtypes. Favipiravir is also reported to have a good safety profile and only 

rarely influenza virus mutations have been observed.  However, favipiravir has 

reported to potentially cause teratogenicity and embryotoxicity, thus it is only 

approved in Japan with several limitations167. 

 

Figure 33. Structure of the polymerase inhibitor favipiravir. 

 

Umifenovir (Arbidol) (Figure 34) is the only small-molecule influenza virus fusion 

inhibitor that is commercially available in Russia and China. It is a broad-spectrum 

antiviral agent which is reported to cause a general membrane perturbing effect; 

thus, its activity is not restricted only to influenza viruses but it also inhibits several 

other viruses. Its activity against influenza A virus is due to the inhibition of the viral 

HA, that interacts with Arbidol by mean of its stem region. 

https://en.wikipedia.org/wiki/File:Favipiravir.svg
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Figure 34. Structure of the broad spectrum antiviral Umifenovir (Arbidol). 

 

3.4.3.2 Anti-influenza Virus preparations in phase of development. 

Along the traditional licensed drugs, diverse new approaches have been attempted 

in order to control and prevent influenza. New small molecules designed to target 

different stages of the influenza virus life cycle, along with monoclonal antibodies 

directed against the highly conserved stem region of the viral haemagglutinin (HA) 

are currently under evaluation at different stages of development. 

 

3.4.3.2.1 Monoclonal antibodies  

The viral hemagglutinin is the principal target of vaccine-induced neutralizing 

antibodies which provide protective immunity against influenza. Thus, several 

monoclonal antibodies directed against this target have been developed and are 

currently at different stages of clinical evaluation168. 

Within the HA protein sequence, a highly conserved domain, corresponding to the 

N-linked glycosylation site in the stem region have been identified and monoclonal 

antibodies directed against these sites proved to be effective against a large number 

of influenza viruses. 

CR6261 is a human monoclonal antibody which is directed against a highly 

conserved helical region in the membrane-proximal domain of hemagglutinin. It 

demonstrated neutralization activity against several influenza A subtypes in vitro, 

including the “Spanish flu” strain H5N1169. This mAb has recently been evaluated in a 

clinical trial phase 2 (NCT02371668) but results are still not available. 

The preparation labelled CT-P27 is composed of two mAbs which have shown to 

neutralize several influenza subtypes. The product is currently undergoing phase 2 

clinical trials in order to evaluate its efficacy and safety in subjects with acute 

uncomplicated influenza A infections9. 
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The mAbs MHAA4549A, MEDI8852 and VIS-410 also target the highly conserved HA 

stalk region showing effective inhibition of all influenza A HA subtypes, and are 

currently being recruited in phase 2 clinical trials in monotherapy or in combination 

with oseltamivir166.  

TCN032 is a mAb which differs from those previously discussed as it targets an 

epitope at the N- terminus of the matrix 2 M2 protein which is a conserved epitope 

in influenza A viruses. It appeared to be well tolerated in a phase 2 human challenge 

study (NCT01719874) and also showed to inhibit almost all influenza virus types170. 

 

3.4.3.2.2 Other anti-influenza agents: small molecules 

Pimodivir (Figure 35) is an orally available, non-nucleoside polymerase inhibitor 

currently under evaluation in a phase 3 clinical trial (NCT03381196) aimed to evaluate 

the efficacy and safety of pimodivir in combination with oseltamivir. The target of this 

molecule is the PB2 protein, which is part of the RNP ribonucleoprotein complex, 

thus is capable of inhibiting the viral RNA synthesis. It is active against a diverse group 

of influenza A viruses including the H1N1, H5N1, and H7N99.  

 

Figure 35. Structure of the polymerase inhibitor pimodivir. 

 

Influenza virus hemagglutinin HA is also studied as a potential target of small 

molecule inhibitors. A compound named tert-butyl hydroquinone (TBHQ) (Figure 36) 

had been shown to bind and inhibit several HA subtypes in vitro (with Kd of 5 to 50 

μM). It selectively binds a hydrophobic pocket near the highly conserved stem 

region, blocking the influenza virus fusion process. 
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Figure 36. Structure of tert-butyl hydroquinone (TBHQ). 

Due to the recent availability of crystallographic data of the different HA subtypes 

and to the discovery of the highly conserved stem region of the protein, influenza 

hemagglutinin is currently an attractive target for the development of novel antiviral 

agents: several other molecules have been designed and evaluated in vitro against 

this target such as BMY-27709, CL-385319 and RO5464466 (Figure 37) which inhibit 

the conformational change of H1 and H2 subtypes, but have no activity against H3 

viruses171. 

 

Figure 37. Structure of hemagglutinin inhibitors BMY-27709, CL-385319 and RO5464466. 

 

3.4.3.2.3 Host-Targeting antivirals HTAs 

The host factor-directed antiviral therapy is an emerging strategy that may help 

preventing the emergence of viral resistance and obtaining broad-spectrum antiviral 

agents. Host factors with a critical role in virus replication might become potential 

drug targets for new antiviral molecules, and today, different classes of anti-

influenza agents are under development to target cellular proteins/processes171. 

Different studies using genome-wide RNA interference screening and a pseudo-

typed particle entry assay allowed to identify several host cell’ factors necessary for 

influenza virus replication (e.g. the IP3-protein kinase C (PKC), phosphatidylinositol-
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3-kinase (PI3K)-Akt signalling pathways, vacuolar ATPases, fibroblast growth factor 

receptors FGFRs) and the dihydrofolate reductase DHFR enzyme10,171.  

DAS181 (Fludase) is a host-targeted recombinant sialidase fusion protein designed 

to remove sialic acid receptors on the respiratory epithelium, thereby restricting the 

ability of influenza viruses to bind and enter the host cell. It presents a heparin binding 

sequence which is responsible to bind the respiratory epithelium and a sialidase 

catalytic domain derived from Actinomyces viscous, which cleaves both α(2,6)- linked 

and α(2,3)- linked sialic acid receptors. DAS181 is formulated as a dry inhalation 

powder with microparticles (5-10 μm). It has been shown activity against several 

influenza viruses (H1N1, H3N2, H7N9, H5N1 and influenza B) in in vitro and in vivo tests 

and is currently under evaluation in different clinical trials. Regrettably, DAS181 

seems to induce the selection of several mutations in the HA (G137R, S136T, S186I) 

and NA (W438L, L38P), thus the therapeutic use of this preparation could be limited 

due to emergence of viral strains with an increased receptor binding166 

Nitazoxanide (NTZ) (Figure 38) is a pro-drug originally developed and licensed as an 

antiprotozoal drug for the treatment of Cryptosporidium parvum and Giardia lamblia 

infections. After oral administration it is rapidly deacetylated in the blood to the active 

metabolic form tizoxanide. In addition to its antiparasitic activity, NTZ has shown 

activity against a broad range of viruses including influenza. Its mechanism of action 

against influenza viruses is achieved by blocking HA maturation, due to the inhibition 

of the trafficking of the viral HA from the endoplasmic reticulum to the Golgi 

apparatus and by blocking HA terminal glycosylation. A phase 3 study 

(NCT03336619) to evaluate the efficacy and safety of nitazoxanide in the treatment 

of uncomplicated influenza has been recently concluded, but results have not been 

posted yet9. 

 

Figure 38. Structure of the broad spectrum HTA nitazoxanide.
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CHAPTER 5. Discussion. Synthesis of 9-Aminoacridine-based molecules as 

novel bovine viral diarrhea virus (BVDV) inhibitors 

5.1 Background 

In the last years, the research group of Professor Tonelli has identified several 

molecules, belonging to different chemotypes endowed with and antiviral activity 

against BVDV, inhibiting its genome replication by interfering with the viral enzyme 

RNA-dependent RNA polymerase (RdRp) functioning. In particular, the anti-BVDV 

activity of arylazoenamines172,173, 4-[(tert-aminoalkyl)amino]arylazo compounds174 

and 2-phenylbenzimidazole derivatives175,176, have been described in scientific 

papers.  The antiviral activity of acriflavine and other acridine derivatives have been 

first-time discovered as anti-Flaviviruses agents by Malina, A. et al., who 

demonstrated their capability of interfering with the HCV-IRES mediated protein 

synthesis177.  Tabarrini, O. et al. identified a series of 9-acridone-based compounds 

endowed with micromolar activities against the bovine viral diarrhea virus, proposed 

as RdRp inhibitors acting as intercalant agents of the viral RNA, during genome 

replication62.  More recently Tonelli et al. synthesized a series of 9-amino-6-chloro-

2-methoxyacridine derivatives structurally related to quinacrine and acranil, which 

have been screened in vitro against a panel of RNA and DNA viruses in order to 

evaluate cytotoxicity and antiviral activity. These studies permitted to discover that 

the majority of these acridine-based compounds were endowed with an anti-BVDV 

activity, showing EC50 values in the range 0.1-31 M associated also with good 

selectivity indexes (Figure 39)5. 

 

Figure 39. 9-Aminoacridine derivatives previously studied as anti-BVDV agents5. 
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5.2 Project 

During my PhD, I worked on the synthesis of new 2-methoxy-6-aminoacridine 

analogues in order to further explore the SAR of this chemical class against BVDV 

and also trying to find new more potent antiviral compounds, parallelly improving 

their safety profiles. Thus, three of the most promising compounds of the previous 

series (compounds AVR15, AVR17 and AVR26)5 have been selected as prototypes 

for the synthesis of the new analogues (Figure 40). 

 

 

 

Figure 40. Chemical structure of the three prototypes of the previous series and of the newly 

synthesized analogues. 
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5.2.1 Chemistry 

The novel compounds (1-14 and 16-18) were obtained by reacting the 6,9-dichloro-

2-methoxyacridine, previously dissolved in phenol or DMF, with the proper amine in 

a molar ratio 1:1 or 1:2 for primary or secondary amines, respectively (Scheme 1). 

Compound 15, 6-chloro-2-methoxy-9-[(pyridin-4’-yl)]aminoacridine, has been 

already synthesized and characterized by Luan, X. et al., thus it was synthesized 

according to the procedure reported in literature178. 

 

Scheme 1. Reagents and conditions: (a) ratio 1:1 in phenol, 90°C, 5h; (b) ratio 1:2 in DMF, 140°C, 3h. 

The 1-aminopiperazines (f-k) needed for the synthesis of compounds 3-8 were 

obtained by nitrosating the proper 1-substituted piperazines with sodium nitrite and 

hydrochloric acid, and then reducing the corresponding N-nitrosopiperazine with 

zinc dust in acetic acid (Scheme 2). 

 

Scheme 2. Reagents and conditions: (a) NaNO2, 1N HCl (pH=5-6), 70°C, 1h; b) Zinc dust, AcOH/H2O 

ratio 1:1, 50°C, 3h. 

Starting from the 1-(3-methoxyphenyl)piperazine the nitrosating reaction moved far 

from the expected product towards decomposition; thus, 1-amino-4-(3-

methoxyphenyl)piperazine (j) was prepared by direct amination of 1-(3-
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methoxyphenyl)piperazine with hydroxylamine-O-sulfonic acid in basic medium 

(Scheme 3). 

 

Scheme 3. Reagents and conditions: (a) hydroxylamine-O-sulfonic acid, NaOH pellets, H2O, 60°C, 15 

minutes; then r.t., 24h. 

 

5.2.2. In vitro studies: anti-BVDV activity 

The novel acridine derivatives have been tested for antiviral activity against a panel 

of DNA and RNA viruses by the research group of Prof. R. Loddo at the University of 

Cagliari. Eight of the novel compounds proved to selectively inhibit BVDV replication 

with EC50 values ranging between 0.8 and 11.9 M, leaving unaffected the remaining 

viruses at concentrations up to their corresponding CC50 values on host cells or up 

to the highest concentration used (100 M). Among the other virus strains only CVB-

5 virus is occasionally susceptible to two compounds (11 and 12) (Table 2). 

 

Table 2. Antiviral activity against BVDV and cytotoxicity of the three prototypes (AVR) and of new 9-

aminocridine derivatives 1-18a. 

Compound 
BVDV 

EC50 (μM) b 

MDcK 

CC50 (μM) c 

SI d 

CC50/EC50 

BHK-21 

CC50 (μM) e 

VERO76 

CC50 (μM) f 

mean CC50 

for host cells 

AVR15 3.0 >100 >33.3 32 10 >47.3 

1 11.5 >100 >8.7 >100 >100 >100 

2 0.80 9.2 11.5 19.7 20.6 16.5 

3 7.5 >100 >13.3 >100 >100 >100 

4 >100 >100 - >100 >100 >100 

5 68 68 1 30 33 43.7 

6 2.9 46 15.9 42.5 49.8 46.1 

7 35 54 1.5 70 66 63.3 

8 11.9 43 3.6 38 32 37.7 

AVR17 6 >100 >16.7 >100 >100 >100 

9 34 34 1 45 42 40.3 

10 38 >100 >2.6 >100 96 >98.7 

11g 10.3 100 9.7 >100 >100 >100 
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12g >100 >100 - >100 >100 >100 

13 8 80 10 95 >100 >91.7 

14 1.2 40 33.3 >100 88 >76 

15 63 >100 1.6 >100 >100 >100 

AVR26 31 >100 >3.2 >100 >100 >100 

16 20.2 >100 >5.0 >100 >100 >100 

17 59 >100 1.7 >100 >100 >100 

18 75 75 1 >100 89 >88 

2’-C methyl 

guanosine 
1.7 >100 >58.8 >100 >100 >100 

Ribavirin 8.0 >100 >12.5 >100 >100 >100 

aNone of the compounds 1-18 proved active against any of the other investigated viruses (EC50> 100 M or > CC50; 

data not shown). bCompound concentration (M) required to achieve 50% protection of MDBK cells from the BVDV-

induced cytopathogenicity, as determined by the MTT method. cCompound concentration (M) required to reduce 

the viability of mock-infected MDBK cells by 50%, as determined by the MTT method. dSI= selectivity index. 
eCompound concentration (M) required to reduce the viability of mock-infected BHK (Hamster normal kidney 

fibroblast) monolayers by 50%, as determined by the MTT method. fCompound concentration (M) required to 

reduce the viability of mock-infected VERO 76 (Monkey normal kidney) monolayers by 50%. gActive against CVB-5: 

11, EC50= 39 M; 12, EC50= 23 M (reference cpd. pleconaril: EC50= 0.005 M). Values shown are the mean of two 

different determinations, each performed in duplicate; SD <10%. 

 

The most active compounds exhibited a potency profile against BVDV comparable 

(1, 3, 11, 13) or superior (2, 6, 14) to the reference drug ribavirin. The 4-(2’-

hydoxyethyl)piperazinyl (2) and (6’-methoxy)pyridin-3-yl moieties (14) represent the 

most efficient substitution of the 9 position of the 9-aminoacridine nucleus in order 

to achieve an anti-BVDV effect. The active compounds also exhibit a general low 

cytotoxicity (mean CC50 > 76 M) against three different host cell lines. 

 

5.2.3 In vitro studies: BVDV RdRp inhibition assays 

The RNA-dependent RNA-polymerase plays a critical role in viral replication 

representing one of the most promising drug targets for the development of new 

anti-BVDV agents. Thus, in order to confirm the hypothesis of the RdRp as the 

molecular target of these compounds, the three prototypes (AVR15, AVR17, AVR26) 

from the previous series and the three most promising compounds (2, 6, 14) of the 

new series have been tested in vitro against the BVDV RdRp by the research group 

of Prof. S. Pricl at the Molecular Simulation Engineering (MOSE) Laboratory of the 

University of Trieste (Table 3; Figure 41). 
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Five of the six tested compounds clearly inhibit the viral enzyme in a dose dependent 

manner resulting with IC50 values in the range 0.62 µM (2)-4.3 µM (AVR17), supporting 

the hypothesis of the enzyme RNA-dependent RNA-polymerase as the specific 

molecular target. 

Table 3. In vitro BVDV RdRp inhibition by the test set of 6 new 9-aminoacridine derivatives. 

Cpd. IC50 (M)  Cpd. IC50 (M) 

   AVR15  1.2     AVR17  4.3 

   2   0.62  14   0.81 

   6   0.88     AVR26  38 

 

 

 

 

 

 

 

 

 

 

Figure 41. Dose-response curves for the test set of 6 new 9-aminoacridine derivatives AVR15 (A), 2 (B), 

6 (C), AVR17 (D), 14 (E), and AVR26 (F) as obtained from in vitro enzyme assay with the BVDV RNA-

dependent RNA-polymerase. 

 

5.2.4 Binding thermodynamics of compounds to the BVDV RdRp by 

Isothermal Titration Calorimetry (ITC) 

In addition, binding affinities of the entire molecular series for the viral polymerase 

have been directly determined by Isothermal Titration Calorimetry (ITC) 

measurements by the research group of Prof. S. Pricl at University of Trieste. The 

averaged dissociation constant (Kd), binding free energy (ΔGb), enthalpy (ΔHb) and 

entropy terms (-TΔSb) resulting from three independent ITC measurements on each 

compound are listed in Table 4. 
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Table 4. ITC determined thermodynamic data of the 9-aminoacridines binding the BVDV RdRp. 

Cpd Kd (M) 
ΔGb 

(kcal/mol) 
ΔHb 

(kcal/mol) 
-TΔSb 

(kcal/mol) 
n (-) 

AVR15 0.91 -8.24 -11.26 3.02 0.92 

1 9.1 -6.88 -13.84 6.96 1.10 

2 0.57 -8.52 -14.07 5.55 1.03 

3 4.8 -7.26 -12.46 5.20 0.98 

4 38 -6.03 -10.43 4.40 1.00 

5 41 -5.99 -10.37 4.38 1.04 

6 0.95 -8.22 -13.52 5.30 0.95 

7 23 -6.33 -11.96 5.63 0.99 

8 8.6 -6.91 -13.15 6.24 0.93 

AVR17 0.98 -8.20 -11.94 3.74 1.03 

9 15 -6.58 -10.21 3.63 1.01 

10 21 -6.38 -10.15 3.77 0.98 

11 18 -6.48 -10.09 3.61 0.96 

12 44 -5.45 -8.87 3.42 0.90 

13 1.8 -7.84 -11.53 3.69 0.92 

14 0.72 -8.38 -12.39 4.01 1.05 

15 31 -6.15 -9.87 3.72 0.89 

AVR26 28 -6.21 -11.42 5.21 1.08 

16 22 -6.36 -11.76 5.40 1.11 

17 39 -6.02 -11.00 4.98 0.99 

18 48 -5.89 -10.78 4.89 0.91 

ΔGb = ΔHb –TΔSb. ΔGb = RT ln Kd. n = number of binding sites. All experiments were run in triplicate. Errors 
on ΔHb are within 5%. 

The compounds interact with the viral protein in an exothermic ligand-binding event, 

with Kd values in the range 0.57 - 48 μM. The RdRp-ligand binding is supported by 

stabilizing hydrogen bonds and cationic/interactions (ΔHb < 0), while entropy 

disfavors complex formation (-TΔSb > 0). The stoichiometry of the binding process, n, 

is always close to 1, confirming the 1:1 character of each binding event.  
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Of note, the Kd values for the six compounds (AVR15, 2, 6, AVR17, 14, and AVR26) are 

in agreement with the IC50 values obtained by the in vitro enzymatic inhibition assays, 

showing that the most potent inhibitors result also the compounds presenting higher 

affinity to the viral polymerase in ITC binding assays, further supporting the notion 

that the viral polymerase is the target protein for this series of compounds (Figure 

42). 

 

 

 

 

 

 

 

 

 

Figure 42. Representative ITC binding isotherms for AVR15 (A), 2 (B), 6 (C), AVR17 (D), 14 (E), and 

AVR26 (F) titrations into BVDV RdRp solutions. Inserts: ITC raw data. 

 

In addition, the Kd values derived by the ITC experiments and the EC50 values 

determined in the cell-based assays also shows a highly positive correlation (R2 = 

0.90) in the corresponding EC50 vs. Kd plot, demonstrating a strong correspondence 

between the binding of the new 9-aminoacridine derivatives to their target protein 

and their potency against BVDV (Figure 43). 

 

Figure 43. Correlation between BVDV RdRp binding activity (Kd, Table 2) and antiviral activity (EC50, 

Table 1) of all new 9-aminoacridine derivatives (R2 = 0.90). 
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5.2.5 Molecular modeling  

Prof. S. Pricl’s research group also performed Molecular modeling studies of the 

novel compounds in complex with the BVDV RdRp, in order to identify the key 

contacts established in the protein/ligand binding mode. Docking followed by free 

energy of binding scoring in the framework of the MM/PBSA methodologies 

resulted in calculated ΔGb,comp values in excellent agreement (R2 = 0.85) with the 

corresponding ITC-derived experimental data (ΔGb). Analogous results were found 

for the enthalpic component (ΔHb,comp and ΔHb, R2 = 0.89), and also for the entropic 

term (R2 = 0.54) (Figure 44). 

                
Figure 44. Correlation between computational and ITC-derived free energy of binding (A, R2 = 0.85), 

enthalpy (B, R2 = 0.89) and entropy (C, R2 = 0.54) for all new 9-aminoacridine derivatives in complex with 

the BVDV RdRp. 

 

Molecular dynamics (MD) calculations have been made with the most potent 

compounds of the novel series in complex with the RdRp binding site; compound 2 

revealed to be engaged in a bifurcated hydrogen bond (HB) between the –NH group 

bridging the tricyclic scaffold and the piperazine moiety and the side chains of E265 

(average dynamic length (ADL) = 2.03 ± 0.04 Å) and R285 (ADL = 1.93 ± 0.02 Å). It also 

establishes a permanent HB between the methoxy substituent on the acridine 

nucleus and the ammonium group of K263 (ADL = 1.95 ± 0.01 Å) and a third HB 

between the hydroxyethyl group of 2 and the positively charged side chain of K525 

(ADL = 2.10 ± 0.04 Å) (Figure 45; Figure 46). 

The previous series compound AVR15, which presents a freely rotating methyl group 

in place of the hydroxyethyl substituent of compound 2, has been also involved in 

MD calculations and shows to preserve the first two HBs performed by 2 (ADL = 1.91 

± 0.01 Å and 1.90 ± 0.02 Å, respectively). 
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Figure 45. Chemical structure of compound 2 highlighting the key interaction involved in the 

ligand/protein interaction.  

 

The compounds 3, 4 and 5, differ from AVR15 by substitution of the methyl group on 

the piperazine ring with a phenyl moiety with different positions of the Cl atom on 

the phenyl ring, Indeed, 4 and 5 establish the same interactions described for AVR15 

with the protein, even less optimized, resulting in considerably lower protein affinity. 

On the contrary, compound 3, besides the same two stabilizing HBs, is engaged in 

an additional favorable π-cation interaction between the ortho-chlorine substituted 

phenyl ring and the positively charged side chain of R529, resulting in a lower Kd 

value and higher affinity compared with compounds 4 and 5.  The different position 

of the chlorine atom on the phenyl substituent affects the molecule orientation within 

the binding pocket, resulting in an effective interaction only when the substituent 

occupies the ortho position. In the small subset of analogues 6, 7 and 8, only 

compound 6 maintain the same interactions described for compound 3, resulting in 

an even higher binding affinity compared to compound 3. Compound 8, featuring the 

–OCH3 group at the para position of the phenyl ring, although not able to perform the 

π-cation interaction described for 3, is involved in an additional HB interaction 

between its OCH3 substituent and the same residue R529 (ADL = 2.32 ± 0.06 Å). Finally, 

compound 7, carrying the –OCH3 group in meta position, results incapable of 

engaging the same stabilizing interactions of compounds 6 and 8, leading to a lower 

binding affinity (Figure 46). 
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Figure 46. Equilibrated snapshots of compounds 2 (top left), 3 (top right), and 8 (bottom), in complex 

with the BVDV RdRp. The protein is portrayed as a transparent orange ribbon. Compounds are shown 

as atom-colored sticks-and-balls (C, gray; N, blue; O, red; Cl, green). Hydrogen atoms, water molecules, 

ions and counterions are omitted. 

 

The binding mode of the AVR17 prototype within the BVDV RdRp active site shows 

the same HB described for compound 2, though AVR17 establishes the third HB 

between the pyridine nitrogen and the side chain of R267 (ADL = 2.02 ± 0.01 Å). The 

pyridine derivatives 9 and 15, presenting the pyridine moiety linked to the acridine 

nucleus in different positions, with the -N atom in ortho and para, respectively, show 

a consistently lower binding affinity, due to the absence of the HB with R267. Also 

compounds 11, 12 and 13, carrying a chlorine atom in different positions on the 

pyridine ring resulted in a reduced affinity for the binding site, due to the steric 

hindrance of the Cl atom.  Thus, in the case of compound 14 the combination of the 

favorable meta position of the pyridine –N and the substitution with a para OCH3 

group leads to an improvement in the binding affinity with the viral enzyme, due to 

the establishment of the same HB network previously described for AVR17 with an 
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additional HB interaction between the -OCH3 and the backbone –NH group between 

E265 and K266 (ADL = 2.43 ± 0.05 Å). 

Finally, the last AVR26-derived small subset of compounds, whose lacks of the –NH 

group bridging the acridine scaffold and the piperazine/pyridine moieties, resulted 

in substantially lower RdRp binding affinities, resulting by the absence of the 

bifurcated HB described for the two previous series. In particular, AVR26 only 

establishes two HB with the RdRp binding site, the former between the –OCH3 group 

and K263 and the second one between one of the piperazine nitrogen and the side 

chain of R285. 

 

5.2.6 Conclusions  

In this work, starting from the encouraging results of a previous study we selected 

the three most promising molecules of the previously studied series (AVR15, AVR17, 

and AVR26), in order to synthesize new structurally related derivatives. During my 

PhD, I’ve been able to synthesize a novel series of 9-aminoacridine derivatives, that 

demonstrate to selectively inhibit BVDV replication in in vitro assays. The most potent 

compounds demonstrate to inhibit BDVD replication, exhibiting EC50 values in the 

range 0.8-11.5 M. In addition, most of the active compounds provided high CC50 

values against three animal host cells, denotative of a high safety profile for these 

novel 9-aminoacridine derivatives. In vitro enzymatic inhibition assays against the 

BVDV RNA-dependent RNA-polymerase have been performed in order to prove the 

mechanism of action hypothesized for this series; the most promising compounds 

demonstrated to inhibit the target enzyme with sub-micromolar or low micromolar 

potencies. In addition, binding affinities of the entire molecular series for the viral 

polymerase were determined by ITC measurements yielding Kd values in the range 

0.57 - 48 μM and a positive correlation between the binding affinity and the antiviral 

potency/enzyme inhibition scores, calculated from the previous tests. Thus, the 

BVDV RNA-dependent RNA-polymerase have been confirmed. Finally, molecular 

modeling, and in particular MD calculation of the novel compounds in complex with 

the viral RdRp disclosed the most probable binding mode of this class of antiviral 

compounds on the viral polymerase. 
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CHAPTER 6. Discussion. Design, synthesis and biological evaluation of 

novel host-targeting antiviral (HTA) compounds active towards 

respiratory viruses (RVs). 

6.1 Host-directed antivirals: synthesis of a set of azaspiro-dihydrotriazines 

as new potential anti-influenza and anti-RSV dual-acting antivirals, 

targeting the host hDHFR. 

