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Abstract 

Metastases are the primary cause of death in cancer patients. Small animal models are helping 

dissecting some key features of the metastatic cascade but many bio-mechanic details remains 

difficult to analyze in vivo. For this reason a series of tools for performing systematic analysis of 

vascular permeability, tissue architecture, blood flow, biochemical stimuli and inflammation were 

produced in the last decade. Particularly relevant for this field is the use of microfluidic chips allowing 

to include in vitro models a vascular component. During my PhD, I applied this novel technologies 

to replicate in vitro key steps in the metastatic cascade and cancer-immune cell interaction with a 

focus on the establishment of microfluidics for metastasis. More specifically I used 3 different 

microfluidic chips: i) a single-channel microfluidic chip allowing to study CTCs adhesion and rolling 

inside a small capillary; ii) a double-channel microfluidic chip, composed by an upper and a lower 

channels mimicking the vascular and extravascular compartments; the channels are laterally 

connected by an array of micro pillars acting as a vascular membrane; iii) a three channel device 

composed by a central 3D culture of tumor cells embedded into a collagen matrix flanked by 2 

channels connected to the former by a series of trapezoidal pillars. The two lateral compartments are 

used to simulate the vascular and stromal environment respectively. 

In the text we show how the aforementioned microfluidic devices can efficiently recapitulate in vitro 

multiple key steps of cancer metastatic cascade and some of the most important interactions between 

immune-cancer cell interactions. 
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1. INTRODUCTION 

1.1 METASTATIC PROCESS 

Despite considerable advances were made for the characterization, diagnosis and therapy of cancer, 

metastases remain a major problem causing 90% of deaths in cancer patients. The first studies on 

metastases started more than 130 years ago with the theory of "seed and soil"1-2 elaborated by the 

English surgeon Stephen Paget. The theory states that tumor cells from the primary mass (the 

"seeds"), and the target organ (the "soil") are both fundamental for metastasis formation. In recent 

years, the correlation between cancer cell spreading and the microenvironment of colonized organs 

has been object of extensive studies. Among the major evidences, it was interestingly found that in 

most of the cases tumor cells endowed with unique properties are able to metastasize. The metastatic 

cells, follow these main steps: 1) detachment from the primary tumor mass, 2) intravasation in the 

circulatory system, 3) arrest and adhesion to the blood vessels with the consequent, 4) extravasation 

through the vascular walls. Once the parenchyma of distant tissues is reached, the formation of 

metastatic colonies starts 3-4 (Figure.1).  

 

1.1.1 EPITHELIAL TO MESENCHYMAL TRANSITION 

The metastatic process allows Circulating Tumor Cells (CTCs) to acquire capabilities fostering their 

survival in distant tissues. One of the main processes to support this phenomena is the epithelial-

mesenchymal transition (EMT), a development program normally occurring during embryogenesis, 

or in adults, for epithelial tissue healing5. Tumor cells gradually and partially lose their epithelial 

properties and acquire mesenchymal cells features. These new properties include an augmented 

motility and the ability to degrade extracellular matrix (ECM) components6 thus leading to an 

increased invasiveness (Figure.1.1b and c). EMT programs are usually triggered by stromal cells 

residing in the tumor niche. To boost EMT activation, these cells releases different mediators: TGF-
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β, WNTs and several interleukins. From a molecular point of view this paracrine signaling is able to 

activate in cancer cells several transcription factors (Snail, Slug, Twist and Zeb1) as deeply 

documented in several studies7. EMT is considered a fundamental process for metastasis formation 

since the presence of a certain number of CTC in the primary tumor mass is a prodromal process to 

metastatization. It is important to note that this transformation occurs in several cancer types, such as 

colorectal8, ovarian9, pancreatic10, prostate11 and renal12 and often leads to tumor resistance to 

chemotherapy and radiotherapy 13. The process is anyway considered reversible: when reversion 

occurs, cancer cells turn back to the previous phenotype. 

 

Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of 

metastasis. Cell, 168(4), 670-691. 

Figure 1.1 Dissemination of cancer Cells: (A) Carcinoma cell dissemination occurs via two mechanisms: 

single-cell dissemination through an EMT (gray arrow) or the collective dissemination of tumor clusters (black 

arrow). Recent evidence suggests that the leader cells of tumor clusters also undergo certain phenotypic 

changes associated with the EMT. (B) The epithelial state can be portrayed as the default state of residence; as 

cells undergo an EMT they enter into a succession of multiple epigenetic states, depicted here as free energy 

wells, with each state moving toward a more mesenchymal phenotype representing a higher energy state. (C) 

However, the barriers between states depicted here again as free energy wells, may be relatively low, resulting 
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in substantial spontaneous interconversion between them. This process has being manifested as phenotypic 

plasticity. 

It is important to note that cells can invade surrounding tissues individually or in cohorts14 driven by 

cancer-associated fibroblasts (CAF)15. In general the second scenario is more probable in those cases 

in which EMT is not completed and the cancer cell need to be supported during the migration by 

other cells providing missing functions (i.e.: matrix degrading functions)16. Considering the 

complexity and the heterogeneity of these processes many points still need to be clarified and more 

importantly classified, since any kind of tumor, possess its own trends and differences are appreciable 

also in sub-phenotypes of the same tumor. Despite this extreme complexity many studies are currently 

shading light on important details of the process17: 1) the different heterotypic signals acting on tumor 

cells that can activate EMT programs previously turned off; 2) the activation trends in tumor 

development phases; 3) how the differentiation program in normal cells influences the expression of 

the various components of the EMT program; 4) the role of somatic mutations (supported during the 

formation of the primary mass) on the activation and expression of EMT process; and 5) the roles of 

intracellular and extracellular signaling pathways in supporting the expression of already activated 

EMT programs. 

 

1.1.2 INVASION AND STROMA INTERACTION 

Once tumor cells acquires the aforementioned characteristics they start penetrating the extracellular 

matrix (ECM) and the interaction with the stroma is furtherly favored. Tumor cells start producing 

several soluble factors, which can influence stromal cell activity. For example by secreting 

granulocyte colony stimulator factor (G-CSF) and granulocyte macrophage-colony stimulating factor 

(GM-CSF), mesenchymal stem cells are attracted to the site and activated18. Resident mesenchymal 

cells and macrophages turns into CAF and tumor-associated macrophages (TAM), respectively. 

These activated classes of stromal cells (CAF and TAM) are deputed to secrete angiogenic factors, 
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proteolytic enzymes and proteins, which ultimately boost angiogenesis and lymphangiogenesis, and 

actively remodel the tissue favoring tumor progression. The overall process recapitulate a wound 

healing response19, the substantial difference is the aim of the process: while wound healing response 

stimulates regeneration of normal tissues and the restoration of homeostasis, stromal cell activation 

in cancer promotes tumor progression in several ways: 1) CTC phenotype is supported by the 

continuous stimulation furnished by stromal cells. 2) Angiogenesis and lymphangiogenesis stimulate 

tumor growth. 3) Tissue remodeling facilitates tumor cell penetration through newly formed 

immature vessels; these vessels are generally highly permeable and lack in pericytes. 

 

1.1.3 CIRCULATING TUMOR CELLS 

Individual invasive carcinoma cells and invasive cohorts derived from primary tumors can transit and 

invade the vasculature of adjacent tissues or intravasate in the neo-vasculature assembled within the 

tumor. This process, as mentioned above, possibly provides a route to circulating tumor cells (CTCs) 

to distant sites where they can establish new metastatic colonies20. The transport in the vessels is a 

stressful process given the blood flow, shear stress, collision with other cells. Cancer cells persist in 

the circulation until their trap inside micro-vessels as single cells or as clusters. According to 

experimental data, CTC clusters introduced into the venous circulation are much more efficient than 

single carcinoma cells in reaching a distant tissue. Compared to single CTCs, clusters results more 

resistant to apoptosis, can have an advantage in the physical lodging into the vessel lumia and in post-

extravasation proliferation that could contribute to their increased metastatic efficiency21. 

Furthermore, clusters are more protected from immune system attack and thus easier contribute to 

metastases formation, facilitating the cancer cells extravasation at distant sites (Figure.1.2). 

Single CTCs have been extensively studied in recent years due to technical improvements in their 

isolation from cancer patients blood22, they can form aggregates with platelets, leukocytes, monocytes 

or macrophages. Platelets can adhere to CTCs through a variety of mechanisms, one of which is the 
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recognition of the tissue factor expressed on the surface of some carcinoma cells23. Alternatively, this 

interaction occurs by translocation of P-selectin on the surface of activated platelets binding tumor 

cells. Platelets physically protect CTCs from natural killer (NK) cells elimination24 secreting factors 

such as platelet derived growth factor (PDGF) and TGF-β that attenuate NK cell activity25.  

However, it is still not clear which types of CTC (single-cell or cluster) are actually responsible for 

metastases formation, but the probability that a single CTC successfully funds a metastatic colony is 

very low26; more probably the presence of a single CTC may be considered a marker of the presence 

of cell clusters in circle. 

 

Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of 

metastasis. Cell, 168(4), 670-691. 

Figure 1.2. Interactions in Transit: Carcinoma cells escaping from primary tumors can intravasate into 

the circulation, either as single circulating tumor cells (CTCs) or as multicellular CTC clusters. The 

bloodstream represents a hostile environment for CTCs, exposing them to rapid clearance by natural killer 

(NK) cells or fragmentation due to the physical stresses encountered in transit through the circulation. 

Carcinoma cells gain physical and immune protection through the actions of platelets, which coat CTCs shortly 

after intravasation. Neutrophils can provide protection from NK cell attacks as well, while also contributing to 

the physical entrapment and extravasation of CTCs. Once lodged in a capillary, activated platelets and 

https://www.sciencedirect.com/topics/immunology-and-microbiology/carcinoma-cell
https://www.sciencedirect.com/topics/immunology-and-microbiology/circulation
https://www.sciencedirect.com/topics/immunology-and-microbiology/circulating-tumor-cell
https://www.sciencedirect.com/topics/immunology-and-microbiology/clearance
https://www.sciencedirect.com/topics/immunology-and-microbiology/neutrophil-granulocyte
https://www.sciencedirect.com/topics/immunology-and-microbiology/capillary
https://www.sciencedirect.com/topics/immunology-and-microbiology/thrombocyte-activation
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carcinoma cells secrete a number of bioactive factors that can act on monocytes, endothelial cells, and the 

carcinoma cells themselves. The collective effects of these interactions promote the transendothelial migration 

(TEM) of carcinoma cells, which can be aided by metastasis-associated macrophages (MAMs) in the 

target parenchyma. In lieu of TEM, arrested carcinoma cells may also proliferate intraluminally (not shown) 

or induce necroptosis in endothelial cells.  

 

1.1.4  EXTRAVASATION PROCESS 

Tumor cell extravasation is a necessary process for the formation of the pre-metastatic niche. This 

step has similarity with leukocytes extravasation at the injury sites. A first similarity among tumor 

cells and leukocytes is their sensitivity to chemokines. Chemokines secreted by endothelial cells 

direct leukocyte subgroups to sites where their functions are required27 and similarly attract cancer 

cells. 

To interact and adhere to the blood vessels wall, cancer cells bind endothelial adhesion molecules, as 

leukocytes do. During the first transient interaction phase, both tumor cells and leukocytes loosely 

bind E and P Selectins on endothelial cells. A strong adhesion phase follows: ICAM-1 and VCAM-

1 proteins, expressed on the endothelial cells, are bound by integrins on the counterpart28. After cancer 

cell adhesion and in order to reach interstitium, cells need overcome the endothelial barrier; this 

process is known as transendothelial migration (TEM), and applies to cancer cells and leukocytes as 

well. As for leukocyte migrating to inflammatory sites also for cancer cells the preferred route is 

generally the paracellular one (Figure.1.3)27. 

Other mechanisms are also documented: in some cases CTCs stacked in small capillaries located 

within secondary organs can proliferate and cause the rupture of the vessel with consequent 

extravasation29. 

https://www.sciencedirect.com/topics/immunology-and-microbiology/monocyte
https://www.sciencedirect.com/topics/neuroscience/parenchyma
https://www.sciencedirect.com/topics/immunology-and-microbiology/necroptosis
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Sökeland, G., & Schumacher, U. (2019). The functional role of integrins during intra-and extravasation within the 

metastatic cascade. Molecular cancer, 18(1), 12. 
Figure 1.3. Cancer cell extravasation: The extravasation of tumor cells. To achieve improved clarity the figure 

is limited to the major adhesion molecules and their interactions. Tumor adhesion molecules are shown in 

brown, endothelial ligands are shown in green. 

 

1.1.5 METASTATIC COLONIZATION 

Distant districts colonization is the last step of malignant tumor progression. This process depends on 

the ability of tumor cells to adapt to the new microenvironment. Experimental models estimate that 

only 0.01% of the intravenous injected tumor cells form metastases, highlighting the low efficiency 

of this process30. Furthermore, extravasated cells can undergo a dormancy phase, lasting weeks to 

years, in which they can be eliminated. This process was observed in several organs, including the 

lung, bone and brain. The residency site of dormant cells is usually the perivascular niche31. To date 

it is not clear if this process can be considered as an active retention promoted by the cell itself or 
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simply indicates cell inability to colonize the site due to growth factors lack32. In any case, it is clear 

instead that perivascular niche factors actively promote cell dormancy.  

It was shown that stromal cells found in the new district are somehow able to activate the dormant 

tumor cells by producing signaling factors stimulating tumor cell expansion and colonies formation 

as previously mentioned for the primary mass. This considered, the comprehension of this latency 

phase of the metastatic colonization could allow the development of treatments aimed to stop the 

metastatic cascade at this phase. 

 

1.1.6 ROLE OF THE IMMUNE SYSTEM IN THE METASTATIC CASCADE 

Immune system, deputed to protect the body from a broad variety of insults, also has a role in cancer 

development and, most importantly in countering this process. This dual role: pro-tumor or anti-

tumor, also influences the metastatic cascade. The idea that immune system could somehow interact 

with tumor dates back to the 19th century. Rudolf Virchow first observed leukocytes infiltrated into 

malignant tissues and hypothesized that tumors originated from chronically inflamed sites33. On the 

other hand, William Coley noted that a patient with inoperable sarcoma was completely cured after a 

concomitant infection. He is considered a pioneer in immunotherapy since after this observation he 

started treating cancer patients with a mixture of killed bacteria, known as Coley's toxin34.  

Tumor antigens or fragments of cancer dead cells can be absorbed by antigen presenting cells (APC), 

like dendritic cells (DC). DCs move to lymph nodes and present tumor-derived antigens on MHC-II 

to the T cells. Once activated toward a specific antigen, T cells are competent in killing cancer cells. 

In this ideal scenario, as reported in the work of Boon et al., adaptive immune system is able to detect 

cancer cells35, after infiltrating in the tumor mass, possibly improving the cancer patients’ survival36-

37. T cells and NK cells can also protect humans from metastatic lesions38-39. Indeed, defects in NK 

expression, increase the risk of metastatic disease in solid tumors40. Furthermore it was observed an 

inverse correlation between the number of circulating or infiltrating NK cells and the presence of 
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metastases in patients with various solid tumors41. Other immune cells such as macrophages, 

neutrophils, eosinophils and mast cells can directly kill tumor cells by phagocytosis, the production 

of reactive oxygen species and the secretion of cytokines. Moreover, they are involved in the T cells 

recruitment into the tumor via chemokines secretion42.  

A relevant mechanism of immune evasion is the creation of an immunosuppressive environment. 

Different factors released by tumor cells, such as TGFβ and interleukin (IL)-10 support the 

differentiation of tumor-infiltrating immune cells into a tumor-promoting phenotype43-44, leading to 

alterations in the immune composition of TME and (pre) metastatic organs. In addition, tumor-

associated macrophages (TAMs) and neutrophils (TANs) can inhibit antitumor immune responses 

through the production of immunosuppressive cytokines and the expression of co-inhibitory T cell 

molecules. Indeed, the abundance of TAM is correlated with a negative prognosis in different types 

of cancer45. Different factors released by tumor cells can negatively stimulate myeloid cell 

recruitment leading alterations in the immune composition of TME and (pre) metastatic organs. 

Immune cells can also remodel the ECM, favoring the invasion of tumor cells and therefore their 

metastatization46. Various tumor-associated immune cells, and moreover fibroblasts and endothelial 

cells, influence the composition, organization and dynamics of ECM by secreting ECM remodeling 

enzymes, such as matrix metalloproteinases47 (MMPs), or regulating angiogenesis and 

lymphangiogenesis48. 

The immune system can farther promote the CTCs survival. As mentioned in paragraph 1.1.3, the 

CTCs interact with platelets, promoting their activation49. As result, activated platelets form a fibrin 

clot around the CTCs, which promotes the survival of CTCs by protecting them from attack by NK 

cells24. Furthermore, regulatory T cells (Tregs) can directly provide survival factors to CTCs such as 

receptor activator of nuclear B-factor κB ligand (RANKL) and its activators50. Platelets contribute to 

tumor cell extravasation by promoting an invasive phenotype similar to the mesenchymal type, 
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through direct platelet-tumor cellular interactions, releasing TGFβ, or releasing granules containing 

ATP that modulate the endothelial lining and cause vascular leakage51. 

Inflammatory monocytes can also facilitate the extravasation process, helping tumor cells during 

migration through the vascular wall, increasing the expression of different adhesion molecules, such 

as ICAM-1 and E selectin on endothelial cells that are more permeable due the inflammatory factors 

released from these immune cells51.  

In summary, the immune system is highly connected with the metastatic cascade, and the balance 

between pro-tumor inflammation and anti-tumor immunity is a key factor in the cancer progression 

and metastasis. 

 

1.2 CANCER IN VITRO MODELING 

Both in vitro and in vivo models give us important informations on the metastatic cascade that is still 

the main cause of mortality in cancer52. The study of each step of the metastasis formation can provide 

new details on the cancer cells behavior and on their molecular mechanism. While in vivo systems 

can reproduce better the intricacy of a living system, at the same time they lack a precise control of 

different parameters like blood vessels sizes and flow rates, moreover analyzing by imaging these 

models is limited by spatial resolution. Therefore a plethora of in vitro models have been developed 

to gain insight about the complex processes of metastatic cascade53. In 2D models cells organize 

themselves in monolayer and in many cases this limits the similarity to  in vivo scenarios; for this and 

other reasons 2D models were partially substituted by more complex 3D models54. The ideal model 

to study the metastatic process should take in account a series of factors including: vascularization, 

extracellular signals, extracellular stromal environment and the hypoxia55. Having all of these 

parameters in the same model it is not feasible to date, but many step forward have been made: 1) 

multiple cell types can be co-cultured into a 3D organized space; 2) ECM materials can be 

incorporated; 3) soluble factors can be introduced in different areas and at different time; 4) fluidics 
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part can be included in the design. In the following paragraphs I will go through the advancement 

made in modeling the metastatic cascade, starting from the first 2D models to the most advanced 

technologies available on this topic. 

