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While technology is increasingly used in the classroom, we observe at the same time that 
making teachers and students accept it is more difficult than expected. In this work, 
we focus on multisensory technologies and we argue that the intersection between current 
challenges in pedagogical practices and recent scientific evidence opens novel opportunities 
for these technologies to bring a significant benefit to the learning process. In our view, 
multisensory technologies are ideal for effectively supporting an embodied and enactive 
pedagogical approach exploiting the best-suited sensory modality to teach a concept at 
school. This represents a great opportunity for designing technologies, which are both 
grounded on robust scientific evidence and tailored to the actual needs of teachers and 
students. Based on our experience in technology-enhanced learning projects, we propose 
six golden rules we deem important for catching this opportunity and fully exploiting it.
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INTRODUCTION

Multisensory education is conceived as an instructional method using visual, auditory, kinesthetic, 
and tactile ways to educate students (Joshi et  al., 2002). There has been a longstanding interest 
in how learning can be supported by representations engaging multiple modalities. For example, 
the Montessori education tradition makes use of artifacts such as sandpaper letters children 
trace with their fingers to develop the physical skill of learning to write. Papert (1980) discussed 
the idea of body-syntonic learning – projecting an experiential understanding of how bodies 
move – into learning about geometry. Moreno and Mayer (1999) explored the cognitive impact 
of multimodal learning material in reducing cognitive load by representing information in 
more than one modality.

Technology entered the classroom many years ago. It can be  considered as a medium for 
inquiry, communication, construction, and expression (Bruce and Levin, 1997). Early technological 
interventions consisted of endowing classrooms with devices such as overhead projectors, cassette 
players, and simple calculators. These devices were intended to support the traditional learning 
and teaching paradigms and usually did not enable direct interaction of students with technology. 
More recently, a broad palette of technological tools became available, including technologies 
for computer-assisted instruction, i.e., the use of computers for tutorials or simulation activities 
offered in substitution or as a supplement to teacher-directed instruction (Hicks and Holden, 
2007), and for computer-based instruction, i.e., the use of computers in the delivery of instruction 
(Kulik, 1983). These technologies exploit devices, such as interactive whiteboards, laptops, 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Genova

https://core.ac.uk/display/287852179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.01076&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.01076
https://creativecommons.org/licenses/by/4.0/
mailto:gualtiero.volpe@unige.it
https://doi.org/10.3389/fpsyg.2019.01076
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01076/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01076/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01076/full
https://loop.frontiersin.org/people/179371/overview
https://loop.frontiersin.org/people/25629/overview


Volpe and Gori Multisensory Interactive Technologies for Education

Frontiers in Psychology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 1076

smartphones, and tablets, which are mainly conceived to convey 
visual information and are not intended for embodied interaction. 
Walling (2014) argued that tablet computers are toolboxes for 
learner engagement and suggested that the transition to using 
tablet computers in education is a natural process for teenagers. 
For example, there are multiple applications for tablets for 
learning mathematics1. Falloon (2013) reviewed 45 apps selected 
by an experienced teacher. Of them, 27 were considered 
educational apps, which focused on a broad variety of topics, 
including numeracy skills, reinforcing spelling, acquiring new 
vocabulary, and improving phonetics. Nevertheless, these 
solutions usually rely on the ability to see digital content rather 
than physically interacting with it. At the same time, novel 
technological developments also enabled the use of multiple 
sensory channels, including the visual, auditory, and tactile 
ones. This technology has been defined as multisensory technology. 
Technological advances and increased availability of affordable 
devices (e.g., Kinect, Oculus Rift, and HTC Vive) allowed a 
fast adoption of multisensory technology in many areas (e.g., 
entertainment, games and exergames, and assistive technologies). 
Its introduction in the classroom, however, is still somewhat 
limited. Early works addressed the use of virtual reality in 
educational software for either enabling full immersion in 
virtual environments or accentuating specific sensory information 
(Raskind et al., 2005). Nowadays, technologies such as augmented 
reality (e.g., see Santos et  al., 2014) and serious games (e.g., 
see Connolly et al., 2012) play a relevant role in many educational 
contexts, both in science and in the humanities. Multisensory 
technologies enabling embodied interaction were used, for 
example, to support teaching in computer programming (e.g., 
Katai and Toth, 2010; Katai, 2011), music (e.g., Varni et  al., 
2013), and dance (e.g., Rizzo et  al., 2018). Baud-Bovy and 
Balzarotti (2017) reviewed recent research on force-feedback 
devices in educational settings, with a particular focus on 
primary school teaching. Less traditional tools were also exploited, 
including Job Access With Speech (JAWS) and Submersible 
Audible Light Sensor (SALS). JAWS is a computer screen reader 
program allowing blind and visually impaired users to read 
the screen. SALS is a glass wand with an embedded light 
sensor, enabling the measuring of color intensity changes. These 
tools were used in a science camp for visually impaired students 
(Supalo et  al., 2011), but they could also be  modified and 
adapted for general inclusion in multisensory education. Despite 
such initiatives and the growing interest in these tools, most 
often the introduction of multisensory technologies in the 
learning environment has been exploratory, piecemeal, or ad 
hoc, focusing on understanding the potentials of the different 
modalities, rather than taking a combined multisensory focus.

