
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Resource Efficient Large-Scale Machine Learning

by

Luigi Carratino

Theses Series DIBRIS-TH-2020-XXXII

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

Resource Efficient Large-Scale Machine Learning

by

Luigi Carratino

March, 2020

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Luigi Carratino
DIBRIS, Univ. di Genova

Date of submission: March 2020

Title: Resource Efficient Large-Scale Machine Learning

Advisors:
Lorenzo Rosasco

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università di Genova

Alessandro Rudi
INRIA - Département d’Informatique - École Normale Supérieure

PSL Research University

Supervisor:
Lorenzo Rosasco

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università di Genova

Ext. Reviewers:
Aymeric Dieuleveut

Center of Applied Mathematics - École Polytechnique
Institut Polytechnique de Paris

Zoltán Szabó
Center of Applied Mathematics - CNRS, École Polytechnique

Institut Polytechnique de Paris

2

Abstract

Non-parametric models provide a principled way to learn non-linear functions. In
particular, kernel methods are accurate prediction tools that rely on solid theoretical
foundations. Although they enjoy optimal statistical properties, they have limited
applicability in real-world large-scale scenarios because of their stringent computa-
tional requirements in terms of time and memory. Indeed their computational costs
scale at least quadratically with the number of points of the dataset and many of the
modern machine learning challenges requires training on datasets of millions if not
billions of points. In this thesis, we focus on scaling kernel methods, developing
novel algorithmic solutions that incorporate budgeted computations. To derive these
algorithms we mix ideas from statistics, optimization, and randomized linear alge-
bra. We study the statistical and computational trade-offs for various non-parametric
models, the key component to derive numerical solutions with resources tailored to
the statistical accuracy allowed by the data. In particular, we study the estimator de-
fined by stochastic gradients and random features, showing how all the free parame-
ters provably govern both the statistical properties and the computational complexity
of the algorithm. We then see how to blend the Nyström approximation and precon-
ditioned conjugate gradient to derive a provably statistically optimal solver that can
easily scale on datasets of millions of points on a single machine. We also derive
a provably accurate leverage score sampling algorithm that can further improve the
latter solver. Finally, we see how the Nyström approximation with leverage scores
can be used to scale Gaussian processes in a bandit optimization setting deriving a
provably accurate algorithm. The theoretical analysis and the new algorithms pre-
sented in this work represent a step towards building a new generation of efficient
non-parametric algorithms with minimal time and memory footprints.

1

Table of Contents

Chapter 1 Introduction 7

1.1 On the Need for Efficient Machine Learning . 7

1.2 Can We Scale Non-parametric Methods ? . 8

1.2.1 Statistical Learning Setting . 8

1.2.2 Bandit Optimization Setting . 9

1.3 Contributions . 10

1.4 Structure of the Thesis . 12

Chapter 2 Learning with Kernels
in the Statistical Learning Setting 14

2.1 Statistical Learning Theory . 14

2.1.1 Measuring Generalization . 17

2.2 Reproducing Kernel Hilbert Spaces . 17

2.3 Kernel Ridge Regression . 19

2.4 Gradient Descent Learning . 21

2.5 Learning Bounds . 22

2.5.1 Basic . 23

2.5.2 Refined . 24

Chapter 3 Stochastic Gradient Descent
with Random Features 27

2

3.1 Learning with Stochastic Gradients and Random Features 28

3.1.1 From Sketching to Random Features, from Shallow Nets to Kernels . . . 28

3.1.2 Computational Complexity . 30

3.1.3 Related Approaches . 30

3.2 Main Results . 31

3.2.1 Worst Case Results . 31

3.2.2 Refined Analysis and Fast Rates . 33

3.2.3 Sketch of the Proof . 35

3.3 Details of the Proof . 36

3.3.1 Preliminary Definitions . 37

3.3.2 Error Decomposition . 38

3.3.3 Lemmas . 39

3.3.4 Proofs of Theorems . 45

3.4 Experiments . 47

Chapter 4 FALKON 49

4.1 From Kernel Ridge Regression
to Nyström Approximation . 49

4.1.1 Random Projections. 50

4.2 FALKON . 51

4.2.1 Preliminaries: Preconditioning and KRR 52

4.2.2 Basic FALKON Algorithm . 52

4.2.3 The Complete Algorithm . 53

4.3 Theoretical Analysis . 54

4.3.1 Main Result . 55

4.3.2 Fast Learning Rates and Nyström with Approximate Leverage Scores . . 56

4.4 Comparison with Previous Works . 58

4.5 Generalized FALKON . 59

3

4.5.1 The Algorithm . 60

4.6 Definitions and Notation for Proofs . 62

4.6.1 Definitions . 63

4.7 Analytic results . 65

4.7.1 Analytic Results (I): Controlling Condition Number of W 66

4.7.2 Analytic Results (II): The Computational Oracle Inequality 69

4.8 Probabilistic Estimates . 74

4.9 Proof of Main Results . 78

4.9.1 Main Result (I): Computational Oracle Inequality for FALKON with
Uniform Sampling . 80

4.9.2 Main Result (II): Computational Oracle Inequality for FALKON with
Leverage Scores . 82

4.9.3 Main Results (III): Optimal Generalization Bounds 83

4.10 Experiments . 88

Chapter 5 Fast and Accurate
Leverage Score Sampling 93

5.1 Leverage Score Sampling with BLESS . 93

5.1.1 Leverage Score Sampling . 94

5.1.2 Approximate Leverage Scores . 94

5.1.3 Previous Algorithms for Leverage Scores Computations 95

5.1.4 Bottom-up Leverage Score Sampling with BLESS 96

5.1.5 BLESS and BLESS-R in Details . 98

5.1.6 Theoretical Guarantees . 100

5.2 Theoretical Analysis for BLESS . 100

5.2.1 Notation . 101

5.2.2 Definitions . 101

5.2.3 Preliminary Results . 103

5.2.4 Analytic Decomposition . 106

4

5.2.5 Proof for BLESS (Alg. 3) . 108

5.2.6 Proof for BLESS-R (Alg. 4) . 114

5.2.7 Proof of Theorem 12 . 119

5.3 Efficient Supervised Learning with Leverage Scores 120

5.3.1 Learning with FALKON-BLESS . 120

5.3.2 Statistical Properties of FALKON-BLESS 121

5.4 Theoretical Analysis for FALKON-BLESS . 123

5.4.1 Definition of the Algorithm . 123

5.4.2 Main Results . 124

5.4.3 Result for Nyström-KRR and BLESS 125

5.4.4 Proof of Theorem 16 . 127

5.5 Experiments . 127

5.5.1 Leverage Scores Accuracy . 127

5.5.2 BLESS for Supervised Learning . 128

Chapter 6 Kernelized Bandit Optimization 130

6.1 Bandit Optimization . 130

6.2 Upper Confident Bound . 132

6.3 Gaussian Process . 132

6.4 GP-UCB . 133

Chapter 7 Gaussian Process Optimization with Adaptive Sketching 135

7.1 Budgeted Kernel Bandits . 135

7.1.1 The algorithm . 136

7.1.2 Complexity analysis . 138

7.1.3 Regret Analysis . 141

7.1.4 Sketch of the Proof . 143

7.2 Discussion . 145

5

7.2.1 Relaxing Assumptions . 146

7.3 Details of the Proofs . 147

7.3.1 Properties of the Posterior Variance . 147

7.3.2 Proof of Theorem 20 . 148

7.3.3 Proof of Theorem 21 . 153

Bibliography 158

6

Chapter 1

Introduction

In this thesis, we study how to derive new learning algorithms that require minimal memory and
time footprints. In particular, we study kernel methods as a principled and statistically sound
way to perform non-linear learning.

First, we see how in the statistical learning setting ideas from statistics, optimization and random-
ized linear algebra can be blended to derive numerical solutions with optimal statistical properties
and low computational complexity. Secondly, we discuss in a bandit optimization setting how
similar ideas can allow to scale non-parametric algorithms, deriving approximations with no loss
of accuracy and preserving no-regret guarantees.

1.1 On the Need for Efficient Machine Learning

We live in a world awash with data. The speed at which we collect them is impressively high
and the type of data is of the most various. Social networks daily collect millions of messages
and pictures from people all around the world, while the particle accelerator at CERN generates
1 Gigabyte of raw data per second. Thanks to this abundance of data the potential applications
of machine learning seem endless. But an underestimated aspect is the number of resources that
are needed to run state of the art models on these immense datasets. An example is AlphaGo,
the model developed by Google DeepMind that defeated the human world champion of Go, used
a distributed system of resources for a total of 1,202 CPUs and 176 GPUs [SHM+16]. This
scale of resources is accessible only too few and soon we may reach a point where adding more
hardware and engineering effort will not be enough. The computational difficulty is often caused
by the size of the dataset. While in practice people often use only a subset of the data they could
work with, this comes at a cost in terms of accuracy of the learned model. In this thesis, we try
to address the problem of designing efficient algorithms that can scale on large datasets and that

7

can be accurate both empirically and theoretically.

1.2 Can We Scale Non-parametric Methods ?

We discuss in the following the computational difficulties of non-parametric methods first in the
statistical learning setting and then in the bandit optimization setting.

1.2.1 Statistical Learning Setting

The goal in supervised learning is to learn from examples a function that predicts well new
data. In statistical machine learning, data are assumed to be samples from a fixed and unknown
distribution [Vap99]. In most real-world scenarios, this distribution can be complex and so is
often crucial to learn from the provided data a function that can potentially be highly non-linear.

Non-parametric learning methods provide a way to learn non-linear functions. In particular, we
focus on Kernel methods [SS02, HSS08]. Kernel methods have proved to be a reliable approach
to learn estimators with high predictive accuracy. Further, they enjoy excellent theoretical prop-
erties, making them one of the most popular learning techniques for almost thirty years.

Unfortunately, they have limited applications in settings where the number of training data is
huge. Indeed time and memory requirements of these methods scale with the number of samples
n that compose the training set. In particular, in its basic form, solving a kernel method takes
a cost in time and memory respectively of O(n3) and O(n2). When the order of magnitude of
training points exceeds 105, this computational complexity makes the problem intractable.

Overcoming these limitations has motivated a variety of practical approaches. The learning prob-
lem can be reduced to the minimization of an empirical objective function that depends on the
training data. This minimization problem is a starting point of some computational studies. In
particular, optimization methods including gradient methods [YRC07], as well as accelerated
[BPR07], stochastic [DFB17, RV15, Ora14, DXH+14, LR17a, TRVR16] and preconditioned
extensions [ACW16, GOSS16, MB17], have been used to improve time complexity, solving
faster the minimization problem. Random projections instead provide an approach to reduce
memory requirements through an approximation of the model. They allow deriving a different
approximated minimization problem that can be solved with fewer memory constraints. Popular
methods include Nyström [WS01, SS00], random features [RR08], and their numerous exten-
sions [FSC+16, HXGD14, KMT09]. But how much these techniques can be exploited without
loosing accuracy is not obvious. Recent results show that there is a large class of problems for
which, by combining the random features or the Nyström approach with ridge regression, it is
possible to substantially reduce computations, while preserving the same optimal statistical accu-
racy of the non-approximated model [Bac13, AM15a, RCR15, RR17, Bac17]. While statistical

8

lower bounds exist for this setting, there are no corresponding computational lower bounds. So a
first key question is to characterize statistical and computational trade-offs. Understanding if, or
under which conditions, computational gains come at the expense of statistical accuracy would
be fundamental to derive new and more efficient learning algorithms.

Another way to improve the scalability of kernel methods is to improve the approximation tech-
niques themself. As we just discussed random projections are broadly used to reduce the com-
putational burden. In particular, the Nyström method can be seen as a way to approximate a
large matrix that defines the minimization problem. The Nyström method consists in replac-
ing the large matrix with a smaller one made out of a subset of columns chosen uniformly at
random from the original one. This approach is fast to compute, but the number of columns
needed for a prescribed approximation accuracy does not take advantage of the possible low-
rank structure of the matrix at hand. As discussed in [AM15a], leverage score sampling provides
a way to tackle this shortcoming. Here columns are sampled proportionally to suitable weights,
called leverage scores (LS) [DMIMW12, AM15a]. With this sampling strategy, the number
of columns needed for a prescribed accuracy is governed by the so-called effective dimension
which is a natural extension of the notion of rank. Despite these nice properties, perform-
ing leverage score sampling provides a challenge in its own right, since it has complexity in
the same order of an eigendecomposition of the original matrix. In our specific case of learn-
ing with kernels, the original matrix would be of size n × n resulting in time complexity of
roughly O(n3). This computational burden dims any speedup that would follow the refined
matrix approximation, making leverage score sampling useless. Much effort has been recently
devoted to deriving fast and provably accurate algorithms for approximate leverage score sam-
pling [Woo14, CLV17a, AM15a, MM17, CLV17c], but these results have poor approximation
guarantees and/or do not match the complexity of state of the art approximated kernel methods
without exploiting distributed resources. So a second question is how to lower the computational
complexity of leverage score sampling resulting in an overall trim of the computational cost of
the learning process.

1.2.2 Bandit Optimization Setting

Non-parametric methods are also popular in sequential decision making, in particular in the
optimization under bandit feedback setting [LS19].

In this setting, a learning algorithm sequentially interacts with a reward function f . Over T
interactions, the algorithm chooses a point xt and it has only access to a noisy evaluation of f at
xt. The goal of the algorithm is to minimize the cumulative regret, which compares the reward
accumulated at the points selected over time,

∑
t f(xt), to the reward obtained by repeatedly

selecting the optimum of the function, i.e. T maxx f(x).

A popular and theoretically sound method is the GP-UCB algorithm first introduced by [SKKS10].

9

Starting from a Gaussian process (GP) prior over f [RW06], GP-UCB alternates between evalu-
ating the function, and using the evaluations to build a posterior of f . This posterior is composed
by a mean function µ that estimates the value of f , and a variance function σ that captures the
uncertainty µ. These two quantities are combined in a single upper confidence bound (UCB) that
drives the selection of the evaluation points and trades off between evaluating high-reward points
(exploitation) and testing possibly sub-optimal points to reduce the uncertainty on the function
(exploration).

The performance of GP-UCB has been studied by [SKKS10, VKM+13, CG17] to show that
GP-UCB provably achieves low regret both in a Bayesian and non-Bayesian setting. However,
the main limiting factor to its applicability is its computational cost. Assuming the input space
to have finite cardinality A, GP-UCB requires Ω(At2) time/space to select each new point,
resulting in a total time cost of O(AT 3) over T iterations. This computational complexity does
not allow the algorithm to scale over complex optimization problems with many iterations.

Several approximations of GP-UCB have been suggested [QCRW07, LOSC18]. A first ap-
proach is to approximate the GP using the equivalent of the Nyström approximation in the
Bayesian setting: inducing points [QCR05]. With this method, the GP can be restricted to lie
in the range of a small subset of inducing points. The subset should cover the space well for
accuracy, but also be as small as possible for efficiency. Methods referred to as sparse GPs, have
been proposed to select the inducing points and an approximation based on the subset. Popular
instances of this approach are the subset of regressors (SoR, [Wah90]) and the deterministic train-
ing conditional (DTC, [SWL03]). While these methods are simple to interpret and efficient, they
do not come with regret guarantees. Moreover, when the subset does not cover the space well,
they suffer from variance starvation [WGKJ18], as they underestimate the variance of points far
away from the inducing points. A second approach is to use some variation of random features.
Among these methods, [MK18] recently showed that discretizing the posterior on a fine grid
of quadrature Fourier features (QFF) incurs a negligible approximation error. This is sufficient
to prove that the maximum of the approximate posterior can be efficiently found and that it is
accurate enough to guarantee that Thompson sampling with QFF provably achieves low regret.
However this approach does not extend to non-stationary (or non-translation invariant) kernels
and although its dependence on t is small, the approximation and posterior maximization proce-
dure scale exponentially with the input dimension. Lastly, a more recent approach replaces the
true GP likelihood with a variational approximation that can be optimized efficiently [HCKB19].
Although this method provides guarantees on the approximate posterior mean and variance, these
guarantees only apply to GP regression and not to the harder optimization setting.

1.3 Contributions

We summarize in the following the main contributions of this thesis.

10

• Stochastic Gradient Descent with Random Features.
We first consider an estimator defined by mini-batched stochastic gradients and random
features within the least-squares framework. This estimator can be seen as shallow net-
works with random weights [CS09], or also as approximate kernel methods [RR17]. We
use the theory of reproducing kernel Hilbert spaces [Aro50] as rigorous mathematical
framework to study the properties of the learned estimator. The approach we consider is
not based on penalizations or explicit constraints. Indeed the regularization is implicit and
controlled by different parameters. In particular, we present an analysis that shows how the
number of random features, iterations, step-size and mini-batch size control the stability
and learning properties of the solution. By deriving finite sample bounds, we investigate
how optimal learning rates can be achieved with different parameter choices and how these
choices govern the interplay between statistical and computational performances.

• FALKON.
We then propose a new algorithm that combines the Nyström approximation with pre-
conditioned conjugate gradient [Saa03]. We use this technique to approximate the kernel
ridge regression (KRR) problem, but also to efficiently compute a preconditioner to be
used with the conjugate gradient optimization method. We prove that this new algorithm,
that we named FALKON, can at the same time preserve optimal theoretical guarantees and
run on millions of points utilizing only a fraction of the computational resources of previ-
ously proposed methods. More precisely, we take a substantial step in provably reducing
the computational requirements, showing that, up to logarithmic factors, a time/memory
complexity of Õ(n

√
n) and O(n) is sufficient for optimal statistical accuracy. The theo-

retical analysis that we derive provides optimal statistical rates both in a basic setting and
under refined benign conditions for which faster rates are possible. Further, we broadly
test on available large scale data-sets the empirical performances of FALKON, showing
that even on a single machine FALKON can outperform state of the art methods both in
terms of time efficiency and prediction accuracy.

• BLESS.
We consider how to speed up leverage score sampling in the case of positive semi-definite
matrices. We first propose and study BLESS, a novel algorithm for approximate leverage
scores sampling. Our analysis shows that the new algorithm can achieve state of the art
accuracy and computational complexity without requiring distributed resources. The key
idea is to follow a coarse to fine strategy, alternating uniform and leverage scores sampling
on sets of increasing size. Our second contribution is considering leverage score sampling
in statistical learning with least squares. We extend the FALKON algorithm. In particular,
we study the impact of replacing uniform sampling with leverage score sampling. We
prove that the derived method still achieves optimal learning bounds but the time and
memory is now Õ(nN̂), and Õ(N̂ 2) respectively, where N̂ is the effective dimension
which is never larger, and possibly much smaller, than

√
n.

11

• BKB.
We present the BKB (budgeted kernel bandit) algorithm: a kernelized bandit optimization
algorithm that achieves near-optimal regret with a computational complexity drastically
smaller than GP-UCB. This is achieved without assumptions on the complexity of the
input or on the kernel function. BKB leverages several well-known tools: a DTC approx-
imation of the posterior variance, based on inducing points, and a confidence interval con-
struction based on state-of-the-art self-normalized concentration inequalities [AYPS11]. It
also introduces two novel tools: a selection strategy to select inducing points based on
ridge leverage score (RLS) sampling that is provably accurate, and an approximate confi-
dence interval that is not only nearly as accurate as the one of GP-UCB, but also efficient.
Moreover denoting with N̂ the effective dimension of the problem, in a problem with A
arms, using a set of O(N̂) inducing points results in an algorithm with O(AN̂ 2) per-step
runtime and O(AN̂) space, a significant improvement over the O(At2) time and O(At)
space cost of GP-UCB.

1.4 Structure of the Thesis

In the following, we briefly describe the structure of the thesis.

• Chapter 2.
We introduce the supervised learning problem in the statistical learning setting and recall
some algorithms to learn with kernels. In particular, we define the problem setting in
Section 2.1 and Section 2.2, where we recall the theory of reproducing kernel Hilbert
spaces. We report how the kernel ridge regression problem can be solved in a basic way
and study its computational complexity in Section 2.3 and Section 2.4. We then state their
theoretical guarantees in Section 2.5.

• Chapter 3.
We present our first result studying the statistical and computational trade-offs of the esti-
mator defined by stochastic gradients and random features. This chapter is based on results
published in [CRR18]. We begin defining the estimator, studying its computational com-
plexity and discussing related methods in Section 3.1. We then present our main theoretical
results that capture statistical and computational trade-offs in Section 3.2 and provide the
proofs in Section 3.3. We conclude the chapter with empirical evaluations in Section 3.4.

• Chapter 4.
This chapter where we present the FALKON algorithm, is based on results published in
[RCR17]. We start recalling the Nyström approximation and its effect on kernel ridge re-
gression in Section 4.1. We present the learning algorithm in Section 4.2 and its theoretical
analysis in Section 4.3. We compare FALKON with previous works in Section 4.4. We

12

then give a generalized version of FALKON in Section 4.5. We state the proofs of all the
theoretical analysis in Section 4.6, 4.7, 4.8, and 4.9. In the end, we present the empirical
performance of FALKON on a wide range of datasets in Section 4.10.

• Chapter 5.
This chapter is based on results published in [RCCR18] We present how to speed up lever-
age score sampling and how the computational complexity of FALKON can be further re-
duced using the newly presented algorithms. Section 5.1 is dedicated to recalling leverage
score sampling, present the new BLESS algorithm and compare it with previous lever-
age score sampling algorithms. Section 5.2 states the theoretical guarantees and proofs of
BLESS. In Section 5.3 we describe how BLESS can be used in conjunction with FALKON
to derive fast solvers in the statistical learning setting. In Section 5.4 we give the theo-
retical analysis of FALKON-BLESS. We give empirical evaluations of both BLESS and
FALKON-BLESS in Section 5.5.

• Chapter 6.
We introduce the bandit optimization problem and how it can be solved using the non-
parametric GP-UCB algorithm. In particular, we define in Section 6.1 the bandit problem
and recall the general learning framework. We also recall the two main ingredients with
which the GP-UCB algorithm is built: the upper confidence bound principle as optimiza-
tion strategy in Section 6.2; and the Gaussian processes as prior over the reward function
of the bandit problem in Section 6.3. We then state the GP-UCB algorithm and its compu-
tational complexity in Section 6.4.

• Chapter 7.
We present our last result: the BKB algorithm. This chapter is based on results published
in [CCL+19]. We state the algorithm, study its computational complexity and present its
theoretical analysis in Section 7.1. We then compare it with other methods and discuss how
some of the assumptions made can be relaxed in Section 7.2. We finally give the detailed
proofs of the theoretical analysis in Section 7.3.

13

Chapter 2

Learning with Kernels
in the Statistical Learning Setting

Solving a supervised learning problem consists in finding a function f̂ that describes well an
input/output relation given a set Z = {(x1, y1), . . . , (xn, yn)} of input/output pairs. Given a new
input point xnew not included in Z, a function f̂ is said to generalize if it can give a good estimate
f̂(xnew) of the new output ynew.

The input/output pairs are sampled and often noisy. One of the challenges is to learn a function
that is not strongly biased by the noise. When this happens the function is said to overfit the
data. To contrast overfitting a procedure known as regularization is needed. Regularization is a
technique that, adding information/constraints, prevents overfitting and ensures generalization.

A second challenge deals the computational aspect of learning a function. Given infinite time,
trying all possible functions to find the optimal would be the ideal choice. This is of course not
doable in practice and finding the procedure that requires the least amount of time to learn the
best possible estimator is a question of major interest.

In this chapter, we introduce in detail these concepts and challenges. In particular, we see how
the problem can be formalized in the statistical learning setting, we present two algorithms to
solve the learning problem, and we see how the quality of the estimators can be measured and
studied theoretically.

2.1 Statistical Learning Theory

In a supervised learning problem we assume there exists an input space X and output space Y
from which pairs of points can be sampled. In particular, in statistical learning theory the data

14

space X × Y is modeled as a probability space with probability distribution ρ. The input/output
pairs are assumed to be sampled independently and identically from the distribution, that is
{(x1, y1), . . . , (xn, yn)} ∼ ρn, and form the so called training set.

Given an estimator f , to measure the quality of an estimate f(x) with respect to the correspond-
ing y, a loss L : Y × Y → [0,∞), is defined. Considering Y ⊆ R, for a, b ∈ R one example is
the squared loss

L(a, b) = (a− b)2 (2.1)

which is the most common loss for solving regression tasks, measuring the deviation between
the real output and the predicted value (i.e. a = y, b = f(x)). In classification tasks where
Y ∈ {−1, 1} the squared loss can still be used, but other natural choices are for example the
logistic loss

L(a, b) = log(1 + e−ab), (2.2)

and the hinge loss
L(a, b) = |1− ab|+. (2.3)

In this thesis we are going to mainly consider the squared loss.

As we have already stated, the ideal function f should predict correctly all possible inputs/outputs
generated by ρ. Then, to measure the quality of a function f we define the so called expected
risk

E(f) =

∫
X×Y

(f(x)− y)2dρ(x, y). (2.4)

This error measure takes into account all the possible points generated by ρ and weights the loss
suffered by each point according to the probability to be sampled.

Defining the target set T as the space of functions for which the expected risk is well defined,
the ideal solution of the learning problem is a function whose excess risk is close to

inf
f∈T
E(f) (2.5)

For the squared loss it is possible to derive the above quantity. The following function, known as
target function, achieves the infimum of the expected risk,

fρ(x) =

∫
Y
y dρ(y|x). (2.6)

Unfortunately the target function cannot be computed directly since the distribution is unknown,
and we do not have access to the set T . So the question that arises is how to efficiently find a
provably good solution on the basis of a given training set.

15

For these reasons, a set of candidate solutionsH ⊂ T is fixed and, given the set of training points
{(x1, y1), . . . , (xn, yn)}, an approximation of the expected risk is defined as

Ê(f) =
1

n

n∑
i=1

L(f(xi), yi) (2.7)

and an empirical counterpart of problem (2.5) is

inf
f∈H
Ê(f). (2.8)

Note that solving the above problem can lead to solutions which are not close to the solution of
the original problem (2.5). The reasons are multiple, one of which is the choice of the hypothesis
space H. Indeed, if on the one hand a large space H may imply that the infimum of the two
problems are close

inf
f∈H
E(f) ≈ inf

f∈T
E(f), (2.9)

on the other hand the solution of the empirical approximation over the set H may be far away
from the one of the expected problem

inf
f∈H
Ê(f) 6≈ inf

f∈H
E(f). (2.10)

To avoid this issue, the minimization problem (2.8) is typically approached adding further con-
straints or penalizations to reduce the complexity of the learned function.

This procedure, called regularization, can be performed in different ways. One of them, known
as Tikhonov regularization, consist in explicitly adding a penalization term to the empirical min-
imization problem. Defining a functional Pen : H → [0,∞) the regularized version of the
empirical problem is defined as

inf
f∈H
Êλ(f), Êλ(f) = Ê(f) + λPen(f), (2.11)

where λ > 0 is a parameter that balance the trade-off between the data fitting term and the
penalization term. Another way is to explicitly add a constraint to the hypothesis set. This can be
formalized as restrict the minimization problem (2.8) to a subsetHλ ⊂ H of candidate solutions

inf
f∈Hλ

Ê(f), (2.12)

withHλ = {f ∈ H | ‖f‖H ≤ λ}, where λ > 0 controls the importance of the constraint.

These different regularization techniques prevent the learned estimator to overfit the training data
if H is large, producing solutions with good generalization properties. We will also see in the
next chapters how regularization can affect the computational costs of a learning algorithm and
how constraining the computational resources can have an effect on regularization.

16

2.1.1 Measuring Generalization

We have seen so far how from the ideal learning problem (2.5) we can get empirically solvable
problems of the form (2.11) or (2.12). We see now how to measure the quality of the solutions
of these problems. Fixed a loss function and a hypothesis space, consider a function f̂λ learned
through the minimization of a regularized empirical problem over a set of n with regularization
parameter λ. Then a natural quantity to measure the quality of the estimator is the excess risk,
defined as

R(f̂λ) = E(f̂λ)− inf
f∈H
E(f). (2.13)

Notice that even if the algorithm that generates the estimator f̂λ can be deterministic, this quantity
is still stochastic because of its dependence on the training set from which it is learned. Then,
for a certain confidence δ ∈ [0, 1), the above quantity can then be studied through probabilistic
inequalities of the form

P
(
E(f̂λ)− inf

f∈H
E(f) ≤ B(n, ρ, λ, δ)

)
≥ 1− δ, (2.14)

where B(n, ρ, λ, δ) is a quantity that depends on the number of points n, the distribution ρ from
which the points are sampled, the imposed regularization λ and the required confidence δ. Ideally
we would like an algorithm to be able to generate good solutions f̂λ such that, for a certain level
of regularization and with a certain confidence, the quantity B(n, ρ, λ, δ) goes to 0 as fast as
possible as n goes to infinity. This would indicate that such a solution reaches the best possible
solution as the number of points increases.

So formalizing this desirable property we say that an algorithm is consistent if generates solutions
f̂λ such that (2.14) holds for a B(n, ρ, λ, δ) such that

lim
n→∞

B(n, ρ, λ, δ) = 0 (2.15)

for a proper λ. Further an algorithm is said to be universally consistent if it is consistent for all
possible measure ρ.

2.2 Reproducing Kernel Hilbert Spaces

The hypothesis spaces that we are going to consider in the rest of this thesis are known as Re-
producing Kernel Hilbert Spaces (RKHS)[Aro50]. They are some of the most useful spaces of
functions in a wide range of applied sciences including machine learning. They allow to define
potentially non-linear and nonparametric models. In this section, we are going to define a RKHS
and state some of its properties which will be useful throughout the thesis.

17

Let X and Y ⊆ R be sets. A RKHS is a Hilbert space H of functions f : X → Y for which is
defined a continuous evaluation function ex : H → Y such that

ex(f) = f(x), (2.16)

for any f ∈ H and x ∈ X .

The evaluation function (2.16) is related to a positive definite (PD) function known as reproduc-
ing kernel that gives the name to this space. Formally given a Hilbert space H, a reproducing
kernel is a symmetric function k : X × X → R such that for all x ∈ X

k(x, ·) ∈ H, (2.17)

and for all f ∈ H, defining kx(·) = k(x, ·)

〈f, kx〉H = f(x). (2.18)

It can be proved that every reproducing kernel k induces a unique RKHS and every RKHS has a
unique reproducing kernel.

The above definition of RKHS is not particularly revealing of how to design an RKHS, then we
state an equivalent characterization of RKHS: every positive definite function defines a unique
RKHS, of which is the unique reproducing kernel. In particular we say that a function k :
X × X → R is positive definite if it is symmetric and for all N ∈ N, a1, . . . , aN ∈ R and
x1, . . . , xN ∈ X the following holds

N∑
i,j=1

aiajk(xi, xj) ≥ 0. (2.19)

This last definition of kernel as PD function allows to easily prove some properties of reproducing
kernels. For example it is easy to see that finite sums of PD functions are PD functions and then
reproducing kernels. Another examples is that the product of kernels is still a kernel. In more
details, given (ki)

m
i=1 collection of m kernels with domain over as many sets (Xi)mi=1, for any

xj, x
′
j ∈ Xj with j = 1, . . . ,m, the function

k((x1, . . . , xm), (x′1, . . . , x
′
m)) = k1(x1, x

′
1) . . . km(xm, x

′
m) (2.20)

is a kernel on X̃ × X̃ , with X̃ = X1 × · · · × Xm.

Three popular examples of PD kernels are the linear kernel

k(x, x′) = 〈x, x′〉 ; (2.21)

the polinomial kernel of degree d ∈ N

k(x, x′) = (〈x, x′〉+ 1)d; (2.22)

18

and the Gaussian kernel with bandwidth σ > 0

k(x, x′) = e−
‖x−x′‖2

2σ2 . (2.23)

Lastly we state the connection between reproducing kernels and the so called feature maps. Let
F be a Hilbert space called feature space, for each reproducing kernel k there exists a function
Φ : X → F (known as feature map), such that

k(x, x′) = 〈Φ(x),Φ(x′)〉F , ∀x ∈ X . (2.24)

This characterization suggests that every PD function and corresponding RKHS has at least one
associated feature map satisfying the above equation. Moreover it unveils the property of kernels
of implicitly mapping the input data X into a higher and potentially infinite dimensional space
through the feature map Φ.

A trivial example of feature map is Φ(x) = kx, implying F = H for the kernel k(x, x′) =
〈kx, kx′〉H = 〈Φ(x),Φ(x′)〉F . Otherwise considering F = `2 space of squared summable se-
quences and defining (φj)j any orthonormal basis in H, then Φ(x) = (φj(x))j is a feature map
that defines the kernel k(x, x′) =

∑∞
j=1 φj(x)φj(x

′) = 〈kx, kx′〉H = 〈Φ(x),Φ(x′)〉F .

2.3 Kernel Ridge Regression

Tikhonov regularization provides a way to approximate the solution of minimizing the expected
risk given data. In this section, we investigate the computational aspects of the above problem
choosing the hypothesis space H to be a RKHS, the regularizer Pen the corresponding squared
norm and the loss function to be the squared loss.

We consider the regularized empirical minimization problem over n points {(x1, y1), . . . , (xn, yn)}.
Define with k the reproducing kernel associated to the RKHS H, and let λ > 0 be the regular-
ization parameter. We can then write the minimization problem as

min
f∈H
Êλ(f), Êλ(f) =

1

n

n∑
i=1

(f(xi)− yi)2 + λ ‖f‖2
H . (2.25)

Because the squared loss is a convex and continuous function, the objective function is strongly
convex, continuous and coercive. Then the solution of the problem exists and is unique.

Being H a potentially infinite dimensional space, in the form stated in equation (2.25), the min-
imization problem does not explicitly suggest how to actually compute the solution. Thanks to
the so called representer theorem it can be proved that the solution of the above problem can be

19

written as a linear combination of the kernel function evaluated at the training set points [SS02].
More precisely, the function f̂λ ∈ H of the form

f̂λ(x) =
n∑
i=1

k (x, xi) ci, ∀x ∈ X (2.26)

is solution of (2.25) for a certain ĉλ = (c1, . . . , cn)> ∈ Rn, where we denote with A> the
transpose of any matrix A. Then the quantities to be computed are the coefficients ĉλ. As we
see now, this result allows to write a finite dimensional minimization problem whose solution is
related to (2.25) through (2.26). Let K̂ be the n×n matrix with entries (K̂)i,j = k(xi, xj) called
the kernel matrix, and note that for any function f̂λ as in (2.26) the corresponding norm inH can
be written as ∥∥∥f̂λ∥∥∥2

H
=

n∑
i,j=1

cicjk(xi, xj) =
〈
c, K̂c

〉
Rn
. (2.27)

Then, plugging the representation (2.26) in problem (2.25), we can derive the following mini-
mization problem

min
c∈Rn

1

n

∥∥∥K̂c− ŷ∥∥∥2

Rn
+ λ

〈
c, K̂c

〉
Rn
, (2.28)

with ŷ = (y1, . . . , yn)>.

The squared loss allows to write the solution of the above problem in closed form. Taking the
gradient of (2.28) and setting it equal to zero we recover the following linear system to be solved
with respect to c

K̂(K̂ + λnI)c = K̂ŷ. (2.29)

Note that the simpler linear system

(K̂ + λnI)c = ŷ. (2.30)

shares the same solution and can be derived by first setting the gradient of (2.25) equal to zero and
then plugging in the representation (2.26). This latter linear system requires less computational
resources to be solved. The solution of (2.30) can then be written as

ĉλ = (K̂ + λnI)−1ŷ, (2.31)

defining what is known as the Kernel Ridge Regression (KRR) estimator

f̂λ(x) =
n∑
i=1

k (x, xi) (ĉλ)i. (2.32)

The computational complexity of the overall problem is in computing ĉλ. In details, a cost
of O(n2) in memory is needed to store the kernel matrix K̂, and, denoting with ck the cost of
evaluating the kernel function for one pair of points,O(n3 +ckn

2) is the cost in time for inverting
an n × n matrix and constructing the kernel matrix. This analysis shows that computing (2.31)
for large datasets is challenging.

20

2.4 Gradient Descent Learning

In the previous section we have seen how Tikhonov regularization can be used to approximatively
solve the learning problem over a RKHS. In particular we have seen how to recover an empirical
finite dimensional minimization problem and how this can be solved directly in closed form.
We now focus on how to solve this empirical problem in an iterative way such that no explicit
regularization is needed.

For the sake of simplicity, we are going to assume K̂ invertible, but all the reasoning can be
extended considering simply the pseudoinverse.

An iterative solver defines a sequence of empirical solutions. The first elements of the sequence
will be a rough approximation of the solution, and the latest will be the most refined and close to
the exact minimizer of the empirical problem. Consider the empirical problem for squared loss
for an RKHSH

min
f∈H
Ê(f), Ê(f) =

1

n

n∑
i=1

(f(xi)− yi)2 . (2.33)

If we follow the same reasoning used in the previous section, by the representer theorem we
recover the following finite dimensional minimization problem

min
c∈Rn
Ê(c), Ê(c) =

1

n

∥∥∥K̂c− ŷ∥∥∥2

Rn
, (2.34)

with minimizer ĉ∗ = K̂−1ŷ. Minimizing exactly this problem may lead to overfitting because
of lack of explicit regularization. But we now see that with some care in the optimization pro-
cedure regularization can be implicitly induced. Using gradient descent (GD) to solve the above
minimization problem gives the following iteration sequences for t = 1, . . . , tmax

ct = ct−1 −
2γ

n
K̂
(
K̂ct−1 − ŷ

)
(2.35)

with initialization step c0 = 0 and stepsize γ > 0. Being (2.34) a convex problem we know that
the above sequence with enough iterations will eventually converge to the exact minimizer. The
idea of iterative regularization is that early termination of the iteration has a regularizing effect,
leading to an approximate solution of the ERM problem as Tikhonov regularization does. It can
be proved by induction that we can also write (2.35) as

ct =
2γ

n

t∑
i=0

(
I − 2γ

n
K̂2

)i
K̂ŷ. (2.36)

Denoting with ‖·‖ the operator norm for a bounded linear operatorA, and recalling the Neumann
series, we know that for each matrix A such that ‖A‖ < 1

∞∑
i=0

(I − A)i = A−1. (2.37)

21

This suggests that if instead we consider a truncated series

T∑
i=0

(I − A)i ≈ A−1, (2.38)

this produces an approximation of the inverse of the matrix A as accurate as T approaches infin-
ity. If we now take A = 2γ

n
K̂ with γ such that ‖A‖ < 1, then we have

ctmax =
2γ

n

tmax∑
i=0

(
I − 2γ

n
K̂

)i
ŷ ≈ K̂−1ŷ = ĉ∗ (2.39)

being an approximation of the exact minimizer, with the approximation level driven by the stop-
ping rule tmax. We then refer to the function

f̂tmax(x) =
n∑
i=1

k (x, xi) (ĉtmax)i (2.40)

as Gradient Descent estimator or as L2-boosting estimator or Landweber estimator.

The computational complexity of this method depends on the stopping criterion. Each iteration
(2.35) costs O(n2) because of the matrix vector product. Keeping into account also the cost for
computing the kernel matrix we have an overall cost in time of O(ckn

2 + tmaxn
2) and O(n2) in

space.

2.5 Learning Bounds

We have seen in the previous 2 sections how to compute two estimators based respectively
on Tikhonov regularization and Gradient Descent. These estimators depends on some specific
choices of regularization: the λ value for Tikhonov and the stepsize and number of iteration for
Landweber. In this section, we see how these estimators can be studied theoretically in order to
have certain statistical guarantees, and how the analysis suggests the right level of regularization
to impose.

Recall from Section 2.1.1 that for a given estimator f̂λ, and denoting with λ the regularization
imposed, we would like to prove that

P
(
E(f̂λ)− inf

f∈H
E(f) ≤ B(n, ρ, λ, δ)

)
≥ 1− δ, (2.41)

for a certain B(n, ρ, λ, δ) going to 0 as n goes to infinity. To theoretically prove the above bounds
certain assumptions are required. In details we are going to identify two main class of assump-
tions which allows to recover two different regimes for the bound. The first one introduced in

22

Section 2.5.1 is a class of mild assumptions which covers a worst case regime. The second one
Section 2.5.2 is a class of more refined assumptions which allows to get faster rates. For each
one of this classes we present the bounds for the KRR and GD estimator.

2.5.1 Basic

Using as hypothesis space an RKHS, to derive statistical bounds of the form (2.41), we require
the reproducing kernel to be bounded. This can be formalized by the following assumption.

Assumption 1. There exists κ ≥ 1 such that k(x, x) ≤ κ2 for any x ∈ X

Another required standard assumption in the context of non-parametric regression (see [CDV07]),
consists in assuming a minimum for the expected risk, over the space of functions induced by
the kernel.

Assumption 2. IfH is the RKHS with kernel k, there exists fH ∈ H such that

E(fH) = inf
f∈H
E(f).

This assumption state the existence of fH we will see how it can be refined in the next section.

We also need some basic assumption on the data distribution. For all x ∈ X , we denote by
ρ(y|x) the conditional probability of ρ and by ρX the corresponding marginal probability on X .
We need a standard moment assumption to derive probabilistic results. The assumption can be
stated in slightly different ways, one of which is the following.

Assumption 3. For any x ∈ X , there exist σ, b satisfying 0 ≤ σ ≤ b such that∫
Y
|y − fH(x)|pdρ(y|x) ≤ 1

2
p!σ2bp−2, ∀p ≥ 2 ∈ N. (2.42)

Note that the above assumption holds when y is bounded, sub-Gaussian or sub-exponential.

The two following propositions give a bound of the form (2.41) to the KRR estimator and the
Landweber estimator, showing how regularization influence the bound.

Proposition 1 (from [CDV07]). Let f̂λ be the KRR estimator as in (2.32), and let δ ∈ (0, 1).
Under assumption Assumptions 1,2,3, the following holds with probability at least 1− δ

R(f̂λ) . λ +
1

nλ
log

1

δ
, (2.43)

where we ignored the constants which do not depend on n, λ, δ.

23

Proposition 2 (from [YRC07]). Let f̂tmax be the GD estimator as in (2.40), and let δ ∈ (0, 1)
and γ ∈ (0, κ−2]. Under assumption Assumptions 1,2,3, the following holds with probability at
least 1− δ

R(f̂tmax) .
1

γtmax
+

γtmax
n

log
1

δ
, (2.44)

where we ignored the constants which do not depend on n, tmax, δ.

From the above two results it is then possible to derive the optimal choice of regularization, which
consist in an optimal choice for λ for KRR and the early stopping condition for Landweber.
These choices are summed up in the following corollaries.

Corollary 1. Let f̂λ be the KRR estimator as in (2.32), and let δ ∈ (0, 1) and λ > 0. Under
assumption Assumptions 1,2,3, choosing λn such that

λn =
1√
n

(2.45)

the following holds with probability at least 1− δ

R(f̂λn) .
1√
n

log
1

δ
, (2.46)

where we ignored the constants which do not depend on n, λn, δ.

Corollary 2. Let f̂ ∗tmax be the GD estimator as in (2.40), and let δ ∈ (0, 1) and γ = κ−2. Under
assumption Assumptions 1,2,3, choosing tmax as

tmax =
√
n (2.47)

the following holds with probability at least 1− δ

R(f̂tmax) .
1√
n

log
1

δ
, (2.48)

where we ignored the constants which do not depend on n, γ, tmax, δ.

2.5.2 Refined

We next discuss how the above results can be refined under an additional regularity assumption.
We need some preliminary definitions. Let H be the RKHS defined by k, and L : L2(X , ρX)→
L2(X , ρX) the integral operator

Lf(x) =

∫
X
k(x, x′)f(x′)dρX (x′), ∀f ∈ L2(X , ρX), x ∈ X ,

24

where L2(X , ρX) = {f : X → R : ‖f‖2
ρ =

∫
X |f |

2dρX < ∞}. The above operator is
symmetric and positive definite. Moreover, Assumption 1 ensures that the kernel is bounded,
which in turn ensures L is trace class, hence compact [SC08]. Define also the operator C : H →
H as

〈h,Ch′〉H =

∫
X
h(x)h′(x)dρX (x), ∀h, h′ ∈ H

We now define a quantity known as effective dimension

Definition 1. For any λ > 0, we define the effective dimension the quantity

N (λ) = Tr((L+ λI)−1L). (2.49)

This quantity can be seen as a measure of the size of H and with certain assumptions allows to
improve the rates of convergence. For example, one can assume that the effective dimension has
a polynomial decrease in λ.

Assumption 4. For any λ > 0, assume that there exist Q > 0 and α ∈ [0, 1] such that

N (λ) ≤ Q2λ−α. (2.50)

Condition (2.50) describes the capacity/complexity of the RKHS H and the measure ρ. It is
equivalent to classic entropy/covering number conditions, see e.g. [SC08]. The case α = 1
corresponds to making no assumptions on the kernel, and reduces to the worst case analysis in
the previous section. The smaller is α the more stringent is the capacity condition. A classic
example is considering X = Rd with dρX (x) = p(x)dx, where p is a probability density, strictly
positive and bounded away from zero, and H to be a Sobolev space with smoothness s > d/2.
Indeed, in this case α = d/2s and classical nonparametric statistics assumptions are recovered
as a special case. Note that in particular the worst case is s = d/2.

We now state a more refined version of Assumption 2.

Assumption 5. Assume there exists 1/2 ≤ r ≤ 1 and g ∈ L2(X , ρX) such that

fH(x) = (Lrg)(x), (2.51)

with ‖g‖ ≤ R, where R > 0.

This assumption correspond in the inverse problem literature to what is called source condition,
where it is expressed in this equivalent form [VRC+05, DVRC06].

Assumption 6. Assume there exists 1/2 ≤ r ≤ 1 and h ∈ H such that

fH(x) = (Cr−1/2h)(x), (2.52)

with ‖h‖ ≤ R, where R > 0.

25

These last two equivalent assumptions are regularity conditions commonly used in approxima-
tion theory to control the bias of the estimator. Note that for r = 1/2 we recover Assumption 2
(see [SZ03]), but this is a relaxed version which measures the regularity of fH: if r is big fH is
regular and rates are faster. For further discussions on the interpretation of the conditions above
see [CDV07, SHS+09, Bac13, RCR15].

We can now state the equivalent bounds and rates under the more refined assumptions.

Proposition 3 (from [CDV07]). Let f̂λ be the KRR estimator as in (2.32), and let δ ∈ (0, 1)
Under assumption Assumptions 1,3, 4, 6, the following holds with probability at least 1− δ

R(f̂λ) . λ2r +
N (λ)

n
log

1

δ
, (2.53)

where we ignored the constants which do not depend on n, λ, δ.

Proposition 4 (from [LR17c]). Let f̂tmax be the GD estimator as in (2.40), and let δ ∈ (0, 1)
Under assumption Assumptions 1,3, 4, 6, the following holds with probability at least 1− δ

R(f̂tmax) .

(
1

γtmax

)2r

+
N (1/(γtmax))

n
log

1

δ
, (2.54)

where we ignored the constants which do not depend on n, tmax, δ.

Corollary 3. Let f̂λ be the KRR estimator as in (2.32), and let δ ∈ (0, 1) and λ > 0. Under
assumption Assumptions 1,3, 4, 6, choosing λn such that

λn = n−
1

2r+α (2.55)

the following holds with probability at least 1− δ

R(f̂λn) . n−
2r

2r+α log
1

δ
, (2.56)

where we ignored the constants which do not depend on n, λ∗, δ.