 

1.2.1 TRANSWELL CHAMBER 

One of the most used system to characterize tumor cell migration and invasion is the transwell 

systems56. With these in vitro devices, cells migrate from one position to another, using soluble 

factors gradients, electric field or different matrix stiffness57.  Generally, cells are placed in the upper 

compartment and migrate through a porous membrane into the lower compartment in which 

chemotactic agents are present. Membrane pores are generally 3-8 μm large and recapitulate the 

empty spaces normally present in vascular endothelium58. The transwell chamber is widely used to 

model different processes, like: cell invasion, transendothelial migration or migration across a 

membrane. In migration models  tumor cells seeding occurs directly on the porous membrane, while 

in the invasion assays, cells are placed on the porous membrane that is previously covered by an 

extracellular matrix, like matrigel, collagen and laminin56. In transendothelial migration tests an 

endothelial cell layer covers the upper part of the membrane59. The test provides an extravasation 

model, tumor cells must first pass through the endothelium then through the membrane. Intravasation 

process can be modeled as well, in this case endothelial cell are seeded on the lower side of the 

transwell membrane while tumor cells are seeded in the upper chamber60. Different chemo/bio-

attractants can be used for these assays: FBS, chemokines, cytokines or stromal cells such as 

fibroblasts. All of these assays are based on counting the number of cells passing through the porous 

membrane; cells can be easily recovered from the chamber and analyzed in different manner, for 

example using confocal microscope or flow cytometry. Some recent studies prove that cancer cells 

migrate three to five times more across the membrane with respect to non-cancerous cells61. Some of 

these models were tested to assess the capability of a certain drugs to reduce cancer cell migration or 
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invasion across the porous membrane62-63. Cancer cell able to invade can be than isolated and 

characterized for their metastatic potential64 and their influence or interaction on other cell types 

including the immune cells.  

 

1.2.2 SPHEROIDS IN METASTATIC MODEL 

3D cellular architecture and surrounding microenvironment implies the use of spheroids for in vivo- 

metastasis models. Spheroid formation is a cell culture method in which cellular aggregates are grown 

in suspension or incorporated into a 3D matrix65-66. Spheroids are able to mimic cell-cell and cell-

matrix interactions between tumor cells and the microenvironment65 as well as properties of transport. 

They are more expensive and time-consuming than 2D cell culture, but are widely used for, tumor 

growth, proliferation, immune interactions and drugs screening, invasion studies, matrix remodeling 

of extracellular matrix protein, tumor angiogenesis, spreading of metastatic cells and characterization 

of tumor microenvironment66-67. There are several methods to form spheroids: suspension cultures, 

non-adherent surface methods, hanging drop methods and microfluidic methods68. In the  first two 

methods, a matrix coating, like agarose or agar, is used to cover the plates (multiwell or dish) having 

a non-adherent bottom surface, this avoid cell attachment69. PEG (polyethylene glycol) and 

polystyrene plastic materials are also used as a non-adherent surface for spheroid formation. In these 

conditions, cells will aggregate in few days. However, not all the cells generate a spheroid but a large 

number of them generate aggregates of irregular shape. The suspension culture is very simple but the 

uniformity, in size and composition of the aggregate cannot be controlled. With non-adherent surface 

method, there is better efficiency, uniformity is preserved and the spheroid can be produced by cell 

co-culture, but it is difficult to obtain a long-term culture.  

The hanging drop method and techniques employing microfluidic devices allow better a control of 

spheroid size and composition68. The hanging drop method is based on the natural disposition of cells 

to aggregate without the need of polymer scaffolds or microporous support, cells are simply placed 
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in hanging drop culture plate and incubated under physiological conditions until they form true 3D 

spheroids.  

A microfluidic platforms for the spheroid formation, can be used to analyze important cancer 

progression stages such as angiogenesis, intravasation and extravasation in a controlled 

microenvironment, applying long-term perfusion cell cultures, maintaining high-cell viability and 

obtaining the aggregate formation in a very fast way70.  Moreover microwell-based microfluidic 

platforms , thanks to their easiness and the possibility to monitor in real time the spheroid formation,  

have been used more than other methods71. 

Spheroids can better mimic low vascularized tumor masses that usually have a necrotic core72, 

showing proliferation gradients and areas that resemble tumors73. The size of the spheroids varies 

between 200 and 500 μm, above 600 μm, a phenomenon of necrosis can be observed where the cells 

in the center of the spheroid die both by apoptosis and by necrosis, while cells in the external core 

remain alive thanks to their oxygen exposure72. 

 

1.2.3 TUMOR BIOPSY 

Others in vitro models used to characterize the metastatic cascade are tumor biopsies or sections of 

resected tumors embedded in an ECM. This method preserve both the simplicity of an in vitro model 

and the complexity of the tumor microenvironment since the wide heterogeneity of the cancer tissue 

is conserved74. Cell-cell interaction and cellular morphology remain the same of what can be found 

in vivo but perfusion lacks.  

These models are used to characterize patient metastatic cancer cells, cell morphology, cell 

invasiveness, cell adhesion to a different matrices, cell growth and sensitivity to chemotherapeutics 

and other drugs75. The great advantage of using this method is the development of a patient-specific 

model which can give some precious therapeutic indications. The tumor sections can be incorporated 
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into a type I collagen or matrigel matrix to mimic the ECM76, as an alternative a single cell population 

can be directly isolated from the biopsy and used to perform different studies. For example, patient-

derived cells can be cultured as 2D monolayers cells or as spheroids in a 3D matrix, and treated with 

anti-cancer compounds. Some additional studies can provide information about cancer invasiveness, 

metastatization probability77-78, and some physical studies about drug penetration inside the inner part 

of the tissue can be carried out79-80. The obtained results (mainly those regarding drug screening) are 

usually compared with those obtained in the clinical trials81. 

 

1.2.4 MICROFLUIDIC DEVICES 

In the last decade, the use of microfluidic chips (called 'chips' because they were initially fabricated 

using micro-manufacturing methods adapted from computer microchip fabrication82) has 

revolutionized the way to study the metastatic cascade and the interaction of cancer cells with the 

immune system. Microfluidic chip technology allows real-time imaging, high resolution, chemical or 

biological analysis, such as: immunoassays, drug screening, blood analysis and DNA sequencing. 

These devices usually made of glass, plastic or flexible polymers such as polydimethylsiloxane 

(PDMS), present perfusable microchannels recapitulating the in vivo physiology of specific tissues 

or organs83.  Different organ on chip have been developed: lung alveoli84 and bronchioles85, kidney 

tubules86 and glomeruli87, small intestine88, liver89, bone marrow90 and the blood–brain barrier 

(BBB)91. To mimicking the vascular compartment these channels are filled with endothelial cells 

which form a uniform monolayer along the channel walls; ECM gel like collagen, matrigel, or 

fibrinogen are instead used to simulate the extracellular space and cells from one or more type of 

tissue can be included to recapitulate the specific complexity of the organ. The possibility to have a 

series of interconnected compartments allows to culture different cells, maintaining cell-cell 

communication by recreating a tissue interface92. Living cells can be kept in the chips for short or 

long time (depending on the cell type) by flowing whole blood or cell growth medium into the 
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perfusable channels or in some dedicated reservoirs. Using syringe pumps it is also possible to 

recreate pressure gradient among the compartments93. Perfusable channels allow to analyze the 

recruitment of circulating cells and recapitulate the actual dosing of a certain drug reaching the 

surrounding tissue. Moreover, different mechanical forces as: fluid shear stress, hydrostatic pressure 

and tissue deformation that influence cancer cell behavior, can be invesigated94. 

There are two main branches where microfluidic has emerged as a powerful platform: the 

investigation of the metastatic cascade (Figure.1.4), and the cancer cells-immune system 

interaction95. Microfluidic chips among all in vitro models, are able to better recapitulate the 

dynamics of the metastatic steps96. Processes like: angiogenesis, tumor expansion, cell-cell 

interaction, epithelial-mesenchymal transition (EMT), extracellular matrices composition, 

microenvironmental signals and chemical gradients can be systematically explored. Immune system 

interactions with tumor cells during the metastatic cascade97 is another branch in which microfluidics 

present a lot of advantages in terms of modeling; this is mainly due to the fact that the use of in vivo 

model is still disputed considering that animals, engrafted with human tumors are usually 

immunosuppressed. Studying immune cells – cancer cells interaction in immunosuppressed models 

can be challenging since the pathological conditions of the models are often not close enough to the 

patient’s ones. To overcome this limit novel microfluidic models were generated to mimic tumor 

environment in a 3D and using patient derived tumor cells. 
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Sontheimer-Phelps, Alexandra, Bryan A. Hassell, and Donald E. Ingber. "Modelling cancer in microfluidic 

human organs-on-chips." Nature Reviews Cancer 19.2 (2019): 65-81. 

Figure 1.4. Metastatic cancer cell dissemination models. a. Schematic depicting how metastatic cancer cells 

disseminate by invading tissue boundaries, intravasating into blood vessels, circulating through the vasculature 

and then extravasating at a distant site to form a new metastatic lesion is shown. A three-channel microfluidic 

tumour–vascular interface model is depicted that contains an endothelial channel separated from a tumour cell-

lined channel by a 3D gel-filled channel. b. An enlarged cross section is shown of the three channels of the 

device, showing cancer cell dissemination towards the channel lined with endothelial cells. c. A zoomed in, 
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schematic view of the device depicting the interface between the endothelial and extracellular matrix (ECM) 

gel channels is shown. Cancer cell intravasation was evaluated through image-based quantification. This 

device enables analysis of cancer cell intravasation through the endothelial barrier (dashed line) and into the 

vascular lumen. d. A schematic of a microfluidic microvascular network platform that enables analysis of 

cancer cell extravasation is shown. This system was used to show that human MDA-MB-231 breast cancer 

cells in which β1 integrin was knocked down exhibit less trans-endothelial migration than wild-type breast 

cancer cells. 

Here we present a series of studies regarding the microfluidic based in vitro modeling of these two 

important processes.  

1. Metastaitic Cascade: 

To model the key steps in the metastatic cascade, microfluidic has elucidated the contributions of 

different cell types in the tumor progression. For example, a microfluidic chip equipped with 

pneumatic micro-valves for paracrine cycle analysis of human pulmonary adenocarcinoma cells and 

pulmonary fibroblasts has been developed. The study showed that cancer cells secrete TGFβ to 

stimulate fibroblasts to turn into myofibroblasts, which consequently release of other soluble factors 

that stimulate the tumor cell speed and migration propensity98. In another study the co-culture of 

primary human macrophages with MDA-MB-231 human breast cancer cells or PC3 prostate or 

MDA-MB-435S melanoma cells in a microfluidic device, revealed that secreted cytokines by 

macrophages stimulate the migration of tumor cells, as well as their speed and persistence99. 

Through microfluidic devices it is possible study the metastatization capability of different tumors in 

the extravasation and intravasation steps. In a recent study, a chip was used to visualize the 

interactions between HT1080 fibrosarcoma cells and human endothelial cells; when the endothelium 

was stimulated with tumor necrosis factor (TNF), there was an increase in the number of adhering 

cancer cells on the endothelial cells100. Therefore, this work suggests that changes in the dynamics of 
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tumor-endothelial cells may promote tumor cell intravasation and extravasation during the metastatic 

cascade. 

Diffusion analysis of circulating tumor cells in vivo, revealed that metastatic cells were preferably 

adhered to the endothelium of the organs expressing high levels of cytokines that increase vascular 

permeability101. Other microfluidic chips have been used for the identification of tumor cell integrins, 

secreted factors and components of the ECM that play an essential role in the cancer cells 

extravasation. In the Kamm group the bone and muscle microenvironment was recreated, using a 

three-channel microfluidic device, seeding the HUVECs, which formed a perfusable microvascular 

network, primary human bone marrow-derived mesenchymal stem cells (BM-MSCs) and 

osteoblasts102. HUVEC cells and C2C12 myoblasts were used to mimic the muscular 

microenvironment. Then the extravasation capacity of the metastatic breast cancer cells was studied, 

flowing them on the endothelium. The extravasation rate increased in the bone microenvironment 

compared to that of the muscle, and this effect could be explained by the greater permeability of the 

vessels in the bone environment than the muscle102. In a similar study, extravasation was modelled 

by flowing MDA-MB-231 breast cancer cells through an interconnected microvascular network 

formed by HUVECs in the central channel of a microfluidic device. This model revealed that β1 

integrin expression is required for cancer cells to be able to invade through the endothelial basement 

membrane103. 

2. Immune system modeling: 

Recently, immunology of cancer has gained momentum owing to the emergence of cell-based 

immunotherapy as a promising complementary strategy for anticancer treatment. One of the most 

studied application is the immune migration, which includes the homing of the innate immune system 

cells responding to infections, the extravasation at inflammatory sites, migration through the thymus 

during B and T cell maturation, and migration during wound healing and tissue remodeling, as well 

as local movements at sites of inflammation104. Microfluidic chips through a constant perfusion of 
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compounds and established conditions that provide signals like cytokines and nutrients, allow 

migration analysis. Wu et al. for measuring primary T-cell migration in a situation mimicking lymph 

node related movements105, have used CCL21 and CCL19 which are principle cytokines governing 

attraction and migration within lymphoid tissues. Moon et al. investigated factors governing T-cell 

adhesion106, coating the channel chip surfaces with adhesion molecules like E-selectin, ICAM-1, and 

VCAM-1 and studying adhesion and migration processes. Perfusion was also used to characterize 

neutrophil rolling under flow by Sundd et al., in this study the channel surfaces were covered with P-

selectins proteins106. Han et al. investigated 3D neutrophil transendothelial migration through 

extracellular matrix across an inflammatory gradient107. Lymphoid migration was studied by Haessler 

et al. with a 3D system that measured dendritic cells movement108. 

Invasion of tumor cells has also been studied, measuring invadopodia formation109. The group of Jeon 

N.L. used RAW 264 cell line, mouse macrophages, to evaluate the cell invasion in collagen type I or 

in Matrigel, in the presence of triple negative human breast cancer cells MDA-MB-231. Macrophages 

invaded gels when breast cancer cells grown in the device but not when the tumor cells were absent110. 

These studies have revealed how the invasive behavior of cancer cells could be controlled by the 

presence of neighbor cells. Other variables to consider are the physical properties of the tumor 

microenvironment that can modify the behavior of cancer cells at tissue and organs level. For example 

with the use of a microchip composed of two channels separated by a porous membrane, was studied 

the effect of mechanical forces in lung cancer, detecting tumor cell growth suppression when 

physiological breathing motions were mimicked111.  

 Pavesi et al., studied the migration of engineered T cells in a solid 3D matrix embedding HepG2 liver 

carcinoma cells. This microfluidic model was able to detect that lower oxygen levels (2%) led to 

reduced killing of dispersed cancer cells by engineered T cells compared with higher levels of oxygen 

(20%) and that the addition of the inflammatory cytokines interferon-γ (IFN-γ) or TNF significantly 

increased killing of cancer cell aggregates by engineered T cells112. 
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These studies show how microfluidic organ chip technology offers a major advantage over static 

models, including transwell, spheroids and organoid cultures. This is important in the context of 

cancer and immune cell studies that focus on neovascularization, invasion and cancer cell 

dissemination, as well as for maintaining cell viability and functionality over extended times. 

Inclusion of a perfused endothelium offers greater clinical relevance for studying drug delivery, as 

well as to screen novel types of anticancer molecular, cellular and nanotechnology-based therapies, 

optimize treatment parameters and investigate effects of combination therapies in an in vivo-like 

TME113. 

Considering the possibility offered by microfluidic systems to provide novel tools aimed to finely 

recapitulate a series of processes which are fundamental for the comprehension of partially 

understood dynamic, I focused my work in applying these techniques to investigate the metastatic 

cascade and the role of immune cells in cancer development. I particularly emphasized my research 

on three microfluidic devices that allowed me to mimic the metastatization process of breast and 

colorectal cancers and the immune-tumor cell interaction in the pancreatic adenocarcinoma. 

  

  

 

 



Aim of my work 

21 
 

 

2. AIM OF MY WORK 

The advancements made in microfluidic field in the past few years and the interest in modeling 

metastatic cascade and the interaction between cancer and immune cells brought me to devote my 

PhD to develop novel microfluidic tools aimed to investigate these processes, clarifying key aspects 

of their mechanisms. I used a series of microfluidic devices comprehensive of 3D cultures in vivo-

like microenvironments and a vascular counterpart in the need to clarify the biophysical forces 

regulating these processes. Thus the aim of my work was than to clarify cancer cell behavior in terms 

of adhesion to a vascular wall, intravasation in the circulatory system, extravasation and migration in 

the surrounding tissue characterizing their invasiveness and their correlation with immune system.  

In the first year of my PhD, I analyzed the adhesion step of both colon (HCT-15) and breast cancer 

(MDA-MB-231) cell lines, under static and dynamic conditions. Human Umbilical Vein Endothelial 

cells (HUVEC) were used to mimic the vascular walls. During my second year, I focused on the other 

steps of the metastatic cascade, analyzing migration, intravasation and extravasation steps of breast 

cancer cells (MDA-MB-231). HUVEC were used to model the vasculature, while matrigel solution 

was used to mimic the extracellular matrix. In the last year I looked at the interaction between T cells 

and pancreatic adenocarcinoma ductal cells (Panc-1). HUVEC were used to form the vessels, while 

collagen type I was used to mimic the extracellular matrix
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3. Deciphering the relative contribution of vascular inflammation and 

blood Rheology in metastatic spreading 

 

3.1 INTRODUCTION 

The formation of distant metastasis from a primary neoplastic mass is a very inefficient biological 

process.114-117 Spreading of cancer cells evolves following a precise cascade of events – the metastatic 

cascade – requiring cell migration away from the primary mass and intravasation into blood or 

lymphatic vessels, following the epithelial to mesenchymal transition; circulation within the blood 

stream, where cells have to survive hemodynamic stresses and immune cell recognition; 

extravasation, migration and proliferation at the secondary sites. Radioactive assays documented that 

only 1% of circulating tumor cells (CTCs) can successfully overcome all these sequential steps and 

eventually establish distant metastases.118 Despite the inefficiency and complexity of the process, the 

vast majority of cancer patients who relapse eventually succumb because of metastases, disseminated 

at different secondary sites, rather than for the uncontrolled growth of the original malignancy.119  

 

CTC arrest within different vascular districts is a key step in the metastatic cascade and is primarily 

mediated by two mechanisms: vascular occlusion, which generally occurs in the small capillary beds 

of the brain and lungs120; and vascular adhesion, which is regulated by specific interactions between 

receptor molecules on the endothelium and ligand molecules on CTCs.121-122 A wide range of vascular 

molecules are involved in this specific adhesion process, including E- and P-selectins, v3 and v5 

integrins, VCAM-1 and ICAM-1 adhesion molecules.123-125 These receptors can bind several different 

ligands expressed on the CTC membrane, making target therapies against metastasis practically 

impossible. This picture is further complicated by the fact that platelets, leukocytes and CTCs tend 
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to form in the circulation stable aggregates that favor blood longevity and vascular deposition of 

malignant cells.126-127 In this context, pro-inflammatory cytokines128-129, such as TNF-, IL-1 and 

IL-6; tumor-derived exosomes130-131 and hematopoietic cells132-133 have been shown to modulate the 

expression of adhesion molecules in specific vascular districts thus priming the formation of so called 

‘pre-metastatic niches’ where CTCs more efficiently, and in a larger number, accumulate.  