6.1.1 Background 

In a recent paper Tonelli et al. have identified the interesting antiviral profile of a 

series of 1-aryl-4,6-diamino-1,2-dihydrotriazines structurally related to the former 

antimalarial drug cycloguanil, acting as host-directed antivirals targeting the human 

dihydrofolate reductase (hDHFR)10. Cycloguanil is the active metabolite of the 

antimalarial drug proguanil (Paludrine® or Malarone®), approved for prophylaxis and 

treatment of infections by Plasmodium vivax or falciparum whose activity against the 

parasite has traditionally been attributed by a selective action directed toward the 

plasmodium bifunctional dihydrofolate reductase-thymidylate synthetase (DHFR-

TS). Indeed, cycloguanil and other dihydrofolate reductase (DHFR) inhibitors (such as 

methotrexate MTX), are known to be effective antineoplastic, anti-bacterial, and anti-

protozoal agents because of the central role played by DHFR in the de novo synthesis 

of nucleic acid precursors. Even though the antimalarial cycloguanil presents a 

higher binding affinity to the plasmodium DHFR rather than the human isoform of the 

enzyme, its capability of also inhibiting the mammalian isoform hDHFR have been 

described, exhibiting a Ki value toward the human enzyme of 0.41 M179.  

Thus, the cycloguanil-derived 1-aryl-4,6-diamino-1,2-dihydrotriazines displayed a 

dual activity against influenza (A and B) and respiratory syncytial virus (RSV) targeting 

the host cell DHFR enzyme which is involved in the replication processes of both 

viruses. In order to assess that the observed antiviral activity was influenced by the 

inhibition of the host enzyme, some selected compounds have been tested against 

hDHFR, resulting in the Ki values ranging between 0.07 and 0.13 M for the best 

antiviral compounds. The docking studies on some selected compounds also 

permitted to identify the pivotal role of the two H-bonds with the protein residues I7 

and E30, by means of the two NH2 groups of 1,2-dihydrotriazine scaffold, for the 

stabilization of the inhibitor within the hDHFR binding site10. 
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Figure 47. Structure of cycloguanil and general structure of the first series of dihydrotriazines 

analogues discovered as host-directed antivirals10. 

 

6.1.2 Project 

During the first and second year of my PhD, I synthesized a new set of 23 azaspiro 

dihydrotriazines, with the aim to improve the antiviral activity exploiting enhanced 

interactions at the active site of the host (human) DHFR.  Thus, two novel azaspiro-

2,4-diamino-1,6-dihydrotriazine scaffolds have been explored utilizing the 4-

piperidone or 3-piperidone as versatile building blocks in order to introduce an 

additional center for chemical derivatization, represented by the spiro-piperidine 

nitrogen. The position 1 of the dihydrotriazine core have been functionalized with 

differently substituted aromatic rings or aliphatic chains (Figure 48-49). 

 

 

Figure 48. Structure of the investigated azaspiro-2,4-diamino-1,6-dihydrotriazine derivatives 1-11. 
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Figure 49. Structure of the investigated azaspiro-2,4-diamino-1,6-dihydrotriazine derivatives 12-23. 

 

6.1.2.1 Chemistry 

Compounds 1-21 have been prepared by means of a three-step synthetic route. In 

the first step the proper amine, cyanoguanidine and 1-Boc-4-piperidone have been 

refluxed in acid catalyzed conditions, then the protective group has been removed 

with trifluoroacetic acid (20%) (Scheme 4). 
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Scheme 4. First two steps: cyclization and removal of the protective group. Reagents and conditions: 

a) 1 equiv. amine, HCl conc., EtOH, 90°C, 17 h. b) DCM/TFA 20%, r.t. 6-7 h. 

 

In the last step the piperidine nitrogen has been reacted with acyl chlorides, 

isocyanates, sulphonyl chlorides and carboxylic acids to obtain the corresponding 

carbamate, amide, sulphonamide and ureido functions (Schemes 5-7). 
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Scheme 5. Reagents and conditions: a) THF o DCM / Et3N, r.t. 12 h; b) DMF, HOBT/EDC, DIPEA, r.t. 12 h. 

 

 

 

Scheme 6. Reagents and conditions: a) THF o DCM / Et3N, r.t. 12 h; b) DMF, HOBT/EDC, DIPEA, r.t. 12 h; 

c) DCM, DIPEA, r.t. 12 h. 
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Scheme 7. Reagents and conditions: a) THF o DCM / Et3N, r.t. 12 h; b) DMF, HOBT/EDC, DIPEA, r.t. 12 h; 

c) DCM, DIPEA, r.t. 12 h. 

 

A “one pot” reaction of the proper aniline derivative, 1-benzylpiperidin-3-one, 

previously converted into hydrochloride salt, and dicyandiamide at reflux for 8 h 

afforded compounds 22 and 23 (Scheme 8). These compounds crystallized directly 

from the reaction mixture as pure hydrochlorides.
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Scheme 8. Reagents and conditions: a) EtOH, HCl, 130°C, 8 h. 

 

6.1.2.2 In vitro studies: antiviral activity 

The entire compound series have been evaluated in cellular assays against influenza 

A, subtypes H1N1 (A/PR/8/34 and A/Virginia/ATCC3/2009) and H3N2 

(A/HK/7/87), and influenza B (B/Ned/537/05) viruses. In addition, the target 

compounds have been tested against a diverse panel of other viruses, including RSV, 

which was susceptible which was highly susceptible to the previously synthesized 

series of dihydrotriazines. Biological assays have been performed by Prof. Lieve 

Naesens at the University of Leuven, Belgium. 

 

Table 5. Antiviral activity of compounds 1-23 against influenza A and B viruses and RSV in MDCKa and 

HeLa cells, respectively. 

 Influenzab assay in MDCK cells  RSV assay in HeLa cells 

Cpd 

EC50
c (µM) Cytotoxicity (µM)  EC50

d (µM) Cytotoxicity 

Influenza-A Influenza-B MCCe CC50
f   MCCe (µM) 

1 >100 >100 >100 >100  >100 >100 

2 11 24 ≥20 >100  >100 >100 

3 35 7.7 ≥20 >100  >100 >100 

4 >100 0.29 ≥0.8 18  0.40 ≥100 

5 28 4.0 ≥4 >100  >100 ≥100 

6 >100 0.2 ≥0.16 51  1.8 ≥100 

7 >100 >100 >100 >100  >100 >100 

8 87 39 ≥100 >100  >100 >100 

9 >100 28 ≥100 >100  >100 >100 

10 >100 >100 >100 >100  >100 >100 

11 >100 >100 >100 >100  >100 >100 
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12 >100 >100 >100 >100  >100 >100 

13 >100 >100 >100 >100  >100 >100 

14 >100 >100 >100 >100  >100 >100 

15 >100 >100 >100 >100  >100 >100 

16 >100 >100 >100 >100  >100 >100 

17 >100 >100 >100 >100  >100 >100 

18 >100 >100 >100 >100  >100 >100 

19 >100 >100 >100 >100  >100 >100 

20 >100 3.0 >100 >100  >100 >100 

21 >100 >100 >100 >100  >100 >100 

22 >100 >100 >100 >100  >100 >100 

23 >100 >100 100 45  >100 100 

Zanamivir 1.33 0.14 >100 >100  - - 

Amantadine 26 >500 >500 >500  - - 

Rimantadine 28 >500 ≥500 >500  - - 

Ribavirin 11 3.2 ≥20 >100  5.8 >250 

DS-10,000g - - - -  0.8 >100 

 

aMDCK: Madin-Darby canine kidney cells. bInfluenza virus strains: A/PR/8/34 (A/H1N1) and 

B/Ned/537/05. cEC50: 50% effective concentration producing 50% inhibition of virus-induced 

cytopathic effect (CPE), as determined by colorimetric formazan-based MTS cell viability assay. dEC50: 

50% effective concentration producing 50% inhibition of virus-induced cytopathic effect (CPE), as 

determined by microscopy. eMCC: minimum compound concentration producing a microscopically 

detectable alteration in normal cell morphology. fCC50: 50% cytotoxic concentration, as determined by 

measuring the cell viability with the MTS assay. gFor DS-10,000 (dextran sulphate of MW 10,000) 

concentrations are in µg/mL. Values shown are the mean of three determinations. 

The compounds showed in general lower potency against the different viral targets 

compared to the previous series, hinting that a bulkier chemical scaffold is less 

tolerated in order to bind the target active site. Only few compounds (2, 3, 5, 8) 

demonstrated a weak activity against influenza A virus with EC50 values in the range 

11-87 µM. Five compounds (3-6 and 20) proved to inhibit influenza B replication with 

EC50 values in the range of 0.29-7.7 µM, while a lower anti-IBV activity have been 

reported for three compounds (compounds 2, 8, 9 showing EC50 values of 24 µM,  39 



90 
 
 

 

µM  and 28 µM, respectively). Finally, two compounds were also active against RSV 

(4 and 6, EC50 0.40 and 1.8 µM, respectively). 

Although the test compounds were directed towards a host cell enzyme, they 

produced no or marginal cytotoxicity at 100 M in human cervix carcinoma HeLa or 

African green monkey Vero (results not reported) cell cultures. A higher cytotoxicity 

was observed in the MDCK cells: the two most potent compounds 4 and 6, resulted 

active against both IBV and RSV, showed CC50 values of 18 and 51 µM, respectively. 

The most promising compounds in terms of antiviral activity against influenza B virus, 

are functionalized at the piperidine nitrogen with a p-tolylcarbonyl (4) or (4-

fluorophenyl)carbamoyl moieties (6).  

Compound 4 exhibited similar activity for influenza B and RSV (EC50 values of 0.29 

and 0.40 µM, respectively with an anti-influenza potency comparable to that of the 

approved drugs zanamivir (EC50 = 0.14 µM) and higher than that of ribavirin (EC50 = 3.2 

µM against influenza B and EC50 = 5.8 µM versus RSV). Despite the compound 

showed a marginal cytotoxicity in MDCK cell assays, it exhibits a favourable 

selectivity index (CC50/EC50), SI = 62. Compound 6 showed an even higher activity 

against influenza B virus (EC50 = 0.19 µM) and an improved safety profile (SI = 268). 

Likewise compound 4, it also proved to be active against RSV (EC50 = 1.8 µM). 

The Cl or OCH3 substituents on the phenyl ring at N(1) position have been chosen 

basing on the results obtained for the previous series of cycloguanil analogs. The 

data confirmed that the chlorine atom in meta position (2-6) enhances the antiviral 

potency for influenza B, whereas the 3–OCH3 group results less effective (8, 9). 

Additionally, it’s noticeable that the replacement of the aromatic substituents on N(1) 

with a n-propyl or methoxyethyl chain abolishes the activity against influenza viruses 

and RSV; among this second sub-group of compounds, only compound 20 results 

capable to inhibit influenza B virus in vitro, with an EC50 = 3.0 µM combining an ethyl 

sulfonic moiety on the spiropiperidine nitrogen and a methoxyethyl chain on N(1) of 

the dihydrotriazine core. 

None of the compounds displayed activity against enveloped DNA viruses (i.e., 

herpes simplex virus or vaccinia virus), enveloped RNA viruses (i.e., feline 

coronavirus, parainfluenza-3 virus, vesicular stomatitis virus, sindbis virus or Punta 

Toro virus) or non-enveloped RNA viruses (i.e., Coxsackievirus B4 and Reovirus-1) 

(data not reported). 
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6.1.2.3 Molecular modeling 

Prof. E. Cichero performed molecular modeling studies of the novel compounds in 

complex with the human enzyme hDHFR, The X-ray data chosen included the host 

enzyme in complex with a pyridopyrimidine-based inhibitor (I) (pdb code = 4QHV; 

resolution = 1.61 Å)180 (Figure 48). 

 

Figure 48. X-ray crystallographic complex hDHFR - inhibitor I (C atom; green). 

 

Molecular docking studies on the most promising derivatives of the first series of 

dihydrotriazines highlighted some important interactions responsible for the protein-

ligand complex stabilization. All of the most potent compounds established two H-

bonds with I7 and E30, thanks to the two NH2 groups onto the dihydrotriazine 

scaffold; in particular, the dimethyl substitution on the dihydrotriazine core together 

with lipophilic substituents at the meta position of the phenyl ring proved to be 

particularly effective in terms of potency. 

Thus, docking studies on the new series permitted to better understand the 

relevance of steric properties for dihydrotriazines targeting hDHFR, by replacing the 

dimethyl substitution at C(6) of dihydrotriazine with an azaspiro-containing 

substituent, along with the introduction in position 1 of differently substituted phenyl- 

and benzyl- rings or alkyl chains. 
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Regarding the new compound series, docking results suggest a beneficial role 

played by the azaspiro group bearing an aromatic substituent, since it appears 

superposed on the aniline moiety of the reference inhibitor I, and could be 

responsible of the establishment of additional hydrophobic interactions within the 

enzyme cavity. On the other hand, the key H-bonds with the I7 and E30 residues, 

identified in the previous series, appeared to be absent in the docking poses of the 

novel compound in the enzyme cavity, accounting for the trend towards a generally 

lower antiviral potency. Nevertheless, among the compounds bearing a phenyl ring 

on the N(1) of the dihydrotriazine core, the presence of lipophilic and electron-

withdrawing groups at the meta position of the aromatic substituent sometimes 

allows the inhibitor to maintain the key H-bond interaction with I7. 

In particular, docking poses of the most promising compounds 4 and 6 in complex 

with the hDHFR displayed additional stacking interactions between the phenyl ring 

on N(1)  and the Y121 residue, and also one H-bond between their carbonyl oxygen 

atom and the S59 side-chain (Figure 49).  

 

Figure 49. Docking pose of compound 4 and 6 (C atom; magenta) within the X-ray crystallographic 

structure of the human DHFR in complex with the inhibitor I (C atom; green). 
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Among the sub-set of derivatives bearing an alkyl chain at N(1) of dihydrotriazine ( 

compounds 12-21), only compound 20 (IBV, EC50 = 3.0 µM) exhibited an effective 

docking mode within the enzyme cavity. Its flexible alkyl side chain permitted to the 

dihydrotriazine portion of the ligand to fill the binding cavity better than reference 

compound I and the previously described analogues, which were decorated with 

conformationally rigid aromatic rings at N(1) of dihydrotriazine (Figure 50).  

 

Figure 50. Docking pose of 20 (C atom; cyan) at the X-ray crystallographic complex hDHFR - inhibitor I 

(C atom; green). 

In particular, compound 20 has been reported capable to establish an H-bond with 

I7, while the sulfone moiety interacts by H-bonds with S59. In addition, the presence 

of the OCH3 substituent on the aliphatic chain placed at N(1), allowed intra-molecular 

hydrogen bonds with one of the NH2 group decorating the dihydrotriazine core, 

which contributed to correctly orient the molecule within the binding cavity. 

 

6.1.2.4 Conclusions 

This novel compound series have been synthesized following the previous 

investigation on dihydrotriazine-based derivatives discovered as dual antiviral 

agents against influenza and RSV viruses, acting on the host factor DHFR, in order to 
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gain a better knowledge of the SAR relationships within the series and trying to find 

new agents endowed with improved activity and safety profiles10. Thus, the 

introduction of a bulkier substituent on the C(6) of the dihydrotriazine and also by 

mean of the nitrogen of the spiropiperidine nucleus, allowed the study of the role of 

different functionalized side chains to understand the chemical space for enhanced 

interactions within the hDHFR enzyme. 

The novel series presents a lower antiviral activity overall, if compared to the 

previous series of cycloguanil-derived, who displayed nanomolar activity against 

both influenza B and RSV. However, among the azaspiro- derivatives two 

compounds emerged as dual inhibitors, endowed with a high activity and selectivity 

against influenza B and RSV. The two compounds were characterized by the 

piperidine nitrogen bearing a H-bond acceptor moiety linked to an aromatic lipophilic 

groups, such as the p-tolylcarbonyl (4) or (4-fluorophenyl)carbamoyl ones (6), 

combined with the 1-phenyl azaspiro dihydrotriazine.  

Interestingly, compound 20 has also proved a selective and interesting activity 

against influenza B virus only; it’s chemical structure differs from the other active 

compounds belonging to the novel and previous series and combines a 

methoxyethyl chain at N(1) with an ethylsulfonic group at spiropiperidine nitrogen. 

Thus, it could also represent a starting point in order to develop new optimized 

analogues. 
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6.2 Host-directed antivirals: synthesis of 2-amino-3,4-dihydrotriazino[1,2-

a]benzimidazoles as new potential hDHFR inhibitors 

6.2.1 Background 

The encouraging antiviral results regarding the dihydrotriazine-based compounds, 

who acts as hDHFR inhibitors, a host cellular enzyme involved in the replication 

processes of different viruses, opened up the possibility to develop broad spectrum 

antivirals acting on host enzymes instead on specific viral components. Thus, the 

synthesis and evaluation of the previously described azaspiro- dihydrotriazine 

derivatives, led to the idea of designing and synthesizing new molecular series, 

specifically tailored to bind the DHFR enzyme, in order to find diverse potentially 

exploitable chemical scaffolds. 

 

6.2.2 Project 

Taking into account the studies on the dihydrotriazine core, during the second year 

of my PhD, I decided to further investigate the antiviral potential of triazine nucleus 

exploring different functional groups and substitutions; thus, I synthesized a set of 

new (2-aminotriazino)benzimidazoles, where the triazine core is condensed with 

differently decorated benzimidazoles. The triazino[1,2-a]benzimidazole scaffold 

opportunely functionalized has been previously demonstrated by Dolzhenko et al. 

to possess an inhibitory activity against the plasmodial DHFR181. Thus the 2-amino-

4,4-dimethyl-3,4-dihydro-s-triazino[1,2-a]benzimidazole has been selected as 

prototype to develop a new series of compounds 1-8 to be tested for their inhibitory 

activity against human, plasmodial and leishmanial DHFR in order to confirm their 

inhibitory activity and to assess their selectivity, and then to be evaluated as potential 

host-directed antiviral agent (Figure 51). 

Figure 51. Structure of the investigated 2-aminotriazino[1,2-a]benzimidazoles 1-7. 
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6.2.2.1 Chemistry 

The 2-aminotriazino[1,2-a]benzimidazoles have been synthesized by cyclization of 

the corresponding 2-guanidinobenzimidazoles with acetone, used also as solvent, in 

presence of piperidine. 

 

Scheme 9. Reagents and conditions: a) 0.5 eq. piperidine, reflux 7h. 

 

Compounds 1 has been already synthesized and characterized as reported by 

Dolzhenko et al. In the paper mentioned above is also reported that when the 

cycloaddition reaction occurs between acetone and the corresponding guanidine 

benzimidazoles monosubstituted, it doesn’t provide a regioselective product but a 

mixture of two isomers in different proportions181. Thus, also for compounds 3, 6 and 

7 the formation of the two isomers is clearly appreciable in the corresponding 1H and 
13C NMR spectra. The assignment of the specific isomeric peaks and (if the peaks are 

clearly discernible, also of the corresponding isomeric proportions) in the 1H NMR 

spectra have been determined by referring to the literature, thus the isomer carrying 

the substitution on C(7) of the tricyclic scaffold, presenting a lower chemical shift 

than the second isomer, is referred as isomer “a” and appears to be formed in minor 

amount compared to the C(8) substituted isomer, referred as isomer “b”. 

The starting 2-guanidinobenzimidazoles have been obtained starting from the 

corresponding 1,2-phenylendiamines with dicyandiamide (1,1 equiv.) in acid medium. 

 

Scheme 10. Reagents and conditions: a) HCl conc. (1eq.), H2O, reflux 6h. 
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The 4,6-dichloro-1,2-phenylendiamine, 4-trifluoromethyl-1,2-phenylendiamine and 

4-methoxy-1,2-phenylendiamine, have been synthesized starting from the 

corresponding o-nitroanilines by reducing the nitro group with Tin(II) chloride in 

ethanolic solution. 

 

Scheme 11. Reagents and conditions: a) anhydrous EtOH, reflux 6h. 

 

 
6.2.2.2 In vitro studies: antiviral activity and cytotoxicity assays 

The entire compound series were tested in order to determine their antiviral activity 

in in vitro screening assays by the research group of Prof. L. Naesens at the University 

of Leuven (Belgium). The novel derivatives were screened against influenza viruses, 

A subtype H1N1 (A/Ned/378/05), A subtype H3N2 (A/HK/7/87) and B 

(B/Ned/537/05), and also versus a panel of several DNA and RNA viruses, such as 

(+)ssRNA viruses (YFV, CVB-4, human coronavirus 229E, FIPV, Sinbis virus), (-)ssRNA 

viruses (RSV, HPIV-3, VSV, Punta Toro virus), dsRNA (Reo-1 virus), and four DNA 

viruses (HSV-1, FHV, VV and Adenovirus type 2). 
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Table 6. Antiviral activity and cytotoxicity of the compounds 2, 6 and the intermediate 

guanidinebenzimidazole VII. 

 
Antiviral activity: EC50 (µM)a CC50 (µM)b 

Cpd A/HK/7/87 (H3N2) RSV VV  

2 - - 54.2 >100 

6 - 6.5 - 55.0 

VII 18.1 - - 39.2 

Zanamivir 30.7 - - >100 

Ribavirina 7.5 6.7 - >100 

DS-10000 - 0.01 - >100 

Brivudin - - 12.6 >250 

Cidofovir -  8.7 >250 

aEC50: 50% effective concentration producing 50% inhibition of virus-induced cytopathic effect (CPE), as 

determined by microscopy. bCC50: 50% cytotoxic concentration, as determined by measuring the cell 

viability with the MTS assay. The reported values are the mean of at least 3-4 experimental 

determinations. The table reports only the EC50 values of the compounds who resulted active (EC50 < 

100 µM) in the antiviral screening assays. 

 

Table 7. Cytotoxicity values of the compounds 2, 6 and the intermediate guanidinebenzimidazole VII. 

 Cytotoxicity: CC50 (µM)a 
CC50 (µM) 

mean of values 

Cpd HEL Hep-2 Vero MDCK  

2 >100 49.7 >100 12.4 >65.5 

6 >100 55.0 >100 81.1 >84.0 

VII 46.2 45.7 37.5 39.2 42.2 

aCC50: 50% cytotoxic concentration in HEL, Hep-2, Vero and MDCK cells, as determined by measuring 

the cell viability with the MTS assay, in absence of viral infection. The reported values are the mean of 

at least 3-4 experimental determinations. 

 

As reported in Table 6, only three compounds (2, 6 and g) proved to be effective by 

inhibiting the replication of specific viruses in tested cells. 

In the two previous series of dihydrotriazine derivatives, there was a clear positive 

correlation between the inhibitory activity against hDHFR and the anti- and anti-RSV 
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potency, while the influenza A subtype H3N2 resulted insensitive to the antiviral 

effect. In this novel series, no compound proved to be effective against the influenza 

A(H1N1) and B strains, and only one compound (VII) exhibited an antiviral effect 

against IAV H3N2, surpassing the reference drug zanamivir (EC50 = 30.7 µM) in terms 

of potency. In this case, the mechanism of actions could not be attributable to the 

hDHFR inhibition, since the host enzyme isn’t involved in the replication process of 

the IAV H3N2 strain. 

Only one compound (6, EC50 = 6.5 µM), proved to effectively inhibit RSV replication 

with a potency comparable to the reference drug ribavirin (EC50 = 6.7 µM). as 

discussed in the chemistry section, compound 6 has been tested as a mixture of two 

not separated isomers (6a and 6b), bearing an electron-withdrawal trifluoromethyl 

group on the C(7) and C(8) positions, respectively, of the triazinobenzimidazole 

scaffold. 

Finally, the 7,8-dimethyl- substituted derivative (2), proved a weak inhibitory effect 

on the Vaccinia virus (VV) replication, in in vitro antiviral assays (EC50 = 54.2 µM). 

The three active compounds (2, 6, VII) are all endowed with a good safety profile, 

since they exhibited general low toxicity against four different both human and 

animal derived cell lines, as reported in Table 7 (42.2 < CC50 > 84.0 μM). 

 

 

6.2.2.3 In vitro studies: DHFR inhibition assays 

The novel compounds have been evaluated by the research group of Prof. Paola 

Costi (UNIMORE) in enzymatic inhibition assays against the hDHFR, and also against 

two protozoan DHFRs, Leishmania major DHFR (LmDHFR) and Trypanosoma cruzi 

DHFR (TcDHFR), with the aim of exploring species-selectivity preferences. 
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Table 8. Inhibition constants (Ki) of compounds 1-7 on hDHFR and protozoan DHFR enzymes. 

Compound 

hDHFR LmDHFR  TcDHFR 

Ki (µM) Ki (µM) Ki (µM) 

1 

2 

3 

4 

5 

6 

7 

3,34 

1,68 

1,64 

0,69 

1,56 

9.96 

10.85 

0,74 

3,61 

0,59 

1,38 

0,24 

24.34 

11.93 

9,70 

1,98 

1,12 

1,17 

2,36 

14.62 

8.44 

Cycloguanil10 0,41 - - 

 

All the tested compound presented generally low binding affinity with the target 

enzyme hDHFR, presenting Ki values between 0.69 µM (4) and 3.34 µM (1), for the 

best inhibitors among the series. Compound 1, not presenting any substituent on the 

benzimidazole ring, is characterized by a low affinity for the enzyme, while the 

introduction of both electron-donor (2, 7) or electron-withdrawal groups (3-6) 

improves the inhibitory profile against the target. Among this series, the most potent 

hDHFR inhibitor is represented by the 2-amino-7,8-dichloro-4,4-dimethyl-3,4-

dihydro-s-triazino[1,2-a]benzimidazole (4), and is also featured by a favorable 

species-selectivity profile for human isoform, being 2-fold higher than that of 

protozoan DHFRs. Generally, the compounds exhibited lower Ki values, therefore 

corresponding higher binding affinities for the Leishmania major enzyme isoform, 

thus the anti-protozoal activity of these compound series could be investigated in 

future studies. 

 

6.2.2.4 Molecular modeling 

Despite the lacking of a favourable antiviral activity within these compound series, 

the best hDHFR inhibitor resulted from the enzymatic assays (4) in terms of both 

binding affinity and selectivity for the human isoform, have been selected to perform 

molecular docking calculations. Docking studies have been performed by Prof. E. 

Cichero, employing the X-ray data of the host enzyme in complex with a 

pyridopyrimidine-based inhibitor (I) (see Figure 52; pdb code = 4QHV; resolution = 1.61 

Å)180. 
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Figure 52. Docking pose of compound 4 (C atom red) on the X-ray structure of the hDHFR co-

crystallized with the inhibitor I (C atom green; pdb code = 4QHV). 

In the docking pose depicted the triazinobenzimidazole scaffold fully overlaps the 

inhibitor (I) pose, thus it could be worth to be objects of further structural optimization. 

If compared to the docking poses of the previous studied dihydrotriazine series, here 

the key H-bond with I7 residue is lacking, while the H-bond interaction with the 

carbonyl group of E30 is maintained by mean of the NH2 group on the triazine ring. 

the tricyclic moiety is also involved in π-π stacking interactions within the binding site, 

with residues Y33 and F34. 

 

6.2.2.5 Conclusions 

Combining the knowledge of the SAR of two previous series of dihydrotriazines 

acting as host targeting antivirals HTAs targeting the human enzyme hDHFR, with 

the discovery of a series of plasmodial DHFR inhibitors sharing the triazino[1,2-

a]benzimidazoles scaffold, prompt to the design and synthesis of this novel series of 

analogues as new potential antiviral agents. 

The compounds have been tested against a panel of RNA and DNA viruses including 

Influenza A/H1N1, B, and RSV, who were susceptible to the previously studied 

dihydrotriazine hDHFR inhibitors. Additionally, since the antiviral activity data (EC50) 

against influenza viruses and those related to hDHFR inhibition correlated linearly in 
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the previous series, also in this case enzyme inhibition assays and docking studies 

on the target enzyme have been performed. 