Stakeholders consider the adoption of a technology-mediated 
pedagogical approach as a must, and the quest for innovation 
heavily drives choices. Attempts at integrating technology in 
the classroom, however, do not often take into account the 
pedagogical needs and paradigms. Teachers and students are 
not involved in the innovation process, and development of 

1 See e.g., http://www.pcadvisor.co.uk/feature/software/best-maths-apps-for-children-
3380559/

technologies does not follow a proper evidence-based iterative 
design approach. The risk is that technology can be  rejected. 
For example, Groff and Mouza (2008) presented a literature 
review on the challenges associated with the effective integration 
of technology in the classroom. More recently, Johnson et  al. 
(2016) discussed common challenges educators face when 
attempting to introduce technology at school. Philip (2017) 
described the difficulties that were experienced in a project 
relying on novel mobile technologies in the classroom.

In this article, we argue that the intersection between current 
challenges in pedagogical practices and recent scientific evidence 
opens novel opportunities for acceptance of technology as a 
tool for education, and those multisensory technologies can 
specifically bring a significant benefit to the teaching and 
learning process.

SCIENTIFIC EVIDENCE

The combination and the integration of multiple unimodal 
units are crucial to optimize our everyday interaction with 
the environment (Ernst and Bulthoff, 2004). Sensory combination 
allows us to maximize information delivered by different sensory 
modalities without these modalities being necessarily fused, 
while sensory integration enables reducing the variance in the 
sensory estimate to increase its reliability (Ernst and Bulthoff, 
2004). In particular, sensory combination occurs when different 
environmental properties of the same object are estimated by 
means of different sensory modalities. Contrarily, sensory 
integration occurs when the same environmental property is 
estimated by different sensory modalities (Ernst and Bulthoff, 
2004). Many recent studies show that our brain is able to 
integrate unisensory signals in a statistically optimal fashion 
as predicted by a Bayesian model, weighting each sense according 
to its reliability (Clarke and Yuille, 1990; Ghahramani et  al., 
1997; Ernst and Banks, 2002; Alais and Burr, 2004; Landy 
et  al., 2011). This model has been useful to predict the 
multisensory integration behavior of adults across different 
sensory modalities in an optimal or near-optimal fashion (Ernst 
and Banks, 2002; Alais and Burr, 2004; Landy et  al., 2011). 
There is also firm neurophysiological evidence for multisensory 
integration. Studies in cats have demonstrated that the midbrain 
structure superior colliculus (SC) is involved in integrating 
information between modalities and in initiating and controlling 
localization and orientation of motor responses (Stein and 
Meredith, 1993). This structure is highly sensitive to input 
from the association cortex, and emergence of multisensory 
integration critically depends on cross-modal experiences that 
alter the underlying neural circuit (Stein et al., 2014). Moreover, 
cortical deactivation impairs integration of multisensory signals 
(Jiang et  al., 2002, 2007; Rowland et  al., 2014). Studies in 
monkeys explored multisensory decision making and underlying 
neurophysiology by considering visual and vestibular integration 
(Gu et  al., 2008). Similar effects were also observed in rodents 
(Raposo et  al., 2012, 2014; Sheppard et  al., 2013).