 

Cell-cell adhesion is strongly modulated by external forces and, as such, static assays may not always 

reproduce the complex interactions developing under flow within the vasculature. Intravital 

microcopy has been extensively employed to document cell migration within vascular and 

extravascular compartments,120, 134 however these in vivo analyses lack a precise control on the 

governing parameters. On the other hand, microfluidic chips allow to precisely control blood vessel 

sizes, flow rates and the expression of vascular adhesion molecules and are amenable for high 

through-put systematic characterizations. A variety of microfluidic chips are being developed for 

studying the different steps in the metastatic cascade. For instance, the group of Kamm designed flow 

devices for assessing transvascular migration of cancer cells in different extravascular matrices.135-138 

The vascular adhesion and transmigration of individual and clustered CTCs was studied under 

chemokine stimulation (exposure to CXCL12 and SDF-1) by various groups139-141. Studies of cancer 

cell migration within the lymphatic system were presented by Swartz and collaborators.142 The group 

of Jiang focused on investigating the role of endothelial cell mechanical (cyclic shear stresses) and 

biochemical (exposure to TNF-) stimulation on CTC vascular adhesion.143 Huang and collaborators 

developed cellulose-based tubular artificial blood vessels for reproducing the intravasation, vascular 

adhesion and extravasation of cancer cells.144  

 

Although red blood cells (RBCs) are known to affect the dynamics of leukocytes and CTCs, at 

authors’ knowledge, no studies have addressed the relative roles of vascular inflammation and RBC 
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dynamics on the vascular deposition of malignant cells. In this work, a microfluidic chip is used to 

study the rolling and firm adhesion of breast (MDA-MB-231) and colorectal cancer (HCT-15) cells 

on a confluent layer of human vascular endothelial cells (HUVECs). The hematocrit of the working 

solution ranges from 0 to 40% and TNF- is used for stimulating HUVECs. The rolling velocity and 

number of firmly adhering tumor cells are measured under different conditions. A Lattice-Boltzmann 

computational model is also included to interpret and reproduce the vascular adhesion dynamics of 

cells. 
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3.2 MATERIAL AND METHODS 

 Cell Culture  

Human Umbilical Vein Endothelial cells (HUVEC) obtained from PromoCell were cultured using 

Endothelial Cell Growth supplement-mix Medium (PromoCell) supplemented with 10% FBS 

(GIBCO). Cells were used until passage (P) 7. Human Colorectal cancer cells (HCT-15) were 

purchased from ATCC and cultured according to seller’s instructions using RPMI (GIBCO) 

supplemented with 10% FBS, L-glutammine 200 mM (EuroClone) and 10000 U/mL Penicillin 

(EuroClone). Experiments were made using cells till P 20. Human Breast adenocarcinoma cells 

(MDA-MB-231) were obtained from Perkin Elmer and were used till P 20. Cells were subcultured 

by the use of EMEM (Euroclone) supplemented with 10% FBS, L-glutammine 200 mM and 10000 

U/mL Penicillin. All cells were seeded into a T75 tissue culture flask and incubated at 37°C with 5% 

of CO2 in a humidified incubator until reaching about 90% confluence. Cells were detached via 

0.25% trypsin (EuroClone) and counted using the Trypan Blue (GIBCO) exclusion test.   

 

 Cytotoxicity assay for endothelial cells 

 Recombinant human tumor Necrosis factor (TNF-α) was obtained from PeproTech. The cytotoxic 

effect of TNF-α (25 ng/mL) on HUVECs was evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay (Sigma-Aldrich), at different time points. Following 

standard protocols, 104 HUVECs were plated in 96-well plates and after 24 hours were incubated 

with 25 ng/mL of TNF-α for 2, 6 and 12 h. MTT (5 mg/mL) was added to Endothelial Cell Growth 

supplement-mix Medium for 3 h. Next, each well was emptied out and 1 mL of ETOH 100% was 

added. Absorbance at 570 nm was measured via a spectrophotometer (mQuanti). Values of 

absorbance were expressed as percentage of TNF-α cytotoxicity. 
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 Cancer cell adhesion on inflamed endothelial cells under static conditions 

 HUVECs were stained with DAPI (1:1000) (Life Technologies) and plated on 25 mm glass slide, 

pre-coated with 20 μg/mL of fibronectin (Sigma Aldrich). After the formation of a HUVEC 

monolayer, cells were treated with TNF-α (25 ng/mL) for 6 hours. In the control experiments, 

untreated cells were washed and the remained cells were cultured under the same conditions as per 

the TNF-α case. After TNF-α stimulation, HUVECs were washed three times with PBS with Ca2+ 

and Mg2+ and stored at 4°C for following analyses. HCT-15 cells were prepared at the concentrations 

of 104 cells/mL. Cells were seeded on top of HUVECs and allowed to adhere up to 4 h. After washing 

with PBS, pictures were acquired via a fluorescent microscope (Leica 6000) at 10X magnification. 

The number of adhering cells was quantified using ImageJ software (National Institute of Health, 

USA). 

The procedures for this experiment are schematically shown in Supporting Figure.1a. After washing 

and removing loosely bound cancer cells, fluorescent images were taken of red fluorescent cancer 

cells (CM-DIL staining of the membrane) over blue fluorescent HUVECs (DAPI staining of the 

nucleus). The representative fluorescent microscopy pics of Supporting Figure.1b show HCT-15 cells 

firmly adhering to the HUVEC monolayer after 1 and 4 hours of incubation, with (+ TNF-α) and 

without (− TNF-α) stimulation. The density of red dots (cancer cells) grows with the duration of TNF-

α stimulation. This is quantified in Supporting Figure.1c where the number of adhering cancer cells 

(nadh), normalized by the initial number of incubated cells (ninj = 104) and the area of the region of 

interest (A = 1.22 10-6 m2), is charted for 1 and 4 hours of TNF-α stimulation. A statistically 

significant difference in number of adhering cancer cells is observed between stimulated (blue bar) 

and unstimulated (orange bar) HUVECs. Specifically, after 1 hour, the normalized number of 

adhering tumor cells was 1.5-times larger than the corresponding control (67.72 ± 13.19 #/m2 versus 

46.39 ± 8.128 #/m2, with p < 0.001). This difference grows higher with the duration of TNF-α 

stimulation. At 4 hours, the normalized number of adhering tumor cells was almost 2-times larger 

than the corresponding control (107.2 ± 6.46 #/m2 versus 60.29 ± 7.167 #/m2, with p < 0.001). Similar 



 

27 
 

data have been observed also for metastatic breast cancer cells (Supporting Figure.2). The cytotoxic 

effect of TNF-α on HUVECs was assessed, for the stimulation dose (25 ng/mL), using a conventional 

MTT assay. Supporting Figure.1d demonstrates that cell viability is not affected at the considered 

concentration upon 1, 6 and 12 hours of stimulation. 

 

 Fabrication of a single channel microfluidic chip 

The single channel microfluidic chip was fabricated following protocols previously demonstrated by 

the authors.48 Briefly, a SU8-50 master was used as a mold for PDMS replicas of the chip. First a 40 

μm thick layer of SU8-50 photoresist (MicroChem) was spin coated on a silicon wafer (4”- P doped 

- <100> - 10- 20 Ω/cm2 – 525 µm thick, from Si-Mat) at 2000 rpm for 30 s. Then, the negative SU8-

50 template was pre-and soft baked for solvent evaporation; exposed to UV light and baked again for 

epoxy crosslinking; and finally developed. This template was replicated using a mixture of PDMS 

and curing agent Sylgard 182 (Dow Corning Corporation), with a ratio (w:w) 10:1. Specifically, the 

mixture was poured on the SU8-50 template, cured in an oven at 60°C for 15 h, and moved at -20°C 

for 1 h. After peeling off from the template, the channel extremities of the PDMS replica were 

punched via a biopsy puncher (OD = 1 mm, Miltex) to form inlet and outlet ports. Finally, upon 

oxygen plasma treatment (Pressure = 0.5 mBar, Power = 15 w, Time = 15 s; Plasma System Tucano, 

Gambetti), PDMS replica was sealed with a glass slide (20 x 60 x 0.17 mm) (No. 1.5H, Deckaläser). 

The resulting microfluidic chip has a rectangular cross section with a width w = 210 µm, height h = 

42 µm, and a port-to port length l = 2.7 cm. 

 

 

 Seeding of endothelial cells into the microfluidic chip 

 Chips were sterilized by autoclave, dried and covered with 20 μg/mL of fibronectin to allow cell 

adhesion. HUVECs were introduced in the channel from the inlet port at a density of 3×106 cells/mL 
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by using a pipette tip. Then, chips were placed in an incubator, to allow cell attachment and growth, 

and continuously perfused with Endothelial cell growth medium supplement-mix (PROMOCELL) 

until cell confluency was achieved. HUVEC monolayers were inflamed, at the occurrence, with 25 

ng/mL of TNF-α for 6 or 12 hours. Each experiment was compared to untreated HUVEC monolayer 

(-TNF-α). 

 

 Cancer cell adhesion and rolling under dynamic conditions 

 The microfluidic chip was placed on the stage of an epi-fluorescence inverted microscope (Leica 

6000). The working fluid was injected into the chip using a syringe pump 33 Dual (Harvard 

apparatus). After the tripsinization, the cancer cells were incubated for 30 minutes with CM-DIL, at 

37 ˚C (0,5%, Thermofisher) according to the manufacture’s protocol. Then, the cells were washed 3 

times with PBS 1x (GIBCO) to remove the excess dye. Finally, the cells were re-suspended in the 

RPMI medium (HCT-15) or EMEM medium (MDA-MB-231), without FBS, that could interfere with 

the cell adhesion parameters, at 1x106 cells/mL. After each rolling experiment, a washing with PBS 

was performed to remove the non-adherent cancer cells from the endothelium. Tumor cells were 

introduced via a syringe pump on the HUVEC monolayer inside the single channel chip. The inlet 

port of the chip was connected to the syringe pump through a polyethylene tube (BTPE-60, Instech 

Laboratories), while the tube of the outlet port was in PBS, to ensure flow equilibrium. After 1 minute 

of flow, the interaction of tumor cells with HUVECs was recorded for 15 consecutive minutes for 

each experiment. Two flow rates Q were imposed via the syringe pump, namely 50 and 100 nL/min. 

The resulting rolling velocity of tumor cells was calculated offline by post processing the videos, 

using the distance traveled by the cell and divided by the time, within a region of interest (ROI) 

(magnification 10 X, A = 1.22 X 10-6 m2). At least 15 cancer cells per experiment were monitored. 

Each experiment was repeated three times for each different conditions and flow rates. For the study 

of cell adhesion under whole blood flow, the working fluid was obtained by combining a cancer cell 

suspension (density of 106 cells/mL) with whole blood from rat, collected in a standard blood test 
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tubing containing 3.2% of buffered citrate to prevent clotting. The working hematocrit was fixed to 

40%. Experiments and image acquisition were performed as described above.  

 

 Immunostaining and confocal microscopy analysis 

HUVECs cultured in the single channel and tumor cells (HCT-15 and MDA-MB-231) were fixed 

with paraformaldehyde 4 % (PFA) (Sigma Aldrich), for 15 minutes at room temperature. The system 

was washed three times with PBS and cells were permeabilized with Triton X-100 for 10 minutes on 

ice followed by three washes with PBS. Then, permeabilized cells were incubated with Goat serum 

solution 20% (Sigma Aldrich) for 30 minutes and then incubated 3 hours with primary antibodies 

(Abcam) (mAb mouse Ve-cadherin, 1:100 dilution) in 10% Goat serum in PBS at 4°C. After several 

washes with PBS, cells were incubated 50 minutes with the secondary antibody (Abcam) (mAb goat 

FITC conjugated, 1:500 dilution) and DAPI dye. After washing, cells were maintained in PBS at 4°C 

for following microscopy analyses (Confocal microscope, A1R-A1 Nikon). 

 

 Computational modeling of cancer cell rolling and adhesion 

The specific ligand-receptor mediated adhesive interactions at the interface between cancer cells and 

endothelium were simulated using a computational model previously developed by the authors145-146, 

and adapted to this specific case. A combined Lattice Boltzmann-Immersed Boundary method is used 

for predicting the adhesive interaction of cells (particles) with blood vessel walls, under capillary 

flow. In particular, the evolution of the fluid is defined in terms of a set of nine discrete distribution 

functions {𝑓𝑖} (i=0,..., 8) which obey the forced dimensionless Boltzmann equation, 

𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) =
−∆𝑡

𝜏
[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)] + ∆𝑡𝐹𝑖 ,                            (1) 

in which x and t are the spatial and time coordinates, respectively; [𝑒𝑖](𝑖 = 0, . . . ,8) is the set of 

discrete velocities; ∆t is the time step; and τ is the relaxation time 147. The kinematic viscosity of the 

flow is related to the single relaxation time τ as 𝜐 = 𝑐𝑠
2 (𝜏 −

1

2
) 𝛥𝑡 being 𝑐𝑠 =

1

√3

𝛥𝑥

𝛥𝑡
 the reticular speed 
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of sound. The moments of the distribution functions define the fluid density 𝜌 = ∑ 𝑓𝑖𝑖 , velocity 𝑢 =

∑ 𝑓𝑖 𝑒𝑖 𝜌⁄𝑖 +
∆𝑡

2
𝐹𝑖, and the pressure 𝑝 = 𝑐𝑠

2𝜌 = 𝑐𝑠
2 ∑ 𝑓𝑖𝑖 . The local equilibrium density functions [𝑓𝑖

𝑒𝑞
] 

(i=0,...,8) are expressed by the Maxwell-Boltzmann (MB) 148. The effective forcing term accounting 

for the presence of an arbitrary shaped body into the flow-field, 𝐹𝑖, reads:  

𝐹𝑖 = (1 −
1

2𝜏
) 𝜔𝑖 [

𝑒𝑖−𝑢

𝑐𝑠
2 +

𝑒𝑖∙𝑢

𝑐𝑠
4 𝑒𝑖] ∙ 𝑓𝑖𝑏 ,                                        (2) 

where fib is the body force term evaluated through the immersed boundary technique. Here, external 

boundaries of the computational domain are treated with the known-velocity bounce back conditions 

by Zou and He149. The cells surface is decorated with ligand molecules, mediating specific adhesive 

interaction with counter-molecules (receptors) distributed over the vessel walls. These interfacial 

molecular adhesive forces are computed through a probabilistic approach determining bond 

formation and destruction over the entire particle surface.150 The ligand-receptor bonds were treated 

as linear springs transmitting across the cell interface the mechanical force 𝐹𝑏 

𝐹𝑏 = ∑ 𝜎(𝐿𝑙 − 𝜆)𝑛𝑙
𝑙=1  ,                                                                (3) 

with 𝑦𝑙 the bond length for the l-th element of the 𝑛𝑙 linear element on the discretized cell surface, 

respectively; 𝜆 the equilibrium bond length; 𝜎 the spring constant. Molecular bonds are generated 

only and only if the minimum separation distance between the cell boundary and the endothelial wall 

is smaller than a critical value, 𝑦𝑐𝑟 = 5 × 10−3𝐻, being 𝐻 the channel height. The equilibrium bond 

length, resulting in a null force, is chosen as 𝜆 = 0.5𝑦𝑐𝑟. Bond formation is regulated by a forward 

probability function given as  

𝑃𝑓 = 1 − 𝑒𝑥𝑝 (−𝑘𝑓𝑁𝑙𝛥𝑡) ,                                              (4) 

with 𝑘𝑓 the forward bond rate and 𝑁𝑙 the number of ligand actually probing the surface over the total 

number of linear elements 𝑛𝑙. At each time step, a pre-existing bond can be destroyed according to 

the reverse probability function given as 

𝑃𝑟 = 1 − 𝑒𝑥𝑝 (−𝑘𝑟0𝑒𝑥𝑝 (
(𝜎−𝜎𝑒𝑞)(𝑦𝑙−𝜆)2

2𝑘𝐵𝑇
) 𝛥𝑡).                               (5) 
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Here, 𝑘𝑟0 is the reverse bond rate, 𝜎𝑒𝑞 is the equilibrium spring constant (taken as 0.5𝜎), and 𝑘𝐵𝑇 is 

the thermal potential. The ligand-receptor bonds were characterized by an adhesive bond strength σ 

=1 and a biochemical affinity kf/kr,0 = 8.5×103. The ratio between the number of ligands decorating 

the surface of cancer cells and the number of receptors expressed on the endothelium is l. 

The diameter of cancer cells d = 15 ± 3 µm was quantified via bright field microscopy (see 

Figure3.8). At time zero, cancer cells were placed next to the endothelial wall, with a separation 

distance of y0 = 3 10-3 H and a null velocity. Simulations were performed in a rectangular 

computational domain, with height H (= 42 µm) and length 10H, resembling the longitudinal cross 

section of the single channel in the microfluidic chip. A linear pressure drop ( ∆𝑝 =
8𝜇

𝜋
(

𝐻

2
)

−4

𝑄𝑥 ) 

was imposed along the channel from the inlet section (x = 0) to the outlet section (x = 10 H); zero 

slip velocities were applied at the bottom and top walls in order to reproduce a parabolic velocity 

profile.  

For deformable cancer cells, a dimensionless capillary number Ca (= 𝑢𝑚𝑎𝑥𝐻/𝐸𝑙) = 10-2 was 

considered. This number is defined as the ratio between the max flow velocity umax (= 94.48 m/s for 

Q = 50 nL/min; = 188.96 m/s for Q = 100 nL/min), the channel height H (= 42 m); and the Young’s 

modulus of the cell (El = 100 Pa). 
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3.3 RESULTS AND DISCUSSION 

A continuously growing body of evidence documents that vascular inflammation supports the firm 

adhesion of circulating tumor cells (CTCs) and facilitate the distant colonization of otherwise healthy 

tissues with the consequent formation of tumor metastases.128-131 In this context, human vascular 

endothelial cells (HUVECs) were stimulated with the pro-inflammatory cytokine TNF-α and the 

adhesion propensity of cancer cells (HCT-15 and MDA-MB-231) was assessed under static and 

dynamic conditions. The two cell lines are among the most metastatic and aggressively growing colon 

and breast cancer cells, respectively.151-152 

 

Cancer cell adhesion on inflamed endothelial cells under dynamic conditions. HUVECs were 

seeded in multiwell plates and, after reaching confluency, were stimulated with TNF-α (10 ng/mL, 

25 ng/mL 50 ng/mL) for 6 hours. Cancer cells were added to the multiwell plates and left interacting 

with the endothelial cells up to 4 hours, under static conditions. In agreement with a large body of 

literature, these static experiments continue to confirm that endothelial stimulation with a pro-

inflammatory cytokine (TNF-α) favors CTC vascular adhesion in a dose dependent manner 

(Figure.3.1 and 2).  
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Figure 3.1. Cancer cell adhesion on inflamed endothelial cells under static conditions. a. Schematic 

representation of tumor cells adhering to a TNF-α inflamed endothelial monolayer cultured in a 6-well plate 

(TNF-α stimulation for 4 hours at 25 ng/mL). b. Representative fluorescence microscopy images of HUVECs 

(cell nuclei stained in blue with DAPI) and colon cancer cells HCT-15 (cell membrane labeled in red with CM-

DIL) at 1 and 4 hours post stimulation with TNF-α. (- TNF-α: control experiment with no stimulation; + TNF-

α: stimulation at 25 ng/mL) c. Normalized number of adhering cancer cells (HCT-15) on a HUVEC monolayer, 

with and without stimulation with TNF-α (10 ng/mL, 25 ng/mL, 50 ng/mL) (ninj = 104 cells; A = 1.22 x10-6 

m2). d. Cell viability of HUVECs exposed at TNF-α (25 ng/mL) for 2, 6, and 12 hours. (Data are plotted as 

mean ± SD. n ≥ 5. Statistical analysis ANOVA: * denotes significant difference with p < 0.05, ** denotes 

significant difference with p < 0.001). 
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 Figure.3.2 Cancer cell adhesion on inflamed endothelial cells under static conditions. Normalized number 

of adhering cancer cells (MDA-MB-231) on a HUVEC monolayer, with and without stimulation with TNF-α 

(10 ng/mL, 25 ng/mL, 50 ng/mL) (ninj = 104 cells; A = 1.22 10-6 m2). Data are plotted as mean ± SD. n ≥ 3. 