However, the viral screening only occasionally showed a low susceptibility to the 

tested compounds, who demonstrated in general lack of antiviral activity. Only three 

compounds 2, 6 and VII showed the capability of selectively inhibit A/H3N2 virus, 

RSV and VV, respectively. These three compounds proved an interesting activity and 

safety profiles, comparable to the ones of the reference approved drugs, although 

the mechanism of action had not been elucidated yet. 

According to the antiviral activity results, all the compounds showed a lower binding 

affinity for the human isoform of the target enzyme, while the inhibitory activities 

against Leishmania major and Trypanosoma cruzi DHFRs of some of these derivatives 

make this series of compounds promising for further studies related to the treatment 

of pathologies caused by these protozoa. 
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CHAPTER 7. Discussion. Design, synthesis and biological evaluation of 

novel anti-influenza compounds acting on viral hemagglutinin (HA). 

 

7.1 Background 

The influenza virus hemagglutinin represents one of the antigenic determinants of 

the virus and is crucial for the infectivity of the virus particles since is involved in the 

entry, release and exit processes. The development of effective antiviral small 

molecules directed towards the HA protein has been hampered by its sequence 

diversity, since, to date, at least 18 HA subtypes of influenza A are known.  

Among the small-molecule inhibitors CL-385319 is an N-substituted piperidine 

compound that has been discovered as a potent inhibitor of influenza A HA-

mediated fusion (Figure 53). The compound proved efficacy in inhibiting HA subtypes 

H1, H2, and H5 at a low micromolar level, while a 30–250-fold higher concentration 

is required to inhibit H3 influenza virus12. The antiviral activity against A/H5N1 virus 

have been also described by Zhu, Z. et al. for a series of amides, carboxylic acids and 

a benzenesulfonamide structurally related to CL-385319182. 

Inspired by this chemical scaffold, also the research group of Prof. S. Vazquez 

designed and synthesized a series of aniline analogues that were identified as 

inhibitors of influenza A virus subtype H1N1 (the structure of compound 9d, the most 

promising compound of the series is reported in Figure 53). 

 

 

 
Figure 53. chemical structures of the HA inhibitor CL-385319 and of the anilino derivative 9d. 

 

Along with the lead compound 9d, several anilino analogues also displayed activity 

against A/H1N1 influenza with EC50 values in the low micromolar range. These 

compounds successfully inhibit the virus HA-mediated fusion by binding the HA 

stem and preventing its refolding at a low pH. In addition, molecular dynamics 
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simulations suggest that the lead compound 9d interacts with the protein by binding 

a conserved region among the different IAV H1 strains referred as “TBHQ pocket” by 

the name of the tert-butylhydroquinone (TBHQ) an influenza fusion inhibitor for 

which HA co-crystallization data are available (PDB codes: 3EYK and 3EYM)183. 

 

 

Figure 54. Protein-inhibitor complexes for compound 9d within the HA2 binding pocket of (A) 

A/PR/8/34 and (B) A/Virginia/ATCC3/2009. 

 

7.2 Project 

During my PhD I spent six months abroad at the Department of Pharmacy of the 

University of Barcelona (UB) under the supervision of Prof. Santiago Vázquez. In the 

course of this period, I worked on the synthesis of two different series of anilino and 

sulfonamide derivatives, in order to complete the previous series of anilino 

analogues and to explore the effect of the bioisosteric substitution of the amide 

moiety of the prototype CL-385319 with a sulfonamide group, in terms of antiviral 

potency. 

The first small subset has been designed exploring the variation of electron-

withdrawal group on the aniline ring while keeping the ethyl piperidine moiety linked 

to the NH group of the aromatic amine. I also synthesized some different analogues 

presenting a propyl linker instead of the ethylic chain and/or substituting the 

piperidine, with a pyrrolidine or azepane ring. Within this series, also the isosteric 
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substitution of the NH group with an oxygen or a sulphur atom has been considered 

(compounds 11 and 14; Figure 55). 

 

Figure 55. Structure of the anilino and of the ether and thioether derivatives 1-14. 

 

Taking into account the promising results in terms of anti-influenza A activity of the 

first set of anilino-derivatives and of the prototype CL-385319, the second sub-set 

has been designed considering the acquired knowledge of the SAR of these 

compounds. Thus, trying to obtain new more potent IAV fusion inhibitors I 

synthesized this novel series in order to investigate the effect on the antiviral activity 

of the replacement of the amide function of the prototype CL-385319 with its 

sulfonamide bioisoster and exploring in parallel different derivatisations of the 

aromatic ring, while keeping unchanged the ethyl piperidine part of the molecule 

among the series (Figure 56,). 
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Figure 56. Structures of the second sub-set of sulfonamide derivatives 15-27. 

 

7.2.1 Chemistry 

The anilino derivatives 1-10 and 12-13 were prepared by reaction of the proper 

anilines (2eq.) with the N-(2-chloroethyl)piperidine (for the synthesis of compounds 

1-7 and 12-13), N-(2-chloroetyl)pyrrolidine (for compound 8), N-(2-

chloroetyl)azepane (for compound 9), and N-(3-chloropropyl)piperidine (for 

compound 10) (1eq.), in the presence of potassium carbonate (2 eq.) and potassium 

iodide (0.5 eq.) under reflux for 23h (Scheme 12).  

 

Scheme 12. General synthesis of the anilino derivatives 1-10 and 12-13. 

The ether (11) and thioether (14) derivatives have been also obtained by reaction of 

the 3,5-dichlorophenol and 3,5-dichlorothiophenol, respectively (1eq.) with the 1-(2-
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chloroethyl)piperidine hydrochloride (1eq.) in presence of an excess of sodium 

hydroxide in ethanol (Scheme 13). 

 

Scheme 13. Synthesis of the ether (11) and thioether (14) derivatives. 

 

 

7.2.2 In vitro studies: antiviral activity and cytotoxicity assays 

The entire compound series was tested in in vitro antiviral activity assays against a 

panel of viruses by the research group of Prof. L. Naesens at the University of Leuven 

(Belgium). The two sub-sets were screened against influenza viruses, A subtype 

H1N1 (A/Ned/378/05), A subtype H3N2 (A/HK/7/87) and B (B/Ned/537/05), and 

also versus a panel of several DNA and RNA viruses, such as (+)ssRNA viruses (CVB-

4, human coronavirus 229E), (-)ssRNA viruses (RSV, VSV), DNA viruses (HSV-1 (G) and 

HSV-1 (KOS), HSV-2, VV, Adenovirus type 2). and retroviruses (HIV-1 strain IIIB and 

HIV-2 strain ROD). 

Despite the structural similarity with the chosen active prototypes, all the tested 

compounds proved no antiviral activity against the three strains of influenza viruses 

employed in the assay, demonstrating their inability in inhibiting the influenza A 

fusion protein, contrarily to the previous series. The sub-set of sulfonamide 

derivatives 15-27 proved to be inactive against all the tested virus types (EC50 > 

100μM; data not shown).  Interestingly, nine anilino analogues of the first subset of 

compounds (1-14) demonstrated to be active against the human coronavirus 229E 

(HCoV 229E) with EC50 values in the range 7.8-72 μM (Table 9).  

All the tested compounds were also associated with general low cytotoxicity values, 

suggestive of a high safety profile of these derivatives (Table 9). 
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Table 9. Antiviral activity against HCoV (229E) and cytotoxicity results for the anilino-derivatives 1-14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The antiviral and cytotoxicity assays have been performed in HEL cell cultures. aEC50 = concentration 

producing 50% inhibition of virus-induced cytopathic effect, as determined by visual scoring of the CPE, 

or by measuring the cell viability with the colorimetric formazan-based MTS assay. bCC50 = 50% 

cytotoxic concentration, as determined by measuring the cell viability with the MTS assay. cMCC = 

minimum compound concentration that causes a microscopically detectable alteration of normal cell 

morphology. dUDA = Urtica dioica agglutinin. 

 

7.2.3 Conclusions 

The promising antiviral activity of a series of aniline derivatives was previously 

discovered by Leiva, R. et al.183. These compounds were structurally related to CL-

385319, a N-substituted piperidine compound that has been discovered as an 

inhibitor of influenza A HA-mediated fusion, capable of acting on viruses presenting 

diverse HA subtypes, such as H1, H2, and H5 at a low micromolar level. The anilino 

derivatives analogues were demonstrated to act with a similar mechanism directed 

toward influenza virus A/H1N1 hemagglutinin (HA), by interacting with the protein in 

a specific binding site, thus blocking the viral fusion process. 

 Antiviral activity; EC50
a (μM) 

Human Coronavirus (229E) 
Cytotoxicity 

Cpd MTS Visual CPE score CC50b (μM) MCCc 

1 >100 - >100 - 

2 43 - >100 - 

3 70 - >100 - 

4 72 - >100 - 

5 19 - 41 - 

6 >100 - >100 - 

7 >100 - >100 - 

8 >100 - >100 - 

9 7.8 8.9 37 100 

10 9.5 - 34  

11 43 - >100  

12 13 - 46  

13 9.6 8.9 >100 >100 

14 >100 - >100  

UDAd (μg/mL) 1.8 2   
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Taking into account the structure-activity relationships within this compound series. 

derived from the combination of antiviral activity assays, NMR experiments and 

molecular dynamics calculations on the X-ray crystallographic data of the viral H1, I 

designed and synthesized a series of novel structurally related analogues in order to 

further explore the effect of small structural variations on the same scaffold, in terms 

of antiviral potency. Thus, I spent six months in Prof. S. Vazquez laboratory, where I 

completed the synthesis of two small sets of anilino-derivatives (1-14) and of 

benzene sulfonamides (15-27). 

The compounds have been tested by Prof. L. Naesens at the University of Leuven, 

to assess their cytotoxicity and antiviral activity values against a panel of several RNA 

and DNA viruses, including two influenza A subtypes, H1N1 and H3N2, and an 

influenza B virus. Despite the structural similarity with the previous studied 

compounds, none of the novel derivatives demonstrated to inhibit influenza A and B 

replication in in vitro tests. 

However, nine of the new anilino-based compounds proved to be capable of 

inhibiting the human coronavirus HCoV 229E, included in the panel of the tested 

viruses. Along with this unexpected discovery of the anti-coronavirus activity of these 

derivatives, all the compounds also showed general low cytotoxicity in the cell line 

employed in the assays (HEL cell cultures).  

Thus, these results could inspire a new line of research since some of these 

derivatives could be object of further studies on the base of their activity against 

HCoV, in order to define their molecular target and suggest a possible mechanism 

of action. 
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CHAPTER 8. Discussion. Design, synthesis and biological evaluation of 

novel anti-influenza compounds acting on viral hemagglutinin (HA). 

 

8.1 Background 

During the last years, the research group of Prof. M. Tonelli have developed a large 

variety of benzimidazole-based derivatives endowed with biological activities 

directed toward different targets13,184. In particular two series of 2-[(benzotriazol-1/2-

yl)methyl)benzimidazoles (series 1)185 and 2-benzylbenzimidazoles (series 2)175, 1-

substituted with a basic chain, have been discovered as antiviral agents, acting 

against different single-stranded RNA (ssRNA) viruses (Figure 57). 

 

Figure 57. Chemical structures of 5-acetyl substituted 2-benzylbenzimidazoles of series 1 and 2-

[(benzotriazol-1/2-yl)methyl]benzimidazoles of series 2 previously investigated as antiviral agents. 

Among the tested viruses, also RSV revealed to be susceptible to these 

benzimidazole derivatives, with EC50 values derived from in vitro antiviral assays in 

the low micromolar range. The activity of series 2 was prevalent against RSV, 

reaching nanomolar potency for the best performing derivatives. The suggested 

mechanism of action of these compounds against RSV virus have been may be 

achieved by the inhibition of the fusion envelop glycoprotein F, thus blocking the 

viral fusion and entry processes, as it has been demonstrated for a set of structurally 

similar 1-substituted-2-[(benzotriazol-1/2-yl)methyl]benzimidazoles and other 

analogues186.  

Among the explored substituents at position 5 of the benzimidazole scaffold, the 5-

acetyl derivatisation was also considered. The corresponding 5-acetyl 

benzimidazoles exhibited EC50 values between 1.2 and 20 µM against RSV in in vitro 

antiviral assays. Concerning the 2-benzylbenzimidazoles of series 2, the 5-acetyl 

substituted derivatives were completely inactive against all the virus strains studied, 

RSV included. 



111 
 
 

 

8.2 Project 

Within the previously described series, the 5-acetyl substituted benzimidazoles 

resulted to be less effective antiviral agents; thus, starting in my second year and 

during my third year of PhD I worked on the synthesis of new benzimidazole 

analogues by probing the derivatization of the acetyl group on the position 5 of 

benzimidazole ring, synthesizing new (thio)semicarbazone and hydrazone 

derivatives, in order to evaluate the influence of this type of functionalisation in terms 

of antiviral activity (Figure 58-60). 

 

Figure 58. General structure of the novel designed hydrazone- and (thio)semicarbazone-

benzimidazoles derivatives 1-25. 
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Figure 59. Chemical structures of the (thio)semicarbazone-benzimidazoles derivatives 1-22. 

 

 

Figure 60. Chemical structures of the hydrazone-benzimidazoles derivatives 23-25. 

 

8.2.1 Chemistry 

The new compounds have been obtained from their corresponding 5-acetyl 

derivatives by following the conditions showed in Schemes 14-15.  
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Scheme 14. Reagents and conditions: i) thiosemicarbazide in EtOH, H2O and glacial CH3COOH, 3h at 

reflux; ii) semicarbazide·HCl in EtOH and CH3COONa 1N, 4h at reflux. 

 

Thiosemicarbazones (1-9, 18-19, 21-22) have been prepared by refluxing an 

ethanolic aqueous solution of thiosemicarbazide and starting benzimidazole in 

presence of glacial acetic acid. The semicarbazone derivatives (10-17, 20) have been 

obtained by reacting under reflux the starting 5-acetylderivative with the 

semicarbazide hydrochloride, in presence of sodium acetate, in ethanolic aqueous 

solution. 
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Scheme 15. Reagents and conditions: i) EtOH/H2O, NH2NH2 · H2O (1.15 equiv.), 120°C, 5h. 

Hydrazone derivatives 23-25 have been synthesized at reflux by reacting the proper 

5-acetyl benzimidazole with a slight excess of hydrazine hydrate for 5h under reflux 

(Scheme 15). 

The starting 5-acetyl-2-benzylbenzimidazoles have been synthesized according to 

the literature187 by the reaction of the proper 4-acetyl-1,2-phenylenediamine with the 

hydrochloride of the imminoester, previously obtained from the corresponding nitrile 

under Pinner conditions (Scheme 16). Also the starting 5-acetyl-2-[(benzotriazole-

1/2-yl)methyl]benzimidazoles have been obtained by the condensation at 180°C of 

a mixture of the proper 1,2-phenylenediamine with the (benzotriazol-1/2-yl)acetic 

acid188 (Scheme 17). 

  

Scheme 16. Synthesis of the benzyl benzimidazole intermediates via imminoester (Pinner conditions). 

Reagents and conditions: a) EtOH abs., CHCl3 an., HCl(g), O°C; b) CH3COOH glacial, 45°C, 12h. 

Benzyl benzimidazoles 
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Scheme 17. Synthesis of the intermediates benzotriazol-1/2-yl benzimidazoles. Reagents and 

conditions: a) N2 (g), 180°C, 2h. 

 

The opportunely substituted 4-acetylphenylenediamines have been prepared 

according to literature189, starting from the 5-acetyl-2-chloronitrobenene which was 

reacted with the selected primary amine by direct fusion. The derived nitroaniline 

derivative was then reduced to the corresponding phenylenediamine in presence of 

stannous chloride and hydrochloric acid (Scheme 18). 

 

Scheme 18. Synthesis of the starting 4-acetylphenylenediamines. Reagents and conditions: a) R1-NH2 

direct fusion, 140°C, 1h; b) SnCl2 · 2H2O, HCl conc., EtOH, 120°C, 6h. 

 

Thiosemicarbazones are known to display thione-thiol tautomerism, since their 

hydrazidic proton (-C(=S)NH-N=) can shift on sulfur atom leading to its corresponding 

thiol form. Indeed, on the 1H NMR spectra these compounds didn’t exhibit the signal 

at 4.00 ppm, attributable to –SH proton, suggesting the thione form as the only 

tautomer. Within this series, the Schiff base of the thiosemicarbazone moiety 

demonstrated to acquire E isomerism since the hydrazinic proton (-C(=S)NH-N=) of 

these compounds always presented a chemical shift in the 9-12 ppm range189. In fact 

this signal appears around 10.18 ppm, whilst the (-C(=S)NH2) exhibit two different 

chemical shifts at ca 8.25 ppm and 7.94 ppm. This peculiar behavior of the thioamide 

protons 1H NMR signals could be explained by the restricted free rotation brought 

Benzotriazolyl 
benzimidazoles 
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about by the formation of carbon-nitrogen double bond character relative to thione-

thiol tautomerism190. In addition, it is noteworthy that the sulfur atom of thione 

tautomer has a greater atomic radius than oxygen atom of the corresponding 

semicarbazone, thus making the thioamide protons magnetically different for steric 

hindrance. 

 

8.2.2 In vitro studies: antiviral activity and cytotoxicity assays 

The novel compounds (1-25) have been evaluated in cell-based assays for antiviral 

activity against a broad panel of RNA and DNA viruses by Prof. Lieve Neasens, 

University of Leuven, Belgium.  

Only few compounds showed a modest activity against IV A/H1N1, HCoV and RSV 

(Table 10). Interestingly, the antiviral activity is combined with a high safety profile as 

they exhibited no toxicity against four host cell lines used to grow the relevant virus 

strains here investigated (Table 11). 

Table 10. Antiviral activity of compounds 6, 8, 16, 17, 22, 24 and 25 and related reference compounds 

 Antiviral activity: EC50 (µM)a 

Cpd A/Ned/378/05 (H1N1) A/HK/7/87 (H3N2) HCoV (229E) RSV 

6 25.3 81.3 37.8 - 

8 37.6 - 55.8 - 

16 46.8 - 39.1 - 

17 47.1 - 41.0 - 

22b 41.1 - - 7.0 

24 - - 42.6  

25 - - - 2.4 

Zanamivir 0.6 30.7 - - 

Ribavirin 7.4 7.5 - 6.7 

DS-10000 
(µg/mL) 

- - - 0.01 

UDA 
(µg/mL) - - 2.2 - 

aEC50: 50% effective concentration giving 50% protection against virus-induced reduction in cell 

viability, as determined by colorimetric formazan-based MTS assay. bThe compound is also active 

against CVB-4 with an EC50= 20 µM (ribavirin, EC50= 117µM; DS-10000, EC50= 8.1 µM). Values shown are 

the mean ± SEM of three independent experiments. 
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Table 11. Cytotoxicity of compounds 6, 8, 16, 17, 22, 24 and 25 and related reference compounds. 

 Cytotoxicity: CC50 (µM)a 
mean CC50 

for host 

cells Cpd HEL Hep-2 Vero MDCK 

6 >100 >100 >100 >100 >100 

8 >100 >100 44.4 >100 >86.1 

16 >100 >100 >100 >100 >100 

17 >100 47.5 42.6 >100 >72.5 

22b >100 100 >100 >100 >100 

24 >100 >100 50.7 35.2 >71.5 

25 >100 >100 >100 33.2 >83.3 

Zanamivir - - - >100 - 

Ribavirin - >250 >250 >100 - 

DS-10000 
(µg/mL) 

- >100 >100 - - 

UDA (µg/mL) >100 - - - - 

aCC50: 50% cytotoxic concentration, as determined by measuring the cell viability with the MTS assay. 

HEL= human erythroleukemia cells; Hep-2= Human epithelial type 2 cells; Vero= primate kidney 

epithelial cells; MDCK= Madin-Darby canine kidney cells. Values shown are the mean ± SEM of three 

independent experiments. 

As shown in the tables above six compounds (6, 8, 16, 17, 22 and 24) exhibit an 

interesting activity against influenza viruses A/H1N1, HCoV and RSV. Length of the 

basic chain does not influence the antiviral activity, since both the propyl and ethyl 

spacers are well tolerated, on the other hand, regarding the substituent in position 2, 

the benzyl ring is more effective (6, 8, 16, 17 and 24) than the bulkier (benzotriazol-

1/2-yl)methyl skeleton (22 and 25). The nature of the substituent in para position of 

the benzyl ring (H, Cl, OCH3) does not seem to play a significant role on the antiviral 

activity. 

The most active compounds are 25 and 22 which exhibit EC50 values of 2.4 and 7.0 

µM against RSV, respectively, and are equipotent to the reference drug ribavirin 

(EC50= 6.7 µM). The active compounds against influenza A (H1N1) virus (6, 8, 16, 17, 22) 

have a mean EC50 of 39.6 µM which is 66-fold lower than that of zanamivir (EC50 = 0.6 

µM) and 5-fold of ribavirin (EC50 = 7.4 µM). In addition, compounds 6, 8, 16, 17 and 24 

exhibited a modest activity against human coronavirus (229E). 
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8.2.3 Conclusions 

In the past years, the research group of Prof. M. Tonelli has synthesized two different 

series of benzimidazole-based compounds, which have been screened for their 

antiviral activity against a panel of RNA and DNA viruses. Within these series several 

compounds have been identified as new potent antiviral agents, pointing out how 

this scaffold could be worthy of further investigations, while all of the 5-acetyl- 

substituted benzimidazoles proved to be ineffective in reducing the in vitro 

replication of all the tested virus types. Among these derivatives only some 5-acetyl-

2-[(benzotriazol-1/2-yl)methyl]benzimidazoles exhibited a marginal activity against 

RSV, which may be related to the inhibition of the F viral glycoprotein and to the 

subsequent fusion process with the host cell membrane. 

Thus, with the aim of finding new molecules endowed with a potent antiviral activity, 

in the course of my PhD, I synthesized a new series of benzimidazole analogues 

exploring the derivatization of the former acetyl group on the position 5 of 

benzimidazole ring, synthesizing new (thio)semicarbazone and hydrazone 

derivatives. The novel compounds have been screened against a panel of DNA and 

RNA viruses in order to assess their antiviral potency and cytotoxicity. 

Five compounds showed a modest activity against influenza A virus H1N1, with EC50 

values in the range of 25.3-47.1 µM. Two compounds (22 and 25) revealed an 

interesting activity against RSV with EC50 values of 7.0 and 2.4 µM, respectively, which 

are comparable to the reference drug ribavirin (EC50 = 6.7 µM). the interest around 

these compounds further raises, since they are also endowed with a high safety 

profile since they exhibited no toxicity against four different cell lines. 

Five compounds also revealed to inhibit the human coronavirus 229E. Although the 

efficacy against HCoV (229E) is rather modest (mean EC50 = 43.3 µM) compounds 6, 

8, 16, 17 and 24 are, the first benzimidazole-based derivatives to be found active 

against this virus and that could represent a starting point to design new, more potent 

anti-HCoV agents. 
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CHAPTER 9. Conclusions 

9.1 Final remarks 

The aim of this thesis was to identify novel potentially active antiviral compounds 

designed on the basis of previously studied promising derivatives. The investigated 

chemical scaffolds differs in terms of structure end molecular target comprising the 

potent anti-BVDV acridine derivatives, the dihydrotriazine and triazino[1,2-

a]benzimidazoles, the benzimidazole derivatives and the anilino and 

benzenesulfonamides, all designed as novel anti-influenza agents. 

In many cases the activity data of the novel series of derivatives demonstrated to be 

comparable or, sometimes to surpass the antiviral potency of their structural 

prototypes or reference drugs; i.e. the acridine derivatives 2, 6 and 14 (EC50 (BVDV) = 0.8 

μM, 2.9 μM and 1.2 μM respectively) surpassed the anti-BVDV potency of the 

prototypes AVR15, AVR17, AVR26, (EC50 (BVDV) = 3 μM, 6 μM and 31 μM respectively)5 

and of the broad spectrum antiviral drug ribavirin (EC50 (BVDV) = 8.0 μM). These 

promising results have been also followed by in-depth studies in order to confirm 

the previously proposed molecular target of this series, the viral RNA dependent 

RNA polymerase. Even in this case the data derived from ITC measurements, 

enzymatic binding assays and molecular modeling were in agreement with the 

formulated hypothesis, clearly proving the RdRp as the molecular target of the series 

and prompting to further explore the structure-activity relationships of this class of 

compounds designing new optimized anti-BVDV agents. 

The azaspiro dihydrotriazine derivatives and the triazino[1,2-a]benzimidazoles have 

been designed on the basis of the previous series of structural analogues which 

included some potent anti-influenza B derivatives endowed with a nanomolar 

activity in vitro, combined with a good safety profile10.  In this case the increased 

structural complexity and steric hindrance produced an overall loss in terms of 

antiviral activity, providing some pointers that could guide the design of a new series 

of adequately optimized derivatives.  

Likewise, the two series of anilino-derivatives and benzenesulfonamides I 

synthesized and characterised during my stay as a PhD visiting student at the 

University of Barcelona, have been designed on the basis of a prototype, compound 

9d, previously published paper by Leiva, R. et al183 and of the small-molecule 

inhibitors CL-385319, both described in literature as potent inhibitors of influenza A 
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HA-mediated fusion. Unfortunately, all the compounds didn’t show any anti-

influenza activity in in vitro antiviral tests, on the other hand, some 

benzenesulfonamide derivatives demonstrated an interesting inhibitory effect on the 

HCoV 229E replication, which could represent a starting point for further studies in 

order to optimize this activity and potentially design novel anti-CoV derivatives. 

Finally, the benzimidazole derivatives were designed on the basis of previously 

investigated analogues which demonstrated a potent anti-RSV activity175,186. Thus, 

the novel derivatives have been synthesized and tested against a panel of several 

RNA and DNA viruses; among them some compounds surprisingly revealed to be 

dual virus inhibitors of influenza and coronavirus strains (Influenza A/Ned/378/05 

(H1N1) and HCoV 229E), even if with only modest potency, while only two 

compounds 25 and 22 demonstrated to successfully inhibit RSV replication with the 

same degree of potency of ribavirin. Therefore, these novel (thio)semicarbazone- 

and hydrazone-based benzimidazoles may be considered worthy of further 

structural optimization for an improved antiviral profile against the aforementioned 

viral strains, secondly, as some compounds are able to target both IV and HCoV, the 

existence of a possible common mechanism of action is worth of future investigation. 
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CHAPTER 10. Experimental section. 

 

10.1 Chemistry 

Starting materials were purchased from Aldrich-Italia (Milan, Italy) and Alfa Aesar 

(Lancashire, UK). Melting points were determined with a Büchi 530 apparatus or with 

an MFB 595010M Gallenkamp and are uncorrected. Column chromatography was 

performed either on silica gel 60 Å (35-70 mesh), or by automatic CC 

(BiotageTeledyne Isco®). IR spectra were run on Perkin-Elmer Spectrum RX I 

spectrophotometer. Absorption values are expressed as wave-numbers (cm-1); only 

significant absorption bands are given. 1H NMR and 13C NMR spectra were recorded 

on Varian Gemini-200 or on Varian Mercury-400, spectrometers, using DMSO-d6, 

CDCl3 or CD3OD as solvents. The chemical shifts (δ) in ppm were measured relative 

to tetramethylsilane (TMS), and coupling constants are reported in Hertz (Hz). 

Elemental analyses were performed on Flash 2000 CHNS (Thermo Scientific) 

instrument in the Microanalysis Laboratory of the Department of Pharmacy of Genoa 

University or in a Flash 1112 series Thermofinnigan elemental microanalyzer (A5). 