Corollary 4. Let f̂ ∗tmax be the GD estimator as in (2.40), and let δ ∈ (0, 1) and γ = κ−2. Under
assumption Assumptions 1,3, 4, 6, choosing tmax as

tmax = n
1

2r+α (2.57)

the following holds with probability at least 1− δ

R(f̂tmax) . n−
2r

2r+α log
1

δ
, (2.58)

where we ignored the constants which do not depend on n, γ, tmax, δ.

Notice that the results in Section 2.5.1 can be recovered as a special case of these when choosing
r = 1

2
and α = 1.

26

Chapter 3

Stochastic Gradient Descent
with Random Features

In this chapter, we study an estimator defined by stochastic gradient [RM51] with mini-batches
and random features [RR08] . These latter are typically defined by nonlinear sketching: random
projections of the followed by a component-wise nonlinearity [ASW13]. In order to derive an
efficient large scale learning algorithm, we investigate its application in the context of nonpara-
metric statistical learning.

For nonparametric learning, we have seen in the previous chapter that classical methods like
KRR (see Section 2.3) or L2-boosting (see Section 2.4) requires both O(n2) in memory and re-
spectivelyO(n3) andO(n2t) in time, with n number of samples and t number of iterations of the
L2-boosting algorithm. To trim this computational resources, on the one hand, we use stochas-
tic gradients to process data points individually, or in small batches, keeping good convergence
rates, while reducing computational complexity [BB08]. On the other hand, we use sketching
techniques to reduce data-dimensionality, hence memory requirements, by random projections
[ASW13].

The considered estimator is not explicitly penalized/constrained and regularization is implicit.
Indeed in the following analysis, we show how the number of random features, iterations, step-
size and mini-batch size control the learning properties of the solution. By deriving finite sample
bounds, we show how different parameter choices can be used to derive optimal learning rates.
In particular, we show that similarly to ridge regression [SS02, RR17], a number of random
features proportional to the square root of the number of samples suffice for O(1/

√
n) error

bounds. Further, we show that for certain choices of the free parameters we can derive optimal
estimators with a much smaller time and memory complexity with respect to previous methods.

27

3.1 Learning with Stochastic Gradients and Random Features

We consider the problem of supervised statistical learning with squared loss presented in Chap-
ter 2. As suggested in Section 2.1 and in more details in [DGL13], the search for a solution needs
to be restricted to a suitable space of hypothesis to allow efficient computations and reliable es-
timation. Then in this chapter we consider functions of the form

f(x) = 〈w, φM(x)〉, ∀x ∈ X , (3.1)

where w ∈ RM and φM : X → RM , M ∈ N+, denotes a family of finite dimensional feature
maps (see below). Further, we consider a mini-batch stochastic gradient method to estimate the
coefficients from data,

ŵ1 = 0; ŵt+1 = ŵt − γt
1

b

bt∑
i=b(t−1)+1

(
〈ŵt, φM(xji)〉 − yji

)
φM(xji), t = 1, . . . , tmax.

(3.2)
Here tmax ∈ N+ is the number of iterations and J = {j1, . . . , jbtmax} denotes the strategy to
select training set points. In particular, in this work we assume the points to be drawn uniformly
at random with replacement. Note that given this sampling strategy, one pass over the data is
reached on average after dn

b
e iterations. Our analysis allows to consider multiple as well as single

passes. For b = 1 the above algorithm reduces to a simple stochastic gradient iteration. For b > 1
it is a mini-batch version, where b points are used in each iteration to compute a gradient estimate.
The parameter γt is the step-size.

The algorithm requires specifying different parameters. In the following, we study how their
choice is related and can be performed to achieve optimal learning bounds. Before doing this,
we further discuss the class of feature maps we consider.

3.1.1 From Sketching to Random Features, from Shallow Nets to Kernels

In this chapter, we are interested in a particular class of feature maps, namely random features
[RR08]. A simple example is obtained by sketching the input data. Assume X ⊆ Rd and

φM(x) = (〈x, s1〉, . . . , 〈x, sM〉) ,

where s1, . . . , sM ∈ Rd is a set of identical and independent random vectors [Woo14]. More
generally, we can consider features obtained by nonlinear sketching

φM(x) = (σ(〈x, s1〉), . . . , σ(〈x, sM〉)) , (3.3)

28

where σ : R → R is a nonlinear function, for example σ(a) = cos(a) [RR08], σ(a) = |a|+ =
max(a, 0), a ∈ R [CS09]. If we write the corresponding function (3.1) explicitly, we get

f(x) =
M∑
j=1

wjσ(〈sj, x〉), ∀x ∈ X . (3.4)

that is as shallow neural nets with random weights [CS09] (offsets can be added easily).
For many examples of random features the inner product,

〈φM(x), φM(x′)〉 =
M∑
j=1

σ(〈x, sj〉)σ(〈x′, sj〉), (3.5)

can be shown to converge to a corresponding positive definite kernel k as M tends to infin-
ity [RR08, SS15]. We now show some examples of kernels determined by specific choices of
random features.

Example 1 (Random features and kernel). Let σ(a) = cos(a) and consider (〈x, s〉+ b) in place
of the inner product 〈x, s〉, with s drawn from a standard Gaussian distribution with variance σ2,
and b uniformly from [0, 2π]. These are the so called Fourier random features and recover the
Gaussian kernel k(x, x′) = e−‖x−x

′‖2/2σ2
[RR08] as M increases. If instead σ(a) = a, and the s

is sampled according to a standard Gaussian the linear kernel k(x, x′) = σ2〈x, x′〉 is recovered
in the limit. [HXGD14].

These last observations allow to establish a connection with kernel methods [SS02] and the the-
ory of reproducing kernel Hilbert spaces [Aro50]. As introduced in Section 2.2, a reproducing
kernel Hilbert space H is a Hilbert space of functions for which there is a symmetric posi-
tive definite function1 k : X × X → R called reproducing kernel, such that k(x, ·) ∈ H and
〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X . It is also useful to recall that k is a reproducing kernel
if and only if there exists a Hilbert (feature) space F and a (feature) map φ : X → F such that

k(x, x′) = 〈φ(x), φ(x′)〉, ∀x, x′ ∈ X , (3.6)

where F can be infinite dimensional.

The connection to RKHS is interesting in at least two ways. First, it allows to use results and
techniques from the theory of RKHS to analyze random features. Second, it shows that random
features can be seen as an approach to derive scalable kernel methods [SS02]. Indeed, kernel
methods have complexity at least quadratic in the number of points, while random features have
complexity which is typically linear in the number of points. From this point of view, the intuition
behind random features is to relax (3.6) considering

k(x, x′) ≈ 〈φM(x), φM(x′)〉, ∀x, x′ ∈ X . (3.7)

where φM is finite dimensional.
1For all x1, . . . , xn the matrix with entries k(xi, xj), i, j = 1, . . . , n is positive semi-definite.

29

3.1.2 Computational Complexity

If we assume the computation of the feature map φM(x) to have a constant cost, the iteration
(3.2) requires O(M) operations per iteration for b = 1, that is O(Mn) for one pass tmax = n.
Note that for b > 1 each iteration cost O(Mb) but one pass corresponds to dn

b
e iterations so

that the cost for one pass is again O(Mn). A main advantage of mini-batching is that gradient
computations can be easily parallelized. In the multiple pass case, the time complexity after tmax
iterations is O(Mbtmax).
Computing the feature map φM(x) requires to compute M random features. The computation of
one random feature does not depend on n, but only on the input space X . If for example we as-
sumeX ⊆ Rd and consider random features defined as in the previous section, computing φM(x)
requires M random projections of d dimensional vectors [RR08], for a total time complexity of
O(Md) for evaluating the feature map at one point. For different input spaces and different types
of random features computational cost may differ, see for example Orthogonal Random Features
[FSC+16] or Fastfood [LSS13] where the cost is reduced from O(Md) to O(M log d). Note that
the analysis presented in his paper holds for random features which are independent, while Or-
thogonal and Fastfood random features are dependent. Although it should be possible to extend
our analysis for Orthogonal and Fastfood random features, further work is needed. To simplify
the discussion, in the following we treat the complexity of φM(x) to be O(M).
One of the advantages of random features is that each φM(x) can be computed online at each it-
eration, preservingO(Mbtmax) as the time complexity of the algorithm (3.2). Computing φM(x)
online also reduces memory requirements. Indeed the space complexity of the algorithm (3.2) is
O(Mb) if the mini-batches are computed in parallel, or O(M) if computed sequentially.

3.1.3 Related Approaches

We comment on the connection to related algorithms. Random features are typically used within
an empirical risk minimization framework [SC08]. Results considering convex Lipschitz loss
functions and `∞ constraints are given in [RR09], while [Bac17] considers `2 constraints. A
ridge regression framework is considered in [RR17], where it is shown that it is possible to
achieve optimal statistical guarantees with a number of random features in the order of

√
n.

The combination of random features and gradient methods is less explored. A stochastic co-
ordinate descent approach is considered in [DXH+14], see also [LR17a, TRVR16]. A related
approach is based on subsampling and is often called Nyström method [SS00, WS01]. Here a
shallow network is defined considering a nonlinearity which is a positive definite kernel, and
weights chosen as a subset of training set points. This idea can be used within a penalized em-
pirical risk minimization framework [RCR15, YPW15, AM15a] but also considering gradient
[CARR16, RCR17] and stochastic gradient [LR17b] techniques. An empirical comparison be-
tween Nyström method, random features and full kernel method is given in [TRVR16], where
the empirical risk minimization problem is solved by block coordinate descent. Note that numer-

30

ous works have combined stochastic gradient and kernel methods with no random projections
approximation [DFB17, LR17c, PVRB18a, PVRB18b, RV15, Ora14]. The above list of refer-
ences is only partial and focusing on papers providing theoretical analysis. In the following, after
stating our main results we provide a further quantitative comparison with related results.

3.2 Main Results

In this section, we first discuss our main results under basic assumptions and then more refined
results under further conditions.

3.2.1 Worst Case Results

Our results apply to a general class of random features described by the following assumption.

Assumption 7. Let (Ω, π) be a probability space, ψ : X × Ω→ R and for all x ∈ X ,

φM(x) =
1√
M

(ψ(x, ω1), . . . , ψ(x, ωM)) , (3.8)

where ω1, . . . , ωM ∈ Ω are sampled independently according to π.

The above class of random features cover all the examples described in Section 3.1.1, as well as
many others, see [RR17, Bac17] and references therein. Next we introduce the positive definite
kernel defined by the above random features. Let k : X × X → R be defined by

k(x, x′) =

∫
ψ(x, ω)ψ(x′, ω)dπ(ω), ∀, x, x′ ∈ X .

It is easy to check that k is a symmetric and positive definite kernel. To control basic properties
of the induced kernel (continuity, boundedness), we require the following assumption, which is
again satisfied by the examples described in Section 3.1.1 (see also [RR17, Bac17] and references
therein).

Assumption 8. The function ψ is continuous and there exists κ ≥ 1 such that |ψ(x, ω)| ≤ κ for
any x ∈ X , ω ∈ Ω.

The kernel introduced above allows to compare random feature maps of different size and to
express the regularity of the largest function class they induce. In particular, we require Assump-
tion 2 introduced in Section 2.5, the standard assumption on the existence of fH ∈ H. In the end,
we need an assumption on the data distribution. For all x ∈ X , denote by ρ(y|x) the conditional
probability of ρ and by ρX the corresponding marginal probability on X .

31

Assumption 9. For any x ∈ X∫
Y
y2ldρ(y|x) ≤ l!Blp, ∀l ∈ N (3.9)

for constants B ∈ (0,∞) and p ∈ (1,∞), ρX -almost surely.

This assumption is slightly different form Assumption 3 presented in Section 2.5, but they both
hold for bounded, sub-Gaussian or sub-exponential outputs y.

The next theorem corresponds to our first main result. In the following theorem, we control the
excess risk of the estimator with respect to the number of points, the number of random features
(RF), the step size, the mini-batch size and the number of iterations. We let f̂t+1 = 〈ŵt+1, φM(·)〉,
with ŵt+1 as in (3.2). Denote with [a] = {1, . . . , a} for any a ∈ N+, and with b ∧ c and b ∨ c
respectively the minimum and maximum between any b, c ∈ R.

Theorem 1. Let n,M ∈ N+, δ ∈ (0, 1) and t ∈ [T]. Under Assumption 2,7,8,9, for b ∈ [n],
γt = γ s.t. γ ≤ n

9T log n
δ
∧ 1

8(1+log T)
, n ≥ 32 log2 2

δ
and M & γT the following holds with

probability at least 1− δ:

EJ
[
E(f̂t+1)

]
−E(fH) .

γ

b
+

(
γt

M
+ 1

)
γt log 1

δ

n
+

log 1
δ

M
+

1

γt
. (3.10)

The above theorem bounds the excess risk with a sum of terms controlled by the different param-
eters. The following corollary shows how these parameters can be chosen to derive finite sample
bounds.

Corollary 5. Under the same assumptions of Theorem 1, for one of the following conditions

(c1.1). b = 1, γ ' 1
n

, and T = n
√
n iterations (

√
n passes over the data);

(c1.2). b = 1, γ ' 1√
n

, and T = n iterations (1 pass over the data);

(c1.3). b =
√
n, γ ' 1, and T =

√
n iterations (1 pass over the data);

(c1.4). b = n, γ ' 1, and T =
√
n iterations (

√
n passes over the data);

a number
M = Õ(

√
n) (3.11)

of random features is sufficient to guarantee with high probability that

EJ
[
E(f̂T)

]
− E(fH) .

1√
n
. (3.12)

32

The above learning rate is the same achieved by an exact kernel ridge regression (KRR) estimator
[CDV07, SHS+09, LRRC18], which has been proved to be optimal in a minimax sense [CDV07]
under the same assumptions. Further, the number of random features required to achieve this
bound is the same as the kernel ridge regression estimator with random features [RR17]. Notice
that, for the limit case where the number of random features grows to infinity for Corollary 5
under conditions (c1.2) and (c1.3) we recover the same results for one pass SGD of [SZ13],
[DGBSX12]. In this limit, our results are also related to those in [DB16]. Here, however, aver-
aging of the iterates is used to achieve larger step-sizes.
Note that conditions (c1.1) and (c1.2) in the corollary above show that, when no mini-batches are
used (b = 1) and 1

n
≤ γ ≤ 1√

n
, then the step-size γ determines the number of passes over the

data required for optimal generalization. In particular the number of passes varies from constant,
when γ = 1√

n
, to
√
n, when γ = 1

n
. In order to increase the step-size over 1√

n
the algorithm

needs to be run with mini-batches. The step-size can then be increased up to a constant if b is
chosen equal to

√
n (condition (c1.3)), requiring the same number of passes over the data of the

setting (c1.2). Interestingly condition (c1.4) shows that increasing the mini-batch size over
√
n

does not allow to take larger step-sizes, while it seems to increase the number of passes over the
data required to reach optimality.
We now compare the time complexity of algorithm (3.2) with some closely related methods
which achieve the same optimal rate of 1√

n
. As seen in Section 2.3, computing the classical KRR

estimator (2.32) has a complexity of roughly O(n3) in time and O(n2) in memory. Lowering this
computational cost is possible with random projection techniques. Both random features and
Nyström method on KRR [RR17, RCR15] lower the time complexity to O(n2) and the memory
complexity toO(n

√
n) preserving the statistical accuracy. The same time complexity is achieved

by stochastic gradient method solving the full kernel method [LR17c, RV15], but with the higher
space complexity ofO(n2). The combination of the stochastic gradient iteration, random features
and mini-batches allows our algorithm to achieve a complexity of O(n

√
n) in time and O(n) in

space for certain choices of the free parameters (like (c1.2) and (c1.3)). Note that these time and
memory complexity are lower with respect to those of stochastic gradient with mini-batches and
Nyström approximation which are O(n2) and O(n) respectively [LR17b]. We will present in
the next chapter a method with similar complexity to stochastic gradient descent (SGD) with RF.
This method, called FALKON, has indeed a time complexity of O(n

√
n log(n)) and O(n) space

complexity. This method blends together Nyström approximation, a sketched preconditioner and
conjugate gradient.

3.2.2 Refined Analysis and Fast Rates

We now discuss how faster rates can be achieved under the more refined assumptions discussed
in Section 2.5.2.

The following theorem is a refined version of Theorem 1 where we also consider the assumptions

33

on the capacity and regularity condition.

Theorem 2. Let n,M ∈ N+, δ ∈ (0, 1) and t ∈ [T], under Assumption 4,5,7,8,9, for b ∈ [n],
γt = γ s.t. γ ≤ n

9T log n
δ
∧ 1

8(1+log T)
, n ≥ 32 log2 2

δ
and M & γT the following holds with high

probability:

EJ
[
E(f̂t+1)

]
− E(fH) .

γ

b
+

(
γt

M
+ 1

) N (1
γt

)
log 1

δ

n
+
N
(

1
γt

)2r−1

log 1
δ

M(γt)2r−1
+

(
1

γt

)2r

.

(3.13)

The main difference is the presence of the effective dimension providing a sharper control of
the stability of the considered estimator. As before, explicit learning bounds can be derived
considering different parameter settings.

Corollary 6. Under the same assumptions of Theorem 2, for one of the following conditions

(c2.1). b = 1, γ ' n−1, and T = n
2r+α+1
2r+α iterations (n

1
2r+α passes over the data);

(c2.2). b = 1, γ ' n−
2r

2r+α , and T = n
2r+1
2r+α iterations (n

1−α
2r+α passes over the data);

(c2.3). b = n
2r

2r+α , γ ' 1, and T = n
1

2r+α iterations (n
1−α
2r+α passes over the data);

(c2.4). b = n, γ ' 1, and T = n
1

2r+α iterations (n
1

2r+α passes over the data);

a number
M = Õ(n

1+α(2r−1)
2r+α) (3.14)

of random features suffies to guarantee with high probability that

EJ
[
E(ŵT)

]
− E(fH) . n−

2r
2r+α . (3.15)

The corollary above shows that multi-pass SGD achieves a learning rate that is the same as kernel
ridge regression under the regularity Assumption 5 and is again minimax optimal (see [CDV07]).
Moreover, we obtain the minimax optimal rate with the same number of random features required
for ridge regression with random features [RR17] under the same assumptions. Finally, when the
number of random features goes to infinity we also recover the results for the infinite dimensional
case of the single-pass and multiple pass stochastic gradient method [LR17c].
It is worth noting that, under the additional regularity Assumption 5, the number of both random
features and passes over the data sufficient for optimal learning rates increase with respect to the
one required in the worst case (see Corollary 5). The same effect occurs in the context of ridge
regression with random features as noted in [RR17]. In this latter paper, it is observed that this
issue tackled can be using more refined, possibly more costly, sampling schemes [Bac17].
Finally, we present a general result from which all our previous results follow as special cases.
We consider a more general setting where we allow decreasing step-sizes.

34

Theorem 3. Let n,M, T ∈ N, b ∈ [n] and γ > 0. Let δ ∈ (0, 1) and ŵt+1 be the estimator in
Eq. (3.2) with γt = γκ−2t−θ and θ ∈ [0, 1[. Under Assumption 4,5,7,8,9, when n ≥ 32 log2 2

δ

and

γ ≤ n

9T 1−θ log n
δ

∧

{
θ∧(1−θ)

7
θ ∈]0, 1[

1
8(1+log T)

otherwise,
(3.16)

moreover

M ≥
(
4 + 18γT 1−θ) log

12γT 1−θ

δ
, (3.17)

then, for any t ∈ [T] the following holds with probability at least 1− 9δ

EJ
[
E(ŵt+1)

]
− inf

w∈F
E(w) ≤ c1

γ

btmin(θ,1−θ) (log t ∨ 1) (3.18)

+

(
c2 + c3

1

M
log

M

δ

(
γt1−θ ∨ 1

)) N (κ2

γt1−θ

)
n

(
log2(t) ∨ 1

)
log2 4

δ
(3.19)

+ c4

(
N (κ2

γt1−θ
)2r−1 log 2

δ

M(γt1−θκ−2)2r−1
log2−2r

(
11γt1−θ

)
+

(
1

γt1−θ

)2r
)
, (3.20)

with c1, c2, c3, c4 constants which do not depend on b, γ, n, t,M, δ.

We note that as the number of random features M goes to infinity, we recover the same bound
of [LR17c] for decreasing step-sizes. Moreover, the above theorem shows that there is no ap-
parent gain in using a decreasing stepsize (i.e. θ > 0) with respect to the regimes identified in
Corollaries 5 and 6.

3.2.3 Sketch of the Proof

In this section, we sketch the main ideas in the proof. We relate f̂t and fH introducing several
intermediate functions. In particular, the following iterations are useful,

v̂1 = 0; v̂t+1 = v̂t − γt
1

n

n∑
i=1

(
〈v̂t, φM(xi)〉 − yi

)
φM(xi), ∀t ∈ [T]. (3.21)

ṽ1 = 0; ṽt+1 = ṽt − γt
∫
X

(
〈ṽt, φM(x)〉 − y

)
φM(x)dρ(x, y), ∀t ∈ [T]. (3.22)

v1 = 0; vt+1 = vt − γt
∫
X

(
〈vt, φM(x)〉 − fH(x)

)
φM(x)dρX (x), ∀t ∈ [T]. (3.23)

35

Further, we let

ũλ = argmin
u∈RM

∫
X

(
〈u, φM(x)〉 − fH(x)

)2
dρX (x) + λ‖u‖2, λ > 0, (3.24)

uλ = argmin
u∈F

∫
X

(
〈u, φ(x)〉 − y

)2
dρ(x, y) + λ‖u‖2, λ > 0, (3.25)

where (F , φ) are feature space and feature map associated to the kernel k. The first three vectors
are defined by the random features and can be seen as an empirical and population batch gradient
descent iterations. The last two vectors can be seen as a population version of ridge regression
defined by the random features and the feature map φ, respectively.
Since the above objects (3.21), (3.22), (3.23), (3.24), (3.25) belong to different spaces, instead of
comparing them directly we compare the functions in L2(X , ρX) associated to them, letting

ĝt = 〈v̂t, φM(·)〉 , g̃t = 〈ṽt, φM(·)〉 , gt = 〈vt, φM(·)〉 , g̃λ = 〈ũλ, φM(·)〉 , gλ = 〈uλ, φ(·)〉 .

Since it is well known [CDV07] that

E(f)− E(fH) = ‖f − fH‖2
ρ,

we than can consider the following decomposition

f̂t − fH = f̂t − ĝt (3.26)

+ ĝt − g̃t (3.27)

+ g̃t − gt (3.28)

+ gt − g̃λ (3.29)

+ g̃λ − gλ (3.30)

+ gλ − fH. (3.31)

The first two terms control how SGD deviates from the batch gradient descent and the effect
of noise and sampling. They are studied in Lemma 1, 2, 3, 4, 5, 6 in the following Section,
borrowing and adapting ideas from [LR17c, RV15, RR17]. The following terms account for
the approximation properties of random features and the bias of the algorithm. Here the basic
idea and novel result is the study of how the population gradient decent and ridge regression are
related (3.29) (Lemma 9 in Section 3.3). Then, results from the the analysis of ridge regression
with random features are used [RR17].

3.3 Details of the Proof

We start recalling some definitions and define some new operators.

36

3.3.1 Preliminary Definitions

Let F be the feature space corresponding to the kernel k given in Assumption 8.

Given φ : X → F (feature map), we define the operator S : F → L2(X , ρX) as

(Sw)(·) = 〈w, φ(·)〉F , ∀w ∈ F . (3.32)

If S∗ is the adjoint operator of S, we let C : F → F be the linear operator C = S∗S, which can
be written as

C =

∫
X
φ(x)⊗ φ(x)dρX (x), (3.33)

where we denote with ⊗ the tensor product, in particular

(u⊗ v)z = u 〈v, z〉F , ∀u, v, z ∈ F .

We also define the linear operator L : L2(X , ρX) → L2(X , ρX) such that L = SS∗, that can be
represented as

(Lf)(·) =

∫
X
〈φ(x), φ(·)〉F f(x)dρX (x), ∀f ∈ L2(X , ρX). (3.34)

We now define the analog of the previous operators where we use the feature map φM instead of
φ. We have SM : RM → L2(X , ρX) defined as

(SMv)(·) = 〈v, φM(·)〉RM , ∀v ∈ RM , (3.35)

together with CM : RM → RM and LM : L2(X , ρX)→ L2(X , ρX) defined as CM = S∗MSM and
LM = SMS

∗
M respectively.

We also define the empirical counterpart of the previous operators. The operator ŜM : RM → Rn

is defined as,

Ŝ∗M =
1√
n

(φM(x1), . . . , φM(xn)) , (3.36)

and with ĈM : RM → RM and L̂M : Rn → Rn are defined as ĈM = Ŝ∗M ŜM and L̂M = ŜM Ŝ
∗
M ,

respectively. We further denote with Aλ = A+ λI , for any linear operator A and λ ∈ R.

Remark 1 (from [CS02, VRC+05]). Let P : L2(X , ρX)→ L2(X , ρX) be the projection operator
whose range is the closure of the range of L. Let fρ : X → R be defined as

fρ(x) =

∫
Y
ydρ(y|x).

If there exists fH ∈ H such that
inf
f∈H
E(f) = E(fH),

37

then
Pfρ = SfH,

or equivalently, there exists g ∈ L2(X , ρX) such that

Pfρ = L
1
2 g

In particular, we have R := ‖fH‖H = ‖g‖L2(X ,ρX). The above condition is commonly relaxed in
approximation theory as

Pfρ = Lrg,

with 1
2
≤ r ≤ 1 [SZ03].

With the operators introduced above and Remark 1, we can rewrite the auxiliary objects (3.21),
(3.22), (3.23), (3.24), (3.25) respectively as

v̂1 = 0; v̂t+1 = (I − γtĈM)v̂t + γtŜ
∗
M ŷ, ∀t ∈ [T], (3.37)

ṽ1 = 0; ṽt+1 = (I − γtCM)ṽt + γtS
∗
Mfρ, ∀t ∈ [T], (3.38)

v1 = 0; vt+1 = (I − γtCM)vt + γtS
∗
MPfρ, ∀t ∈ [T]. (3.39)

where ŷ = n−1/2(y1, . . . , yn), and

ũλ = S∗ML
−1
M,λPfρ, (3.40)

uλ = S∗L−1
λ Pfρ. (3.41)

By a simple induction argument the three sequences can be written as

v̂t+1 =
∑t

i=1 γi
∏t

k=i+1(I − γkĈM)Ŝ∗M ŷ, (3.42)

ṽt+1 =
∑t

i=1 γi
∏t

k=i+1(I − γkĈM)S∗Mfρ, (3.43)

vt+1 =
∑t

i=1 γi
∏t

k=i+1(I − γkCM)S∗MPfρ. (3.44)

3.3.2 Error Decomposition

We can now rewrite the error decomposition of f̂t − fH using the operators introduced above as

SM ŵt − Pfρ = SM ŵt − SM v̂t (3.45)

+ SM v̂t − SM ṽt (3.46)

+ SM ṽt − SMvt (3.47)

+ SMvt − LML−1
M,λPfρ (3.48)

+ LML
−1
M,λPfρ − LL

−1
λ Pfρ (3.49)

+ LL−1
λ Pfρ − Pfρ. (3.50)

38

3.3.3 Lemmas

The first three lemmas we present are some technical lemmas used when bounding the first three
terms (3.45), (3.46), (3.47) of the error decomposition.

Lemma 1. Under Assumption 8 the following holds for any t,M, n ∈ N

‖ṽt − vt‖ = 0 a.s. (3.51)

Proof. Given (3.43), (3.44) and defining AMt =
∑t

i=1 γi
∏t

k=i+1(I − γkCM), we can write

‖ṽt − vt‖ = ‖AMtS
∗
M(I − P)fρ‖ ≤ ‖AMt‖ ‖S∗M(I − P)‖ ‖fρ‖ . (3.52)

Under Assumption 8, by Lemma 2 of [RR17], we have ‖S∗M(I − P)‖ = 0, which completes the
proof.

Lemma 2. Let M ∈ N. Under Assumption 8 and 5, let γtκ2 ≤ 1, δ ∈]0, 1], the following holds
with probability 1− δ for all t ∈ [T]

‖ṽt+1‖ ≤ 2Rκ2r−1

1 +

√
9κ2

M
log

M

δ
max

(t∑
i=1

γt

) 1
2

, κ−1

 . (3.53)

Proof. Considering (3.38) (3.39), we can write

‖ṽt+1‖ ≤ ‖ṽt+1 − vt+1‖+ ‖vt+1‖ = ‖vt+1‖, (3.54)

where in the last equality we used the result from Lemma 1. Using Assumption 5 (see also
Remark 1), we derive

‖vt+1‖ =

∥∥∥∥∥
t∑
i=1

γiS
∗
M

t∏
k=i+1

(I − γkLM)Pfρ

∥∥∥∥∥ ≤ R

∥∥∥∥∥
t∑
i=1

γiS
∗
M

t∏
k=i+1

(I − γkLM)Lr

∥∥∥∥∥ (3.55)

Define QMt =
∑t

i=1 γiS
∗
M

∏t
k=i+1(I − γkLM). Note that ‖Lr− 1

2‖ ≤ κ2r−1 for r ≥ 1
2

and that
‖L−1/2

M,η L
1/2‖ ≤ 2 holds with probability 1 − δ when 9κ2

M
log M

δ
≤ η ≤ ‖L‖ (see Lemma 5

in [RCR15]). Moreover, when η ≥ ‖L‖, we have that ‖L−1/2
M,η L

1/2‖ ≤ η−1/2‖L1/2‖ ≤ 1. So
‖L−1/2

M,η L
1/2‖ ≤ 2 with probability 1− δ, when

9κ2

M
log

M

δ
≤ η. (3.56)

39

So when (3.56) holds, with probability 1− δ we can write

R‖QMtL
r‖ = R‖QMtL

1
2
M,ηL

− 1
2

M,ηL
1
2Lr−

1
2‖

≤ R‖QMtL
1
2
M,η‖‖L

− 1
2

M,ηL
1
2‖‖Lr−

1
2‖

≤ 2Rκ2r−1‖QMtL
1
2
M,η‖

≤ 2Rκ2r−1
(
‖QMtL

1
2
M‖+ η

1
2‖QMt‖

)
. (3.57)

Now note that for any a ∈ [0, 1/2],

‖QMtL
a
M‖ ≤ max

κ2a−1,

(
t∑
i=1

γi

) 1
2
−a
 (3.58)

(see Lemma B.10(i) in [RV15] or Lemma 16 of [LR17c]). We use (3.58) with a = 1
2

and a = 0

to bound ‖QMtL
1/2
M ‖ and ‖QMt‖ respectively and plug the results in (3.57). To complete the

proof we take η = 9κ2

M
log M

δ
.

Lemma 3. Let λ > 0, R ∈ N and δ ∈ (0, 1). Let ζ1, . . . , ζR be i.i.d. random vectors bounded
by κ > 0. Denote with QR = 1

R

∑R
j=1 ζj ⊗ ζj and by Q the expectation of QR. Then, for any

λ ≥ 9κ2

R
log R

δ
, we have

‖(QR + λI)−1/2(Q+ λI)1/2‖2 ≤ 2.

Proof. This lemma is a more refined version of a result in [RCR13]. When ‖Q‖ ≥ λ ≥
9κ2

R
log R

δ
, by combining Prop. 8 of [RR17], with Prop. 6 and in particular Rem. 10 point 2

of the same paper, we have that ‖(QR+λI)−1/2(Q+λI)1/2‖ ≤ 2, with probability at least 1−δ.
To cover the case λ > ‖Q‖, note that

‖(QR + λI)−1/2(Q+ λI)1/2‖ ≤ (‖Q‖1/2 + λ1/2)/λ1/2.

When λ > ‖Q‖, we have that

‖(QR + λI)−1/2(Q+ λI)1/2‖ ≤ sup
λ>‖Q‖

(‖Q‖1/2 + λ1/2)/λ1/2 ≤ 2.

We need the following technical lemma that complements Proposition 10 of [RR17] when λ ≥
‖L‖, and that we will need for the proof of Lemma 6.

40

Lemma 4. Let M ∈ N and δ ∈ (0, 1]. For any λ > 0 such that

M ≥
(

4 +
18κ2

λ

)
log

12κ2

λδ
,

the following holds with probability 1− δ

NM(λ) :=

∫
X
‖(LM + λI)−

1
2φM(x)‖2dρX (x) ≤ max

(
2.55,

2κ2

‖L‖

)
N (λ).

Proof. First of all note that

NM(λ) :=

∫
X
‖(LM + λI)−

1
2φM(x)‖2dρX (x) = Tr(L

− 1
2

M,λLML
− 1

2
M,λ) = Tr(L−1

M,λLM).

Now consider the case when λ ≤ ‖L‖. By applying Proposition 10 of [RR17] we have that under
the required condition on M , the following holds with probability at least 1− δ

NM(λ) ≤ 2.55N (λ).

For the case λ > ‖L‖, note that Tr(AA−1
λ) satisfies the following inequality for any trace class

positive linear operator A with trace bounded by κ2 and λ > 0,

‖A‖
‖A‖+ λ

≤ Tr(AA−1
λ) ≤ Tr(A)

λ
.

So, when λ > ‖L‖, since NM(λ) = Tr(CMC
−1
Mλ) and N (λ) = Tr(LL−1

λ), and both L and
ĈM have trace bounded by κ2, we have NM(λ) ≤ κ2

λ
and N (λ) ≥ ‖L‖

‖L‖+λ . So by selecting

q = κ2(‖L‖+λ)
λ‖L‖ , we have

NM(λ) ≤ κ2

λ
= q

‖L‖
‖L‖+ λ

≤ qN (λ).

Finally note that

q ≤ sup
λ>‖L‖

κ2(‖L‖+ λ)

λ‖L‖
≤ 2

κ2

‖L‖
.

We now start bounding the different parts of the error decomposition. The next two lemmas
bound the first two terms (3.45), (3.46). To bound these we require the above lemmas and
adapting ideas from [LR17c, RV15, RR17].

41

Lemma 5. Under Assumption 8 and 9, let δ ∈]0, 1[, n ≥ 32 log2 2
δ
, and γt = γκ−2t−θ for all

t ∈ [T], with θ ∈ [0, 1[and γ such that

0 < γ ≤ tmin(θ,1−θ)

8(log t+ 1)
, ∀t ∈ [T]. (3.59)

When
1

γt1−θ
≥ 9

n
log

n

δ
(3.60)

for all t ∈ [T], with probability at least 1− 2δ,

EJ‖SM(ŵt+1 − v̂t+1)‖2 ≤ 208Bp

(1− θ)b
(
γt−min(θ,1−θ)) (log t ∨ 1). (3.61)

Proof. The proof is derived by applying Proposition 6 in [LR17c] with γ satisfying condition
(3.59), λ = 1

γtt
, δ2 = δ3 = δ, and some changes that we now describe. Instead of the stochastic

iteration wt and the batch gradient iteration νt as defined in [LR17c] we consider (3.2) and (3.37)
respectively, as well as the operators SM , CM , LM , ŜM , ĈM , L̂M defined in Section 2 instead of
Sρ, Tρ,Lρ, Sx, Tx,Lx defined in [LR17c]. Instead of assuming that exists a κ ≥ 1 for which
〈x, x′〉 ≤ κ2,∀x, x′ ∈ X we have Assumption 8 which implies the same κ2 upper bound of the
operators used in the proof. To apply this version of Proposition 6 note that their Equation (63) is
satisfied by Lemma 25 of [LR17c], while their Equation (47) is satisfied by our Lemma 3, from
which we obtain the condition (3.60).

Lemma 6. Under Assumptions 8, 9 and 5, let δ ∈]0, 1[and γt = γκ−2t−θ for all t ∈ [T], with
γ ∈]0, 1] and θ ∈ [0, 1[. When

M ≥
(
4 + 18γt1−θ

)
log

12γt1−θ

δ
, (3.62)

for all t ∈ [T] with probability at least 1− 3δ

‖SM(v̂t+1 − ṽt+1)‖ ≤ 4

(
Rκ2r

(
1 +

√
9

M
log

M

δ

(√
γt1−θ ∨ 1

))
+
√
B

)
×

×
(

8

(1− θ)
+ 4 log t+ 4 +

√
2γ

)√γt1−θ

n
+

√
2
√
pq0N (κ2

γt1−θ
)

√
n

 log
4

δ
, (3.63)

where q0 = max
(

2.55, 2κ2

‖L‖

)
.

Proof. The proof can be derived from the one of Theorem 5 in [LR17c] with λ = 1
γtt

, δ1 =
δ2 = δ, and some changes we now describe. Instead of the iteration νt and µt defined in [LR17c]

42

we consider (3.37) and (3.38) respectively, as well as the operators SM , CM , LM , ŜM , ĈM , L̂M
defined in Section 2 instead of Sρ, Tρ,Lρ, Sx, Tx,Lx defined in [LR17c]. Instead of assuming
that exists a κ ≥ 1 for which 〈x, x′〉 ≤ κ2,∀x, x′ ∈ X we have Assumption 8 which imply the
same ‖CM‖ ≤ κ2 upper bound of the operators used in the proof. Further, when in the proof we
need to bound ‖vt+1‖ we use our Lemma 2 instead of Lemma 16 of [LR17c]. In addition instead
of Lemma 18 of [LR17c] we use Lemma 6 of [RR17], together with Lemma 4, obtaining the
desired result with probability 1 − 3δ, when M satisfies M ≥ (4 + 18γtt) log 12γtt

δ
. Under the

assumption that γt = γκ−2t−θ, the two condition above can be rewritten as (3.62).

The next lemma states that the third term (3.47) of the error decomposition is equal to zero.

Lemma 7. Under Assumption 5 the following holds for any t,M, n ∈ N

‖SM ṽt − SMvt‖ = 0 a.s. (3.64)

Proof. From Lemma 1 and the definition of operator norm the result follows trivially.

The next Lemma is a known result from Lemma 8 of [RR17] which bounds the distance between
the Tikhonov solution with RF and the Tikhonov solution without RF (3.49).

Lemma 8. Under Assumption 8 and 5 for any λ > 0, δ ∈ (0, 1/2], when

M ≥

(
4 +

18κ2

λ

)
log

8κ2

λδ
(3.65)

the following holds with probability at least 1− 2δ,

‖LL−1
λ Pfρ − LML−1

M,λPfρ‖ ≤ 4Rκ2r

 log 2
δ

M r
+

√
λ2r−1N (λ)2r−1 log 2

δ

M

 q1−r, (3.66)

where q := log 11κ2

λ
.

The next lemma is one of our main contributions and studies how the population gradient decent
with RF and ridge regression with RF are related (3.48).

Lemma 9. Under Assumption 5 the following holds with probability 1 − δ for λ = 1∑t
i=1 γi

for
all t ∈ [T]

‖SMvt+1 − LML−1
M,λPfρ‖ρ ≤ 8Rκ2r

(
log 2

δ

M r
+

√
N ((

∑t
i=1 γi)

−1)2r−1 log 2
δ

M(
∑t

i=1 γi)
2r−1

)
×

× log1−r

(
11κ2

t∑
i=1

γi

)
+ 2R

(
t∑
i=1

γi

)−r
, (3.67)

43

when

M ≥

(
4 + 18

t∑
i=1

γi

)
log

(
8κ2

∑t
i=1 γi
δ

)
. (3.68)

Proof. Denoting QM =
∑t

i=1 γi
∏t

k=i+1(I − γkLM) we can write

SMvt+1 = QMLMPfρ

Then

SMvt+1 − LML−1
M,λPfρ = QMLM,λLML

−1
M,λ − LML

−1
M,λPfρ

= (QM(LM + λI)− I)LML
−1
M,λPfρ. (3.69)

Denote by Ai,t the operator Ai,t :=
∏t

k=i(I − γkLM), and note that

Ai,t := (I − γkLM)Ai+1,t.

We can then derive

QMLM =
t∑
i=1

γi

t∏
k=i+1

(I − γkLM)LM =
t∑
i=1

(I − (I − γiLM))
t∏

k=i+1

(I − γkLM)

=
t∑
i=1

(I − (I − γiLM))Ai+1,t =
t∑
i=1

Ai+1,t −
t∑
i=1

(I − γiLM)Ai+1,t

=
t∑
i=1

Ai+1,t −
t∑
i=1

Ai,t = I +
t∑
i=2

Ai,t −
t∑
i=1

Ai,t = I − A1,t.

We now write

‖(QM(LM + λI)− I)LM‖ = ‖(QMLM + λQM − I)LM‖
= ‖(I − A1,t + λQM − I)LM‖
= ‖λQMLM − A1,tLM‖
≤ ‖λQMLM‖+ ‖A1,tLM‖. (3.70)

For the first term in (3.70) we have

‖λQMLM‖ = λ‖I − A1,t‖ ≤ λ,

since LM is positive operator and γi‖LM‖ < 1, so A1,t is positive with norm smaller than one
by construction, implying that ‖I − A1,t‖ ≤ 1. The second term in (3.70) can be bounded using
Lemma 15 in [LR17c],

‖A1,tLM‖ ≤ (
t∑
i=1

γi)
−1

44

Now back to (3.69), we can write

‖SMvt+1 − LML−1
M,λPfρ‖ρ ≤

(
λ+

1∑t
i=1 γi

)
‖L−1

MλPfρ‖ρ. (3.71)

Setting λ = 1∑t
i=1 γi

, and calling this quantity λ̃ for the rest of the proof, we can write

‖SMvt+1 − LML−1

M,λ̃
Pfρ‖ρ ≤ 2λ̃‖L−1

Mλ̃
Pfρ‖ρ (3.72)

= 2‖(λ̃L−1

Mλ̃
− λ̃L−1

λ̃
+ λ̃L−1

λ̃
)Pfρ‖ρ (3.73)

≤ 2‖(λ̃L−1

Mλ̃
− λ̃L−1

λ̃
)Pfρ‖ρ + 2λ̃‖L−1

λ̃
Pfρ‖ρ. (3.74)

Since AA−1
λ = I − λA−1

λ for any bounded symmetric operator A and λ > 0, we can write the
last term of (3.74) as

λ̃‖L−1

λ̃
Pfρ‖ρ = ‖(LL−1

λ̃
− I)Pfρ‖ρ.

We can then use Lemma 10 to control this quantity as

‖(LL−1

λ̃
− I)Pfρ‖ρ ≤ Rλ̃r. (3.75)

For the first term, analogously

‖(λ̃L−1

Mλ̃
− λ̃L−1

λ̃
)Pfρ‖ρ = ‖((I − λ̃L−1

Mλ̃
)− (I − λ̃L−1

λ))Pfρ‖ρ
= ‖(LML−1

Mλ̃
− LL−1

λ̃
)Pfρ‖ρ

≤ 4Rκ2r

 log 2
δ

M r
+

√
λ̃2r−1N (λ̃)2r−1 log 2

δ

M

(log
11κ2

λ̃

)1−r

, (3.76)

where the last step holds when M ≥ (4 + 18λ̃−1) log(8κ2(λ̃δ)−1) and consists in the application
of Lemma 9. Now recalling the definition of λ̃ we complete the proof.

The last result is a classical bound of the approximation error for the Tikhonov filter (3.50), see
[CDV07].

Lemma 10 (From [CDV07] or Lemma 5 of [RR17]). Under Assumption 5

‖LL−1
λ Pfρ − Pfρ‖ ≤ Rλr (3.77)

3.3.4 Proofs of Theorems

We now present the proofs of our theorems. Theorem 2 and 1 are specific case of the more
general Theorem 3.

45

Proof of Theorem 3. We start considering Lemma 6, and we note that condition (3.62) is satis-
fied when

M ≥
(
4 + 18γT 1−θ) log

12γT 1−θ

δ
. (3.78)

Noting that (3.16) imply
√

2γ ≤ 1, we can derive from (3.63)

‖SM(v̂t+1 − vt+1)‖2 ≤

(
(17− 9θ)

√
8
√
p

(1− θ)

)2

×

×
(

32B + 64R2κ4r

(
1 +

9

M
log

M

δ

(
γt1−θ ∨ 1

)))
×

×
q0N (κ2

γt1−θ
)

n

(
log2 t ∨ 1

)
log2 4

δ
, (3.79)

when (3.78) holds.

Let λ = κ2

γt1−θ
. Given Lemma 8 we derive from (3.66) that

∥∥LL−1
λ Pfρ − LML−1

M,λPfρ
∥∥2 ≤ 32R2κ4r

(
log2 2

δ

M2r
+
N (κ2

γt1−θ
)2r−1 log 2

δ

M(γt1−θκ−2)2r−1

)
×

× log2−2r
(
11γt1−θ

)
, (3.80)

when (3.78) holds.

Let γt = γκ−2t−θ for all t ∈ [T]. Given Lemma 9 we derive from (3.67)

∥∥SMvt+1 − LML−1
M,λPfρ

∥∥2 ≤ 8R2κ4r

(
32

(
log2 2

δ

M2r
+
N (κ2

γt1−θ
)2r−1 log 2

δ

M(γt1−θκ−2)2r−1

)
×

× log2−2r
(
11γt1−θ

)
+

(
1

γt1−θ

)2r
)
, (3.81)

when (3.78) holds.

Similarly from Lemma 10

‖LL−1
λ Pfρ − Pfρ‖2 ≤ R2κ4r

(
1

γt1−θ

)2r

. (3.82)

The desired result is obtained by gathering the results in (3.61), (3.79), (3.81), (3.80), (3.82).
Requiring γ,M to satisfy the associated conditions (3.78), (3.59), (3.60). In particular note that

46

(3.59) is satisfied when θ = 0 by γ ≤ (8(log T + 1))−1, while, if θ > 0, we have

tmin(θ,1−θ)

8(log t+ 1)
= e−min(θ,1−θ) (et)min(θ,1−θ)

8 log(et)
≥ e−min(θ,1−θ) inf

t∈1

(et)min(θ,1−θ)

8 log(et)

= e−min(θ,1−θ) inf
z≥emin(θ,1−θ)

z
8

min(θ,1−θ) log z

≥ e−min(θ,1−θ) inf
z≥1

z
8

min(θ,1−θ) log z
≥ e−min(θ,1−θ) min(θ, 1− θ)

4
,

where we performed the change of variable tmin(θ,1−θ) = z. Finally note that e−min(θ,1−θ) ≥
e−1/2, for any θ ∈ (0, 1). Moreover the (3.78), (3.60) are satisfied for any t ∈ [T] by requiring
them to hold for t = T .

Proof of Theorem 2. Choosing θ = 0 in Theorem 3 we complete the proof.

Proof of Theorem 1. Considering the case of Assumption 4 with α = 1 and Assumption 5 with
r = 1

2
, we can bound N (1/γt) ≤ γt in Theorem 3 and complete the proof.