Statistical analysis ANOVA. * denotes significant difference with p < 0.05.** denotes significant difference 

with p < 0.01. *** denotes significant difference with p < 0.0001. 

 

 

Moving from static to dynamic experimental conditions, a PDMS single-channel microfluidic chip 

was used for monitoring the interaction of cancer and endothelial cells under flow (Figure.3.3a). The 

microfluidic channel was 2.7 cm long and had a 210 µm wide by 42 µm high rectangular cross section. 

The working fluid was introduced in the PDMS chip continuously for about 15 minutes at two 

different flow rates, namely 50 and 100 nL/min. These flow rates reproduce wall shear rates (13.49 

and 26.99 s-1) and mean blood velocities (94.48 and 188.9 µm/s) typically found in the 

microcirculation.153  The PDMS channel was covered by a confluent layer of endothelial cells 

mimicking the blood vessel walls; whereas the cancer cells were dispersed within the working fluid 

consisting of either cell culture media or whole blood. Again, two different malignant cell lines were 
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considered, namely colon (HCT-15) and breast cancer (MDA-MB-231) cells. In order to reproduce 

an inflamed endothelium, the HUVEC monolayer was stimulated with the pro-inflammatory cytokine 

TNF-α. Representative confocal fluorescent images of the experimental set-up with cells are shown 

in Figure.3.3b. Red fluorescent cancer cells (CM-DIL staining of the membrane) are spotted firmly 

adhering over blue fluorescent HUVECs (DAPI staining of the nucleus). The same images show in 

green VE-cadherin molecules decorating the boundary between two adjacent endothelial cells and 

demonstrating the high level of confluency of the endothelial monolayer deposited on the microfluidic 

channel surface. 

 

 

Figure 3.3. Single-channel microfluidic chip. a. On the left, schematic representation of a single channel 

microfluidic chip with length l = 2.7 cm, width w = 210 µm; height h = 42 µm. On the right, a single channel 

microfluidic chip, with connecting inlet and outlet tubing, filled with a blue ink and placed on the stage of a 

fluorescent inverted microscope. b. Representative confocal fluorescent microscopy images of HCT-15 cells 

(membrane labeled in red with CM-DIL) flowing in the chip and interacting with a confluent layer of HUVECs 

(nuclei stained in blue with DAPI). VE-cadherin adhesion molecules, arising at boundaries of the endothelial 
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cells, are stained in green. (Images are provided for unstimulated (-TNF-α) and TNF-α stimulated HUVECs 

for 6 (+ TNF-α 6h) and 12 hours (+ TNF-α 12h). TNF-α concentration: 25 ng/mL. Scale bar: 50 µm). 

 

Via fluorescent microscopy, the number of adhering cells was quantified, within five different regions 

of interest (ROIs) along the channel, and normalized by the total number of injected cells (ninj =106) 

and the ROI area. This was performed for twelve different working conditions depending on the types 

of cancer (colon and breast); flow rates (50 and 100 nL/min) and levels of HUVEC inflammation (un-

stimulated: -TNF-; 6 hours stimulation: +TNF- 6h; and 12 hours stimulation: +TNF- 12h). 

Results are provided in Figure.3.4b and d, respectively, for a flow rate Q = 50 and 100 nL/min, and 

for breast cancer (blue bars) and colon cancer (red bars) cells. On the left hand side, Figure.3.4a and 

c, representative fluorescent microscopy images are shown for unstimulated, 6 hour stimulated, and 

12 hour stimulated HUVECs. 

 



 

37 
 

 

Figure 3.4. Cancer cell adhesion on inflamed endothelial cells under dynamic conditions. a. 

Representative fluorescence microscopy images of breast cancer cells MDA-MB-231 (cell membrane labeled 

in red with CM-DIL) flowing and interacting, in a single-channel microfluidic chip, with a confluent 

monolayer of HUVECs (cell nuclei stained in blue with DAPI). b. Normalized number of adhering cancer 

cells on a HUVEC monolayer at a flow rate of 50 nL/min, with and without stimulation with TNF-α (25ng/mL), 

for 6 and 12 hours. c. Representative fluorescence microscopy images of colon cancer cells HCT-15 (cell 

membrane labeled in red with CM-DIL) flowing and interacting, in a single-channel microfluidic chip, with a 

confluent monolayer of HUVECs (cell nuclei stained in blue with DAPI). d. Normalized number of adhering 

cancer cells on a HUVEC monolayer at a flow rate of 100 nL/min, with and without stimulation with TNF-α 

(25ng/mL), for 6 and 12 hours. (Data are plotted as mean ± SD. n = 3. Statistical analysis ANOVA: *** 

symbol denotes statistically significant difference p < 0.0001; ** symbol denotes statistically significant 

difference p < 0.001. (n
inj

=106 cells and A = 1.22 x10-6 m2). HUVECs are not stimulated with TNF-α (-TNF-

α) or stimulated with 25 ng/mL TNF-α for 6h (+TNF-α 6h) or 12h (+TNF-α 12h)). 

 

Notably, for all twelve different working conditions, no statistically significant difference was 

depicted when comparing breast and colon cancer cells. Conversely, significant differences arose 

when considering different flow rates and levels of TNF- stimulation. At Q = 50 nL/min, the 

normalized number of adhering HCT-15 and MDA-MB-231 cells was, respectively, 9.952 ± 1.803 

and 10.24 ± 2.841 #/m2 in control experiments, 29.09 ± 2.219 and 28.54 ± 5.038 #/m2 after 6 hours 

of TNF-a stimulation; 40.37 ± 9.205 and 40.26 ± 3.521 #/m2 after 12 hours of TNF-a stimulation. At 

Q = 100 nL/min, the normalized number of adhering HCT-15 and MDA-MB-231 cells was, 

respectively, 6.698 ± 1.452 and 7.30 ± 1.088 #/m2 in control experiments, 11.87 ± 0.899 and 13.78 ± 

1.716 #/m2 after 6 hours of TNF-a stimulation; 34.05 ± 1.427 and 26.69 ± 2.780 #/m2 after 12 hours 

of TNF-a stimulation.  

As compared to the healthy vasculature, cancer cells adhered 2 and 3-times more avidly to a 6h- and 

12h-inflamed endothelium. Maximum cell adhesion is observed under static conditions (Q = 0, 
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Figure.3.1c), followed by Q = 50 and 100 nL/min. Thus, as expected, the number of adhering cells 

reduces as the flow rate increases. Indeed, this is related to the corresponding increase of the 

hydrodynamic dislodging forces that would decrease the likelihood of firm CTC adhesion on 

HUVECs.  

 

Cancer cell rolling on inflamed endothelial cells under dynamic conditions.  A subset of 

circulating tumor cells was observed to interact with the endothelial monolayer without firmly 

adhering but rather rolling steadily. The cancer cells exposed to a dynamic conditions are transported 

within the microfluidic chip at two different flow rates (50 and 100 nL/min). The solution is injected 

into the microfluidic chip using a syringe pump for 15 minutes Thus, the rolling velocity uroll of tumor 

cells was quantified by monitoring the displacement of the cell centroid over time. By imaging post-

processing, uroll of the metastatic colon (HCT-15) and breast (MDA-MB-231) cancer cells was 

quantified at 50 and 100 nL/min, and under different HUVEC conditions, namely unstimulated 

HUVECs (- TNF-α), 6h-stimulated HUVECs (+TNF-α 6h), and 12h-stimulated HUVECs (+TNF-α 

12h). Data are charted in Figure.3.5a and b, respectively, for 50 and 100 nL/min. At 50 nL/min, the 

rolling velocity of HCT-15 cells was of 113.9 ± 4.132, 103.4 ± 2.880 and 98.00 ± 4.552 µm/sec for 

unstimulated HUVECs (- TNF-α), 6h-stimulated HUVECs (+TNF-α 6h), and 12h-stimulated 

HUVECs (+TNF-α 12h), respectively. Under the same conditions, for the MDA-MB-231, the rolling 

velocities were 118.6 ± 1.349 µm/sec 105.68 ± 3.340 µm/sec 102.1 ± 5.288 µm/sec (Figure.3.5a). 

Even in the case of rolling velocities, no statistically significant difference was observed between the 

two cell lines. A 10% and 20% statistically significant decrease in rolling velocities between the 

control groups and the 6 and 12 hours TNF-α stimulated groups was observed. Under TNF- 

stimulation, endothelial cells express a larger number of adhesion molecules, which would reduce the 

rolling velocity and favor the firm deposition of CTCs. Note that, this is in agreement with what was 

documented by Navarro and collaborators 154 in the case of polymorphonuclear (PMNCs) and 

peripheral blood mononuclear (PBMCs) cells. 



 

39 
 

As expected, the rolling velocity slightly but steadily decreased as the level of TNF-α stimulation 

increased. At 100 nL/min, the rolling velocities for the HCT-15 cells were 163.6 ± 20.10 µm/sec (-

TNF-α), 157.4 ± 4.531 µm/sec (TNF-α 6h) and 158.06 ± 1.187 µm/sec (TNF-α 12h). For the MDA-

MB-231, the same physical quantity took the values 170.9 ± 11.03 µm/sec (-TNF-α); 151.8 ± 8.182 

µm/sec (6h TNF-α) and 144.9 ± 1.500 µm/sec (12h TNF-α).  

Lastly, the ratio between the number of rolling and adhering cells was plotted for two different flow 

conditions (Figure.3.5c and d). For unstimulated HUVECs, most of the circulating tumor cells were 

observed to steadily roll over the endothelium monolayer, whereas the ratio decreases as the TNF-α 

stimulation increases. At low flow rates (Q = 50 nL/min), the ratio for the HCT-15 cells was 0.845 ± 

0.084 (-TNF-α); 0.713 ± 0.122 (TNF-α 6h) and 0.553 ± 0.096 (TNF-α 12h). Very similar are the 

ratios quantified for the MDA-MB-231, for which it resulted 0.828 ± 0.067 (- TNF-α), 0.669 ± 0.034 

(TNF-α 6h) and 0.597 ± 0.030 (TNF-α 12h). At high flow rates (Q = 100 nL/min), the ratio for the 

HCT-15 cells was 0.875 ± 0.020 (- TNF-α), 0.728 ± 0.038 (TNF-α 6h) and 0.591 ± 0.017 (TNF-α 

12h). Similarly, for the MDA-MB-231, the ratio was 0.850 ± 0.061 (- TNF-α), 0.715 ± 0.015 (TNF-

α 6h) and 0.651 ± 0.063 (TNF-α 12h). As reported before for other physical quantities, also in this 

case, no statistically significant difference was determined between the two cell lines. 
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Figure 3.5. Cancer cell rolling on inflamed endothelial cells under dynamic conditions. (.a,.b) Rolling 

velocity of colon cancer HCT-15 (red column) and breast cancer MDA-MB-231 (blue column) at 50 nL/min 

and 100 nL/min on a confluent layer of HUVEC. (.c, .d) Ratio between the number of rolling and adhering 

cancer cells (HCT-15 - red column; breast cancer MDA-MB-231 - blue column) on a confluent layer of 

HUVEC at 50 nL/min and 100 nL/min. HUVECs are not stimulated with TNF-α (-TNF-α) or stimulated with 

25 ng/mL of TNF-α for 6h (+TNF-α 6h) or 12h (+TNF-α 12h). (Data are plotted as mean ± SD. n = 3. 

Statistical analysis ANOVA. * symbol denotes statistically significant difference p<0.01; ** symbol denotes 

statistically significant difference p<0.001; *** symbol denotes statistically significant difference p<0.0001).  

 

 

Cancer cell adhesion on inflamed endothelial cells under whole blood flow. Leukocyte 

recruitment at inflamed tissues has a number of similarities with the colonization at distant sites of 

CTCs. In particular, just like for leukocytes, CTCs tend to transiently interact with the blood vessel 
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walls engaging specific receptor molecules, then adhere and spread over the endothelial cells and, 

eventually, cross the vascular barrier relocating in the extravascular space. Adhesion molecules are 

over-expressed in postcapillary venules during an inflammatory process.155-157. Moreover, it is well 

recognized that leukocyte rolling and adhesion on the inflamed vascular endothelium is modulated 

by the presence of red blood cells (RBCs). Specifically, experimental observation and simulations 

have shown that the deformability and shape of RBCs allow them to concentrate within the core of 

blood vessels leaving a so-called ‘cell free layer’ next to the vessel walls.158-161 Leukocytes, which 

are two-times larger and far less abundant than RBCs, tend to be pushed laterally in the cell free layer 

by the fast moving RBCs. This process, known as ‘margination’, should also affect the vascular 

behavior of CTCs. 

 

In this section, cancer cell rolling and adhesion over a monolayer of HUVECs is analyzed in the 

presence of whole blood. The single-channel microfluidic chip was again covered by a confluent 

monolayer of HUVECs, which were unstimulated or stimulated with TNF-α (12h only), and cancer 

cells re-suspended in whole blood were directly injected at two different flow rates (Q = 50 and 100 

nL/min). Whole blood, freshly drawn from rats, contained all the cell and molecular components of 

blood, including red blood cells, platelets, leucocytes and plasma proteins which may all contribute, 

at different extents, to cancer cell rolling and adhesion.126-127 A fixed hematocrit of 40% was 

considered. Results for eight different working conditions are provided in Figure.3.6b and d, which 

are for Q = 50 and 100 nL/min, respectively. As previously, breast cancer cells are identified by blue 

bars whereas colon cancer cells are associated with red bars. On the left hand side (Figure.6a and c), 

representative fluorescent microscopy images are shown for unstimulated HUVECs (- TNF-α), and 

12h-stimulated HUVECs (+TNF-α 12h). The results unequivocally showed that blood cells favor the 

adhesion of circulating tumor cells to the vascular walls, especially in the case of unstimulated 

endothelium. In Figure.3.6b and d, the normalized number of adhering cells is reported. At Q = 50 

nL/min, the normalized number of adhering HCT-15 and MDA-MB-231 cells was 25.33 ± 4.762 and 
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18.19 ± 1.269 #/m2 in control experiments, 35.68 ± 10.99 and 46.96 ± 13.18 #/m2 after 12 hours of 

TNF-a stimulation, respectively. At  Q =100 nL/min, the normalized number of adhering HCT-15 

and MDA-MB-231 cells was 26.04 ± 9.90 and 17.59 ± 6.129 #/m2 in control experiments, 30.12 ± 

4.011 and 23.04 ± 4.406 #/m2 after 12 hours of TNF- stimulation, respectively. Notably, even under 

these conditions, no statistically significant difference in cell adhesion was detected between breast 

and colon cancer cells. Interestingly, a statically significant difference was measured only between 

untreated and TNF- treated endothelial cells at the lowest flow rate (Q = 50 nL/min, in Figure.3.6b). 

At highest flow rates, the absolute number of adhering cells reduces and twelve hours TNF- 

stimulation is insufficient to induce a statistically significant increase in cell deposition.  

 

A direct comparison in terms of CTC vascular adhesion between whole blood flow and physiological 

solution is now needed. Figure.3.6e and f collect all the data required for this comparison. Within an 

unstimulated microvascular network, the presence of blood cells does dramatically increase CTC 

adhesion (Figure3..6e). For Q = 50 nL/min, the density of firmly adhering CTCs grows from about 

10 to 20 #/m2 moving from physiological solution to whole blood flow. A slightly larger increase is 

observed for Q = 100 nL/min. Differently, within an inflamed microvascular network, the presence 

of blood cells does not significantly affect CTC adhesion (Figure.3.6f). The density of firmly 

adhering CTCs is around 40 #/m2 at 50 nL/min and reduces to about 30 #/m2 at 100 nL/min, with and 

without RBCs. This could be interpreted as, under the current conditions, the density of adhering 

CTCs on the inflamed endothelium has reached saturation and the presence of RBCs cannot further 

foster cell deposition. Also, RBC-CTC collisions could limit any further increase in cell deposition. 

Indeed, additional experiments would be needed to support this hypothesis. Interestingly, a direct 

comparison of the data presented in Figure.3.6e and f would lead one to infer that, at higher flow 

rates (100 nL/min), the density of firmly adhering CTCs on the inflamed and normal vasculature is 

comparable when a whole blood flow is considered. Again, this could be due to a balance between 
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shear stresses and cell-cell collisions. Indeed, this is not observed at low flow rates (50 nL/min), 

where adhesion is higher on inflamed endothelium. 

 

 

Figure 3.6. Cancer cell adhesion on inflamed endothelial cells under whole blood flow. a. Representative 

fluorescence microscopy images of breast cancer cells MDA-MB-231 (cell membrane labeled in red with CM-

DIL) flowing in whole blood and interacting, in a single-channel microfluidic chip, with a confluent monolayer 

of HUVECs (cell nuclei stained in blue with DAPI). b. Normalized number of adhering cancer cells on a 

HUVEC monolayer of colon cancer HCT-15 (red column) and breast cancer MDA-MB-231 (blue column) at 

a flow rate (50 nL/min), with and without stimulation with TNF-α (25ng/mL) in the presence of whole blood 
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(hematocrit: 40%). c. Representative fluorescence microscopy images of colon cancer cells HCT-15 (cell 

membrane labeled in red with CM-DIL) flowing in whole blood interacting, in a single-channel microfluidic 

chip, with a confluent monolayer of HUVECs (cell nuclei stained in blue with DAPI). d. Normalized number 

of adhering cancer cells on a HUVEC monolayer of colon cancer HCT-15 (red column) and breast cancer 

MDA-MB-231 (blue column) at high flow rate (100 nL/min), with and without stimulation with TNF-α 

(25ng/mL) in the presence of whole blood (hematocrit: 40%). (e., f.) Normalized number of adhering colon 

cancer HCT-15 (red column) and breast cancer MDA-MB-231 (blue column) on a HUVEC monolayer, 

without (f.) and with (e.) stimulation of TNF-α (25ng/mL) for 12h at a flow rate of 50 nL/min and 100 nL/min, 

with and without whole blood (hematocrit: 40%). (Data are plotted as mean ± SD. n = 3. Statistical analysis 

ANOVA: * symbol denotes statistically significant difference p < 0.05; ** symbol denotes statistically 

significant difference p < 0.01 (ninj = 106 cells and A = 1.22 10-6 m2)). 

This data confirms that blood cells facilitate the vascular adhesion of CTCs, just like for leukocytes, 

and open up to the following two considerations: CTCs would tend to adhere throughout the 

microvasculature, on both inflamed and not inflamed endothelial cells, thus increasing the likelihood 

of finding proper conditions for colonization; in microfluidic experiments, neglecting the role of 

blood cells could dramatically underestimate the adhesion propensity of CTCs.  

 

Predicting cancer cell adhesion and rolling on inflamed endothelial cells. In order to predict CTC 

vascular behavior under different flow and adhesion conditions, a computational model was 

employed based on previous works by the authors.145, 162-163 In this model, cancer cells were 

considered as rigid and deformable circular objects exposed to a Poiseuille flow and capable of 

interacting with vascular walls (endothelial cells) via specific ligand-receptor bonds (Figure.3.7a). 