Analytical, preparative HPLC and Electron Spray Ionization condition (ESI) mass 

spectra were performed on an Agilent uHPLC (1290 Infinity) and an Agilent Prep-

HPLC (1260 Infinity) both equipped with a Diode Array Detector and a Quadrupole 

MSD using mixture gradients of formic acid/water/acetonitrile as system solvent. 

Arom. = aromatic ring; Benz= benzimidazole ring; Bzt= benzotriazole ring. 

 

10.1.1 Experimental section: synthesis of the acridine derivatives. 

The intermediates c-e and h, i, k, required for the synthesis of the related 9-

aminoacridine derivatives, were already described in literature, thus their 

characterization data will not be reported in this thesis. 

When required, the final compounds were converted into the corresponding 

hydrochloride salts with 1N HCl ethanolic solution to perform elemental analysis. 

Results of elemental analyses indicated that the purity of all compounds was ≥95%. 

 

10.1.1.1 General procedure for the synthesis of compounds 1-14.  

A mixture of 6,9-dichloro-2-methoxyacridine (1.8 mmol), the appropriate amine (1.8 

mmol) in presence of phenol (1.13 g) was heated at 90 °C for 5 h. After cooling, the 
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mixture was treated with 6 M NaOH till strong alkalinity and extracted with Et2O. After 

removing the solvent, the residue was purified by CC (SiO2/CH2Cl2 + 10%MeOH). 

Compounds 2-8 were obtained by directly washing the reaction mixture in the order, 

with a boiling solution of 2N NaOH and then with water in order to remove the excess 

of phenol, affording a solid residue that was chromatographed on silica gel, eluting 

with CH2Cl2 + 10%MeOH. 

 

6-Chloro-9-[2-(4’-hydroxypiperidin-1-yl)ethyl]amino-2-methoxyacridine (1) 

Yield 42%. M.p. 208-210°C (CH2Cl2). 1H-NMR (200 MHz, DMSO-d6): 8.20-7.96 (m, 2 

arom. H), 7.44 (dd, J= 9.8 Hz, 2.2 Hz, 1 arom. H), 7.38-7.23 (m, 3 arom. H), 6.24 (br. s, NH, 

exchanges with D2O), 3.99 (s, 3H, OCH3), 3.92-3.74 (m, 1H, HO-CH piperidine and 2H 

HNCH2CH2-piperidine), 3.00-2.81 (m, 2H, piperidine), 2.68 (t, J= 7.0 Hz, 2H, HNCH2CH2-

piperidine), 2.44-2.22 (m, 2H, piperidine), 2.13-1.85 (m, 2H, piperidine and 1H, OH, 

exchanges with D2O, superimposed),  1.83-1.63 (m, 2H, piperidine). 13C-NMR (50 MHz, 

DMSO-d6): 154.72, 150.15, 147.62, 133.03, 130.24, 126.56, 126.05, 123.81, 122.27, 116.83, 

114.44, 99.85, 65.80, 57.14, 55.11, 50.36, 46.24, 34.04.  Anal. calcd for C21H24ClN3O2: C 

65.36, H 6.27, N 10.89; found: C 65.60, H 6.18, N 10.78. 

 

6-Chloro-9-{[4-(2’-hydroxyethyl)piperazin-1-yl]amino}-2-methoxyacridine (2) 

Yield 23.5%. 1H-NMR (200 MHz, DMSO-d6): 8.31-7.24 (m, 6 arom. H), 4.44 (br s, NH, 

exchanges with D2O), 3.79 (s, OCH3), 3.51 (t, J = 6.0, 2H, C(2)), 3.38 (pseudo s, 4H, 

piperazine), 3.11-2.20 (m, 2H, C(1), 4H, piperazine and OH, exchanges with D2O, 

superimposed). 13C-NMR (50 MHz, DMSO-d6): 153.71, 151.71, 141.11, 134.30, 131.72, 

120.32, 116.55, 113.11, 106.51, 59.79, 58.27, 55.08, 54.89, 53.63, 52.04.  Dihydrochloride 

salt: m.p. 258-260°C (dec.). Anal. calcd for C20H23ClN4O2·2HCl·2H2O: C 48.45, H 5.90, N 

11.30; found: C 48.14, H 5.88, N 11.67. 

 

6-Chloro-9-{[4-(2’-chlorophenyl)piperazin-1-yl]amino}-2-methoxyacridine (3) 

Yield 57%. M.p. 173-175°C (Et2O/n-hexane). CC(SiO2/CH2Cl2+10%MeOH). 1H-NMR (200 

MHz, DMSO-d6): 8.18 (d. J = 9.0 Hz, 1 arom. H); 7.80-7.64 (m, 2 arom. H); 7.42-6.82 (m, 7 

arom. H); 3.78 (s, 3H, OCH3); 3.37 (pseudo s, 4H, piperazine); 3.05 (pseudo s, 4H, 

piperazine); 2.80 (br s, NH, exchanges with D2O). 13C-NMR (50 MHz, DMSO-d6): 151.90, 

148.32, 134.20, 129.96, 127.66, 127.26, 123.58, 120.46, 115.13, 64.52, 55.05, 54.11, 49.76. 
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Dihydrochloride salt: m.p. 271-272°C. Anal. calcd for C24H22Cl2N4O·2HCl: C 54.77, H 4.60, 

N 10.65; found: C 54.83, H 4.61, N 10.60. 

 

6-Chloro-9-{[4-(3’-chlorophenyl)piperazin-1-yl]amino}-2-methoxyacridine (4) 

Yield 52.3%. CC(SiO2/CH2Cl2+10%MeOH). 1H-NMR (200 MHz, DMSO-d6): 8.16 (d, J = 8.8 

Hz, 1 arom. H); 7.65 (s, 1 arom. H); 7.30-6.72 (m, 8 arom. H); 3.74 (s, 3H, OCH3); 3.40 

(pseudo s, 4H, piperazine); 3.07 (pseudo s, 4H, piperazine); 2.76 (br s, NH, exchanges 

with D2O). 13C-NMR (50 MHz, DMSO-d6): 151.58, 147.86, 134.28, 133.45, 130.04, 122.60, 

117.75, 114.15, 113.21, 64.38, 54.98, 53.66, 46.56. Dihydrochloride salt: m.p. 269-270°C. 

Anal. calcd for C24H22Cl2N4O·2HCl: C 54.77, H 4.60, N 10.65; found: C 54.66, H 4.61, N 

10.75. 

 

6-Chloro-9-{[4-(4’-chlorophenyl)piperazin-1-yl]amino}-2-methoxyacridine (5) 

Yield 45%. M.p. 185.5-186.3°C (Et2O/hexane). CC(SiO2/CH2Cl2+10%MeOH). 1H-NMR 

(200 MHz, DMSO-d6): 8.14 (d. J = 9.6 Hz, 1 arom. H); 7.64 (s, 1 arom. H); 7.30-6.72 (m, 8 

arom. H); 3.74 (s, 3H, OCH3); 3.33 (pseudo s, 4H, piperazine); 3.11 (pseudo s, 4H, 

piperazine); 2.68 (br s, NH, exchanges with D2O). 13C-NMR (50 MHz, DMSO-d6): 149.12, 

147.74, 135.31, 133.24, 128.21, 122.02, 116.38, 64.50, 54.96, 53.63, 46.96. Anal. calcd for 

C24H22Cl2N4O: C 63.58, H 4.89, N 12.36; found: C 63.69, H 4.88, N 12.28. 

 

6-Chloro-9-{[4-(2’-methoxyphenyl)piperazin-1-yl]amino}-2-methoxyacridine (6) 

Yield 65%. CC(SiO2/CH2Cl2+10%MeOH). 1H-NMR (200 MHz, DMSO-d6): 8.17 (d. J = 9.6 

Hz, 1 arom. H); 7.70 (s, 1 arom. H); 7.20-6.73 (m, 8 arom. H); 3.77 (s, 6H, 2OCH3); 3.38 

(pseudo s, 4H, piperazine); 3.10 (pseudo s, 4H, piperazine); 2.88 (br s, NH, exchanges 

with D2O). 13C-NMR (50 MHz, DMSO-d6): 153.69, 151.59, 134.35, 131.73, 126.08, 120.47, 

113.75, 111.63, 106.47, 64.52, 54.96, 53.92, 48.78. Dihydrochloride salt: m.p. 225-226°C. 

Anal. calcd for C25H25ClN4O2·2HCl: C 57.54, H 5.22, N 10.74; found: C 57.34, H 5.52, N 

11.08. 

 

6-Chloro-9-{[4-(3’-methoxyphenyl)piperazin-1-yl]amino}-2-methoxyacridine (7) 

Yield 32.6%. M.p. 98-101°C (Et2O). CC(SiO2/CH2Cl2+10%MeOH). 1H-NMR (200 MHz, 

DMSO-d6): 8.17 (d. J = 9.2 Hz, 1 arom. H); 7.71 (s, 1 arom. H); 7.20-6.77 (m, 8 arom. H); 

3.75 (s, 3H, OCH3); 3.70 (s, 3H, OCH3); 3.45 (br s, NH, exchanges with D2O); 3.38 (pseudo 

s, 4H, piperazine); 3.12 (pseudo s, 4H, piperazine). 13C-NMR (50 MHz, DMSO-d6): 153.74, 
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151.76, 134.38, 131.74, 126.81, 120.12, 113.87, 111.14, 106.47, 64.48, 55.05, 53.65, 48.30. 

Anal. calcd for C25H25ClN4O2: C 66.88, H 5.61, N 12.48; found: C 66.86, H 5.36, N 12.21. 

 

6-Chloro-9-{[4-(4’-methoxyphenyl)piperazin-1-yl]amino}-2-methoxyacridine (8) 

Yield 63.5%. M.p. 186.5-188.8°C (Et2O). CC(SiO2/CH2Cl2+10%MeOH). 1H-NMR (200 MHz, 

DMSO-d6): 8.20 (d. J = 9.6 Hz, 1 arom. H); 7.71 (s, 1 arom. H); 7.30-6.91 (m, 4 arom. H); 

6.52 (d, J = 7.8 Hz, 2 arom. H); 6.39 (d, J = 8.0 Hz, 2 arom. H); 3.77 (s, 3H, OCH3); 3.74 (s, 

3H, OCH3); 3.37 (pseudo s, 4H, piperazine); 3.05 (pseudo s, 4H, piperazine and NH, 

exchanges with D2O, superimposed). 13C-NMR (50 MHz, DMSO-d6): 153.85, 151.71, 

134.68, 129.25, 120.08, 113.91, 107.57, 103.92, 64.29, 54.99, 53.72, 47.07. Dihydrochloride 

salt: m.p. 243-244°C. Anal. calcd for C25H25ClN4O2·2HCl: C 57.54, H 5.22, N 10.74; found: 

C 57.33, H 5.38, N 10.91. 

 

6-Chloro-2-methoxy-9-[(pyridin-2-yl)amino]acridine (9) 

Yield 53%. M.p. 212-213°C. CC(Al2O3/CH2Cl2+2%DEA). 1H-NMR (200 MHz, DMSO-d6): 

9.38 (br. s, NH, exchanges with D2O); 8.28-7.86 (m, 4 arom. H); 7.77-7.27 (m, 4 arom. H); 

6.83 (d, J = 8.0, 2 arom. H); 3.80 (s, 3H, OCH3). 13C-NMR (50 MHz, DMSO-d6): 154.80, 

147.90, 144.02, 134.90, 129.18, 125.23, 119.72, 115.02, 108.30, 101.05, 54.98. Anal. calcd for 

C19H14ClN3O: C 67.96, H 4.20, N 12.51; found: C 68.21, H 4.56, N 12.49. 

 

6-Chloro-9-{[(4’-chloro)pyridin-2-yl]amino}-2-methoxyacridine (10) 

Yield 80%. M.p. 257-259°C (Et2O). 1H-NMR (200 MHz, DMSO-d6): 8.20-7.76 (m, 4 arom. 

H); 7.64-7.20 (m, 3 arom. H); 7.00-6.73 (m, 2 arom. H); 3.79 (s, 3H, OCH3); 3.38 (br. s, NH, 

exchanges with D2O). 13C-NMR (50 MHz, DMSO-d6): 156.02, 148.88, 143.22, 133.65, 

128.97, 126.56, 125.10, 121.80, 114.95, 109.11, 100.03, 55.08. Anal. calcd for C19H13Cl2N3O: 

C 61.64, H 3.54, N 11.35; found: C 61.45, H 3.65, N 10.99. 

 

6-Chloro-9-{[(5’-chloro)pyridin-2-yl]amino}-2-methoxyacridine (11) 

Yield 40%. M.p. 203-204°C (CH2Cl2). CC(SiO2/CH2Cl2). 1H-NMR (200MHz, DMSO-d6): 

8.10-7.78 (m, 4 arom. H), 7.60-7.23 (m, 3 arom. H), 6.98-6.69 (m, 2 arom. H), 3.83 (s, 3H, 

OCH3), 3.35 (NH, exchanges with D2O). 13C-NMR (50 MHz, DMSO-d6): 154.70, 146.04, 

144.98, 133.89, 129.17, 126.76, 125.10, 119.94, 114.43, 111.24, 106.56, 99.85, 55.10. Anal. 

calcd for C19H13Cl2N3O: C 61.64, H 3.54, N 11.35; found: C 61.72, H 3.84, N 10.99. 
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6-Chloro-9-{[(2’-chloro)pyridin-3-yl]amino}-2-methoxyacridine hydrochloride (12) 

Yield 38%. M.p. 286-290°C (Et2O). 1H-NMR (200 MHz, DMSO-d6): 8.36-8.24 (m, 1 arom. 

H); 7.96-7.34 (m, 4 arom. H); 7.30-7.20 (m, 1 arom. H); 3.66 (s, 3H, OCH3 and 1H, NH, 

exchanges with D2O). 13C-NMR (50 MHz, DMSO-d6): 156.15, 148.76, 141.21, 137.41, 

133.98, 128.84, 125.56, 123.67, 121.17, 107.93, 99.82, 54.45. Anal. calcd for 

C19H13Cl2N3O·HCl·H2O: C 53.73, H 3.80, N 9.89; found: C 53.86, H 4.01, N 9.49. 

 

6-Chloro-9-{[(6’-chloro)pyridin-3-yl]amino}-2-methoxyacridine (13) 

Yield 34.94%. M.p. 158-160°C (Et2O).  CC(SiO2/Et2O). 1H-NMR (200 MHz, DMSO-d6): 

8.23-6.82 (m, 8 arom. H); 6.76 (d, J = 8.0, 1 arom. H); 3.70 (s, 1H, NH, exchanges with 

D2O); 3.36 (s, 3H, OCH3). 13C-NMR (50 MHz, DMSO-d6): 156.26, 151.59, 141.53, 135.59, 

133.45, 129.19, 127.53, 124.22, 121.73, 115.43, 99.65, 55.11. Anal. calcd for C19H13Cl2N3O: C 

61.64, H 3.54, N 11.35; found: C 61.66, H 3.82, N 11.44. 

 

6-Chloro-9-{[(6’-methoxy)pyridin-3-yl]amino}-2-methoxyacridine (14) 

Yield 15%. M.p. 195-197°C (Et2O). CC(CH2Cl2/DEA2%). 1H-NMR (200MHz, DMSO-d6): 

8.28-6.58 (m, 9 arom. H). 4.15-3.39 (m, 7H, 2OCH3 and 1H, NH, exchanges with D2O). 
13C-NMR (50 MHz, DMSO-d6): 158.47, 154.31, 135.55, 134.22, 130.09, 127.21, 123.15, 

118.92, 110.23, 54.72, 52.68. Anal. calcd for C20H16ClN3O2: C 65.67, H 4.41, N 11.49; found: 

C 65.61, H 4.50, N 10.99. 

 

10.1.1.2 General procedure for the synthesis of compounds 16-18.  

A solution of 6,9-dichloro-2-methoxyacridine (3.5 mmol) and cyclic secondary amine 

(7.0 mmol) in DMF (5 mL) was heated at 140 °C for 3 h. The mixture was taken up with 

water, alkalinized with 2M NaOH and extracted with CH2Cl2. The solvent was 

evaporated and the oily residue was purified by CC. The isolated compounds were 

crystallized from the indicated solvents. 

 

6-Chloro-2-methoxy-9-[4-(2’-methoxyphenyl)piperazin-1-yl]acridine (16)  

Yield 27%. M.p. 166-168°C (CH2Cl2). CC(SiO2/CH2Cl2). 1H-NMR (200 MHz, DMSO-d6): 

8.43 (d, J = 9.8 Hz, 1 arom. H); 8.20-7.93 (m, 2 arom. H); 7.70-7.42 (m, 3 arom. H); 7.16-

6.83 (m, 4 arom. H); 3.96 (s, 3H, OCH3); 3.84 (s, 3H, OCH3); 3.70 (pseudo s, 4H, 

piperazine); 3.29 (pseudo s, 4H, piperazine). 13C-NMR (50 MHz, DMSO-d6): 157.99, 
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151.80, 146.33, 138.94, 133.95, 122.13, 120.27, 118.67, 116.60, 113.75, 64.62, 54.23, 49.01, 

48.84.  Anal. calcd for C25H24ClN3O2: C 69.20, H 5.57, N 9.68; found: C 69.21, H 5.49, N 

9.31. 

 

6-Chloro-2-methoxy-9-[4-(3’-methoxyphenyl)piperazin-1-yl]acridine (17)  

Yield 24%. M.p. 163-165°C (Et2O). CC(SiO2/Et2O). 1H-NMR (200 MHz, DMSO-d6): 8.38 (d. 

J = 9.8 Hz, 1 arom. H); 8.16-7.95 (m, 2 arom. H); 7.57-7.48 (m, 4 arom. H); 7.19 (t, J = 7.6 

Hz, 1 arom. H); 6.74-6.57 (m, 2 arom. H); 6.50-6.42 (m, 1 arom. H); 3.96 (s, 3H, OCH3); 3.76 

(s, 3H, OCH3); 3.48 (pseudo s, 4H, piperazine); 3.35 (pseudo s, 4H, piperazine). 13C-NMR 

(50 MHz, DMSO-d6): 158.82, 152.53, 145.60, 138.94, 133.99, 120.11, 118.65, 116.82, 113.32, 

64.47, 54.78, 54.04, 48.56. Anal. calcd for C25H24ClN3O2: C 69.20, H 5.57, N 9.68; found: 

C 69.21, H 5.49, N 9.31. 

 

6-Chloro-2-methoxy-9-[4-(4’-metoxyphenyl)piperazin-1-yl)acridine (18) 

Yield 45%. M.p. 172.5-174°C (Et2O). CC(SiO2/Et2O). 1H-NMR (200MHz, DMSO-d6): 8.42 

(d. J = 10.0 Hz, 1 arom. H); 8.16-8.00 (m, 2 arom. H); 7.60-7.46 (m, 3 arom. H); 7.05 (d, J = 

8.8 Hz, 2 arom. H); 6.89 (d, J = 8.8 Hz, 2 arom. H); 3.96 (s, 3H, OCH3); 3.73 (s, 3H, OCH3); 

3.56 (pseudo s, 4H, piperazine); 3.35 (pseudo s, 4H, piperazine). 13C-NMR (50 MHz, 

DMSO-d6): 159.35, 151.97, 146.05, 139.08, 133.85, 119.63, 115.66, 113.24, 64.52, 54.54, 

53.84, 48.49. Anal. calcd for C25H24ClN3O2: C 69.20, H 5.57, N 9.68; found: C 69.39, H 

5.72, N 9.36. 

 

10.1.1.3 General procedure for the synthesis of intermediates a, b. 

To the proper 1-phenylpiperazine hydrochloride (3.77 mmol) in H2O (8 mL), 1N HCl 

was added dropwise until the pH reached 5-6. The solution was cooled to 0°C and a 

solution of NaNO2 (3.77 mmol) in water (5 mL) was added over a period of 30 min, 

maintaining a pH of 5-6 by dropwise addition of 4N HCl. Then the reaction mixture 

was stirred at 70°C for 1h.  

On cooling to room temperature, the solution was neutralized with 2 M NaOH. The 

precipitate (a) was collected by filtration and crystallized from dry Et2O. 

In the case of compound b, the neutral aqueous solution was extracted with CHCl3. 

After drying (Na2SO4) the solvent was evaporated obtaining the title compound. 
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4-(2-Chlorophenyl)-1-nitroso-piperazine (a) 

Yield 63%. M.p. 72-73°C (Et2O). 1H-NMR (200MHz, DMSO-d6):  7.46 (d, J = 7.8 Hz, 1 arom. 

H), 7.37-7.00 (m, 3 arom. H), 4.50 (pseudo s, 2H, piperazine), 4.08 (pseudo s, 2H, 

piperazine), 3.34 (pseudo s, 2H, piperazine), 3.09 (pseudo s, 2H, piperazine). Anal. calcd 

for C10H12ClN3O: C 53.22, H 5.36, N 18.62; found: C 53.13, H 5.10, N 18.67. 

 

4-(3-Chlorophenyl)-1-nitroso-piperazine (b) 

Yield 83.5%. Oil. 1H-NMR (200MHz, DMSO-d6):  7.35-7.12 (m, 1 arom. H), 7.00-6.75 (m, 

3 arom. H), 4.44 (pseudo s, 2H, piperazine), 3.99 (pseudo s, 2H, piperazine), 3.46 

(pseudo s, 2H, piperazine), 3.23 (pseudo s, 2H, piperazine). Anal. calcd for C10H12ClN3O: 

C 53.22, H 5.36, N 18.62; found: C 53.10, H 5.18, N 18.71. 

 

10.1.1.4 General procedure for the synthesis of intermediates f, g. 

Zinc dust (5 mmol) was added over a period of 20 min to the proper nitroso derivative 

(1.85 mmol) previously suspended in 5 mL of 50% (v/v) aqueous AcOH. The mixture 

was heated at 50°C for 3h and then filtered. The solution was cooled and basified 

with 6N NaOH and extracted with CHCl3. The organic layer was washed with H2O, 

dried (Na2SO4) and then evaporated. The crude residue was purified by CC 

(SiO2/CHCl3+10%MeOH). 

 

1-Amino-4-(2-chlorophenyl)piperazine hydrochloride (f) 

Yield 58.8%. M.p. 197-198°C (EtOH/Et2O). 1H-NMR (200MHz, DMSO-d6):  9.64 (br s, 
+NH3, exchange with D2O), 7.44 (d, J = 8.0 Hz, 1 arom. H), 7.39-7.00 (m, 3 arom. H), 3.13 

(pseudo s, 8H, piperazine). Anal. calcd for C10H14ClN3·HCl: C 48.40, H 6.09, N 16.93; 

found: C 48.07, H 5.89, N 16.90. 

 

1-Amino-4-(3-chlorophenyl)piperazine hydrochloride (g) 

Yield 27.5%. M.p. 229-230°C (EtOH/Et2O). 1H-NMR (200MHz, DMSO-d6):  9.56 (br s, 
+NH3, exchange with D2O), 7.23 (t, J = 7.4 Hz, 1 arom. H), 7.12-6.79 (m, 3 arom. H), 3.74 (s, 

3H, OCH3), 3.41 (pseudo s, 4H, piperazine), 3.15 (pseudo s, 4H, piperazine). Anal calcd 

for C10H14ClN3·HCl: C 48.40, H 6.09, N 16.93; found: C 48.20, H 6.01, N 17.02. 
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10.1.1.5 Synthesis of 1-amino-4-(3-methoxyphenyl)piperazine hydrochloride (j). 

A mixture of 1-(3-methoxyphenyl)piperazine (3.3 mmol) in 25 mL of H2O and NaOH 

pellets (1.32 g) was heated at 60° for 20 min. Maintaining the temperature at 60°C, 

hydroxylamine-O-sulphonic acid (5 mmol) was slowly added over 15 min. Then the 

mixture was stirred at 25°C for 24h. The solution was basified with 6N NaOH, and 

extracted with CHCl3. After evaporation of the solvent, the solid residue was purified 

with CC (SiO2/CHCl3+10%MeOH). 

 

1-Amino-4-(3-methoxyphenyl)piperazine hydrochloride (j) 

Yield 40%. M.p. 175-177°C (EtOH/Et2O). 1H-NMR (200MHz, DMSO-d6):  9.20 (br s, +NH3, 

exchange with D2O), 7.16 (t, J = 7.0 Hz, 1 arom. H), 6.71-6.54 (m, 2 arom. H), 6.47 (d, J = 

8.0 Hz, 1 arom. H), 3.74 (s, 3H, OCH3), 3.31 (pseudo s, 4H, piperazine), 3.14 (pseudo s, 

4H, piperazine).  Anal. calcd for C11H17N3O·HCl: C 54.21, H 7.44, N 17.24; found: C 54.30, 

H 7.18, N 17.19. 
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10.1.2 Experimental section: synthesis of the azaspiro-dihydrotriazines. 

10.1.2.1 General method, three-steps synthesis 

10.1.2.1.1 First step: general procedure for the synthesis of compounds 2, 8, 

11, a, b.  

To a solution of N-Boc Piperidone (3.4 g, 16.723 mmol), dicyandiamide (9.051 mmol) 

and 0.196 g of HCl conc. (5.369 mmol) in EtOH (25 mL) the proper amine (5.369 mmol) 

was added. The mixture was refluxed for 17 h with stirring. After evaporation, the 

residue was purified by reverse-phase (RP)-HPLC (water/acetonitrile). 

 

Tert-butyl 1-(3-Chlorophenyl)-2,4-diamino-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-

diene-9-carboxylate (2) 

Yield: 37%. 1H NMR (300 MHz, DMSO-d6): 8.51 (br s, 4H, 2NH2); 7.20-6.43 (m, 4H, H 

arom.); 3.42-3.21 (m, 4H, 2CH2 in α to N of piperidine); 1.80-1.62 (m, 4H, 2CH2 of 

piperidine); 1.30 (s, 9H, 3CH3). HRMS (ESI) m/z calc. for C18H25ClN6O2 [M+H]+: 393.18; 

found: 393.24. 

 

Tert-butyl 2,4-diamino-1-(3-methoxyphenyl)-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-

diene-9-carboxylate (8) 

Yield: 42%. 1H NMR (300 MHz, DMSO-d6): 8.52 (br s, 4H, 2NH2); 7.25-6.14 (m, 4H, H 

arom.); 3.83 (s, 3H, OCH3); 3.55-3.32 (m, 4H, 2 CH2 in α to N of piperidine); 1.82-1.60 (m, 

4H, 2CH2 of piperidine); 1.34 (s, 9H, 3CH3). HRMS (ESI) m/z calc. for C19H28N6O3 [M+H]+: 

389.23; found: 389.16. 

 

Tert-butyl 1-(3-Chlorobenzyl)-2,4-diamino-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-

diene-9-carboxylate (11) 

Yield: 40%. 1H NMR (300 MHz, DMSO-d6): 8.56 (br s, 4H, 2NH2); 7.52-7.21 (m, 4H, H 

arom.); 4.32 (s, 2H, CH2-arom.); 3.60-3.34 (m, 4H, 2CH2 in α at N of piperidine); 1.82-1.52 

(m, 4H, 2CH2 of piperidine); 1.34 (s, 9H, 3CH3). HRMS (ESI) m/z calc. for C19H27ClN6O2 

[M+H]+: 407.19; found: 406.99. 
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Tert-butyl 2,4-Diamino-1-propyl-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene-9-

carboxylate (a)  

Yield: 63%. 1H-NMR (300 MHz, CD3OD): 3.60 (t, J=6.2 Hz, 4 H), 3.45 (t, J=5.3 Hz, 2 H), 3.39 

(dd, J=7.9, 14.9 Hz, 3 H), 3.29 (s, 3 H), 2.94 (t, J=5.3 Hz, 2 H), 2.50 (m, 1 H), 2.34 (t, J=6.2 Hz, 

4 H), 1.61 (m, 2 H), 1.42 (s, 9 H), 1.38 (s, 4 H), 1.09 (t, J=7.0 Hz, 2 H) HRMS (ESI) m/z calc. 

for C15H28N6O2 [M+H]+: 325.23; found: 325.30. 