3.4 Experiments

We study the behavior of the SGD with RF algorithm on subsets of n = 2 × 105 points of the
SUSY 2 and HIGGS 3 datasets [BSW14]. The measures we show in the following experiments
are an average over 10 repetitions of the algorithm. Further, we consider random Fourier features
that are known to approximate translation invariant kernels [RR08]. We use random features
of the form ψ(x, ω) = cos(wTx + q), with ω := (w, q), w sampled according to the normal
distribution and q sampled uniformly at random between 0 and 2π. Note that the random features
defined this way satisfy Assumption 8.
Our theoretical analysis suggests that only a number of RF of the order of

√
n suffices to gain

optimal learning properties. Hence we study how the number of RF affect the accuracy of the
algorithm on test sets of 105 points. In Figure 3.1 we show the classification error after 5 passes
over the data of SGD with RF as the number of RF increases, with a fixed batch size of

√
n and

a step-size of 1. We can observe that over a certain threshold of the order of
√
n, increasing the

number of RF does not improve the accuracy, confirming what our theoretical results suggest.
Further, theory suggests that the step-size can be increased as the mini-batch size increases to
reach an optimal accuracy, and that after a mini-batch size of the order of

√
n more than 1 pass

over the data is required to reach the same accuracy. We show in Figure 3.2 the classification

2https://archive.ics.uci.edu/ml/datasets/SUSY
3https://archive.ics.uci.edu/ml/datasets/HIGGS

47

https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/HIGGS

n° of random features

c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r

SUSY

n° of random features

c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r

HIGGS

Fig. 3.1: Classification error of SUSY (left) and HIGGS (right) datasets as the number of random features
(M) varies

step-size

m
in

i-
b

a
tc

h
 s

iz
e

SUSY - Classification Error

step-size

m
in

i-
b
a
tc

h
 s

iz
e

HIGGS - Classification Error

Fig. 3.2: Classification error of SUSY (left) and HIGGS (right) datasets as step-size and mini-batch size
vary

error of SGD with RF after 1 pass over the data, with a fixed number of random features
√
n, as

mini-batch size and step-size vary, on test sets of 105 points. As suggested by theory, to reach the
lowest error as the mini-batch size grows the step-size needs to grow as well. Further for mini-
batch sizes bigger that

√
n the lowest error can not be reached in only 1 pass even if increasing

the step-size.

48

Chapter 4

FALKON

In this chapter, we propose and study FALKON, a new algorithm that provides an efficient ap-
proach to apply kernel methods on millions of points, and tested on a variety of large scale prob-
lems outperforms previously proposed methods while utilizing only a fraction of computational
resources.

The state of the art approximation of KRR, for which optimal statistical bounds are known, typ-
ically requires complexities that are roughly O(n2) in time and memory (or possibly O(n) in
memory, if kernel computations are made on the fly). The new FALKON algorithm is derived
combining several algorithmic principles, namely stochastic subsampling, iterative solvers and
preconditioning. In particular, it exploits the idea of using Nyström methods [SS00] to approxi-
mate the KRR problem, but also to efficiently compute a preconditioner to be used in conjugate
gradient. Our theoretical analysis shows that optimal statistical accuracy is achieved requiring
essentially O(n) memory and O(n

√
n) time. An extensive experimental analysis on large scale

datasets shows that, even with a single machine, FALKON outperforms the previous state of the
art solutions, which exploit parallel/distributed architectures.

4.1 From Kernel Ridge Regression
to Nyström Approximation

We consider the supervised learning problem of estimating a function from random noisy sam-
ples introduced in Chapter 2. We are interested in both computational and statistical aspects of
this problem. In particular, we investigate the computational resources needed to achieve op-
timal statistical accuracy, i.e. minimal excess risk. Our focus is on the most popular class of
nonparametric methods, namely kernel methods.

49

Recall for Section 2.3 that Kernel methods consider a spaceH of functions

f(x) =
n∑
i=1

k(x, xi)cj, (4.1)

where k is a positive definite kernel. The coefficients c = (c1, . . . , cn) are typically derived from
a convex optimization problem, that for the square loss is

f̂λ = argmin
f∈H

1

n

n∑
i=1

(f(xi)− yi)2 + λ ‖f‖2
H , (4.2)

and defines the so called kernel ridge regression (KRR) estimator [SS02]. An advantage of least
squares approaches is that they reduce computations to a linear system

(K̂ + λnI) c = ŷ, (4.3)

where K̂ is an n×nmatrix defined by (K̂)ij = K(xi, xj) and ŷ = (y1, . . . yn). A direct approach
to solve (4.3) requires O(n2) in space, O(n3) in time and O(n2) in kernel evaluations.

As we have seen in Section 2.5, under basic assumptions, KRR achieves an error R(f̂λn) =
O(n−1/2), for λn = n−1/2, which is optimal in a minimax sense and can be improved only under
more stringent assumptions [CDV07, SHS+09]. The question is then if it is possible to achieve
the statistical properties of KRR, with less computations.

A natural idea introduced in Section 2.4 is to consider iterative solvers and in particular gradient
methods, because of their simplicity and low iteration cost. In the case of the iterative solver
described in equation (2.35), if t is the number of iterations, this method requires O(n2t) in time,
O(n2) in memory and O(n2) in kernel evaluations, if the kernel matrix is stored. Note that,
the kernel matrix can also be computed on the fly with only O(n) memory, but O(n2t) kernel
evaluations are required.

We note that, beyond this simple iteration, several variants have been considered including ac-
celerated [CY10, BPR07] and stochastic extensions [DB16].

While the time complexity of these methods dramatically improves over KRR, and computations
can be done in blocks, memory requirements (or number of kernel evaluations) still makes the
application to large scale setting cumbersome. Randomization provides an approach to tackle
this challenge.

4.1.1 Random Projections.

The rough idea is to use random projections to compute K̂ only approximately. The most popular
examples in this class of approaches are the random features methods introduced in Section 3.1.1

50

and the Nyström [SS00] methods. In the following we focus in particular on a basic Nyström
approach based on considering functions of the form

f̃λ,M(x) =
M∑
i=1

k(x, x̃i)c̃i, with {x̃1, . . . , x̃M} ⊆ {x1, . . . , xn}, (4.4)

defined considering only a subset of M training points sampled uniformly. In this case, there are
only M coefficients that, following the approach in (4.2), can be derived considering the linear
system

Hc̃ = z, where H = K>nMKnM + λnKMM , z = K>nM ŷ. (4.5)

Here K̂nM is the n×M matrix with (K̂nM)ij = K(xi, x̃j) and K̂MM is the M ×M matrix with
(K̂MM)ij = K(x̃i, x̃j). This method consists in subsampling the columns of K̂ and can be seen
as a particular form of random projections.

Direct methods for solving (4.5) require O(nM2) in time to form K̂>nMK̂nM and O(M3) for
solving the linear system, and only O(nM) kernel evaluations. The naive memory requirement
is O(nM) to store K̂nM , however if K̂>nMK̂nM is computed in blocks of dimension at most
M×M onlyO(M2) memory is needed. Iterative approaches can also be combined with random
projections [DXH+14, CARR16, TRVR16] to slightly reduce time requirements (see Table 4.1,
or Section 4.4, for more details).

The key point though, is that random projections allow to dramatically reduce memory require-
ments as soon as M � n and the question arises of whether this comes at expenses of statistical
accuracy. Interestingly, recent results considering this question show that there are large classes
of problems for whichM = Õ(

√
n) suffices for the same optimal statistical accuracy of the exact

KRR [Bac13, AM15a, RCR15].

In summary, in this case the computations needed for optimal statistical accuracy are reduced
from O(n2) to O(n

√
n) kernel evaluations, but the best time complexity is basically O(n2). In

the rest of the chapter we discuss how this requirement can indeed be dramatically reduced.

4.2 FALKON

Our approach is based on a novel combination of randomized projections with iterative solvers
plus preconditioning. The main novelty is that we use random projections to approximate both
the problem and the preconditioning.

51

4.2.1 Preliminaries: Preconditioning and KRR

We begin recalling the basic idea behind preconditioning. The key quantity is the condition
number, that for a linear system is the ratio between the largest and smallest singular values of
the matrix defining the problem [Saa03]. For example, for problem (4.3) the condition number
is given by

cond(K̂ + λnI) = (σmax + λn)/(σmin + λn),

with σmax, σmin largest and smallest eigenvalues of K̂, respectively. The importance of the condi-
tion number is that it captures the time complexity of iteratively solving the corresponding linear
system. For example, if a simple gradient descent is used, the number of iterations needed for an
ε accurate solution of problem (4.3) is

t = O(cond(K̂ + λnI) log(1/ε)).

It is shown in [CARR16] that in this case t =
√
n log n are needed to achieve a solution with

good statistical properties. Indeed, it can be shown that roughly t ≈ 1/λ log(1
ε
) are needed where

λ = 1/
√
n and ε = 1/n. The idea behind preconditioning is to use a suitable matrix B to define

an equivalent linear system with better condition number. For (4.3), an ideal choice is B such
that

BB> = (K̂ + λnI)−1 (4.6)

and B>(K̂ + λnI)B β = B>ŷ. Clearly, if β∗ solves the latter problem, α∗ = Bβ∗ is a solution
of problem (4.3). Using a preconditioner B as in (4.6) one iteration is sufficient, but computing
the B is typically as hard as the original problem. The problem is to derive preconditioning such
that (4.6) might hold only approximately, but that can be computed efficiently. Derivation of
efficient preconditioners for the exact KRR problem (4.3) has been the subject of recent stud-
ies, [FM12, ACW16, COCF16, GOSS16, MB17]. In particular, [ACW16, COCF16, GOSS16,
MB17] consider random projections to approximately compute a preconditioner. Clearly, while
preconditioning (4.3) leads to computational speed ups in terms of the number of iterations,
requirements in terms of memory/kernel evaluation are the same as standard kernel ridge regres-
sion.

The key idea to tackle this problem is to consider an efficient preconditioning approach for prob-
lem (4.5) rather than (4.3).

4.2.2 Basic FALKON Algorithm

We begin illustrating a basic version of our approach. The key ingredient is the following pre-
conditioner for Eq. (4.5),

BB> =
(n
M
K̂2
MM + λnK̂MM

)−1

, (4.7)

52

which is itself based on a Nyström approximation1. The above preconditioning is a natural
approximation of the ideal preconditioning of problem (4.5) that corresponds to

BB> = (K>nMKnM + λnKMM)−1

and reduces to it if M = n. Our theoretical analysis, shows that M � n suffices for deriving op-
timal statistical rates. In its basic form FALKON is derived combining the above preconditioning
and gradient descent,

f̂λ,M,t(x) =
M∑
i=1

k(x, x̃i)ct,i, with ct = Bβt and (4.8)

βs = βs−1 −
γ

n
B>
[
K̂>nM(K̂nM(Bβs−1)− ŷ) + λnK̂MM(Bβs−1)

]
, (4.9)

for t ∈ N, β0 = 0 and 1 ≤ s ≤ t and a suitable chosen γ. In practice, a refined version of
FALKON is preferable where a faster gradient iteration is used and additional care is taken in
organizing computations.

4.2.3 The Complete Algorithm

The actual version of FALKON we propose is Alg. 1 (see Sect. 4.5, Alg. 2 for the complete
algorithm). It consists in solving the system B>HBβ = B>z via conjugate gradient [Saa03],
since it is a fast gradient method and does not require to specify the step-size. Moreover, to
compute B quickly, with reduced numerical errors, we consider the following strategy

B =
1√
n
T−1R−1, T = chol(KMM), R = chol

(
1

M
T T> + λI

)
, (4.10)

where chol() is the Cholesky decomposition (in Sect. 4.5 the strategy for non invertible KMM).

Computations. in Alg. 1, B is never built explicitly and R, T are two upper-triangular matrices,
so R−>u,R−1u for a vector u costs M2, and the same for T . The cost of computing the precon-
ditioner is only 4

3
M3 floating point operations (consisting in two Cholesky decompositions and

one product of two triangular matrices). Then FALKON requires O(nMt+M3) in time and the
sameO(M2) memory requirement of the basic Nyström method, if matrix/vector multiplications
at each iteration are performed in blocks. This implies O(nMt) kernel evaluations are needed.

The question remains to characterize M and the number of iterations needed for good statistical
accuracy. Indeed, in the next section we show that roughly O(n

√
n) computations and O(n)

memory are sufficient for optimal accuracy. This implies that FALKON is currently the most
efficient kernel method with the same optimal statistical accuracy of KRR, see Table 4.1.

1 For the sake of simplicity, here we assume K̂MM to be invertible and the Nyström centers selected with uniform
sampling from the training set, see Sect. 4.5 and Alg. 2 in the appendix for the general algorithm.

53

Algorithm 1: MATLAB code for FALKON. It requires O(nMt + M3) in time and
O(M2) in memory. See Sect. 4.5 and Alg. 2 in the appendixes for the complete algo-
rithm.

Input: Dataset X = (xi)
n
i=1 ∈ Rn×d, ŷ = (yi)

n
i=1 ∈ Rn, centers Cen = (x̃j)

M
j=1 ∈ RM×d, KernelMatrix

computing the kernel matrix given two sets of points, regularization parameter λ, number of iterations t.
Output: Nyström coefficients c.

function c = FALKON(X, Cen, Y, KernelMatrix, lambda, t)
n = size(X,1); M = size(Cen,1); KMM = KernelMatrix(Cen,Cen);
T = chol(KMM + eps*M*eye(M));
R = chol(T*T’/M + lambda*eye(M));

function w = KnM_times_vector(u, v)
w = zeros(M,1); ms = ceil(linspace(0, n, ceil(n/M)+1));
for i=1:ceil(n/M)
Kr = KernelMatrix(X(ms(i)+1:ms(i+1),:), Cen);
w = w + Kr’*(Kr*u + v(ms(i)+1:ms(i+1),:));
end
end

BHB = @(u) R’\(T’\(KnM_times_vector(T\(R\u), zeros(n,1))/n)+lambda*(R\u));
r = R’\(T’\KnM_times_vector(zeros(M,1), Y/n));
c = T\(R\conjgrad(BHB, r, t));
end

4.3 Theoretical Analysis

In this section, we characterize the generalization properties of FALKON showing it achieves
the optimal generalization error of KRR, with dramatically reduced computations. This result
is given in Theorem 6 and derived in two steps. First, we study the difference between the ex-
cess risk of FALKON and that of the basic Nyström (4.5), showing it depends on the condition
number induced by the preconditioning, hence on M (see Theorem 4). Deriving these results
requires some care, since differently to standard optimization results, our goal is to solve (2.4)
i.e. achieve small excess risk, not to minimize the empirical error. Second, we show that choos-
ing M = Õ(1/λ) allows to make this difference as small as e−t/2 (see Theorem 5). Finally,
recalling that the basic Nyström for λ = 1/

√
n has essentially the same statistical properties of

KRR [RCR15], we answer the question posed at the end of the last section and show that roughly
log n iterations are sufficient for optimal statistical accuracy. Following the discussion in the pre-
vious section this means that the computational requirements for optimal accuracy are Õ(n

√
n)

in time/kernel evaluations and Õ(n) in space. Later in this section faster rates under further regu-
larity assumptions are also derived and the effect of different selection methods for the Nyström
centers considered. The proofs for this section are provided in Sect. 4.9 of the appendixes.

54

4.3.1 Main Result

The first result is interesting in its own right since it corresponds to translating optimization guar-
antees into statistical results. In particular, we derive a relation the excess risk of the FALKON
algorithm f̂λ,M,t from Algorithm 1 and the Nyström estimator f̃λ,M from Eq. (4.5) with uniform
sampling.

Theorem 4. Let n,M ≥ 3, t ∈ N, 0 < λ ≤ λ1 and δ ∈ (0, 1]. Under Assumption 1, the
following inequality holds with probability 1− δ

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 4v̂ e−νt

√
1 +

9κ2

λn
log

n

δ
,

where v̂2 = 1
n

∑n
i=1 y

2
i and ν = log(1 + 2/(cond (B>HB)

1/2 − 1)), with cond (B>HB) the
condition number of B>HB. Note that λ1 > 0 is a constant not depending on λ, n,M, δ, t.

The additive term in the bound above decreases exponentially in the number of iterations. If the
condition number of B>HB is smaller than a small universal constant (e.g. 17), then ν > 1/2
and the additive term decreases as e−

t
2 . Next, theorems derive a condition on M that allows to

control cond (B>HB), and derive such an exponential decay.

Theorem 5. Under the same conditions of Thm. 4, if

M ≥ 5

[
1 +

14κ2

λ

]
log

8κ2

λδ
.

then the exponent ν in Thm. 4 satisfies ν ≥ 1/2.

The above result gives the desired exponential bound showing that after log n iterations the excess
risk of FALKON is controlled by that of the basic Nyström, more precisely

R(f̂λ,M,t) ≤ 2R(f̃λ,M) when t ≥ logR(f̃λ,M) + log

(
1 +

9κ2

λn
log

n

δ

)
+ log

(
16v̂2

)
.

Finally, we derive an excess risk bound for FALKON. By the no-free-lunch theorem, this requires
some conditions on the learning problem. We first consider the standard basic setting introduced
in Section 2.5.1 where we only assume it exists fH ∈ H such that E(fH) = inff∈H E(f). We
also make a stronger assumption on y being bounded which we will relax in following theorems.

Theorem 6. Let δ ∈ (0, 1]. Under Assumption 1 and assuming y ∈ [−a
2
, a

2
], almost surely, for

a > 0, then there exist n0 ∈ N such that for any n ≥ n0, if

λ =
1√
n
, M ≥ 75

√
n log

48κ2n

δ
, t ≥ 1

2
log(n) + 5 + 2 log(a+ 3κ),

55

Algorithm train time kernel evaluations memory test time

SVM / KRR + direct method n3 n2 n2 n
KRR + iterative [CY10, GRO+08] n2 4

√
n n2 n2 n

Doubly stochastic [DXH+14] n2
√
n n2

√
n n n

Pegasos / KRR + sgd [SSSSC11] n2 n2 n n
KRR + iter + precond [FM12, YPW15, ACW16, GOSS16, MB17] n2 n2 n n
Divide & Conquer [ZDW13] n2 n

√
n n n

Nyström, random features [WS01, SS00, RR08] n2 n
√
n n

√
n

Nyström + iterative [CARR16, TRVR16] n2 n
√
n n

√
n

Nyström + sgd [LR17b] n2 n
√
n n

√
n

FALKON (see Thm. 6) n
√
n n

√
n n

√
n

Table 4.1: Computational complexity required by different algorithms, for optimal generaliza-
tion. Logarithmic terms are not showed.

then with probability 1− δ,

R(f̂λ,M,t) ≤
c0 log2 24

δ√
n

.

In particular n0, c0 do not depend on λ,M, n, t and c0 do not depend on δ.

The above result provides the desired bound, and all the constants are given in Section 4.9.
The obtained learning rate is the same as the full KRR estimator and is known to be optimal
in a minmax sense [CDV07], hence not improvable. As mentioned before, the same bound is
also achieved by the basic Nyström method but with much worse time complexity. Indeed, as
discussed before, using a simple iterative solver typically requires O(

√
n log n) iterations, while

we need only O(log n). Considering the choice for M this leads to a computational time of
O(nMt) = O(n

√
n) for optimal generalization (omitting logarithmic terms). To the best of our

knowledge FALKON currently provides the best time/space complexity to achieve the statistical
accuracy of KRR.

Beyond the basic setting considered above, in the next section we show that FALKON can
achieve much faster rates under refined regularity assumptions and also consider the potential
benefits of leverage score sampling.

4.3.2 Fast Learning Rates and Nyström with Approximate Leverage Scores

Considering fast rates and Nyström with more general sampling is considerably more techni-
cal and a heavier notation is needed. Our analysis apply to any approximation scheme (e.g.
[DMIMW12, AM15a, CLM+15]) satisfying the definition of q-approximate leverage scores
[RCR15].

We recall the definition of approximate leverage scores, and then the sampling method based

56

on them. Let n ∈ N, λ > 0. Let x1, . . . , xn be the training points and define K̂ ∈ Rn×n as
(K̂)ij = K(xi, xj) for 1 ≤ i, j ≤ n. The exact leverage scores are defined by

`(i, λ) =
(
K̂(K̂ + λnI)−1

)
ii
, (4.11)

for any i ∈ 1, . . . , n. Any bi-Lipschitz approximation of the exact leverage scores, satisfying the
following definition is denoted as approximate leverage scores.

Definition 2 ((q, λ0, δ)-approximate leverage scores [RCR15]). Let δ ∈ (0, 1] and λ0 > 0 and
q ∈ [1,∞). A (random) sequence (˜̀(i, λ))ni=1 is denoted as (q, λ0, δ)-approximate leverage
scores when the following holds with probability at least 1− δ

1

q
`(i, λ) ≤ ˜̀(i, λ) ≤ q `(i, λ), ∀λ ≥ λ0, t ∈ {1, . . . , n}.

In particular, given n ∈ N training points x1, . . . , xn, and a sequence of approximate leverage
scores (˜̀(i, λ))ni=1, the Nyström centers x̃1, . . . , x̃M are selected in the following way. Let

pi =
˜̀(i, λ)∑n
j=1
˜̀(j, λ)

,

with 1 ≤ i ≤ n. Let i1, . . . , iM be independently sampled from {1, . . . , n} with probability
(pi)

n
i=1. Then x̃1 := xi1 , . . . , x̃M := xiM .

We need a few more definitions to state the next theorem for fast rates. Let kx = k(x, ·) for
any x ∈ X and H the reproducing kernel Hilbert space [SC08] of functions with inner product
defined by H = span{kx | x ∈ X} and closed with respect to the inner product 〈·, ·〉H defined
by 〈kx, kx′〉H = k(x, x′), for all x, x′ ∈ X . Define C : H → H to be the linear operator

〈f, Cg〉H =

∫
X
f(x)g(x)dρX (x),

for all f, g ∈ H. Finally, for any λ > 0, we recall the definition of effective dimension and define
a new quantity,

N (λ) = Tr
(
C(C + λI)−1

)
, (4.12)

N∞(λ) = sup
x∈X

∥∥(C + λI)−1/2kx
∥∥
H . (4.13)

Note that the effective dimension defined in (4.12) is the same as the one defined in (2.49) thanks
to the cyclic property of the Trace. The quantity N∞(λ) can be seen to provide a uniform bound
on the leverage scores. In particular note that N (λ) ≤ N∞(λ) ≤ κ2

λ
[RCR15]. We can now

provide a refined version of Theorem 5.

57

Theorem 7. Under the same conditions of Theorem 4, the exponent ν in Theorem 4 satisfies
ν ≥ 1/2, when

1. either Nyström uniform sampling is used with M ≥ 70 [1 +N∞(λ)] log 8κ2

λδ
.

2. or Nyström q-approx. lev. scores [RCR15] is used, with λ ≥ 19κ2

n
log n

2δ
, n ≥ 405κ2 log 12κ2

δ
,

M ≥ 215
[
2 + q2N (λ)

]
log

8κ2

λδ
.

Considering now the Assumptions 4 and 6 leading to fast rates presented in Section 2.5.2, we
can state our main result on fast rates.

Theorem 8. Let δ ∈ (0, 1] and assume y ∈ [−a
2
, a

2
], almost surely, with a > 0. Under Assump-

tion 1, 4,6, there exist an n0 ∈ N such that for any n ≥ n0 the following holds. When

λ = n−
1

2r+α , t ≥ log(n) + 5 + 2 log(a+ 3κ2),

1. and either Nyström uniform sampling is used with M ≥ 70 [1 +N∞(λ)] log 8κ2

λδ
,

2. or Nyström q-approx. lev. scores [RCR15] is used with M ≥ 220 [2 + q2N (λ)] log 8κ2

λδ
,

then with probability 1− δ,

R(f̂λ,M,t) ≤ c0 log2 24

δ
n−

2r
2r+α .

where f̂λ,M,t is the FALKON estimator (Algorithm. 1 in Section 4.2, and Algorithm. 2 in Sec-
tion 4.10 for the complete version). In particular n0, c0 do not depend on λ,M, n, t and c0 do
not depend on δ.

The above result shows that FALKON achieves the same fast rates as KRR, under the same con-
ditions [CDV07]. For r = 1/2, α = 1, the rate in Theorem 6 is recovered. If α < 1, r > 1/2,
FALKON achieves a rate close to O(1/n). By selecting the Nyström points with uniform sam-
pling, a bigger M could be needed for fast rates (albeit always less than n). However, when
approximate leverage scores are used M , smaller than nα/2 �

√
n is always enough for optimal

generalization. This shows that FALKON with approximate leverage scores is the first algo-
rithm to achieve fast rates with a computational complexity that is O(nN (λ)) = O(n1+ α

2r+α) ≤
O(n1+α

2) in time.

4.4 Comparison with Previous Works

In the literature of KRR there are some papers that propose to solve Eq. (4.3) with iterative
preconditioned methods [FM12, ACW16, COCF16, GOSS16, MB17]. In particular the one of

58

[FM12] is based, essentially, on an incomplete singular value decomposition of the kernel matrix.
Similarly, the ones proposed by [GOSS16, MB17] are based on singular value decomposition
obtained via randomized linear algebra approaches. The first covers the linear case, while the
second deals with the kernel case. [ACW16, COCF16] use a preconditioner based on the solution
of a randomized projection problem based respectively on random features and Nyström.

While such preconditioners are suitable in the case of KRR, their computational cost becomes
too expensive when applied to the random projection case. Indeed, performing an incomplete
svd of the matrix K̂nM even via randomized linear algebra approaches would require O(nMk)
where k is the number of singular values to compute. To achieve a good preconditioning level
(and so having t ≈ log n) we should choose k such that σk(K̂nM) ≈ λ. When the kernel
function is bounded, without further assumptions on the eigenvalue decay of the kernel matrix,
we need k ≈ λ−1 [CDV07, RCR15]. Since randomized projection requires λ = n−1/2, M =
O(
√
n) to achieve optimal generalization bounds, we have k ≈

√
n and so the total cost of the

incomplete svd preconditioner isO(n2). On the same lines, applying the preconditioner proposed
by [ACW16, COCF16] requires O(nM2) to be computed and there is no natural way to find a
similar sketched preconditioner as the one in Eq. (4.7) in the case of [ACW16], with reduced
computational cost. In the case of [COCF16], the preconditioner they use is exactly the matrix
H−1, whose computation amounts to solve the original problem in Eq. (4.5) with direct methods
and requires O(nM2).

A similar reasoning hold for methods that solve the Nyström linear system (4.5) with iterative
approaches [DXH+14, CARR16, TRVR16]. Indeed on the positive side, they have a computa-
tional cost of O(nMt). However they are affected by the poor conditioning of the linear system
in Eq. (4.5). Indeed, even if H or K̂MM in Eq. (4.5) are invertible, their condition number can be
arbitrarily large (while in the KRR case it is bounded by λ−1), and so many iterations are often
needed to achieve optimal generalization (E.g. by using early stopping in [CARR16] they need
t ≈ λ−1).

4.5 Generalized FALKON

In this section we define a generalized version of FALKON. In particular we provide a pre-
conditioner able to deal with non invertible K̂MM and with Nyström centers selected by using
approximate leverage scores. In Definition 4 we state the properties that such preconditioner
must satisfy.

First we define a diagonal matrix depending on the used sampling scheme that will be needed
for the general preconditioner.

Definition 3. Let A ∈ RM×M be a diagonal matrix. If the Nyström centers are selected via
uniform sampling, then Ajj = 1, for 1 ≤ j ≤M .

59

Otherwhise, let i1, . . . , iM ∈ {1, . . . , n} be the indexes of the training points sampled via ap-
proximate leverage scores. Then for 1 ≤ j ≤M ,

Ajj = npij .

We note here that by definition A is a diagonal matrix with strictly positive and finite diagonal.
Indeed it is true in the uniform case. In the leverage scores case, let 1 ≤ j ≤M . Note that since
the index ij has been sampled, it implies that the probability pij is strictly larger than zero. Then,
since 0 < pij ≤ 1 then 0 < A

−1/2
jj <∞ a.s. .

4.5.1 The Algorithm

We now introduce some matrices needed for the definition of a generalized version of FALKON,
able to deal with non invertible K̂MM and with different sampling schemes, for the Nyström
centers. Finally in Definition 5, we define a general form of the algorithm, that will be used in
the rest of the Chapter.

Definition 4 (The generalized preconditioner). Let M ∈ N. Let x̃1, . . . , x̃M ∈ X and K̂MM ∈
RM×M with (K̂MM)ij = k(x̃i, x̃j), for 1 ≤ i, j ≤M . Let A ∈ RM×M be a diagonal matrix with
strictly positive diagonal, defined according to Definition 3.

Let λ > 0, q ≤ M be the rank of K̂MM , Q ∈ RM×q a partial isometry such that Q>Q = I and
T ∈ Rq×q a triangular matrix. Moreover Q, T satisfy the following equation

A−1/2K̂MMA
−1/2 = QT>TQ>.

Finally let R ∈ Rq×q be a triangular matrix such that

R>R =
1

M
TT> + λI.

Then the generalized preconditioner is defined as

B =
1√
n
A−1/2QT−1R−1.

Note that B is right invertible, indeed A is invertible, since is a diagonal matrix, with strictly
positive diagonal, T,R are invertible since they are square and full rank and Q is a partial isom-
etry, so B−1 =

√
nRTQ>A1/2 and BB−1 = I . Now we provide two ways to compute Q, T,R.

We recall that the Cholesky algorithm, denoted by chol, given a square positive definite matrix,
B ∈ RM×M , produces an upper triangular matrix R ∈ RM×M such that B = R>R. While the
pivoted (or rank revealing) QR decomposition, denoted by qr, given a square matrixB, with rank
q, produces a partial isometry Q ∈ RM×q with the same range of M and an upper trapezoidal
matrix R ∈ Rq×M such that B = QR.

60

Example 2 (precoditioner satisfying Definition 4). Let λ > 0, and K̂MM , A as in Definition 4.

1. When K̂MM is full rank (q = M), then the following Q, T,R satisfy Definition 4

Q = I, T = chol(A−1/2K̂MMA
−1/2), R = chol

(
1

M
TT> + λI

)
.

2. When K̂MM is of any rank (q ≤M), then the following Q, T,R satisfy Definition 4

(Q,R) = qr(A−1/2K̂MMA
−1/2), T = chol(Q>A−1/2K̂MMA

−1/2Q),

R = chol

(
1

M
TT> + λI

)
.

Proof. In the first case, Q, T,R satisfy Definition 4 by construction. In the second case, since
QQ> is the projection matrix on the range of A−1/2K̂MMA

−1/2, then

QQ>A−1/2K̂MMA
−1/2 = A−1/2K̂MMA

−1/2

and, since A−1/2K̂MMA
−1/2 is symmetric,

A−1/2K̂MMA
−1/2QQ> = A−1/2K̂MMA

−1/2,

so
QT>TQ> = QQ>A−1/2K̂MMA

−1/2QQ> = A−1/2K̂MMA
−1/2.

Moreover note that, since the rank of K̂MM is q, then the range of A−1/2K̂MMA
−1/2 is q, and so

Q>Q = I , since it is a partial isometry with dimension RM×q. Finally R satisfies Definition 4
by construction.

Instead of rank-revealing QR decomposition, eigen-decomposition can be used.

Example 3 (preconditioner for the deficient rank case, using eig instead of qr). Let λ > 0, and
K̂MM , A as in Definition 4. Let (λi, ui)1≤i≤M be respectively the eigenvalues and the associated
eigenvectors from the eigendecomposition ofA−1/2K̂MMA

−1/2, with λ1 ≥ · · · ≥ λM ≥ 0. So the
following Q, T,R satisfy Definition 4, Q = (u1, . . . , uq) and T = diag(

√
λ1, . . . ,

√
λq), while

R = diag
(√

λ+ 1
M
λ1, . . . ,

√
λ+ 1

M
λq

)
.

We recall that this approach to compute Q, T,R is conceptually simpler than the one with QR
decomposition, but slower, since the hidden constants in the eigendecomposition are larger than
the one of QR.

The following is the general form of the algorithm.

61

Definition 5 (Generalized FALKON algorithm). Let λ > 0, t ∈ N and q,Q, T,R as in Defini-
tion 4. The generalized FALKON estimator is defined as follows

f̂λ,M,t(x) =
M∑
i=1

k(x, x̃i)ci, with c = Bβt,

and βt ∈ Rq denotes the vector resulting from t iterations of the conjugate gradient algorithm
applied to the following linear system

Wβ = b, where W = B>(K̂>nMK̂nM + λnK̂MM)B, b = B>K̂>nM ŷ. (4.14)

4.6 Definitions and Notation for Proofs

Here we recall some basic facts on linear operators and give some notation that will be used in
the rest of the Chapter, then we define the necessary operators to deal with the excess risk of
FALKON via functional analytic tools.

Notation Let H be a Hilbert space, we denote with ‖·‖H, the associated norm and with 〈·, ·〉H
the associated inner product. We denote with ‖·‖ the operator norm for a bounded linear operator
A, defined as ‖A‖ = sup‖f‖H=1 ‖Af‖. Moreover we will denote with ⊗ the tensor product, in
particular

(u⊗ v)z = u 〈v, z〉H , ∀u, v, z ∈ H.
In the rest of the appendix A+ λI is often denoted by Aλ where A is linear operator and λ ∈ R,
moreover we denote with A∗ the adjoint of the linear operator A, we will use A> if A is a matrix.
When H is separable, we denote with Tr the trace, that is Tr(A) =

∑d
j=1 〈ui, Aui〉H for any

linear operator A : H → H, where (ui)
d
j=1 is an orthogonal basis for H and d ∈ N ∪ {∞}

is the dimensionality of H. Moreover we denote with ‖·‖HS the Hilbert-Schmidt norm, that is
‖A‖2

HS = Tr(A∗A), for a linear operator A.

In the next proposition we recall the spectral theorem for compact self-adjoint operators on a
Hilbert space.

Proposition 5 (Spectral Theorem for compact self-adjoint operators). Let A be a compact self-
adjoint operator on a separable Hilbert space H. Then there exists a sequence (λj)

d
j=1 with

λj ∈ R, and an orthogonal basis of H (uj)
d
j=1 where d ∈ N ∪ {∞} is the dimensionality of H,

such that

A =
d∑
j=1

λjuj ⊗ uj. (4.15)

Proof. Thm. VI.16, pag. 203 of [RS80].

62

Let H be a separable Hilbert space (for the sake of simplicity assume d = ∞), and A be a
bounded self-adjoint operator on H that admits a spectral decomposition as in Eq. (4.15). Then
the largest and the smallest eigenvalues of A are denoted by

λmax(A) = sup
j≥1

λj, λmin(A) = inf
j≥1

λj.

In the next proposition we recall a basic fact about bounded symmetric linear operators on a
separable Hilbert spaceH.

Proposition 6. Let A be a bounded self-adjoint operator onH, that admits a spectral decompo-
sition as in Eq. (4.15). Then

−‖A‖ ≤ λmin(A) ≤ λmax(A) ≤ ‖A‖ .

Proof. By definition of operator norm, we have that ‖Ax‖2
H ≤ ‖A‖

2 ‖x‖2
H ∀x ∈ H. Let

(λj, uj)
d
j=1 be an eigendecomposition ofA, with d the dimensionality ofH, according to Prop. 5,

then, for any j ≥ 1, we have

λ2
j = 〈Auj, Auj〉 = ‖Auj‖2

H ≤ ‖A‖
2 ,

where we used the fact that Auj = λjuj and that ‖uj‖H = 1.

4.6.1 Definitions

Let X be a measurable and separable space and Y = R. Let ρ be a probability measure on
X × R. We denote with ρX the marginal probability of ρ on X and with ρ(y|x) the conditional
probability measure on Y givenX . Let L2(X , ρX) be the Lebesgue space of ρX square integrable
functions, endowed with the inner product

〈φ, ψ〉ρ =

∫
φ(x)ψ(x)dρX (x), ∀φ, ψ ∈ L2(X , ρX),

and norm ‖ψ‖ρ =
√
〈ψ, ψ〉

ρ
for any ψ ∈ L2(X , ρX). We now introduce the kernel and its

associated space of functions. Let k : X × X → R be a positive definite kernel, measurable
and uniformly bounded, i.e. there exists κ ∈ (0,∞), for which k(x, x) ≤ κ2 almost surely. We
denote with kx the function k(x, ·) and with (H, 〈·, ·〉H), the Hilbert space of functions with the
associated inner product induced by k, defined by

H = span{kx | x ∈ X}, 〈kx, kx′〉H = k(x, x′), ∀ x, x′ ∈ X .

Now we define the linear operators used in the rest of the appendix

63

Definition 6. Under the assumptions above, for any f ∈ H, φ ∈ L2(X , ρX)

• S : H → L2(X , ρX), such that Sf =
〈
f, k(·)

〉
H ∈ L

2(X , ρX), with adjoint

• S∗ : L2(X , ρX)→ H, such that S∗φ =
∫
φ(x)kxdρX (x) ∈ H.

• L : L2(X , ρX)→ L2(X , ρX), such that L = SS∗ and

• C : H → H, such that C = S∗S.

Let xi ∈ X with 1 ≤ i ≤ n and n ∈ N, and x̃j ∈ X for 1 ≤ j ≤ M and M ∈ N. We define the
following linear operators

Definition 7. Under the assumptions above, for any f ∈ H, v ∈ Rn, w ∈ RM ,

• Ŝn : H → Rn, such that Ŝnf = 1√
n
(〈f, kxi〉)ni=1 ∈ Rn, with adjoint

• Ŝ∗n : Rn → H, such that Ŝ∗nv = 1√
n

∑n
i=1 vikxi ∈ H.

• Ĉn : H → H, such that Ĉn = Ŝ∗nŜn.

• ŜM : H → RM , such that ŜMf = 1√
M

(〈f, kx̃i〉)Mi=1 ∈ RM , with adjoint

• Ŝ∗M : RM → H, such that Ŝ∗Mw = 1√
M

∑M
i=1 vikx̃i ∈ H.

• ĈM : H → H, such that ĈM = Ŝ∗M ŜM .

• ĜM : H → H, such that ĜM = Ŝ∗MA−1ŜM , with A defined in Definition 4 (see also
Definition 3).

We now recall some basic facts about L,C, S, K̂, Ĉn, Ŝn, K̂nM and K̂MM .

Proposition 7. With the notation introduced above,

1. K̂nM =
√
nMŜnŜ

∗
M , K̂MM = M ŜM Ŝ

∗
M , K̂ = n ŜnŜ

∗
n

2. C =

∫
X
kx ⊗ kxdρX (x), Tr(C) = Tr(L) = ‖S‖2

HS =

∫
X
‖kx‖2

HdρX (x) ≤ κ2,

3. Ĉn =
1

n

n∑
i=1

kxi ⊗ kxi , Tr(Ĉn) = Tr(K̂/n) = ‖Ŝn‖2
HS =

1

n

n∑
i=1

‖kxi‖
2
H ≤ κ2,

4. ĈM =
1

M

M∑
i=1

kx̃i ⊗ kx̃i , Tr(ĈM) = Tr(K̂MM/M) = ‖ŜM‖2
HS =

1

M

m∑
i=1

‖kx̃i‖
2
H ≤ κ2,

5. ĜM =
1

M

M∑
i=1

A−1
ii kx̃i ⊗ kx̃i .

64

where ⊗ denotes the tensor product.

Proof. Note that (K̂nM)ij = k(xi, x̃j) =
〈
kxi , kx̃j

〉
H = (

√
nMŜnŜ

∗
M)ij , for any 1 ≤ i ≤ n,

1 ≤ j ≤ M , thus K̂nM =
√
nMŜnŜ

∗
M . The same reasoning holds for K̂MM and K̂. For the

second equation, by definition of C = S∗S we have that, for each h, h′ ∈ H,

〈h,Ch′〉H = 〈Sh, Sh′〉ρ =

∫
X
〈h, kx〉H 〈kx, h

′〉H dρX (x) =

∫
X

〈
h,
(
kx 〈kx, h′〉H

)〉
H
dρX (x)

=

∫
X

〈
h,
(
kx ⊗ kx

)
h′
〉
H
dρX (x) =

〈
h,
(∫
X
kx ⊗ kxdρX (x)

)
h′
〉
H
.

Note that, since k is bounded almost surely, then ‖kx‖H ≤ κ for any x ∈ X , thus

Tr(C) =

∫
X

Tr(kx ⊗ kx)dρX (x) =

∫
X
‖kx‖2

HdρX (x) ≤ κ2

by linearity of the trace. Thus Tr(C) <∞ and so

Tr(C) = Tr(S∗S) = ‖S‖2
HS = Tr(SS∗) = Tr(L).

The proof for the rest of equations is analogous to the one for the second.

Now we recall a standard characterization of the excess risk

Proposition 8. When
∫
Y y

2dρ(y|x) <∞, then there exist fρ ∈ L2(X , ρX) defined by

fρ(x) =

∫
ydρ(y|x),

almost everywhere. Moreover, for any f̂ ∈ H we have,

E(f̂)− inf
f∈H
E(f) =

∥∥∥Sf̂ − Pfρ∥∥∥2

ρX
,

where P : L2(X , ρX) → L2(X , ρX) is the projection operator whose range is the closure in
L2(X , ρX) of the range of S.

Proof. Page 890 of [VRC+05].

4.7 Analytic results

The section of analytic results is divided in two subsections, where we bound the condition
number of the FALKON preconditioned linear system (4.14) and we decompose the excess risk
of FALKON, with respect to analytical quantities that will be controlled in probability in the
following sections.

65

4.7.1 Analytic Results (I): Controlling Condition Number of W

First we characterize the matrix W defining the FALKON preconditioned linear system (4.14),
with respect to the operators defined in Definition 7 (see next lemma) and in particular we
characterize its condition number with respect to the norm of an auxiliary operator defined in
Lemma 12. Finally we bound the norm of such operator with respect to analytical quantities
more amenable to be bounded in probability (Lemma 13).

Lemma 11 (Characterization of W). Let λ ∈ R. The matrix W in Definition 5 is characterized
by

W = R−>V ∗(Ĉn + λI)V R−1, with V =
√
nMŜ∗MBR.

Moreover V is a partial isometry such that V ∗V = Iq×q and V V ∗ with the same range of Ŝ∗M .

Proof. By the characterization of K̂nM , K̂MM and Ĉn in Prop. 7, we have

K̂>nMK̂nM + λK̂MM = nM (ŜM Ŝ
∗
nŜnŜ

∗
M + λŜM Ŝ

∗
M)

= nM ŜM(Ŝ∗nŜn + λI)Ŝ∗M = nM ŜM(Ĉn + λI)Ŝ∗M .

Now note that, by definition of B in Definition 4 and of V , we have
√
nMŜ∗MB =

√
nMŜ∗MBRR

−1 = V R−1,

so

W = B>(K̂>nMK̂nM + λK̂MM)B

= nM B>ŜM(Ĉn + λI)Ŝ∗MB

= R−>V ∗(Ĉn + λI)V R−1.

The last step is to prove that V is a partial isometry. First we need a characterization of V that is
obtained by expanding the definition of B,

V =
√
nMŜ∗MBR =

√
nMŜ∗M

1√
n
A−1/2QT−1R−1R =

√
MŜ∗MA

−1/2QT−1. (4.16)

By the characterization of V , the characterization of K̂MM in Prop. 7 and the definition of Q, T
in terms of A−1/2K̂MMA

−1/2 in Definition 4 , we have

V ∗V = MT−>Q>A−1/2 ŜM Ŝ
∗
M A−1/2QT−1

= T−>Q> A−1/2K̂MMA
−1/2 QT−1

= T−>Q>QT>TQ>QT−1 = I.

66

Moreover, by the characterization of V , of A−1/2K̂MMA
−1/2 with respect to ŜM , and of Q, T

(Prop. 7 and Definition 4),

V V ∗Ŝ∗MA
−1/2 = M Ŝ∗MDQT

−1T−>Q>A−1/2ŜM Ŝ
∗
M

= Ŝ∗MA
−1/2QT−1T−>Q>A−1/2K̂MMA

−1/2

= Ŝ∗MA
−1/2QT−1T−>Q>QT>TQ>

= Ŝ∗MA
−1/2QQ> = Ŝ∗MA

−1/2,

where the last step is due to the fact that the range of QQ> is the one of A−1/2K̂MMA
−1/2 by

definition (see Definition 4), and since A−1/2K̂MMA
−1/2 = MA−1/2ŜM Ŝ

∗
MA

−1/2 by Proposi-
tion 7, it is the same ofA−1/2ŜM . Note finally that the range of Ŝ∗MA

−1/2 is the same of Ŝ∗M since
A−1/2 is a diagonal matrix with strictly positive elements on the diagonal (see Definition 4).

Lemma 12. Let λ > 0 and W be as in Eq. (4.14). Let E = R−>V ∗(Ĉn − ĜM)V A−1, with V
defined in Lemma 11. Then W is characterized by

W = I + E.

In particular, when ‖E‖ < 1,

cond (W) ≤ 1 + ‖E‖
1− ‖E‖

.

Proof. Let Q, T,R,A as in Definition 4, and V as in Lemma 11. According to Lemma 11 we
have

W = R−>V ∗(Ĉn + λI)V R−1 = R−>(V ∗ĈnV + λI)R−1.

Now we bound the largest and the smallest eigenvalue of W . First of all note that

R−>(V ∗ĈnV + λI)R−1 = R−>(V ∗ĜMV + λI)R−1 +R−>V ∗(Ĉn − ĜM)V R−1, (4.17)

where ĜM is defined in Definition 7. To study the first term, we need a preliminary result, which
simplifies ŜMV . By using the definition of V , the characterization of K̂MM in terms of ŜM
(Prop. 7), the definition of B (Definition 4), and finally the characterization of A−1/2K̂MMA

−1/2

in terms of Q, T (Definition 4), we have

A−1/2ŜMV =
√
nMA−1/2ŜM Ŝ

∗
MBR =

√
n

M
A−1/2K̂MMBR =

1√
M
A−1/2K̂MMA

−1/2 QT−1

=
1√
M
QT>TQ>QT−1 =

1√
M
QT>.

67

Now we can simplify the first term. We express ĜM with respect to ŜM , then we apply the
identity above onA−1/2ŜMV and on its transpose, finally we recall the identityR>R = 1

M
TT>+

λI from Definition 4, obtaining

R−>(V ∗ĜMV + λI)R−1 = R−>(V ∗Ŝ∗MA
−1ŜMV + λI)R−1 = R−>(

1

M
TQ>QT> + λI)R−1

(4.18)

= R−>(
1

M
TT> + λI)R−1 = R−>R>RR−1 = I. (4.19)

So, by defining E := R−>V ∗(Ĉn − ĜM)V R−1, we have

W = I + E.

Note that E is compact and self-adjoint, by definition. Then, by Proposition 5, 6 we have that
W admits a spectral decomposition as in Eq. (4.15). Let λmax(W) and λmin(W) be respectively
the largest and the smallest eigenvalues of W , by Proposition 6, and considering that −‖E‖ ≤
λj(E) ≤ ‖E‖ (see Proposition 5) we have

λmax(W) = sup
j∈N

1 + λj(E) = 1 + sup
j∈N

λj(E) = 1 + λmax(E) ≤ 1 + ‖E‖ ,

λmin(W) = inf
j∈N

1 + λj(E) = 1 + inf
j∈N

λj(E) = 1 + λmin(E) ≥ 1− ‖E‖ .

Since W is self-adjoint and positive, when ‖E‖ < 1, by definition of condition number, we have

cond (W) =
λmax(W)

λmin(W)
≤ 1 + ‖E‖

1− ‖E‖
.

Lemma 13. Let E be defined as in Lemma 12 and let ĜM as in Definition 7, then

‖E‖ ≤
∥∥∥Ĝ−1/2

Mλ (Ĉn − ĜM)Ĝ
−1/2
Mλ

∥∥∥ . (4.20)

Proof. By multiplying and dividing by ĜMλ = ĜM + λI we have

‖E‖ =
∥∥∥R−>V ∗Ĝ1/2

Mλ Ĝ
−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ Ĝ

1/2
MλV R

−1
∥∥∥

≤
∥∥∥R−>V ∗Ĝ1/2

Mλ

∥∥∥2 ∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ .
Now, considering that V ∗V = I and the identity in Eq. (4.18), we have∥∥∥R−>V ∗Ĝ1/2

Mλ

∥∥∥2

=
∥∥∥R−>V ∗(ĜM + λI)V R−1

∥∥∥ =
∥∥∥R−>(V ∗ĜMV + λI)R−1

∥∥∥ = 1. (4.21)

68

4.7.2 Analytic Results (II): The Computational Oracle Inequality

In this subsection (Lemma 18) we bound the excess risk of FALKON with respect to the one
of the exact Nyström estimator. First we prove that FALKON is equal to the exact Nyström
estimator as the iterations go to infinity (Lemma 14, 15). Then in Lemma 18 (via Lemma 16, 17)
we use functional analytic tools, together with results from operator theory to relate the weak
convergence result of the conjugate gradient method on the chosen preconditioned problem, with
the excess risk.