Simulations were performed in a rectangular computational domain, with height H (= 42 µm) and 

length 10H, resembling the longitudinal cross section of the single channel in the microfluidic chip.  
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Figure 3.7. Predicting cancer cell adhesion and rolling on inflamed endothelial cells.  a. Schematic 

diagram presenting the computational problem with a close-up depicting ligand-receptor interactions at the 

interface between cancer (up) and endothelial (lower) cells. b. Rolling velocities of cancer cells under four 

different flow rates (Q = 25, 50, 75, and 100 nL/min) and two ligand-receptor bond concentrations (𝜌𝑙 = 0.3 

and 0.6). (Solid lines are simulated values; Dots are experimental values; dashed lines are theoretical values). 

c, d, e, f. Variation of the number of active ligand-receptor bonds over time, under four different flow rates (Q 

= 25, 50, 75, and 100 nL/min), two ligand-receptor bond concentrations (𝜌𝑙 = 0.3 and 0.6), and for soft and 

rigid cancer cells. Nl is the number of closed bonds in each time step. This number is computed as the ratio 

between the current number of closed bonds over the number of closed bonds in the initial configuration.” 
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The diameter of cancer cells was fixed to d= 15 µm, as quantified via bright field microscopy 

(Figure.3.8). The ratio between the number of ligands decorating the surface of cancer cells and the 

number of receptors expressed on the endothelium is l. Two different ratios ρl were considered, 

namely 0.3 and 0.6. These assumed ligand densities return a good agreement between the 

experimental and numerical predictions for the cell rolling velocity over three different flow rates. 

 

  

Figure 3.8.Cancer cell diameter of colon cancer HCT-15 (red column) and breast cancer MDA-MB-231 

(blue column). a. Representative microscopy images of HCT-15 cells (left) along with the counted diameter 
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frequency (right). b. Representative microscopy images of MDA-MB-231 cells (left) along with the counted 

diameter frequency (right). Scale bar of 50 µm. c. Average diameters for colon cancer HCT-15 (red column) 

and breast cancer MDA-MB-231 (blue column). Data are plotted as mean ± SD. 

 

At first, cancer cells were assumed to be rigid, which is indeed the simplest possible hypothesis. Then, 

simulations were performed for estimating the rolling velocities of cancer cells over the vascular wall 

as a function of four different flow rates, namely Q = 25, 50, 75, and 100 nL/min; and two 𝜌𝑙 ratios, 

namely 0.3 and 0.6. The resulting data are shown in Figure.3.7b (lines) where a direct comparison 

with the corresponding experimental data is also included (blue dots for HCT-15 cells). From the 

simulations, the cell rolling velocity was predicted to grow quasi-linearly with the flow rate Q (R2 = 

0.998 and 0.994 for 𝜌𝑙 = 0.3 and 0.6, respectively) and slightly decrease with an increase in 𝜌𝑙 = 0.3. 

Overall, the predicted rolling velocities were found to be in good agreement with the experimental 

data for Q = 100 nL/min, returning a relative error smaller than 0.74% and 3.10% for 𝜌𝑙 = 0.3 and 

0.6, respectively. A larger difference was observed at low flow rates, Q = 50 nL/min, where the 

relative error increased to about 43.01% and 52.07% for 𝜌𝑙 = 0.3 and 0.6, respectively. This might be 

due to the fact that this flow rate is very close to the lower limit for the syringe pump used in the 

experiments. Note that an increase in 𝜌𝑙 from 0.3 to 0.6 was associated with only a 3.5% decrease in 

rolling velocity. This is also in agreement with the experimental data of Figure.3.5a and b 

documenting a modest variation in uroll with vascular inflammation. 

Although the ‘rigid cell’ approximation quite accurately modeled the rolling behavior of cancer cells, 

it could not predict their firm vascular adhesion. Therefore, in a second set of simulations, the cancer 

cell was considered as a deformable capsule characterized by the dimensionless capillary number Ca 

= 10 -2. These data are plotted in Figures.3.7c and f for four different flow rates (Q = 25, 50, 75, and 

100 nL/min); two ligand-receptor densities (𝜌𝑙=0.3 and 0.6). Also, a direct comparison between rigid 

and soft cells is provided. Soft cells exhibited more complex vascular adhesion patterns. For 𝜌𝑙=0.3, 

soft cells were observed to establish an initial adhesive contact with the endothelial surface resulting 
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in partial cell deformation and increase in the number of ligand-receptor bonds. However, after 

reaching a maximum, the adhesive interactions were not sufficient to counteract the dislodging 

hydrodynamic forces and, consequently, the number of close bonds reduced tending eventually to 

zero. For 𝜌𝑙=0.6, a larger number of ligand-receptor bonds could be formed leading to stronger 

adhesive interactions. This is indeed observed in the plots of Figure.3.7c and f. Also, for sufficiently 

high flow rates (Q  50 nL/min), partially adhering soft cells were deformed and pushed down to the 

wall thus maximizing their adhesive surface and interface forces and leading to a 2 to 3-times higher 

number of ligand-receptor bonds as compared to the corresponding rigid cell cases (Figure.3.7e and 

f). Notably, simulations predicted that rigid cells would roll over the endothelium with a rolling 

velocity decreasing with an increasing surface density of ligands (black and blue lines in Figure.3.7c 

and f). Differently, deformable cells would, for low ligand surface densities, transiently adhere, 

detach and move away from the wall pushed by hydrodynamic lift forces (red lines in Figure.3.7c 

and f); whereas, for high ligand surface densities, deformable cells would firmly adhere, deform under 

flow and increase the surface of adhesion as documented by the growth of the number of the engaged 

ligand-receptor bonds. (green lines in Figure.3.7c and f and Figure.3.9). Although the present 

simulations can quite accurately predict the rolling velocities of circulating cancer cells, it should be 

emphasized that only a fully 3D model, including deformable RBCs and CTCs, could realistically 

predict the vascular behavior of cancer cells.164-165 
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Figure 3.9. Soft and rigid cells interacting with the endothelial wall at Q=25nL/min.  a. Configurations of 

a rigid cell rolling on the vascular wall decorated with 𝜌𝑙 = 0.3 for different time points, 𝑡𝑢𝑚𝑎𝑥/𝐻=0.0, 1.5, 

3.0, 4.5, 6.0, and 7.5. b, c. Configurations of a soft cell interacting with the vascular wall decorated with 𝜌𝑙 =

0.3 and 𝜌𝑙 = 0.6 for different time points, 𝑡𝑢𝑚𝑎𝑥/𝐻=0.0, 1.5, 3.0, 4.5, 6.0, and 7.5. 
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3.5 CONCLUSIONS 

A microfluidic chip was used to analyze the vascular transport of circulating tumor cells under 

different biophysical conditions. The surface density of adhering cells and the velocity of rolling cells 

were quantitatively characterized over a confluent endothelial monolayer as a function of the level of 

inflammation (no TNF-; TNF- stimulation for 6h; TNF- stimulation for 12h); flow rate (50 and 

100 nL/min); and working fluid (physiological solution and whole blood, at 40% hematocrit). Two 

different types of cancer cells – colorectal HCT-15 and breast cancer MDA-MB-231 cells – were 

considered. 

It was confirmed that vascular inflammation facilitates cell adhesion in a way proportional to TNF- 

stimulation, whereas high flow rates are associated with lower cell deposition. Rolling velocities are 

only slightly affected by vascular inflammation and grow proportionally with the flow rate. As 

compared to a physiological solution, flowing cancer cells in whole blood enhances their firm 

deposition on healthy endothelium rather than on the inflamed vasculature, for all tested conditions. 

No statistically significant difference is observed for adhesion and rolling between HCT-15 and 

MDA-MB-231 cells. 

These results would imply that neglecting the contribution of whole blood in the analysis of cancer 

cell dynamics can significantly underestimate their vascular deposition. Furthermore, it can be 

concluded that whole blood flow supports cancer cell deposition and facilitates metastatization over 

the entire microvasculature.
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4.  Two-Channel Compartmentalized Microfluidic Chip for Real-Time 

Monitoring of the Metastatic Cascade 

 

4.1 INTRODUCTION 

It is well accepted that metastases and disease recurrence are the main causes of death in cancer 

patients.166 The ability of malignant cells to enter the blood stream, abandoning the primary tumor 

mass; disseminate through the vascular network, searching for a new homing tissue; adhere to the 

vascular walls, resisting hemodynamic forces; extravasate at a distant site, opening the endothelial 

barrier; and, eventually, migrate away from the blood vessels, infiltrating a new tissue; is crucial in 

the formation of metastatic niches115, 167-168. This stepwise sequence of events is regulated by a 

multitude of biophysical and biochemical processes, including alterations of cell polarity, cytoskeletal 

and nuclear architecture, and expression of membrane receptors. For instance, the intravasation of 

tumor cells is supported by the well-known epithelial-to-mesenchymal transition (EMT), which 

involves the disruption of intercellular adhesion, cell polarity and the overexpression of specific cell-

matrix adhesion molecules.2, 169 Inside the vascular network, tumor cells, which are then called 

circulating tumor cells (CTCs), can interact and cluster with blood cells, such as platelets, to elude 

immune surveillance and enhance longevity in the blood stream. Also, CTCs can interact with the 

vascular walls establishing transient and firm adhesion events with the endothelial cells, mimicking 

what leukocytes do at sites of inflammation168. The small fraction of tumor cells surviving the 

vascular environment can progressively infiltrate the new homing tissue and modify the local 

microenvironment to create suitable conditions for engraftment and proliferation. Although the 

mechanisms are yet to be fully elucidated, establishing metastatic niches is not a random process but 

is affected by the local microenvironment, vascular architecture as well as by the type and location 
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of the original malignant mass.1, 170-173  

Different microscopy techniques, including conventional confocal fluorescent microscopy and 

intravital video microscopy, have been employed to monitor the fate of individual cancer cells and 

the progressive formation of metastatic niches. In this context, non-mammalian model organisms, 

such as zebrafishes and drosophilas, and small rodents, such as mice and rats, have been used to 

recapitulate the metastatic evolution of different tumor types.174-175 Non-mammalian model 

organisms allow conventional confocal microscopy to follow in vivo the dynamics of individual 

CTCs. Also, through genetic modification, these models can be efficiently used to test specific 

biological hypotheses. For instance, drosophilas and zebrafishes have been used to elegantly reveal 

the pivotal role of matrix metalloproteinase secretion and tumor microenvironment in supporting 

cancer cell migration and spreading to distant organs.176-178 Although more demanding in terms of 

equipment and animal handling, intravital microscopy techniques have been developed by multiple 

laboratories to observe the vascular dynamics of CTCs and tissue infiltration in real time. For 

instance, Winkler and collaborators focused on the formation of brain metastases by observing the 

evolution of individual CTCs over a time window ranging from minutes to months.120, 179 The group 

of Robert Hoffman has developed preclinical models of cancer metastasis, optical probes and 

microscopy techniques for assessing single cancer cell dynamics in different organs, including the 

lungs180, pancreas181 and prostate.182 Solid protocols have been also developed to image the formation 

and evolution of clusters of CTCs.183 Although animal models offer a more authentic representation 

of the key biophysical and biochemical features regulating cancer metastases, it is difficult to control, 

accurately and independently, the many governing parameters. For this reason, systematic analyses 

on the temporal and spatial evolution of CTCs can be efficiently performed solely using in vitro 

assays. 

Cell migration across biological barriers has been traditionally studied using a Boyden chamber assay, 

which was originally employed for mimicking leukocyte chemotaxis and, then, applied to study tumor 

cell invasion.184 In this system, a porous membrane separates two different compartments, which 
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contain the cells and media of interest. Despite its simplicity, the Boyden chamber assay does not 

allow one to monitor in real time cell migration from one chamber to the other, given the difference 

in focal planes; and, more importantly, cannot support fluid flow, which affects cell dynamics, 

cytoskeletal architecture and receptor expression. In order to address these limitations, microfluidic-

based assays have been developed over the last few years with diverse applications. For instance, cell 

infiltration was studied by Chaw and colleagues, who fabricated a multi-step microfluidic device 

where cells are forced to squeeze within tiny and long orifices filled with extracellular matrices.185 A 

similar approach was also employed by others to study cancer cell migration under chemical gradients 

and electric fields.186 The group of Roger Kamm realized a microfluidic platform comprising a central 

and two lateral channels, separated by an intermediate chamber, to study cancer cell migration, 

invasion and extravasation.136, 187-189 Other groups mostly focused on CTC adhesion to endothelial 

cells under flow, upon stimulation by specific chemokines and pro-inflammatory molecules.139, 190 

Yet, an experimental set-up for reproducing the entire series of events in the metastatic cascade is 

missing. 

For this research project, a compartmentalized microfluidic device is proposed, which comprises two 

micro-channels running in parallel and connected by a micro-membrane realized in the lateral walls 

(Figure.4.1). Differently from a Boyden chamber, the device allows one to monitor simultaneously 

the dynamics of cells within the two different compartments and across the micro-membrane. This is 

microfabricated to include a series of pillars forming openings smaller than 3 m, which separate the 

two channels into two different compartments. Endothelial cells are deposited in the vascular 

compartment forming a confluent layer over the micro-membrane, whereas an extracellular matrix 

enriched with different cell types is deposited within the tissue compartment. The device can be used 

for studying cell intravasation, vascular circulation and adhesion, extravasation and infiltration, thus 

covering in full the metastatic cascade. 
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4.2 MATERIAL AND METHODS 

Fabrication of the double microfluidic chip 

 A silicon (Si) wafer (4”- P doped - <100> - 10  20 /cm2 – 525 m thick, from Si-Mat) was used 

for the fabrication of the master template. A 60 nm thick layer of (Cr 99.95%, Kurt J. Lesker 

Company) was evaporated onto the silicon wafer and used as mask. AZ5214E (Microchem) was used 

as a resist and the solvent AZ726MF (Microchem) as a developer. The impressed pattern was 

transferred from the resist to the chromium mask by using a commercial Cr etchant (Chrome etch 18, 

OSC OrganoSpezialChemie GmbH). Before the replica process with polydimethylsiloxane (PDMS), 

an anti-stiction layer of 1H,1H,2H,2H-Perfluoro-octyl-trichloro-silane (125ul, Alfa Aesar) was 

deposited by vapor phase on the silicon template. PDMS replicas were produced by using a pre-

polymer solution of Sylgard 182 (Dow Corning). Biopsy punches (OD = 1 mm, Miltex) were used to 

create fluidic ports in the reservoirs and glass coversheets (No. 1.5H, Deckaläser) were used to close 

the microstructures. The microfluidic chips were prepared according the protocol previously 

described by the authors 191. Briefly, the negative pattern of the chip was transferred onto a silicon 

wafer by using optical lithography and Inductive Coupled Plasma-Reactive Ions Etching (SI 500, 

SENTECH Instruments GmbH). Since the etching rate of the ICP–RIE process is aspect-ratio 

dependent, a double lithographic step was used to obtain homogeneous microstructures. First, the 

micro-pillars were etched of few microns; second, micro-pillars with channels and reservoirs were 

further excavated to reach a depth of 50 µm. PDMS replicas were produced by using a base and 

curing agent mixing with a ratio (w/w) 10 : 1. The solution was casted on the silicon template and 

baked in an oven at 60 °C overnight for 15 h. PDMS replicas underwent an oxygen (O2) plasma 

treatment (Pressure = 0.5 mBar, Power = 20 W, Time = 20 s; Plasma System Tucano, Gambetti) and 

bonded to glass coversheets. The resulting microfluidic chip has a rectangular cross section with a 

width w= 210 µm, height h= 50 µm, and a port-to port length l= 2.7 cm as shown in Figure.4.1a. The 

pillars membrane has a length l=500 µm and a width w= 25 µm. Between each pillar there is a gap 
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of about 3 µm. 

 

Electron microscopy imaging  

Microfluidic chips were analyzed by Scanning Electron Microscope (JSM-6490LV, JEOL and 

Helios Nanolab 650, FEI Company™). SEM images were acquired after cutting the chip bonded 

on the glass slide with a blade, then cells were fixed with 0.2% of Glutaraldehyde in cacodylate 0.1 

M buffer solution and dried with ethanol solution. The PDMS was pretreat with 15 nm of gold and 

then imaged by secondary electrons imaging (SEI) mode. Low magnification and high 

magnification SEM images were obtained with accelerating voltage of 15 and 5 kV, respectively. 

 

Permeability experiments in the microfluidic chip 

 Microfluidic chips were autoclaved at 120 °C for sterilization. Then they were dried to remove the 

water from channels and placed in an incubator overnight (37 °C, humidity > 95%). Matrigel 8-12 

mg/mL was put in ice to maintain the solution in liquid form (Sigma Aldrich), then it was mixed with 

Eagle’s minimum essential medium (EMEM) (ATCC©, USA) to yield a final matrix concentration 

of 4-6 mg/mL. Afterwards, the matrigel matrix was introduced in the extravascular channel and 

gelation occurred in 5 minutes at 37 °C. 50 ng/mL of TNF-α were introduced in the matrigel to induce 

a gradual release of the pro-inflammatory molecule from the extravascular to the vascular  

compartment. Next, the vascular channel was filled with 20 μg/mL of fibronectin solution (Sigma 

Aldrich) and incubated for 1h at 37°C. Human Umbilical Vein Endothelial Cells (HUVEC) were 

cultured in endothelial growth medium according to the manufacturer’s guidelines (cells and culture 

media were purchased from PromoCell, USA). Before seeding into the microfluidic chip, HUVECs 

were cultured, washed, detached, counted and concentrated at 6x106 cell/mL. Cells were used up to 

passage 6 (P6). For both the vascular and the extravascular compartments, micropipette tips were 

filled with 200 μm of culture media on the inlet side, whereas the tips on the left side were left empty.  
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Media was changed every day. Routinely, chips were used 2 days after seeding. 

The vascular channel was connected to a syringe pump (Harvard Pump 11 Elite, Harvard Apparatus) 

by a polyethylene tubing (BTPE-50, Instech). During the permeability tests, 40 kDa FITC-Dextran 

(Sigma Aldrich) was added up to a concentration of 0.5 µg/mL. For all the experiments, solutions 

were flowed at a physiological shear strain, σ = 20 s-1, that corresponds to a flow rate of 100 nL/min. 

Dextran permeability was detected using a fluorescent inverted microscope (Leica 6000). The 

analysis of Dextran permeability was done by ImageJ software using two ROIs, one fixed in the 

vascular channel and the other in the extravascular channel. The formula is reported in Figure.2b. 

Briefly, the equation P =
(If−Ii)w

(Ii−Ib)Δt
 was used, where P is the diffusive permeability (µm/s), If is the 

total fluorescent intensity in the two ROIs at the final analyzed frame, Ii is the total fluorescent 

intensity in the two ROIs at the initial analyzed frame. Ib is the total fluorescent intensity in the 

extravascular ROI at the initial analyzed frame. ΔT is the time difference between the analyzed frame, 

and w is the width of the vascular channel. 