 

Tert-butyl 2,4-Diamino-1-(2-methoxyethyl)-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-

diene-9-carboxylate (b) 

Yield: 52%. 1H-NMR (300 MHz, DMSO-d6): 3.60 (t, J=6.2 Hz, 4 H), 3.45 (t, J=5.3 Hz, 2 H), 

3.39 (dd, J=7.9, 14.9 Hz, 3 H), 3.29 (s, 3 H), 2.94 (t, J=5.3 Hz, 2 H), 2.50 (m, 1 H), 2.34 (t, J=6.2 

Hz, 4 H), 1.61 (m, 2 H), 1.42 (s, 9 H), 1.38 (s, 4 H), 1.09 (t, J=7.0 Hz, 2 H). HRMS (ESI) m/z 

calc. for C15H28N6O3 [M+H]+: 341.23; found: 341.00. 

 

10.2.1.2 Second step: general procedure for the synthesis of compounds 1, 

7, c, d.  

A stirring solution of the azaspiro derivative (1.469 mmol) in 150 mL of CH2Cl2 was 

cooled in ice bath, and then added of 3 mL of trifluoroacetic acid obtaining a final 

20% solution of TFA in CH2Cl2. The reaction was stirred at r.t. for 6/7h. The solvent 

was removed under vacuum affording the title compound. 

 

1-(3-Chlorophenyl)-2,4-diamino-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene (1) 

Yield: 89%. 1H NMR (300 MHz, DMSO-d6): 8.63 (br s, 4H, 2NH2); 7.26-6.42 (m, 4H, H 

arom.); 3.15-2.74 (m, 4H, 2CH2 in α to N of piperidine); 1.98 (s, 1H, NH); 1.86-1.63 (m, 4H, 

2CH2 of piperidine); HRMS (ESI) m/z calc. for C13H17ClN6 [M+H]+: 293.12; found: 293.06. 

 

2,4-Diamino-1-(3-methoxyphenyl)-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene (7) 

Yield: 93%. 1H NMR (300 MHz, DMSO-d6): 8.64 (br s, 4H, 2NH2); 7.22-6.09 (m, 4H, H 

arom.); 4.05 (s, 3H, OCH3); 2.87-2.51 (m, 4H, 2CH2 in α to N of piperidine); 2.14-1.62 (m, 

5H, 2CH2 of piperidine and NH). HRMS (ESI) m/z calc. for C14H20N6O [M+H]+: 289.17; 

found: 289.20. 

 



131 
 
 

 

2,4-Diamino-1-propyl-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene (c)  

Yield: 80%. 1H-NMR (300 MHz, DMSO-d6): 3.43 (t, J=6.6 Hz, 4 H, 2CH2 in α to N of 

piperidine), 2.74 (m, 2 H), 2.55 (t, J=6.6 Hz, 4 H, 2CH2 of piperidine), 2.22 (s, 1H, NH), 1.55 

(q, J=7.5 Hz, 2 H), 0.89 (t, J=7.5 Hz, 3H, NCH2CH2CH3). HRMS (ESI) m/z calc. for C10H20N6 

[M+H]+: 225.18; found: 225.15. 

 

2,4-Diamino-1-(2-methoxyethyl)-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene (d) 

Yield: 79%. HRMS (ESI) m/z calc. for C10H20N6O [M+H]+: 241.17; found: 241.11. 

 

10.1.2.1.3 Third step: general procedure for the synthesis of compounds 4, 

5, 9, 13, 17.  

A solution of the deprotected azaspiro compound (0.134 mmol) in 2 mL of DMF, 0.14 

mL of DIPEA (0.803 mmol), 51.8 mg of EDC (0.268 mmol) and 27.9 mg of HOBT (0.201 

mmol) was stirred for 15 min at r.t. Then the proper acid (0.125 mmol) was added to 

the mixture and the reaction was maintained at 50°C for 12h with stirring. After 

evaporation of the solvent, the residue was purified by reverse-phase (RP)-HPLC 

(water/acetonitrile). 

 

1-(3-Chlorophenyl)-2,4-diamino-9-(p-tolylcarbonyl)-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (4) 

Yield: 33%. 1H NMR (300 MHz, DMSO-d6): 8.54 (br s, 4H, 2NH2); 7.92-6.52 (m, 8H, H 

arom.); 3.44-3.31 (m, 4H, 2CH2 in α to N of piperidine); 2.43 (s, 3H, CH3-Ar); 1.86-1.53 (m, 

4H, 2CH2 of piperidine). HRMS (ESI) m/z calc. for C21H23ClN6O [M+H]+: 411.17; found: 

411.14. 

 

1-(3-Chlorophenyl)-2,4-diamino-9-[(naphthalen-2-yl)carbonyl]-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (5) 

Yield: 42%. 1H NMR (300 MHz, DMSO-d6): 8.63-7.48 (m, 11 H, 7H of naphthalene and 

2NH2); 7.34-6.45 (m, 4 H, H arom.); 3.54-3.31 (m, 4H, 2CH2 in α to N of piperidine); 1.94-

1.48 (m, 4H, 2CH2 of piperidine); HRMS (ESI) m/z calc. for C24H23ClN6O [M+H]+: 447.17; 

found: 447.12. 
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2,4-Diamino-1-(3-methoxyphenyl)-9-(1-oxopent-1-yl)-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (9) 

Yield: 47%. 1H NMR (300 MHz, DMSO-d6): 8.57 (br s, 4H, 2NH2); 7.29-6.11 (m, 4H, H 

arom.); 4.08 (s, 3H, OCH3); 3.55-3.33 (m, 4H, 2CH2 in α to N of piperidine); 2.46 (t, J = 7.4, 

2H, COCH2(CH2)4CH3); 1.84-1.32 (m, 8H, COCH2(CH2)4CH3 and 2CH2 of piperidine); 1.10 

(t, J = 7.2, 3H, COCH2(CH2)4CH3). HRMS (ESI) m/z calc. for C19H28N6O2 [M+H]+: 373.23; 

found: 373.26. 

 

2,4-Diamino-1-propyl-9-[(3,5-dimethylisoxazol-4-yl)carbonyl]-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (13) 

Yield: 27%. 1H NMR (300 MHz, DMSO-d6): 8.52 (br s, 4H, 2NH2); 3.57-3.42 (m, 4H, 2CH2 

in α to N of piperidine); 2.56-2.30 (m, 8H, 2CH3 of isoxazole and 2H, NCH2CH2CH3); 1.86-

1.42 (m, 6H, 2H of NCH2CH2CH3 and 2CH2 of piperidine); 1.09 (t, J= 6.8, 3H, 

NCH2CH2CH3); HRMS (ESI) m/z calc. for C16H25N7O2 [M+H]+: 348.21; found: 348.32. 

 

2,4-Diamino-1-(2-methoxyethyl)-9-[(1-methyl-1H-pyrrol-2-yl)carbonyl]-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (17) 

Yield: 21%. 1H NMR (300 MHz, DMSO-d6): 8.53 (br s, 4H, 2NH2); 7.87-7.51 (m, 2H of 

pyrrole); 6.52 (d, J= 8.2, 1H, pyrrole); 3.92 (s, 3H, CH3 NCH3); 3.64-3.22 (m, 9H, 2CH2 in α 

to N of piperidine, OCH3 and NCH2CH2OCH3); 2.63 (t, J= 7.2, 2H, NCH2CH2OCH3); 1.70-

1.52 (m, 4H, 2CH2 of piperidine). HRMS (ESI) m/z calc. for C16H25N7O2 [M+H]+: 348.21; 

found: 348.40. 

 

10.1.2.1.4 Third step: general procedure for the synthesis of compounds 3, 

10, 12, 14, 16.  

The proper acyl chloride (0.134 mmol) was added at r.t. to a stirred solution of the 

deprotected tetraazaspiro compound (0.134 mmol) in 3 mL of dry THF and 0.13 mL 

of Et3N (0.936 mmol). The reaction was maintained at r.t. with stirring for 12h. After 

evaporation of the solvent, the residue was purified by reverse-phase (RP)-HPLC 

(water/acetonitrile). 
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9-Cyclobutylcarbonyl-1-(3-chlorophenyl)-2,4-diamino-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (3) 

Yield: 39%. 1H NMR (300 MHz, DMSO-d6): 8.50 (br s, 4 H, 2NH2); 7.17-6.44 (m, 4H, H 

arom.); 3.56-3.32 (m, 5H, 2CH2 in α to N of piperidine and CH of cyclobutyle); 2.33-1.61 

(m, 10H, 2CH2 piperidine and 6H, 3CH2 of cyclobutyle). HRMS (ESI) m/z calc. for 

C18H23ClN6O [M+H]+: 375.17; found: 375.29. 

 

2,4-Diamino-1-(3-methoxyphenyl)-9-[(2-methyl-4-

(trifluoromethyl)phenyl)carbonyl]-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene (10) 

Yield: 49%. 1H NMR (300 MHz, DMSO-d6): 8.63 (br s, 4H, 2NH2); 7.88-7.62 (m, 3H, H 

arom.); 7.16-6.13 (m, 4H, H arom.); 3.93 (s, 3H, OCH3); 3.44-3.23 (m, 4H, 2CH2 in α to N of 

piperidine); 2.54 (s, 3H, CH3-arom.); 1.93-1.62 (m, 4H, 2CH2 of piperidine). HRMS (ESI) 

m/z calc. for C23H25F3N6O2 [M+H]+: 475.20; found: 475.14. 

  

9-Cyclopropylcarbonyl-2,4-diamino-1-propyl-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-

diene (12) 

Yield: 12%. 1H NMR (300 MHz, DMSO-d6): 8.64 (br s, 4H, 2NH2); 3.44-3.22 (m, 4H, 2CH2 

in α to N of piperidine); 2.73 (t, J= 7.2, 2H, NCH2CH2CH3); 1.87-0.68 (m, 14H, 2CH2 of 

cyclopropyl, 1CH of cyclopropyl, 2H of NCH2CH2CH3, 3H of NCH2CH2CH3 and 2CH2 of 

piperidine). HRMS (ESI) m/z calc. for C14H24N6O [M+H]+: 293.20; found: 293.08. 

 

Ethyl 3-(2,4-diamino-1-propyl-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-diene-9-

carboxamido)propanoate (14) 

Yield: 27%. 1H NMR (300 MHz, DMSO-d6): 8.60 (br s, 4H, 2NH2); 4.25-3.75 (m, 4H, 

COOCH2CH3 and CONHCH2CH2); 3.50-3.24 (m, 4H, 2CH2 in α to N of piperidine); 2.69-

2.42 (m, 4H, NCH2CH2CH3 and CONHCH2CH2); 1.94-1.20 (m, 9H, OCH2CH3, NCH2CH2CH3 

and 2CH2 of piperidine); 0.96 (t, J= 6.0, 3H, NCH2CH2CH3). HRMS (ESI) m/z calc. for 

C16H29N7O3 [M+H]+: 368.24; found: 368.08. 
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9-Cyclopropylcarbonyl-2,4-diamino-1-(2-methoxyethyl)-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (16) 

Yield: 25%. 1H NMR (300 MHz, DMSO-d6): 8.55 (br s, 4H, 2NH2); 3.75-3.34 (m, 9H, OCH3, 

2CH2 in α to N of piperidine and CH2CH2OCH3); 2.74 (t, J= 7.2, 2H, CH2CH2OCH3); 1.78-

0.68 (m, 9H, 2CH2 of cyclopropyl, CH of cyclopropyl and 2CH2 of piperidine). HRMS 

(ESI) m/z calc. for C14H24N6O2 [M+H]+: 309.20; found: 309.06. 

 

10.1.2.1.5 Third step: general procedure for the synthesis of compounds 15, 

20, 21.  

The proper sulfonyl chloride (0.134 mmol) was added at r.t to a stirred solution of the 

deprotected tetraazaspiro compound (0.134 mmol) in 3 mL of CH2Cl2 and 0.16 mL of 

DIPEA (0.936 mmol). The reaction was maintained for 12h at r.t. with stirring. Then 

after evaporation of the solvent, the residue was purified by reverse-phase (RP)-

HPLC (water/acetonitrile). 

 

2,4-Diamino-1-propyl-9-(propylsulfonyl)-1,3,5,9-tetraazaspiro[5.5]undeca-2,4-

diene (15) 

Yield: 37%. 1H NMR (300 MHz, DMSO-d6): 8.58 (br s, 4H, 2NH2); 3.38-2.50 (m, 8H, 2CH2 

in α to N of piperidine, NCH2CH2CH3, SCH2CH2CH3); 1.91-1.46 (m, 8H, 2CH2 of piperidine, 

NCH2CH2CH3 and SCH2CH2CH3); 1.06 (s, 6H, NCH2CH2CH3 and SCH2CH2CH3). HRMS 

(ESI) m/z calc. for C13H26N6O2S [M+H]+: 331.19; found: 331.29. 

 

2,4-Diamino-9-(ethylsulfonyl)-1-(2-methoxyethyl)-1,3,5,9-tetraazaspiro[5.5]undeca-

2,4-diene (20) 

Yield: 11%. 1H NMR (300 MHz, DMSO-d6): 8.57 (br s, 4H, 2NH2); 3.67-3.44 (m, 4H, 

CH2CH2OCH3 and SCH2CH3.); 3.40 (s, 3H, CH2CH2OCH3.); 3.18-2.70 (m, 6H, CH2CH2OCH3 

and 2CH2 in α to N of piperidine); 1.88-1.55 (m, 4H, 2CH2 of piperidine); 1.26 (t, J= 6.8, 

3H, SCH2CH3). HRMS (ESI) m/z calc. for C12H24N6O3S [M+H]+: 333.17; found: 333.40. 
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2,4-Diamino-9-(phenylsulfonyl)-1-(2-methoxyethyl)-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (21) 

Yield: 15%. 1H NMR (300 MHz, DMSO-d6): 8.56 (br s, 4H, 2NH2); 7.80-7.56 (m, 3H, H 

arom.); 3.64 (t, J= 7.5, 2H, CH2CH2OCH3); 3.38 (s, 3H, CH2CH2OCH3); 3.18-2.60 (m, 6H, 

CH2CH2OCH3 and 2CH2 in α at N of piperidine); 1.86-1.54 (m, 4H, 2CH2 of piperidine). 

HRMS (ESI) m/z calc. for C16H24N6O3S [M+H]+: 381.17; found: 381.25. 

 

10.1.2.1.6 Third step: general procedure for the synthesis of compounds 6, 18, 19.  

The proper isocyanate (0.134 mmol) was added to a solution of the deprotected 

tetraazaspiro compound (0.134 mmol) in 3 mL of CH2Cl2 and 0.13 mL of Et3N (0.936 

mmol). Then the solution was stirred at r.t. for 12h. 

 

1-(3-Chlorophenyl)-2,4-diamino-9-[N-(4-fluorophenyl)carbamoyl]-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (6)  

Yield: 23%. 1H-NMR (300 MHz, CD3OD): 7.58 (m, 3 H), 7.37 (dt, J=1.8, 7.2 Hz, 1 H), 7.27 

(ddd, J=2.8, 5.3 Hz, 2 H), 7.00 (t, J=8.8 Hz, 2 H), 4.17 (dt, J=2.3, 12.1 Hz, 2 H), 3.10 (tq, J=1.9, 

13.8 Hz, 2 H), 2.10 (dt, J=2.1, 13.8 Hz, 2 H), 1.75 (m, 2 H). HRMS (ESI) m/z calc. for 

C20H21ClFN6O [M+H]+: 430.15; found: 430.31. 

 

2,4-Diamino-9-[(4-methylcyclohexyl)carbamoyl]-1-(2-methoxyethyl)-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (18) 

Yield: 26%. 1H NMR (300 MHz, DMSO-d6): 8.58 (br s, 4H, 2NH2); 3.66-3.39 (m, 6H, 2CH2 

in α to N of piperidine and CH2CH2OCH3); 3.36 (s, 3H, CH2CH2OCH3); 2.82 (t, J= 7.5, 2H, 

CH2CH2OCH3); 1.85-1.24 (m, 13H, 4CH2 of cyclohexyl, 2CH of cyclohexyl and 2CH2 of 

piperidine); 1.08 (d, J= 7.0, 3H, CH3-cyclohexyl). HRMS (ESI) m/z calc. for C18H33N7O2 

[M+H]+: 380.27; found: 380.50. 

 

2,4-Diamino-1-(2-methoxyethyl)-9[(4-methoxyphenyl)carbamoyl]-1,3,5,9-

tetraazaspiro[5.5]undeca-2,4-diene (19) 

Yield: 10%. 1H NMR (300 MHz, DMSO-d6): 8.60 (br s, 4H, 2NH2); 4.01 (s, 3H, OCH3); 3.68-

3.46 (m, 6H, 2CH2 in α ad N of piperidine and CH2CH2OCH3); 3.40 (s, 3H, CH2CH2OCH3); 
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2.78 (t, J= 7.6, 2H, CH2CH2OCH3); 1.84-1.57 (m, 4H, 2CH2 of piperidine). HRMS (ESI) m/z 

calc. for C18H27N7O3 [M+H]+: 390.22; found: 390.41. 

 

 

10.1.2.2 General procedure for the synthesis of compounds 22-23, one-step 

synthesis. 

A solution of the proper aniline (5.4 mmol), HCl conc. (5.4 mmol) and 1-

benzylpiperidin-3-one hydrochloride (8.1 mmol) in 25 mL of EtOH was reacted with 

dicyandiamide (5.67 mmol). The mixture was refluxed at 120-130°C with stirring for 

7h. After cooling compounds separated directly in crystalline form from the reaction 

mixture, thus they were collected by filtration and washed with acetone/Et2O an. 1:1. 

 

8-Benzyl-2,4-diamino-1-phenyl-1,3,5,8-tetraazaspiro[5.5]undeca-2,4-diene (22) 

Yield: 53%. M.p. 240-241°C (acetone/Et2O an.). 1H NMR (200 MHz, DMSO-d6): 9.69 (s, 

1H, +NH); 7.74-7.20 (m, 12H, 10 H arom. and 2H, NH2, superimposed signals); 6.99 (s, 

2H, NH2); 4.06 (s, 2H, CH2-arom.); 2.84 (s, 2H, CH2-piperidine); 2.52 (pseudo s, 2H, CH2-

piperidine superimposed to DMSO-d6 signal); 2.38 (t, J= 7.0 Hz, CH2-piperidine); 2.04-

1.72 (m, 2H, CH2-piperidine). Anal. Calcd for C20H24N6 ·HCl: C 62.41; H 6.55; N 21.83. 

Found: C 62.41; H 6.64; N 21.83. 

 

8-Benzyl-1-(4-chlorophenyl)-2,4-diamino-1,3,5,8-tetraazaspiro[5.5]undeca-2,4-

diene (23) 

Yield: 46%. M.p. 239.8-240°C (acetone/Et2O an.). 1H NMR (200 MHz, DMSO-d6): 9.67 

(s, 1H, +NH); 7.86-7.16 (m, 11H, 9 H arom. and 2H, NH2, superimposed signals); 6.98 (s, 

2H, NH2); 4.07 (s, 2H, CH2-arom.); 2.85 (s, 2H, CH2-piperidine); 2.52 (pseudo s, 2H, CH2-

piperidine superimposed to DMSO-d6 signal); 2.40 (t, J= 6.8 Hz, CH2-piperidine); 2.00-

1.76 (m, 2H, CH2-piperidine). Anal. Calcd for C20H23ClN6 ·HCl: C 57.28; H 5.77; N 20.04. 

Found: C 56.99; H 5.93; N 19.84. 
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10.1.3 Experimental section: synthesis of the 2-aminotriazino[1,2-

a]benzimidazoles. 

 

10.1.3.1 General procedure for the synthesis of compounds 1-7 

A mixture of the proper 2-guanidinobenzimidazole (5.7 mmol) and piperidine (2.9 

mmol) dissolved in 5 mL of acetone was heated at 70°C for 7h. The reaction mixture 

was then concentrated under vacuum and kept cooling to r.t. overnight. The 

expected product precipitated as a white solid, which was filtered and recrystallized 

from acetone/Et2O an.  

 

2-Amino-4,4-dimethyl-3,4-dihydrotriazino[1,2-a]benzimidazole (1)  

Yield: 59%. M.p. 284.8-285.6 °C. 1H NMR (200 MHz, DMSO-d6): δ 8.23 (broad s, 1H, NH), 

7.41 (d, J = 7Hz, 1H arom.), 7.30 (d, J = 7.2Hz, 1H arom.), 6.81-7.17 (m, 4H, 2H arom. 

superimposed to 2H NH2), 1.84 (s, 6H, 2 C(4)-CH3). 13C NMR (50 MHz, DMSO-d6): 155.0, 

153.2, 142.9, 130.2, 120.4, 118.8, 115.5, 109.4, 69.1, 28.2. Anal. calcd for C11H13N5: C 61.38, 

H 6.09, N 32.54; found: C 61.31, H 6.12, N 32.30. 

 

2-Amino-4,4,7,8-tetramethyl-3,4-dihydrotriazino[1,2-a]benzimidazole (2)  

Yield: 40%. M.p. 266.5-268.5 °C. 1H NMR (200 MHz, DMSO-d6): δ 8.01 (broad s, 1H, NH), 

7.18 (s, 1H, arom.), 7.05 (s, 1H, arom.), 6.69 (s, 2H, NH2), 2.28 (s, 3H, C(7/8)-CH3), 2.23 (s, 

3H, C(7/8)-CH3), 1.78 (s, 6H, 2 C(4)-CH3). 13C NMR (50 MHz, DMSO-d6): 154.6, 152.6, 

141.5, 128.6, 127.9, 126.5, 116.3, 110.1, 68.9, 28.2, 19.5, 19.4. Anal. calcd for C13H17N5: C 

64.17, H 7.04, N 28.78; found: C 64.22, H 7.32, N 28.50.  

 

2-Amino-7,8-dichloro-3,4-dihydrotriazino[1,2-a]benzimidazole (3)  

Yield: 56%. M.p. 285.1-285.9 °C. 1H NMR (200 MHz, DMSO-d6): δ 7.76 (s, 1H, NH), 7.61 (s, 

1H, arom), 7.41 (s, 1H, arom), 6.46 (s, 2H, NH2), 1.76 (s, 6H, 2 C(4)-CH3). 13C NMR (50 MHz, 

DMSO-d6): 155.5, 155.2, 143,7, 130.0, 122.5, 120.0, 116.1, 110.1, 69.2, 27.8. Anal. calcd for 

C11H13N5Cl2: C 46.50, H 3.90, N 24.65; found: C 46.43, H 4.00, N 24.30.  

 

2-Ammino-7(8)-cloro-3,4-diidrotriazino[1,2-a]benzimidazole (4a,b)  

Yield: 41%, M.p. 161.2-163 °C. 4a 1H NMR (200 MHz, DMSO-d6): δ 7.88 (broad s, 1H, NH), 

7.38 (d superimposed to 4b signal, 1H, arom.), 7.21 (pseudo s, 1H, arom.), 7.04 (d, J = 
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8Hz, J’ = 2Hz, 1H, C(8)arom.), 6.56 (s, 2H, NH2), 1.78 (s, 6H, 2 C(4) CH3). 13C NMR (50 MHz, 

DMSO-d6): 155.2, 144.7, 129.2, 124.7, 120.3, 118.0, 114.9, 110.1, 69.1, 28.0.  4b 1H NMR (200 

MHz, DMSO-d6): δ 7.88 (broad s, 1H, NH), 7.42 (d superimposed to 5a signal, 1H, arom.), 

7.25 (pseudo s, 1H, arom.), 6.93 (dd, J = 8.5Hz, J’ = 2Hz, 1H, C(7) arom.), 6.60 (s, 2H, NH2), 

1.78 (s, 6H, 2 C(4) CH3). 13C NMR (50 MHz, DMSO-d6): 154.7, 142.2, 131.0, 124.7, 122.7, 

118.0, 116.4, 109.0, 69.1, 28.0. The 1H and 13C NMR signals have been attributed to the 

two different isomers on the base of the literature data181. Anal. calcd for C11H12N5Cl: 

C 52.91, H 4.84, N 28.05; found: C 52.89, H 5.16, N 28.09. 
 

2-Amino-7(8)-methoxy-3,4-dihydrotriazino[1,2-a]benzimidazole (5a,b)  

Yield: 12%. M.p. 264-266 °C. 1H NMR (200 MHz, DMSO-d6): δ 7.83 (broad s, 1H, NH), 7.24 

(d, J=6Hz, 1H arom.), 6.83 (s, 1H arom), 6.24-6.73 (m, 3H, 1H arom. superimposed to 2H 

NH2), 3.73 (s, 3H, OCH3), 1.75 (s, 6H, 2 C(4) CH3). 13C NMR (50 MHz, DMSO-d6) 154.7, 

154.4, 144.3, 124.7, 116.0, 109.3, 106.1, 100.3, 68.9, 55.0, 28.1. The signals of the isomer 

5a are only in part distinguishable in the 1H NMR spectrum since they are partially 

superimposed to the 5b, which appeared to be formed in major quantity.  Anal. calcd 

for C12H14N5O: C 58.76, H 6.16, N 28.55; found: C 59.03, H 6.22, N 28.93. 

 

2-Amino-7(8)-trifluoromethyl-3,4-dihydrotriazino[1,2-a]benzimidazole (6a,b) 
Yield: 20%, M.p. 259-261°C. 1H NMR (200 MHz, DMSO-d6): δ 7.89 (broad s, 1H, NH), 7.53 

(s, 1H, arom.), 7.36 (d, J=5.8Hz, 1H, arom.), 7.23 (d, J=7.4Hz, 1H, arom.), 6.55 (s, 2H, NH2), 

1.80 (s, 6H, 2 C(4) CH3). 13C NMR (50 MHz, DMSO-d6): 155.2, 143.3, 132.9, 130.0, 115.5, 

115.2, 112.0, 109.4, 105.8, 69.3, 28.0. The signals of the isomer 6a are only in part 

distinguishable in the 1H NMR spectrum since they are partially superimposed to the 

6b, which appeared to be formed in major quantity. Anal. calcd for C12H12F3N5: C 

50.88, H 4.74, N 24.72; found: C 50.82, H 4.53, N 24.75. 

 

2-Amino-7,9-dichloro-3,4-dihydrotriazino[1,2-a]benzimidazole (7)  

Yield: 89%, M.p. 283.2-283.7 °C. 1H NMR (200 MHz, DMSO-d6): δ 7.70 (s, 1H, NH), 7.43 

(s, 1H, arom.), 7.13 s, 1H, arom.), 6.44 (s, 2H, NH2), 1.76 (s, 6H, 2 C(4) CH3). 13C (50 MHz, 

DMSO-d6): 155.2, 154.0, 139.6, 131.7, 122.4, 119.8, 119.6, 108.0, 69.4, 27.8. Anal. calcd for 

C11H11N5Cl2: C 46.50, H 3.90, N 24,65; found: C 46.68, H 3.71, N 24,71. 
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10.1.3.2 General procedure for the synthesis of intermediates I-VII 

The properly substituted 1,2-phenylendiamine (1,4 mmol) and dicyandiamide (1,4 

mmol) were dissolved in 5 mL of H2O and 0.23 mL (1,4 mmol) of HCl conc. were slowly 

added to the obtained solution. The mixture was heated to reflux for 6h under 

magnetic stirring. After cooling to r.t, the solution was alkalinized with 6M NaOH 

inducing the precipitation of an amorphous solid, which was either recrystallized from 

Et2O (I) or purified by CC (SiO2/Et2O+10% MeOH) (II-VII), to afford the final product. 