Lemma 14 (Representation of the FALKON estimator as vector inH). Let λ > 0, M, t ∈ N and
B as in Definition 4. The FALKON estimator as in Definition 5 is characterized by the vector
f̂ ∈ H as follows,

f̂λ,M,t =
√
M Ŝ∗MBβt, (4.22)

where βt ∈ Rq denotes the vector resulting from t iterations of the conjugate gradient algorithm
applied to the linear system in Definition 5.

Proof. According to the definition of f̂λ,M,t(·) in Definition 5 and the definition of the operator
ŜM in Definition 7, denoting with α ∈ RM the vector Bβt, we have that

f̂λ,M,t(x) =
M∑
i=1

k(x, x̃i)ci =

〈
kx,

M∑
i=1

cikx̃i

〉
H

=
〈
kx,
√
M Ŝ∗Mc

〉
H
,

for any x ∈ X . Then the vector inH representing the function f̂λ,M,t(·) is

f̂λ,M,t =
√
M Ŝ∗Mc =

√
M Ŝ∗MBβt.

Lemma 15 (Representation of the Nyström estimator as a vector inH). Let λ > 0,M ∈ N, and
B as in Definition 4. The exact Nyström estimator, in Eq.(4.4) and Eq. (4.5) is characterized by
the vector f̃ ∈ H as follows

f̃λ,M =
√
M Ŝ∗MBβ∞, (4.23)

where β∞ = W−1B>K̂>nM ŷ is the vector resulting from infinite iterations of the conjugate gra-
dient algorithm applied to the linear system in Eq. (4.14).

Proof. For the same reasoning in the proof of Lemma 14, we have that the FALKON estimator
with infinite iterations is characterized by the following vector inH

f̃λ,M =
√
M Ŝ∗MBβ∞.

69

To complete the proof, we need to prove 1) that β∞ = W−1B>K̂nM ŷ and 2) that f̃λ,M above,
corresponds to the exact Nyström estimator, as in Eq. (4.5).

Now we characterize β∞. First, by the characterization of W in Lemma 11 and the fact that
V ∗V = I , we have

W = R−>V ∗(Ĉn + λI)V R−1 = R−>(V ∗ĈnV + λI)R−1. (4.24)

Since Ĉn is a positive operator (see Definition 7)R is invertible and λ > 0, thenW is a symmetric
and positive definite matrix. The positive definiteness of W implies that it is invertible and that
is has a finite condition number, making the conjugate gradient algorithm to converge to the
solution of the system in Eq. (4.14) (Thm. 6.6 of [Saa03] and Eq. 6.107). So we can explicitly
characterize β∞, by the solution of the system in Eq. (4.14), that is

β∞ = W−1B>K̂>nM ŷ. (4.25)

So we proved that f̃λ,M ∈ H, with the above characterization of β∞, corresponds to FALKON
with infinite iterations. Now we show that f̃λ,M is equal to the Nyström estimator given in
[RCR15]. First we need to study Ŝ∗MBW

−1B>ŜM . By the characterization of W in Eq. (4.24),
the identity (ABC)−1 = C−1B−1A−1, valid for any A,B,C bounded invertible operators, and
the definition of V (Lemma 11),

Ŝ∗MBW
−1B>ŜM = Ŝ∗MB

(
R−>(V ∗ĈnV + λI)R−1

)−1

B>ŜM (4.26)

= Ŝ∗MBR(V ∗ĈnV + λI)−1R>B>ŜM (4.27)

=
1

Mn
V (V ∗ĈnV + λI)−1V ∗. (4.28)

By expanding β∞, K̂nM (see Lemma 7) in f̃λ,M ,

f̃λ,M =
√
M Ŝ∗MBβ∞ =

√
M Ŝ∗MBW

−1B>K̂>nM ŷ =
√
nM Ŝ∗MBW

−1B>ŜM Ŝ
∗
nŷ (4.29)

=
1√
n
V (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷ. (4.30)

Now by Lemma 2 of [RCR15] with Zm = ŜM , we know that the exact Nyström solution is
characterized by the vector f ∈ H defined as follows

f =
1√
n
V (V

∗
ĈnV + λI)−1V

∗
Ŝ∗nŷ,

with V a partial isometry, such that V
∗
V = I and V V

∗
with the same range of Ŝ∗M . Note that, by

definition of V in Lemma 11, we have that it is a partial isometry such that V ∗V = I and V V ∗

with the same range of Ŝ∗M . This implies that V = V G, for an orthogonal matrix G ∈ Rq×q.

70

Finally, exploiting the fact that G−1 = G>, that GG> = G>G = I and that for three invertible
matrices A,B,C we have (ABC)−1 = C−1B−1A−1,

f =
1√
n
V (V

∗
ĈnV + λI)−1V

∗
Ŝ∗nŷ =

1√
n
V G

(
G>(V ∗ĈnV + λI)G

)−1

G>V ∗Ŝ∗nŷ

=
1√
n
V GG>

(
V ∗ĈnV + λI

)−1

GG>V ∗Ŝ∗nŷ =
1√
n
V
(
V ∗ĈnV + λI

)−1

V ∗Ŝ∗nŷ = f̃λ,M .

The next lemma is necessary to prove Lemma 18.

Lemma 16. When λ > 0 and B is as in Definition 4. then
√
M
∥∥∥SŜ∗MBW−1/2

∥∥∥ ≤ n−1/2
∥∥∥SĈ−1/2

nλ

∥∥∥ .
Proof. By the fact that identity ‖Z‖2 = ‖ZZ∗‖ valid for any bounded operator Z and the identity
in Eq. (4.26), we have

M
∥∥∥SŜ∗MBW−1/2

∥∥∥2

= M
∥∥∥SŜ∗MBW−1B>ŜMS

∗
∥∥∥ =

1

n

∥∥∥SV (V ∗ĈnV + λI)−1V ∗S∗
∥∥∥

=
1

n

∥∥∥SV (V ∗ĈnV + λI)−1/2
∥∥∥2

.

Denote with Ĉnλ the operator Ĉn + λI , by dividing and multiplying for Ĉ−1/2
nλ , we have

SV (V ∗ĈnV + λI)−1/2 = SĈ
−1/2
nλ Ĉ

1/2
nλ V (V ∗ĈnV + λI)−1/2.

The second term is equal to 1, indeed, since V ∗ĈnλV = V ∗ĈnV + λI , and ‖Z‖2 = ‖Z∗Z‖, for
any bounded operator Z, we have∥∥∥Ĉ1/2

nλ V (V ∗ĈnV + λI)−1/2
∥∥∥2

=
∥∥∥(V ∗ĈnV + λI)−1/2V ∗ĈnλV (V ∗ĈnV + λI)−1/2

∥∥∥ (4.31)

=
∥∥∥(V ∗ĈnV + λI)−1/2(V ∗ĈnV + λI)(V ∗ĈnV + λI)−1/2

∥∥∥
(4.32)

= 1. (4.33)

Finally
√
M
∥∥∥SŜ∗MBW−1/2

∥∥∥ =
1√
n

∥∥∥SV (V ∗ĈnV + λI)−1/2
∥∥∥

≤ 1√
n

∥∥∥SĈ−1/2
nλ

∥∥∥∥∥∥Ĉ1/2
nλ V (V ∗ĈnV + λI)−1/2

∥∥∥
≤ n−1/2

∥∥∥SĈ−1/2
nλ

∥∥∥ .
71

The next lemma is necessary to prove Lemma 18.

Lemma 17. For any λ > 0, let β∞ be the vector resulting from infinite iterations of the conjugate
gradient algorithm applied to the linear system in Eq. (4.14). Then∥∥W 1/2β∞

∥∥
Rq ≤ ‖ŷ‖Rn .

Proof. First we recall the characterization of β∞ from Lemma 15,

β∞ = W−1B>K̂>nM ŷ.

So, by the characterization of K̂nM in terms of Ŝn, ŜM (Prop. 7),

W 1/2β∞ = W 1/2W−1B>K̂>nM ŷ =
√
nM W−1/2B>ŜM Ŝ

∗
nŷ.

Then, by applying the characterization of Ŝ∗MBW
−1B>ŜM in terms of V , in Eq. (4.26)∥∥W 1/2β∞

∥∥2

Rq = nM
∥∥∥W−1/2B>ŜM Ŝ

∗
nŷ
∥∥∥2

Rq
= nM ŷ>ŜnŜ

∗
MBW

−1B>ŜM Ŝ
∗
nŷ

= ŷ>ŜnV (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷ =
∥∥∥(V ∗ĈnV + λI)−1/2V ∗Ŝ∗nŷ

∥∥∥2

Rq
.

Finally ∥∥∥(V ∗ĈnV + λI)−1/2Ŝ∗nŷ
∥∥∥
Rq
≤
∥∥∥(V ∗ĈnV + λI)−1/2Ŝ∗n

∥∥∥ ‖ŷ‖Rn .
Note that ∥∥∥(V ∗ĈnV + λI)−1/2Ŝ∗n

∥∥∥ ≤ 1,

indeed ∥∥∥(V ∗ĈnV + λI)−1/2Ŝ∗n

∥∥∥ ≤ ∥∥∥(V ∗ĈnV + λI)−1/2Ĉ
1/2
nλ

∥∥∥∥∥∥Ĉ−1/2
nλ Ŝ∗n

∥∥∥ ,
and the first term is equal to 1 by Eq. (4.31), moreover by definition of Ĉn (Definition 7),∥∥∥Ĉ−1/2

nλ Ŝ∗n

∥∥∥2

=
∥∥∥Ĉ−1/2

nλ ĈnĈ
−1/2
nλ

∥∥∥ =
∥∥∥Ĉ−1/2

nλ Ĉ1/2
n

∥∥∥2

= sup
σ∈σ(Ĉn)

σ

σ + λ
≤ 1,

where σ(Ĉn) ⊂ [0,
∥∥∥Ĉn∥∥∥] is the set of eigenvalues of Ĉn.

Lemma 18. Let M ∈ N, λ > 0 and B satisfying Definition 5. Let f̂λ,M,t be the FALKON
estimator after t ∈ N iterations and f̃λ,M the exact Nyström estimator as in Eq. (4.4), 4.5. Let
c0 ≥ 0 such that ∥∥∥SĈ−1/2

nλ

∥∥∥ ≤ c0,

then

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 2c0 v̂

(
1− 2√

cond(W) + 1

)t
,

where v̂2 = 1
n

∑n
i=1 y

2
i .

72

Proof of Lemma 18. By Prop. 8 we have that for any f ∈ H

(E(f)− inf
f∈H
E(f))1/2 = ‖Sf − Pfρ‖ρX ,

with P : L2(X , ρX)→ L2(X , ρX) the orthogonal projection operator whose range is the closure
of the range of S in L2(X , ρX). Let f̂λ,M,t ∈ H and f̃λ,M ∈ H be respectively the Hilbert vector
representation of the FALKON estimator and of the exact Nyström estimator (Lemma 14 and
Lemma 15). By adding and subtracting f̃λ,M we have

|E(f̂)− inf
f∈H
E(f)|1/2 =

∥∥∥Sf̂λ,M,t − Pfρ
∥∥∥
ρX

=
∥∥∥S(f̂λ,M,t − f̃λ,M) + (Sf̃λ,M − Pfρ)

∥∥∥
ρX

≤
∥∥∥S(f̂λ,M,t − f̃λ,M)

∥∥∥
ρX

+
∥∥∥Sf̃λ,M − Pfρ∥∥∥

ρX

=
∥∥∥S(f̂λ,M,t − f̃λ,M)

∥∥∥
ρX

+ |E(f̃λ,M)− inf
f∈H
E(f)|1/2.

In particular, by expanding the definition of f̂λ,M,t, f̃λ,M from Lemma 14 and Lemma 15, we
have ∥∥∥S(f̂λ,M,t − f̃λ,M)

∥∥∥
ρX

=
√
M
∥∥∥SŜ∗MB(βt − β∞)

∥∥∥
ρX
,

where βt ∈ Rq and β∞ ∈ Rq denote respectively the vector resulting from t iterations and
infinite iterations of the conjugate gradient algorithm applied to the linear system in Eq. (4.14).
Since W is symmetric positive definite when λ > 0 (see proof of Lemma 15), we can apply
the standard convergence results for the conjugate gradient algorithm (Thm. 6.6 of [Saa03], in
particular Eq. (6.107)), that is the following

∥∥W 1/2(βt − β∞)
∥∥
Rq ≤ q(W, t)

∥∥W 1/2β∞
∥∥
Rq , with q(W, t) = 2

(
1− 2√

cond(W) + 1

)t
.

So by dividing and multiplying by W 1/2 we have∥∥∥S(f̂λ,M,t − f̃λ,M)
∥∥∥
ρX

=
√
M
∥∥∥SŜ∗MB(βt − β∞)

∥∥∥
ρX

=
√
M
∥∥∥SŜ∗MBW−1/2W 1/2(βt − β∞)

∥∥∥
ρX

≤
√
M
∥∥∥SŜ∗MBW−1/2

∥∥∥∥∥W 1/2(βt − β∞)
∥∥
Rq

≤ q(W, t)
√
M
∥∥∥SŜ∗MBW−1/2

∥∥∥∥∥W 1/2β∞
∥∥
Rq .

Finally, the term
√
M
∥∥∥SŜ∗MBW−1/2

∥∥∥ is bounded in Lemma 16 as

√
M
∥∥∥SŜ∗MBW−1/2

∥∥∥ ≤ 1√
n

∥∥∥SĈ−1/2
nλ

∥∥∥ ≤ c0√
n
,

73

while, for the term
∥∥W 1/2β∞

∥∥
Rq , by Lemma 17, we have

∥∥W 1/2β∞
∥∥
Rq ≤ ‖ŷ‖Rn = (

∑
i=1

y2
i)

1/2 =
√
n

√∑n
i=1 y

2
i

n
=
√
nv̂.

4.8 Probabilistic Estimates

In Lemma 19, 20 we provide probabilistic estimates of ‖E‖, the quantity needed to bound the
condition number of the preconditioned linear system of FALKON (see Lemma 11, 13). In
particular Lemma 19, analyzes the case when the Nyström centers are selected with uniform
sampling, while Lemma 20, considers the case when the Nyström centers are selected via ap-
proximate leverage scores sampling.

Now we are ready to provide probabilistic estimates for uniform sampling.

Lemma 19. Let η ∈ [0, 1) and δ ∈ (0, 1]. When x̃1, . . . , x̃M are selected via Nyström uniform
sampling (see Sect. 4.5), 0 < λ ≤ ‖C‖, M ≤ n and

M ≥ 4

[
1

2
+

1

η
+

(
3 + 7η

3 + 3η

)(
1 +

2

η

)2

N∞(λ)

]
log

8κ2

λδ
, (4.34)

then the following hold with probability at least 1− δ,∥∥∥C−1/2
λ (C − Ĉn)C

−1/2
λ

∥∥∥ < η,
∥∥∥Ĝ−1/2

Mλ (Ĉn − ĜM)Ĝ
−1/2
Mλ

∥∥∥ < η.

Proof. First of all, note that the Nyström centers are selected by uniform sampling. Then
x̃1, . . . , x̃M are independently and identically distributed according to ρX and moreover A is
the identity matrix. So

ĜM = Ŝ∗MA
−1ŜM = Ŝ∗M ŜM = ĈM .

Note that, by multiplying and dividing by Cλ,∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ =
∥∥∥Ĉ−1/2

Mλ (Ĉn − ĈM)Ĉ
−1/2
Mλ

∥∥∥
=
∥∥∥Ĉ−1/2

Mλ C
1/2
λ C

−1/2
λ (Ĉn − ĈM)C

−1/2
λ C

1/2
λ Ĉ

−1/2
Mλ

∥∥∥
≤
∥∥∥Ĉ−1/2

Mλ C
1/2
λ

∥∥∥2 ∥∥∥C−1/2
λ (Ĉn − ĈM)C

−1/2
λ

∥∥∥
≤ (1− λmax(C

−1/2
λ (C − ĈM)C

−1/2
λ))−1

∥∥∥C−1/2
λ (Ĉn − ĈM)C

−1/2
λ

∥∥∥
74

where the last step is due to Proposition 9 of [RR17]. Moreover note that

λmax(C
−1/2
λ (C − ĈM)C

−1/2
λ) ≤

∥∥∥C−1/2
λ (C − ĈM)C

−1/2
λ

∥∥∥ .
Let µ = δ

2
. Note that ĈM = 1

M

∑M
i=1 vi ⊗ vi with vi the random variable vi = kx̃i (see Proposi-

tion 7) and, since x̃1, . . . , x̃M are i.i.d. w.r.t. ρX , by the characterization of C in Proposition 7,
we have for any 1 ≤ i ≤M ,

E[vi ⊗ vi] =

∫
X
kx ⊗ kxdρX (x) = C.

Then, by considering that ‖v‖ = ‖kx‖ ≤ κ2, we can apply Proposition 7 of [RR17], obtaining

∥∥∥C−1/2
λ (C − ĈM)C

−1/2
λ

∥∥∥ ≤ 2ζ(1 +N∞(λ))

3M
+

√
2ζN∞(λ)

3M
, ζ = log

4κ2

λµ
,

with probability at least 1− µ. Note that, when M satisfies Eq (4.34), we have∥∥∥C−1/2
λ (C − ĈM)C

−1/2
λ

∥∥∥ < η/(2 + η).

By repeating the same reasoning for Cn, we have∥∥∥C−1/2
λ (C − Ĉn)C

−1/2
λ

∥∥∥ ≤ 2ζ(1 +N∞(λ))

3n
+

√
2ζN∞(λ)

3n
, ζ = log

4κ2

λµ
,

with probability 1 − µ. Since n ≥ M and M satisfying Eq. (4.34), we have automatically that∥∥∥C−1/2
λ (C − Ĉn)C

−1/2
λ

∥∥∥ < η/(2 + η).

Finally note that, by adding and subtracting C,∥∥∥C−1/2
λ (Ĉn − ĈM)C

−1/2
λ

∥∥∥ =
∥∥∥C−1/2

λ ((Ĉn − C) + (C − ĈM))C
−1/2
λ

∥∥∥
≤
∥∥∥C−1/2

λ (C − Ĉn)C
−1/2
λ

∥∥∥+
∥∥∥C−1/2

λ (C − ĈM)C
−1/2
λ

∥∥∥ .
So by performing the intersection bound of the two previous events, we have

‖Ĉ−1/2
Mλ (Ĉn − ĈM)Ĉ

−1/2
Mλ ‖ ≤ (1−

∥∥∥C−1/2
λ (C − Ĉn)C

−1/2
λ

∥∥∥)−1×

×
(∥∥∥C−1/2

λ (C − Ĉn)C−1
λ

∥∥∥+
∥∥∥C−1/2

λ (C − ĈM)C
−1/2
λ

∥∥∥) < η,

with probability at least 1− 2µ. The last step consists in substituting µ with δ/2.

75

The next lemma gives probabilistic estimates for ‖E‖, that is the quantity needed to bound the
condition number of the preconditioned linear system of FALKON (see Lemma 11, 13), when
the Nyström centers are selected via approximate leverage scores sampling.

Lemma 20. Let η > 0, δ ∈ (0, 1], n,M ∈ N, q ≥ 1 and λ0 > 0. Let x1, . . . , xn be independently
and identically distributed according to ρX . Let x̃1, . . . , x̃M be randomly selected from x1 . . . , xn,
by using the (q, λ0, δ)-approximate leverage scores (see Definition 2 and discussion below), with
λ0 ∨ 19κ2

n
log n

2δ
≤ λ ≤ ‖C‖. When n ≥ 405κ2 ∨ 67κ2 log 12κ2

δ
and

M ≥
[
2 +

2

η
+

18(η2 + 5η + 4)q2

η2
N (λ)

]
log

8κ2

λδ
, (4.35)

then the following hold with probability at least 1− δ,∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ < η,
∥∥∥C−1/2

λ (C − Ĉn)C
−1/2
λ

∥∥∥ < η.

Proof. By multiplying and dividing by Ĉnλ = Ĉn + λI , we have∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ =
∥∥∥Ĝ−1/2

Mλ Ĉ
1/2
nλ Ĉ

−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ Ĉ

1/2
nλ Ĝ

−1/2
Mλ

∥∥∥
≤
∥∥∥Ĝ−1/2

Mλ Ĉ
1/2
nλ

∥∥∥2 ∥∥∥Ĉ−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ

∥∥∥
≤ (1− λmax(Ĉ

−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ))−1

∥∥∥Ĉ−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ

∥∥∥
where the last step is due to Proposition 9 of [RR17]. Note that

λmax(Ĉ
−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ) ≤

∥∥∥Ĉ−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ

∥∥∥ ,
thus ∥∥∥Ĝ−1/2

Mλ (Ĉn − ĜM)Ĝ
−1/2
Mλ

∥∥∥ ≤ t

1− t
,

with t =
∥∥∥Ĉ−1/2

nλ (Ĉn − ĜM)Ĉ
−1/2
nλ

∥∥∥. Now we bound t. We denote with `(j, λ), ˜̀(j, λ), respec-
tively the leverage scores and the (q, λ0, δ)-approximate leverage score associated to the point
xj , as in Definition 2 and discussion above. First we need some considerations on the leverage
scores. By the spectral theorem and the fact that K̂ = n ŜnŜ

∗
n (see Proposition 7), we have

`(j, λ) = (K̂(K̂ + λnI)−1)jj = e>j ŜnŜ
∗
n(ŜnŜ

∗
n + λI)−1ej = e>j Ŝn(Ŝ∗nŜn + λI)−1Ŝ∗nej

=
1

n

〈
kxj , Ĉ

−1
nλ kxj

〉
=

1

n

∥∥∥Ĉ−1/2
nλ kxj

∥∥∥2

.

76

for any 1 ≤ j ≤ n. Moreover, by the characterization of Ĉn in Prop. 7, we have

1

n

n∑
j=1

`(j, λ) =
1

n

n∑
j=1

〈
kxj , (Ĉn + λ)−1kxj

〉
H

=
1

n

n∑
j=1

Tr((Ĉn + λ)−1(kxj ⊗ kxj))

= Tr((Ĉn + λ)−1 1

n

n∑
j=1

(kxj ⊗ kxj)) = Tr(Ĉ−1
nλ Ĉn).

Since the Nyström points are selected by using the (q, λ0, δ)-approximate leverage scores, then
x̃t = xit for 1 ≤ t ≤ M , where i1, . . . , iM ∈ {1, . . . , n} is the sequence of indexes obtained by
approximate leverage scores sampling (see Section 4.3.2). Note that i1, . . . , iM are independent
random indexes, distributed as follows: for 1 ≤ t ≤M ,

it = j, with probability pj =
˜̀(j, λ)∑n
h=1
˜̀(h, λ)

, ∀ 1 ≤ j ≤ n.

Then, by recalling the definition of ĜM with respect to the matrix A defined as in Definition 3
and by Prop. 7 we have,

ĜM = Ŝ∗MA
−1ŜM =

1

M

M∑
t=1

1

npit
kxit ⊗ kxit .

Consequently ĜM = 1
M

∑M
i=1 vi⊗vi, where (vi)

M
i=1 are independent random variables distributed

in the following way

vi =
1
√
pjn

kxj , with probability pj, ∀ 1 ≤ j ≤ n.

Now we study the moments of ĜM as a sum of independent random matrices, to apply non-
commutative Bernstein inequality (e.g. Proposition 7 of [RR17]).
We have that, for any 1 ≤ i ≤M

Evi ⊗ vi =
n∑
j=1

pj

(
1

pjn
kxj ⊗ kxj

)
= Ĉn,

〈
vi, Ĉ

−1
nλ vi

〉
H
≤ sup

1≤j≤n

∥∥∥Ĉ−1/2
nλ kxj

∥∥∥2

pjn
= sup

1≤j≤n

`(j, λ)

pjn
= sup

1≤j≤n

`(j, λ)˜̀(j, λ)

1

n

n∑
h=1

˜̀(h, λ)

≤ q
1

n

n∑
h=1

˜̀(h, λ) ≤ q2 1

n

n∑
h=1

`(h, λ) = q2 Tr(Ĉ−1
nλ Ĉn),

77

for all 1 ≤ j ≤ n. Denote with N̂ (λ), the quantity Tr(Ĉ−1
nλ Ĉn), by applying Prop. 7 of [RR17],

we have

∥∥∥Ĉ−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ

∥∥∥ ≤ 2ζ(1 + q2N̂ (λ))

3M
+

√
2ζq2N̂ (λ)

M
, ζ = log

κ2

λµ
.

with probability at least 1−µ. The final step consist in bounding the empirical intrinsic dimension
N̂ (λ) with respect to intrinsic dimension N (λ), for which we use Proposition 1 of [RCR15],
obtaining

N̂ (λ) ≤ 2.65N (λ),

with probability at least 1− µ, when n ≥ 405κ2 ∨ 67κ2 log 6κ2

µ
and 19κ2

n
log n

4µ
≤ λ ≤ ‖C‖. By

intersecting the events, we have∥∥∥Ĉ−1/2
nλ (Ĉn − ĜM)Ĉ

−1/2
nλ

∥∥∥ ≤ 5.3ζ(1 + q2N (λ))

3M
+

√
5.3ζq2N (λ)

M
, ζ = log

κ2

λµ
.

with probability at least 1 − 2µ. The last step consist in substituting µ with µ = δ/2. Thus, by
selecting M as in Eq. (4.35), we have

t =
∥∥∥Ĉ−1/2

nλ (Ĉn − ĜM)Ĉ
−1/2
nλ

∥∥∥ < η

1 + η
.

That implies, ∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ < t

1− t
< η.

4.9 Proof of Main Results

In this section we prove the main results of the chapter. This section is divided in three sub-
sections. In the first, we specify the computational oracle inequality for Nyström with uniform
sampling, in the second we specify the computational oracle inequality for Nyström with ap-
proximate leverage scores sampling (see Section 4.8 for a definition), while the third subsection
contains the proof of the main theorem presented in the chapter.

Now we give a short sketch of the structure of the proofs. The definition of the general version of
the FALKON algorithm (taking into account leverage scores and non invertible K̂MM) is given
in Section 4.5. In Section 4.6 the notation and basic definition required for the rest of the analysis
are provided.

78

Our starting point is the analysis of the basic Nyström estimator given in [RCR15]. The key
novelty is the quantification of the approximations induced by the preconditioned iterative solver
by relating its excess risk to the one of the basic Nyström estimator.

A computational oracle inequality. First we prove that FALKON is equal to the exact Nyström
estimator as the iterations go to infinity (Lemma 15, Section 5.2.4). Then, in Lemma 18 (see also
Lemma 16, 17, Section 5.2.4) we show how optimization guarantees can be used to derive sta-
tistical results. More precisely, while optimization results in machine learning typically derives
guarantees on empirical minimization problems, we show, using analytic and probabilistic tools,
how these results can be turned into guarantees on the expected risks. Finally, in the proof of
Theorem 4 we concentrate the terms of the inequality. The other key point is the study of the
behavior of the condition number of B>HB with B given in (4.7).

Controlling the condition number of B>HB. Let Cn, CM be the empirical correlation operators
in H associated respectively to the training set and the Nyström points Cn = 1

n

∑n
i=1 kxi ⊗ kxi ,

CM = 1
M

∑M
j=1 kx̃j ⊗ kx̃j . In Lemma 11, Sect. 5.2.4, we prove that B>HB is equivalent to

R−>V ∗(Cn + λI)V R−1 for a suitable partial isometry V . Then in Lemma 12, Sect. 5.2.4, we
split it in two components

B>HB = R−>V ∗(CM + λI)V R−1 + R−>V ∗(Cn − CM)V R−1, (4.36)

and prove that the first component is just the identity matrix. By denoting the second component
with E, Eq. (4.36), Section 5.2.4, implies that the condition number of B>HB is bounded by
(1+‖E‖)/(1−‖E‖), when ‖E‖ < 1. In Lemma 13 we prove that ‖E‖ is analytically bounded by
a suitable distance between Cn−CM and in Lemma 19, 20, Section 4.8, we bound in probability
such distance, when the Nyström centers are selected uniformly at random and with approximate
leverage scores. Finally in Lemma 21, 22, Section 4.8, we give a condition on M for the two
kind of sampling, such that the condition number is controlled and the error term in the oracle
inequality decays as e−t/2, leading to Theorem 5, 7.

Now we provide the preliminary result necessary to prove a computational oracle inequality for
FALKON.

Theorem 4 Let 0 ≤ λ ≤ ‖C‖, B as in Definition 4 and n,M, t ∈ N. Let f̂λ,M,t be the FALKON
estimator, with preconditionerB, after t iterations Definition 5 and let f̃λ,M be the exact Nyström
estimator as in Eq. (4.5). Let δ ∈ (0, 1] and n ≥ 3, then following holds with probability 1− δ

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 4v̂ e−νt

√
1 +

9κ2

λn
log

n

δ
,

where v̂2 = 1
n

∑n
i=1 y

2
i and ν = log

√
cond (W)+1√
cond (W)−1

. In particular ν ≥ 1/2, when cond (W) ≤

(e
1/2+1
e1/2−1

)2.

79

Proof. By applying Lemma 18, we have

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 2c0

∥∥∥SĈ−1/2
nλ

∥∥∥ v̂ e−νt.
To complete the theorem we need to study the quantity

∥∥∥SĈ−1/2
nλ

∥∥∥. In particular, define λ0 =

9κ2

n
log n

δ
. By dividing and multiplying for Ĉ1/2

nλ0
, we have∥∥∥SĈ−1/2

nλ

∥∥∥ =
∥∥∥SĈ−1/2

nλ0
Ĉ

1/2
nλ0
Ĉ
−1/2
nλ

∥∥∥ ≤ ∥∥∥SĈ−1/2
nλ0

∥∥∥∥∥∥Ĉ1/2
nλ0
Ĉ
−1/2
nλ

∥∥∥ .
Now, for the first term, since ‖Z‖2 = ‖Z∗Z‖, and the fact that C = S∗S (see Prop. 7), we have∥∥∥SĈ−1/2

nλ0

∥∥∥2

=
∥∥∥Ĉ−1/2

nλ0
CĈ

−1/2
nλ0

∥∥∥ =
∥∥∥C1/2Ĉ

−1/2
nλ0

∥∥∥ ,
moreover by Lemma 5 of [RCR15] (or Lemma 7.6 of [RCR13]), we have∥∥∥C1/2Ĉ

−1/2
nλ0

∥∥∥ ≤ 2,

with probability 1 − δ. Finally, by denoting with σ(C) the set of eigenvalues of the positive
operator C, recalling that σ(C) ⊂ [0, κ2] (see Proposition 7), we have∥∥∥Ĉ1/2

nλ0
C
−1/2
nλ

∥∥∥ = sup
σ∈σ(C)

√
σ + λ0

σ + λ
≤ sup

σ∈[0,κ2]

√
σ + λ0

σ + λ
≤
√

1 +
λ0

λ
.

4.9.1 Main Result (I): Computational Oracle Inequality for FALKON with
Uniform Sampling

Lemma 21. Let δ ∈ (0, 1], 0 < λ ≤ ‖C‖, n,M ∈ N, the matrix W as in Eq. (4.14) with B
satisfying Definition 4 and the Nyström centers selected via uniform sampling. When

M ≥ 5 [1 + 14N∞(λ)] log
8κ2

λδ
, (4.37)

then the following holds with probability 1− δ

cond (W) ≤
(
e1/2 + 1

e1/2 − 1

)2

.

80

Proof. By Lemma 11 we have that

cond (W) ≤ 1 + ‖E‖
1− ‖E‖

,

with the operator E defined in the same lemma. By Lemma 13, we have

‖E‖ ≤
∥∥∥Ĝ−1/2

Mλ (Ĉn − ĜM)Ĝ
−1/2
Mλ

∥∥∥ .
Lemma 19 proves that when the Nyström centers are selected with uniform sampling and M
satisfies Eq. (4.34) for a given parameter η ∈ (0, 1], then

∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ ≤ η, with

probability 1− δ. In particular we select η = 2e1/2

e+1
. The condition on M in Eq. (4.37) is derived

by Eq. (4.34) by substituting η with 2e1/2

e+1
.

Theorem 9. Let δ ∈ (0, 1], 0 < λ ≤ ‖C‖, n,M ∈ N and the Nyström centers be selected via
uniform sampling. Let f̂λ,M,t be the FALKON estimator, after t iterations (Definition 5) and let
f̃λ,M be the exact Nyström estimator in Eq. (4.5). When

M ≥ 5 [1 + 14N∞(λ)] log
8κ2

λδ
,

then, with probability 1− 2δ,

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 4v̂ e−

t
2

√
1 +

9κ2

λn
log

n

δ
,

Proof. By applying Lemma 21 we have that

cond (W) ≤ (e1/2 + 1)2/(e1/2 − 1)2,

with probability 1−δ under the condition on M . Then apply the computational oracle inequality
in Theorem 4 and take the union bound of the two events.

Theorem 5. Under the same conditions of Theorem 4, the exponent ν in Theorem 4 satisfies
ν ≥ 1/2, with probability 1 − 2δ, when the Nyström centers are selected via uniform sampling,
and

M ≥ 5

[
1 +

14κ2

λ

]
log

8κ2

λδ
.

Proof. It is a direct application of Theorem 9. Indeed note that N∞(λ) ≤ κ2

λ
by definition.

81

4.9.2 Main Result (II): Computational Oracle Inequality for FALKON with
Leverage Scores

Lemma 22. Let δ ∈ (0, 1] and the matrix W be as in Eq. (4.14) with B satisfying Defini-
tion 4 and the Nyström centers selected via (q, λ0, δ)-approximated leverage scores sampling
(see Definition 2 and discussion below), with λ0 = 19κ2

n
log n

2δ
. When λ0 ≤ λ ≤ ‖C‖, n ≥

405κ2 ∨ 67κ2 log 12κ2

δ
and

M ≥ 5
[
1 + 43q2N (λ)

]
log

8κ2

λδ
, (4.38)

then the following holds with probability 1− δ

cond (W) ≤
(
e1/2 + 1

e1/2 − 1

)2

.

Proof. By Lemma 11 we have that

cond (W) ≤ 1 + ‖E‖
1− ‖E‖

,

with the operator E defined in the same lemma. By Lemma 13 we have

‖E‖ ≤
∥∥∥Ĝ−1/2

Mλ (Ĉn − ĜM)Ĝ
−1/2
Mλ

∥∥∥ .
Lemma 20 proves that when the Nyström centers are selected via q-approximate leverage scores
and M satisfies Eq. (4.35) for a given parameter η ∈ (0, 1], then

∥∥∥Ĝ−1/2
Mλ (Ĉn − ĜM)Ĝ

−1/2
Mλ

∥∥∥ ≤ η,

with probability 1 − δ. In particular we select η = 2e1/2

e+1
. The condition on M in Eq. (4.38) is

derived by Eq. (4.35) by substituting η with 2e1/2

e+1
.

Theorem 10. Let δ ∈ (0, 1],M, n ∈ N and the Nyström centers be selected via (q, λ0, δ)-
approximated leverage scores sampling (see Definition 2 and discussion below), with λ0 =
19κ2

n
log n

2δ
. Let t ∈ N. Let f̂λ,M,t be the FALKON estimator, after t iterations (Definition 5)

and let f̃λ,M be the exact Nyström estimator in Eq. (4.5). When λ0 ≤ λ ≤ ‖C‖, n ≥ 405κ2 ∨
67κ2 log 12κ2

δ
and

M ≥ 5
[
1 + 43q2N (λ)

]
log

8κ2

λδ
,

then, with probability 1− 2δ,

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 4v̂ e−

t
2

√
1 +

9κ2

λn
log

n

δ
,

82

Proof. By applying Lemma 22 we have that

cond (W) ≤ (e1/2 + 1)2/(e1/2 − 1)2,

with probability 1 − δ under the conditions on λ, n,M . Then apply the computational oracle
inequality in Theorem 4 and take the union bound of the two events.

Theorem 7. Under the same conditions of Theorem 4, the exponent ν in Theorem 4 satisfies
ν ≥ 1/2, with probability 1− 2δ, when

1. either Nyström uniform sampling (see Sect. 4.5) is used withM ≥ 70 [1 +N∞(λ)] log 8κ2

λδ
.

2. or Nyström (q, λ0, δ)-appr. lev. scores (see Sect. 4.5) is used, with λ ≥ 19κ2

n
log n

2δ
, n ≥

405κ2 log 12κ2

δ
, and

M ≥ 215
[
2 + q2N (λ)

]
log

8κ2

λδ
.

Proof. It is a merge of Theorem 9 and Theorem 10.

4.9.3 Main Results (III): Optimal Generalization Bounds

We now provide Theorem 11, from which we obtain Theorem 6 and Theorem 8.

Theorem 11. Let δ ∈ (0, 1]. Let n, λ,M satisfy n ≥ 1655κ2 + 223κ2 log 24κ2

δ
, M ≥ 334 log 192n

δ

and 19κ2

n
log 24n

δ
≤ λ ≤ ‖C‖. Let f̂λ,M,t be the FALKON estimator in Definition 5, after t ∈ N

iterations. Under the Assumptions 1,3, 6 the following holds with probability at least 1− δ,

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

24

δ
+ 7Rλr, (4.39)

1. either, when the Nyström points are selected uniformly sampled and

M ≥ 70
[
1 + N∞(λ)

]
log

48κ2

λδ
, t ≥ 2 log

8(b+ κ ‖fH‖H)

Rλr
, (4.40)

2. or, when the Nyström points are selected by means of (q, λ0, δ)-approximate leverage
scores, with q ≥ 1, λ0 = 19κ2

n
log 48n

δ
and

M ≥ 215
[
1 + q2N (λ)

]
log

192κ2n

λδ
, t ≥ 2 log

8(b+ κ ‖fH‖H)

Rλr
. (4.41)

83

Proof. Let µ = δ/4. By Proposition 2 of [RCR15], under the Assumptions 3 and 6, when
n ≥ 1655κ2 + 223κ2 log 6κ2

µ
, M ≥ 334 log 48n

µ
, and 19κ2

n
log 6n

µ
≤ λ ≤ ‖C‖ , we have with

probability 1− µ

R(f̃λ,M)1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

6

µ
+ 3RC(M)r + 3Rλr,

where

C(M) = min

{
t > 0

∣∣∣∣ (67 + 5N∞(t)) log
12κ2

tµ
≤M

}
,

when the Nyström centers are selected with uniform sampling, otherwise

C(M) = min

{
λ0 ≤ t ≤ ‖C‖

∣∣∣∣ 78q2N (t) log
48n

µ
≤M

}
,

when the Nyström centers are selected via approximate sampling, with λ0 = 19κ2

n
log 12n

µ
. In

particular, note that C(M) ≤ λ, in both cases, when M satisfies Eq. (4.40) for uniform sampling,
or Eq. (4.41) for approximate leverage scores. Now, by applying the computational oracle in-
equality in Theorem 9, for uniform sampling, or Theorem 10, for approximate leverage scores,
the following holds with probability 1− 2µ

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M)1/2 + 4v̂ e−

t
2

√
1 +

9κ2

λn
log

n

µ
,

with v̂2 := 1
n

∑n
i=1 y

2
i . In particular, note that, since we require λ ≥ 19κ2

n
log 12n

µ
, we have

4

√
1 +

9κ2

λn
log

n

µ
≤ 5.

Now, we choose t such that 5v̂e−t/2 ≤ Rλr, that is t ≥ 2 log 5v̂
Rλr

. The last step consists in
bounding v̂ in probability. Since it depends on the random variables y1, . . . , yn we bound it in
the following way. By recalling that

|fH(x)| = | 〈kx, fH〉H | ≤ ‖kx‖H ‖fH‖H ≤ κ ‖fH‖H (4.42)

for any x ∈ X , we have

v̂ =
1√
n
‖ŷ‖ ≤

√√√√ n∑
i=1

(yi − fH(xi))2

n
+

√√√√ n∑
i=1

fH(xi)2

n
≤

√√√√ n∑
i=1

(yi − fH(xi))2

n
+ κ ‖fH‖H .

Since the training set examples (xi, yi)
n
i=1 are i.i.d. with probability ρ we can apply the Bernstein

inequality [BLB04] to the random variables zi = (yi − fH(xi))
2 − s, with s = E(yi − fH(xi))

2

84

(since xi, yi are i.i.d. each zi has the same distribution and so the same expected value s). In
particular, we need to bound the moments of zi’s. By the assumption in Eq. (2.42), zi are zero
mean and

E|zi|2p ≤
1

2
(2p)!σ2b2p−2 ≤ 1

2
p!(4σb)2(4b2)p−2, p ≥ 2

and so, by applying the Bernstein inequality, the following holds with probability 1− µ∣∣∣∣∣
n∑
i=1

zi
n

∣∣∣∣∣ ≤ 8b2 log 2
µ

3n
+

√
8σ2b2 log 2

µ

n
≤ 1

4
b2,

where the last step is due to the fact that we require n ≥ 223κ2 log 6
µ

, that b ≥ σ and that κ ≥ 1

by definition. So, by noting that s ≤ σ2 ≤ b2 (see Eq. (2.42)), we have

v̂ ≤ κ ‖fH‖H +

√√√√s+
n∑
i=1

zi
n
≤ κ ‖fH‖H +

√
s+

1

2
b ≤ 3

2
b+ κ ‖fH‖H ,

with probability at least 1− µ. Now by taking the intersection of the three events, the following
holds with probability at least 1− 4µ

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

6

µ
+ 7Rλr.

Now we provide the generalization error bounds for the setting where we only assume the exis-
tence of fH.

Theorem. 6 Let δ ∈ (0, 1]. Let the outputs y be bounded in [−a
2
, a

2
], almost surely, with a > 0.

For any n ≥ max(1
‖C‖ , 82κ2 log 373κ2√

δ
)2 the following holds. When

λ =
1√
n
, M ≥ 5(67 + 20

√
n) log

48κ2n

δ
, t ≥ 1

2
log(n) + 5 + 2 log(a+ 3κ),

then with probability 1− δ,

R(f̂λ,M,t) ≤
c0 log2 24

δ√
n

,

where f̂λ,M,t is the FALKON estimator in Definition 5 (see also Section 4.2 Algorithm 1) with
Nyström uniform sampling, and the constant c0 = 49 ‖fH‖2

H (1 + aκ+ 2κ2 ‖fH‖H)2.

85

Proof. Here we assume y ∈ [−a
2
, a

2
] a.s., so Eq. (2.42) is satisfied with σ = b = a + 2κ ‖fH‖H,

indeed

E[|y−fH(x)|p | x] ≤ E[2p−1|y|p | x]+2p−1|fH(x)|p ≤ 1

2
(ap+2pκp ‖fH‖pH) ≤ 1

2
p!(a+2κ ‖fH‖H)p,

where we used Eq. (4.42). Moreover, Eq. (2.52) is satisfied with r = 1/2 and g = fH, while
R = max(1, ‖fH‖H).

To complete the proof we show that the assumptions on λ,M, n satisfy the condition required
by Theorem 11, then we apply it and derive the final bound. Set λ = n−1/2 and define n0 =
max(‖C‖−1 , 82κ2 log 373κ2√

δ
)2. The condition n ≥ n0, satisfies the condition on n required by

Theorem 11. Moreover both λ = n−1/2 and M ≥ 75
√
n log 48κ2n

δ
satisfy respectively the

conditions on λ,M required by Theorem 11, when n ≥ n0. Finally note that the condition on
t implies the condition required by Theorem 11, indeed, since R = max(1, ‖f‖H), we have
a/R ≤ a and ‖fH‖H /R ≤ 1, so

2 log
8(a+ κ ‖fH‖H)

Rλr
= log

[
64

(
a

R
+

3κ ‖fH‖H
R

)2√
n

]
≤ log(64(a+ 3κ)2

√
n) ≤ log 64 +

1

2
log n+ 2 log(a+ 3κ).

So, by applying Theorem 11 withR, r defined as above and recalling thatN (λ) ≤ N∞(λ) ≤ κ2

λ
,

we have

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

24

δ
+ 7Rλr

≤ 6R

(
bκ√
λn

+
σκ√
λn

)
log

24

δ
+ 7Rλ

1
2

= 6Rbκ(1 + n−1/2)n−1/4 log
24

δ
+ 7Rn−1/4 ≤

7R(bκ+ 1) log 24
δ

n1/4

with probability 1− δ. For the last step we used the fact that b = σ, that 6(1 + n−1/2) ≤ 7, since
n ≥ n0, and that log 24

δ
> 1.

To state the result for fast rates, we need the assumption on the capacity condition (see Assump-
tion 4)

Theorem 8 Let δ ∈ (0, 1]. Let the outputs y be bounded in [−a
2
, a

2
], almost surely, with a > 0.

Under the Assumptions 1, 3, 4, 6 and n ≥ ‖C‖−s ∨
(

102κ2s
s−1

log 912
δ

) s
s−1

, with s = 2r + α, the
following holds. When

λ = n−
1

2r+α , t ≥ log(n) + 5 + 2 log(a+ 3κ2),

86

1. and either Nyström uniform sampling is used with

M ≥ 70 [1 + N∞(λ)] log
8κ2

λδ
, (4.43)

2. and or Nyström (q, λ0, δ)-approximate leverage scores (Definition 2), with q ≥ 1, λ0 =
19κ2

n
log 48n

δ
and

M ≥ 215
[
1 + q2N (λ)

]
log

8κ2

λδ
, (4.44)

then with probability 1− δ,

R(f̂λ,M,t) ≤ c0 log2 24

δ
n−

2r
2r+α ,

where f̂λ,M,t is the FALKON estimator in Section 4.2 (Algorithm 1). In particular n0, c0 do not
depend on λ,M, n and c0 do not depend on δ.

Proof. The proof is similar to the one for the slow learning rate (Theorem 6), here we take into
account the additional assumption in Eq. (2.52), (2.50) and the fact that r may be bigger than 1/2.
Moreover we assume y ∈ [−a

2
, a

2
] a.s., so Eq. (2.42) is satisfied with σ = b = a + 2κ ‖fH‖H,

indeed

E[|y−fH(x)|p | x] ≤ E[2p−1|y|p | x]+2p−1|fH(x)|p ≤ 1

2
(ap+2pκp ‖fH‖pH) ≤ 1

2
p!(a+2κ ‖fH‖H)p,

where we used Eq. (4.42).

To complete the proof we show that the assumptions on λ,M, n satisfy the required conditions
to apply Theorem 11. Then we apply it and derive the final bound. Set λ = n−1/(2r+α) and define

n0 = ‖C‖−s ∨
(

102κ2s
s−1

log 912
δ

) s
s−1

, with s = 2r + α. Since 1 < s ≤ 3, the condition n ≥ n0,
satisfies the condition on n required to apply Theorem 11. Moreover, for any n ≥ n0, both
λ = n−1/(2r+α) and M satisfying Eq. (4.43) for Nyström uniform sampling, and Eq. (4.44) for
Nyström leverage scores, satisfy respectively the conditions on λ,M required to apply Theorem
11. Finally note that the condition on t implies the condition required by Theorem 11, indeed,
since 2r/(2r + α) ≤ 1,

2 log
8(b+ κ ‖fH‖H)

Rλr
= log

[
64

(
a

R
+

3κ ‖fH‖H
R

)2

n
2r

2r+α

]

≤ log 64 + 2 log
a+ 3κ ‖fH‖H

R
+

2r

2r + α
log n

≤ log 64 + 2 log
a+ 3κ ‖fH‖H

R
+ log n,

≤ log 64 + 2 log(a+ 3κ2) + log n.