 

Cancer cell intravasation model 

 MDA-MB-231 cells were used at 1.5x107cell/mL embedded in the matrigel solution and introduced 

in the extravascular channel. After the gellification of the matrigel, the vascular channel was filled 

with 20 μg/mL of fibronectin solution and incubated for 1h at 37°C. Then HUVECs were inserted at 

6x106 cells/mL. Cancer cells were imaged a 3, 6, 21, 24 and 30h using a fluorescent microscope 

(Leica, objective 10x). Any cancer cell with its full body in the vascular compartment was considered 

an intravasated cell. Time-lapse movies were acquired for the whole duration of the experiment, while 

the syringe pump was flowing media into the vascular compartment at Q= 50 nL/min.  
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Cancer cell transport and adhesion under flow model 

After sterilization, microfluidic chips were dried and placed in incubator. The vascular channel was 

filled with 20 μg/mL of fibronectin solution and incubated for 1h at 37°C. Then HUVECs were 

inserted at 6x106 cells/mL. Then the extravascular channel was filled with matrigel matrix and 50 

ng/mL of TNF-α. After reaching cell confluency, the chip was placed on the stage of an epi-

fluorescence inverted microscope for the adhesion experiments. The working fluid was injected into 

the chip using a syringe pump 33 Dual (Harvard apparatus). After the trypsinization, the cancer cells 

were incubated for 30 min with CM-DiI, at 37˚C (0.5%, Thermofisher) according to the 

manufacture’s protocol. Then, the cells were washed 3 times with PBS 1x (GIBCO) to remove the 

excess dye. Finally, the cells were re-suspended in the EMEM medium  without FBS, that could 

interfere with the cell adhesion parameters, at 1x106 cells/mL. After each rolling experiment, a 

washing with PBS was performed to remove the non-adherent cancer cells from the endothelium. 

Tumor cells were introduced via a syringe pump on the HUVEC monolayer The inlet port of the chip 

was connected to the syringe pump through a polyethylene tube (BTPE-60, Instech Laboratories). 

The interaction of tumor cells with HUVECs was recorded for 15 consecutive minutes for each 

experiment. Two flow rates Q were imposed via the syringe pump, namely, 50 and 100 nL/min. 192.

  

 

Cancer cell extravasation model 

 Vascular channel was filled with 20 μg/mL of fibronectin solution and incubated for 1h at 37°C, 

HUVECs were inserted at 6x106 cells/mL. Extravascular channel was filled with a solution of 

matrigel, FITC-Dextran 4 kDa and TNF-α 100 µg/mL (final concentration). Then after reaching cell 

confluency, tumor cells MDA-MB-231 were infused on the endothelial cells by using syringe pump 

at flow rate of 50 nL/min for 15 minutes to permit the firm adhesion of cancer cells on the 

endothelium. The extravasated cancer cells were imaged at Leica microscope at 3, 6, 21, 24 and 30h. 
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Any cancer cell with its full body in the extravascular compartment was considered an extravasated 

cell. Time lapse movies were acquired for the whole duration of the experiment, while the syringe 

pump was flowing media into the vascular compartment at Q= 50 nL/min.  

 

Cancer cell invasion model 

Both microfluidic channels of the device were filled with a matrigel matrix, one was filled with 

1.5x107 MDA-MB-231 cancer cells and the other with FITC-Dextran 4 KDa and TNF-α 50 ng/mL 

(final concentration). The migrating cancer cells were imaged at Leica microscope at 3, 6, 21, 24 and 

30h. Any cancer cell with its full body in the opposite compartment was considered a migrating cell. 

Time lapse movies were acquired for the whole duration of the experiment, while micropipettes tips 

were filled with 200 μl of cells growth media for both compartments. 

 

Cell tracking 

For the intravasation, extravasation and invasion processes there are fully movie during 30h (imaged 

every 4 minutes) of the cell movement acquired at NIKON center. During the experiments devices 

were kept under controlled conditions (5% CO2 and 37°C), using an Oko lab Cage Incubation System 

mounted at time-lapse microscope. Movies were acquired for the whole duration of the flow 

(objective 20x). Cell dynamics were detected using time-lapse imaging equipped with an on-stage 

incubator (Eclipse Ti-E, Nikon) and A sCMOS camera (Andor Zyla) was used to acquire images and 

movies. The confocal fluorescent images into different channels were obtained using Split- Channels 

and recombining the images using Merge Channels. 

 

Immunofluorescence staining and image acquisition 

 At the end of the experiments, both vascular and extravascular channels were carefully washed with 

PBS (Invitrogen) and fixed with 4% paraformaldehyde (PFA) (ChemCruz, Santa Cruz, 
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Biotechnologies, USA) for 15 minutes at room temperature. After washing twice with PBS, channels 

were filled with a 0.3% Triton X in PBS solution for 10 min at 4°C to allow cellular membrane 

permeation. Next, cells were incubated with 20% goat serum in PBS solution for 30 min at 4°C and 

then human endothelial Cadherins were targeted for 2 hours using anti-human VE-Cadherin antibody 

(Ms anti-human Ve-cadherin, 1:100, Abcam). Afterwards, devices were incubated with green 

fluorescent labeled secondary antibody (anti-mouse 488, 1:500, Abcam) for 50 min at 4 °C. Cell 

nuclei were stained with DAPI (5 mg/mL, Invitrogen) while F-Actin cytoskeleton filaments were 

stained in green by the use of phalloidin according to supplier (Alexa Fluor® phalloidin, life 

technologies). Images were acquired using confocal microscope (Nikon A1). 
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4.3 RESULTS AND DISCUSSION 

The compartmentalized microfluidic device. A custom designed polydimethylsiloxane (PDMS) 

microfluidic device was used to reproduce the key steps in the metastatic process. The device consists 

of two parallel channels divided by a permeable membrane of rounded pillars (Figure.4.1). The 

channels present a total length of 2.7 cm (from inlet to outlet), a height of 50 µm and a width of 210 

µm. The equivalent hydraulic diameter of the channels is comparable in size to large capillaries, 

arterioles and venules. The permeable membrane is placed in the center of the channels and is 500 

µm long. The separation distance between the two channels, across the pillar membrane, is equal to ̴ 

3 µm, which is sufficient to compartmentalize the two channels while still allowing molecules and 

cells to diffuse through. Therefore, the two compartments can be independently filled at the 

occurrence with different matrices (collagen, matrigel, hyaluronic acid, and combinations thereof) 

and cells (endothelial, cancer, stromal, immune cells and so on). In Figure.4.1a, a schematic of the 

microfluidic devices is presented together with electron microscopy images revealing the details of 

the micro-membrane. Specifically, the first electron micrograph shows the central portion of the 

device with the arrays of pillars constituting the micro-membrane. The second electron micrograph 

returns the shape and separation distance between adjacent pillars within the micro-membrane. These 

are slender structures, with an aspect ratio larger than 2.5, presenting a rounded shape to enhance 

lateral mechanical stability. In Figure.4.1b, two representative confocal fluorescent images document 

the compartmentalization of the device in two different channels. On the left, endothelial cells 

(HUVECs) confluently cover the upper, lower and lateral walls of the vascular channel (cell nuclei 

in blue – DAPI; VE-cadherin in green – FITC). On the right, breast cancer MDA-MB-231 cells 

populate a matrigel matrix deposited in the extravascular channel (cell membrane stained in red – 

CM-DiI). Notice that the endothelial cells adhere over the entire exposed surface in the vascular 

compartment allowing the formation of a pervious vessel with a tubular shape, whose permeability 

can be modulated at the micro-membrane. Additional details on the membrane and channels’ cross 
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sections are provided by the electron micrographs of Figure.4.1c. In the right image, cells can be 

observed distributed within the channels, whereas the left image offers a detailed view of the 

micropillars in the membrane. 

 

 

Figure 4.1. The compartmentalized microfluidic device. a. Schematic of the double channel chip (length = 

2.7 cm, width = 210 µm; height = 50 µm) with the vascular channel in blue and the extravascular channel in 

red (left); scanning electron microscopy micrographs showing the extravascular and vascular channels; and 

the micro-membrane made out of micropillars, (right). b. Representative confocal fluorescent images of a 

confluent HUVEC monolayer in the vascular compartment (left) and MDA-MB-231 breast cancer cells mixed 

in a matrigel layer in the extravascular compartment (right). Cell nuclei are stained in blue with DAPI, VE-

Cadherin proteins are stained in green, cellular membrane is stained in red with CM-DIL. c. Scanning electron 
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microscopy micrographs showing details of the micro-membrane and its pillars (left), and cross section of the 

vascular channel filled with HUVECS and extravascular compartment filled with MDA-MB-231 cells (right). 

 

Vascular permeability at the micro-membrane. In order to test the functionality of the endothelial 

barrier, the vascular channel was seeded with endothelial cells while the other channel was filled with 

matrigel to mimic the extracellular matrix. Endothelial cells spontaneously cover the walls, including 

the permeable micro-membrane. The diffusion of a green fluorescent tracer (FITC–Dextran 40 kDa) 

from the vascular to the extravascular compartment was analyzed to retrieve values for the vascular 

permeability P, under different operating conditions. Specifically, endothelial cells were stimulated 

with the pro-inflammatory molecule TNF-α to modulate intercellular adhesion and, thus, vascular 

permeability. The fluorescent images in Figure.4.2a document the permeation of the tracer in the 

extravascular space at 3 different time points, namely 5, 15 and 30 min post infusion. Dextran 

molecules were observed to flow into the vascular channel, permeate across the micro-membrane, 

and diffuse into the matrigel matrix. The diffusion of the fluorescent molecule is inversely 

proportional to the tightness of the endothelial junctions, which are loosened by the treatment with 

TNF-α. In the absence of endothelial cells (no HUVECs), the tracer easily flows into the extravascular 

compartment returning permeability values as high as 9.25 ± 3.96 µm/s. On the contrary, the presence 

of a continuous endothelial layer dramatically reduces the vascular permeability of the 40 kDa tracer 

to 1.01 ± 0.34 µm/s. 
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Figure 4.2. Vascular permeability at the micro membrane. a. Representative fluorescent images of free 

FITC-Dextran (40 kDa) diffusing (Q = 100 nL/min) in the vascular channel with an healthy (- TNF-α); 

inflamed endothelium (+ TNF-α) and with no endothelial cells (NO HUVECs) (TNF-α treatments were 

performed at 50 ng/mL for 12h). b. Vascular permeability coefficients. Formula for calculating the 

permeability (right). Data are plotted as mean + SD, n = 5. Statistical analysis ANOVA. * denotes statistically 

significant difference p<0.05. *** denotes statistically significant difference p<0.01. 
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 Furthermore, the stimulation with TNF-α, which was added in the extravascular compartment at 50 

ng/mL, affects the tight junctions (Figure.4.3) of the endothelial cells and increases the permeability 

of the tracer up to 5.43 ± 2.42 µm/s.  

 

Figure 4.3. VE-cadherin molecules expression on HUVEC cells. a. VE-Cadherin immunostaining in 

unstimulated (-TNF-α - top image) and stimulated conditions (+TNF-α – bottom image). Nuclei were stained 

in blue using DAPI, VE-Cadherin adhesion molecule is shown in green. b. Mean fluorescence intensity of the 

VE-Cadherin expression for the two different conditions. Data are plotted as mean + SD, n = 4. Statistical 

analysis T test. *** denotes statistically significant difference p<0.0001. 

 

Note that the TNF-α concentration is low enough to avoid any toxic and irreversible effect on the 

cells but sufficient to alter adhesive molecules expression (Figure.4.4).  
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Figure 4.4. Visualization of ICAM-1 adhesion molecules in the microfluidic chip. a. Confocal fluorescent 

microscopy images of the chip with a confluent layer of HUVECs, under unstimulated conditions (-TNF-α) 

(top). Confocal fluorescent images into different channels (60 x magnification) were obtained using Split-

Channels and then recombining the images using Merge-Channels (bottom). Nuclei stained in blue with DAPI, 

VE-Cadherin immunostaining in green, ICAM-1 immunostaining in red. b. Representative confocal 

fluorescent microscopy image of chip with a confluent layer of HUVECs, under stimulated conditions (+ TNF-

α,) (top). Confocal fluorescent images into different channels (60 x magnification) were obtained using Split-

Channels and recombining the images using Merge-Channels (bottom). Nuclei stained in blue with DAPI, 

VE-Cadherin immunostaining in green, ICAM-1 immunostaining in red. 

In all cases, the obtained values are slightly higher with respect to in vivo data, but are in line with in 

vitro data reported by other authors.193 The chart in Figure.4.2b gives the permeability values as well 

as the formula employed to extract these values from the experimental data. Indeed, these results 
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demonstrate the ability to modulate the vascular permeability in the device by properly stimulating 

confluent endothelial cells. 

 Permeability experiments were also conducted at lower flow rates, namely 50 nL/min (Figure.4.5). 

Importantly, only a minor difference in permeability was observed for the two different flow rates. 

 

Figure 4.5. Vascular permeability at the micro-membrane at Q = 50 nL/min. a. Representative fluorescent 

images of free FITC-Dextran (40 kDa) diffusing (Q = 50 nL/min) in the vascular channel with an healthy (- 

TNF-α); inflamed endothelium (+ TNF-α) and with no endothelial cells (NO HUVECs) (TNF-α treatments 
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were performed at 50 ng/mL for 12h). b. Vascular permeability coefficients. Formula for calculating the 

permeability (right). Data are plotted as mean + SD, n = 5. Statistical analysis ANOVA. ** denotes statistically 

significant difference p<0.05.  

 

Modeling the intravasation of cancer cells. After assessing the vascular permeability of the device 

under different flows conditions and TNF-α stimulations (Figure.4.6), the transport of breast cancer 

cells (MDA-MB-231) across the endothelialized micro-membrane into the vascular compartment was 

considered.  

 

Figure 4.6. Vascular permeability at the micro-membrane at Q = 100 nL/min. Vascular permeability 

coefficients for FITC-Dextran (40 kDa) in the vascular channel on healthy HUVECs (- TNF-α) 12 h after 

seeding; 3h post HUVEC seeding; 6h post HUVEC seeding; on inflamed endothelium (+ TNF-α) 12h after 

seeding and with no endothelial cells (NO HUVECs) (TNF-α treatments were performed at 50 ng/mL for 12h). 

The formula for calculating the permeability coefficients (right). Data are plotted as mean + SD, n = 5. 

Statistical analysis ANOVA. * denotes statistically significant difference p<0.05. *** denotes statistically 

significant difference p<0.001 (Q = 100 nL/min). 
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Tumor cells were mixed with matrigel and infused into the extravascular compartment, whereas 

endothelial cells were seeded and cultured in the vascular channel. During the whole experiment, cell 

culture medium was continuously infused on the vascular side with a flow rate of Q = 50 nL/min, 

which is typical for microvascular flow.194 Despite the high density of matrigel, the fresh medium 

and nutrients in the vascular channel were sufficient to attract cancer cells. Intravasation events were 

observed over time and were only accounted for when the whole cell body was found in the vascular 

compartment. Figure.4.7a presents a schematic of the model and fluorescent microscopy images at 

the two compartments taken at 0, 6, 21, 24 and 30 h post cell seeding. These images document a 

progressive infiltration of the breast cancer cells (cell membrane in red – CM-DiI) into the vascular 

compartment, which is confluently covered by endothelial cells (cell nuclei in blue – DAPI).  It should 

be noted that in some of the microfluidic chips a small number of HUVECs migrated into the 

extravascular compartment. Indeed, HUVECs feel the presence of cancer cells and their cytokines, 

and respond to their biological stimuli by migrating into extravascular channel.  
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Figure 4.7. Modeling the intravasation of cancer cells. a. A schematic (top left) of the model and fluorescent 

microscopy images of the two compartments, taken at 6, 21, 24 and 30h. The images depict cancer cells (cell 

membrane labeled in red with CM-Dil) intravasated from the extravascular compartment filled with a matrigel 

matrix to the vascular compartment covered by a confluent layer of HUVECs (cell nuclei stained in blue with 

DAPI). b. Quantification of the number of intravasated cancer cells up to 30h. Data are plotted as mean + SD, 

n=8. c. Confocal fluorescent images into different channels were obtained using Split-Channels and 

recombining the images using Merge-Channels. HUVECs nuclei are stained in blue with DAPI, F-Actin is 

stained in green with phalloidin. 

 

Moreover, matrigel does contain 5.0-7.5 ng/mL of vascular endothelial growth factor (VEGF) and 

traces of matrix metalloproteinases (MMP) that could contribute to this process. The number of 

MDA-MB-231 was calculated by observing the tumor cells for 30h at the time-lapse microscope. 

This shows tumor cells migrating into the matrigel matrix, crossing the endothelial barrier, and 

reaching the vascular compartment. In Figure.4.8 the trajectory and velocity of an individual 

intravasated tumor cell are reported. The analysis was performed with a time-lapse microscope 

returning an average speed of about 0.008 µm/sec, and a total variation in speed from 0.0005 to 0.018 

µm/sec.  
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Figure 4.8. Cancer cell intravasation: single cell tracking and instantaneous velocity a. Trajectory of a 

breast cancer cell MDA-MB-231 moving from the extravascular compartment, filled with a matrigel matrix, 

across the micro-membrane, to the vascular compartment filled with a confluent monolayer of HUVECs. The 

tracking is performed via time lapse microscopy. b. Cancer cell velocity over time during intravasation 

calculated by time lapse microscopy. The dashed black line indicates when the micro-membrane is crossed by 

the cell. 

 

In Figure.4.9 details on the morphology of intravasating cancer cells are provided. As compared to 

HUVECs, the migrating cancer cells appear elongated.  
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Figure 4.9. Cancer cell intravasation a. Confocal fluorescent microscopy image showing breast cancer cells 

(MDA-MB-231, red) intravasating from the extravascular compartment, filled with a matrigel matrix, to the 

vascular compartment, filled with a confluent HUVEC monolayer. b. Magnified image at 60 x showing tumor 

cells (red) in an elongated shape, infiltrating the HUVEC monolayer. (Breast cancer cells have the membrane 

labeled in red with CM-DiI. Nuclei are stained in blue with DAPI. F-Actin is stained in green). 

 

In Figure.4.7b, the number of intravasated tumor cells is plotted at specific time points, returning the 

averaged values 2.70 ± 2.31 at 6h; 5.77 ± 3.30 at 21h; 8.28 ± 4.30 at 24h; 9.55 ± 4.24 at 30h. In 

Figure.4.7c and in Figure.4.9, confocal fluorescent images of the device depict the intravasated 

cancer cells (red) across the micro-membrane. MDA-MB-231 cells are stained in red with CM-DiI, 

the nuclei of the HUVECs are stained in blue with DAPI and the F-Actin filaments of both cells are 

stained in green with Alex Fluor 488 phalloidin (for Figure.4.9 notice that nuclei of both HUVECs 

and MDA-MB-231 are stained in blue with DAPI). It should be here emphasized that similar images 

and data on cell migration velocity could have not been taken in a Boyden chamber assay.  
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Modeling vascular transport and adhesion of cancer cells. After intravasation into the vascular 

compartment, tumor cells are transported by the blood flow until vascular adhesion occurs at 

secondary sites. To model this process, MDA-MB-231 cells were infused in the endothelialized 

vascular channel at 50 and 100 nL/min. To modulate the adhesion propensity of the cancer cells, 

HUVECs were either treated with 50 ng/mL of TNF-α (inflamed endothelium) or left in their basal 

state (no inflammation). The stimulation with TNF-α enhances the expression of specific molecules, 

such as the vascular cell adhesion, proteins and integrins that mediate cell adhesion. As in the previous 

section, TNF-α (50 ng/mL) was added in the extravascular compartment, mimicking an inflammatory 

stimulus originating deep in the tissue and eventually reaching the endothelial barrier. Figure.4.10a 

reports representative fluorescent images showing breast cancer cells (red – CM-DiI) adhering onto 

HUVECs (blue – DAPI), under the two tested flow rates. The number of adhering cancer cells was 

quantified and normalized by the total number of injected cells (ninj =106) and the area of the region 

of interest (ROI) (Figure.4.10b). At low flow rates, the number of adhering cancer cells was equal to 

12.94 ± 4.47 for unstimulated conditions (-TNF-α) and 29.75 ± 4.19 for stimulated conditions (+TNF-

α). At higher flow rates, the number of adhering cancer cells decreased to 8.38 ± 3.14 for unstimulated 

conditions (-TNF-α) and 21.00 ± 4.38 for stimulated conditions (+TNF-α). As expected, CTCs would 

adhere on the inflamed endothelium almost 3-times more than on the healthy vasculature. Differently, 

CTCs would more stably roll on the healthy endothelium rather than on the inflamed vasculature. 
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Figure 4.10. Modeling the vascular transport and adhesion of cancer cells. a. Representative fluorescent 

microscopy images depicting breast cancer cells (cell membrane labeled in red with CM-DIL) adhering over 

a confluent HUVEC monolayer (cell nuclei stained in blue with DAPI). HUVECs are either inflamed for 12h 

with TNF-α (50 ng/mL) (+ TNF-α) or not inflamed (- TNF-α). b. Normalized number of adhering cancer cells 

for flow rate Q = 50 nL/min (bottom left) and Q = 100 nL/min (bottom right). Data are plotted as mean + SD, 

n=3. Statistical analysis ANOVA. * denotes statistically significant difference p<0.05. ** denotes statistically 

significant difference p<0.01. 