The role of sensory modalities in child development has 
been the subject of relevant research in developmental psychology, 
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psychophysics, and neuroscience. On the one side, scientific 
results show that young infants seem to be  able to match 
sensory information and benefit from the presence of congruent 
sensory signals (Lewkowicz, 1988, 1996; Bahrick and Lickliter, 
2000, 2004; Bahrick et  al., 2002; Neil et  al., 2006). There is 
also evidence for cross-modal facilitation, where stimuli in 
one modality increase the responsiveness to stimuli in other 
modalities (Lewkowicz and Lickliter, 1994; Lickliter et al., 1996; 
Morrongiello et  al., 1998). On the other side, the ability to 
integrate unisensory signals in a statistically optimal fashion 
develops quite late, after 8–10  years of age (Gori et  al., 2008, 
2012; Nardini et al., 2008; Petrini et al., 2014; Dekker et al., 
2015; Adams, 2016). Recent results show that during the first 
years of life, sensory modalities interact and communicate with 
each other and the absence of one sensory input impacts on 
the development of other modalities (Gori, 2015). According 
to the cross-sensory calibration theory, in children younger 
than 8–10 years old, the most robust sensory modality calibrates 
the other ones (Gori et  al., 2008). This suggests that specific 
sensory modalities can be  more suitable than others to convey 
specific information and hence to teach specific concepts. For 
example, it was observed that children use the tactile modality 
to perceive the size of objects, whereas the visual signal is 
used to perceive their orientation (Gori et  al., 2008). It was 
also observed that when the motor information is not available, 
visual perception of size is impaired (Gori et  al., 2012) and 
that when visual information is not available, tactile perception 
of orientation of objects is impaired (Gori et  al., 2010). These 
results suggest that until 8–10  years of age, sensory modalities 
interact and shape each other. Then, multisensory technology 
that exploits multiple senses can be  crucial to communicating 
specific concepts in a more effective way (i.e., having multiple 
signals available, the child can use the one which is most 
suitable for the task). Scientific evidence also suggests that it 
is not always true that the lack of one sensory modality is 
associated with an enhancement of the remaining senses 
(Rauschecker and Harris, 1983; Rauschecker and Kniepert, 
1994; Lessard et  al., 1998; Röder et  al., 1999, 2007; Voss et  al., 
2004; Lomber et  al., 2010), but, in some cases, even the other 
not impaired senses are affected by the lack of the calibration 
modality (Gori et  al., 2014; Finocchietti et  al., 2015; Vercillo 
et  al., 2015). For example, visually impaired children have 
impaired tactile perception of orientation (Gori et  al., 2010); 
thus, touch cannot be  used to communicate the orientation 
concept, and other signals, such as the auditory one, could 
be  more suitable to convey this information.

We think that this scientific evidence should be  reflected 
in teaching and learning practices, by introducing novel 
multisensory pedagogical methodologies grounded on it. In 
particular, we  think that such scientific evidence supports an 
embodied and enactive pedagogical approach, using different 
sensory-motor signals and feedback (audio, haptic, and visual) 
to teach concepts to primary school children. For example, 
the use of sound associated with body movement could be  an 
alternative way to teach visually impaired children the concept 
of orientation and angles. Such an approach would be  more 
direct, i.e., natural and intuitive, since it is based on the 

experience and on the perceptual responses to motor acts. 
Moreover, the use of movement for learning was shown to 
deepen and strengthen learning, retention, and engagement 
(Klemmer et  al., 2006; Habib et  al., 2016).