87

where the last step is due to the fact that a/R ≤ 1 and ‖fh‖H /R ≤
∥∥Cr−1/2

∥∥ ≤ ‖C‖1/2 ≤
κ, since R := max(1, ‖g‖H), and ‖fH‖H ≤

∥∥Cr−1/2
∥∥ ‖g‖H, by definition. So, by applying

Theorem 11 with R, r defined as above and recalling that N∞(λ) ≤ κ2

λ
by construction and that

N (λ) ≤ Q2λ−α by the capacity condition in Eq. (2.50), we have

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

24

δ
+ 7Rλr

≤ 6R

(
bκ√
λn

+
Qσ√
λαn

)
log

24

δ
+ 7Rλr

= 6Rb
(
κn−

r+α−1/2
2r+α +Q

)
n−

r
2r+α log

24

δ
+ 7Rn−

r
2r+α

≤ 7R(b(κ+Q) + 1) log
24

δ
n−

r
2r+α .

with probability 1− δ. For the last step we used the fact that b = σ, that r + α− 1/2 ≥ 0, since
r ≥ 1/2 by definition, and that log 24

δ
> 1.

4.10 Experiments

We present FALKON’s performance on a range of large scale datasets.

As shown in Table 4.2, 4.3, FALKON achieves state of the art accuracy and typically outperforms
previous approaches in all the considered large scale datasets including IMAGENET. This is
remarkable considering FALKON required only a fraction of the competitor’s computational
resources. Indeed we used a single machine equipped with two Intel Xeon E5-2630 v3, one
NVIDIA Tesla K40c and 128 GB of RAM and a basic MATLAB FALKON implementation,
while typically the results for competing algorithm have been performed on clusters of GPU
workstations (accuracies, times and used architectures are cited from the corresponding papers).

A minimal MATLAB implementation of FALKON is presented in Algorithm 2. The code nec-
essary to reproduce the following experiments, plus a FALKON version that is able to use the
GPU, is available on GitHub at https://github.com/LCSL/FALKON_paper .

The error is measured with MSE, RMSE or relative error for regression problems, and with clas-
sification error (c-err) or AUC for the classification problems, to be consistent with the literature.
For datasets which do not have a fixed test set, we set apart 20% of the data for testing. For all
datasets, but YELP and IMAGENET, we normalize the features by their z-score. From now on
we denote with n the cardinality of the dataset, d the dimensionality.

MillionSongs [BMEWL11] (Table 4.2, n = 4.6× 105, d = 90, regression).

88

https://github.com/LCSL/FALKON_paper

0 20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

1

7

Nystrom GD
Nystrom SGD

Nystrom CG

NYTRO GD
NYTRO SGD

NYTRO CG
FALKON

Iterates/epochs

MSE

Fig. 4.1: Falkon is compared to stochastic gradient, gradient descent and conjugate gradient
applied to Problem (4.5), while NYTRO refer to the variants described in [CARR16]. The graph
shows the test error on the HIGGS dataset (1.1 × 107 examples) with respect to the number of
iterations (epochs for stochastic algorithms).

We used a Gaussian kernel with σ = 6, λ = 10−6 and 104 Nyström centers. Moreover with
5× 104 center, FALKON achieves a 79.20 MSE, and 4.49× 10−3 rel. error in 630 sec.

TIMIT (Table 4.2, n = 1.2× 106, d = 440, multiclass classification).

We used the same preprocessed dataset of [MB17] and Gaussian Kernel with σ = 15, λ = 10−9

and 105 Nyström centers.

YELP (Table 4.2, n = 1.5× 106, d = 6.52× 107, regression).

We used the same dataset of [TRVR16]. We extracted the 3-grams from the plain text with the
same pipeline as [TRVR16], then we mapped them in a sparse binary vector which records if the
3-gram is present or not in the example. We used a linear kernel with 5 × 104 Nyström centers.
With 105 centers, we get a RMSE of 0.828 in 50 minutes.

SUSY (Table 4.3, n = 5× 106, d = 18, binary classification).

We used a Gaussian kernel with σ = 4, λ = 10−6 and 104 Nyström centers.

HIGGS (Table 4.3, n = 1.1× 106, d = 28, binary classification).

Each feature has been normalized subtracting its mean and dividing for its variance. We used a
Gaussian kernel with diagonal matrix width learned with cross validation on a small validation
set, λ = 10−8 and 105 Nyström centers. If we use a single σ = 5 we reach an AUC of 0.825.

89

Table 4.2: Architectures: ‡ cluster 128 EC2 r3.2xlarge machines, † cluster 8 EC2 r3.8xlarge
machines, o single machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU, 128GB
RAM, ? cluster with IBM POWER8 12-core processor, 512 GB RAM, ∗ unknown platform.

MillionSongs YELP TIMIT

MSE Relative error Time(s) RMSE Time(m) c-err Time(h)

FALKON 80.10 4.51× 10−3 55 0.833 20 32.3% 1.5
Prec. KRR [ACW16] - 4.58× 10−3 289† - - - -
Hierarchical [CAS16] - 4.56× 10−3 293? - - - -
D&C [ZDW13] 80.35 - 737∗ - - - -
Rand. Feat. [ZDW13] 80.93 - 772∗ - - - -
Nyström [ZDW13] 80.38 - 876∗ - - - -
ADMM R. F.[ACW16] - 5.01× 10−3 958† - - - -
BCD R. F. [TRVR16] - - - 0.949 42‡ 34.0% 1.7‡

BCD Nyström [TRVR16] - - - 0.861 60‡ 33.7% 1.7‡

EigenPro [MB17] - - - - - 32.6% 3.9o

KRR [CAS16] [TRVR16] - 4.55× 10−3 - 0.854 500‡ 33.5% 8.3‡

Deep NN [MGL+17] - - - - - 32.4% -
Sparse Kernels [MGL+17] - - - - - 30.9% -
Ensemble [HAS+14] - - - - - 33.5% -

IMAGENET (Table 4.3, n = 1.3× 106, d = 1536, multiclass classification).

We report the top 1 c-err over the validation set of ILSVRC 2012 with a single crop. The fea-
tures are obtained from the convolutional layers of pre-trained Inception-V4 [SIVA17]. We used
Gaussian kernel with σ = 19, λ = 10−9 and 5 × 104 Nyström centers. Note that with linear
kernel we achieve c-err = 22.2%.

90

Table 4.3: Architectures: † cluster with IBM POWER8 12-core cpu, 512 GB RAM, o single
machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU, 128GB RAM, ‡ single
machine [Alv16]

SUSY HIGGS IMAGENET

c-err AUC Time(m) AUC Time(h) c-err Time(h)

FALKON 19.6% 0.877 4 0.833 3 20.7% 4
EigenPro [MB17] 19.8% - 6o - - - -
Hierarchical [CAS16] 20.1% - 40† - - - -
Boosted Decision Tree [BSW14] - 0.863 - 0.810 - - -
Neural Network [BSW14] - 0.875 - 0.816 - - -
Deep Neural Network [BSW14] - 0.879 4680‡ 0.885 78‡ - -
Inception-V4 [SIVA17] - - - - - 20.0% -

91

Algorithm 2: Complete MATLAB code for FALKON. It requires O(nMt + M3) in
time andO(M2) in memory. See Sect. 4.2 for more details, and Sect. 4.3 for theoretical
properties.

Input: Dataset X = (xi)
n
i=1 ∈ Rn×d, ŷ = (yi)

n
i=1 ∈ Rn, M ∈ N numbers of Nyström centers to

select, lev scores ∈ Rn approximate leverage scores (set lev scores = [] for selecting Nyström
centers via uniform sampling), function KernelMatrix computing the kernel matrix of two sets of
points, regularization parameter λ, number of iterations t.
Output: Nyström coefficients α.

function alpha = FALKON(X, Y, lev_scores, M, KernelMatrix, lambda, t)
n = size(X,1);
[C, D] = selectNystromCenters(X, lev_scores, M, n);

KMM = KernelMatrix(C,C);
T = chol(D*KMM*D + eps*M*eye(M));
R = chol(T*T’/M + lambda*eye(M));

function w = KnMtimesVector(u, v)
w = zeros(M,1); ms = ceil(linspace(0, n, ceil(n/M)+1));
for i=1:ceil(n/M)

Kr = KernelMatrix(X(ms(i)+1:ms(i+1),:), C);
w = w + Kr’*(Kr*u + v(ms(i)+1:ms(i+1),:));

end
end

function w = BHB(u)
w = R’\(T’\(KnMtimesVector(T\(R\u), zeros(n,1))/n) + lambda*(R\u));

end

r = R’\(T’\KnMtimesVector(zeros(M,1), Y/n));

beta = conjgrad(@BHB, r, t);
alpha = T\(R\beta);

end

function beta = conjgrad(funA, r, tmax)
p = r; rsold = r’*r; beta = zeros(size(r,1), 1);

for i = 1:tmax
Ap = funA(p);
a = rsold/(p’*Ap);
beta = beta + a*p;
r = r - a*Ap; rsnew = r’*r;
p = r + (rsnew/rsold)*p;
rsold = rsnew;

end
end

function [C, D] = selectNystromCenters(X, lev_scores, M, n)
if isempty(lev_scores) %Uniform Nystrom

D = eye(M);
C = X(randperm(n,M),:);

else % Appr. Lev. Scores Nystrom
prob = lev_scores(:)./sum(lev_scores(:));
[count, ind] = discrete_prob_sample(M, prob);
D = diag(1./sqrt(n*prob(ind).*count));
C = X(ind,:);

end
end

function [count, ind] = discrete_prob_sample(M, prob)
bins = histcounts(rand(M,1), [0; cumsum(prob(:))]);
ind = find(bins > 0);
count = bins(ind);

end

92

Chapter 5

Fast and Accurate
Leverage Score Sampling

In this chapter, we are going to expand some of the ideas we have seen in the previous chapter. In
particular, we study how to derive fast and provably accurate algorithms for approximate leverage
score sampling in the case of positive semi-definite matrices.

Leverage score sampling provides an appealing way to perform approximate computations for
large matrices [AM15a]. Indeed, it allows deriving faithful approximations with a complexity
adapted to the problem at hand. Yet, performing leverage scores sampling is a challenge in its
own right requiring further approximations. The state of the art approximation of leverage score
sampling requiresO(nN̂ 2) time complexity, where N̂ is the effective dimension of the problem.
In this chapter, we first provide a novel algorithm for leverage score sampling that reduces the
time complexity removing its linear dependence on n. We then exploit the proposed method to
further speed up the FALKON algorithm, resulting in a learning pipeline with Õ(nN̂) time and
O(N̂ 2) memory complexity. In our theoretical analysis, we show that the proposed algorithms
are currently the most efficient and accurate for solving these problems.

5.1 Leverage Score Sampling with BLESS

In the previous chapter in Section 4.3.2, we briefly introduce the concept of leverage scores
and approximate leverage scores. In this section we first recall their definition more rigorously
and focus on their computational aspects. We then state some previous algorithms for sampling
according to leverage scores and present our approach and first theoretical results.

93

5.1.1 Leverage Score Sampling

Suppose K̂ ∈ Rn×n is symmetric and positive semidefinite. A basic question is deriving memory
efficient approximation of K̂ [WS01, CLV17a] or related quantities, e.g. approximate projections
on its range [MM17], or associated estimators, as in kernel ridge regression [RCR15, RCR17].
The eigendecomposition of K̂ offers a natural, but computationally demanding solution. Sub-
sampling columns (or rows) is an appealing alternative. A basic approach is uniform sampling,
whereas a more refined approach is leverage scores sampling. This latter procedure corresponds
to sampling columns with probabilities proportional to the leverage scores

`(i, λ) =
(
K̂(K̂ + λnI)−1

)
ii
, i ∈ [n], (5.1)

where [n] = {1, . . . , n}. The advantage of leverage score sampling, is that potentially very few
columns can suffice for the desired approximation. Indeed, letting

N̂∞(λ) = n max
i=1,...,n

`(i, λ), N̂ (λ) =
n∑
i=1

`(i, λ),

for λ > 0, it is easy to see that N̂ (λ) ≤ N̂∞(λ) ≤ 1/λ for all λ, and previous results show
that the number of columns required for accurate approximation are N̂∞ for uniform sampling
and N̂ for leverage score sampling [Bac13, AM15a]. However, it is clear from definition (5.1)
that an exact leverage scores computation would require the same order of computations as an
eigendecomposition, hence approximations are needed. The accuracy of approximate leverage
scores is typically measured by t > 0 in multiplicative bounds of the form

1

1 + t
`(i, λ) ≤ ˜̀(i, λ) ≤ (1 + t)`(i, λ), ∀i ∈ [n]. (5.2)

Before proposing a new improved solution, we briefly discuss relevant previous works. To pro-
vide a unified view, some preliminary discussion is useful.

5.1.2 Approximate Leverage Scores

First, we recall how a subset of columns can be used to compute approximate leverage scores.
For M ≤ n, let J = {ji}Mi=1 with ji ∈ [n], and K̂J,J ∈ RM×M with entries (K̂J,J)lm = K̂jl,jm .
For i ∈ [n], let K̂J,i = (K̂j1,i, . . . , K̂jM ,i) and consider for λ > 1/n,˜̀

J(i, λ) = (λn)−1(K̂i,i − K̂>J,i(K̂J,J + λnA)−1K̂J,i), (5.3)

where A ∈ RM×M is a matrix to be specified 1 (see later for details). The above definition is
motivated by the observation that if J = [n], and A = I , then ˜̀J(i, λ) = `(i, λ), by the following

1Clearly, ˜̀J depends on the choice of the matrix A, but we omit this dependence to simplify the notation.

94

identity
K̂(K̂ + λnI)−1 = (λn)−1(K̂ − K̂(K̂ + λnI)−1K̂).

In the following, it is also useful to consider a subset of leverage scores computed as in (5.3).
For M ≤ R ≤ n, let U = {ui}Ri=1 with ui ∈ [n], and

LJ(U, λ) = {˜̀J(u1, λ), . . . , ˜̀J(uR, λ)}. (5.4)

Also in the following we will use the notation

LJ(U, λ) 7→ J ′ (5.5)

to indicate the leverage score sampling of J ′ ⊂ U columns based on the leverage scoresLJ(U, λ),
that is the procedure of sampling columns from U according to their leverage scores 5.1, com-
puted using J , to obtain a new subset of columns J ′.
We end noting that leverage score sampling (5.5) requires O(M2) memory to store K̂J,J , and
O(M3 +RM2) time to invert K̂J,J , and compute R leverage scores via (5.3).

5.1.3 Previous Algorithms for Leverage Scores Computations

We discuss relevant previous approaches using the above quantities.

TWO-PASS sampling [AM15a]. This is the first approximate leverage score sampling proposed,
and is based on using directly (5.5) as LJ1(U2, λ) 7→ J2, with U2 = [n] and J1 a subset taken uni-
formly at random. Here we call this method TWO-PASS sampling since it requires two rounds of
sampling on the whole set [n], one uniform to select J1 and one using leverage scores to select J2.

RECURSIVE-RLS [MM17]. This is a development of TWO-PASS sampling based on the idea
of recursing the above construction. In our notation, let U1 ⊂ U2 ⊂ U3 = [n], where U1, U2 are
uniformly sampled and have cardinalities n/4 and n/2, respectively. The idea is to start from
J1 = U1, and consider first

LJ1(U2, λ) 7→ J2,

but then continue with
LJ2(U3, λ) 7→ J3.

Indeed, the above construction can be made recursive for a family of nested subsets (Uh)
H
h=1 of

cardinalities n/2h, considering J1 = U1 and

LJh(Uh+1, λ) 7→ Jh+1. (5.6)

SQUEAK [CLV17a]. This approach follows a different iterative strategy. Consider a partition
U1, U2, U3 of [n], so that Uj = n/3, for j = 1, . . . 3. Then, consider J1 = U1, and

LJ1∪U2(J1 ∪ U2, λ) 7→ J2,

95

and then continue with
LJ2∪U3(J2 ∪ U3, λ) 7→ J3.

Similarly to the other cases, the procedure is iterated considering H subsets (Uh)
H
h=1 each with

cardinality n/H . Starting from J1 = U1 the iterations is

LJh∪Uh+1
(Jh ∪ Uh+1, λ). (5.7)

We note that all the above procedures require specifying the number of iteration to be performed,
the weights matrix to compute the leverage scores at each iteration, and a strategy to select
the subsets (Uh)

H
h=1. In all the above cases the selection of Uh is based on uniform sampling,

while the number of iterations and weight choices arise from theoretical considerations (see
[AM15a, CLV17a, MM17] for details).

Note that TWO-PASS SAMPLING uses a set J1 of cardinality roughly 1/λ (an upper bound on
N̂∞(λ)) and incurs in a computational cost of RM2 = n/λ2. In comparison, RECURSIVE-
RLS [MM17] leads to essentially the same accuracy while improving computations. In par-
ticular, the sets Jh are never larger than N̂ (λ). Taking into account that at the last iteration
performs leverage score sampling on Uh = [n], the total computational complexity is nN̂ (λ)2.
SQUEAK [CLV17a] recovers the same accuracy, size of Jh, and nN̂ (λ)2 time complexity when
|Uh| ' N̂ (λ), but only requires a single pass over the data. We also note that a distributed ver-
sion of SQUEAK is discussed in [CLV17a], which allows to reduce the computational cost to
nN̂ (λ)2/p, provided p machines are available.

5.1.4 Bottom-up Leverage Score Sampling with BLESS

The procedure we propose, dubbed BLESS, has similarities to the one proposed in [MM17] (see
(5.6)), but also some important differences. The main difference is that, rather than a fixed λ, we
consider a decreasing sequence of parameters λ0 > λ1 > · · · > λH = λ resulting in different
algorithmic choices. For the construction of the subsets Uh we do not use nested subsets, but
rather each (Uh)

H
h=1 is sampled uniformly and independently, with a size smoothly increasing as

1/λh. Similarly, as in [MM17] we proceed iteratively, but at each iteration a different decreasing
parameter λh is used to compute the leverage scores. Using the notation introduced above, the
iteration of BLESS is given by

LJh(Uh+1, λh+1) 7→ Jh+1, (5.8)

where the initial set J1 = U1 is sampled uniformly with size roughly 1/λ0.
BLESS has two main advantages. The first is computational: each of the sets Uh, including the
final UH , has cardinality smaller than 1/λ. Therefore, denoting with RH the cardinality of UH ,
the overall runtime has a cost of only RHM

2 ≤ M2/λ, which can be dramatically smaller than

96

Algorithm 3: Bottom-up Leverage Scores Sampling (BLESS)
Input: dataset {xi}ni=1, regularization λ, step q, starting reg. λ0, constants q1, q2 controlling the

approximation level.
Output: Mh ∈ [n] number of selected points, Jh set of indexes, Ah weights.

1: J0 = ∅, A0 = [], H = log(λ0/λ)
log q

2: for h = 1 . . . H do
3: λh = λh−1/q
4: set constant Rh = q1 min{κ2/λh, n}
5: sample Uh = {u1, . . . , uRh} i.i.d. ui ∼ Uniform([n])

6: compute ˜̀Jh−1
(xuk , λh) for all uk ∈ Uh using Eq. (5.3)

7: set Ph = (ph,k)
Rh
k=1 with ph,k = ˜̀

Jh−1
(xuk , λh)/(

∑
u∈Uh

˜̀
Jh−1

(xu, λh))

8: set constant Mh = q2dh with dh = n
Rh

∑
u∈Uh

˜̀
Jh−1

(xu, λh), and
9: sample Jh = {j1, . . . , jMh

} i.i.d. ji ∼Multinomial(Ph, Uh)

10: Ah = RhMh

n
diag

(
ph,j1 , . . . , ph,jMh

)
11: end for

the nM2 cost achieved by the methods in [MM17], [CLV17a] and is comparable to the distributed
version of SQUEAK using p = λ/n machines. The second advantage is that a whole path of
leverage scores {`(i, λh)}Hh=1 is computed at once, in the sense that at each iteration accurate
approximate leverage scores at scale λh are computed. This is extremely useful in practice, as it
can be used when cross-validating λh. As a comparison, for all previous method a full run of the
algorithm is needed for each value of λh.
In this chapter we consider two variations of the above general idea leading to Algorithm 3
and Algorithm 4. The main difference in the two algorithms lies in the way in which sampling
is performed: with and without replacement, respectively. In particular, considering sampling
without replacement (see 4) it is possible to take the set (Uh)

H
h=1 to be nested and also to obtain

slightly improved results, as shown in the next section.
The derivation of BLESS rests on some basic ideas. First, note that, since sampling uniformly a
set Uλ of size N̂∞(λ) ≤ 1/λ allows a good approximation, then we can replace L[n]([n], λ) 7→ J
by

LUλ(Uλ, λ) 7→ J, (5.9)

where J can be taken to have cardinality N̂ (λ). However, this is still costly, and the idea is
to repeat and couple approximations at multiple scales. Consider λ′ > λ, a set Uλ′ of size
N̂∞(λ′) ≤ 1/λ′ sampled uniformly, and LUλ′ (Uλ′ , λ

′) 7→ J ′. The basic idea behind BLESS is to
replace (5.9) by

LJ ′(Uλ, λ) 7→ J̃ .

97

Algorithm 4: Bottom-up Leverage Scores Sampling without Replacement (BLESS-R)
Input: dataset {xi}ni=1, regularization λ, step q, starting reg. λ0, constant q2 controlling the

approximation level.
Output: Mh ∈ [n] number of selected points, Jh set of indexes, Ah weights.

1: J0 = ∅, A0 = [], H = log(λ0/λ)
log q

,
2: for h = 1 . . . H do
3: λh = λh−1/q
4: set constant βh = min{q2κ

2/(λhn), 1}
5: initialize Uh = ∅
6: for i ∈ [n] do
7: add i to Uh with probability βh
8: end for
9: for j ∈ Uh do

10: compute ph,j = min{q2
˜̀
Jh−1

(xj, λh−1), 1}
11: add j to Jh with probability ph,j/βh
12: end for
13: Jh = {j1, . . . , jMh

}, and Ah = diag
(
ph,j1 , . . . , ph,jMh

)
.

14: end for

The key result is that taking J̃ of cardinality

(λ′/λ)N̂ (λ) (5.10)

suffice to achieve the same accuracy as J . Now, if we take λ′ sufficiently large, it is easy to
see that N̂ (λ′) ∼ N̂∞(λ′) ∼ 1/λ′, so that we can take J ′ uniformly at random. However, the
factor (λ′/λ) in (5.10) becomes too big. Taking multiple scales fix this problem and leads to the
iteration in (5.8).

5.1.5 BLESS and BLESS-R in Details

BLESS (Algorithm 3). Here we describe our bottom-up algorithm in detail (see Algorithm 3).
The central element is using a decreasing list of {λh}hh=1, from a given λ0 � λ up to λ. The
idea is to iteratively construct a leverage score generator (LSG) set that approximates well the
RLS for a given λh, based on the accurate RLS computed using a LSG set for λh−1. The crucial
observation of the proposed algorithm is that when λh−1 ≥ λh then

∀i : `(i, λh) ≤
λh
λh−1

`(i, λh−1), N̂ (λh) ≤
λh
λh−1

N̂ (λh−1),

(see Lemma 24, for more details). By smoothly decreasing λh, the LSG at step h will only
be a λh/λh−1 factor worse than our previous estimate, which is automatically compensated by

98

a λh/λh−1 increase in the size of the LSG. Therefore, to maintain an accuracy level for the
leverage scores approximation as in Eq. (5.2) and small space complexity, it is sufficient to
select a logaritmically spaced list of λ’s from λ0 = κ2 to λ (see Theorem 12), in order to keep
λh/λh−1 as a small constant. This implies an extra multiplicative computational cost for the
whole algorithm of only log(κ2/λ).

More in detail, we initialize the Algorithm setting D0 = (∅, []) to the empty LSG. Afterwards,
we begin our main loop where at every step we reduce λh by a q factor, and then use Dh−1 to
construct a new LSGDh. Note that at each iteration we construct a set Jh larger than Jh−1, which
requires computing ˜̀Dh−1

(i, λh) for samples that are not in Jh−1, and therefore not computed at
the previous step. Computing approximate leverage scores for the whole dataset would be highly
inefficient, requiring O(nM2

h) time which makes it unfeasible for large n. Instead, we show
that to achieve the desired accuracy it is sufficient to restrict all our operations to a sufficiently
large intermediate subset Uh sampled uniformly from [n]. After computing ˜̀Dh−1

(i, λh) only for
points in Uh, we select Mh points with replacements according to their RLS to generate Jh. With
a similar procedure we update the weights in Ah. We will see in Theorem 12, |Uh| ∝ 1/λh is
sufficient to guarantee that this intermediate step produces a set satisfying Equation (5.2), and
also takes care of increasing |Uh| to increase accuracy as λh decreases. Moreover the algorithm
uses a Mh ∝

∑
u∈Uh

˜̀
Dh−1

(i, λh) that we prove in Theorem 12, to be in the order of N̂ (λh). In
the end, we return either the final LSG DH to compute approximations of `(i, λ), or any of the
intermediate Dh if we are interested in the RLSs along the regularization path {λh}Hh=1.

BLESS-R (Algorithm 4) The second algorithm we propose, is based on the same principles
of Algorithm 3, while simplifying some steps of the procedure. In particular it removes the need
to explicitly track the normalization constant dh and the intermediate uniform sampling set, by
replacing it with rejection sampling. At each iteration h ∈ [H], instead of drawing the set Uh
from a uniform distribution, and then sampling Jh, from Uh, Algorithm 4 performs a single round
of rejection sampling for each column according to the following identity

P(zh,i = 1) = P(zh,i = 1|uh,i ≤ βh)P(uh,i ≤ βh) = βhph,i/βh = ph,i ∝ ˜̀Dh−1
(xi, λh−1),

where zh,i is the r.v. which is 1 if i ∈ [n], while uh,i is the probability that the column i passed
the rejection sampling step, while βh a suitable treshold which mimik the effect of the set Uh.

Space and time complexity. Note that at each iteration constructing the generator ˜̀Dh−1
, re-

quires computing the inverse (KJh + λhnI)−1, with M3
h time complexity, while each of the Rh

evaluations ˜̀Dh−1
(i, λh) takes onlyM2

h time. Summing over theH iterations Algorithm 3 runs in
O(
∑H

h=1 M
3
h +RhM

2
h) time. Noting that Rh ' 1/λh, that Mh ' dh ≤ 1/λh, and that

∑
h λ
−1
h =∑

h q
h−Hλ−1 = q−q−H

q−1
λ−1, the final cost is O (λ−1 maxhM

2
h) time, and O (maxhM

2
h) space.

Similarly, Algorithm 4 only evaluates ˜̀Dh−1
for the points that pass the rejection steps which

w.h.p. happens only O(nβh) = O(1/λ) times, so we have the same time and space complexity
of Algorithm 3.

99

5.1.6 Theoretical Guarantees

Our first main result establishes in a precise and quantitative way the advantages of BLESS.

Theorem 12. Let n ∈ N, λ > 0 and δ ∈ (0, 1]. Given t > 0, q > 1 and H ∈ N, (λh)
H
h=1 defined

as in Algorithms 3,4, when (Jh, Ah)
H
h=1 are computed

1. by Algorithm 3 with parameters λ0 = κ2

min(t,1)
, q1 ≥ 5κ2q2

q(1+t)
, q2 ≥ 12q (2t+1)2

t2
(1+t) log 12Hn

δ
,

2. by Algorithm 4 with parameters λ0 = κ2

min(t,1)
, q1 ≥ 54κ2 (2t+1)2

t2
log 12Hn

δ
,

let ˜̀Jh(i, λh) as in Eq. (5.3) depending on Jh, Ah, then with probability at least 1− δ:

(a)
1

1 + t
`(i, λh) ≤ ˜̀

Jh(i, λh) ≤ (1 + min(t, 1))`(i, λh), ∀i ∈ [n], h ∈ [H],

(b) |Jh| ≤ q2N̂ (λh), ∀h ∈ [H].

The above result confirms that the subsets Jh computed by BLESS are accurate in the desired
sense, see (5.2), and the size of all Jh is small and proportional to N̂ (λh), leading to a compu-
tational cost of only O

(
min

(
1
λ
, n
)
N̂ (λ)2 log2 1

λ

)
in time and O

(
N̂ (λ)2 log2 1

λ

)
in space (for

additional properties of Jh see Theorem 14 in Section 5.2.5). Table 5.1 compares the complexity
and number of columns sampled by BLESS with other methods. The crucial point is that in most
applications, the parameter λ is chosen as a decreasing function of n, e.g. λ = 1/

√
n, resulting in

potentially massive computational gains. Indeed, since BLESS computes leverage scores for sets
of size at most 1/λ, this allows to perform leverage scores sampling on matrices with millions
of rows/columns, as shown in the experiments. In the next section, we illustrate the impact of
BLESS in the context of supervised statistical learning.

5.2 Theoretical Analysis for BLESS

In this section, Theorem 14 and Theorem 15 provide guarantees for the two methods, from which
Theorem 12 is derived. In particular in Section 5.2.4 some important properties about (out-of-
sample) leverage scores, that will be used in the proofs, are derived.

We now present notation, definitions and some preliminary results necessary to proof the main
results.

100

Algorithm Runtime |J |

Uniform Sampling [Bac13] − 1/λ

Exact RLS Sampl. n3 N̂ (λ)

Two-Pass Sampling [AM15a] n/λ2 N̂ (λ)

Recursive RLS [MM17] nN̂ (λ)2 N̂ (λ)

SQUEAK [CLV17a] nN̂ (λ)2 N̂ (λ)

BLESS/BLESS-R(Alg. 3 and 4) 1/λ N̂ (λ)2 N̂ (λ)

Table 5.1: The proposed algorithms are compared with the state of the art (in Õ notation), in terms of time
complexity and cardinality of the set J required to satisfy the approximation condition in Eq. (5.2).

5.2.1 Notation

Let X be a Polish space and k : X × X → R a positive semidefinite function on X , we denote
H the Hilbert space obtained by the completion of

H = span{k(x, ·) | x ∈ X}

according to the norm induced by the inner product 〈k(x, ·), k(x′, ·)〉H = k(x, x′). Spaces H
constructed in this way are known as reproducing kernel Hilbert spaces and there is a one-to-one
relation between a kernel k and its associated RKHS. For more details on RKHS we refer the
reader to [Aro50, SC08]. Given a kernel k, in the following we will denote with kx = k(x, ·) ∈ H
for all x ∈ X . We say that a kernel is bounded if ‖kx‖H ≤ κ with κ > 0. In the following we
will always assume k to be continuous and bounded by κ > 0. The continuity of k with the fact
that X is Polish impliesH to be separable [SC08].

In the rest of the Chapter we denote with Aλ, the operator A + λI , for any symmetric linear
operator A, λ ∈ R and I the identity operator.

5.2.2 Definitions

For n ∈ N, (xi)
n
i=1, and J ⊆ {1, . . . , n}, A ∈ R|J |×|J | diagonal matrix with positive diagonal,

denote ˜̀J in eq. (5.3) by showing the dependence from both J and A as˜̀
J,A(i, λ) = (λn)−1(K̂i,i − K̂>J,i(K̂J,J + λnA)−1K̂J,i). (5.11)

Moreover let J = {j1, . . . , jM}, define ĈJ,A as

ĈJ,A =
1

|J |

|J |∑
i=1

A−1
ii kxji ⊗ kxji ,

101

and define Ĉn as

Ĉn =
1

n

n∑
i=1

kxi ⊗ kxi .

We now define the out-of-sample leverage scores, that are an extension of ˜̀J,A to any point x in
the space X .

Definition 8 (out-of-sample leverage scores). Let J = {j1, . . . , jM} ⊆ {1, . . . , n}, with M ∈ N
and A ∈ RM×M be a positive diagonal matrix. Then for any x ∈ X and λ > 0 we define

̂̀
J,A(x, λ) =

1

n
‖(ĈJ,A + λI)−1/2kx‖2

H.

Moreover define ̂̀∅,[](x, λ) = (λn)−1k(x, x).

In particular we denote by ̂̀(x, λ) = ̂̀
[n],I(x, λ),

the out-of-sample version of the exact leverage scores `(i, λ). Indeed note that ̂̀(xi, λ) = `(i, λ)
for i ∈ [n] and λ > 0 as proven by the next proposition that shows, more generally, the relation
between ̂̀J,A and ˜̀J,A.

Proposition 9. Let n ∈ N, (xi)
n
i=1 ⊆ X . For any λ > 0, J ⊆ {1, . . . , n}, A ∈ R|J |×|J | with

A positive diagonal, we that that for any x ∈ X , ̂̀J,A(x, λ) in Def. 8 and ˜̀J,A(x, λ) in Def. 5.3,
satisfy ̂̀

J, n|J|A
(xi, λ) = ˜̀

J,A(i, λ),

when |J | > 0, and ̂̀∅,[](xi, λ) = ˜̀∅,[](i, λ), when |J | = 0, for any i ∈ [n], λ > 0.

Proof. Let J = {j1, . . . , j|J |}. We will first show that ̂̀J,A(x, λ) is characterized by,

̂̀
J,A(x, λ) =

1

λn
k(x, x)− 1

λn
vJ(x)>(KJ + λ|J |A)−1vJ(x),

with KJ ∈ RM×M with (KJ)lm = k(xjl , xjm) and vJ(x) = (k(x, xj1), . . . , k(x, xjM)). Denote
with ZJ : H → R|J |, the linear operator defined by ZJ = (kxj1 , . . . , kxj|J|)

>, that is (ZJf)k =〈
kxjk , f

〉
H, for f ∈ H and k ∈ {1, . . . |J |}. Then, by denoting with B = |J |A we have

Z∗JB
−1ZJ =

1

|J |

|J |∑
i=1

A−1
ii kxji ⊗ kxji = ĈJ,A.

102

Now note that, since (Q+ λI)−1 = λ−1(I −Q(Q+ λI)−1) for any positive linear operator and
λ > 0, we have

̂̀
J,A(x, λ) =

1

n

〈
kx, (ĈJ,A + λI)−1kx

〉
H

=
1

λn

〈
kx, (I − ĈJ,A(ĈJ,A + λI)−1)kx

〉
H

=
k(x, x)

λn
− 1

λn

〈
kx, Z

∗
JB
−1/2(B−1/2ZJZ

∗
JB
−1/2 + λI)−1B−1/2ZJkx

〉
H ,

where in the last step we use the fact that R∗R(R∗R + λI)−1 = R∗(RR∗ + λI)−1R, for any
bounded linear operator R and λ > 0. In particular we used it with R = B−1/2ZJ . Now note
that ZJZ∗J ∈ R|J |×|J | and in particular ZJZ∗J = KJ , moreover ZJkx = v(x), so

̂̀
J,A(x, λ) =

k(x, x)

λn
− 1

λn
v(x)>B−1/2(B−1/2KJB

−1/2 + λI)−1B−1/2v(x)

=
k(x, x)

λn
− 1

λn
v(x)>(KJ + λB)−1v(x)

=
k(x, x)

λn
− 1

λn
v(x)>(KJ + λ|J |A)−1v(x),

where in the second step we used the fact thatB−1/2(B−1/2QB−1/2+λI)−1B−1/2 = (Q+λB)−1,
for any invertible B any positive operator Q and λ > 0.

Finally note that

̂̀
J, n|J|A

(xi, λ) =
k(x, x)

λn
− 1

λn
v(x)>(KJ + λnA)−1v(x) = ˜̀

J,A(i, λ).

5.2.3 Preliminary Results

Recall that an operator A is said to be positive if 〈v, Av〉 ≥ 0 ∀v. Denote with Gλ(A,B) the
quantity

Gλ(A,B) = ‖(A+ λI)−1/2(A−B)(A+ λI)−1/2‖,

for A,B positive bounded linear operators and for λ > 0.

Proposition 10. Let A,B be positive bounded linear operators and λ > 0, then

‖I − (A+ λI)−1/2(B + λI)(A+ λI)−1/2‖ = Gλ(A,B) ≤ Gλ(B,A)

1−Gλ(B,A)
,

where the last inequality holds if Gλ(B,A) < 1.

103

Proof. For the sake of compactness denote withAλ the operatorA+λI and withBλ the operator
B + λI . First of all note that I = A

−1/2
λ AλA

−1/2
λ , so

I − A−1/2
λ BλA

−1/2
λ = A

−1/2
λ AλA

−1/2
λ − A−1/2

λ BλA
−1/2
λ

= A
−1/2
λ (Aλ −Bλ)A

−1/2
λ = A

−1/2
λ (A−B)A

−1/2
λ

= A
−1/2
λ B

1/2
λ B

−1/2
λ (A−B)B

−1/2
λ B

1/2
λ A

−1/2
λ ,

where in the last step we multiplied and divided by B1/2
λ . Then∥∥∥I − A−1/2

λ BλA
−1/2
λ

∥∥∥ ≤ ‖A−1/2
λ B

1/2
λ ‖

2‖B−1/2
λ (A−B)B

−1/2
λ ‖,

moreover, by Prop. 7 of [RCR15] (see also Prop. 8 of [RR17]), if Gλ(B,A) < 1, we have

‖A−1/2
λ B

1/2
λ ‖

2 ≤ (1−Gλ(B,A))−1.

Proposition 11. LetA,B,C be bounded positive linear operators on a Hilbert space. Let λ > 0.
Then, the following holds

Gλ(A,C) ≤ Gλ(A,B) + (1 +Gλ(A,B))Gλ(B,C).

Proof. In the following we denote with Aλ the operator A+ λI and the same for B,C. Then

‖A−1/2
λ (A− C)A

−1/2
λ ‖ ≤ ‖A−1/2

λ (A−B)A
−1/2
λ ‖+ ‖A−1/2

λ (B − C)A
−1/2
λ ‖.

Now note that, by dividing and multiplying for B1/2
λ , we have

‖A−1/2
λ (B − C)A

−1/2
λ ‖ = ‖A−1/2

λ B
1/2
λ B

−1/2
λ (B − C)B

−1/2
λ B

1/2
λ A

−1/2
λ ‖

≤ ‖A−1/2
λ B

1/2
λ ‖

2‖B−1/2
λ (B − C)B

−1/2
λ ‖ = ‖A−1/2

λ B
1/2
λ ‖

2Gλ(B,C).

Finally note that, since ‖Z‖2 = ‖Z∗Z‖ for any bounded linear operator Z, we have

‖A−1/2
λ B

1/2
λ ‖

2 = ‖A−1/2
λ BλA

−1/2
λ ‖ = ‖I + (I − A−1/2

λ BλA
−1/2
λ)‖ ≤ 1 + ‖I − A−1/2

λ BλA
−1/2
λ ‖.

Moreover, by Prop. 10, we have that

‖I − A−1/2
λ BλA

−1/2
λ ‖ = Gλ(A,B).

104

Proposition 12. Let B be a bounded linear operator, then

1− ‖I −BB∗‖ ≤ σmin(B)2 ≤ σmax(B)2 ≤ 1 + ‖I −BB∗‖.

Proof. Now we recall that, denoting by � the Lowner partial order, for a positive bounded oper-
ator A such that aI � A � bI for 0 ≤ a ≤ b, we have (1− b)I � I −A � (1− a)I � (1 + b)I
and so, since BB∗ = I − (I −BB∗), we have

(1− ‖I −BB∗‖)I � σmin(B)2I � BB∗ � σmax(B)2I � 1 + (1 + ‖I −BB∗‖)I,

from we have the desired result.

Let ‖·‖HS denote the Hilbert-Schmidt norm.

We recall and adapt to our needs a result from Prop. 8 of [RCR15].

Proposition 13. Let λ > 0 and v1, . . . , vn with n ≥ 1, be identically distributed random vectors
on separable Hilbert spaceH, such that there exists κ2 > 0 for which ‖v‖H ≤ κ2 almost surely.
Denote by Q the Hermitian operator Q = 1

n

∑n
i=1 E[vi⊗ vi]. Let Qn = 1

n

∑n
i=1 vi⊗ vi. Then for

any δ ∈ (0, 1], the following holds

∥∥(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2
∥∥ ≤ 4κ2β

3λn
+

√
2κ2β

λn

with probability 1− δ and β = log 4 Tr(Q(Q+λI)−1)
‖Q(Q+λI)−1‖δ ≤

8κ2(1+Tr(Q−1
λ Q))

‖Q‖δ .

Proof. Let Qλ = Q + λI . Here we apply non-commutative Bernstein inequality like [Tro12]
(with the extension to separable Hilbert spaces as in[RCR15], Prop. 12) on the random variables
Zi = M −Q−1/2

λ vi ⊗Q−1/2
λ vi with Mi = Q

−1/2
λ (E[vi ⊗ vi])Q−1/2

λ for 1 ≤ i ≤ n. Note that the
expectation of Zi is 0. The random vectors are bounded by

‖Q−1/2
λ vi ⊗Q−1/2

λ vi −Mi‖ = ‖Ev′i [Q
−1/2
λ v′i ⊗Q

−1/2
λ v′i −Q

−1/2
λ vi ⊗Q−1/2

λ vi]‖H

≤ 2‖κ2‖‖(Q+ λ)−1/2‖2 ≤ 2κ2

λ
,

and the second orded moment is

E(Zi)
2 = E

〈
vi, Q

−1
λ vi

〉
Q
−1/2
λ vi ⊗Q−1/2

λ vi − Q−2
λ Q2

≤ κ2

λ
E[Q

−1/2
λ v1 ⊗Q−1/2

λ v1] =
κ2

λ
Q(Q+ λI)−1 =: S.

Now we can apply the Bernstein inequality with intrinsic dimension in [Tro12] (or Prop. 12 in
[RCR15]). Now some considerations on β. It is β = log 4 TrS

‖S‖δ =
4 TrQ−1

λ Q

‖Q−1
λ Q‖δ , now we need a

105

lower bound for
∥∥Q−1

λ Q
∥∥ = σ1

σ1+λ
where σ1 = ‖Q‖ is the biggest eigenvalue of Q, now, when

0 < λ ≤ σ1 we have β ≤ 8 TrQ
λδ

.

When λ ≥ σ1, note that Tr(Q(Q+ λI)−1) ≤ λ−1 Tr(Q) ≤ κ2/λ, then

Tr(Q(Q+ λI)−1)∥∥Q−1
λ Q

∥∥ ≤ κ2

λ σ1
σ1+λ

=
κ2

λ
+
κ2

σ1

≤ 2κ2

σ1

.

So finally β ≤ 8(κ2/‖Q‖+Tr(Q−1
λ Q))

δ

5.2.4 Analytic Decomposition

In this section we control the out-of-sample leverage scores ̂̀J,A(x, λ) for a fixed λ, a generic set
of indexes J and weightsA, with respect to the out-of-sample version of the exact leverage scoreŝ̀(x, λ) (Theorem 13). Moreover, we introduce two technical Lemmas used to prove Theorem 13
and further theorems in the next sections. The first one (Lemma 23) relates for a fixed λ two
out-of-sample leverage scores ̂̀J,A(x, λ), ̂̀J ′,A′(x, λ) of two generic pairs of indexes and weights
J,A and J ′, A′. The second one (Lemma 24) relates, for a fixed J and A, the out-of-sample
leverage scores ̂̀J,A(x, λ), ̂̀J,A(x, λ′) for two different values λ, λ′.

Lemma 23. Let λ > 0, J, J ′ ⊆ {1, . . . , n}, with |J |, |J ′| ≥ 1 and A ∈ R|J |×|J |, A′ ∈ R|J ′|×|J ′|
positive diagonal matrices, then

1− 2ν

1− ν
̂̀
J ′,A′(x, λ) ≤ ̂̀J,A(x, λ) ≤ 1

1− ν
̂̀
J ′,A′(x, λ), ∀x ∈ X ,

with ν = Gλ(ĈJ ′,A′ , ĈJ,A).

Proof. By denoting with B the operator

B = (ĈJ,A + λI)−1/2(ĈJ ′,A′ + λI)1/2,

and according to the characterization of ̂̀J,A(x, λ) via Prop. 9, we have

̂̀
J,A(x, λ) = n−1

∥∥∥(ĈJ,A + λI)−1/2kx

∥∥∥2

H
= n−1

∥∥∥B (ĈJ ′,A′ + λI)−1/2kx

∥∥∥2

H
.

So, by recalling the fact that, by definition of Lowner partial order�, we have a‖v‖2 ≤ ‖Av‖2 ≤
b‖v‖2, for any vector v and bounded linear operator such that aI � A∗A � bI with 0 ≤ a ≤ b,
and the fact that σ(A∗A) = σ(AA∗) = σ(A)2, we have

σmin(B)2
∥∥∥(ĈJ ′,A′ + λI)−1/2kx

∥∥∥2

H
≤
∥∥∥B(ĈJ ′,A′ + λI)−1/2kx

∥∥∥2

H
≤ σmax(B)2

∥∥∥(ĈJ ′,A′ + λI)−1/2kx

∥∥∥2

H
.

106

That, by Prop. 9, is equivalent to

σmin(B)2̂̀
J ′,A′(x, λ) ≤ ̂̀J,A(x, λ) ≤ σmax(B)2̂̀

J ′,A′(x, λ).

By Prop. 12 we have 1 − ‖I − BB∗‖ ≤ σmin(B)2 ≤ σmax(B)2 ≤ 1 + ‖I − BB∗‖. Finally, by
Prop. 10, we have

‖I −BB∗‖ ≤ ν

1− ν
.

Lemma 24. Let 0 < λ ≤ λ′, and J ⊆ {1, . . . , n} and A ∈ R|J |×|J |, then

̂̀
J,A(x, λ′) ≤ ̂̀J,A(x, λ) ≤ λ′

λ
̂̀
J,A(x, λ′), ∀x ∈ X .

Proof. If |J | = 0 we have that ̂̀∅,[](x, λ) = k(x,x)
λn

and the desired result is easily verified. If |J | ≥
1, let B = (CJ,A + λI)−1/2(CJ,A + λ′I)1/2. By recalling the fact that, by definition of Lowner
partial order �, we have a‖v‖2 ≤ ‖Av‖2 ≤ b‖v‖2, for any vector v and bounded linear operator
such that aI � A∗A � bI with 0 ≤ a ≤ b, and the fact that σ(A∗A) = σ(AA∗) = σ(A)2, we
have

σmin(B)2
∥∥∥(ĈJ,A + λ′I)−1/2kx

∥∥∥2

H
≤
∥∥∥B(ĈJ,A + λ′I)−1/2kx

∥∥∥2

H
≤ σmax(B)2

∥∥∥(ĈJ,A + λ′I)−1/2kx

∥∥∥2

H
.

That, by Prop. 9, is equivalent to

σmin(B)2̂̀
J,A(x, λ′) ≤ ̂̀J,A(x, λ) ≤ σmax(B)2̂̀

J,A(x, λ′).

Now note that

σmin(B)2 ≥ inf
σ≥0

σ + λ′

σ + λ
= 1, σmax(B)2 ≥ sup

σ≥0

σ + λ′

σ + λ
=
λ′

λ
.