 

 

Modeling the extravasation of cancer cells. After establishing stable adhesion with the blood vessel 

walls, tumor cells can migrate towards the extravascular space infiltrating the healthy tissue.195 MDA-

MB-231 cell extravasation from the vascular compartment was evaluated tracking cells for 30h on a 

time-lapse microscope. In this configuration, tumor cells are required to cross the endothelial barrier. 
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As such, HUVECs (blue – DAPI) were seeded in the vascular compartment to form a confluent cell 

layer, while MDA-MB-231 (red – CM-DiI) were infused in the same compartment at 50 nL/min. The 

extravascular channel was filled with a mix of matrigel, TNF-α and FITC-Dextran (4 kDa). The 

Dextran 4 kDa tracer was included to monitor the transport of small molecules, such as TNF-α, from 

the tissue to the vascular compartment. The transmigration of MDA-MB-231 into the matrigel matrix 

was then observed over time. Representative fluorescent microscopy images of the extravasated 

cancer cells are shown in Figure.4.11a at different time points. Figure.4.11b reports the absolute 

number of extravasated cells, namely, 1.42 ± 0.78 at 3h, 2.42 ± 0.97 at 6h, 3.71 ± 0.75 at 21h, 4.42 ± 

1.39 at 24h, 5.00 ± 1.91 at 30h.  
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Figure 4.11. Modeling the extravasation of cancer cells. A schematic (top left) of the model and fluorescent 

microscopy images of the two compartments taken at 3, 6, 21, 24 and 30h. Images depict cancer cells (cell 

membrane labeled in red with CM-Dil) infiltrating from the vascular compartment, filled with HUVECs (cell 

nuclei stained in blue with DAPI), to the extravascular compartment filled with matrigel. b. Quantification of 

the number of extravasated cancer cells up to 30h. Data are plotted as mean + SD, n=8. c. Confocal fluorescent 

images into different channels were obtained using Split- Channels and recombining the images using Merge-

Channels. HUVECs nuclei are stained in blue with DAPI, F-Actin is stained in green with phalloidin. 

 

In Figure.4.12, the trajectory and the velocity of an individual extravasated tumor cell are reported. 

The analysis was performed with a time-lapse microscope. The average speed of the tumor cell is 

0.002 µm/sec, with an overall variation between 0.013 and 0 µm/sec.  

 

 

Figure 4.12. Cancer cell extravasation: single cell tracking and instantaneous velocity a. Trajectory of a 

breast cancer cell MDA-MB-231 moving from the vascular compartment, filled with a confluent HUVEC 

monolayer, across the micro-membrane, to the extravascular compartment, filled with a matrigel matrix. The 

tracking is performed via time lapse-microscopy. b. Cancer cell velocity over time during extravasation 
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calculated by time lapse-microscopy. The dashed black line indicates when the micro-membrane is crossed by 

the cell. 

 

Figure.4.12c and Figure.4.13 report confocal fluorescent images of the device depicting the 

extravasated cancer cells across the micro-membrane. MDA-MB-231 cells are stained in red with 

CM-DiI, the nuclei of the HUVECs are stained in blue with Dapi and the F-Actin filaments of both 

cells are stained in green with Alexa Fluor 488 phalloidin (for Figure.4.13 notice that nuclei of both 

HUVECs and MDA-MB-231 are stained in blue with DAPI).  

 

Figure 4.13. Cancer cell extravasation. a. Confocal fluorescent microscopy image showing breast cancer 

cells (MDA-MB-231, red) extravasating from the vascular compartment, filled with a confluent HUVEC 

monolayer, to the extravascular compartment filled with a matrigel matrix. b. Magnified image at 60 x showing 

tumor cells (red), infiltrating the extravascular compartment. Breast cancer cells have the membrane labeled 

in red with CM-DiI. Nuclei are stained in blue with DAPI. F-Actin is stained in green. 

 

Modeling the tissue invasion of cancer cells. After extravasation, cancer cells colonize the 

secondary sites by penetrating deeper into the tissue and forming metastatic niches. In this step, cancer 
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cells interact with local microenvironment, including stromal cells, that would facilitate invasion by 

releasing chemokines, MMPs and other molecules196.  

To model this step of the metastasis cascade, the device was filled with a mix of matrigel, TNF-α and 

FITC-Dextran 4 kDa in one channel, and MDA-MB-231 cells embedded in matrigel in the other 

channel. Cancer cell migration from one side to the other was evaluated by tracking cells for up to 

30h, using a time-lapse microscope. Figure.4.14a shows the schematic of the chip and representative 

fluorescent images taken using an inverted microscope. The absolute number of migrating cells was 

charted in Figure.4.14b returning the values at 0.50 ± 0.81 at 3h, 2.42 ± 1.30 at 6 h, 10.42 ± 3.78 at 

21h, 12.71 ± 4.03 at 24h and 14.71 ± 3.13 at 30 h. 
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Figure 4.14. Modeling the tissue invasion of cancer cells. a. A schematic (top left) of the model and 

fluorescent microscopy images of the two compartments taken at 3, 6, 21, 24 and 30h. The images depict 

cancer cells (cell membrane labeled in red with CM-Dil) embedded in a matrigel matrix moving from one to 

the other compartment. b. Quantification of the number of migrated cancer cells up to 30h. Data are plotted as 

mean + SD, n=8. c. Confocal fluorescent images of the different channels were obtained using Split-Channels 

and recombining the images using Merge-Channels. Nuclei are stained in blue with DAPI, F-Actin is stained 

in green with phalloidin. 

 

 In Figure.4.15, the trajectory and velocity of an individual tumor cell are reported. The average cell 

speed is 0.005 µm/sec, with a total variation ranging between 0.011 and 0 m/sec. Cancer cells move 

along the TNF-α gradient crossing the channels from one side to the other through the permeable 

micro-membrane. Indeed, for this study, no endothelial cells were included. A drop of cell culture 

medium was added to the inlet and to the outlet ports to prevent matrigel drying. 

 

Figure 4.15. Cancer cell invasion: single cell tracking and instantaneous velocity a. Trajectory of a breast 

cancer cell MDA-MB-231 moving from a compartment, filled with a matrigel matrix, across the 

micromembrane, to the other compartment, filled with a matrigel matrix. The tracking is performed via time 
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lapse-microscopy. b. Cancer cell velocity over time during invasion calculated by time lapse-microscopy. The 

dashed black line indicates when the micromembrane is crossed by the cell. 

 

Figure.4.14c and Figure.4.16 report confocal fluorescent images depicting the migrating cancer cells 

across the micro-membrane. MDA-MB-231 cells are stained in red with CM-DiI, the nuclei are 

stained in blue with DAPI and the F-Actin filaments are stained in green with Alex Fluor 488 

phalloidin. 

 

Supporting Figure 4.16. Cancer cell invasion. a. Confocal fluorescent microscopy image showing breast 

cancer cells (MDA-MB-231, red) migrating from a compartment, to the other compartment, both filled with a 

matrigel matrix. b. Magnified image at 60 x showing tumor cells (red) in an elongated shape, infiltrating the 

other compartment. Breast cancer cells have the membrane labeled in red with CM-DiI. Nuclei are stained in 

blue with DAPI. F-Actin is stained in green. 
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4.4 CONCLUSION 

A compartmentalized microfluidic chip has been realized comprising two channels acting as the 

vascular compartment, coated by a confluent layer of endothelial cells, and the tissue compartment, 

filled by a matrigel matrix enriched with breast cancer cells. A micro-membrane, made out of an array 

of rounded pillars, separates the two channels and realizes the chip compartmentalization. Multiple 

key steps in the cancer metastasis process – intravasation, vascular transport and adhesion, 

extravasation and tissue invasion – have been reproduced in this compartmentalized microfluidic chip 

under controlled conditions. Importantly, as the two channels rest on the same plane, the trans-

membrane dynamics of molecules and individual cancer cells can be monitored in real-time over 

several hours, using time-lapse fluorescent microscopy. This allows one to accurately quantify the 

rates of cell intravasation, adhesion, extravasation and invasion as well as to extract relevant 

information on cell morphology and biophysics.  

No specific biological and biophysical information on organs and vascular districts were included in 

this version of the work as the main focus is on demonstrating the ability to control in real-time key 

steps in the metastatic cascade. Nonetheless, the size of the vascular chamber can be readily modified 

during the fabrication process and the flow rate can be accurately modulated by programming a 

syringe pump. By tuning these two parameters, the flow conditions in different vascular districts can 

be readily reproduced. As such, four conditions can be, for instance, recapitulated in vitro, as those 

found in  5 – 10 µm capillaries, with a mean blood velocity of 0.01 cm/sec; 10 – 50 µm arterioles, 

with a mean blood velocity of 0.6 cm/sec; 10 – 70 µm venules, with a mean blood velocity of 0.8 

cm/sec; and 2 mm collecting lymphatic vessels, with a mean blood velocity of 10 cm/sec. Furthermore 

organ specific conditions can be integrated by using different types of endothelial cells within the 

vascular chamber, and multi-cellular mixture in the extravascular chamber. Considering flow 

conditions of venules, arterioles or large capillaries, in this work, MDA-MB-231 cells were observed 

to migrate towards the vascular compartment with a rate of about 8 cells per day. This process is 
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relatively rapid, with an average cell velocity of 0.5 m/min. Notice, however, that the total number 

of cancer cells dispersed within the tissue compartment (matrigel matrix) and potentially available 

for intravasation is equal to about 4,000. In other words, the intravasation process is characterized by 

a low efficiency with only 0.2% of the tumor cells migrating from the malignant mass towards the 

vasculature each day. Indeed, this number can be affected by a variety of factors including the initial 

cell density. On the other hand, it was observed that cell extravasation requires stimulation with the 

pro-inflammatory molecule TNF-, which favors the opening of the endothelial barrier and acts as a 

chemoattractant on tumor cells. Still, the rate of cell deposition within the extravascular space is of 

only 4 cells per day. This step in the metastatic cascade is even less efficient than intravasation and 

average cell velocities of about 0.1 m/min were measured. TNF- was also used for studying the 

invasion of cancer cells deep into the tissue. In this case, a migration rate of 12 cells per day over a 

400 m long region is observed. Is it important to highlight that these values of cancer cell velocity 

are in agreement with other in vitro and in vivo data available in literature as documented in the 

Table.4.1. 

 Invasion 

Velocity (µm/h) 

Extravasation 

Velocity (µm/h) 

Intravasation 

Velocity (µm/h) 

 

MDA-MB-231 cells197-

199 

86.4  − in vivo 

13-31 − − in vitro 

37.5-72 − _ in vitro 

MDA-MB-435 cells200 − 75.6 _ in vivo 

 Murine pancreatic 

cells201 

14.04 − − in vivo 

 MTLn3 cells202 − − 204 in vivo 

 MTC cells202 −             −            222 in vivo 

HEp3 cells203 −             −           20-40  in vitro 

Present work 18             7.2               28.8  in vitro 



 

85 
 

 

Table 4.1. Velocity of different cancer cells during the metastatic steps. Average velocity for invasion, 

extravasation and intravasation of MDA-MB-231 cells, MDA-MB-435, murine pancreatic, MTLn3, MTC and 

HEp3 cancer cells, in vitro and in vivo. 

 

This quantitatively data on cell migration average speed, confirms that cancer metastasis is a highly 

inefficient process and specific conditions and stimuli are needed to support it. Intravasation, vascular 

adhesion, extravasation and invasion are all affected by a variety of biophysical and biochemical 

stimuli, including the local hemodynamic conditions, vascular permeability, expressions of adhesion 

molecules, availability of pro-inflammatory stimuli chemoattractant molecules, density and type of 

the extracellular matrix. The proposed two-channel compartmentalized microfluidic chip allows one 

to control accurately all the above parameters and provide a useful tool to systematically characterize 

the metastatic process dissect new biological mechanism or identify new anticancer therapies.  
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5. Study T cell infiltration in a 3D microfluidic pancreatic tumour model 

5.1 INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumour showing a poor 

prognosis, with limited treatment options and a patient survival of less than 5%204. Compared to other 

solid tumors, PDAC shows a marked resistance to conventional forms of chemotherapy and often it 

develops without early symptoms making its diagnosis very difficult, limiting the treatment capacity. 

Several risk factors have been identified, such as smoking, obesity, diabetes or family’s cancer cases, 

but only in few patients these factors are identifiable205. One of the most widely used drug for this 

tumor is gemcitabine applied as a monotherapy206. More recently, the use of gemcitabine has been 

combined with Folfirinox and nab-paclitaxel207, prolonging the survival of patients by only a few 

months. The best option is the early tumour surgical resection, as therapeutic treatments fail for the 

presence of metastases and high local recurrence208. Therefore, developing novel therapeutic 

strategies for this fatal disease is urgently needed.  

In the pancreatic tumour microenvironment there is a huge proliferation of stromal cells such as 

tumour associated macrophages (TAMs), regulatory T cells (Tregs), mast cells and pancreatic stellate 

cells (PSc) that support tumour growth, while immune cells such as natural killer (NK) and T CD8+ 

are down regulated209. Only at early stage of the disease, it is possible to find several immune cell 

populations in an active state in the tumour microenvironment (TME), then they are mostly 

deactivated or exhausted in order to inhibit anti-tumour function210. Cytotoxic T lymphocytes, also 

known as T CD8+, can kill tumour cells using perforin and granzyme. In patients affected by 

pancreatic carcinoma, analysis in peripheral blood shown a great reduction in circulating CD8+ T 

cells with lower perforin levels compared to healthy controls211. Immunohistochemistry analyses on 

pancreatic carcinoma samples showed that higher levels of tumour infiltrating CD4+ and CD8+ T cells 
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are associated with longer survival212. However, PDAC cells express programmed cell death receptor 

ligand (PD-L1), which binds to PD-1 expressed on activated T cells213. Normally, PD-L1 works as 

immune checkpoint protein, ensuring that, by binding PD-1, healthy cells are not harmed and that the 

immune system is activated only at the appropriate time, avoiding autoimmune responses214. The 

expression of PDL-1 on PDAC cells leads to the T cells exhaustion or their death and, consequently, 

promotes the tumour progression215. Another T cell subset, the CD4+ T helper cells, plays an 

important role, secreting several cytokines that modulate T and B cells function. Again, in patients 

with pancreatic cancer, peripheral blood levels of T CD4+ cells are reduced compared to healthy 

controls215. Investigating on the T cell infiltration in PDAC, and understanding how to restore the 

functionality of exhausted T cells is one of the main therapeutic goals to defeat this type of cancer. 

Another key component in the pancreas are PSc, involved in the maintenance of tissue homeostasis216. 

During a pancreatic lesion, the quiescent PSc are activated and transformed into cells similar to 

myofibroblasts that secrete proteins of the extracellular matrix, generating fibrosis. Indeed, PDAC is 

characterized by a desmoplastic reaction that lead to an increase in the proliferation of α-smooth 

muscle actin (α-SMA)-positive fibroblasts. This reaction makes pancreatic cancer impenetrable to 

pharmaceutical treatments, as well as to the immune system, thus favouring its progression204-217. 

PSCs also release cytokines, including CXCL12 which may lead to the reduction of CD8+, CD4+, NK 

and Tregs cells migration216. The release of Galectin-1 by PSc may also cause CD8+ T cell 

immunosuppression and apoptosis218. These data point out the importance of understanding the role 

of pancreatic stellate cells in pancreatic cancer immunotherapy. 

In recent years, the immunotherapy has shown a significant promise where other approaches have 

failed219. There are 3 types of immunology-based therapies: (i) therapeutic vaccines to stimulate the 

immune system to produce T-cells and tumor-specific B cells220; (ii) adopted therapy, where T CD8+ 

cells, expanded ex vivo, are injected into the tumor to kill cancer cells221; and (iii) immune checkpoint 

inhibitors, that unfortunately are ineffective in PDAC222. Therefore, despite the innumerable advances 
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in these applications, still there are hurdles to overcome to achieve a successful therapy. Fast 

reproducible models are needed to improve the preclinical studies. Murine models are complex, 

expensive and time-consuming, and the in vitro 2D tumor models, as already described, fail to mimic 

the structure of the native 3D tissue or the surrounding tumor microenvironment. Once again, 3D in 

vitro models overcome the disadvantages of animal models in terms of scalability, cost and ease of 

use, and offer the possibility of studying the role of TME in a more physiological condition than the 

simple 2D approach. For example, cancer cells grown in 3D hydrogels represent a way to study 

interactions with lymphocytes223 in a condition more comparable to the in vivo microenvironment. 

Among the 3D models, microfluidic devices are those that can best reproduce the conditions 

necessary to study dynamic processes such as cell adhesion, cell migration and cell-cell interactions, 

CCL21 and CCL19 2D chemotaxis of T cells 224, or the chemotaxis of tumor cells and immune cells 

in 3D collagen gel. Microfluidic devices were also used to study melanoma growth in the presence 

of the immune system cells106. Bai et al., instead, investigate the role of macrophages in lung 

adenocarcinoma doing studies on modelling and screening of different therapeutic approaches. This 

microfluidic platform was key to identify the role of each subtype of macrophages in lung tumor 

aggregate dispersion225. Arcangeli’s group has developed a microfluidic platform that, in combination 

with dielectrophoresis, allowed to culture different pancreatic ductal adenocarcinoma human cell 

lines maintaining cell vitality, morphological appearance and growth characteristics that more closely 

resemble 3D cultures226. As a result, 3D microfluidic tumour models would be useful in the screening 

of immunotherapy strategies in a more physiologically relevant TME and with control over the spatial 

cellular organization.  

My research project in collaboration with Adriani’s group in Singapore, focused on a 3D multicellular 

microfluidic assay to analyze the T cell infiltration across the vasculature in a pancreatic 

adenocarcinoma model, recapitulating key features of the immune microenvironment, such as 

chemical gradients, vascular flow and trans-endothelial migration. The device used consist of a three 
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channel microfluidic chip composed by 3D gel region, flanked by 2 media channels connected by a 

series of trapezoidal pillars (Figure.5.1). The two lateral compartments are used to simulate the 

vascular and stromal environment respectively. Indeed, the central channel is coated by cancer cells 

embedded in a collagen matrix, reproducing the malignant tissue. The trapezoidal pillars allow the 

separation of the different compartments, still maintaining a connection between them.   
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5.2 MATERIAL AND METHODS 

Cells type 

Human Umbilical Vein Endothelial cells HUVECs were purchased from Lonza, used until passage 

6, cultured in a T25 and T75 flasks in the Endothelial growth media EGM, until reaching the 70% 

confluency. Pancreatic ductal adenocarcinoma cells PANC-1 and pancreatic stellate cells (PSc) were 

purchased from Lonza and cultured in DMEM media with 1% Pen/Strept, 1% Glutamax and 10% 

FBS. Cells were used until passage 20.  