It should be  noticed that sensory combination and sensory 
integration are implemented differently in the way multisensory 
signals are provided through technology. At the technological 
level, there is a difference between teaching a concept by using 
more than one modality (i.e., by adopting multiple alternative 
strategies and promoting multisensory combination) versus 
stimulating those modalities simultaneously by providing 
redundant sensory signals (thus promoting multisensory 
integration). In the technological area, Nigay and Coutaz (1993) 
classified multimodal interactive systems depending on their 
use of modalities and on whether modalities are combined 
(i.e., what in computer science is called multimodal fusion). 
In particular, they made a distinction between sequential, 
simultaneous, and composite multimodal interactive systems. 
The kind of multimodal interactive system, which is selected 
to provide multisensory feedback, depends on and affects the 
pedagogical paradigm and the way the learning process develops. 
More research is needed to get a deeper understanding of all 
the implications related to this choice, e.g., with respect to 
the concepts to teach, the needs of teachers and students, the 
optimal way of providing technological support, the learning 
outcomes, and so on.

CHALLENGES

Multisensory technologies can help in overcoming the 
consolidated hegemony of vision in current educational practice. 
A too strong focus on one single sensory channel may compromise 
the effectiveness and personalization of the learning process. 
Moreover, a pedagogical approach based on one single modality 
may prevent the inclusion of children with impairments (e.g., 
with visual impairment).

More specifically, multisensory technologies can support the 
learning process by enhancing effectiveness, personalization, 
and inclusion. With respect to effectiveness, this may be affected 
by a wrong or an excessive usage of vision, which is not 
always the most suitable channel for communicating certain 
concepts to children.

As for personalization, a pedagogical methodology based 
almost exclusively on the visual modality would not consider 
the learning potential, and routes of access for learning in 
children, of exploiting the different modalities in ways that 
more comprehensively convey different kinds of information 
(e.g., the tactile modality is often better for perception of 
texture than vision). Moreover, we might speculate that a more 
flexible multisensory approach could highlight individual 
predispositions of children. It could be  possible, for example, 
to observe a different individual tendency of preferring a specific 
learning approach for different children, demonstrating that 
specific sensory signals can be  more useful for some children 
to learn specific concepts. For example, recent studies showed 
that musical training can be  used as a therapeutic tool for 
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treating children with dyslexia (e.g., Habib et  al., 2016). 
The temporal and rhythmic features of music could indeed 
exert a positive effect on the multiple dimensions of the 
“temporal deficit” that is characteristic of some types of dyslexia. 
Other specific examples are autism and Attention Deficit 
Hyperactivity Disorder (ADHD). There is solid evidence that 
multisensory stimuli improve the accuracy of decisions. Can 
multisensory technology or stimuli also improve attention or 
learning speed or retention? In our opinion, this issue is worthy 
of further investigation and found evidence in this direction 
would be  crucial for designing effective technological support 
for children with developmental disorders (ADHD, autism, 
specific learning disabilities, dyslexia, and so on).

Concerning inclusion, the lack of vision in children with 
visual disability impacts, e.g., the learning of geometrical concepts 
that are usually communicated through visual representations 
and metaphors. A delay in the acquisition of cognitive skills 
in visually impaired children directly affects their social 
competence, producing in turn feelings of frustration that 
represent a risk for the development of personality and emotional 
competence (Thompson, 1941). The use of multisensory 
technology would allow having the same method for teaching 
to be used by sighted and blind children, thus naturally breaking 
barriers among peers and facilitating social interactions.

AN OPPORTUNITY FOR MULTISENSORY 
TECHNOLOGIES

In our view, multisensory technologies are ideal for effectively 
supporting a pedagogical approach exploiting the best-suited 
sensory modality to teach a concept.