 

2-Guanidinebenzimidazole (I)  
Yield: 59%. M.p. 237-240°C (m.p. reported in literature 243-244 °C)181.  

 

5(6)-Chloro-2-guanidinebenzimidazole (II) 

Yield: 40%. M.p. 208-211 °C (m.p. reported in literature 207 °C)181. Anal. calcd for 

C8H8ClN5 · 2HCl: C 34.01, H 3.57, N 24.79; found: C 34.06, H 3.45, N 24.88. 

 

5(6)-Methoxy-2-guanidinebenzimidazole (III) 
Yield: 36%. M.p. 201.7-202.7 °C. Anal. calcd for C9H11N5O: C 52.67, H 5.40, N 34.13; found: 

C 52.63, H 5.45, N 34.43. 

 

5(6)-Trifluoromethyl-2-guanidinebenzimidazole (IV) 

Yield 38%. M.p. 200-203 °C. Anal. calcd for C9H9ClF3N5 · HCl: C 38.65, H 3.24, N 25.04; 

found: C 38.41, H 3.21, N 25.01.  

 

5,6-Dichloro-2-guanidinebenzimidazole (V) 

Yield: 70%. M.p. 236-240 °C (m.p. reported in literature 244°C)181. Anal. calcd for 

C8H7Cl2N5 · HCl: C 34.25, H 2.87, N 24.96; found: C 34.31, H 3.10, N 24.54.  

 

5,7-Dichloro-2-guanidinebenzimidazole (VI) 

Yield: 40%. M.p. 244-245.5 °C. Anal. calcd for C8H7Cl2N5: C 39.37, H 2.89, N 28.69; found: 

C 39.44, H 3.02, N 28.38.  
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5,6-Dimethyl-2-guanidinebenzimidazole (VII)  
Yield: 65%. M.p. 167.2-170 °C (m.p. reported in literature 191°C)181. Anal. calcd for 

C10H7N5Cl2: C 59.10, H 6.45, N 34.46; found: C 59.16, H 6.74, N 34.73. 
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10.1.4 Experimental section: synthesis of the anilino-based derivatives. 

 

10.1.4.1 General procedure for the synthesis of compounds 1-10 and 12-13. 

In a two-neck flask, to a solution of the proper aniline (2eq.) and dry DMF at r.t., the 

chloroalkyl derivative hydrochloride (1eq), K2CO3 (2eq.) and KI (0.1eq.) were 

sequentially added; dry DMF was further added and the suspension was stirred and 

heated at 90°C during 23h: at 90°C the suspension became a solution. After cooling 

down to room temperature, DCM was added in the flask and the organic layer was 

then washed three times with water in a separating funnel, dried over anhydrous 

Na2SO4 and filtered, then concentrated in vacuo to obtain the crude mixtures as 

yellow/brown oils. 

The crude products were purified by automatic CC (Teledyne Isco) using column: 

Silica 40g (Flow Rate: 40 ml/min), and gradient elution with Solvent A: hexane and 

increasing percentage of Solvent B: ethyl acetate yielding the expected products as 

yellow/transparent oils. The final products were dissolved in EtOAc and converted 

into the corresponding di- or monohydrochloride salts adding (2eq) of HCl 1N (in 

ether), kept precipitating overnight then collected by filtration obtaining the desired 

compounds as beige/white solids. 

 

N-[2-(Piperidin-1-yl)ethyl]-3,5-bis(trifluoromethyl)aniline hydrochloride (1) 

Yield: 32%. m.p. 170-171°C. IR: ν 3278, 2952, 2733, 2632, 2529, 1697, 1621, 1566, 1473, 

1381, 1274, 1168, 1112, 996, 970, 948, 888, 855, 730, 701, 681 cm-1. 1H NMR (400 MHz, 

CD3OD): δ 7.16 (m, 3H, arom.), 3.64 (t, J = 6,4Hz, 2H, -CH2—NH-Ar), 3.60 (dm, 2H, CH2 

piperidine), 3.35 (t, J = 6.4 Hz, 2H, —CH2-N-piperidine), 3.03 (td, J = 12.4 Hz, J’ = 2.8 Hz, 

2H, CH2 piperidine), 1.96 (m, 2H, CH2 piperidine), 1.76-1.90 (m, 3H, CH2 piperidine), 1.55 

(m, 1H, CH2 piperidine). 

 

3-Chloro-N-[2-(piperidin-1-yl)ethyl]aniline dihydrochloride (2) 

Yield: 60%. m.p. 154-156°C. IR: ν 3258, 2930, 2641, 2548, 1593, 1522, 1474, 1426, 1186, 

1104, 1080, 1042, 971, 841, 782, 688, 675 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 10.85 (s, 

1H, NH). 7.08 (t, J = 8Hz, 1H, H-arom. superimposed to NH+ signal, H(6)), 7.00-7.20 

(broad s, 2H+, NH+), 6.67 (t, J = 2Hz, 1H, H-arom., H(2)), 6.60 (m, 2H, H arom., H(4,5)), 3.47 

(t, J = 6.5 Hz, 2H, -CH2—NH-Ar), 3.38-3.44 (dm, 2H, CH2 piperidine), 3.10-3.18 (m, 2H, —
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CH2-N-piperidine), 2.81-2.94 (m, 2H, CH2 piperidine), 1.62-1.92 (m, 5H, CH2 piperidine), 

1.27-1.42 (m, 1H, CH2 piperidine). 13C NMR (100.5 MHz, DMSO-d6): 149.5, 134.2, 130.9, 

116.5, 112.1, 111.7, 54.7, 52.5 (2C), 37.7, 22.7 (2C), 21.8. Anal calcd. for C13H19ClN2 · 1.7HCl: 

C 51.92, H 6.94, N 9.31; found: C 52.02, H 6.94, N 9.19.  

 

N-[2-(Piperidin-1-yl)ethyl]-3-(trifluoromethyl)aniline dihydrochloride (3) 

Yield: 64%. m.p. 153-154°C. IR: ν 3053, 2963, 2660, 2560, 2269, 1481, 1457, 1425, 1325, 

1169, 1122, 1037, 1001, 961, 916, 860, 803, 738, 696, 659, 636 cm-1. 1H NMR (400 MHz, 

DMSO-d6): δ 10.88 (s, 1H, NH), 7.29 (t, J = 8Hz, 1H, H-arom.), 6.96-7.22 (broad s, 2H+, 

NH+), 6.88 (m, 3H, H-arom.), 3.52 (t, J = 6.4Hz, 2H, N-CH2 linker), 3.43 (d, J = 12Hz, 2H, 

CH2 piperidine), 3.16 (m, 2H, N-CH2 linker), 2.89 (m, 2H, CH2 piperidine), 1.62-1.92 

(complex signal, 5H, CH2 piperidine), 1.35 (qt, J = 12.5 Hz, J’ = 4 Hz 1H, CH2 piperidine). 
13C NMR (100.5 MHz, DMSO-d6): 148.7, 130.4, 126.3, 123.5, 116.2, 112.2, 108.7, 54.7, 52.5 

(2C), 37.6, 22.7 (2C), 21.8. Anal calcd. for C14H19F3N2 · 1.75 HCl: C 50.03, H 6.22, N 8.33; 

found: C 49.77, H 6.45, N 8.09. 

 

N-[2-(Piperidin-1-yl)ethyl]-3-nitroaniline hydrochloride (4) 

Yield: 54%. m.p. 183-185°C. IR: ν 3241, 2930, 2608, 2511, 1623, 1546, 1520, 1455, 1347, 

1272, 1200, 1079, 978, 849, 797, 737, 673 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 10.81 (s, 

1H, NH), 7.31-7.40 (complex signal, 3H, H-arom.), 7.08 (ddd, J = 7.6 Hz, J’ = 2.4 Hz, J’’ = 

1.6 Hz, 1H, H-arom.), 5.50 (broad s, 2H+, NH+), 3.55 (t, J = 6.4 Hz, 2H, N-CH2 linker), 3.45 

(d, J = 12 Hz, 2H, CH2 piperidine), 3.18 (q, J = 6.4 Hz, 2H, N-CH2 linker), 2.90 (m, 2H, CH2 

piperidine), 1.63-1.91 (complex signal, 5H, CH2 piperidine), 1.35 (qt, J = 12.8 Hz, J’ = 4 Hz, 

1H, CH2 piperidine). 13C NMR (100.5 MHz, DMSO-d6): 149.4, 149.3, 130.5, 119.0, 111.0, 

106.0, 54.6, 52.5 (2C), 37.6, 22.7 (2C), 21.8. Anal calcd. for C13H19N3O2 · HCl · 0.2 H2O: C 

53.96, H 7.11, N 14.52; found: C 53.82, H 6.86, N 14.74. 

 

3,4-Dichloro-N-[2-(piperidin-1-yl)ethyl]aniline hydrochloride (5) 

Yield: 60%. m.p. 219-220°C. IR: ν 3324, 2947, 2647, 2626, 2523, 2125, 1589, 1552, 1474, 

1433, 1394, 1385, 1358, 1199, 1131, 1113, 1090, 1034, 1014, 972, 879, 859, 838, 805, 707, 

644, 602 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 10.80 (s, 1H, NH), 7.25 (d, J = 8.8 Hz, 1H, 

H-arom.), 6.83 (d, J = 2,4 Hz, 1H arom.), 6.63 (dd, J = 8.8 Hz, J’ = 2.8 Hz, 1H, H-arom.), 5.44 

(broad s, 2H+, NH+),3.26-3.55 (complex signal, 4H, 2H N-CH2 linker and 2H CH2 

piperidine), 3.13 (q, J = 6 Hz, 2H, N-CH2 linker), 2.88 (m, 2H, CH2 piperidine), 1.60-1.95 
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(complex signal, 5H, CH2 piperidine), 1.34 (m, CH2 piperidine). 13C NMR (100.5 MHz, 

DMSO-d6): 148.4, 131.8, 131.0, 117.5, 113.4 (2C), 54.6, 52.5 (2C), 37.6, 22.8 (2C), 21.8. Anal 

calcd. for C13H19ClN2 · 1.5HCl: C 47.62, H 5.99, N 8.54; found: C 47.26, H 5.99, N 8.45. 

 

4-Methyl-N-[2-(piperidin-1-yl)ethyl]aniline dihydrochloride (6) 

Yield: 69%. m.p. 177-179°C. IR: ν 639, 706, 747, 769, 814, 870, 956, 971, 1005, 1026, 1106, 

1196, 1226, 1293, 1323, 1391, 1458, 1471, 1514, 2370, 2481, 2610, 2943 cm-1. 1H NMR (400 

MHz, DMSO-d6): δ 10.87 (s, 1H, NH), 7.18 (s, 4H, H-arom.), 6.64 (broad s, 2H+, NH+),3.65 

(t, J = 6.8 Hz, 2H, N-CH2 linker), 3.26-3.45 (pseudo s, 2H, CH2 piperidine), 3.35 (t, J = 6.8 

Hz, 2H, N-CH2 linker), 2.93 (pseudo s, 2H, CH2 piperidine), 2.25 (s, 3H, p-CH3), 1.59-1.90 

(complex signal, 5H, CH2 piperidine), 1.37 (pseudo s, CH2 piperidine). 13C NMR (100.5 

MHz, DMSO-d6): δ 138.2, 130.4, (3C), 119.5 (2C), 53.2, 52.9 (2C), 42.3, 22.8 (2C), 21.6, 20.8. 

Anal calcd. for C13H19ClN2 · 2HCl: C 57.73, H 8.31, N 9.62; found: C 57.80, H 8.37, N 9.64. 

 

4-Methoxy-N-[2-(piperidin-1-yl)ethyl]aniline dihydrochloride (7) 

Yield: 65%. m.p. 151.5-153.3°C. IR: ν 635, 702, 723, 819, 838, 926, 970, 989, 1032, 1083, 

1103, 1179, 1223, 1251, 1275, 1306, 1332, 1456, 1510, 1561, 1602, 2468, 2604, 2941, 2996 

cm-1. 1H NMR (400 MHz, DMSO-d6): δ 10.88 (s, 1H, NH), 7.41 (d, J = 8.8 Hz, 2H, CH-arom.), 

7.02 (dt, J = 8.8 Hz, J’ = 3.6 Hz, 2H, CH-arom.), 3.74 (s, 3H, O-CH3), 3.70 (t, J = 6.8 Hz, 2H, 

N-CH2 linker), 3,47 (pseudo s, 2H, CH2 piperidine), 3.41 (t, J = 6.8 Hz, 2H, N-CH2 linker, 

superimposed CH2 piperidine signal), 2.96 (pseudo s, 2H, CH2 piperidine), 1.23-1.91 

(complex signal, 6H, CH2 piperidine). 13C NMR (100.5 MHz, DMSO-d6): δ 158.3, 122.8, 

115.4 (4C), 56.0, 53.0 (2C), 52.7 (2C) 43.9, 22.8 (2C), 21.6. Anal calcd. for C14H22N2O · 2HCl 

· 0.5H2O: C 53.17, H 7.97, N 8.86; found: C 53.06, H 7.78, N 8.72. 

 

3,5-Dichloro-N-[2-(pyrrolidin-1-yl)ethyl]aniline dihydrochloride (8) 

Yield: 13% m.p. 147-150°C. IR: ν 671, 806, 849, 937, 983, 1093, 1119, 1136, 1285, 1311, 1433, 

1454, 1480, 1527, 1589, 2488, 2593, 2954, 3060, 3264 cm-1. 1H NMR (400 MHz, DMSO-

d6): δ 10.98 (s, 1H, NH), 6.64 (s, 3H, CH-arom.), 4.31 (broad s, 2H+, NH+), 3.54 (m, 2H, N-

CH2 pyrrolidine), 3.45 (t, J = 6 Hz, 2H, N-CH2 linker), 3.24 (q, J = 11.6 Hz, J’ = 6 Hz, 2H, N-

CH2 linker), 2.97 (m, 2H, CH2 pyrrolidine), 1.74-2.03 (complex signal, 4H, CH2 

pyrrolidine). 13C NMR (100.5 MHz, DMSO-d6): δ 150.6, 135.0 (2C), 115.5, 110.8 (2C), 53.4, 

52.6, 39.0, 23.0 (2C). Anal calcd. for C12H16Cl2N2 · 2HCl · 3.5 H2O: C 36.47, H 6.38, N 7.09; 

found: C 36.25, H 6.13, N 6.75. 
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N-[2-(Azepan-1-yl)ethyl]-3,5-dichloroaniline hydrochloride (9) 

Yield: 76%. m.p. 177-179°C. IR: ν 674, 802, 827, 841, 867, 881, 926, 991, 1002, 1043, 1082, 

1091, 1116, 1139, 1324, 1389, 1431, 1454, 1478, 1531, 1593, 2424, 2522, 2600, 2618, 2700, 

2942, 3058, 3271 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 10.85 (s, 1H, NH), 6.65 (d, J = 1.6 

Hz, 1H, CH-arom.), 6.63 (t, J = 1.6 Hz, 1H, CH-arom.), 6.46 (broad s, 2H+, NH+), 3.48 (t, J = 

6 Hz, 2H, N-CH2 linker), 3.36 (m, 2H, N-CH2 azepine), 3.19 (q, J = 12 Hz, J’ = 6.4 Hz, 2H, 

N-CH2 linker), 3.10 (m, 2H, CH2 azepine), 1.71-1.94 (complex signal, 4H, CH2 azepine), 

1.64 (m, 2H, CH2 azepine), 1.54 (m, 2H, CH2 azepine). 13C NMR (100.5 MHz, DMSO-d6): δ 

150.6, 134.9 (2C), 115.4, 110.8 (2C), 55.0, 54.1 (2C), 37.8, 26.4 (2C), 23.2. Anal calcd. for 

C14H20Cl2N2 · HCl: C 51.95, H 6.54, N 8.65; found: C 51.76, H 6.50, N 8.53. 

 

3,5-Dichloro-N-[2-(piperidin-1-yl)propyl]aniline dihydrochloride (10) 

Yield: 12%. m.p. 180-182°C. IR: ν 626, 675, 757, 805, 860, 947, 958, 1003, 1021, 1102, 1117, 

1195, 1211, 1295, 1433, 1469, 1516, 1591, 2409, 2558, 2645, 2943, 3287 cm-1. 1H NMR (400 

MHz, DMSO-d6): δ 10.60 (s, 1H, NH), 6.58 (pseudo s, 3H, CH arom.), 5.87 (broad s, 2H+, 

NH+), 3.34 (d, J = 12.4 Hz, 2H, N-CH2 piperidine), 2.99-3.10 (complex signal, 4H, N-CH2 

linker), 2.80 (m, 2H, CH2 piperidine), 1.94 (m, 2H, CH2 linker), 1.60-1.87 (complex signal, 

5H, CH2 piperidine), 1.34 (m, 1H, CH2 piperidine). 13C NMR (100.5 MHz, DMSO-d6): δ 151.1, 

134.8 (2C), 114.8, 110.6 (2C), 54.3, 52.4 (2C), 40.2, 23.0, 22.6 (2C), 21.8. Anal calcd. for 

C14H20Cl2N2 · 2HCl · 0.5H2O: C 45.55, H 6.28, N 7.59; found: C 45.37, H 6.27, N 7.35. 

 

3-Chloro-5-methyl-N-[2-(piperidin-1-yl)ethyl]aniline dihydrochloride (12) 

Yield: 68%. m.p. 183-185°C. IR: ν 606, 678, 687, 845, 857, 880, 904, 959, 971, 996, 1042, 

1061, 1092, 1120, 1198, 1387, 1398, 1427, 1439, 1465, 1481, 1586, 1622, 1699, 2129, 2541, 

2631, 2646 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 10.86 (s, 1H, NH), 8.03 (broad s, 2H+, 

NH+), 6.50 (t, J = 2 Hz, 1H, CH arom., H(4)), 6.44 (d, J = 2.2 Hz, 2H, CH arom., H(2,6)), 3.45 

(t, J = 6.4 Hz, 2H, N-CH2 linker, superimposed), 3.41 (d, J = 12.8 Hz, 2H, CH2 piperidine, 

superimposed), 3.13 (m, 2H, CH2 linker), 2.88 (m, 2H, CH2 piperidine), 2.16 (s, 3H, arom-

CH3), 1.61-1.92 (complex signal, 5H, CH2 piperidine), 1.34 (dt, J = 12.8 Hz, J’ = 3.6 Hz, 1H, 

CH2 piperidine). 13C NMR (100.5 MHz, DMSO-d6): δ 149.1, 140.7, 133.9, 117.6, 112.4, 109.7, 

54.7, 52.5 (2C), 37.8, 22.7 (2C), 21.8, 21.4. Anal calcd. for C14H21ClN2 · 2HCl: C 51.63, H 7.12, 

N 8.60; found: C 51.57, H 7.09, N 8.36. 
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3-(pentafluoro-6-sulfaneyl)-N-(2-(piperidin-1-yl)ethyl)aniline hydrochloride (13) 

Yield: 17%. m.p. 183-185°C. IR: ν 644, 684, 777, 806, 827, 845, 906, 949, 963, 1010, 1272, 

1309, 1339, 1346, 1456, 1480, 1535, 1610, 1671, 2541, 2636, 2936, 2957, 3270 cm-1. 1H 

NMR (400 MHz, DMSO-d6): δ 10.68 (s, 1H, NH), 7.30 (t, J = 8 Hz, 1H, CH arom., H(5)), 7.04 

(t, J = 2 Hz, 1H, CH arom., H(2)), 7.00 (dd, J = 8 Hz, J’ = 2 Hz, 1H, CH arom., H(6)), 6.90 (m, 

1H, CH arom., H(4)), 6.68 (broad s, 2H+, NH+), 3.51 (m, 2H, N-CH2 linker), 3.44 (m, 2H, CH2 

piperidine), 3.15 (m, 2H, CH2 linker), 2.88 (m, 2H, CH2 piperidine), 1.60-1.93 (complex 

signal, 5H, CH2 piperidine), 1.35 (m, 1H, CH2 piperidine). 13C NMR (100.5 MHz, DMSO-

d6): δ 148.9, 134.4, 130.2, 115.5, 113.3, 109.7, 54.7, 52.5 (2C), 37.6, 22.7 (2C), 21.8. Anal calcd. 

for C13H19F5N2S · HCl: C 42.57, H 5.50, N 7.64; found: 42.86, 5.51, 7.30. 

 

10.1.4.2 General procedure for the synthesis of compounds 11 and 14 

Sodium hydroxide (20 mmol, 2eq) was refluxed in ethanol (150 mL) for 30 minutes. 

To the resulting solution (10 mmol, 1eq), the required phenol or thiophenol was 

added and the resulting mixture further refluxed for 1h. Then a solution of 1-(2-

chloroethyl)piperidine hydrochloride (10 mmol, 1eq) in 35 mL of EtOH was added to 

the basic solution and the reaction mixture was refluxed for further 3h.  The reaction 

mixture was cooled down and poured into 125 mL of cold water then extracted four 

times with DCM. The organic layer was then washed four times with water, dried over 

anhydrous Na2SO4, filtered and concentrated in vacuo, obtaining the crude product 

as a transparent oil. The crude product was purified by automatic CC (Teledyne 

Isco®) using column: Silica 40g (Flow Rate: 40 ml/min), and gradient elution with 

Solvent A: hexane and increasing percentage of Solvent B: ethyl acetate. The 

fractions containing the expected product were concentrated in vacuo to obtain the 

final product as a transparent oil. The oils were dissolved in EtOAc then converted 

into the corresponding hydrochloride salts adding (1eq) of HCl 1N (ether). 

 

1-[2-(3,5-Dichlorophenoxy)ethyl]piperidine hydrochloride (11) 

Yield 82%. m.p. 196.3-198°C. IR: ν 633, 675, 799, 829, 857, 883, 911, 957, 978, 1015, 1038, 

1073, 1108, 1221, 1260, 1301, 1380, 1424, 1445, 1477, 1572, 1757, 2506, 2585, 2617, 2927, 

2949, 2992, 3051, 3293 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 11.02 (s, 1H, NH), 7.18 (t, J 

= 1.8 Hz, 1H, CH arom., H(4)), 7.11 (d, J = 1.8 Hz, 2H, CH arom., H(2,6)), 4.48 (t, J = 5.1 Hz, 

2H, O-CH2 linker), 3.36-3.49 (complex signal, 4H, 2H N-CH2 linker and 2H CH2 

piperidine), 2.95 (m, 2H, CH2 piperidine), 1.61-1.91 (complex signal, 5H, CH2 piperidine), 
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1.35 (m, 1H, CH2 piperidine). 13C NMR (100.5 MHz, DMSO-d6): δ 159.4, 135.1 (2C), 121.4, 

114.6 (2C), 63.6, 54.7, 52.9 (2C), 22.7 (2C), 21.6. Anal calcd. for C13H17Cl2NO · HCl: C 50.26, 

H 5.84, N 4.51; found: C 50.29, H 5.61, N 4.36. 

 

1-{2-[(3,5-Dichlorophenyl)thio]ethyl}piperidine hydrochloride (14) 

Yield: 90%. m.p. 201-202°C. IR: ν 661, 720, 783, 802, 848, 862, 888, 906, 966, 988, 1002, 

1109, 1152, 1196, 1208, 1293, 1321, 1378, 1401, 1424, 1442, 1473, 1559, 1570, 2224, 2245, 

2499, 2604, 2662, 2949, 3045, 3207 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 11.11 (s, 1H+, 

NH+), 7.48 (d, J = 1.8 Hz, 2H, CH arom.), 7.42 (t, J = 1.8 Hz, 1H, CH arom.), 3.54 (m, 2H, S-

CH2 linker), 3.46 (d, J = 11.6 Hz, 2H, N-CH2 piperidine), 3.17 (m, 2H, N-CH2 linker), 2.85 (m, 

2H, CH2 piperidine), 1.63-1.85 (complex signal, 5H, CH2 piperidine), 1.34 (m, 1H, CH2 

piperidine). 13C NMR (100.5 MHz, DMSO-d6): δ 139.6, 135.1 (2C), 126.1, 125.9 (2C), 54.5, 

52.2 (2C), 25.3 (2C), 22.8, 21.8. Anal calcd. for C13H17Cl2NS · HCl: C 47.79, H 5.55, N 4.29; 

C 47.95, H 5.29, N 4.14. 

  



147 
 
 

 

 

10.1.5 Experimental section: synthesis of the benzenesulfonamides. 

 

10.1.5.1 General method for the synthesis of compounds 15-27. 

In a 100 mL two-necks round bottom flask, 0,20 mL of the key amine were dissolved 

in 10 anhydrous DCM; 0.20 mL of Et3N were added then the solution was cooled 

down to 0°C in an ice bath. A solution of the opportune benzene sulfonyl chloride in 

5 mL anhydrous DCM was slowly added, then the ice bath was removed and the 

mixture was left stirring at room temperature for 5h. 

The crude mixture was purified by flash chromatography (silica/DCM:0-2%MeOH) or 

(silica/hexane:0-50%EtOAc) in the case of compounds 15 and 16, affording the final 

compounds as light-yellow transparent oils. Compounds 15, 18, 22, 26, were 

crystallised from ether/hexane while compounds 16, 17, 19-21, 23-25, 27 and a small 

portion of compound 18, were converted into the corresponding monohydrochloride 

salts with 1.5 eq. of HCl 1N in MeOH. 

 

4-Bromo-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (15)191. 

Yield: 60%. m.p. 94-95°C. IR: ν 3278, 2936, 2858, 2726, 1575, 1466, 1410, 1389, 1342, 1318, 

1277, 1251, 1207, 1156, 1127, 1090, 1065, 1010, 964, 869, 835, 820, 758, 736, 704, 612 cm-

1. 1H NMR (400 MHz, CDCl3): δ 7.74 (d, J = 8.7 Hz, 2H, H(3,5)arom.), 7.66 (d, J = 8.8 Hz, 2H, 

H(2,6)arom.), 2.97 (t, J = 5.8 Hz, 2H, SO2NH—CH2), 2.35 (t, J = 5.8 Hz, 2H, —CH2CH2—N 

piperidine), 2.20 (pseudo s, 4H, N-CH2 piperidine), 1.48 (t, J = 4.8 Hz, 4H, CH2— 

piperidine), 1.41 (pseudo s, 2H, CH2— piperidine). 13C NMR (100.5 MHz, CDCl3): δ 138.77, 

132.28 (2C), 128.65 (2C), 127.43, 56.06, 53.86 (2C), 39.27, 25.87 (2C), 24.17. Anal. calcd. for 

C13H19BrN2O2S · 0.1 H2O · 0.1 C6H14: C, 45.67; H, 5.80; N, 7.83; found: 45.67; H, 5.76; N, 

7.87.  

 

3-(Trifluoromethyl)-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide hydrochloride 

(16)182. 

Yield: 42%. m.p. 174-176°C. IR: ν 3046, 2947, 2856, 2621, 2537, 1610, 1440, 1325, 1310, 

1159, 1124, 1104, 1069, 1042, 1009, 967, 906, 863, 820, 803, 777, 728, 690, 652, 606 cm-

1. 1H NMR as free base (400 MHz, CDCl3): δ 8.16 – 8.12 (m, 1H, H(2)arom.), 8.07 (ddq, J = 

7.8, 1.7, 0.5 Hz, 1H, H(6)arom.), 7.84 (m, 1H, H(4)arom.), 7.68 (tt, J = 7.9, 0.6 Hz, 1H, 
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H(5)arom.), 2.99 (t, J = 5.8 Hz, 2H, SO2NH—CH2), 2.40-2.30 (m, 2H, ,—CH2CH2—N 

piperidine), 2.19 (pseudo s, 4H, N-CH2 piperidine), 1.48 (p, J = 5.5 Hz, 4H, CH2— 

piperidine), 1.44-1.35 (m, 2H, CH2— piperidine). Anal. calcd. for C13H19BrN2O2S: C, 45.10; 

H, 5.41; N, 7.51; found: 45.37; H, 5.68; N, 7.47. 