Theorem 13. Let λ > 0, J ⊆ {1, . . . , n}, with |J | ≥ 1 and A ∈ R|J |×|J | positive diagonal. Then
the following hold for any x ∈ X ,

1− 2νJ,A
1− νJ,A

̂̀(x, λ) ≤ ̂̀J,A(x, λ) ≤ 1

1− νJ,A
̂̀(x, λ),

where νJ,A = Gλ(Ĉn, ĈJ,A). Morever note that for any |U | ⊆ {1, . . . , n}, we have

νJ,A ≤ ηU + (1 + ηU)βJ,A,U ,

with βJ,A,U = Gλ(ĈU,I , ĈJ,A) and ηU = Gλ(Ĉn, ĈU,I).

107

Proof. By applying Lemma 23, with their J ′ = {1, . . . , n}, A′ = I , and recalling that ̂̀(x, λ) =̂̀{1,...,n},I , we have for all x ∈ X

1− 2νJ,A
1− νJ,A

̂̀(x, λ) ≤ ̂̀J,A(x, λ) ≤ 1

1− νJ,A
̂̀(x, λ).

To conclude the proof we bound νJ,A in terms of βJ,A,U and ηU , via Prop. 11.

5.2.5 Proof for BLESS (Alg. 3)

This section presents three technical lemmas used to prove Theorem 14 that provides the guar-
antees for BLESS (Algorithm 3).

Lemma 25. Let n ∈ N, (xi)
n
i=1 ⊆ X . Let U ⊆ {1, . . . n}, with |U | ≥ 1. Let (pk)

|U |
k=1 ⊂ R be a

non-negative sequence summing to 1. Let M ∈ N and J = {j1, . . . , jM} with ji sampled i.i.d.
from {1, . . . , |U |} with probability (pk)

|U |
k=1 and A = |U |diag(pj1 , . . . , pjM). Let τ ∈ (0, 1], and

s := supk∈{1,...,|U |}
1
|U |pk
‖(ĈU,I + λI)−1/2kxuk‖

2
H. When

M ≥ 2s log
4n

τ
,

then the following holds with probability at least 1− τ

‖(ĈU,I + λI)−1/2(ĈJ,A − ĈU,I)(ĈU,I + λI)−1/2‖ ≤

√
4s log 4n

τ

M
.

Proof. Denote with ζi the random variable

ζi =
1

|U |pk
(ĈU,I + λI)−1/2(kxji ⊗ kxji)(ĈU,I + λI)−1/2,

for i ∈ {1, . . . ,M}. In particular note that ζ1, . . . , ζM are i.i.d. since j1, . . . , jM are. Moreover
note the following two facts

‖ζi‖ = sup
k∈{1,...,|U |}

1

|U |pk
‖(ĈU,I + λI)−1/2kxuk‖

2
H = s,

E[ζi] =

|U |∑
k=1

pk
1

|U |pk
(ĈU,I + λI)−1/2(kxk ⊗ kxk)(ĈU,I + λI)−1/2

= (ĈU,I + λI)−1/2ĈU,I(ĈU,I + λI)−1/2 =: W,

108

where for the second identity we used the fact that d/lk = 1/(pk|U |). Since by definition of ĈJ,A
we have

1

M

M∑
i=1

ζi = (ĈU,I + λI)−1/2

(
1

|J |

M∑
i=1

1

Aii
kxji ⊗ kxji

)
(ĈU,I + λI)−1/2

= (ĈU,I + λI)−1/2ĈJ,A(ĈU,I + λI)−1/2,

then, by applying non-commutative Bernstein inequality (Prop. 13 is a version specific for our
problem), we have

‖(ĈU,I + λI)−1/2(ĈJ,A − ĈU,I)(ĈU,I + λI)−1/2‖ =
∥∥ 1

M

M∑
i=1

(ζi − E[ζi])
∥∥ ≤ 2sη

3M
+

√
2s‖W‖η
M

,

with probability at least 1 − τ , and η := log 4 Tr(W)
τ‖W‖ . In particular, by noting that ‖W‖ ≤ 1 by

definition, when M ≥ 2sη, then

2sη

3M
+

√
2s‖W‖η
M

≤ 2sη

3M
+

√
2sη

M
≤ 1

3

√
2sη

M
+

√
2sη

M
≤
√

4sη

M
.

To conclude note that Tr(W)
‖W‖ ≤ rank(W) ≤ |U | ≤ n, so η ≤ log 4n

τ
.

Lemma 26. Let n,R ∈ N, (xi)
n
i=1 ⊆ X . Let U = {u1, . . . , uR} with ui i.i.d. with uniform

probability on {1, . . . , n}. Let τ ∈ (0, 1] and let λ > 0. When

R ≥ 2nκ2

λn+ κ2
log

4n

τ
,

then the following holds with probability 1− τ

‖(Ĉn + λI)−1/2(ĈU,I − Ĉn)(Ĉn + λI)−1/2‖ ≤

√
4nκ2 log 4n

τ

(λn+ κ2)R
.

Proof. Denote by ζi the random variable ζi = (Ĉn + λI)−1/2(kxui ⊗ kxui)(Ĉn + λI)−1/2, for
i ∈ {1, . . . , R}. Note that ζi are i.i.d. since ui are. Moreover note that

‖ζi‖ = sup
i∈{1,...,n}

‖(Ĉn + λI)−1/2kxi‖2 ≤ sup
i∈{1,...,n}

‖(1

n
kxi ⊗ kxi + λI)−1/2kxi‖2

≤ nκ2

λn+ κ2
=: v.

Moreover note that

E[ζi] =
1

n

n∑
i=1

(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2 = (Ĉn + λI)−1/2Ĉn(Ĉn + λI)−1/2 =: W.

109

So we have, by non-commutative Bernstein inequality (Prop. 13 is a version specific for our
problem),

‖(Ĉn + λI)−1/2(ĈU,I − Ĉn)(Ĉn + λI)−1/2‖ =
∥∥ 1

M

M∑
i=1

(ζi − E[ζi])
∥∥ ≤ 2vη

3R
+

√
2v‖W‖η

R
,

with probability at least 1 − τ , and η := log 4 Tr(W)
τ‖W‖ . In particular, by noting that ‖W‖ ≤ 1

by definition, when R ≥ 2nκ2η
(λn+κ2)R

, analogously to the end of the proof of Lemma 25, we have
2vη
3R

+
√

2v‖W‖η
R
≤
√

4nκ2η
(λn+κ2)R

. To conclude note that Tr(W)
‖W‖ ≤ rank(W) ≤ n, so η ≤ log 4n

τ
.

Lemma 27. Let n,R ∈ N, (xi)
n
i=1 ⊆ X . Let U = {u1, . . . , uR} with ui i.i.d. with uniform

probability on {1, . . . , n}. Let τ ∈ (0, 1] and let λ > 0. When

R ≥ 16nκ2

λn+ κ2
log

4n

τ
,

then the following holds with probability 1− τ

n

R

R∑
i=1

̂̀(xui , λ) < max

(
5,

6

5
N̂ (λ)

)
.

Proof. First of all denote with zi the random variable zi = n
R
̂̀(xui , λ) and note that (zi)

R
i=1 are

i.i.d. since (ui)
R
i=1 are. Moreover, by the characterization of ̂̀(x, λ) via Prop. 9, we have

|zi| ≤ sup
k∈{1,...,n}

‖(Ĉn + λI)−1/2kxk‖2 ≤ sup
k∈{1,...,n}

‖(kxk ⊗ kxk/n+ λI)−1/2kxk‖2

≤ κ2

R(κ2/n+ λ)
=: v,

moreover we have

E[zi] = E[Tr((Ĉn + λI)−1(kxui ⊗ kxui))] = Tr((Ĉn + λI)−1E[kxui ⊗ kxui])

= Tr

(
(Ĉn + λI)−1

n∑
k=1

1

n
kxk ⊗ kxk

)
= Tr

(
(Ĉn + λI)−1Ĉn

)
= N̂ (λ).

So by applying Bernstein inequality, the following holds with probability at least 1− τ∣∣∣∣∣ nR
R∑
i=1

̂̀(xui , λ)− N̂ (λ)

∣∣∣∣∣ =

∣∣∣∣∣ 1

R

R∑
i=1

(zi − E[zi])

∣∣∣∣∣ ≤ 2v log 2
τ

3R
+

√
2vN̂ (λ) log 2

τ

3R
.

110

So we have

n

R

R∑
i=1

̂̀(xui , λ) ≤ N̂ (λ) +

∣∣∣∣∣ nR
R∑
i=1

̂̀(xui , λ)− N̂ (λ)

∣∣∣∣∣ ≤ N̂ (λ) +
2v log 2

τ

3R
+

√
2vN̂ (λ) log 2

τ

R
.

Now, if N̂ (λ) ≤ 4, since R ≥ 16v log 2
τ
, we have that

N̂ (λ) +
2v log 2

τ

3R
+

√
2vN̂ (λ) log 2

τ

R
≤ 4 +

1

24
+

√
1

2
< 5.

If N̂ (λ) > 4, since R ≥ 16v log 2
τ
, we have

N̂ (λ) +
2v log 2

τ

3R
+

√
2vN̂ (λ) log 2

τ

3R
≤

(
1 +

1

24N̂ (λ)
+

√
1

8N̂ (λ)

)
N̂ (λ) <

6

5
N̂ (λ).

Theorem 14. Let n ∈ N, (xi)
n
i=1 ⊆ X . Let δ ∈ (0, 1], t, q > 1, λ > 0 and H, dh, λh, Jh, Ah, Uh

as in Alg. 3. Let Ah = n
|Jh|

Ah and νh = Gλh(Ĉn, ĈJh,Ah), βh = Gλh(ĈUh,I , ĈJh,Ah), ηh =

Gλh(Ĉn, ĈUh,I). When

λ0 =
κ2

min(t, 1)
, q1 ≥

5κ2q2

q(1 + t)
, q2 ≥ 12q

(2t+ 1)2

t2
(1 + t) log

12Hn

δ
,

then the following holds with probability 1− δ: for any h ∈ {0, . . . , H}

a)
1

T
̂̀(x, λh) ≤ ̂̀

Jh,Ah
(x) ≤ min(T, 2)̂̀(x, λh), ∀x ∈ X ,

b) dh ≤ 3q N̂ (λh) ∨ 10q, and |Jh| ≤ q2(3qN̂ (λh) ∨ 10q).

c) βh ≤
7

11cT
, ηh ≤

3

11cT
, νh ≤

1

cT
.

(5.12)

where T = 1 + t and cT = 2 + 1/(T − 1).

Proof. Let H , cT , q and λh, Uh, Jh, Ah, dh, Ph = (ph,k)
Rh
k=1, for h ∈ {0, . . . , H} as defined in

Alg. 3. Let Ah = n
|Jh|

Ah and τ = δ/(3H). Now we are going to define some events and we
prove a recurrence relation that they satisfy. Finally we unroll the recurrence relation and bound
the resulting events in probability.

Definitions of the events. Now we are going to define some events that will be useful to prove the
theorem. Denote with Eh the event such that the conditions in Eq. (5.12)-(a) hold for Jh, Ah, Uh.
Denote with Fh the event such that

n

Rh

∑
u∈Uh

̂̀(xu, λh−1) ≤ 6

5
N̂ (λ).

111

Denote with B1,h the event such that βh, satisfies

βh ≤

√
4sh log 4n

τ

Mh

, with sh := sup
k∈{1,...,Rh}

1

Rhph,k
‖(ĈUh,I + λhI)−1/2kxuk‖

2. (5.13)

Denote with B2,h the event such that ηh, satisfies

ηh ≤

√
4κ2n log κ2

λhτ

(λhn+ κ2)Rh

.

First bound for sh. Note that, by definition of ph,k, that is, by Prop. 9

ph,k = n˜̀Jh−1,Ah−1
(xuk , λh)/(dhRh) = n̂̀Jh−1,Ah−1

(xuk , λh)/(dhRh),

so

sh = sup
k∈{1,...,Rh}

dh‖(ĈUh,I + λhI)−1/2kxuk‖
2

n̂̀Jh−1,Ah−1
(xuk , λh)

= sup
u∈Uh

dĥ̀Uh,I(xu, λh)̂̀
Jh−1,Ah−1

(xu, λh)
,

where the last step consists in apply the definition of ̂̀Uh,I . By applying Lemma 23 and 24 tồ
Uh,I(x, λh), we have

̂̀
Uh,I(x, λh) ≤

1

1− ηh
̂̀(x, λh) ≤ λh−1

λh(1− ηh)
̂̀(x, λh−1)

and analogously by applying Lemma 24 to ̂̀Jh−1,Ah−1
(x, λh), we have

̂̀
Jh−1,Ah−1

(x, λh) ≥ ̂̀Jh−1,Ah−1
(x, λh−1).

So, by extending the sup of sh to the whole X , we have

sh ≤ dh sup
x∈X

̂̀
Uh,I(x, λh)̂̀

Jh−1,Ah−1
(x, λh)

≤ λh−1dh
λh(1− ηh)

sup
x∈X

̂̀(x, λh−1)̂̀
Jh−1,Ah−1

(x, λh−1)
.

Now we are ready to prove the recurrence relation, for h ∈ {1, . . . H},

Eh ⊇ B1,h ∩B2,h ∩ Eh−1 ∩ Fh.

Analysis of E0. Note that, since ‖Ĉn‖ ≤ κ2, then 1
κ2+λ

I � (Ĉn + λI)−1 � 1
λ

, so for any x ∈ X
the following holds

k(x, x)

(κ2 + λ)n
≤ ̂̀(x, λ) ≤ k(x, x)

λn
.

112

Since λ0 = κ2

min(2,T)−1
and ̂̀∅,[](x, λ0) = k(x,x)

λ0n
, we have

1

T
̂̀(x, λ0) ≤ 1

T

k(x, x)

λn
≤ `∅,[](x, λ0) =

k(x, x)

λ0n
=

min(2, T)k(x, x)

(κ2 + λ0)n
≤ min(2, T)̂̀(x, λ0).

Setting conventionally d0, ν0, η0, β0 = 0 (they are not used by the algorithm or the proof), we
have that E0 holds everywhere and so, with probability 1.

Analysis ofEh−1∩B1,h∩B2,h. First note that underEh−1, the following holds ̂̀Jh−1,Ah−1
(x, λh−1) ≥

1
T
̂̀(x, λh−1) and so

sh ≤
λh−1dh

λh(1− ηh)
sup
x∈X

̂̀(x, λh−1)̂̀
Jh−1,Ah−1

(x, λh−1)
≤ λh−1dh
λh(1− ηh)

sup
x∈X

̂̀(x, λh−1)
1
T
̂̀(x, λh−1)

≤ Tλh−1dh
λh(1− ηh)

.

Now note that under B2,h, by applying the definition of Rh in Alg. 3, by the condition on q1, we
have

ηh ≤

√
4κ2n log κ2

λhτ

(λhn+ κ2)Rh

≤

√
4κ2n log κ2

λhτ

min{λhn, κ2}Rh

≤

√
4 log κ2

λhτ

q1

≤ 3/(11cT) ≤ 3/22.

So under B1,h ∩ B2,h ∩ Eh−1 and the fact that q = λh−1

λh
, we have sh ≤ Tλh−1dh

λh(1−ηh)
≤ (8/7)qTdh

and so, since Mh = q2dh, by the condition on q2, we have

βh ≤

√
4sh log 4n

τ

Mh

≤

√
(32/7)qTdh log 4n

τ

Mh

=

√
(32/7)qT log 4n

τ

q2

<
7

11cT
,

where in the last step we used the definition ofMh in Alg. 3. Then, since underB1,h∩B2,h∩Eh−1

we have that βh ≤ 7/(11cT), ηh ≤ 3/(11cT) ≤ 3/22, then, by applying Proposition 11 to νh
w.r.t. ηh, βh, we have

νh ≤ ηh + (1 + ηh)βh ≤
(

3

11
+

(
1 +

3

22

)
7

11

)
1

cT
<

1

cT
.

Then 1
T
≤ 1−2νh

1−νh
and 1

1−νh
≤ min(T, 2), so by applying Theorem 13, we have

1

T
̂̀(x, λh) ≤ ̂̀Jh,Ah(x, λh) ≤ min(T, 2)̂̀(x, λh).

Analysis of Eh−1 ∩ Fh. First note that under Eh−1 the following holds ̂̀Jh−1,Ah−1
(x, λh−1) ≤

min(T, 2)̂̀(x, λh−1), so, by applying Lemma 24 to ̂̀Jh−1,Ah−1
(x, λh), we have

dh =
n

Rh

∑
u∈Uh

̂̀
Jh−1,Ah−1

(xu, λh) ≤
λh−1n

λhRh

∑
u∈Uh

̂̀
Jh−1,Ah−1

(xu, λh−1) ≤ 2λh−1n

λhRh

∑
u∈Uh

̂̀(xu, λh−1).

113

Moreover under Fh, we have n
Rh

∑
u∈Uh

̂̀(xu, λh−1) ≤ max(5, 6
5
N̂ (λh−1)), so, under Eh−1∩Fh,

we have
dh ≤ 2qmax(5, (6/5)N̂ (λh−1)) ≤ max(10q, 3qN̂ (λh)).

This implies that
|Jh| = Mh = q2dh ≤ q2 max(10q, 3qN̂ (λh))

Unrolling the recurrence relation. The two results above imply Eh ⊇ B1,h∩B2,h∩Eh−1∩Fh.
Now we unroll the recurrence relation, obtaining

Eh ⊇ E0 ∩ (∩hj=1Fj) ∩ (∩hj=1B1,j) ∩ (∩hj=1B2,j),

so by taking their intersections, we have

∩Hh=0Eh ⊇ E0 ∩ (∩Hj=1Fj) ∩ (∩Hj=1B1,j) ∩ (∩Hj=1B2,j). (5.14)

Bounding B1,h, B2,h, Fh in high probability. Let h ∈ [H]. The probability of the event B1,h can
be written as P(B1,h) =

∫
P(B1,h|Uh, Ph)dP(Uh, Ph). Now note that P(B1,h|Uh, Ph) is controlled

by Lemma 25, that proves that for any Uh, Ph, the probability of P(B1,h|Uh, Ph) is at least 1− τ .
Then

P(B1,h) =

∫
P(B1,h|Uh, Ph)dP(Uh, Ph) ≥ inf

Uh
P(B1,h|Uh, Ph) ≥ 1− τ.

To see that P(B1,h|Uh, Ph) is controlled by Lemma 25, note that, since |Uh| is exactly Rh, by
definition of Ah and Ah

Ah =
n

|Jh|
Ah = |Uh| diag(pj1 , . . . , pj|Jh|),

that is exactly the condition on the weights required by Lemma 25 which controls exactly Equa-
tion (5.13). Finally B2,h, Fh are directly controlled respectively by Lemmas 26 and 27 and so
hold with probability at least 1 − τ each. Finally note that E0 holds with probability 1. So by
taking the intersection bound according to Equation (5.14), we have that ∩Hh=0Eh holds at least
with probability 1− 3Hτ .

5.2.6 Proof for BLESS-R (Alg. 4)

Similarly to the previous section, this section presents two technical lemmas used to prove The-
orem 15 that provides the guarantees for BLESS-R (Algorithm 4).

Lemma 28. Let λ > 0, n ∈ N, δ ∈ (0, 1]. Let (xi)
n
i=1 ⊆ X . Let b ∈ (0, 1] and p1, . . . , pn ∈

(0, b]. Let u1, . . . un sampled independently and uniformly on [0, 1]. Let vj be independent
Bernoulli(pj/b) random variables, with j ∈ [n]. Denote by zj the random variable zj =

114

1uj≤bvj . Finally, let the random set J containing j iff zj = 1. Let A = n
|J |(pj1 , . . . , pj|J|), where

j1, . . . , j|J | are the sorting of J . Then the following holds with probability at least 1− δ

Gλ(Ĉn, ĈJ,A) ≤ 2sη

3n
+

√
2sη

n
, with s = sup

i∈[n]

1

pi
‖(Ĉn + λI)−1/2kxi‖2

H,

with s = log 4n
δ

.

Proof. Let ζi be defined as

ζi =
zi
pi

1

n
(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2,

for i ∈ [n], where zi are the Bernoulli random variables computed by Algorithm 4. First note
that

(Ĉn + λI)−1/2ĈJ,A(Ĉn + λI)−1/2 =
1

|J |
∑
j∈J

|J |
npj

(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2

=
1

n

∑
j∈J

1

pj
(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2

=
1

n

n∑
i=1

zi
pj

(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2

=
n∑
i=1

ζi.

In particular we study the expectation and the variance of ζi to bound Gλ(Ĉn, ĈJ,A). By noting
that the expectation of zi is E[zi] = E[1ui≥bvi] = E[1ui≥b]E[vi] = b × pi

b
= pi, for any i ∈ [n],

then

E
n∑
i=1

ζi =
n∑
i=1

E[zi]

pi

1

n
(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2

=
n∑
i=1

1

n
(Ĉn + λI)−1/2(kxi ⊗ kxi)(Ĉn + λI)−1/2

= (Ĉn + λI)−1/2Ĉn(Ĉn + λI)−1/2 =: W,

Now we will bound almost everywhere ‖ζi‖ as

‖ζi‖ ≤ sup
i∈[n]

zi
pi

1

n
‖(Ĉn + λI)−1/2kxi‖2

H ≤
1

n
sup
i∈[n]

1

pi
‖(Ĉn + λI)−1/2kxi‖2

H.

115

We are ready to apply non-commutative Bernstein inequality (Prop. 13 is specific version for this
setting), obtaining, with probability at least 1− δ

Gλ(Ĉn, ĈJ,A) = ‖ 1

n

n∑
i=1

(ζi − E[ζi])‖ ≤
2sη

3n
+

√
2sη

n
,

with η = log 4 Tr(W)
‖W‖δ . Finally note that since Tr(W)/‖W‖ ≤ rank(W) ≤ n, we have η ≤

log 4n
δ

.

Lemma 29. Let λ > 0, n ∈ N, δ ∈ (0, 1]. Let (xi)
n
i=1 ⊆ X . Let b ∈ (0, 1] and p1, . . . , pn ∈

(0, b]. Let u1, . . . un sampled independently and uniformly on [0, 1]. Let vj be independent
Bernoulli(pj/b) random variables, with j ∈ [n]. Denote by zj the random variable zj =
1uj≤bvj . Finally, let the random set J containing j iff zj = 1. Then the following holds with
probability at least 1− δ

|J | ≤
∑
i∈[n]

pi + (1 +

√∑
i∈[n]

pi) log
3

δ
.

Proof. By definition of J , note that
|J | =

∑
i∈[n]

zi.

We are going to concentrate the sum of random variables via Bernstein. Any zi is bounded, by
construction, by 1. Moreover

E[zi] = E[1ui≥bvi] = E[1ui≥b]E[vi] = b× pi
b

= pi.

Analogously E[z2
i]− E[zi]

2 = pi − p2
i ≤ pi. By applying Bernstein inequality, we have

|
∑
i∈[n]

(zi − pi)| ≤ log
2

δ
+

√
log

2

δ

∑
i∈[n]

pi,

with probability 1− δ. Then with the same probability,

|J | ≤
∑
i∈[n]

pi + (1 +

√∑
i∈[n]

pi) log
3

δ
.

Theorem 15. Let n ∈ N, (xi)
n
i=1 ⊆ X . Let δ ∈ (0, 1], t, q > 1, λ > 0 and H, dh, λh, Jh, Ah as

in Alg. 4. Let Ah = n
|Jh|

Ah and νh = Gλ(Ĉn, ĈJh,Ah). When

λ0 =
κ2

min(t, 1)
, q1 ≥ 2Tq(1 + 2/t) log

4n

δ

116

then, the following holds with probability 1− δ: for any h ∈ {0, . . . , H}

a)
1

T
̂̀(x, λh) ≤ ̂̀

Jh,Ah
(x) ≤ min(T, 2)̂̀(x, λh), ∀x ∈ X ,

b) |Jh| ≤ 3q1 min(T, 2)
(

5 ∨ N̂ (λh)
)

log
6H

δ
,

c) νh ≤
1

cT
.

(5.15)

where T = 1 + t and cT = 2 + 1/(T − 1).

Proof. Let H , cT , q and λh, Jh, Ah, (ph,i)
n
i=1 for h ∈ {0, . . . , H} as defined in Alg. 4 and define

τ = δ/(2H). Now we are going to define some events and we prove a recurrence relation
that they satisfy. Finally we unroll the recurrence relation and bound the resulting events in
probability.

Definitions of the events. Now we are going to define some events that will be useful to prove
the theorem. Denote with Eh the event such that the conditions in Eq. (5.15)-(a) hold for Jh, Ah.
Denote with Zh the event such that

|Jh| ≤
∑
i∈[n]

ph,i + (1 + (
∑
i∈[n]

ph,i)
1/2) log

3

τ
.

Denote with Vh the event such that νh := Gλh(ĈU,I , ĈJh,Ah), satisfies

νh ≤ sh log
8κ2

λhτ
+

√
2sh log

8κ2

λhτ
, with sh = sup

i∈[n]

1

nph,i
‖(Ĉn + λhI)−1/2kxi‖2

H. (5.16)

Analysis of sh. Note that, by definition of ph,i, for Algorithm 4, and of ̂̀, we have so

sh = sup
i∈[n]

1

nph,i
‖(Ĉn + λhI)−1/2kxi‖2

H = sup
i∈[n]

̂̀(xi, λi)
q1
˜̀
Jh,Ah(xi)

= sup
i∈[n]

̂̀(xi, λi)
q1
̂̀
Jh,Ah

(xi)
.

with Ah = n
|Jh|

Ah, where the last step is due to the equivalence between ˜̀and ̂̀in Proposition 9.

Now we are ready to prove the recurrence relation, for h ∈ {1, . . . H},

Eh ⊇ Vh ∩ Zh ∩ Eh−1.

Analysis of E0. Note that, since ‖Ĉn‖ ≤ κ2, then 1
κ2+λ

I � (Ĉn + λI)−1 � 1
λ

, so for any x ∈ X
the following holds

k(x, x)

(κ2 + λ)n
≤ ̂̀(x, λ) ≤ k(x, x)

λn
.

117

Since λ0 = κ2

min(2,T)−1
and ̂̀∅,[](x, λ0) = k(x,x)

λ0n
, we have

1

T
̂̀(x, λ0) ≤ 1

T

k(x, x)

λn
≤ `∅,[](x, λ0) =

k(x, x)

λ0n
=

min(2, T)k(x, x)

(κ2 + λ0)n
≤ min(2, T)̂̀(x, λ0).

Setting conventionally d0, ν0, η0, β0 = 0 (they are not used by the algorithm or the proof), we
have that E0 holds everywhere and so, with probability 1.

Analysis of Eh−1 ∩ Vh. Note that under Eh−1, we have ̂̀Jh−1,Ah−1
(x, λh−1) ≥ 1

T
̂̀(x, λh−1), so

sh = sup
i∈[n]

̂̀(xi, λh)
q1
̂̀
Jh,Ah

(xi, λh−1)
≤ T sup

i∈[n]

̂̀(xi, λh)
q1
̂̀(xi, λh−1)

≤ Tλh−1

λh
sup
i∈[n]

̂̀(xi, λh−1)

q1
̂̀(xi, λh−1)

=
Tλh
q1λh−1

=
Tq

q1

,

where we used the fact that ̂̀(xi, λh) ≤ λh−1

λh
̂̀(xi, λh−1), via Lemma 24. In particular since we

are in Vh, this means that, since q1 ≥ 2Tq(1 + 2/t) log 4n
δ

, we have

νh ≤
Tq

q1

log
8κ2

λhτ
+

√
2
Tq

q1

log
8κ2

λhτ
≤ (4 + 2t−1)−2 +

√
2/(4 + 2t−1)2 (5.17)

≤ (1/8 +
√

1/8)(2 + t−1)−1 ≤ 1

2cT
. (5.18)

Then 1
T
≤ 1−2νh

1−νh
and 1

1−νh
≤ min(T, 2), so by applying Theorem 13, we have

1

T
̂̀(x, λh) ≤ ̂̀Jh,Ah(x, λh) ≤ min(T, 2)̂̀(x, λh).

Analysis of Eh−1 ∩ Zh. First consider
∑

i∈[n] ph,i. By the fact that ˜̀Jh−1,Ah−1
= ̂̀

Jh−1,Ah−1
, by

Proposition 9, we have∑
i∈[n]

ph,i = q1

∑
i∈[n]

˜̀
Jh−1,Ah−1

(xi, λh) = q1

∑
i∈[n]

̂̀
Jh−1,Ah−1

(xi, λh)

≤ q1
λh−1

λh

∑
i∈[n]

̂̀
Jh−1,Ah−1

(xi, λh−1),≤ q1 min(T, 2)
λh−1

λh

∑
i∈[n]

̂̀(xi, λh−1),

≤ q1 min(T, 2)
λh−1

λh

∑
i∈[n]

̂̀(xi, λh) = q1 min(T, 2)N̂ (λh),

where we applied in order (1) Lemma 24, to bound ̂̀Jh−1,Ah−1
(xi, λh) in terms of ̂̀Jh−1,Ah−1

(xi, λh−1),

(2) the fact that we are in the eventEh−1 and so ̂̀Jh−1,Ah−1
(xi, λh−1) ≤ min(T, 2)̂̀(xi, λh−1), then

(3) again Lemma 24 to bound ̂̀(xi, λh−1) w.r.t. ̂̀(xi, λh), and (4) finally the definition of N̂ (λh).

118

Now if N̂ (λh) ≤ 10, we have that∑
i∈[n]

ph,i + (1 + (
∑
i∈[n]

ph,i)
1/2) log

3

τ
≤ 15q1 min(T, 2) log

3

τ
.

If N̂ (λh) > 10, we have that∑
i∈[n]

ph,i + (1 + (
∑
i∈[n]

ph,i)
1/2) log

3

τ
≤ 3N̂ (λh)q1 min(T, 2) log

3

τ
.

So under Eh−1 ∩ Zh, we have that

|J | ≤ 3q1 min(T, 2)
(

5 ∨ N̂ (λh)
)

log
3

τ
.

Unrolling the recurrence relation. The two results above imply Eh ⊇ Vh ∩ Zh ∩ Eh−1. Now
we unroll the recurrence relation, obtaining

Eh ⊇ E0 ∩ (∩hj=1Zj) ∩ (∩hj=1Vj),

so by taking their intersections, we have

∩Hh=0Eh ⊇ E0 ∩ (∩Hj=1Zj) ∩ (∩Hj=1Vj). (5.19)

Bounding Vh, Zh in high probability Let h ∈ [H]. Denote by Ph = (ph,j)j∈[n]. The probability
of the event Zh can be written as P(Zh) =

∫
P(Zh|Ph)dP(Ph). Now note that P(Zh|Ph) is

controlled by Lemma 29, that proves that the probability of P(Zh|Ph) is at least 1− τ . Then

P(Zh) =

∫
P(Zh|Ph)dP(Ph) ≥ inf

Ph
P(Zh|Ph) ≥ 1− τ.

The probability event Vh is lower bounded by 1 − τ , via the same reasoning, using Lemma 28.
Finally note that E0 holds with probability 1. So by taking the intersection bound according to
Equation (5.19), we have that ∩Hh=0Eh holds at least with probability 1− 3Hτ .

5.2.7 Proof of Theorem 12

Here we state the proof of Theorem 12, presented in Section 5.1.6.

Proof. The proof of this theorem splits in the proof for Algorithm 3 that corresponds to The-
orem 14 and the proof for Algorithm 4, that corresponds to Theorem 15. In particular, the

119

result about leverage scores is expressed in terms of out-of-sample-leverage-scores ̂̀Jh,Ah (Defi-
nition 8). The desired result, about ˜̀Jh,Ah , is obtained via Proposition 9.

Note that the two theorems provides stronger guarantees than the ones required by this theorem.
We will use only points (a) and (b) of their statements. Moreover they prove the result for the
out-of-sample-leverage-scores (Definition 8) and here we specify the result only for x = xi, with
i ∈ [n].

5.3 Efficient Supervised Learning with Leverage Scores

In this section, we discuss the impact of BLESS in a supervised learning. Unlike most previous
results on leverage scores sampling in this context [AM15a, CLV17a, MM17], we consider the
setting of statistical learning we presented in Chapter 2. The notation used is the one defined in
Section 4.6.1.

5.3.1 Learning with FALKON-BLESS

The algorithm we propose, called FALKON-BLESS, combines BLESS with FALKON (see
Chapter 4) As we discuss in the following, the combination with BLESS leads to further im-
provements.

We now quickly recall FALKON and its algorithmic ideas. First, sampling is used to select a
subset {x̃1, . . . , x̃M} ⊆ {x1, . . . , xn} of the input data uniformly at random, and to define an
approximate solution

f̂λ,M(x) =
M∑
j=1

k(x̃j, x)cj, c = (K̂>nMK̂nM + λK̂MM)−1K̂>nMy, (5.20)

where c = (c1, . . . , cM), K̂nM ∈ Rn×M , has entries (K̂nM)ij = k(xi, x̃j) and K̂MM ∈ RM×M

has entries (K̂MM)jj′ = k(x̃j, x̃j′), with i ∈ [n], j, j′ ∈ [M]. FALKON proposes to compute a
solution of the linear system 5.20 via a preconditioned iterative solver. The preconditioner is the
core of the algorithm and is defined by a matrix B such that

BB> =
(n
M
K̂2
MM + λK̂MM

)−1

. (5.21)

The overall algorithm has complexity O(nMt) in time and O(M2) in space, where t is the
number of conjugate gradient iterations performed.
In this Chapter, we analyze a variation of FALKON where the points {x̃1, . . . , x̃M} are selected
via leverage score sampling using BLESS, see Algorithm 3 or Algorithm 4, so that M = Mh

120

and x̃m = xjm , for Jh = {j1, . . . , jMh
} and m ∈ [Mh]. Further, the preconditioner in (5.21) is

replaced by

BhB
>
h =

(n
M
K̂Jh,JhA

−1
h K̂Jh,Jh + λhK̂Jh,Jh

)−1

. (5.22)

This solution can lead to huge computational improvements. Indeed, the total cost of FALKON-
BLESS is the sum of computing BLESS and FALKON, corresponding to

O
(
n|Jh|t+ (1/λ)|Jh|2 log n+ |Jh|3

)
O(|Jh|2), (5.23)

in time and space respectively, where |Jh| is the size of the set JH returned by BLESS.

5.3.2 Statistical Properties of FALKON-BLESS

In this section, we state and discuss our second main result, providing an excess risk bound
for FALKON-BLESS. Here the population version of the effective dimension (Definition 1 of
Chapter 2) plays a key role. Let ρX be the marginal measure of ρ on X , let C : H → H be
the linear operator defined as follows and N (λ) be the population version of N̂ (λ) as defined in
Definition 1 of Chapter 2,

N (λ) = Tr(C(C + λI)−1), with (Cf)(x′) =

∫
X
k(x′, x)f(x)dρX (x),

for any f ∈ H, x ∈ X . It is possible to show thatN (λ) is the limit of N̂ (λ) as n goes to infinity,
see Lemma 30 below taken from [RCR15]. If we assume throughout that,

k(x, x′) ≤ κ2, ∀x, x′ ∈ X , (5.24)

then the operator C is symmetric, positive definite and trace class, and the behavior ofN (λ) can
be characterized in terms of the properties of the eigenvalues (σj)j∈N of C. Indeed as for N̂ (λ),
we have that N (λ) ≤ κ2/λ, moreover if σj = O(j−α), for α ≥ 1, we have N (λ) = O(λ−1/α) .
Then for larger α, N is smaller than 1/λ and faster learning rates are possible, as shown below.
We next discuss the properties of the FALKON-BLESS solution denoted by f̂λ,n,t.

Theorem 16. Let n ∈ N, λ > 0 and δ ∈ (0, 1]. Assume that y ∈ [−a
2
, a

2
], almost surely, a > 0,

and denote by fH a minimizer of the expected risk (see equation (2.4)). There exists n0 ∈ N,
such that for any n ≥ n0, if t ≥ log n, λ ≥ 9κ2

n
log n

δ
, then the following holds with probability

at least 1− δ:

R(f̂λ,n,t) ≤
4a

n
+ 32‖fH‖2

H

(
a2 log2 2

δ

n2λ
+
a N̂ (λ) log 2

δ

n
+ λ

)
.

121

In particular, when N (λ) = O(λ−1/α), for α ≥ 1, by selecting λ∗ = n−α/(α+1), we have

R(f̂λ∗,n,t) ≤ cn−
α
α+1 ,

where c is given explicitly in the proof.

We comment on the above result discussing the statistical and computational implications.

Statistics. The above theorem provides statistical guarantees in terms of finite sample bounds
on the excess risk of FALKON-BLESS, A first bound depends of the number of examples n, the
regularization parameter λ and the population effective dimension N (λ). The second bound is
derived optimizing λ, and is the same as the one achieved by exact kernel ridge regression which
is known to be optimal [CDV07, SHS+09, LRRC18]. Note that improvements under further
assumptions are possible and are derived in Section 5.4, see Thm. 19. Here, we comment on the
computational properties of FALKON-BLESS and compare it to previous solutions.

Computations. To discuss computational implications, we recall a result from [RCR15] show-
ing that the population version of the effective dimension N (λ) and the effective dimension
N̂ (λ) associated to the empirical kernel matrix converge up to constants.

Lemma 30. Let λ > 0 and δ ∈ (0, 1]. When λ ≥ 9κ2

n
log n

δ
, then with probability at least 1− δ,

(1/3)N (λ) ≤ N̂ (λ) ≤ 3N (λ).

Recalling the complexity of FALKON-BLESS (5.23), using Thm 16 and Lemma 30, we derive
a cost

O
(
nN (λ) log n+

1

λ
N (λ)2 log n+N (λ)3

)
in time and O(N (λ)2) in space, for all n, λ satisfying the assumptions in Theorem 16. These
expressions can be further simplified. Indeed, it is easy to see that for all λ > 0,

N (λ) ≤ κ2/λ, (5.25)

so that N (λ)3 ≤ κ2

λ
N (λ)2. Moreover, if we consider the optimal choice λ∗ = O(n−

α
α+1)

given in Theorem 16, and take N (λ) = O(λ−1/α), we have 1
λ∗
N (λ∗) ≤ O(n), and therefore

1
λ
N (λ)2 ≤ O(nN (λ)). In summary, for the parameter choices leading to optimal learning rates,

FALKON-BLESS has complexity Õ(nN (λ∗)), in time and Õ(N (λ∗)
2) in space, ignoring log

terms. We can compare this to previous results. In [RCR17] uniform sampling is considered
leading to M ≤ O(1/λ) and achieving a complexity of Õ(n/λ) which is always larger than the
one achieved by FALKON in view of (5.25). Approximate leverage scores sampling is also con-
sidered in [RCR17] requiring Õ(nN̂ (λ)2) time and reducing the time complexity of FALKON
to Õ(nN̂ (λ∗)). Clearly in this case the complexity of leverage scores sampling dominates, and
our results provide BLESS as a fix.

122

5.4 Theoretical Analysis for FALKON-BLESS

In the next section the FALKON algorithm is recalled with some minor changes in the notation
with respect to the definition given in Section 4.5.1 of the previous Chapter. The changes in
notation are required to better describe the link with the BLESS algorithm. When not explicitly
redefined the notation follows the definitions of Section 4.6.

Then it is proved in Theorem 17 that the excess risk of FALKON-BLESS is bounded by the
one of Nyström-KRR. In Theorem 18 the learning rates for Nyström-KRR with BLESS are
provided. In Theorem 19 a more general version of Theorem 16 is provided, taking into account
more refined regularity conditions on the learning problem. Finally the proof of Theorem 16 is
derived as a corollary.

5.4.1 Definition of the Algorithm

Definition 9 (Generalized Preconditioner). Given λ > 0, (x̃j)
M
j=1 ⊆ X , M ∈ N and A ∈ RM×M

positive diagonal matrix, we say that B is a generalized preconditioner, if

B =
1√
n
A−1/2QT−1R−1,

where Q ∈ RM×q partial isometry with Q>Q = I and q ≤M , where T,R ∈ Rq×q are invertible
triangular, and Q, T,R satisfy

A−1/2K̂MMA
−1/2 = QT>TQ>, R>R =

1

M
TT> + λI,

with K̂MM ∈ RM×M defined as (K̂MM)ij = K(x̃i, x̃j).

Definition 10 (Generalized FALKON Algorithm). Let λ > 0 and t, n,M ∈ N. Let (xi, yi)
n
i=1 ⊆

X × Y be the dataset. Given J ⊆ [n] let X̃J = ∪j∈Jxj be the selected Nyström centers and
denote by {x̃1, . . . , x̃|J |} the points in X̃J . Let A ∈ R|J |×|J | be a positive diagonal matrix of
weights and K the kernel function. Let B, q be as in Definition 9 based on X̃M and A. The
Generalized FALKON estimator is defined as follows

f̂λ,J,A,t =

|J |∑
i=1

αiK(x, x̃i), with α = Bβt,

where βt ∈ Rq denotes the vector resulting from t iterations of the conjugate gradient algorithm
applied to the following linear system

Wβ = b, W = B>(K̂>nMK̂nM + λnK̂MM)B, b = B>K̂>nMy,

123

with K̂nM ∈ Rn×M , (K̂nM)ij = K(xi, x̃j), and K̂MM ∈ RM×M , (K̂MM)ij = K(x̃i, x̃j), and
with y = (y1, . . . , yn) ∈ Rn.

Definition 11 (Standard Nyström Kernel Ridge Regression). With the same notation as above,
the standard Nyström Kernel Ridge Regression estimator is defined as

f̃λ,J =

|J |∑
i=1

αiK(x, x̃i), with α = (K̂>nMK̂nM + λnK̂MM)†y.

5.4.2 Main Results

Here, Theorem 17 proves the excess risk of FALKON-BLESS is bounded by the one of Nyström-
KRR. In Theorem 18 the learning rates for Nyström-KRR are provided. In Theorem 19 a more
general version of Theorem 16 is provided, taking into account more refined regularity conditions
on the learning problem. Finally the proof of Theorem 16 is derived as a corollary.

Let Zn = (xi, yi)
n
i=1 be a dataset and J ⊆ {1, . . . , n} and A ∈ R|J |×|J | positive diagonal matrix.

In the rest of this section we denote by f̂λ,J,A,t the FALKON estimator as in Definition 10 trained
on Zn and based on the Nyström centers X̃M = ∪j∈J{xj} and weights A with regularization λ
and number of iterations t. Moreover we denote by f̂λ,J the standard Nyström estimator trained
on Zn and based on the Nyström centers X̃M .

The following theorem is obtained by combining Lemma 2, 3 and Thm. 1 of [RCR17], with our
Proposition 10.

Theorem 17. Let λ > 0, n ≥ 3, δ ∈ (0, 1], tmax ∈ N. Let Zn = (xi, yi)
n
i=1 be an i.i.d. dataset.

LetH and (λh)
H
h=0, (Mh)

H
h=0, (Jh)

H
h=0, (Ah)

H
h=0 be outputs of Algorithm 3 runned with parameter

T = 2.

The following holds with probability 1− 2δ: for each h ∈ {0, . . . , H} such that 0 < λh ≤ ‖C‖,

R(f̂λh,Jh,Ah,t)
1/2 ≤ R(f̃λh,Jh)1/2 + 4v̂ e−t

√
1 +

9κ2

λhn
log

nHtmax

δ
, ∀t ∈ {0, . . . , tmax},

with v̂2 := 1
n

∑n
i=1 y

2
i .

Proof. Let τ = δ/(tmaxH), let h ∈ {1, . . . , H} and let Ah = n
|Jh|

Ah. By Lemma 12 and

Lemma 13 in the previous Chapter we have that, when Gλ(ĈJh,Ah , Ĉn) < 1 then the condition
number of Wh, that is the preconditioned matrix in Definition 10 with λ = λh, is controlled by

cond(Wh) ≤
1 +Gλh(ĈJh,Ah , Ĉn)

1−Gλh(ĈJh,Ah , Ĉn)
.

124

Now, by Proposition 10, we have

Gλh(ĈJh,Ah , Ĉn) ≤
Gλh(Ĉn, ĈJh,Ah)

1−Gλh(Ĉn, ĈJh,Ah)
.

Combining the two results above, if Gλh(Ĉn, ĈJh,Ah) ≤ 1/3 then

cond(Wh) ≤
1

1− 2 Gλh(Ĉn, ĈJh,Ah)
≤ 3.

Now denote by Eh,t the event such that

R(f̂λh,Jh,Ah,t)
1/2 ≤ R(f̃λh,Jh)1/2 + 4v̂ e−t

√
1 +

9κ2

λhn
log

n

τ
.

Since cond(Wh) ≤ 3, we have that log

√
cond(Wh)+1√
cond(Wh)+1

≥ 1 and so we can apply Theorem 4 in the

previous Chapter with parameter ν = 1, obtaining that each Eh,t, with t ∈ {0, . . . , tmax} hold
with probability 1− τ . So by taking the intersection bound, we know that Eh := ∩tmax

t=0 Eh,t holds
with probability 1− tmaxτ .

Finally denote by FH the event: Gλh(Ĉn, ĈJh,Ah) ≤ 1/3 for any h ∈ {0, . . . , H}. Note that
Theorem 14 states that, by running Algorithm 3 with T = 2, the event FH holds with probability
at least 1− δ.

The desired result correspond to the event ∩Hh=1Eh∩FH which, by taking the intersection bound,
holds with probability at least 1− δ − tmaxHτ .

5.4.3 Result for Nyström-KRR and BLESS

Referring to the notation introduced in Section 4.6.1, and using the Assumptions 3 and 6 (Sec-
tion 2.5.2) that will be satisfied by the conditions on Theorem 16, we now prove learning rates
for Nyström-KRR with BLESS and then prove the main results of this work.

Theorem 18 (Generalization properties of Nyström-RR using BLESS). Let δ ∈ (0, 1] and λ >
0, n ∈ N. Under Assumption 3, 6, let the Nyström estimator as in Definition 11 and assume that
(Jh)

H
h=1, (Ah)

H
h=1, (λh)

H
h=1 is obtained via Algorithm 3 or 4. When 9κ2

n
log n

δ
≤ λ ≤ ‖C‖, then

the following holds with probability 1− 4δ

R(f̃λh,Jh) ≤ 8‖g‖H

b log 2
δ

n
√
λh

+

√
σ2N̂ (λh) log 2

δ

n
+ λ

1/2+v
h

 .

125

Proof. The proof consists in following the decomposition in Thm. 1 of [RCR15], valid under
Assumption 6 and using our set Jh to determine the Nyström centers. First note that under
Assumption 6, there exists a function fH ∈ H, such that E(fH) = inff∈H E(f) (see [CDV07]
and also [SHS+09, LRRC18]). According to Thm. 2 of [RCR15], under Assumption 6, we have
that

R(f̃λh,Jh)1/2 ≤ q(S(λh, n)︸ ︷︷ ︸
Sample error

+ C(Mh)
1/2+v︸ ︷︷ ︸

Computational error

+ λ
1/2+v
h︸ ︷︷ ︸

Approximation error

),

where S(λ, n) =
∥∥∥(C + λI)−1/2(Ŝ∗nŷ − ĈnfH)

∥∥∥ and C(Mh) =
∥∥(I − PMh

)(C + λI)1/2
∥∥2 with

PMh
= ĈJh,IĈ

†
Jh,I

. Moreover q = ‖g‖H(β2 ∨ (1 + θβ)), β =
∥∥∥(Ĉn + λI)−1/2(C + λI)1/2

∥∥∥,

θ =
∥∥∥(Ĉn + λI)1/2(C + λI)−1/2

∥∥∥.