Multisensory technologies enable accurate and real-time 
mapping of motor behavior onto multiple facets of sound, 
music, tangible, and visual media, according to different strategies 
the teacher can select with great flexibility. Consider, for example, 
a recent technology-mediated learning activity we are developing 
for introducing geometric concepts, such as angles (Volta et al., 
2018). In this activity, a child is asked to reproduce an angle 
by opening her arms. The child’s arms represent the two sides 
of the angle and her head its vertex. Arms aperture is 
automatically measured by means of a Microsoft Kinect v.2 
device, and the motor behavior is mapped onto multisensory 
feedback in real time. A visual or auditory feedback or both 
of them is provided. The visual feedback consists of the visual 
representation within a circle of the angle the child is doing 
(see Figure 1). Concerning the auditory feedback, while the 
child moves her arms, she can listen to a musical scale covering 
the full range of angle amplitude. If the child changes the 
aperture of her arms, the note in the scale – played by a 
string instrument – changes according to the movement. A 
long distance between the arms (i.e., a big angle) corresponds 
to a low-pitch note, whereas a short distance (i.e., a small 
angle) corresponds to a high-pitch note. Such a mapping is 
grounded on psychophysical evidence showing that a low pitch 
is associated with a big size and a high pitch is associated 
with a small size (Tonelli et  al., 2017). If the child is able to 

keep the same angle while rotating her arms, she listens to 
the same note with no changes in the auditory feedback, 
suggesting that angles are invariant under rotations. The teacher 
is provided with an interface enabling her to control the 
application (e.g., by selecting the angles that are proposed, the 
kind of feedback, several levels of difficulty, and so on). An 
initial and ongoing evaluation of this activity with children is 
suggesting that the proposed embodied representation of angles 
helps children in understanding angles and their properties 
(e.g., rotational invariance), even if more iterations of the 
development cycle are needed to address possible drawbacks 
(e.g., children get tired if asked to keep arms open for a too 
long time). While the angles activity implements a quite simple 
mapping of motor behavior onto visual and auditory feedback, 
more sophisticated approaches can be  conceived. Multiple 
features of motor behavior can indeed be mapped onto multiple 
dimensions of sound morphology, including pitch, intensity, 
granularity, rhythm, and so on. While this is what usually 
happens when playing a musical instrument, technology makes 
it more flexible. Indeed, the teacher can choose which motor 
features are mapped onto which sound parameters and the 
child can quickly achieve a fine-grained control on the sound 
parameters, something that would require many years of practice 
with a traditional musical instrument. These issues have been 
debated for a long time in the literature of sound and music 
computing, see for instance, Hunt and Wanderley (2002), for 
a seminal work on this topic and the series of conferences 
on New Interfaces for Musical Expression2.

In our view, the adoption of an embodied and enactive 
pedagogical approach, tightly integrated with multisensory 
technology, would, therefore, foster effectiveness (for each specific 
concept, the most suited modality can be  exploited) and 
personalization (flexibility for teachers and students) in the 
learning process. Moreover, inclusion can also take a great 
advantage: teaching can exploit the most suited substitutive 
modality for impaired children.

GUIDELINES

Since big opportunities most often entail likewise big risks, 
the introduction of multisensory technologies in the classroom 
needs to be careful. From our experience in technology-enhanced 
learning projects, we propose six golden rules we deem important 
for catching this opportunity and fully exploiting it.

 1.  Ground technology on pedagogical needs. Multisensory 
technologies should be  tailored to the pedagogical needs 
of teachers. That is, they can help with teaching concepts 
that teachers specifically deem relevant in this respect. 
These could be  concepts that are particularly difficult to 
understand for children or concepts that may enjoy 
communication through a sensory modality other than 
vision. We recently conducted a survey on over 200 math 
teachers. It was surprising for us to see that more than 

2 http://www.nime.org
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75% of teachers agreed on the same concepts as the most 
difficult for children and the most appropriate for 
technological intervention.

 2.  Ground technology on scientific evidence. Multisensory 
technology should leverage on sensorial, perceptual, and 
cognitive capabilities children have according to scientific 
evidence. Concretely, for example, a technology able to 
detect specific motor behaviors in a target population of 
children (e.g., primary school) makes sense only if scientific 

evidence shows that children in the target population can 
actually display such behaviors. The same holds for feedback: 
multisensory technology can provide a specific feedback 
(e.g., based on pitch), if (1) children can perceive it (e.g., 
they developed perception of pitch) and (2) an experimentally 
proven association exists between feedback and concept 
to be  communicated (e.g., the association between pitch 
and size of objects).