 

3,5-Dichloro-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (17)  

Yield: 85%. m.p. (hydrochloride) 188-189°C. IR (hydrochloride): ν 3038, 2956, 2861, 

2645, 2554, 1765, 1570, 1445, 1415, 1387, 1339, 1329, 1294, 1248, 1199, 1160, 1139, 1096, 

999, 958, 946, 872, 863, 841, 799, 766, 668 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.75 (d, J 

= 1.9 Hz, 2H, H(2,6)arom.), 7.55 (t, J = 1.9 Hz, 1H, H(4)arom.), 3.00 (t, J = 5.6 Hz, 2H, 

SO2NH—CH2), 2.37 (t, J = 5.8 Hz, 2H, —CH2CH2—N piperidine), 2.22 (pseudo s, 4H, N-

CH2 piperidine), 1.51 (p, J = 5.5 Hz, 4H, CH2—piperidine), 1.42 (d, J = 5.2 Hz, 2H, CH2—

piperidine). 13C NMR (100.5 MHz, CDCl3): δ 142.75, 136.01 (2C), 132.48, 125.48 (2C), 55.92, 

53.90 (2C), 39.31, 25.89 (2C), 24.18. Anal. calcd for C13H19Cl3N2O2S: C 41.78, H 5.12, N 7.50; 

found: C 42.02, H 5.27, N 7.43. 

 

3-Bromo-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (18) 

Yield: 94%. m.p. 47-48.5°C. IR (hydrochloride): ν 3040, 2956, 2865, 2646, 2553, 1770, 

1758, 1570, 1446, 1414, 1386, 1340, 1329, 1293, 1248, 1167, 1139, 1096, 998, 958, 884, 863, 

841, 797, 675, 657 cm-1. 1H NMR (400 MHz, CDCl3): δ 8.02 (t, J = 1.8 Hz, 1H, H(2)arom.), 

7.81 (ddd, J = 7.8, 1.7, 1.0 Hz, 1H, H(6)arom.), 7.70 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H, H(4)arom.), 

7.40 (t, J = 7.9 Hz, 1H, H(5)arom.), 3.00 (t, J =5.7 Hz, 2H, SO2NH—CH2), 2.37 (t, J = 5.7 Hz, 

2H, ,—CH2CH2—N piperidine), 2.23 (pseudo s, 4H, N-CH2 piperidine), 1.51 (p, J = 5.5 Hz, 

4H, CH2—piperidine), 1.46 – 1.35 (m, 2H, CH2—piperidine). 13C NMR (100.5 MHz, CDCl3): 

δ 141.58, 135.55, 130.52, 129.97, 125.61, 123.04, 56.03, 53.89 (2C), 39.25, 25.79 (2C), 24.10. 

Anal. calcd for C13H19BrN2O2S · HCl: C 40.69, H 5.25, N 7.30; found: C 40.70, H 5.21, N 

6.74. The melting point, 1H and 13C spectra have been obtained from the free base. 

 

3-Nitro-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (19) 

Yield: 86%. m.p. (hydrochloride) 167-168°C. IR (hydrochloride): ν 3083, 2947, 2723, 

2692, 2649, 1608, 1532, 1421, 1400, 1351, 1172, 1123, 1069, 1011, 988, 957, 907, 880, 808, 

764, 734, 698, 670 cm-1. 1H NMR (400 MHz, CDCl3): δ 8.72 (t, J = 2.0 Hz, 1H, H(2)arom.), 

8.44 (ddd, J = 8.0, 2.2, 1.2 Hz, 1H, H(4)arom.), 8.22 (ddd, J = 7.8, 1.7, 1.1 Hz, 1H, H(6)arom.), 

7.76 (t, J = 8.0 Hz, 1H, H(5)arom.), 3.90 (broad s, 2H, NH and NH+), 3.04 (t, J = 5.8 Hz, 2H, 



149 
 
 

 

SO2NH—CH2), 2.39 (t, J = 5.7 Hz, 2H, ,—CH2CH2—N piperidine), 2.23 (pseudo s, 4H, N—

CH2 piperidine), 1.49 (p, J = 5.5 Hz, 4H, —CH2 piperidine), 1.45 – 1.35 (m, 2H, —CH2 

piperidine). 13C NMR (100.5 MHz, CDCl3): δ 148.30, 142.22, 132.59, 130.44, 126.98, 122.25, 

56.18, 53.93 (2C), 39.37, 25.78 (2C), 24.11. Anal. calcd for C13H19N3O4S · HCl: C 44.63, H 

5.76, N 12.01; found: C 44.84, H 5.96, N 11.87. 

 

3-Bromo-N-(2-(piperidin-1-yl)ethyl)-5-(trifluoromethyl)benzensulfonamide (20) 

Yield: 53%. m.p. (hydrochloride) 204-205°C. IR (hydrochloride): ν 3044, 2943, 2617, 2529, 

1429, 1333, 1306, 1187, 1160, 1136, 1098, 1010, 955, 933, 889, 836, 782, 688, 636 cm-1. 1H 

NMR (400 MHz, CDCl3): δ 8.22-8.18 (m, 1H, H(6)arom.), 8.12 – 8.02 (m, 1H, H(2)arom.), 

7.97 – 7.92 (m, 1H, H(4)arom.), 3.02 (t, J = 5.8 Hz, 2H, SO2NH—CH2), 2.39 (t, J = 5.8 Hz, 2H, 

,—CH2CH2—N piperidine), 2.24 (pseudo s, 4H, N—CH2 piperidine), 1.51 (p, J = 5.5 Hz, 4H, 

—CH2 piperidine), 1.46 – 1.35 (m, 2H, —CH2 piperidine). 13C NMR (100.5 MHz, CDCl3): δ 

142.95, 133.28, 132.24, 123.64, 122.66, 120.95, 55.98, 53.92 (2C), 42.66, 39.28, 25.78 (2C), 

24.10. Anal. calcd for C14H18BrF3N2O2S · HCl: C 37.22, H 4.24, N 6.20; found: C 37.56, H 

4.57, N 6.14. 

 

3-Fluoro-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (21) 

Yield: 86%. m.p. (hydrochloride) 185-186°C. IR (hydrochloride): ν 3059, 2955, 2854, 

2648, 1590, 1471, 1419, 1328, 1304, 1271, 1225, 1153, 1122, 1085, 1073, 1010, 987, 956, 906, 

888, 874, 819, 786, 754, 713, 677 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.67 (ddd, J = 7.8, 

1.7, 1.0 Hz, 1H, H(2)arom.), 7.58 (dddd, J = 8.2, 1.8, 0.4 Hz, 1H, H(6)arom.), 7.51 (tdd, J = 8.2, 

5.2, 0.4 Hz, 1H, H(3)arom.), 7.28 (tdd, J =8.4, 2.8, 1.0 Hz, 1H, H(4)arom.), 2.99 (t, J = 5.8 Hz, 

2H, SO2NH—CH2), 2.35 (t, J = 5.8 Hz, 2H, ,—CH2CH2—N piperidine), 2.19 (pseudo s, 4H, 

N—CH2 piperidine), 1.48 (p, J = 5.5 Hz, 4H, —CH2 piperidine), 1.43 – 1.36 (m, 2H, —CH2 

piperidine). 13C NMR (100.5 MHz, CDCl3): δ 162.47, 141.83, 130.82, 122.82, 119.60, 114.47, 

56.05, 53.85 (2C), 39.32, 25.84 (2C), 24.16. Anal. calcd for C13H19FN2O2S · HCl: C 48.37, H 

6.24, N 8.68; found: C 48.73, H 6.59, N 8.56. 

 

3,5-Difluoro-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (22) 

Yield: 90%. m.p. 61-62°C. IR: ν 3307, 3091, 2940, 2847, 2632, 1604, 1439, 1416, 1328, 1294, 

1155, 1124, 1087, 1039, 987, 964, 873, 861, 812, 757, 673, 620 cm-1. 1H NMR (400 MHz, 

CDCl3): δ 7.43 – 7.40 (m, 2H, H(2,6)arom.), 7.03 (tt, J = 8.5, 2.3 Hz, 1H, H(4)arom.), 3.05 – 

3.01 (t, J = 5.8 Hz, 2H, SO2NH—CH2CH2—), 2.44 – 2.39 ((t, J = 5.8 Hz, 2H,—CH2CH2—N 
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piperidine), 2.27 (pseudo s, 4H, N—CH2 piperidine), 1.53 (p, J = 5.6 Hz, 4H, —CH2 

piperidine), 1.43 (m, 2H, —CH2 piperidine). 13C NMR (100.5 MHz, CDCl3): δ 164.08, 161.54, 

143.23, 110.59 (2C), 108.08, 56.14, 53.94 (2C), 39.21, 25.68 (2C), 24.04. Anal. calcd for 

C13H18F2N2O2S: C 51.30, H 5.96, N 9.20; found: C 51.31, H 6.13, N 9.06. 

 

3-Fluoro-N-(2-(piperidin-1-yl)ethyl)-5-(trifluoromethyl)benzenesulfonamide (23) 

Yield: 91%. m.p. (hydrochloride) 164-165°C. IR (hydrochloride): ν 3018, 2950, 2859, 2641, 

2552, 1599, 1442, 1332, 1217, 1183, 1156, 1096, 1079, 995, 959, 934, 883, 868, 842, 696, 

672, 640, 604 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.94 (pseudo s, 1H, H(6)arom.), 7.79 

(dt, J = 7.6, 1.6 Hz, 1H, H(2)arom.), 7.54 (d, J = 8 Hz, 1H, H(4)arom.), 3.02 (t, J = 5.8 Hz, 2H, 

SO2NH—CH2), 2.38 (t, J = 5.6 Hz, 2H, ,—CH2CH2—N piperidine), 2.23 (pseudo s, 4H, N—

CH2 piperidine), 1.50 (p, J = 5.5 Hz, 4H, —CH2 piperidine), 1.45 – 1.39 (m, 2H, —CH2 

piperidine). 13C NMR (100.5 MHz, CDCl3): δ 163.54, 161.01, 143.57, 119.78, 117.96, 116.90, 

56.00, 53.89 (2C), 39.31, 25.78 (2C), 24.12. Anal. calcd for C14H18F4N2O2S · HCl: C 54.38, H 

3.95, N 4.23; found: C 54.56, H 4.13, N 4.13. 

 

N-(2-(Piperidin-1-yl)ethyl)-3,5-bis(trifluoromethyl)benzenesulfonamide (24) 

Yield: 93%. m.p. (hydrochloride) 203-205°C. IR (hydrochloride): ν 3030, 2948, 2639, 

2619, 2537, 1627, 1417, 1359, 1335, 1320, 1275, 1200, 1179, 1160, 1127, 1097, 1010, 995, 

956, 934, 905, 838, 771, 728, 697, 678, 624 cm-1. 1H NMR (400 MHz, CDCl3): δ 8.82 – 

8.29 (m, 2H, H(2,6)arom), 8.07 (pseudo s, 1H, H(4)arom.), 3.04 (t, J = 5.8 Hz, 2H, SO2NH—

CH2), 2.47 (t, J = 5.8 Hz, 2H, ,—CH2CH2—N piperidine), 2.24 (pseudo s, 4H, N—CH2 

piperidine), 1.50 (p, J = 5.5 Hz, 4H, —CH2 piperidine), 1.45 – 1.38 (m, 2H, —CH2 piperidine). 
13C NMR (100.5 MHz, CDCl3): δ 142.93, 132.93 (2C), 127.33 (2C), 126.05, 123.82, 121.10, 

55.99, 53.89 (2C), 39.29, 25.74 (2C), 24.09. Anal. calcd for C15H18F6N2O2S · HCl · 0.1 C6H14: 

C 41.69, H 4.57, N 6.23; found: C 41.31, H 4.90, N 6.25. 

 

3-Chloro-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (25) 

Yield: 88%. m.p. (hydrochloride) 175-176°C. IR (hydrochloride): ν 3066, 2952, 2861, 

2649, 2580, 2539, 1579, 1456, 1415, 1343, 1320, 1293, 1243, 1203, 1168, 1154, 1123, 1074, 

1010, 986, 958, 893, 828, 787, 700, 677, 669 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.87 (td, 

J = 1.8, 0.4 Hz, 1H, H(2)arom.), 7.77 (ddd, J = 7.7, 1.7, 1.1 Hz, 1H, H(6)arom.), 7.55 (ddd, J = 

8.0, 2.0, 1.1 Hz, 1H, H(4)arom.), 7.49 – 7.43 (td, J = 8.0, 0.4 Hz, 1H, H(5)arom.), 3.00 (t, J = 

5.8 Hz, 2H, SO2NH—CH2), 2.38 (t, J = 5.8 Hz, 2H, —CH2CH2—N piperidine), 2.23 (pseudo 
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s, 4H, N—CH2 piperidine), 1.51 (p, J = 5.5 Hz, 4H, —CH2 piperidine), 1.44 – 1.33 (m, 2H, —

CH2 piperidine). 13C NMR (100.5 MHz, CDCl3): δ 141.46, 135.26, 132.65, 130.32, 127.17, 

125.18, 56.08, 53.90 (2C), 39.25, 25.74 (2C), 24.08. Anal. calcd for C13H19ClN2O2S · HCl: C 

46.02, H 5.94, N 8.26; found: C 46.27, H 5.89, N 8.13. 

 

3-Bromo-5-chloro-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (26) 

Yield: 78%. m.p. 74-75°C. IR: ν 3090, 3035, 2928, 2851, 2805, 1562, 1494, 1445, 1411, 1333, 

1295, 1271, 1210, 1152, 1126, 1095, 1066, 1042, 1028, 989, 879, 858, 782, 759, 664 cm-1. 
1H NMR (400 MHz, CDCl3): δ 7.90 (t, J = 1.6 Hz, 1H, H(2)arom.), 7.79 (t, J = 1.6 Hz, 1H, 

H(6)arom.), 7.70 (t, J = 1.8 Hz, 1H, H(4)arom.), 3.00 (t, J = 5.8 Hz, 2H, SO2NH—CH2), 2.37 (t, 

J = 5.8 Hz, 2H, —CH2CH2—N piperidine), 2.23 (pseudo s, 4H, N—CH2 piperidine), 1.52 (p, 

J = 5.5 Hz, 4H, —CH2 piperidine), 1.45 – 1.17 (m, 2H, —CH2 piperidine). 13C NMR (100.5 

MHz, CDCl3): δ 142.88, 136.10, 135.25, 128.26, 125.92, 123.44, 55.95, 53.92 (2C), 39.31, 25.88 

(2C), 24.17. Anal. calcd for C13H18BrClN2O2S: C 40.91, H 4.75, N 7.34; found: C 41.29, H 

4.79, N 7.21. 

 

3-Cyano-N-(2-(piperidin-1-yl)ethyl)benzenesulfonamide (27) 

Yield: 52%. m.p. (hydrochloride) 176-177°C. IR (hydrochloride): ν 3040, 2967, 2946, 2828, 

2681, 2648, 2587, 2234, 1476, 1456, 1450, 1433, 1337, 1207, 1156, 1098, 1030, 967, 912, 

855, 800, 760, 685 cm-1. 1H NMR (400 MHz, CDCl3): δ δ 8.18 (t, J = 1.5 Hz, 1H, H(2)arom.), 

8.13 (dd, J = 7.9, 1.5 Hz, 1H, H(6)arom.), 7.86 (dt, J = 7.8, 1.4 Hz, 1H, H(4)arom.), 7.68 (t, J = 

7.9 Hz, 1H, H(5)arom.), 3.06 (t, J = 5.9 Hz, 2H, SO2NH—CH2), 2.48 (t, J = 5.8 Hz, 2H, —

CH2CH2—N piperidine), 2.34 (pseudo s, 4H, N—CH2 piperidine), 1.57 (p, J = 5.6 Hz, 4H, 

—CH2 piperidine), 1.49-1.41 (m, 2H, —CH2 piperidine). 13C NMR (100.5 MHz, CDCl3): δ 

141.69, 135.65, 131.04, 131.64, 130.17, 117.16, 113.62, 56.37, 54.01 (2C), 39.16, 25.42 (2C), 

23.83. Anal. calcd for C14H19N3O2S · HCl: C 50.98, H 6.11, N 12.74; found: C 51.05, H 6.24, 

N 12.54. 
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10.1.6 Experimental section: synthesis of the (thio)semicarbazone and 

hydrazone derivatives. 

 

10.1.6.1 General procedure for the preparation of thiosemicarbazones 1-9, 

18, 19, 21, 22. 

To a solution of the proper 5-acetyl benzimidazole (0.80 mmol) in ethanol (2 mL), a 

solution of thiosemicarbazide (0.85 mmol) in water (2.8 ml) and glacial acetic acid 

(0.22 ml) was added. The mixture was refluxed for 3h under stirring. The reaction 

mixture was then evaporated under vacuum, yielding an oily residue that was treated 

with warm water to get rid of the remaining thiosemicarbazide. The crude was 

purified by CC (SiO2, CH2Cl2+5% DEA), affording the final product as white solid. 

 

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-

yl}ethylidene)hydrazine-1-carbothioamide (1) 

Yield: 36%; m.p. 183-184°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.24 (s, 1H, 

NH2), 8.16 (s, 1H, H(4)benz.), 8.00-7.83 (m, 1H, H(7)benz.), 7.98 (s superimposed, 1H, 

NH2),  7.44 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.24 (d, J = 8.6 Hz, 2H, H(3′,5′)arom.), 6.90 (d, J = 

8.6 Hz, 2H, H(2′,6′)arom.), 4.32-4.08 (m, 4H, CH2-Ar and CH2CH2-N(CH3)2), 3.74 (s, 3H, -

OCH3), 2.38 (pseudo s, 5H, 3H CH3C=N- and 2H, CH2CH2-N(CH3)2), 2.13 (s, 6H, N(CH3)2). 
13C-NMR (50 MHz, DMSO-d6): 178.13, 157.63, 154.48, 148.55, 141.98, 135.97, 131.00 (2C), 

129.38 (2C), 128.22, 120.46, 116.96, 113.57 (2C), 109.37, 54.67, 45.00 (2C), 41.09, 31.88, 

13.99. Anal. calcd. for C22H28N6OS: % C 62.24, H 6.65, N 19.79, S 7.55; found: % C 62.44, 

H 6.67, N 19.80, S 7.16. 

 

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-dimethylamino)ethyl]-1H-benzo[d]imidazol-5-

yl]ethylidene}hydrazine-1-carbothioamide (2) 

Yield: 42%; m.p. 199-200.5°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.24 (s, 1H, 

NH2), 8.12 (s, 1H, H(4)benz.), 7.97 (s superimposed, 1H, NH2), 7.93 (d superimposed, J = 

9.2 Hz, 1H, H(7)benz.), 7.58-7.22 (m, 5H, H(6)benz. and H(2′,3′,5′,6′)arom.), 4.34 (s 

superimposed, 2H, CH2-Ar), 4.40-4.18 (m superimposed, 2H, CH2CH2-N(CH3)2), 2.37 

(pseudo s, 5H, 3H CH3C═N- and 2H, CH2CH2-N(CH3)2), 2.13 (s, 6H, N(CH3)2). 13C-NMR 

(50 MHz, DMSO-d6): 178.12, 153.82, 148.54, 142.00, 135.72, 135.61, 131.08, 130.87, 130.42 

(2C), 128.01 (2C), 120.91, 117.77, 109.82, 57.71, 45.06 (2C), 41.39, 32.01, 14.00. Anal. calcd. 
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for C21H25ClN6S: % C 58.80, H 5.87, N 19.59, S 7.47; found: % C 58.68, H 5.57, N 19.82, S 

7.11. 

 

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-ethoxybenzyl)-1H-benzo[d]imidazol-5-

yl}ethylidene)hydrazine-1-carbothioamide (3) 

Yield: 47%; m.p. 177-180°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.23 (s, 1H, 

NH2), 8.11 (s, 1H, H(4)benz.), 7.96 (s superimposed, 1H, NH2), 7.92 (d superimposed, J = 

8.6 Hz, 1H, H(7)benz.), 7.45 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.19 (d, J = 7.6 Hz, 2H, 

H(3′,5′)arom.), 6.87 (d, J = 8.0 Hz, 2H, H(2′,6′)arom.), 4.24 (pseudo s, 4H, CH2-Ar and 

CH2CH2-N(CH3)2), 3.98 (d, J = 6.2 Hz, 2H, OCH2CH3), 2.37 (pseudo s, 5H, 3H CH3C═N- 

and 2H, CH2CH2-N(CH3)2), 2.12 (s, 6H, N(CH3)2), 1.41-1.18 (m, 3H, OCH2CH3). 13C-NMR (50 

MHz, DMSO-d6): 178.20, 156.87, 154.44, 148.58, 141.84, 135.79, 130.99 (2C), 129.36 (2C), 

128.15, 120.42, 117.02, 114.04 (2C), 109.31, 62.54, 57.46, 45.03 (2C), 41.21, 31.91, 14.25, 14.00. 

Anal. calcd. for C23H30N6OS: % C 62.99, H 6.09, N 19.16, S 7.30; found: % C 63.12, H 6.48, 

N 19.16, S 7.07. 

 

2-{1-[2-(4-Chlorobenzyl)-1-[3-(N,N-dimethylamino)propyl]-1H-benzo[d]imidazol-5-

yl]ethylidene}hydrazine-1-carbothioamide (4) 

Yield: 45%; m.p. 110-111°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.26 (s, 1H, 

NH2), 8.13 (s, 1H, H(4)benz.), 7.97 (s superimposed, 1H, NH2), 8.10-7.87 (m 

superimposed, 1H, H(7)benz.), 7.47 (d superimposed, J = 8.6 Hz, 1H, H(6)benz.), 7.37 

(pseudo s superimposed, 4H, H(2′,3′,5′,6′)arom.), 4.35 (s superimposed, 2H, CH2-Ar), 

4.20 (pseudo s superimposed, 2H, CH2CH2CH2-N(CH3)2), 2.37 (pseudo s, 3H, CH3C═N-

), 2.07 (pseudo s, 8H, N(CH3)2 and CH2CH2CH2-N(CH3)2), 1.69 (pseudo s, 2H, 

CH2CH2CH2-N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.22, 153.66, 148.54, 141.88, 

135.64 (2C), 131.08, 130.90, 130.32 (2C), 128.06 (2C), 120.54, 117.11, 109.33, 55.17, 44.58 

(2C), 40.74, 31.80, 26.59, 14.00. Anal. calcd. for C22H27ClN6S: % C 59,65, H 6.14, N 18.97, 

S 7.24; found: % C 59.51, H 6.18, N 19.24, S 7.18. 

 

2-(1-{1-[2-(N,N-Diethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-

yl}ethylidene)hydrazine-1-carbothioamide (5) 

Yield: 35%; m.p. 165-168°C. 1H NMR (200 MHz, DMSO-d6): 10.16 (s, 1H, NH), 8.25 (s, 1H, 

NH2), 8.10 (s, 1H, H(4)benz.), 7.94 (s superimposed, 1H, NH2), 8.15-7.85 (m 

superimposed, 1H, H(7)benz.), 7.43 (d superimposed, J = 8.6 Hz, 1H, H(6)benz.), 7.20 (d, 
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J = 8.2 Hz, 2H, H(3′,5′)arom.), 6.89 (d, J = 7.8 Hz, 2H, H(2′,6′)arom.), 4.26 (s superimposed, 

2H, CH2-Ar), 4.17 (pseudo s superimposed, 2H, CH2CH2-N(CH2CH3)2), 3.72 (s, 3H, OCH3), 

2.58-2.24 (m superimposed to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-

N(CH2CH3)2), 2.36 (s superimposed, 3H, CH3C═N-), 0.78 (t, J = 6.6 Hz, 6H, N-(CH2CH3)2). 
13C-NMR (50 MHz, DMSO-d6): 178.17, 157.61, 154.61, 148.61, 141.81, 135.75, 131.08, 130.87, 

129.33 (2C), 128.31, 120.32, 117.01, 113.56 (2C), 109.31, 54.66, 51.33, 46.42 (2C), 41.03, 31.99, 

13.95, 11.31 (2C). Anal. calcd. for C24H32N6OS: % C 63.69, H 7.13, N 18.57, S 7.08; found: % 

C 63.51, H 6.77, N 18.84, S 7.16. 

 

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-diethylamino)ethyl]-1H-benzo[d]imidazol-5-

yl]ethylidene}hydrazine-1-carbothioamide (6) 

Yield: 37%; m.p. 190-192°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.25 (s, 1H, 

NH2), 8.11 (s, 1H, H(4)benz.), 7.96 (s superimposed, 1H, NH2), 8.10-7.85 (m 

superimposed, 1H, H(7)benz.), 7.48-7.21 (m, 5H, H(6)benz. and H(2′,3′,5′,6′)arom.), 4.35 

(s, 2H, CH2-Ar), 4.20 (pseudo s, 2H, CH2CH2-N(CH2CH3)2), 2.60-2.19 (m superimposed 

to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 2.36 (s 

superimposed, 3H, CH3C═N-), 0.76 (t, J = 6.6 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, 

DMSO-d6): 178.13, 153.94, 148.59, 141.92, 135.64 (2C), 131.12 (2C), 130.38 (2C), 128.03 (2C), 

120.29, 117.09, 109.52, 51.93, 46.43 (2C), 41.08, 32.03, 14.01, 11.31 (2C). Anal. calcd. for 

C23H29ClN6S: % C 60.44, H 6.40, N 18.39, S 7.01; found: % C 60.57, H 6.45, N 18.52, S 7.10. 

 

 

2-(1-{1-[2-(N,N-Diethylamino)ethyl]-2-(4-ethoxybenzyl)-1H-benzo[d]imidazol-5-

yl}ethylidene)hydrazine-1-carbothioamide (7) 

Yield: 47%; m.p. 189-192.5°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.24 (s, 1H, 

NH2), 8.10 (s, 1H, H(4)benz.), 7.94 (s superimposed, 1H, NH2), 8.05-7.85 (m 

superimposed, 1H, H(7)benz.), 7.42 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.19 (d, J = 8.4 Hz, 2H, 

H(3′,5′)arom.), 6.87 (d, J = 8.4 Hz, 2H, H(2′,6′)arom.), 4.27 (s superimposed, 2H, CH2-Ar), 

4.18 (pseudo s superimposed, 2H, CH2CH2-N(CH2CH3)2), 3.98 (q, J = 7 Hz, 2H, OCH2CH3), 

2.60-2.23 (m superimposed to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-

N(CH2CH3)2), 2.37 (s superimposed, 3H, CH3C═N-), 1.30 (t, J = 6.8 Hz, 3H, OCH2CH3), 0.78 

(t, J = 6.6 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.20, 156.87, 154.60, 

148.60, 141.85, 135.75, 130.89, 129.32 (2C), 128.19, 120.32, 117.03, 114.06 (2C), 109.31, 
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62.55, 51.46, 46.41 (2C), 41.06, 32.01, 14.25, 13.97, 11.32 (2C). Anal. calcd. for C25H34N6OS: 

% C 64.35, H 7.34, N 18.01, S 6.87; found: % C 64.30, H 7.51, N 18.10, S 6.77. 