The term S(λh, n) is controlled under Assumption 3 by Lemma 4 of the same paper, obtaining

S(λ, n) ≤
b log 2

δ

n
√
λh

+

√
σ2N̂ (λh) log 2

δ

n
,

with probability at least 1− δ. The term β is controlled by Lemma 5 of the same paper,

β ≤ 2,

with probability 1− δ under the condition on λ. Moreover

θ2 = ‖(C + λI)−1/2Ĉn(C + λI)−1/2‖ ≤ 1 + ‖(C + λI)−1/2(Ĉn − C)(C + λI)−1/2‖,

where the last term is bounded by 1/2 with probability 1− δ under the same condition on λ, via
Proposition 8 and the following Remark 1 of the same paper.

Now we study the term C(Mh) that is the one depending on the result of BLESS. First note that,
since diag(Ah) > 0, then

PMh
= ĈJh,IĈ

†
Jh,I

= ĈJh,AhĈ
†
Jh,Ah

.

By applying Proposition 3 and Proposition 7 of the same paper, the following holds

C(Mh) ≤
λh

1−Gλh(Ĉn, ĈJh,Ah)
,≤ 2λh,

with probability at least 1 − δ, where we applied Theorem 14-(c) and Theorem 15-(c), which
control exactly Gλh(Ĉn, ĈJh,Ah) and prove it to be smaller than 1/2 in high probability.

Finally by taking the intersection bound of the events above, we have

R(f̃λh,Jh)1/2 ≤ 4‖g‖H

b log 2
δ

n
√
λh

+

√
σ2N̂ (λh) log 2

δ

n
+ 2λ

1/2+v
h

 ,

with probability 1− 4δ.

126

Theorem 19 (Generalization properties of learning with FALKON-BLESS). Let δ ∈ (0, 1] and
λ > 0, n ≥ 3, tmax ∈ N. Let Zn = (xi, yi)

n
i=1 be an i.i.d. dataset. Let H and MH , JH , AH be

outputs of Algorithm 3 runned with parameter T = 2. Let y ∈ [−a/2, a/2] almost surely, with
a > 0. Under Assumption 6, Let λ > 0, n ≥ 3, δ ∈ (0, 1], when 9κ2

n
log n

δ
≤ λ ≤ ‖C‖, then the

following holds with probability 1− 6δ

R(f̂λ,JH ,AH ,t) ≤ 4a e−t + 32‖g‖2
H

(
a2 log2 2

δ

n2λ
+
aN̂ (λ) log 2

δ

n
+ 2λ1+2r

)
, ∀t ∈ {0, . . . , tmax},

Proof. The result is obtained by combining Theorem 17, with Theorem 18 and noting that when
y ∈ [−a/2, a/2] almost surely, then it satisfies Assumption 3 with b, σ ≤ a.

5.4.4 Proof of Theorem 16

Proof. The result is a corollary of Theorem 19, where we assumed only the existence of fH. This
correspond to assume Assumption 6, with r = 1/2 and g = fH (see [CDV07]).

5.5 Experiments

We now present some experimental results. We first show that the leverage score obtained by
the BLESS and BLESS-R are accurate, and then we show which effect they have in a supervised
learning problem with the FALKON-BLESS algorithm.

5.5.1 Leverage Scores Accuracy

We first study the accuracy of the leverage scores generated by BLESS and BLESS-R, comparing
SQUEAK [CLV17a] and Recursive-RLS (RRLS) [MM17]. We begin by uniformly sampling a
subsets of n = 7×104 points from the SUSY dataset [BSW14], and computing the exact leverage
scores `(i, λ) using a Gaussian Kernel with σ = 4 and λ = 10−5, which is at the limit of our
computational feasibility. We then run each algorithm to compute the approximate leverage
scores ˜̀JH (i, λ), and we measure the accuracy of each method using the ratio ˜̀JH (i, λ)/`(i, λ)
(R-ACC). The final results are presented in Figure 5.1. On the left side for each algorithm we
report runtime, mean R-ACC, and the 5th and 95th quantile, each averaged over the 10 repetitions.
On the right side a box-plot of the R-ACC. As shown in Figure 5.1 BLESS and BLESS-R achieve
the same optimal accuracy of SQUEAK with just a fraction of time. Note that despite our best
efforts, we could not obtain high-accuracy results for RRLS (maybe a wrong constant in the
original implementation). However note that RRLS is computationally demanding compared

127

Time R-ACC 5th/ 95th quant

BLESS 17 1.06 0.57 / 2.03
BLESS-R 17 1.06 0.73 / 1.50
SQUEAK 52 1.06 0.70 / 1.48
Uniform - 1.09 0.22 / 3.75
RRLS 235 1.59 1.00 / 2.70

BLESS BLESS-R SQUEAK Uniform RRLS

1

1.5

2

2.5

3

R
-A

C
C

RLS Accuracy

Fig. 5.1: Leverage scores relative accuracy for λ = 10−5, n = 70 000,M = 10 000, 10 repetitions.

0 1 2 3 4 5 6 7

Number of Points 10
4

10
-2

10
-1

10
0

10
1

S
e

c
o

n
d

s

Time Comparison

BLESS
BLESS-R
SQUEAK
RRLS

Fig. 5.2: Runtimes with λ = 10−3 and n increasing

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

falkon

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
C

la
s
s
ifi

c
a

tio
n

 E
rr

o
r

Test Error

FALKON-UNI

FALKON-BLESS

Fig. 5.3: C-err at 5 iterations for varying λfalkon

to BLESS, being orders of magnitude slower, as expected from the theory. Finally, although
uniform sampling is the fastest approach, it suffers from much larger variance and can over or
under-estimate leverage scores by an order of magnitude more than the other methods, making it
more fragile for downstream applications.
In Fig. 5.2 we plot the runtime cost of the compared algorithms as the number of points grows
from n = 1000 to 70000, this time for λ = 10−3. We see that while previous algorithms’ runtime
grows near-linearly with n, BLESS and BLESS-R run in a constant 1/λ runtime, as predicted by
the theory.

5.5.2 BLESS for Supervised Learning

We study the performance of FALKON-BLESS and compare it with the original FALKON
[RCR17] where an equal number of Nyström centres are sampled uniformly at random (FALKON-
UNI). We take from [RCR17] the two biggest datasets and their best hyper-parameters for the
FALKON algorithm.

128

5 10 15 20

Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U
C

Test Accuracy

Fig. 5.4: AUC per iteration of the SUSY dataset Fig. 5.5: AUC per iteration of the HIGGS dataset

We noticed that it is possible to achieve the same accuracy of FALKON-UNI, by using λbless
for BLESS and λfalkon for FALKON with λbless � λfalkon, in order to lower the N̂ and
keep the number of Nyström centres low. For the SUSY dataset we use a Gaussian Kernel
with σ = 4, λfalkon = 10−6, λbless = 10−4 obtaining MH ' 104 Nyström centres. For the
HIGGS dataset we use a Gaussian Kernel with σ = 22, λfalkon = 10−8, λbless = 10−6, ob-
taining MH ' 3 × 104 Nyström centres. We then sample a comparable number of centers
uniformly for FALKON-UNI. Looking at the plot of their AUC at each iteration (Fig.5.4, 5.5)
we observe that FALKON-BLESS converges much faster than FALKON-UNI. For the SUSY
dataset (Figure 5.4) 5 iterations of FALKON-BLESS (160 seconds) achieve the same accuracy
of 20 iterations of FALKON-UNI (610 seconds). Since running BLESS takes just 12 secs. this
corresponds to a ∼ 4× speedup. For the HIGGS dataset 10 iterations of FALKON-BLESS (with
BLESS requiring 1.5 minutes, for a total of 1.4 hours) achieve better accuracy of 20 iterations
of FALKON-UNI (2.7 hours). Additionally we observed that FALKON-BLESS is more stable
than FALKON-UNI w.r.t. λfalkon, σ. In Figure 5.3 the classification error after 5 iterations of
FALKON-BLESS and FALKON-UNI over the SUSY dataset (λbless = 10−4). We notice that
FALKON-BLESS has a wider optimal region (95% of the best error) for the regulariazion pa-
rameter ([1.3× 10−3, 4.8× 10−8]) w.r.t. FALKON-UNI ([1.3× 10−3, 3.8× 10−6]).

129

Chapter 6

Kernelized Bandit Optimization

In the previous chapters, we considered the statistical learning setting. In that setting, given
input/output pairs, the goal is to learn the unknown function that determines the relation between
input and output over all possible inputs. In details the goal is to learn an unknown function f
from a set of provided noisy samples {xi, yi}ni=1 generated from this function as yi = f(xi) + ε,
where ε is a form of noise. The learned function is good if for any new input point xnew, the
corresponding output ynew can be predicted.

In this chapter, we consider instead a setting known as optimization under bandit feedback or
bandit optimization, where the main goal is not to learn a good estimator of the function f on the
entire domain but to maximize the function f . Differently from the statistical learning setting a
set of points is not provided from the beginning. Instead, they need to be collected according to an
optimal strategy, considering that sampling one input/output pair comes with a cost proportional
to the distance of the output from the actual maximum of the function.

6.1 Bandit Optimization

In bandit optimization we assume there exists an input space A also known as set of arms. For
the sake of simplicity, we are going to assume that A = {xi}Ai=1 is a fixed finite set of A points
in Rd. This assumption can be relaxed and we are going to discuss how it can be relaxed later in
Section 7.2.

We define with f : A → R a reward function that we wish to maximize over the set of arms A.
This reward function is unknown and noisy, and differently from the statistical learning setting,
we are not provided with input/output pairs to approximate the reward function. What we can do
instead is to collect input/output pairs over T ∈ N+ iterations. The number of iterations T can
potentially be infinite but, for the sake of simplicity, we consider it finite in the following. For

130

each iteration t ∈ [T], after choosing an arm xt ∈ A, we can evaluate the reward function at the
chosen point to collect the corresponding output yt = f(xt) + ηt (also called reward), where ηt
is a zero-mean noise. However we further assume that for each evaluation of the reward function
we are going to suffer a cost proportional to the distance between the output of the chosen input
yt = f(xt) + ηt and the output of the best arm y? = f(x?) + ηt. The best arm x? is the input that
in expectation returns the highest reward. Without this assumption on the cost of sampling, the
problem could be solved trivially with techniques described in the previous chapters. Indeed one
could query as many input/output pairs as desired recovering the statistical learning setting. To
measure the suffered cost over T iterations we define the following quantity known as cumulative
regret

RT =
T∑
t=1

f(x?)− f(xt), (6.1)

where xt with t ∈ [T] is the input chosen at time t and x? = argmaxxi∈A f(xi).

The goal in this setting is to choose the best possible sequence of points xt in order to minimize
the cumulative regret. In particular, the objective of a so-called no-regret algorithm is to have
RT/T going to zero as fast as possible when T grows. In bandit optimization, the learning
process can be described as a sequential game between a learner and an environment. In this
game setting evaluating the reward function f with respect to an arm xi is often referred to as
pulling the arm xi. Before the game starts the learner chooses an optimization strategy and a
prior on the reward function f . Then for each step t ∈ [T] of the game, the learner

(1) chooses an arm xt ∈ A according to the optimization strategy,

(2) queries the environment in order to receive the corresponding output yt = f(xt) + ηt,
where ηt is a zero-mean noise,

(3) updates its model of the problem based on the observed output.

Different optimization strategies and different priors define different bandit optimization algo-
rithms. In the following, we are interested in studying algorithms that use non-linear non-
parametric priors over f . In particular, we consider Gaussian Processes (GP) as priors [RW06].
Using a GP is similar to use a KRR estimator (see (2.32) in Section 2.3) as prior of f , adding the
option to estimate the uncertainty of the estimator. We define a GP in mode details in Section 6.3.
The optimization strategy determines the exploration-exploitation trade-off of the sampling pro-
cess. On the one hand, at any point in time t, one would want to choose an arm xt that has
produced the biggest reward until time t. On the other hand, one would want to explore other op-
tions that may look inferior or unexplored, but that may produce bigger rewards in future iterates.
Between the many options like explore-then-commit [Rob52] or Thompson sampling [Tho33] we
consider in the following the upper confidence bound principle [LR85].

131

6.2 Upper Confident Bound

The upper confidence bound (UCB) strategy follows the so-called optimism in face of uncertainty
principle. This principle states that the learner should choose an arm as if the environment is as
nice as plausibly possible. This principle assigns to each arm xi ∈ A a value called the UCB
such that in high probability this value is an overestimate of f(xi), the true unknown reward of
arm xi. The learner then proceeds to pick at each iteration the arm xt with the highest UCB and
uses the observed output yt to update the UCBs. If the UCBs are properly built, it can be proved
that the learning algorithm will converge to choose mainly the optimal arm.

To formalize this strategy, let µt : A → R be the function that given an arm xi ∈ A returns the
empirical mean of the reward of the arm xi, based on the observations collected until time t. Let
∆t : A → R+ be a non-negative function used to overestimate the mean. We can express the
upper confidence bounds as a function ut : A → R defined as

ut(xi) = µt(xi) + ∆t(xi). (6.2)

The exact definitions of the µt and ∆t functions depend on the assumptions that are made on
the problem. The mean µt depends in particular on the prior over the reward function f . The
function ∆t needs to be properly chosen to allow the learning algorithm to achieve low regret
guarantees. Further, these two functions both depend on the observations collected until time t.
Every time a new pair {xt, yt} gets collected their definition changes. The function µt will get
closer with time to the true mean reward for each arm, and the overestimate given by ∆t will
fade. In particular, the value ∆t(xi) decreases proportionally to the number of times the arm xi
is pulled.

Using the UCB principle, the learning strategy can be re-written as follows.
For each t ∈ [T]:

(1) select an arm xt = argmaxxi∈A ut(xi),

(2) observe the corresponding output yt = f(xt) + ηt,

(3) updates µt and ∆t based on the observed yt.

We will see in details in Section 6.4 how the UCBs ut are built in the GP-UCB algorithm
[SKKS10].

6.3 Gaussian Process

We give in the following the formal definition of a Gaussian process.

132

A Gaussian process GP(µ, k) is a generalization of the Gaussian distribution to a space of func-
tions and it is defined by a mean function µ : A → R and a covariance function k : A×A → R.
We consider zero-mean GP(0, k) priors and bounded covariance k(xi, xi) ≤ κ2 for all xi ∈ A.

An important property of Gaussian processes is that if we combine a prior f ∼ GP(0, k) and
assume that the observation noise is zero-mean Gaussian (i.e., ηt ∼ N (0, ξ2)), then the posterior
distribution of f conditioned on a set of observations {(xs, ys)}ts=1 is also a GP. More precisely,
if Xt = [x1, . . . , xt]

T ∈ Rt×d is the matrix with all arms selected so far and yt = [y1, . . . , yt]
T

the corresponding observations, then the posterior is still a GP and the mean and variance of the
function at a test point x are defined as

µt (x | Xt, yt) = k̂t(x)T(K̂t + λI)−1yt, (6.3)

σ2
t (x | Xt) = k(x, x)− k̂t(x)T(K̂t + λI)−1k̂t(x), (6.4)

where λ = ξ2, K̂t ∈ Rt×t is the matrix [K̂t]i,j = k(xi, xj) constructed from all pairs xi, xj in Xt,
and k̂t(x) = [k(x1, x), . . . , k(xt, x)]T. Notice that k̂t(x) can be seen as an embedding of an arm
x represented using by the arms x1, . . . , xt observed so far.

6.4 GP-UCB

GP-UCB is popular no-regret algorithm for optimization under bandit feedback and was intro-
duced by [SKKS10] for Gaussian process optimization.

The GP-UCB algorithm uses a Gaussian process GP(0, k) as a prior for f . Inspired by the
optimism in face of uncertainty principle, at each time step t, GP-UCB uses the posterior GP to
compute the mean and variance of an arm xi and obtain the score

ut(xi) = µt(xi) + βtσt(xi), (6.5)

where we use the short-hand notation µt(·) = µ (· | Xt, yt) and σt(·) = σ (· | Xt) to indicate the
mean and the variance that depend on the points observed until time t.

Finally, GP-UCB chooses the maximizer xt+1 = argmaxxi∈A ut(xi) as the next arm to evaluate.
According to the score ut, an arm x is likely to be selected if it has high mean reward µt or high
variance σt, i.e., its estimated reward µt(x) is very uncertain. As a result, selecting the arm xt+1

with the largest score trades off between collecting (estimated) large reward (exploitation) and
improving the accuracy of the posterior (exploration).

The parameter βt balances between these two objectives and must be properly tuned to guarantee
low regret. [SKKS10] proposes different approaches for tuning βt, depending on the assumptions
on f and A.

133

Tuning correctly βt it is possible to prove (see [SKKS10] for the Bayesian analysis and [CG17]
for the frequentist analysis) that the regret of GP-UCB after T iterations can be controlled as

RT ≤ O(
√
TγT), (6.6)

where γT is the quantity known as maximum information gain that can be further controlled
based on the assumptions of the problem (we define in details this quantity in the next chapter).

While GP-UCB is interpretable, simple to implement and provably achieves low regret, it is
computationally expensive. In particular, computing σt(x) has a complexity at least Ω(t2) for the
matrix-vector product (K̂t−1 + ξ2I)−1k̂t−1(x). Multiplying this complexity by T iterations and
A arms results in an overall O(AT 3) cost, which does not scale to a large number of iterations
T .

134

Chapter 7

Gaussian Process Optimization with
Adaptive Sketching

In this chapter, we present BKB (budgeted kernelized bandit), a new approximate Gaussian
process (GP) algorithm for optimization under bandit feedback that achieves near-optimal regret
(and hence near-optimal convergence rate) with near-constant per-iteration complexity and no
assumption on the input space or covariance of the GP.

We have seen in the previous chapter that GP-UCB [SKKS10] is a a well studied Bayesian ap-
proach for the optimization of black-box functions. Despite its effectiveness in simple problems,
GP-UCB hardly scale to high-dimensional functions, as its per-iteration time and space cost is at
least quadratic in the number of dimensions d and iterations T . Given a set of A alternatives to
choose from, the overall runtime O(AT 3) is prohibitive.

BKB combines GP-UCB with randomized matrix sketching based on leverage score sampling,
and we prove that randomly sampling inducing points based on their posterior variance gives an
accurate low-rank approximation of the GP, preserving variance estimates and confidence inter-
vals. As a consequence, BKB does not suffer from variance starvation, an important problem
faced by many previous sparse GP approximations [WGKJ18]. Moreover, we show that our pro-
cedure selects at most Õ(N̂) points, where N̂ is the effective dimension of the explored space,
which is typically much smaller than both d and t. This greatly reduces the dimensionality of the
problem, thus leading to a O(TAN̂ 2) runtime and O(AN̂) space complexity.

7.1 Budgeted Kernel Bandits

In this section, we introduce the BKB (budgeted kernel bandit) algorithm, a novel efficient
approximation of GP-UCB, and we provide guarantees for its computational complexity. The

135

analysis in Section 7.1.3 shows that BKB can be tuned to significantly reduce the complexity of
GP-UCB with a negligible impact on the regret. We begin by introducing the first two major
contributions: an approximation of the GP-UCB scores supported only by a small subset It of
inducing points, and a method to incrementally and adaptively construct an accurate subset It.

7.1.1 The algorithm

The main complexity bottleneck to compute the scores in Equation (6.5) is due to the fact that
after t steps, the posterior GP is supported on all t previously seen arms. As a consequence,
evaluating Equations (6.3) and (6.4) requires computing a t dimensional vector k̂t(x) and t × t
matrix K̂t respectively. To avoid this dependency we restrict both k̂t and K̂t to be supported on
a subset It of m arms. This approach is a case of the sparse Gaussian process approximation
[QCRW07], or equivalently, linear bandits constrained to a subspace [KCCB19].

Approximated GP-UCB scores. Consider a subset of arm It = {xi}mi=1 and let XIt ∈ Rm×d be
the matrix with all arms in It as rows. Let K̂It ∈ Rm×m be the matrix constructed by evaluating
the covariance k between any two pairs of arms in It and k̂It(x) = [k(x1, x), . . . , k(xm, x)]T.
The Nyström embedding zt(·) associated with subset It is defined as the mapping1

zt(·) =
(
K̂

1/2
It

)+

k̂It(·) : Rd → Rm,

where (·)+ indicates the pseudo-inverse. We denote with Zt(Xt) = [zt(x1), . . . , zt(xt)]
T ∈ Rt×m

the associated matrix of points and we define Vt = Zt(Xt)
TZt(Xt) + λI . Then, we approximate

the posterior mean, variance, and UCB for the value of the function at xi as

µ̃t(xi) = zt(xi)
TV −1

t Zt(xi)
Tyt,

σ̃2
t (xi) =

1

λ

(
k(xi, xi)− zt(xi)TZt(Xt)

TZt(Xt)V
−1
t zt(xi)

)
,

ũt(xi) = µ̃t(xi) + β̃tσ̃t(xi), (7.1)

where β̃t is appropriately tuned to achieve small regret in the theoretical analysis of Section 7.1.3.
Finally, at each time step t, BKB selects arm x̃t+1 = argmaxxi∈A ũt(xi).

Notice that in general, µ̃t and σ̃t do not correspond to any GP posterior. In fact, if we were
simply replacing the k(xi, xi) in the expression of σ̃2

t (xi) by its value in the Nyström embedding,
i.e., zt(xi)Tzt(xi), then we would recover a sparse GP approximation known as the subset of
regressors. Using zt(xi)Tzt(xi) is known to cause variance starvation, as it can severely under-
estimate the variance of a test point xi when it is far from the points in It. Our formulation of

1Recall that in the exact version, k̂t(x) can be seen as an embedding of any arm x into the space induced by all
the t arms selected so far, i.e., using all selected points as inducing points.

136

σ̃t is known in Bayesian world as the deterministic training conditional (DTC), where it is used
as a heuristic to prevent variance starvation. However, DTC does not correspond to a GP since it
violates consistency [QCRW07]. In this work, we justify this approach rigorously, showing that
it is crucial to prove approximation guarantees necessary both for the optimization process and
for the construction of the set of inducing points.

Algorithm 5: BKB
Data: Arm set A, q, {βt}Tt=1

Result: Arm choices DT = {(x̃t, yt)}
1 Select uniformly at random x1 and observe y1;
2 Initialize I1 = {x1};
3 for t = {1, . . . , T − 1} do
4 Compute µ̃t(xi) and σ̃2

t (xi) for all xi ∈ A;
5 Select x̃t+1 = argmaxxi∈A ũt(xi) (Eq. 7.1);
6 for i = {1, . . . , t+ 1} do
7 Set p̃t+1,i = q · σ̃2

t (x̃i);
8 Draw qt+1,i ∼ Bernoulli (p̃t+1,i);
9 If qt+1 = 1 include x̃i in It+1;

10 end
11 end

Choosing the inducing points. A critical aspect to effectively keep the complexity of BKB low
while still controlling the regret is to carefully choose the inducing points to include in the subset
It. As the complexity of computing ũt scales with the size m of It, a smaller set gives a faster
algorithm. Conversely, the difference between µ̃t and σ̃t and their exact counterparts depends on
the accuracy of the embedding zt, which increases with the size of the set It. Moreover, even for
a fixed m, the quality of the embedding greatly depends on which inducing points are included.
For instance, selecting the same arm as inducing point twice, or two co-linear arms, does not
improve accuracy as the embedding space does not change. Finally, we need to take into account
two important aspects of sequential optimization when choosing It. First, we need to focus our
approximation more on regions of A that are relevant to the objective (i.e., high-reward arms).
Second, as these regions change over time, we need to keep adapting the composition and size
of It accordingly.

To address the first objective, we choose to construct It by randomly subsampling only out of
the set of arms X̃t evaluated so far. This set will naturally focus on high-reward arms, as low-
reward arms will be selected increasingly less often and will become a small minority of X̃t. To
address the change in focus over time, arms are selected for inclusion in It with a probability
proportional to their posterior variance σt at step t, which changes accordingly. We report the
selection procedure in Algorithm 5, with the complete BKB algorithm.

137

0.0 0.2 0.4 0.6 0.8 1.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
x
)

f

0.0 0.2 0.4 0.6 0.8 1.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
x
)

f

0.0 0.2 0.4 0.6 0.8 1.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
x
)

f

Fig. 7.1: We simulate a GP on [0, 1] ∈ R using Gaussian kernel with bandwidth σ2 = 100. We draw f

from the GP and give to BKB t ∈ {6, 63, 215} evaluations sampled uniformly in [0, 0.5]. We plot f and
µ̃t ± 3σ̃t.

We initialize I1 = {x̃1} by selecting an arm uniformly at random. At each step t, after selecting
x̃t+1, we must regenerate It to reflect the changes in X̃t+1 (i.e., resparsify the GP approximation).
Ideally, we would sample each arm in X̃t+1 proportionally to σ2

t+1, but this would be too compu-
tationally expensive. Therefore, we apply two approximations. First we approximate σ2

t+1 with
σ2
t . This is equivalent to ignoring the last arm and does not significantly impact the accuracy. We

can then replace σ2
t with σ̃2

t which can be computed efficiently, and in practice we simply cache
and reuse the σ̃2

t already computed when constructing Equation (7.1). Finally, given a parameter
q ≥ 1, we set our approximate inclusion probability as p̃t+1,i = qσ̃2

t (x̃s). The q parameter is
used to increase the inclusion probability in order to boost the overall success probability of the
approximation procedure at the expense of a small increase in the size of It+1. Given p̃t+1,i, we
start from an empty It+1 and iterate over all x̃i for i ∈ [t + 1] drawing qt+1,i from a Bernoulli
distribution with probability p̃t+1,i. If qt+1,i = 1, x̃i is included in It+1.

Notice that while constructing It based on σ2
t is a common heuristic for sparse GPs, it has not

been yet rigorously justified. In the next section, we show that this posterior variance sampling
approach is equivalent to λ-ridge leverage score (RLS) sampling [AM15b]. We leverage the
known results from this field to prove both accuracy and efficiency guarantees for our selection
procedure.

7.1.2 Complexity analysis

Let mt = |It| be the size of the set It at step t. At each step, we first compute the embedding
zt(xi) of all arms in O(Am2

t + m3
t) time, which corresponds to one inversion of K̂1/2

It and the
matrix-vector product specific to each arm. We then rebuild the matrix Vt from scratch using
all the arms observed so far. In general, it is sufficient to use counters to record the arms pulled
so far, rather than the full list of arms, so that Vt can be constructed in O(min{t, A}m2

t) time.
Then, the inverse V −1

t is computed in O(m3
t) time. We can now efficiently compute µ̃t, σ̃t, and

ũt for all arms in O(Am2
t) time reusing the embeddings and V −1

t . Finally, computing all qt+1,is

138

and It+1 takes O(min{t + 1, A}) time using the estimated variances σ̃2
t . As a result, the per-

step complexity is of order O
(
(A + min{t, A})m2

T

)
.2 Space-wise, we only need to store the

embedded arms and Vt matrix, which takes at most O(AmT) space.

The size of IT . The size mt of It can be expressed using the qt,i r.v. as the sum mt =
∑t

i=1 qt,i.
In order to provide a bound on the total number of inducing points, which directly determines
the computational complexity of BKB, we go through three major steps.

The first is to show that w.h.p. mt is close to the sum
∑t

i=1 p̃t,i =
∑t

i=1 qσ̃
2
t (x̃i), i.e. close

to the sum of the probabilities we used to sample each qt,i. However, the different qt,i are not
independent and each p̃t,i is itself a r.v. Nonetheless all qt,i are conditionally independent given
the previous t− 1 steps, and this is sufficient to obtain the result.

The second and a more complex step is to guarantee that the random sum
∑t

i=1 σ̃
2
t (x̃i) is close

to
∑t

i=1 σ
2
t (x̃i) and, at a lower level, that each individual estimate σ̃2

t (·) is close to σ2
t (·). To

achieve this we exploit the connection between ridge leverage scores and posterior variance σ2
t .

In particular, we show that the variance estimator σ̃2
t (·) used by BKB is a variation of the RLS

estimator of [CLV17b] for RLS sampling. As a consequence, we can transfer the strong accuracy
and size guarantees of RLS sampling to our optimization setting (see Section 7.3.2). Note that
anchoring the probabilities to the RLS (i.e., the sum of the posterior variances) means that the
size of It naturally follows the effective dimension of the arms pulled so far. This strikes an
adaptive balance between decreasing each individual probability to avoid It growing too large,
while at the same time automatically increasing the effective degrees of freedom of the sparse
GP when necessary.

The first two steps lead to mt ≈
∑t

i=1 σ
2
i (x̃i), for which we need to derive a more explicit

bound. In the GP analyses, this quantity is bounded using the maximal information gain γT
after T rounds. For this, let XA ∈ RA×d be the matrix with all arms as rows, D a subset of these
rows, potentially with duplicates, and K̂D the associated kernel matrix. Then, [SKKS10] define

γT = max
D⊂A:|D|=T

1
2

log det(K̂D/λ+ I), (7.2)

and show that
∑t

i=1 σ
2
i (x̃i) ≤ γt, and that γT itself can be bounded for specific A and kernel

functions, e.g. γT ≤ O(log(T)d+1) for Gaussian kernels. Using the equivalence between RLS
and posterior variance σ2

t , we can also relate the posterior variance σ2
t (x̃i) of the evaluated arms

to the so-called GP’s effective dimension N̂ or degrees of freedom

N̂ (λ, X̃T) =
∑t

i=1
σ2
t (x̃i) = Tr(K̂T (K̂T + λI)−1), (7.3)

using the following inequality by [CLV17d],

log det
(
K̂T/λ+ I

)
≤ Tr(K̂T (K̂T + λI)−1)

(
1 + log

(
‖K̂T ‖
λ

+ 1
))

. (7.4)

2Notice that mt ≤ min{t, a} and thus the complexity term O(m3
t) is absorbed by the other terms.

139

We use both RLS and N̂ to describe BKB’s selection.

We now give the main result of this section.

Theorem 20. For a desired 0 < ε < 1, 0 < δ < 1, let α = (1 + ε)/(1− ε). If we run BKB with
q ≥ 6α log(4T/δ)/ε2, then with probability 1− δ, for all t ∈ [T] and for all x ∈ A, we have

σ2
t (x)/α ≤ σ̃2

t (x) ≤ ασ2
t (x)

and

|It| ≤ 3(1 + κ2/λ)αqN̂ (λ, X̃t).

Computational complexity. We already showed that BKB’s implementation with Nyström
embedding requires O(T (A + min{t, A})m3

T) time and O(AmT) space. Combining this with
Theorem 20 and the bound mT ≤ Õ(N̂), we obtain a Õ(TAN̂ 2 + min{t, A})N̂ 3) time com-
plexity. Whenever N̂ � T and T � A, this is essentially a quadratic O(T 2) runtime, a large
improvement over the quartic O(T 4) ≤ O(T 3A) runtime of GP-UCB.

Tuning q. Note that although q must satisfy the condition of Theorem 20 for the result to hold,
it is quite robust to uncertainty on the desired horizon T . In particular, the bound holds for
any ε > 0, and even if we continue updating IT after the T -th step, the bound still holds by
implicitly increasing the parameter ε. Alternatively, after the T -th iteration the user can suspend
the algorithm, increase q to suit the new desired horizon, and rerun only the subset selection on
the arms selected so far.

Avoiding variance starvation. Another important consequence of Theorem 20 is that BKB’s
variance estimate is always close to the exact one up to a small constant factor. To the best of
our knowledge, it makes BKB the first efficient and general GP algorithm that provably avoids
variance starvation, which can be caused by two sources of error. The first source is the degener-
acy, i.e. low-rankness of the GP approximation which causes the estimate to grow over-confident
when the number of observed points grows and exceeds the degrees of freedom of the GP. BKB
adaptively chooses its degrees of freedom as the size of It scales with the effective dimension.
The second source of error arises when a point is far away from It. Our use of a DTC vari-
ance estimator avoids under-estimation before we update the subset It. Afterward, we can use
guarantees on the quality of It to guarantee that we do not over-estimate the variance too much,
exploiting a similar approach used to guarantee accuracy in RLS estimation. Both problems,
and BKB’s accuracy, are highlighted in Figure 7.1 using a benchmark experiment proposed by
[WGKJ18].

Incremental dictionary update. At each step t, BKB recomputes the dictionary It+1 from
scratch by sampling each of the arms pulled so far with a suitable probability p̃t+1,i. A more
efficient variant would be to build It+1 by adding the new point xt+1 with probability p̃t+1,t+1

and including the points in It with probability p̃t+1,i/p̃t,i. This strategy is used in the streaming

140

setting to avoid storing all points observed so far and incrementally update the dictionary (see
[CLV17b]). Nonetheless, the stream of points, although arbitrary, is assumed to be generated
independently from the dictionary itself. On the other hand, in our bandit setting, the points
x̃1, x̃2, . . . are actually chosen by the learner depending on the dictionaries built over time, thus
building a strong dependency between the stream of points and the dictionary itself. How to
analyze such dependency and whether the accuracy of the inducing points is preserved in this
case remains as an open question. Finally, notice that despite being more elegant and efficient,
such incremental dictionary update would not significantly reduce the asymptotic computational
complexity, since maximiming ut, whose main cost is computing the posterior variance for each
arm, would still dominate the overall runtime.

7.1.3 Regret Analysis

We are now ready to present the second main contribution of this chapter, a bound on the regret
achieved by BKB. To prove our result we additionally assume that the reward function f has a
bounded norm, i.e., ‖f‖2

H = 〈f, f〉 <∞. We use an upper-bound ‖f‖H ≤ F to properly tune β̃t
to the range of the rewards. If F is not known in advance, standard guess-and-double techniques
apply.

Theorem 21. Assume ‖f‖H ≤ F < ∞. For any desired 0 < ε < 1, 0 < δ < 1, 0 < λ, let
α = (1 + ε)/(1− ε) and q ≥ 6α log(4T/δ)/ε2. If we run BKB with

β̃t = 2ξ

√
α log(κ2t)

(∑t

s=1
σ̃2
t (x̃s)

)
+ log(1/δ) +

(
1 + 1√

1−ε

)√
λF,

then, with probability of at least 1− δ, the regret RT of BKB is bounded as

RT ≤ 2(2α)3/2
√
T

(
ξN̂ (λ, X̃T) log(κ2T) +

√
λF 2N̂ (λ, X̃T) log(κ2T) + ξ log(1/δ)

)
.

Theorem 21 shows that BKB achieves exactly the same regret as (exact) GP-UCB up to small
α constant and log(κ2T) multiplicative factor.3 For instance, setting ε = 1/2 results in a bound
only 3 log(T) times larger than the one of GP-UCB. At the same time, the choice ε = 1/2
only accounts for a constant factor 12 in the per-step computational complexity, which is still
dramatically reduced from t2A to N̂ 2A. Note also that even if we send ε to 0, in the worst case
we will include all arms selected so far, i.e. It = {X̃t}. Therefore, even in this case BKB’s
runtime does not grow unbounded, but BKB transforms back into exact GP-UCB. Moreover,
we show that N̂ (λ, X̃T) ≤ log det(K̂T/λ + I), as in Proposition 15 in Section 7.3.1, so any
bound on log det(K̂T/λ + I) available for GP-UCB applies directly to BKB. This means that

3Here we derive a frequentist regret bound and thus we compare with the result of [CG17] rather than the original
Bayesian analysis of [SKKS10].

141

up to an extra log T factor, we match GP-UCB’s Õ(log(T)2d) rate for the Gaussian kernel,

Õ(T
1
2

2ν+3d2

2ν+d2) rate for the Matérn kernel, and Õ(d
√
T) for the linear kernel. While these bounds

are not minimax optimal, they closely follow the lower bounds derived in [SBC17]. On the
other hand, in the case of linear kernel (i.e., the linear bandits) we nearly match the lower bound
of [DHK08].

Another interesting aspect of BKB is that computing the trade-off parameter β̃t can be done
efficiently. Previous methods bounded this quantity with a loose (deterministic) upper bound,
e.g., O(log(T)d) for Gaussian kernels, to avoid the large cost of computing log det(K̂T/λ + I).
In our β̃t, we bound the log det by N̂ , which is then bounded by

∑t
s=1 σ̃

2
t (xs), see Theorem 20,

where all σ̃2
t s are already efficiently computed at each step. While this is up to log t larger than

the exact log det, it is data adaptive and much smaller than the known worst case upper bounds.

It it crucial, that our regret guarantee is achieved without requiring an increasing accuracy in
our approximation. One would expect that to obtain a sublinear regret the error induced by the
approximation should decrease as 1/T . Instead, in BKB, the constants ε and λ that govern the
accuracy level are fixed and thus it is not possible to guarantee that µ̃t will ever get close to µt
everywhere. Adaptivity is the key: we can afford the same approximation level at every step
because accuracy is actually increased only on a specific part of the arm set. For example, if a
suboptimal arm is selected too often due to bad approximation, it will be eventually included in
It. After the inclusion, the approximation accuracy in the region of the suboptimal arm increases,
and it would not be selected anymore. As the set of inducing points is updated fast enough, the
impact of inaccurate approximations is limited over time, thus preventing large regret to accumu-
late. Note that this is a significant divergence from existing results. In particular approximation
bounds that are uniformly accurate for all xi ∈ A, such as those obtained with quadrature FF
[MK18], rely on packing arguments. Due to the nature of packing, this usually causes the run-
time or regret to scale exponentially with the input dimension d, and requires kernel k to have a
specific structure, e.g., to be stationary. Our new analysis avoids both of these problems.

Finally, we point out that the adaptivity of BKB allows drawing an interesting connection be-
tween learning and computational complexity. In fact, both the regret and the computation of
BKB scale with the log-determinant and effective dimension of K̂T , which is related to the ef-
fective dimension of the sequence of arms selected over time. As a result, if the problem is
difficult from a learning point of view (i.e., the regret is large because of large log-determinant),
then BKB automatically adapts the set It by including many more inducing points to guarantee
the level of accuracy needed to solve the problem. Conversely, if the problem is simple (i.e., small
regret), then BKB can greatly reduce the size of It and achieve the derived level of accuracy.

142

7.1.4 Sketch of the Proof

We build on the GP-UCB analysis of [CG17]. Their analysis relies on a confidence interval
formulation of GP-UCB that is more conveniently expressed using an explicit feature-based
representation of the GP. For any GP with covariance k, there is a corresponding RKHS H with
k as its kernel function. Furthermore, any kernel function k is associated to a non-linear feature
map φ(·) : Rd → H such that k(x, x′) = φ(x′)Tφ(x′). As a result, any reward function f ∈ H
can be written as f(x) = φ(x)Tw?, where w? ∈ H.

Confidence-interval view of GP-UCB. Let Φ(Xt) = [φ(x1), . . . , φ(xt)]
T be the matrix Xt

after the application of φ(·) to each row. We can then define the regularized design matrix as
At = Φ(Xt)

TΦ(Xt) + λI , and then compute the regularized least-squares estimate as

ŵt = argmin
w∈H

∑t

i=1
(yi − φ(xi)

Tw)2 + λ‖w‖2
2 = A−1

t Φ(Xt)
Tyt.

We define the confidence interval Ct as the ellipsoid induced by At with center ŵt and radius βt

Ct = {w : ‖w − ŵt‖At ≤ βt} , βt = λ1/2F +R
√

2(log det(At/λ) + log(1/δ), (7.5)

where the radius βt is such that w? ∈ Ct w.h.p. [CG17]. Finally, using Lagrange multipliers we
reformulate the GP-UCB scores as

ut(xi) = max
w∈Ct

φ(xi)
Tw = φ(xφ(xi)Tŵt)

µt(xi) + βtφ(x√
φ(xi)TA

−1
t φ(xi).

)σt(xi) (7.6)

Approximating the confidence ellipsoid. Consider subset of arm It = {xi}mi=1 chosen by
BKB at each step and denote by XIt ∈ Rm×d the matrix with all arms in It as rows. Let
H̃t = Im(Φ(XIt)) be the smaller m-rank RKHS spanned by Φ(XIt); and by Pt the symmetric
orthogonal projection operator on H̃t. We then define an approximate feature map φ̃t(·) =

Ptφ(·) : Rd → H̃t and associated approximations of At and ŵt as

Ãt = Φ̃t(Xt)
TΦ̃t(Xt) + λI, (7.7)

w̃t = argmin
w∈H

t∑
i=1

(yi − φ̃(xi)
Tw)2 + λ‖w‖2

2 = Ã−1
t Φ̃t(Xt)

Tyt. (7.8)

This leads to an approximate confidence ellipsoid C̃t =
{
w : ‖w−w̃t‖Ãt ≤ β̃t

}
,where we denote

with ‖·‖A =
∥∥A1/2(·)

∥∥. A subtle element in these definitions is that while Φ̃t(Xt)
TΦ̃t(Xt) and

w̃t are now restricted to H̃t, the identity operator λI in the regularization of Ãt still acts over
the whole H, and therefore Ãt does not belong to H̃t and remains full-rank and invertible. This
immediately leads to the usage of k(xi, xi) in the definition of σ̃ in Eq. (7.1), instead of the its
approximate version using the Nyström embedding.

143

Bounding the regret. To find an appropriate β̃t we follow an approach similar to the one of
[AYPS11]. Exploiting the relationship yt = φ̃(x̃t)

Tw? + ηt, we bound

‖w? − w̃t‖2
Ãt
≤ φ(xλ1/2‖w?‖)

(a) + φ(x‖Φ̃t(Xt)ηt‖
Ã−1
t

)(b) + φ(x‖Φ(Xt)
T‖I−Pt ·‖w?‖

)(c).

Both (a) and (b) are present in GP-UCB and OFUL’s analysis. The first term (a) is due to
the bias introduced in the least-square estimator w̃t by the regularization λ. Then, term (b)
is due to the noise in the reward observations. Note that the same term (b) appears in GP-
UCB’s analysis as ‖Φ(Xt)ηt‖A−1

t
and it is bounded by log det(At/λ) using self-normalizing

concentration inequalities [CG17]. However, our ‖Φ̃t(Xt)ηt‖Ã−1
t

is a more complex object, since

the projection Pt contained in Φ̃t(Xt) = PtΦ(Xt) depends on the whole process up to time time
t, and therefore Φ̃t(Xt) also depends on the whole process, losing its martingale structure. To
avoid this, we use Sylvester’s identity and the projection operator Pt to bound

log det(Ãt/λ) = log det
(

Φ(Xt)PtΦ(Xt)
T

λ
+ I
)
≤ log det

(
Φ(Xt)Φ(Xt)

T

λ
+ I
)

= log det(At/λ).

In other words, restricting the problem to H̃t acts as a regularization and reduces the variance
of the martingale. Unfortunately, log det(At/λ) is too expensive to compute, so we first bound
it with N̂ (λ, X̃t) log(κ2t), and then we bound N̂ (λ, X̃t) ≤ α

∑t
s=1 σ̃

2
t (xs), Theorem 20, which

can be computed efficiently. Finally, a new bias term (c) appears. Combining Theorem 20 with
the results of [CR18] for projection Pt obtained using RLSs sampling, we show that

I − P � λA−1
t /(1− ε).

The combination of (a), (b), and (c) leads to the definition of β̃t and the final regret bound as

RT ≤
√
β̃T

√∑T
t=1 φ(xt)TÃ−1

t φ(xt). To conclude the proof, we bound
∑T

t=1 φ(xt)
TÃ−1

t φ(xt)
with the following corollary of Theorem 20.

Corollary 7. Under the same conditions as Theorem 21, for all t ∈ T , we have At/α � Ãt �
αAt.

Remarks. The novel bound ‖Φ(Xt)
T‖I−Pt ≤ λ

1−ε‖Φ(Xt)
T‖A−1

t
has a crucial role in controlling

the bias due to the projection Pt. Note that the second term measures the error with the same
metric A−1

t used by the variance martingale. In other words, the bias introduced by BKB’s ap-
proximation can be seen as a self-normalizing bias. It is larger along directions that have been
sampled less frequently, and smaller along directions correlated with arms selected often (e.g.,
the optimal arm).
Our analysis bears some similarity with the one recently and independently developed by [KCCB19].
Nonetheless, our proof improves their result along two dimensions. First, we consider the more

144

general (and challenging) GP optimization setting. Second, we do not fix the rank of our ap-
proximation in advance. While their analysis also exploits a self-normalized bias argument, this
applies only to the k largest components. If the problem has an effective dimension larger than k,
their radius and regret becomes essentially linear. In BKB we use our adaptive sampling scheme
to include all necessary directions and to achieve the same regret rate as exact GP-UCB.

7.2 Discussion

As the prior work in Bayesian optimization is vast, we do not compare to alternative GP ac-
quisition functions, such as GP-EI or GP-PI, and only focus on approximation techniques with
theoretical guarantees. Similarly, we exclude scalable variational inference based methods, even
when their approximate posterior is provably accurate such as pF-DTC [HCKB19], since they
only provide guarantees for GP regression and not for the more difficult optimization setting. We
also do not discuss SUPKERNELUCB [VKM+13], which has a tighter analysis than GP-UCB,
since the algorithm does not work well in practice.

Infinite arm sets. Looking at the proof of Theorem 20, the guarantees on ũt hold for any H,
and in Theorem 21, we only require that the maximum x̃t+1 = argmaxx∈Amaxw∈C̃t φ(x)Tw
is returned. Therefore, the accuracy and regret guarantees also hold also for an infinite set of
arms A. However, the search over A can be difficult. In the general case, maximization of a GP
posterior is an NP-hard problem, with algorithms that often scale exponentially with the input
dimension d and are not practical. We treated the easier case of finite sets, where enumeration is
sufficient. Note that this automatically introduces an Ω(A) runtime dependency, which could be
removed if the user provides an efficient method to solve the maximization problem on a specific
infinite set A. As an example, [MK18] prove that a GP posterior approximated using QFF can
be optimized efficiently in low dimensions and we expect similar results hold for BKB and low
effective dimension. Finally, note that recomputing a new set It still requires min{A, t}N̂ 2 at
each step. As discussed at the end of Section 7.1, this is a bottleneck in BKB due to the non-
incremental dictionary sampling and independent from the arm selection. How to address it
remains an open question.

Linear bandit with matrix sketching. Our analysis is related to the ones of CBRAP [YLK17]
and SOFUL [KCCB19]. CBRAP uses Gaussian projections to embed all arms in a lower di-
mensional space for efficiency. Unfortunately their approach must either use an embedded space
at least Ω(T) large, which in most cases would be even slower than exact OFUL, or it incurs
linear regret w.h.p. Another approach for Euclidean spaces based on matrix approximation is
SOFUL, introduced by [KCCB19]. It uses Frequent Direction [GLPW16], a method similar to
incremental PCA, to embed the arms into Rm, where m is fixed in advance. To compare, we
distinguish between SOFUL-UCB and SOFUL-TS, a variant based on Thompson sampling.
SOFUL-UCB achieves a Õ(TAm2) runtime and Õ((1 + εm)3/2(d + m)

√
T) regret, where εm

145

is the sum of the d −m smallest eigenvalues of AT . However, notice that if the tail do not de-
crease quickly, this algorithm also suffers linear regret and no adaptive way to tune m is known.
On the same task BKB achieves a Õ(d

√
T) regret, since it adaptively chooses the size of the

embedding. Computationally, directly instantiating BKB to use a linear kernel would achieve
a Õ(TAm2

t) runtime4, matching [KCCB19]’s. Compared to SOFUL-TS, BKB achieves better
regret, but is potentially slower. Since Thompson sampling does not need to compute all confi-
dence intervals, but solves a simpler optimization problem, SOFUL-TS requires only Õ(TAm)

time against BKB’s Õ(TAm2
t). It is unknown if a variant of BKB can match this complexity.