 3.  Adopt an iterative design approach and rigorously assess 
learning outcomes. Iterative design and refinement of 
technology are a critical component in the development 
cycle of interactive technologies. In case of multisensory 
technologies for education, this is crucial for successfully 
integrating technology in the classroom. Each iteration in 
the development process needs to rigorously assess learning 
outcomes (e.g., the speed of learning, longer-term outcomes 
like knowledge retention, student-centered outcomes like 
learner satisfaction, classroom behavior, and so on) and 
use this feedback to inform the next iteration.

 4.  Make technology flexible and customizable. This is a typical 
goal for technologies, but it assumes here a particular 
relevance. It means assessing (1) which is the preferred 
sensory modality for a child to learn a specific concept 
and (2) whether specific impairments require exploiting 
particular sensory modalities. As a side effect, technology 
may help with screening for behavioral problems and 
addressing them. For example, recent studies show that 
musical training can be  used as a therapeutic tool for 
treating children with dyslexia (e.g., Curzon et  al., 2009).

 5.  Emphasize the role of the teacher. In our view, technology 
does not replace the teacher. Rather, the teacher plays the 
central role of mediator. In an iterative methodology (see 
Figure 2), the teacher first chooses a concept to teach; 
then, following an initial evaluation phase, she identifies 
the best modality to teach it to each child and personalizes 

FIGURE 1 | The visual feedback provided by a technology-mediated learning activity featuring angles. A child makes an angle by opening her arms, the arms 
representing the sides of the angle, and the head its vertex. Arms aperture is measured by a Microsoft Kinect v.2 device and mapped in real time onto visual and/or 
auditory feedback. The activity was designed and developed by the Casa Paganini – InfoMus research centre at DIBRIS – University of Genoa and the U-Vip Unit at 
Istituto Italiano di Tecnologia in the framework of the EU-H2020-ICT weDRAW project.

FIGURE 2 | A four-phase iterative methodology directly involving the teacher 
in the choice of the sensory modalities to be exploited for conveying a specific 
concept. Following an initial evaluation phase, the best modality to teach the 
concept is identified for each child in a personalized way, and the selected 
modality is used to teach further concepts. The methodology involves tight 
integration of pedagogical, neuroscientific, and technological knowledge and 
an effective multidisciplinary approach.
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technology to exploit the selected modality; she finally 
evaluates the outcomes of the learning process and adopts 
possible further actions. Moreover, design, development, 
and evaluation of technology should be  obviously carried 
out in the framework of a participatory design process 
involving teachers and students (see Guideline 3).

 6.  Promote cross-fertilization with the arts and human sciences. 
Taking a rigorous scientific approach should not exclude 
the opportunity of getting inspiration from humanities, and 
in particular from arts. Recent initiatives (e.g., the EU STARTS 
platform3) witness the increased awareness of how art and 
science are two strongly coupled aspects of human creativity 
(Camurri and Volpe, 2016), as well as the impact of art 
on scientific and technological research. In case of multisensory 
technology for education, the extraordinary ability art has 
of conveying content by means of sound, music, and visual 
media provides, in our view, a significant added value.

CONCLUSION

We developed and tested our approach in the framework of 
the weDRAW project4. This was an EU-H2020-ICT-funded 
project focusing on multisensory technologies for teaching math 
to primary school children. The final goal was to open a new 
teaching/learning channel based on multisensory interactive 
technology. The project represented an ideal testbed to assess 
the support of multisensory technology to learning math. More 
importantly, we  think that the approach we  outlined in this 
article can enable the development of a multisensory embodied 

3 https://ec.europa.eu/digital-single-market/en/ict-art-starts-platform
4 http://www.wedraw.eu

and enactive learning paradigm and of a teaching ecosystem 
that applies in the same way and provides the same opportunities 
to both typically developed and impaired children, thus breaking 
the barriers between them and fostering inclusion.
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