 

2-(1-{2-Benzyl-1-[3-(N,N-diethylamino)propyl]-1H-benzo[d]imidazol-5-

yl}ethylidene)hydrazine-1-carbothioamide (8) 

Yield: 38%; m.p. 168-169°C. 1H NMR (200 MHz, DMSO-d6): 10.19 (s, 1H, NH), 8.27 (s, 1H, 

NH2), 8.14 (s, 1H, H(4)benz.), 7.97 (s superimposed, 1H, NH2), 8.03-7.87 (m 

superimposed, 1H, H(7)benz.), 7.47 (d, J = 8.2 Hz, 1H, H(6)benz.), 7.31 (s, 5H, 

H(2′,3′,4′,5′,6′)arom.), 4.34 (s, 2H, CH2-Ar), 4.19 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 

2.37 (s, 3H, CH3C═N-), 2.45-2.19 (m, 9H, 4H N(CH2CH3)2, 2H CH2CH2CH2-N(CH2CH3)2 and 

3H CH3C═N-), 1.63 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 0.90 (pseudo s, 6H, 

N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.20, 153.90, 148.58, 141.93, 136.59, 135.60, 

131.02, 128.25 (2C), 128.16 (2C), 126.23, 120.45, 117.11, 109.31, 48.66, 45.56 (2C), 41.03, 

32.65, 26.16, 14.01, 11.05 (2C). Anal. calcd. for C24H32N6S: % C 66.02, H 7.39, N 19.25, S 

7.34; found % C 65.84, H 7.53, N 19.37, S 7.58. 

 

2-(1-{1-[3-(N,N-Diethylamino)propyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-

yl}ethylidene)hydrazine-1-carbothioamide (9) 

Yield: 38%; m.p. 180.7-182.9°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.24 (s, 

1H, NH2), 8.12 (s, 1H, H(4)benz.), 7.95 (s superimposed, 1H, NH2), 8.03-7.85 (m 

superimposed, 1H, H(7)benz.), 7.45 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (d, J = 8.4 Hz, 2H, 

H(3′,5′)arom.), 6.88 (d, J = 8.2 Hz, 2H, H(2′,6′)arom.), 4.26 (s superimposed, 2H, CH2-Ar), 

4.16 (pseudo s superimposed, 2H, CH2CH2CH2-N(CH2CH3)2), 3.71 (s, 3H, OCH3), 2.37 (s, 

3H, CH3C═N-), 2.42-2.17 (m, 6H, 4H N(CH2CH3)2 and 2H CH2CH2CH2-N(CH2CH3)2), 1.61 

(pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 0.89 (t, J = 6.8 Hz, 6H, N(CH2CH3)2). 13C-NMR 

(50 MHz, DMSO-d6): 178.20, 157.62, 154.23, 148.60, 141.92, 135.63, 130.97, 129.23 (2C), 

128.34, 120.40, 117.07, 113.55 (2C), 109.26, 54.62, 48.75, 45.56 (2C), 41.04, 31.84, 26.23, 

14.00, 11.16 (2C). Anal. calcd. for C25H34N6OS: % C 64.35, H 7.34, N 18.01, S 6.87; found % 

C 64.19, H 7.74, N 17.96, S 6.85. 

 

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[2-(N,N-dimethylamino)ethyl]-1H-

benzo[d]imidazol-5-yl}ethylidene)hydrazine-1-carbothioamide (18) 

Yield: 46%; m.p. 214-217°C. 1H NMR (200 MHz, DMSO-d6): 10.19 (s, 1H, NH), 8.26 (s, 1H, 

NH2), 8.14 (s, 1H, H(4)benz.), 8.07-7.85 (m, 4H, 1H H(7)benz., 1H NH2 and 2H H(4′,7′)bzt.), 
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7.55 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.52-7.39 (m, 2H, H(5′,6′)bzt.), 6.44 (s, 2H, CH2-Ar), 4.44 

(pseudo s, 2H, CH2CH2-N(CH3)2), 2.43-2.29 (m superimposed, 2H, CH2CH2-N(CH3)2), 

2.36 (s, 3H, CH3C═N-), 2.14 (s, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.24, 148.60, 

148.23, 143.58 (2C), 141.49, 135.68, 131.65, 126.43 (2C), 121.45, 117.74, 117.54 (2C), 109.91, 

57.79, 52.31, 45.08 (2C), 41.84, 13.96. Anal. calcd. for C21H25N9S: % C 57.91, H 5.79, N 

28.94, S 7.36; found % C 57.90, H 5.90, N 28.64, S 7.22. 

 

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[3-(N,N-dimethylamino)propyl]-

1H-benzo[d]imidazol-5-yl}ethylidene)hydrazine-1-carbothioamide (19) 

Yield: 31%; m.p. 212-214°C. 1H NMR (200 MHz, DMSO-d6): 10.19 (s, 1H, NH), 8.26 (s, 1H, -

NH2), 8.14 (s, 1H, H(4)benz.), 8.06-7.80 (m, 4H, 1H H(7)benz., 1H NH2 and 2H H(4′,7′)bzt.), 

7.68-7.50 (m, 1H, H(6)benz.), 7.47 (pseudo s superimposed, 2H, H(5′,6′)bzt.), 6.47 (s, 2H, 

CH2-Ar), 4.39 (pseudo s, 2H, CH2CH2CH2-N(CH3)2), 2.36 (s, 3H, CH3C═N-), 2.21-1.90 (m 

superimposed, 2H, CH2CH2CH2-N(CH3)2), 2.05 (s superimposed, 6H, N(CH3)2), 1.73 

(pseudo s, 2H, CH2CH2CH2-N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.25, 148.38, 

148.25, 143.56 (2C), 141.61, 135.48, 131.66, 126.40 (2C), 121.47, 117.77, 117.53 (2C), 109.94, 

54.86, 52.01, 44.41 (2C), 41.11, 26.30, 13.96. Anal. calcd. for C22H27N9S: % C 58.77, H 6.05, 

N 28.04, S 7.13; found % C 58.88, H 5.96, N 27.78, S 7.33. 

 

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[3-(N,N-diethylamino)propyl]-1H-

benzo[d]imidazol-5-yl}ethylidene)hydrazine-1-carbothioamide (21) 

Yield: 78%; m.p. 214-216°C. 1H NMR (200 MHz, DMSO-d6): 10.18 (s, 1H, NH), 8.27 (s, 1H, 

NH2), 8.13 (s, 1H, H(4)benz.), 8.09-7.86 (m, 4H, 1H H(7)benz., 1H NH2 and 2H H(4′,7′)bzt.), 

7.55 (d, J = 8.8 Hz, 1H, H(6)benz.), 7.53-7.39 (m, 2H, H(5′,6′)bzt.), 6.47 (s, 2H, CH2-Ar), 4.40 

(pseudo s, 2H, CH2CH2-N(CH2CH3)2), 2.67-2.25 (m superimposed to DMSO, 6H, 2H 

CH2CH2-N(CH2CH3)2 and 4H N(CH2CH3)2), 2.36 (s, 3H, CH3C═N-), 0.77 (t, J = 6.8 Hz, 6H, 

N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 178.25, 148.82, 148.25, 143.59 (2C), 141.52, 

135.58, 131.54, 126.40 (2C), 121.34, 117.74, 117.54 (2C), 109.88, 52.43, 51.68, 46.55 (2C), 

42.29, 13.91, 11.26 (2C). Anal. calcd. for C23H29N9S: % C 59.59, H 6.31, N 27.19, S 6.92; 

found % C 59.61, H 6.54, N 27.06, S 7.15. 
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2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-1-yl)methyl]-1-[3-(N,N-dimethylamino)propyl]-

1H-benzo[d]imidazol-5-yl}ethylidene)hydrazine-1-carbothioamide (22) 

Yield: 34%; m.p. 201-203°C. 1H NMR (200 MHz, DMSO-d6): 10.17 (s, 1H, NH), 8.23 (s, 1H, 

NH2), 8.12 (s superimposed, 1H, H(4)benz.), 8.18-8.05 (m, 1H, H(7′)bzt.),  (s, 1H, NH2), 8.02-

7.93 (m, 2H, 1H H(4′)bzt. and 1H NH2), 7.89 (d, J = 8.6 Hz, 1H H(7)benz.), 7.63-7.50 (m, 2H, 

H(5′,6′)bzt.), 7.45 (d, J = 8.4 Hz, 1H, H(6)benz.), 6.45 (s, 2H, CH2-Ar), 4.42 (pseudo s, 2H, 

CH2CH2CH2-N(CH3)2), 2.33 (s, 3H, CH3C═N-), 2.35-1.90 (m superimposed, 2H, 

CH2CH2CH2-N(CH3)2), 2.13 (s, 6H, N(CH3)2), 1.79 (pseudo s, 2H, CH2CH2CH2-N(CH3)2). 13C-

NMR (50 MHz, DMSO-d6): 178.21, 148.98, 148.25, 144.91, 141.50, 135.61, 132.87, 131.58, 

127.23, 123.80, 121.39, 118.85, 117.62, 110.61, 109.89, 54.86, 44.43 (2C), 44.03, 41.02, 26.27, 

13.90. Anal. calcd. for C22H27N9S: % C 58.77, H 6.05, N 28.04, S 7.13; found % C 58.92, H 

6.18, N 28.06, S 6.84. 

 

10.1.6.2 General procedure for the preparation of semicarbazones 10-17, 

20. 

To a solution of the proper 5-acetyl benzimidazole (0.80 mmol) in ethanol (2 mL), a 

solution of semicarbazide hydrochloride (2.4 mmol) previously dissolved in 8 mL of 

a 1N solution of sodium acetate was added. The mixture was refluxed for 4h under 

stirring. After evaporation of the solvent, the oily residue was treated with warm 

water to get rid of the remaining semicarbazide. The crude was purified by CC (SiO2, 

CH2Cl2+5% DEA), obtaining the title compound as white solid. 

 

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (10) 

Yield: 69%; m.p. 203-205°C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s, 1H, NH), 7.98 (s, 1H, 

H(4)benz.), 7.83 (d, J = 8.8 Hz, 1H, H(7)benz.), 7.43 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (d, J 

= 8.6 Hz, 2H, H(3′,5′)arom.), 6.89 (d, J = 8.6 Hz, 2H, H(2′,6′)arom.), 6.50 (broad s, 2H, NH2), 

4.24 (s superimposed, 2H, CH2-Ar), 4.39-4.17 (m, 2H, CH2CH2-N(CH3)2), 3.72 (s, 3H, 

OCH3), 2.41-2.20 (m superimposed, 2H, CH2CH2-N(CH3)2), 2.25 (s superimposed, 3H, 

CH3C═N-), 2.12 (s superimposed, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.63, 

157.09, 154.20, 144.64, 141.86, 135.23, 131.78, 129.37 (2C), 128.34, 119.88, 116.18, 113.56 

(2C), 109.25, 57.45, 54.67, 45.04 (2C), 41.12, 31.91, 13.38. Anal. calcd. for C22H28N6O2: % C 

64.68, H 6.91, N 20.57; found % C 64.70, H 6.67, N 20.35. 
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2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-dimethylamino)ethyl]-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (11) 

Yield: 59%; m.p. 217-220 °C. 1H NMR (200 MHz, DMSO-d6): 9.29 (s, 1H, NH), 7.99 (s, 1H, 

H(4)benz.), 7.83 (d, J = 8.2 Hz, 1H, H(7)benz.), 7.48-7.24 (m, 5H, H(7)benz. and 

H(2′,3′,5′,6′)arom.), 6.52 (broad s, 2H, NH2), 4.33 (s superimposed, 2H, CH2-Ar), 4.41-4.17 

(m superimposed, 2H, CH2CH2-N(CH3)2), 3.72 (s, 3H, OCH3), 2.42-2.30 (m, 2H, CH2CH2-

N(CH3)2), 2.26 (s, 3H, CH3C═N-), 2.13 (s, 6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 

157.11, 153.57, 144.64, 141.83, 135.66, 135.16, 131.88, 130.87, 130.39 (2C), 128.03 (2C), 

120.01, 116.23, 109.34, 57.57, 45.05 (2C), 41.18, 31.92, 13.37. Anal. calcd. for C21H25ClN6O: 

% C 61.08, H 6.10, N 20.35; found % C 61.08, H 5.95, N 20.65. 

 

2-(1-{1-[2-(N,N-Dimethylamino)ethyl]-2-(4-ethoxybenzyl)-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (12) 

Yield: 38%; m.p. 210-213°C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s, 1H, NH), 7.99 (s, 1H, 

H(4)benz.), 7.83 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.43 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.19 (d, J 

= 7.4 Hz, 2H, H(3′,5′)arom.), 6.87 (d, J = 7.6 Hz, 2H, H(2′,6′)arom.), 6.50 (broad s, 2H, NH2), 

4.24 (pseudo s, 4H, CH2-Ar and CH2CH2-N(CH3)2), 3.98 (q, J = 6.8 Hz, 2H, OCH2CH3), 2.41-

2.18 (m superimposed, 2H, CH2CH2-N(CH3)2), 2.25 (s superimposed, 3H, CH3C═N-), 2.12 

(s, 6H, N(CH3)2), 1.30 (t, J = 6.8 Hz, 3H, OCH2CH3). 13C-NMR (50 MHz, DMSO-d6): 157.09, 

156.87, 154.20, 144.64, 141.87, 135.23, 131.79, 129.34 (2C), 128.21, 119.88, 116.19, 114.06 

(2C), 109.25, 62.56, 57.44, 45.03 (2C), 41.13, 31.92, 14.25, 13.38. Anal. calcd. for C23H30N6O2: 

% C 65.38, H 7.16, N 19.89; found % C 65.56, H 7.48, N 19.70. 

 

2-{1-[2-(4-Chlorobenzyl)-1-[3-(N,N-dimethylamino)propyl]-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (13) 

Yield: 67%; m.p. 211-212.5 °C. 1H NMR (200 MHz, DMSO-d6): 9.29 (s, 1H, NH), 8.00 (s, 1H, 

H(4)benz.), 7.83 (d, J = 8.2 Hz, 1H, H(7)benz.), 7.47-7.20 (m, 5H, H(6)benz. and 

H(2′,3′,5′,6′)arom.), 6.51 (broad s, 2H, NH2), 4.34 (s, 2H, CH2-Ar), 4.26-4.13 (m, 2H, 

CH2CH2CH2-N(CH3)2), 2.26 (s, 3H, CH3C═N-),  2.20-1.98 (m, 8H, 2H CH2CH2CH2-N(CH3)2 

and 6H N(CH3)2), 1.81-1.58 (m, 2H, CH2CH2CH2-N(CH3)2. 13C-NMR (50 MHz, DMSO-d6): 

157.08, 153.40, 144.58, 141.90, 135.69, 135.07, 131.87, 130.89, 130.29 (2C), 128.06 (2C), 

119.98, 116.27, 109.28, 55.17, 44.58 (2C), 40.71, 31.80, 26.59, 13.37. Anal. calcd. for 

C22H27ClN6O: % C 61.89, H 6.37, N 19.68; found % C 62.09, H 6.63, N 19.89. 
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2-(1-{1-[2-(N,N-Diethylamino)ethyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (14) 

Yield: 72%; m.p. 207-209 °C. 1H NMR (200 MHz, DMSO-d6): 9.26 (s, 1H, NH), 7.98 (s, 1H, 

H(4)benz.), 7.84 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.41 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.20 (d, J 

= 8.8 Hz, 2H, H(3′,5′)arom.), 6.89 (d, J = 8.8 Hz, 2H, H(2′,6′)arom.), 6.49 (broad s, 2H, NH2), 

4.27 (s, 2H, CH2-Ar), 4.22-4.09 (m, 2H, CH2CH2-N(CH2CH3)2), 3.72 (s, 3H, OCH3), 2.50-2.36 

(m superimposed to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 

2.26 (s, 3H, CH3C═N-), 0.78 (t, J = 7.0 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 

157.63, 157.09, 154.36, 144.67, 141.88, 135.20, 131.68, 129.30 (2C), 128.40, 119.76, 116.19, 

113.57 (2C), 109.21, 54.66, 51.39, 46.45 (2C), 41.13, 32.02, 13.34, 11.39 (2C). Anal. calcd. for 

C24H32N6O2: % C 66.03, H 7.39, N 19.25; found % C 65.98, H 7.42, N 19.56. 

 

2-{1-[2-(4-Chlorobenzyl)-1-[2-(N,N-diethylamino)ethyl]-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (15) 

Yield: 56%; m.p. 196.5-198.5°C. 1H NMR (200 MHz, DMSO-d6): 9.27 (s, 1H, NH), 7.97 (s, 

1H, H(4)benz.), 7.85 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.51-7.24 (m, 5H, H(6)benz. and 

H(2′,3′,5′,6′)arom.), 6.50 (broad s, 1H, NH2), 4.34 (s, 2H, CH2-Ar), 4.19 (pseudo s, 2H, 

CH2CH2-N(CH2CH3)2), 2.58-2.33 (m superimposed to DMSO, 6H, 2H CH2CH2-

N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 2.25 (s superimposed, 3H, CH3C═N-), 0.76 (t, 

J = 6.4 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.09, 153.73, 144.62, 141.81, 

135.68, 135.12, 131.74, 130.87, 130.34 (2C), 128.03 (2C), 119.88, 116.23, 109.32, 51.41, 46.43 

(2C), 42.10, 32.04, 13.32, 11.23 (2C). Anal. calcd. for C23H29ClN6O: % C 62.65, H 6.63, N 

19.06; found: % C 62.58, H 6.50, N 19.26. 

 

2-(1-{1-[3-(N,N-Diethylamino)propyl]-2-benzyl-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (16) 

Yield: 32%; m.p. 185-189°C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s, 1H, NH), 8.01 (s, 1H, 

H(4)benz.), 7.82 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.45 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.30 

(pseudo s, 5H, H(2′,3′,5′,6′)arom.), 6.50 (broad s, 1H, NH2), 4.33 (s, 2H, CH2-Ar), 4.17 

(pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 2.47-2.27 (m superimposed, 6H, 2H 

CH2CH2CH2-N(CH2CH3)2 and 4H CH2CH2-N(CH2CH3)2), 2.26 (s superimposed, 3H, 

CH3C═N-), 1.62 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 0.90 (pseudo s, 6H, 

N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.07, 153.64, 144.62, 141.95, 136.65, 135.04, 

131.80, 128.22 (2C), 128.15 (2C), 126.20, 119.89, 116.26, 109.25, 48.69, 45.56 (2C), 41.10, 
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32.65, 26.17, 13.36, 11.06 (2C). Anal. calcd. for C24H32N6O: % C 68.54, H 7.67, N 19.98; 

found: % C 68.35, H 7.84, N 20.30. 

 

2-(1-{1-[3-(N,N-Diethylamino)propyl]-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-5-

yl)ethylidene)hydrazine-1-carboxamide (17) 

Yield: 32%; m.p. 190-192 °C. 1H NMR (200 MHz, DMSO-d6): 9.28 (s, 1H, NH), 7.99 (s, 1H, 

H(4)benz.), 7.83 (d, J = 8.6 Hz, 1H, H(7)benz.), 7.44 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (d, J 

= 7.0 Hz, 2H, H(3′,5′)arom.), 6.88 (d, J = 7.2 Hz, 2H, H(2′,6′)arom.), 6.51 (broad s, 2H, NH2), 

4.25 (s, 2H, CH2-Ar), 4.22-4.07 (m superimposed, 2H, CH2CH2CH2-N(CH2CH3)2), 3.71 (s, 

3H, OCH3), 2.46-2.20 (m superimposed, 6H, 2H CH2CH2CH2-N(CH2CH3)2 and 4H 

N(CH2CH3)2), 2.26 (s, 3H, CH3C═N-), 1.60 (pseudo s, 2H, CH2CH2CH2-N(CH2CH3)2), 0.89 

(pseudo s, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.61, 157.07, 153.98, 144.62, 

141.95, 135.07, 131.75, 129.22 (2C), 128.40, 119.84, 116.23, 113.55 (2C), 109.20, 54.61, 48.76, 

45.56 (2C), 41.29, 31.85, 26.24, 13.37, 11.15 (2C). Anal. calcd. for C25H34N6O2: % C 66.64, H 

7.61, N 18.65; found % C 66.38, H 7.56, N 18.31. 

 

2-(1-{2-[(2H-Benzo[d][1,2,3]triazol-2-yl)methyl]-1-[2-(N,N-dimethylamino)ethyl]-1H-

benzo[d]imidazol-5-yl}ethylidene)hydrazine-1- carboxamide (20) 

Yield: 48%; m.p. 209-212°C. 1H NMR (200 MHz, DMSO-d6): 9.31 (s, 1H, NH), 8.03 (s, 1H, 

H(4)benz.), 8.00-7.85 (m, 3H, 1H H(7)benz., and 2H H(4′,7′)bzt.), 7.59-7.41 (m, 3H, 1H 

H(6)benz. and 2H H(5′,6′)bzt.), 6.53 (broad s, 2H, NH2), 6.43 (s, 2H, CH2-Ar), 4.53-4.34 (m, 

2H, CH2CH2-N(CH3)2), 2.46-2.34 (m, 2H, CH2CH2-N(CH3)2), 2.24 (s, 3H, CH3C═N-), 2.14 (s, 

6H, N(CH3)2). 13C-NMR (50 MHz, DMSO-d6): 157.03, 148.32, 144.29, 143.57 (2C), 141.52, 

135.14, 132.42, 126.42 (2C), 120.95, 117.74, 117.54 (2C), 116.85, 109.85, 57.77, 52.30, 45.08 

(2C), 41.56, 13.31. Anal. calcd. for C21H25N9O: % C 60.13, H 6.01, N 30.05; found % C 60.39, 

H 6.35, N 30.80. 

10.1.6.3 General procedure for the preparation of hydrazones 23-25. 

A solution of NH2NH2 · H2O (2.5 mmol) in 3 mL of water was refluxed for 5h with a 

solution of the proper 5-acetyl benzimidazole (0.50 mmol) in 2.5 mL of ethanol with 

stirring. At room temperature, 5 mL of water were added and the solution was kept 

at 0-5°C overnight. The expected product directly separated from the solution as an 

amorphous solid that was filtered and crystallized from anhydrous Et2O. 
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1-[2-(N,N-Dimethylamino)ethyl]-2-(4-methoxybenzyl)-5-(1-hydrazineylideneethyl)-

1H-benzo[d]imidazole (23) 

Yield: 53%; m.p. 175.5-176.5°C. 1H NMR (200 MHz, DMSO-d6): 8.11 (s, 1H, H(4)benz.), 7.92 

(pseudo s, 1H, H(7)benz.), 7.55 (pseudo s, 1H, H(6)benz.), 7.22 (pseudo s, 2H, 

H(3′,5′)arom.), 6.91 (pseudo s, 2H, H(2′,6′)arom.), 6.27 (broad s, 2H, NH2), 4.39-4.10 (m, 

4H, CH2-Ar and CH2CH2-N(CH3)2), 3.73 (s, 3H, OCH3), 2.61-2.28 (m superimposed to 

DMSO, 5H, 2H CH2CH2-N(CH3)2 and 3H CH3C═N-), 2.14 (s, 6H, N(CH3)2). 13C-NMR (50 

MHz, DMSO-d6): 158.17, 157.66, 154.57, 141.84, 136.09, 131.58, 129.36 (2C), 128.28, 120.17, 

116.89, 113.60 (2C), 109.53, 57.42, 54.67, 45.05 (2C), 41.13, 31.93, 14.53. Anal. calcd. for 

C21H27N5O: % C 69.01, H 7.45, N 19.16; found % C 69.20, H 7.35, N 19.16. 

1-[2-(N,N-diethylamino)ethyl]-2-(4-ethoxybenzyl)-5-(1-hydrazineylideneethyl)-1H-

benzo[d]imidazole (24)  

Yield: 44%; m.p. 80-82°C. 1H NMR (200 MHz, DMSO-d6): 8.11 (s, 1H, H(4)benz.), 7.87 (d, J 

= 8.6 Hz, 1H, H(7)benz.), 7.47 (d, J = 8.6 Hz, 1H, H(6)benz.), 7.21 (pseudo s, 2H, 

H(3′,5′)arom.), 6.89 (pseudo s, 2H, H(2′,6′)arom.), 6.32 (broad s, 2H, NH2), 4.41-4.13 (m, 

4H, 2H CH2-Ar and 2H CH2CH2-N(CH2CH3)2), 3.97 (pseudo s, 2H, OCH2CH3), 2.58-2.27 

(m superimposed to DMSO, 6H, 2H CH2CH2-N(CH2CH3)2 and 4H N(CH2CH3)2), 2.29 (s 

superimposed, 3H, CH3C═N-), 1.31 (t, J = 6.8 Hz, 3H, OCH2CH3), 0.78 (t, J = 6.8 Hz, 6H, 

N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 158.18, 157.64, 154.24, 141.87, 135.89, 131.67, 

129.23 (2C), 128.34, 120.04, 116.89, 113.78 (2C), 109.57, 62.67, 57.43, 45.09 (2C), 41.12, 

31.91, 14.44, 13.98, 11.23 (2C). Anal. calcd. for C24H33N5O: % C 70.73, H 8.16, N 17.18; found 

% C 70.67, H 8.47, N 17.43. 

2-[(Benzotriazol-2-yl)methyl]-1-[2-(N,N-diethylamino)ethyl]-5-(1-

hydrazineylideneethyl)-1H-benzo[d]imidazole (25) 

Yield: 35%; m.p. 128-130°C. 1H NMR (200 MHz, DMSO-d6): 8.01-7.87 (m, 2H, H(4′,7′)bzt.), 

7.76 (s, 1H, H(4)benz.), 7.70 (d, J = 8.8 Hz, 1H, H(7)benz.), 7.60-7.38 (m, 3H, 1H H(6)benz. 

and 2H H(5′,6′)bzt.), 6.43 (s, 2H, CH2-Ar), 6.26 (broad s, 2H, NH2), 4.43-4.21 (m, 2H, 

CH2CH2-N(CH2CH3)2), 2.64-2.48 (m superimposed to DMSO, 2H, CH2CH2-N(CH2CH3)2), 

2.42 (q, J = 6.8 Hz, 4H, N(CH2CH3)2), 2.08 (s, 3H, CH3C═N-), 1.31 (t, J = 6.8 Hz, 3H, 

OCH2CH3), 0.76 (t, J = 6.8 Hz, 6H, N(CH2CH3)2). 13C-NMR (50 MHz, DMSO-d6): 158.04, 

148.86, 147.97, 143.57, 141.42, 135.84, 134.07, 132.11, 126.49 (2C), 121.15, 117.51 (2C), 110.16, 

52.31, 51.61, 46.49 (2C), 42.59, 14.52, 11.15 (2C). Anal. calcd. for C22H28N8: % C 65.32, H 

6.98, N 27.70; found % C 65.57, H 6.69, N 27.58. 
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10.2 Biological tests and computational methods 

Experimental details are reported in the manuscripts, as follows:  

(a) for the acridine derivatives see reference6, describing in vitro cell-based assays, 

enzymatic inhibition, isothermal titration calorimetry, site-directed mutagenesis 

assays and computational experiments 

(b) for the azaspiro dihydrotriazines see reference11, describing in vitro cell-based 

assays, enzymatic inhibition and computational experiments 

(c) for the triazino[1,2-a]benzimidazoles (unpublished results) the experimental 

section may be referred to citation11 

(d) for the anilino derivatives and the benzenesulfonamides (unpublished results) the 

experimental section may be referred to citation183 

(e) for the (thio)semicarbazone and hydrazone benzimidazoles (unpublished results, 

submitted manuscript to Molecules on February 17th, 2020) the experimental 

section may be referred to citation11 
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