Approximate GP with RFF. Traditionally, RFF approaches have been popular to transform
GP optimization in a finite-dimensional problem and allow for scalability. Unfortunately GP-
UCB with traditional RFF is not low-regret, as RFF are well known to suffer from variance
starvation [WGKJ18] and unfeasibly large RFF embeddings would be necessary to prevent it.
Recently, [MK18] proposed an alternative approach based on QFF, a specialized approach to
random features for stationary kernels. They achieve the same regret rate as GP-UCB and BKB,
with a near-optimal O(TA log(T)d+1) runtime. Moreover they present an additional variations
based on Thompson sampling whose posterior can be exactly maximized in polynomial time if
the input data is low dimensional or the covariance k additive, while it is still an open question
how to efficiently maximize BKB’s UCB ũt for infinite A. However QFF based approaches
apply to stationary kernel only, and require to ε-coverA, hence they cannot escape an exponential
dependency on the dimensionality d. Conversely BKB can be applied to any kernel function, and
while not specifically designed for this task it also achieve a close Õ(TA log(T)3(d+1)) runtime.
Moreover, in practice the size of IT is less than exponential in d.

7.2.1 Relaxing Assumptions

In our derivations, we make several assumptions. While some are necessary, others can be re-
laxed.

Assumptions on the noise. Throughout the chapter, we assume that the noise ηt is i.i.d. Gaussian.
Since [CG17]’s results hold for any ξ-sub-Gussian noise that is measurable based with respect to
the prior observations, this assumption can be easily relaxed.

Assumptions on the arms. So far we considered a set of arms that is (a) in Rd, (b) fixed for all t,
and (c) finite. Relaxing (a) is easy, since we do not make any assumption beyond boundedness
on the kernel function k and there are many bounded kernel function for non-Euclidean spaces,
e.g., strings or graphs. Relaxing (b) is trivial, we just need to embed the changing arm sets
as they are provided, and store and re-embed previously selected arms as necessary. The per-
step time complexity will now depend on the size of the set of arms available at each step.
Relaxing (c) is straightforward from a theoretical perspective, but has varying computational

4Note that for both algorithms the bottleneck is maximizing the UCB.

146

consequences. In particular, looking at the proof of Theorem 20, the guarantees on ũt hold for all
H and in Theorem 21, we only require that the maximum x̃t+1 = argmaxx∈Amaxw∈C̃t φ(x)Tw
is returned. Therefore, at least from the regret point of view, everything holds also for infinite
A. However, while the inner maximization over C̃t can be solved in closed form for a fixed x,
the same cannot be said of the search over A. If the designer can provide an efficient method to
solve the maximization problem on an infinite A, e.g., linear bandit optimization over compact
subsets or Rd, then all BKB guarantees apply.

7.3 Details of the Proofs

We present in this section the proofs of the main results of this chapter.

7.3.1 Properties of the Posterior Variance

For simplicity and completeness we provide known statements regarding the posterior variance
σ2
t (·). While most of these hold for generic RLS, we will adapt them to our notation.

Proposition 14 ([CLV17b]). For the posterior variance, we have that

1

κ2/λ+ 1
σ2
t−1(x̃t) ≤

1

σ2
t−1(x̃t) + 1

σ2
t−1(x̃t) ≤ σ2

t (x̃t) ≤ σ2
t−1(x̃t).

Proof. The leftmost inequality follows from κ2/λ ≥ σ2
0(x) and σ2

a(x) ≥ σ2
b (x),∀a ≤ b, the

others are by [CLV17b].

Proposition 15 ([HKAK06, CLV17d]). The effective dimension N̂ (λ, X̃T) is upper bounded as

N̂ (λ, X̃T) = Tr(K̂T (K̂T + λI)−1) =
∑T

t=1
σ2
T (x̃t)

(1)

≤
∑T

t=1
σ2
t (x̃t)

(2)

≤ log det
(
K̂T/λ+ I

)
(3)

≤ Tr(K̂T (K̂T + λI)−1)
(

1 + log
(
‖K̂T ‖
λ

+ 1
))

.

Proof. Inequality (1) is due to Proposition 14, inequality (2) is due to [HKAK06], and inequality
(3) is due to [CLV17d].

147

7.3.2 Proof of Theorem 20

Let Bt be the unfavorable event where the guarantees of Theorem 20 do not hold. Our goal is to
prove that Bt happens at most with probability δ uniformly for all t ∈ [T].

7.3.2.1 Notation

In the following we refer to Φ(X̃t) as Φt, Φ̃(X̃t) as Φ̃t and φ(x̃t) as φt. When the subscript is
clear from the context, we omit it. Since we leverage several results of [CLV17d], we start with
some additional notation.

First we extend our notation for the subset It to include a possible reweighing of the inducing
points. We denote with It = {(φj, sj)}mtj=1, a weighted subset, i.e., a weighted dictionary, of
columns from Φt, with positive weights sj > 0 that must be appropriately chosen. Now, denote
with ij ∈ [t], the index of the sample φj as a column in Φt. Using a standard approach [AM15b],
we choose sj = 1/

√
p̃t,ij , where p̃t,i = qσ̃2

t−1(x̃i) is the probability5 used by Algorithm 5 when
sampling φij from Φt.

Let St ∈ Rt×t be the diagonal matrix with qt,i/
√
p̃t,i on the diagonal, where qt,i are the {0, 1}-

valued random variables selected by Algorithm 5. Then, we can see that

mt∑
j=1

1

p̃t,ij
φijφ

T

ij
=

t∑
i=1

qt,i
p̃t,i

φiφ
T

i = ΦtStS
T

t ΦT

t . (7.9)

[CLV17b] define It to be an ε-accurate dictionary of Φt if it satisfies

(1− ε)ΦtΦ
T

t − ελI � ΦtStS
T

t ΦT

t � (1 + ε)ΦtΦ
T

t + ελI. (7.10)

We can also now fully define the projection operator at time t (see Section 7.1.4 for more details)
as

Pt = ΦtSt(S
T

t ΦT

tΦtSt)
+ST

t ΦT

t ,

which is the projection matrix spanned by the dictionary.

7.3.2.2 Event Decomposition

We decompose Theorem 20 into an accuracy part, i.e., It must induce accurate σ̃t, and an effi-
ciency part, i.e., mt ≤ N̂ (t). We also the accuracy of σ̃t to the definition of ε-accuracy.

5Note that p̃t,i might be larger than 1, but with a small abuse of notation and without the loss of generality we
still refer to it as a probability.

148

Lemma 31. Let α = 1+ε
1−ε . If It is ε-accurate w.r.t. Φt, then

At/α � Ãt � αAt and σ2
t (x)/α ≤ min

{
σ̃2
t (x), 1

}
≤ ασ2

t (x) for all x ∈ A.

Proof. Inverting the bound in Equation (7.10) and using the fact that PtΦtSt = ΦtSt, we get

PtΦtΦ
T

tPt �
1

1− ε
(PtΦtStS

T

t ΦT

tPt + ελPt) �
1

1− ε
(ΦtStS

T

t ΦT

t + ελPt)

� 1

1− ε
((1 + ε)ΦtΦ

T

t + ελI + ελPt) �
1 + ε

1− ε

(
ΦtΦ

T

t +
2ε

1 + ε
λI

)
.

Repeating the same process for the other side, we obtain

1− ε
1 + ε

(
ΦtΦ

T

t −
2ε

1− ε
λI

)
� PtΦtΦ

T

tPt �
1 + ε

1− ε

(
ΦtΦ

T

t +
2ε

1 + ε
λI

)
.

Applying the above to Ãt, we get

Ãt = PtΦtΦ
T

tPt + λI � 1− ε
1 + ε

(
ΦtΦ

T

t −
2ε

1− ε
λI

)
+ λI =

1− ε
1 + ε

(ΦtΦ
T

t + λI) =
1− ε
1 + ε

At,

which can again be applied on the other side to obtain our result. To prove the accuracy of the
approximate posterior variance σ̃2

t (xi) we simply apply the definition to get

1− ε
1 + ε

φ(xφTi Atφi)
σ2
t (xi) � φ(xφTi Ãtφi

)σ̃
2
t (xi) � 1 + ε

1− ε
φ(xφTi Atφi)

σ2
t (xi).

Using Lemma 31, we decompose our unfavorable event Bt = At ∪ Et, where At is the event
where It is not ε-accurate w.r.t. Φt and Et is the event where mt is much larger than N̂ (λ, X̃t).
We now further decompose the event At as

At = (At ∩ At−1) ∪ (At ∩ A{
t−1)

⊆ At−1 ∪ (At ∩ A{
t−1) = A0 ∪

(
t⋃

s=1

(As ∩ A{
s−1)

)
=

t⋃
s=1

(As ∩ A{
s−1),

where A0 is the empty event since Φ0 is empty and it is well approximated by the empty I0.
Moreover, we simplify a part of the expression by noting

Bt = At ∪ Et = At ∪ (Et ∩ A{
t−1) ∪ (Et ∩ At−1) ⊆ At ∪ At−1 ∪ (Et ∩ A{

t−1),

149

which will help us when bounding the event Et, where we will directly act as if At does not hold.
Putting it all together, we get

T⋃
t=1

Bt =
T⋃
t=1

(At ∪ Et) ⊆
T⋃
t=1

(
At ∪ At−1 ∪ (Et ∩ A{

t−1)
)

=

(
T⋃
t=1

At

)
∪

(
T⋃
t=1

(Et ∩ A{
t−1)

)
=

(
T⋃
t=1

At

)
∪

(
T⋃
t=1

(Et ∩ A{
t−1)

)

⊆

(
T⋃
t=1

(
t⋃

s=1

(As ∩ A{
s−1)

))
∪

(
T⋃
t=1

(Et ∩ A{
t−1)

)

=

(
T⋃
t=1

(At ∩ A{
t−1)

)
∪

(
T⋃
t=1

(Et ∩ A{
t−1)

)
.

7.3.2.3 Bounding Pr(At ∩ A{
t−1)

We now bound the probability of event At ∩ A{
t−1. In our first step, we formally define At using

Equation (7.10). In particular, we rewrite the ε-accuracy condition as

(1− ε)ΦtΦ
T

t − ελI � ΦtStS
T

t ΦT

t � (1 + ε)ΦtΦ
T

t + ελI

⇐⇒ −ε(ΦtΦ
T

t + λI) � ΦtStS
T

t ΦT

t − ΦtΦ
T

t � ε(ΦtΦ
T

t + λI)

⇐⇒ −εI � (ΦtΦ
T

t + λI)−1/2(ΦtStS
T

t ΦT

t − ΦtΦ
T

t)(ΦtΦ
T

t + λI)−1/2 � εI

⇐⇒ ‖(ΦtΦ
T

t + λI)−1/2(ΦtStS
T

t ΦT

t − ΦtΦ
T

t)(ΦtΦ
T

t + λI)−1/2‖ ≤ ε,

where ‖ · ‖ is the spectral norm. We now focus on the last reformulation and frame it as a

random matrix concentration question in RKHS H. Let ψt,i = (ΦtΦ
T
t + λI)−

1
2φi and Pt =

Φt(Φ
T
tΦt + λI)−

1
2 = [ψt,1, . . . , ψt,t]

T, and define the operator Gt,i =
(
qt,i
p̃t,i
− 1
)
ψt,iψ

T
t,i. Then we

rewrite ε-accuracy as∥∥∥∥(ΦtΦ
T

t +λI)−
1
2 Φt(StS

T

t−I)ΦT

t (ΦtΦ
T

t +λI)−
1
2

∥∥∥∥ =

∥∥∥∥∥
t∑
i=1

(
qt,i
p̃t,i
− 1

)
ψt,iψ

T

t,i

∥∥∥∥∥ =

∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≤ ε,

and the event At as the event where
∥∥∑t

i=1 Gt,i

∥∥ ≥ ε, Note that this reformulation exploits the
fact that qt,i = 0 encodes the column that are not selected in It (see Equation (7.9)). To study this
random object, we begin by defining the filtration Ft = {qs,i, ηs}ts=1 at time t containing all the
randomness coming from the construction of the various Is and the noise on the function ηt. In
particular, note that the {0, 1}-valued r.v. qt,i used by Algorithm 5 are not necessarily Bernoulli
r.v.s, since the probability p̃t,i used to select 0 or 1 is itself random. However, they become

150

well defined Bernoulli when conditioned on Ft−1. Let I{·} indicates the indicator function of an
event. We have that

Pr(At ∩ A{
t−1) = Pr

(∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩

∥∥∥∥∥
t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε

)

= E
Ft

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩

∥∥∥∥∥
t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε

}]

= E
Ft−1

[
E

ηt,{qt,i}

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩

∥∥∥∥∥
t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε

} ∣∣∣∣∣ Ft−1

]]

= E
Ft−1

[
E
{qt,i}

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩

∥∥∥∥∥
t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε

} ∣∣∣∣∣ Ft−1

]]
,

where the last passage is due to the fact that Gt,i is independent from ηt. Next, notice that
conditioned on Ft−1, the event A{

t−1 becomes deterministic, and we can restrict our expectations
to the outcomes where

∥∥∑t
i=1Gt−1,i

∥∥ ≤ ε,

Pr(At ∩ A{
t−1) = E

Ft−1:‖∑t
i=1Gt−1,i‖≤ε

[
E
{qt,i}

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε

} ∣∣∣∣∣ Ft−1

]]
.

Moreover, conditioned on Ft−1 all the qt,is become independent r.v., and we are able to use the
following result of [Tro15].

Proposition 16. Let G1, . . . , Gn be a sequence of independent self-adjoint random operators
such that E [Gi] = 0 and ‖Gi‖ ≤ R a.s. Denote σ2 =

∥∥∑t
i=1 E [G2

i]
∥∥. Then, for any ε ≥ 0,

Pr

(∥∥∥∥∥
t∑
i=1

Gi

∥∥∥∥∥ ≥ ε

)
≤ 4t exp

(
ε2/2

σ2 +Rε/3

)
·

We begin by computing the mean of Gt,i,

E
qt,i

[Gt,i | Ft−1] = E
qt,i

[(
qt,i
p̃t,i
− 1

)
ψt,iψ

T

t,i

∣∣∣∣ Ft−1

]
=

(
Eqt,i [qt,i | Ft−1]

p̃t,i
− 1

)
ψt,iψ

T

t,i =

(
p̃t,i
p̃t,i
− 1

)
ψt,iψ

T

t,i = 0,

where we use the fact that p̃t,i is fixed conditioned on Ft−1 and it is the (conditional) expectation
of qt,i. Since G is zero-mean, we can use Proposition 16. First, we find R and for that, we upper
bound

‖Gt,i‖ =

∥∥∥∥(qt,ip̃t,i
− 1

)
ψt,iψ

T

t,i

∥∥∥∥ ≤ ∣∣∣∣(qt,ip̃t,i
− 1

)∣∣∣∣ ‖ψt,iψT

t,i‖ ≤
1

p̃t,i
‖ψt,iψT

t,i‖.

151

Note that due to the definition of ψt,i,

‖ψt,iψT

t,i‖ = ψT

t,iψt,i = φT

i (ΦtΦ
T

t + λI)−1φi = σ2
t (x̃i).

Moreover, we are only considering outcomes of Ft−1 where
∥∥∑t

i=1 Gt−1,i

∥∥ ≤ ε, which implies
that It−1 is ε-accurate, and by Lemma 31 we have that σ̃t−1(x̃i) ≥ σt−1(x̃i)/α. Finally, due to
Proposition 14, we have σt−1(x̃i) ≥ σt(x̃i). Putting this all together we can bound

1

p̃t,i
‖ψt,iψT

t,i‖ =
1

qσ̃t−1(x̃i)
σt(x̃i) ≤

α

q
= R.

For the variance term, we expand
t∑
i=1

E
qt,i

[
G2
t,i

∣∣ Ft−1

]
=

t∑
i=1

E
qt,i

[(
qt,i
p̃t,i
− 1

)2
∣∣∣∣∣ Ft−1

]
ψt,iψ

T

t,iψt,iψ
T

t,i

=
t∑
i=1

(
E
qt,i

[
q2
t,i

p̃2
t,i

∣∣∣∣ Ft−1

]
− E

qt,i

[
2
qt,i
p̃t,i

∣∣∣∣ Ft−1

]
+ 1

)
ψt,iψ

T

t,iψt,iψ
T

t,i

=
t∑
i=1

(
E
qt,i

[
qt,i
p̃2
t,i

∣∣∣∣ Ft−1

]
− 1

)
ψt,iψ

T

t,iψt,iψ
T

t,i =
t∑
i=1

(
E
qt,i

[
qt,i
p̃2
t,i

∣∣∣∣ Ft−1

]
− 1

)
ψt,iψ

T

t,iψt,iψ
T

t,i

=
t∑
i=1

(
1

p̃t,i
− 1

)
ψt,iψ

T

t,iψt,iψ
T

t,i �
t∑
i=1

1

p̃t,i
‖ψt,iψT

t,i‖ψt,iψT

t,i �
t∑
i=1

Rψt,iψ
T

t,i,

where we used the fact that q2
t,i = qt,i and Eqt,i [qt,i|Ft−1] = p̃t,i. We can now bound this quantity

as ∥∥∥∥∥
t∑
i=1

E
qt,i

[
G2
t,i

∣∣ Ft−1

]∥∥∥∥∥ ≤
∥∥∥∥∥

t∑
i=1

Rψt,iψ
T

t,i

∥∥∥∥∥ = R

∥∥∥∥∥
t∑
i=1

ψt,iψ
T

t,i

∥∥∥∥∥ = R‖P T

t Pt‖ ≤ R = σ2.

Therefore, we have σ2 = R and R = 1/q. Now, applying Proposition 16 and a union bound we
conclude the proof.

7.3.2.4 Bounding Pr(Et ∩ A{
t−1)

We will use the following concentration for independent Bernoulli random variables.

Proposition 17 ([CLV17b], App. D.4). Let {qs}ts=1 be independent Bernoulli random variables,
each with success probability ps, and let d =

∑t
s=1 ps ≥ 1 be their sum. Then,6

P

(
t∑

s=1

qs ≥ 3d

)
≤ exp{−3d(3d− (log(3d) + 1))} ≤ exp{−2d}.

6This is a simple variant of the Chernoff bound where the Bernoulli random variables are not identically dis-
tributed.

152

We now rigorously define event Et as the event where
t∑
i=1

qt,i ≥ 3α(1 + κ2/λ) log(t/δ)
t∑
i=1

σ2
t (x̃i) = 3α(1 + κ2/λ)N̂ (λ, X̃t) log(t/δ).

Once again, we use conditioning and in particular,

Pr(Et∩A{
t) = E

Ft−1:‖∑t
i=1Gt−1,i‖≤ε

[
E
{qt,i}

[
I

{
t∑
i=1

qt,i≥3α(1+κ2/λ)log(t/δ)
t∑
i=1

σ2
t (x̃i)

}∣∣∣∣∣Ft−1

]]
.

Conditioned onFt−1 the r.v. qt,i becomes independent Bernoulli with probability p̃t,i = qσ̃t−1(x̃i).
Since we restrict the outcomes to A{

t−1, we can exploit Lemma 31 and the guarantees of ε-
accuracy to bound p̃t,i ≤ ασ2

t−1(x̃i). Then, we use Proposition 14 to bound σ2
t−1(x̃i) ≤ (1 +

κ2/λ)σ2
t (x̃i). Therefore, qt,i are conditionally independent Bernoulli with probability at most

q(1 + κ2/λ)σ2
t (x̃i). Applying a simple stochastic dominance argument and Proposition 17 gets

the needed statement.

7.3.3 Proof of Theorem 21

Following [AYPS11], we divide the proof in two parts, first bounding the approximate confidence
ellipsoid, and then bounding the regret.

7.3.3.1 Bounding the Confidence Ellipsoid

We begin by proving an intermediate result regarding the confidence ellipsoid.

Theorem 22. Under the same assumptions as Theorem 21 with probability at least 1− δ and for
all t ≥ 0, w? lies in the set

C̃t =
{
w : ‖w − w̃t‖Ãt ≤ β̃t

}
with

β̃t = 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2
t (xs)

)
+ log

(
1

δ

)
+

(
1 +

1√
1− ε

)√
λF.

Proof. For simplicity, we omit the subscript t. We begin by noticing that

(w̃ − w?)TÃ(w̃ − w?) = (w̃ − w?)TÃ(Ã−1Φ̃Ty − w?)
= (w̃ − w?)TÃ(Ã−1Φ̃T(Φw? + η − w?)
= (w̃ − w?)TÃ(Ã−1Φ̃TΦw? − w?︸ ︷︷ ︸

bias

) + (w̃ − w?)TÃ1/2 Ã−1/2Φ̃Tη︸ ︷︷ ︸
variance

.

153

Bounding the bias. We first focus on the first term, which is difficult to analyze due to the
mismatch Φ̃TΦ. We have that

Ã(Ã−1Φ̃TΦw? − w?) = Φ̃TΦw? − Φ̃TΦ̃w? − λw?
= Φ̃TΦ(I − P)w? + Φ̃TΦPw? − Φ̃TΦ̃w

? − λw?
= Φ̃TΦ(I − P)w? − λw?.

Therefore,

(w̃ − w?)TÃ(Ã−1Φ̃TΦw? − w?) = (w̃ − w?)TΦ̃TΦ(I − P)w? − λ(w̃ − w?)Tw?

≤ ‖w̃ − w?‖Ã
(
‖Ã−1/2Φ̃TΦ(I − P)w?‖+ λ‖w∗‖Ã−1

)
≤ ‖w̃ − w?‖Ã

(
‖Ã−1/2Φ̃TΦ(I − P)w?‖+ λ√

λ
‖w∗‖

)
.

Then, we have that

‖Ã−1/2Φ̃TΦ(I − P)w?‖ ≤ ‖Ã−1/2Φ̃T‖‖Φ(I − P)‖‖w?‖

≤
√
λmax(Φ̃Ã−1Φ̃T)

√
λmax(Φ(I − P)2ΦT)‖w?‖.

It is easy to see that

λmax(Φ̃Ã−1Φ̃T) = λmax(Φ̃(Φ̃TΦ̃ + λI)−1Φ̃T) ≤ 1.

To bound the other term we use the following result by [CR18].

Proposition 18. If It is ε-accurate w.r.t. Φt, then

I − Pt � I − ΦtSt(S
T

t ΦT

tΦtSt + λI)−1ST

t ΦT

t �
λ

1− ε
(ΦtΦ

T

t + λI)−1.

Since from Theorem 20, we have that It is ε-accurate, by Proposition 18, we have that

Φ(I − P)2ΦT = Φ(I − P)ΦT � λ

1− ε
Φ(ΦTΦ + λI)−1ΦT � λ

1− ε
I.

Putting it all together, we obtain

(w̃ − w?)TÃ(Ã−1Φ̃TΦw? − w?) ≤
(

1 +
1√

1− ε

)
‖w̃ − w?‖Ã

√
λ‖w?‖.

Bounding the variance. We use the the following self-normalized martingale concentration
inequality by [AYPS11]. It can be trivially extended to RKHSs in the case of finite sets such as
our A. Note that if the reader is interested in infinite sets, [CG17] provide a generalization with
slightly worse constants.

154

Proposition 19 ([AYPS11]). Let {Ft}∞t=0 be a filtration, let {ηt}∞t=1 be a real-valued stochastic
process such that ηt isFt-measurable and zero-mean ξ-subgaussian; let {Φt}∞t=1 be anH-valued
stochastic process such that Φt is Ft−1-measurable, and let I be the identity operator onH. For
any t ≥ 1, define

At = ΦT

tΦt + λI and Vt = ΦT

t ηt.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖Vt‖2
A−1
t
≤ 2ξ2 log

(
det (At/λ)

δ

)
·

Recalling the definition of α ≥ 1 from Theorem 20, we reformulate

(w̃ − w?)TÃ1/2Ã−1/2Φ̃η ≤ ‖w̃ − w?‖Ã‖Φ̃η‖Ã−1

= ‖w̃ − w?‖Ã‖Φ̃
Tη‖(Φ̃TΦ̃+λI)−1

= ‖w̃ − w?‖Ã‖Φ̃
Tη/λ‖(Φ̃TΦ̃/λ+I)−1 .

We now make a remark that requires temporal notation. Note that we cannot directly apply
Proposition 19 to Φ̃tηt = PtΦtηt. In particular, for s < t we have that Φ̃sηs = PtΦsηs is not Fs−1

measurable, since Pt depends on all randomness up to time t. However, since Pt is always a
projection matrix we know that the variance of the projected process is bounded by the variance
of the original process, in particular,

‖Φ̃Tη/λ‖(Φ̃TΦ̃/λ+I)−1 =

√
ηTΦ̃(Φ̃TΦ̃/λ+ I)−1Φ̃Tη/λ =

√
ηTΦ̃Φ̃T(Φ̃Φ̃T/λ+ I)−1η/λ

(a)
=

√
ηT(I − λ(Φ̃Φ̃T/λ+ I)−1)η/λ =

√
ηT(I − λ(ΦPΦT/λ+ I)−1)η/λ

(b)

≤
√
ηT(I − λ(ΦΦT/λ+ I)−1)η/λ

(c)
= ‖ΦTη/λ‖(ΦTΦ/λ+I)−1 ,

where in (a) we added and subtracted λI from Φ̃Φ̃T, in (b) we used the fact that ‖P‖ ≤ 1 for
all projection matrices, and in (c) we reversed the reformulation from (a). We can finally use
Proposition 19 to obtain

‖ΦTη/λ‖(ΦTΦ/λ+I)−1 ≤
√

2ξ2 log(Det(ΦTΦ/λ+ I)/δ)

=
√

2ξ2 log(Det(A/λ)/δ).

While above is a valid bound on the radius of the confidence interval, it is still not satisfactory.
In particular, we can use Sylvester’s identity to reformulate

log det(A/λ) = log det(ΦTΦ/λ+ I) = log det(ΦΦT/λ+ I) = log det(K̂/λ+ I).

155

Computing the radius would require constructing the matrix K̂ ∈ Rt×t and this is way too
expensive. Instead, we obtain a cheap but still a small enough upper bound as follows,

log det(K̂t/λ+ I) ≤ Tr(K̂t(K̂t + λI)−1)(1 + log(‖K̂t‖+ 1))

≤ Tr(K̂t(K̂t + λI)−1)(1 + log(Tr K̂t + 1))

≤ Tr(K̂t(K̂t + λI)−1)(1 + log(κ2t+ 1))

= (1 + log(κ2t+ 1))
t∑

s=1

σ2
t (xs)

≤ α(1 + log(κ2t+ 1))
t∑

s=1

σ̃2
t (xs)

≤ 2α log(κ2t)
t∑

s=1

σ̃2
t (xs),

where σ̃2
t (xs) can be computed efficiently and it is actually already done by the algorithm at

every step! Putting it all together, we get that

‖w̃ − w?‖Ã ≤ 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2
t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λ‖w?‖

≤ 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2
t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF = β̃t.

7.3.3.2 Bounding the Regret

The regret analysis is straightforward. Assume that w? ∈ C̃t is satisfied (i.e., the event from The-
orem 22 holds) and remember that by the definition, φt = argmaxxi∈Amaxw∈C̃t φ

T
iw. We also

define wt,i = argmaxw∈C̃t φ
T
iw as the auxiliary vector which encodes the optimistic behaviour

of the algorithm. With a slight abuse of notation, we also use ? as a subscript to indicate the
(unknown) index of the optimal arm, so that wt,? = argmaxw∈C̃t φ

T
?w. Since w? ∈ C̃t, we have

that

φT

twt,t ≥ φ?
Twt,? ≥ φ?

Tw∗.

156

We can now bound the instantaneous regret rt as

rt = φT

?w? − φT

tw? ≤ φT

twt,t − φT

tw?

= φT

t (wt,t − ŵt) + φT

t (ŵt − w?)
= φT

t Ã
−1/2
t Ã

1/2
t (wt,t − ŵt) + φT

t Ã
−1/2
t−1 Ã

1/2
t (ŵt − w?)

≤
√
φT
t Ã
−1
t φt

(
‖wt,t − ŵt‖Ãt + ‖ŵt − w?‖Ãt

)
≤ 2β̃t

√
φT
t Ã
−1
t φt.

Summing over t and taking the max over β̃t, we get

Rt ≤ 2β̃T

T∑
t=1

√
φT
t Ã
−1
t φt ≤ 2β̃T

√
T

√√√√ T∑
t=1

φT
t Ã
−1
t φt ≤ 2β̃T

√
T

√√√√α
T∑
t=1

φT
tA
−1
t φt.

We can now use once again Proposition 15 to obtain

RT ≤ 2β̃T

√√√√αT
T∑
t=1

φT
tA
−1
t φt = 2β̃T

√√√√αT
T∑
t=1

σ2
t (x̃t) ≤ 2β̃T

√
2αT N̂ (λ, X̃T) log(κ2T).

We can also further upper bound β̃T as

β̃T = 2ξ

√√√√α log(κ2T)

(
T∑
s=1

σ̃2
t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF

≤ 2ξ

√√√√α2 log(κ2T)

(
T∑
s=1

σ2
t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF

≤ 2ξα

√
N̂ (λ, X̃T) log(κ2T) + log(1/δ) +

(
1 +

1√
1− ε

)√
λF.

Putting it together, we obtain

RT ≤ 2

(
2ξα

√
N̂ (λ, X̃T) log(κ2T) + log(1/δ)

)√
2αT N̂ (λ, X̃T) log(κ2T)

+ 2

((
1 +

1√
1− ε

)√
λF

)√
2αT N̂ (λ, X̃T) log(κ2T)

≤ 2ξ(2α)3/2
(
N̂ (λ, X̃T) log(κ2T) + log(1/δ)

)
+ 2

(
2
√
α
√
λF
)√

2αT N̂ (λ, X̃T) log(κ2T)

≤ 2(2α)3/2

(√
TξN̂ (λ, X̃T) log(κ2T) +

√
T log(1/δ) +

√
TλF 2N̂ (λ, X̃T) log(κ2T)

)
.

157

Bibliography

[ACW16] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge re-
gression using sketching and preconditioning. arXiv preprint arXiv:1611.03220,
2016.

[Alv16] Alexandre Alves. Stacking machine learning classifiers to identify higgs bosons
at the lhc. CoRR, abs/1612.07725, 2016.

[AM15a] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regres-
sion with statistical guarantees. In Advances in Neural Information Processing
Systems, pages 775–783, 2015.

[AM15b] Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel methods
with statistical guarantees. In Neural Information Processing Systems, 2015.

[Aro50] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the Ameri-
can mathematical society, 68(3):337–404, 1950.

[ASW13] Haim Avron, Vikas Sindhwani, and David Woodruff. Sketching structured matri-
ces for faster nonlinear regression. In Advances in Neural Information Processing
Systems, pages 2994–3002, 2013.

[AYPS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms
for linear stochastic bandits. In Neural Information Processing Systems, 2011.

[Bac13] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In COLT,
volume 30 of JMLR Proceedings, pages 185–209. JMLR.org, 2013.

[Bac17] Francis Bach. On the equivalence between kernel quadrature rules and random
feature expansions. Journal of Machine Learning Research, 18(21):1–38, 2017.

[BB08] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In
Advances in neural information processing systems, pages 161–168, 2008.

158

[BLB04] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration in-
equalities. In Advanced Lectures on Machine Learning. 2004.

[BMEWL11] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere.
The million song dataset. In ISMIR, 2011.

[BPR07] F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning
theory. Journal of complexity, 23(1):52–72, 2007.

[BSW14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles
in high-energy physics with deep learning. Nature communications, 5:4308, 2014.

[CARR16] Raffaello Camoriano, Tomás Angles, Alessandro Rudi, and Lorenzo Rosasco.
Nytro: When subsampling meets early stopping. In Artificial Intelligence and
Statistics, pages 1403–1411, 2016.

[CAS16] Jie Chen, Haim Avron, and Vikas Sindhwani. Hierarchically compositional ker-
nels for scalable nonparametric learning. CoRR, abs/1608.00860, 2016.

[CCL+19] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and
Lorenzo Rosasco. Gaussian process optimization with adaptive sketching: Scal-
able and no regret. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings
of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings
of Machine Learning Research, pages 533–557, Phoenix, USA, 25–28 Jun 2019.
PMLR.

[CDV07] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-
squares algorithm. Foundations of Computational Mathematics, 7(3):331–368,
2007.

[CG17] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits.
In International Conference on Machine Learning, 2017.

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform Sampling for Matrix Approximation. In ITCS,
pages 181–190. ACM, 2015.

[CLV17a] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed adaptive
sampling for kernel matrix approximation. In AISTATS, 2017.

[CLV17b] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed adap-
tive sampling for kernel matrix approximation. In International Conference on
Artificial Intelligence and Statistics, 2017.

159

[CLV17c] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order ker-
nel online convex optimization with adaptive sketching. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pages
645–653, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

[CLV17d] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order kernel
online convex optimization with adaptive sketching. In International Conference
on Machine Learning, 2017.

[COCF16] Kurt Cutajar, Michael Osborne, John Cunningham, and Maurizio Filippone. Pre-
conditioning kernel matrices. In International Conference on Machine Learning,
pages 2529–2538, 2016.

[CR18] Daniele Calandriello and Lorenzo Rosasco. Statistical and computational trade-
offs in kernel k-means. In Neural Information Processing Systems, 2018.

[CRR18] Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with sgd and
random features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 31, pages 10213–10224. Curran Associates, Inc., 2018.

[CS02] Felipe Cucker and Steve Smale. On the mathematical foundations of learning.
Bulletin of the American mathematical society, 39(1):1–49, 2002.

[CS09] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In
Advances in neural information processing systems, pages 342–350, 2009.

[CY10] A. Caponnetto and Yuan Yao. Adaptive rates for regularization operators in learn-
ing theory. Analysis and Applications, 08, 2010.

[DB16] Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation
with large step-sizes. The Annals of Statistics, 44(4):1363–1399, 2016.

[DFB17] Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better,
faster, stronger convergence rates for least-squares regression. The Journal of
Machine Learning Research, 18(1):3520–3570, 2017.

[DGBSX12] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed
online prediction using mini-batches. Journal of Machine Learning Research,
13(Jan):165–202, 2012.

[DGL13] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern
recognition, volume 31. Springer Science & Business Media, 2013.

160

[DHK08] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimiza-
tion under bandit feedback. In Conference on Learning Theory, 2008.

[DMIMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P.
Woodruff. Fast approximation of matrix coherence and statistical leverage. The
Journal of Machine Learning Research, 13(1):3475–3506, 2012.

[DVRC06] Ernesto De Vito, Lorenzo Rosasco, and Andrea Caponnetto. Discretization er-
ror analysis for tikhonov regularization. Analysis and Applications, 4(01):81–99,
2006.

[DXH+14] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and
Le Song. Scalable kernel methods via doubly stochastic gradients. In Advances
in Neural Information Processing Systems, pages 3041–3049, 2014.

[FM12] Gregory E Fasshauer and Michael J McCourt. Stable evaluation of gaussian radial
basis function interpolants. SIAM Journal on Scientific Computing, 34(2):A737–
A762, 2012.

[FSC+16] X Yu Felix, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N
Holtmann-Rice, and Sanjiv Kumar. Orthogonal random features. In Advances
in Neural Information Processing Systems, pages 1975–1983, 2016.

[GLPW16] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P. Woodruff. Frequent
directions: Simple and deterministic matrix sketching. The SIAM Journal of Com-
puting, pages 1–28, 2016.

[GOSS16] Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge re-
gression using sketched preconditioned svrg. arXiv preprint arXiv:1602.02350,
2016.

[GRO+08] L. Lo Gerfo, Lorenzo Rosasco, Francesca Odone, Ernesto De Vito, and Alessan-
dro Verri. Spectral Algorithms for Supervised Learning. Neural Computation,
20(7):1873–1897, 2008.

[HAS+14] Po-Sen Huang, Haim Avron, Tara N. Sainath, Vikas Sindhwani, and Bhuvana
Ramabhadran. Kernel methods match deep neural networks on timit. 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 205–209, 2014.

[HCKB19] Jonathan H. Huggins, Trevor Campbell, Mikołaj Kasprzak, and Tamara Brod-
erick. Scalable Gaussian process inference with finite-data mean and variance
guarantees. In International Conference on Artificial Intelligence and Statistics,
apr 2019.

161

[HKAK06] Elad Hazan, Adam Tauman Kalai, Amit Agarwal, and Satyen Kale. Logarithmic
regret algorithms for online convex optimization. In Conference on Learning
Theory, 2006.

[HSS08] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel Methods
in Machine Learning. Annals of Statistics, 36(3), 2008.

[HXGD14] Raffay Hamid, Ying Xiao, Alex Gittens, and Dennis DeCoste. Compact random
feature maps. In International Conference on Machine Learning, pages 19–27,
2014.

[KCCB19] Ilja Kuzborskij, Leonardo Cella, and Nicolò Cesa-Bianchi. Efficient linear bandits
through matrix sketching. In International Conference on Artificial Intelligence
and Statistics, 2019.

[KMT09] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble Nystrom
Method. In NIPS, pages 1060–1068. Curran Associates, Inc., 2009.

[LOSC18] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When Gaussian pro-
cess meets big data: A Review of scalable GPs. Technical report, jul 2018.

[LR85] Tze L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation
rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[LR17a] Junhong Lin and Lorenzo Rosasco. Generalization properties of doubly online
learning algorithms. arXiv preprint arXiv:1707.00577, 2017.

[LR17b] Junhong Lin and Lorenzo Rosasco. Optimal rates for learning with nyström
stochastic gradient methods. arXiv preprint arXiv:1710.07797, 2017.

[LR17c] Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradi-
ent methods. Journal of Machine Learning Research, 18(97):1–47, 2017.

[LRRC18] Junhong Lin, Alessandro Rudi, Lorenzo Rosasco, and Volkan Cevher. Optimal
rates for spectral algorithms with least-squares regression over hilbert spaces. Ap-
plied and Computational Harmonic Analysis, 2018.

[LS19] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. 2019.

[LSS13] Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood-approximating kernel expan-
sions in loglinear time. In Proceedings of the international conference on machine
learning, volume 85, 2013.

[MB17] Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational per-
spective on large-scale shallow learning. In Advances in Neural Information Pro-
cessing Systems, pages 3778–3787, 2017.

162

[MGL+17] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aure-
lien Bellet, Linxi Fan, Michael Collins, Daniel J. Hsu, Brian Kingsbury, Michael
Picheny, and Fei Sha. Kernel approximation methods for speech recognition.
CoRR, abs/1701.03577, 2017.

[MK18] Mojmı́r Mutný and Andreas Krause. Efficient high-dimensional Bayesian opti-
mization with additivity and quadrature Fourier features. In Neural Information
Processing Systems, 2018.

[MM17] Cameron Musco and Christopher Musco. Recursive Sampling for the Nyström
Method. In NIPS, 2017.

[Ora14] Francesco Orabona. Simultaneous model selection and optimization through
parameter-free stochastic learning. In Advances in Neural Information Processing
Systems, pages 1116–1124, 2014.

[PVRB18a] Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Exponential conver-
gence of testing error for stochastic gradient methods. In Proceedings of the 31st
Conference On Learning Theory, volume 75, pages 250–296, 2018.

[PVRB18b] Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality
of stochastic gradient descent on hard learning problems through multiple passes.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
8125–8135. Curran Associates, Inc., 2018.

[QCR05] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate gaussian process regression. Journal of Machine Learning
Research, 6(Dec):1939–1959, 2005.

[QCRW07] Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Christopher K. I.
Williams. Approximation methods for gaussian process regression. Large-scale
kernel machines, pages 203–224, 2007.

[RCCR18] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco.
On fast leverage score sampling and optimal learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 5677–5687. Curran Associates,
Inc., 2018.

[RCR13] Alessandro Rudi, Guillermo D Canas, and Lorenzo Rosasco. On the sample com-
plexity of subspace learning. In Advances in Neural Information Processing Sys-
tems, pages 2067–2075, 2013.

163

[RCR15] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more:
Nyström computational regularization. In Advances in Neural Information Pro-
cessing Systems, pages 1657–1665, 2015.

[RCR17] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. FALKON: An optimal
large scale kernel method. In Advances in Neural Information Processing Systems,
pages 3891–3901, 2017.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[Rob52] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin
of the American Mathematics Society, 58:527–535, 1952.

[RR08] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-
chines. In Advances in neural information processing systems, pages 1177–1184,
2008.

[RR09] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Re-
placing minimization with randomization in learning. In Advances in neural in-
formation processing systems, pages 1313–1320, 2009.

[RR17] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with
random features. In Advances in Neural Information Processing Systems, pages
3215–3225, 2017.

[RS80] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics: Vol.:
1.: Functional Analysis. Academic press, 1980.

[RV15] Lorenzo Rosasco and Silvia Villa. Learning with incremental iterative regulariza-
tion. In Advances in Neural Information Processing Systems, pages 1630–1638,
2015.

[RW06] Carl Edward. Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning. MIT Press, 2006.

[Saa03] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[SBC17] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret
for noisy Gaussian process bandit optimization. In Conference on Learning The-
ory, 2017.

[SC08] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer
Science & Business Media, 2008.

164

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[SHS+09] Ingo Steinwart, Don R Hush, Clint Scovel, et al. Optimal rates for regularized
least squares regression. In COLT, 2009.

[SIVA17] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
pages 4278–4284, 2017.

[SKKS10] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaus-
sian process optimization in the bandit setting: No regret and experimental design.
International Conference on Machine Learning, 2010.

[SS00] Alex J. Smola and Bernhard Schölkopf. Sparse Greedy Matrix Approximation for
Machine Learning. In ICML, pages 911–918. Morgan Kaufmann, 2000.

[SS02] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computa-
tion and Machine Learning). MIT Press, 2002.

[SS15] Bharath Sriperumbudur and Zoltán Szabó. Optimal rates for random fourier fea-
tures. In Advances in Neural Information Processing Systems, pages 1144–1152,
2015.

[SSSSC11] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pega-
sos: Primal estimated sub-gradient solver for svm. Mathematical programming,
127(1):3–30, 2011.

[SWL03] Matthias Seeger, Christopher Williams, and Neil Lawrence. Fast forward selec-
tion to speed up sparse gaussian process regression. In Artificial Intelligence and
Statistics 9, number EPFL-CONF-161318, 2003.

[SZ03] Steve Smale and Ding-Xuan Zhou. Estimating the approximation error in learning
theory. Analysis and Applications, 1(01):17–41, 2003.

[SZ13] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth opti-
mization: Convergence results and optimal averaging schemes. In International
Conference on Machine Learning, pages 71–79, 2013.

165

[Tho33] William R. Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25:285–294, 1933.

[Tro12] Joel A Tropp. User-Friendly Tools for Random Matrices: An Introduction. 2012.

[Tro15] Joel Aaron Tropp. An introduction to matrix concentration inequalities. Founda-
tions and Trends in Machine Learning, 8(1-2):1–230, 2015.

[TRVR16] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht.
Large scale kernel learning using block coordinate descent. arXiv preprint
arXiv:1602.05310, 2016.

[Vap99] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions
on neural networks, 10(5):988–999, 1999.

[VKM+13] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini.
Finite-time analysis of kernelised contextual bandits. In Uncertainty in Artificial
Intelligence, 2013.

[VRC+05] Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto De Giovannini,
and Francesca Odone. Learning from examples as an inverse problem. Journal of
Machine Learning Research, 6(May):883–904, 2005.

[Wah90] Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.

[WGKJ18] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-
scale bayesian optimization in high-dimensional spaces. In International Confer-
ence on Artificial Intelligence and Statistics, pages 745–754, 2018.

[Woo14] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations
and Trends in Theoretical Computer Science, 10(1–2):1–157, 2014.

[WS01] Christopher KI Williams and Matthias Seeger. Using the nyström method to speed
up kernel machines. In Advances in neural information processing systems, pages
682–688, 2001.

[YLK17] Xiaotian Yu, Michael R. Lyu, and Irwin King. CBRAP: Contextual bandits with
random projection. In AAAI Conference on Artificial Intelligence, 2017.

[YPW15] Yun Yang, Mert Pilanci, and Martin J Wainwright. Randomized sketches
for kernels: Fast and optimal non-parametric regression. arXiv preprint
arXiv:1501.06195, 2015.

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gra-
dient descent learning. Constructive Approximation, 26(2):289–315, 2007.

166

[ZDW13] Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. Divide and Conquer
Kernel Ridge Regression. In COLT, volume 30 of JMLR Proceedings, pages 592–
617. JMLR.org, 2013.

167

	Chapter Introduction
	On the Need for Efficient Machine Learning
	Can We Scale Non-parametric Methods ?
	Statistical Learning Setting
	Bandit Optimization Setting

	Contributions
	Structure of the Thesis

	Chapter Learning with Kernels in the Statistical Learning Setting
	Statistical Learning Theory
	Measuring Generalization

	Reproducing Kernel Hilbert Spaces
	Kernel Ridge Regression
	Gradient Descent Learning
	Learning Bounds
	Basic
	Refined

	Chapter Stochastic Gradient Descent with Random Features
	Learning with Stochastic Gradients and Random Features
	From Sketching to Random Features, from Shallow Nets to Kernels
	Computational Complexity
	Related Approaches

	Main Results
	Worst Case Results
	Refined Analysis and Fast Rates
	Sketch of the Proof

	Details of the Proof
	Preliminary Definitions
	Error Decomposition
	Lemmas
	Proofs of Theorems

	Experiments

	Chapter FALKON
	From Kernel Ridge Regression to Nyström Approximation
	Random Projections.

	FALKON
	Preliminaries: Preconditioning and KRR
	Basic FALKON Algorithm
	The Complete Algorithm

	Theoretical Analysis
	Main Result
	Fast Learning Rates and Nyström with Approximate Leverage Scores

	Comparison with Previous Works
	Generalized FALKON
	The Algorithm

	Definitions and Notation for Proofs
	Definitions

	Analytic results
	Analytic Results (I): Controlling Condition Number of W
	Analytic Results (II): The Computational Oracle Inequality

	Probabilistic Estimates
	Proof of Main Results
	Main Result (I): Computational Oracle Inequality for FALKON with Uniform Sampling
	Main Result (II): Computational Oracle Inequality for FALKON with Leverage Scores
	Main Results (III): Optimal Generalization Bounds

	Experiments

	Chapter Fast and Accurate Leverage Score Sampling
	Leverage Score Sampling with BLESS
	Leverage Score Sampling
	Approximate Leverage Scores
	Previous Algorithms for Leverage Scores Computations
	Bottom-up Leverage Score Sampling with BLESS
	BLESS and BLESS-R in Details
	Theoretical Guarantees

	Theoretical Analysis for BLESS
	Notation
	Definitions
	Preliminary Results
	Analytic Decomposition
	Proof for BLESS (Alg. 3)
	Proof for BLESS-R (Alg. 4)
	Proof of thm:main-appr-lev-scores

	Efficient Supervised Learning with Leverage Scores
	Learning with FALKON-BLESS
	Statistical Properties of FALKON-BLESS

	Theoretical Analysis for FALKON-BLESS
	Definition of the Algorithm
	Main Results
	Result for Nyström-KRR and BLESS
	Proof of thm:FALKON-basic-rates

	Experiments
	Leverage Scores Accuracy
	BLESS for Supervised Learning

	Chapter Kernelized Bandit Optimization
	Bandit Optimization
	Upper Confident Bound
	Gaussian Process
	GP-UCB

	Chapter Gaussian Process Optimization with Adaptive Sketching
	Budgeted Kernel Bandits
	The algorithm
	Complexity analysis
	Regret Analysis
	Sketch of the Proof

	Discussion
	Relaxing Assumptions

	Details of the Proofs
	Properties of the Posterior Variance
	Proof of thm:kors-complexity
	Proof of thm:main-regret

	Bibliography