 

AIM chip technology 

The AIM chip is a commercialized device by AIM Biotech (www.aimbiotech.com). The chip is made 

by Polydimethylsyloxane (PDMS), and consists of two lateral channels and a central region divided 

by an array of trapezoidal pillars. The devices presents a height (h) of 250 µm and a width (w) of 25 

mm. 

 

Collagen gel preparation and cells seeding 

The collagen gel was prepared mixing 10x PBS with phenol red (Life technologies), 0.5 M NaOH 

(Sigma Aldrich), sterile deionized water (Thermo Water purifying System) and Collagen type I from 

rat tail (Corning Life Science). The final collagen concentration used was 3 mg/mL. 1x106 PANC-1 

cells, embedded in a collagen matrix, were seeded in the central chamber of the device. To avoid the 

drying of the gel, 6 mL of sterile water was added into the reservoirs of the AIM holders. After the 

collagen jellification occurred after 30 minutes at 37 ˚C, the media channel were hydrated adding 20 

µL of cell culture media and then coated with 50 µg/mL fibronectin, injected in one of the two lateral 

channel and incubated for 1h at 37 ˚C. Then, 3x106 GFP+ HUVECs were introduced in the same 

compartment to form a full endothelial monolayer. 

PSc cells (1x106) were introduced in the opposite lateral channel, and medium was changed daily. 

http://www.aimbiotech.com/
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Panc-1 cells were stained in orange with the Cell Tracker Orange dye CMRA. 

 

Immunofluorescence staining and image acquisition 

At the end of the experiments, each compartment was washed with PBS and fixed with 4% 

paraformaldehyde (PFA) (Sigma Aldrich) for 15 minutes at room temperature. After washing twice 

with PBS, channels were filled with a 0.1% Triton X-100 (Sigma Aldrich) in PBS solution for 10 min 

at room temperature to allow cellular membrane permeation. Next, cells were incubated with BSA 

3% (Life technologies) for 2h at room temperature and then human endothelial Cadherins were 

targeted overnight (4 ºC) using anti-human VE-Cadherin antibody (Ms anti-human Ve-cadherin, 

1:100, Enzo technology). Afterwards, devices were incubated with red fluorescent dye-labeled 

secondary antibody (anti-mouse 647, 1:500, Enzo technology) for 1h at room temperature. Cell nuclei 

were stained with DAPI (5 mg/mL, Invitrogen). Images were acquired using confocal microscope 

(Olympus). 

 

Permeability experiments in the AIM chip 

During the permeability tests, 70 kDa FITC-Dextran (Sigma Aldrich) was added up to a concentration 

of 100 µg/mL. For all the experiments, devices were previously fixed in PFA 4%. Dextran 

permeability was detected using a fluorescent inverted microscope (EVOS). The analysis of Dextran 

permeability was done by ImageJ software using six adjacent ROIs, three from the vascular channel 

and the other three from the gel channel. Briefly, to estimate the permeability, it was used the equation 

 P =
(If−Ii)w

(Ii−Ib)Δt
  

where P is the diffusive permeability (µm/s), If is the total fluorescent intensity in the two ROIs at the 

final analyzed frame, Ii is the total fluorescent intensity in the two ROIs at the initial analyzed frame. 

Ib is the total fluorescent intensity in the extravascular ROI at the initial analyzed frame. Δt is the time 

difference between the analyzed frame, and w is the width of the vascular channel. 
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Isolation of human T cells 

T cells were obtained collecting human blood from healthy donors into standard blood tubes. 

Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation 

(Ficoll-Paque™). The platelets were removed by density gradient separation, and then the pellet was 

resuspend in a buffer solution and centrifuged. Then, a positive selection for the T cells, using a CD3+ 

magnetic beads, was performed. Shortly, the CD3+ cells were magnetically labeled with CD3+ 

Microbeads, and then the cell suspension was loaded onto a MACS® Column (Mylteni) which was 

placed in the magnetic field of a MACS Separator. The magnetically labeled CD3+ cells were retained 

on the column. The unlabeled cells run through the column and this cell fraction was depleted of 

CD3+ cells. After removal of the column from the magnetic field, the retained CD3+ cells were eluted 

as the positively selected cell fraction.  

 

T cell activation with dynabeads 

At the occurrence, T cells were activated with CD3/CD28 dynabeads (Thermofisher). Dynabeads 

were resuspended in a 1 mL vial, vortex for 30 sec and transferred in a desired volume. (1.25 µl for 

105 cells). Then, the vial was placed in a magnetic field for 1 min and the supernatant was discarded. 

Dynabeads were added to the purified population of T cells for 5 days at 37˚C in a T75 flask with 30 

U/ml of IL-2 in RPMI medium. After 3 days of incubation the viable cell density were adjusted by 

adding fresh complete medium (RPMI+ IL-2). After 5 days, dynabeads were removed using the 

magnetic field and finally T cells were inserted in the AIM chip.  

 

T cells seeding 

T cells were collected from the culture flasks and were stained in blue with Violet tracker (Cell 

Tracker dye). 30 µl of T cell suspension (8 x 106 cell/mL) were added in the vascular channel filled 
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with HUVECs; 20 µl of media were removed from the opposite outlet to allow the movement of the 

T cells in the gel channel where pancreatic cancer cells were seeded. Then chips were maintained in 

incubator at 37˚C for 24 and 48 h before the image acquisition made by Opera Phenix. The images 

were analyzed by IMARIS software. 

 

Fluorescence activated cell sorting 

Cell suspension was adjusted at the concentration of 1 x106 cell/mL in cold FACS buffer. 

Conjugated primary antibodies (1:500) were added to the cell suspension for 20 min at 4 ºC in the 

dark. Then, cells were washed once by 5 min centrifugation and resuspended in 200 µl of PFA 2% 

for 40 min at room temperature in the dark. Cells were washed using FACS buffer and kept in the 

dark until the analysis was performed. Finally, cells were incubated with anti-human mABs for CD4 

(APC 780), CD8 (PE), CD3 (APC, FITC), and PD1 (Texas Red), from Thermofisher. Cell 

fluorescence was measured using a Fortessa LSR BD and data analyzed using Flowjo software.  
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5.3 RESULTS AND DISCUSSION  

Pancreatic tumor model and vascular permeability modeling. To study the T cell infiltration 

process in the PDAC, a microfluidic chip provided by Biotech (Figure.5.1a and b) was used. Briefly, 

AIM device is composed of three parallel channels, whose height is 120 μm, separated by 100 μm. 

Panc-1 cells were seeded in the central compartment, 1 mm wide, completely embedded into 3D 

collagen type I matrix. Lateral channels have a width of 500 μm and were seeded with endothelial 

cells (HUVECs) to form a biomimetic blood vessel, and pancreatic stellate cells (PSc) to mimic the 

structure of the exocrine region of the pancreas (Figure.5.1c).  

To characterize the function of the endothelial barrier, after 2 days from the HUVECs seeding, 70 

kDa fluorescein isothiocyanate dextran (RFP-dextran) was injected in the vascular channel and the 

diffusion of the tracer into the gel compartment was analyzed to evaluate for the vascular permeability 

P.  

 

 

Figure 1. Microfluidic pancreatic tumor model. a. Schematic representation of AIM chip; b. Image of AIM 

slide (75 mm x 25mm) bringing 3 chips. a: length of the channel; b: width of the channel; c: width of the media 

channels; d: gap between posts. c. PDAC schematic showing 3D gel region  flanked by 2 media channels, 

divided by a trapezoidal pillars, Panc-1 cells (green), T cells (blue), HUVECs cells (pink) and Fibroblasts (red).  

 

Representative confocal fluorescent images of the endothelial cells forming a vessel are reported in 

Figure.5.2a. The fluorescent images in Figure.5.2b document the permeation of the tracer in the 
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extravascular space at 3 different time points, namely 5, 15 and 30 min post infusion. The obtained 

permeability values is 0.27 ± 0.17 µm/s. 

 

 

Figure 5.2. Microfluidic vascular model. a. Confocal Z stack images depicting VE-cadherin and DAPI 

staining to show the confluency of the endothelial monolayer. Scale bar is 100 µm. b. Characterization of 

endothelial permeability. Representative fluorescent images of free RFP-Dextran (70 kDa) diffusing in the 

vascular channel covered with a confluent HUVEC monolayer. At the bottom, it is indicated the formula used 

to estimate the vascular permeability. Scale bar is 70 µm. 

 

The permeability value is in line with in vitro data reported by other authors100, and demonstrate the 

ability to modulate the vascular permeability in the AIM chip. 

 

T cell infiltration in PDAC tumor. As to perform their antitumor function T cell have to migrate 

from blood into tissues, the AIM chip was used to assess the ability of T cell to infiltrate within 
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PDAC. The 3D microdevice was seeded in the central chamber with Panc-1 cells embedded in a 

collagen type I matrix, while the side channels were covered by HUVECs cells, forming a confluent 

monolayer and pancreatic stellate cells. T cells collected from human blood of healthy donors were 

injected into the vascular lateral channel, covered by HUVECs, in contact with the collagen region. 

T cell activation was obtained stimulating them with dynabeads. These polystyrene spherical particles 

are covered with antibodies against CD3, a key signaling component of the T cell receptor (TCR) 

complex, and CD28 receptors, which provides a costimulatory signal essential for functional 

activation. Dynabeads were first developed by Professor John Ugelstad and can be used for the 

positive or negative selection of different samples from biological material227. In this specific case, T 

cell were positive selected from human peripheral blood mononuclear cell (PBMC) and cultured for 

5 days in RPMI medium with IL-2 and dynabeads. For each experiment, T cell population was divided 

in T cell activated and T cell not activated, indicating cells not stimulated with dynabeads. The 

activation of T cells was verified by flow cytometry using as activation marker the PD-1 molecule, 

in comparison to T cell stimulated with dynabeads for 5h (Figure.5.3).  

 

 



 

97 
 

Figure.5.3. T cell activation status. PD-1 expression on T cells not activated (without dynabeads) and T cell 

activated with dynabeads, maintained in culture for 5 hours or 5 days in RPMI medium and IL-2 (30 U/mL). 

Average geometric mean fluorescence intensity (MFI) of PD-1 is reported. Data are representative of three 

independent experiments. 

 

The following antigens were used as markers for detecting each T cell subset: CD3, CD4, CD8 (data 

not shown). Both T cell populations, activated and not activated, were injected into the HUVEC 

compartment after the monolayer formation at 8x106 cell/ml.  

To better clarify the more relevant factors involved in T cells infiltration in the pancreatic tumor 

microenvironment, the T cell infiltration was quantitatively evaluated as a function of the level of T 

cells activation status, presence of endothelial barrier, and tumor microenvironment. Therefore, the 

analyses were performed in in six different experimental conditions:  

1. Tumour (Panc-1 cells seeded in the collagen gel, PSC and HUVECs seeded in the side 

channels);  

2. No PSc (Panc-1 seeded in the collagen gel and HUVECs in a lateral channel);  

3. No HUVEC (Panc-1 cells seeded in the collagen gel and PSc seeded in a lateral channel);  

4. Only Panc-1 (Panc-1 cells seeded in the collagen gel);  

5. Only PSc (PSc seeded in one lateral channel);  

6. PSc + H (HUVECs and PSc seeded in the side channels, while the central chamber was  filled 

only with collagen). 
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Figure 5.4. T cell infiltration in PDAC model. a. Representative confocal microscopy images of activated T 

cells (labeled in red with CTV) infiltrating in the central channel filled with Panc-1 cells (stained in blue with 

CMRA) embedded in a collagen gel. b. Absolute number of adhering infiltrating T cell (after 24h from their 

injection) with and without stimulation with dynabeads for 5 days. c. Representative confocal microscopy 

images of T cells not activated (labeled in red with CTV) infiltrating in the central channel filled with Panc-1 

cells (stained in blue with CMRA) embedded in a collagen gel. d. Absolute number of adhering infiltrating T 

cell (after 48h from their injection) with and without stimulation with dynabeads for 5 days. (Statistical analysis 

ANOVA: *** symbol denotes statistically significant difference p < 0.0001; ** symbol denotes statistically 

significant difference p < 0.001. (n = 2).  
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Via confocal microscopy, the number of infiltrating T cells, in the gel compartment, was quantified 

after 24 and 48h from injection in nine different regions of interest (ROIs) along the channel. 

Results as number of T cells infiltrated in a collagen gel after 24 and 48h from their injection are 

provided in Figure.5.4b and d, respectively. On the left hand side, Figure.5.4a and c, representative 

confocal microscopy images are shown for activated and not activated T cells.  Significant differences 

arose when considering T cell infiltration after stimulation with dynabeads and not stimulated T cells. 

At 24 h, the absolute number of infiltrating T cells was, respectively, 8.111 ± 4.343 and 7.778 ± 5.069 

in “tumor” condition, 6.667 ± 4.153 and 4.444 ± 2.506 in “No PSc condition”; 50.78± 18.40 and 

43.38 ± 25.88 in “No Huvec” condition; 46.33 ± 20.07 and 20.56 ± 8.033 in “only Panc-1” condition; 

26.22± 17.95 and 25.78 ± 22.19 in “only PSc” condition; 1.000 ± 1.118 and 3.778 ± 2.728 in “PSc + 

H” condition.  At 48 h, the absolute number of infiltrating T cells was, respectively, 9.952 ± 1.803 

and 10.24 ± 2.841 in “tumor” condition, 29.09 ± 2.219 and 28.54 ± 5.038 in “No PSc condition”; 

40.37 ± 9.205 and 40.26 ± 3.521 in “No Huvec” condition; 9.952 ± 1.803 and 10.24 ± 2.841 in “only 

Panc-1” condition; 9.952 ± 1.803 and 10.24 ± 2.841 in “only PSc” condition; 9.952 ± 1.803 and 10.24 

± 2.841 in “PSc + H” condition. As compared to the not activated T cells, T cell infiltrate more when 

stimulated with dynabeads. Maximum infiltration is observed for all the conditions in which the 

HUVEC monolayer is not present, confirming the stability of the endothelial barrier formed in the 

device. Conversely, in all the conditions with empty vascular channel the number of infiltrating T cell 

increases. Maximum infiltration is reported in the “No Huvec” condition with stimulated T cells, 

indicating that both Panc-1 cells and pancreatic stellate cells are able to modulate the T cells 

recruitment into PDAC. 
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5.4 CONCLUSION AND FUTURE DEVELOPMENTS 

The results obtained with the AIM-chip platform indicate that this device can be efficiently used for 

characterizing the T cell infiltration in the pancreatic tumor, as well as other type of solid tumors, 

reproducing a more realistic 3D tumor model over classical 2D platforms. Moreover, it was able to 

recapitulate key features of the immune microenvironment, such as vascular flow and trans-

endothelial migration. The 3D microfluidic in vitro tumor microenvironment (TME) more closely 

mimics the physiological in vivo setting as the Panc-1 cells are in a 3D matrix and T cells migrate 

from a blood vessel toward the tumor mass. AIM chip technology could not only help to characterize 

the immune-cancer cell interactions that have recently become interesting therapeutic targets, but also 

help in testing the efficacy of novel immunotherapies. 

 

This technology could pave the way to go deeper in the study of the key factors involved in pancreatic 

tumor progression and survival. For instance, it would be very interesting to characterize the 

activation and exhaustion markers on T cells infiltrated in the tumor mass,  in order to explain why 

some T cells fail to infiltrate into tumor mass and, consequently, to exert a proper immune 

surveillance. 

By checking for the presence of immune inhibitory cytokines released from HUVEC cells or PSc, it 

could be possible to understand the immune regulatory potential of endothelial cells and PSc in 

protecting the tumor against T cell infiltration. Finally, the chip could help in understanding the 

behavior of naïve T cells that reach the tumor channel, enriched also with antigen-presenting cells 

(APC).  

 

 

 



Concluding Remarks 

101 
 

 

6. CONCLUDING REMARKS 

The last decades have been distinguished for important progress in cancer treatment, also based on the 

characterization of its intricate metastasis formation mechanism and on the role of immune system in 

its development. The previous information obtained in 2D models have been integrated into more 

complex 3D models, and with the emerging of microfluidics, novel devices can now better reproduce 

the interaction among tumor cells, immune cells and the microenvironment. Several chips have been 

designed to mimic the extravascular environment incorporating 3D matrix (collagen, matrigel, 

hyaluronic acid), allowing the analysis of the cellular dynamics, the cellular movements and cell 

deformability. Significant progresses have been made since the development of soft lithography 

techniques, which allow the realization of micrometric structures made of polymeric materials such 

as poly-dimethyl-siloxane (PDMS), one of the most commonly used materials for the fabrication of 

microfluidic devices, like the ones I used in my studies.  

In my first project using a single channel microfluidic chip, I studied the vascular transport of 

circulating tumor cells under different biophysical conditions, as level of inflammation, flow rate, and 

working fluid (physiological solution and whole blood). The obtained results suggest that, within 

microvascular networks, blood rheology and inflammation contribute similarly to CTC deposition, 

thereby facilitating the formation of metastatic niches along the entire network, including the healthy 

endothelium. In microfluidic-based assays, neglecting blood rheology would significantly 

underestimate the metastatic potential of cancer cells. 

In the second work, I was able to mimic all the key steps of the metastatic cascade, using a microfluidic 

chip presenting two channels connected via an array of pillars to form a permeable micromembrane. 

One channel acted as a vascular compartment, by the coating of a fully confluent monolayer of 

endothelial cells, whereas the other channel was filled with a mixture of matrigel and breast cancer 

cells. The vascular permeability was modulated by inducing pro-inflammatory conditions in the tissue 
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compartment, which transiently opened up the tight junctions of endothelial cells, demonstrating that 

the proposed chip could efficiently replicate in vitro, under controlled biophysical and biochemical 

conditions, the multiple key steps in the cancer metastatic cascade. 

In the last part of this thesis is reported the use of a microfluidic platform to study the interactions 

between tumor and immune cells, that is an highly dynamic process and it is critical for the success of 

cancer immunotherapies. Specifically, I studied the process of T cell infiltration in pancreatic tumor, 

using a PDMS customized microfluidic chip, comprising two lateral compartments, one mimicking 

the vasculature and the other filled with stromal cells (pancreatic stellate cells), and one central 

chamber, used to mimic the malignant tissue. This microfluidic device prove to be useful in the study 

of T cell migration toward the tumor. 

In conclusion, microfluidics provided a great advancement in the biomedical field. Indeed, these 

devices make possible to study all the steps involved in tumor metastatization, as well as immune 

system migration toward tumor mass. In addition, microfluidic devices allow the study of tumor 

spheroids as well as of more complicate multi-cellular system, dissecting the role and contribution of 

each one of them in this process. Importantly, only microfluidics could take into account the big role 

of the fluid flows in dynamic processes that involve the passage in and out of the vasculature. These 

steps forward could efficiently allow the screening of therapeutic molecules and drugs, also regarding 

their targeting and distribution within the engineered tissue. The data obtained could grant the ability 

to choose the best drug for the treatment of the analyzed specimen, in a real personalized medicine 

approach, and thus could be rapidly translated in the clinics, improving patients’ life.  
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