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Abstract

For an autonomous system to completely understand a particular

scene, a 3D reconstruction of the world is required which has both

the geometric information such as camera pose and semantic infor-

mation such as the label associated with an object (tree, chair, dog,

etc.) mapped within the 3D reconstruction.

In this thesis, we will study the problem of an object-centric 3D recon-

struction of a scene in contrast with most of the previous work in the

literature which focuses on building a 3D point cloud that has only the

structure but lacking any semantic information. We will study how

crucial 3D object localization is for this problem and will discuss the

limitations faced by the previous related methods. We will present an

approach for 3D object localization using only 2D detections observed

in multiple views by including 3D object shape priors.

Since our first approach relies on associating 2D detections in multiple

views, we will also study an approach to re-identify multiple object in-

stances of an object in rigid scenes and will propose a novel method of

joint learning of the foreground and background of an object instance

using a triplet-based network in order to identify multiple instances of

the same object in multiple views. We will also propose an Augmented

Reality-based application using Google’s Tango by integrating both

the proposed approaches. Finally, we will conclude with some open

problems that might benefit from the suggested future work.
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Chapter 1

Introduction

1.1 Motivations - the Human Vision

At the first glance, what we see with our eyes can be considered as mere images

made up by the visual light reflected off of the surfaces of the objects that we

are looking at. But, how can we perceive more than what is captured in a 2D

picture? Certainly, there is more to the human vision than meets the eye. Our

eyes work more like a camera that captures an image. Perception really happens

in the brain which turns those images into something that we can understand.

Our incredibly complex visual system including the two eyes, optic nerves and

the brain allow us experience the visual world around us in three-dimension. Our

visual system has evolved over millions of years to recognize and understand very

accurately and with low latency the complex visual world around us. We are able

to perceive, analyze and extract a tremendous amount of semantic and geometric

information for an elaborate interpretation of the 3D world surrounding us. In

order to interact with the 3D world, we not only need to instantly identify various

objects present in a particular scene but also to identify the fine characteristics

such as materials, textures, different parts, the surfaces that support them and

1



1.1 Motivations - the Human Vision

Figure 1.1: The scene of a bedroom with various objects like lamp, chair, bed etc.
We detect various objects in the scene and build an understanding of structure
and arrangement of the scene.

their relative position and volume or depth in order to manipulate them. For

example, in Figure 1.1, we can recognize the scene as a bedroom which has various

objects like a table, chair, bed and lamp etc. We can also observe various fine

details about the objects and their relation with other objects like the painting

on the wall, the carpet on the floor, the lamp on top of the wooden table, a

helmet and a backpack on top of the bed, chair in front of the wooden table,

trashcan in front of the nightstand and even the fact that the bedsheet is knitted.

If we observe, in inferring all of this information, our visual system localized and

recognized all the objects within the scene and their spatial relationship with

their environment. Thus, for a semantic scene understanding, localizing objects

in the scene becomes inevitably important. But, first let us understand what is

semantic scene understanding in general.

1.1.1 Understanding a scene

When we described the scene in the above example, we described the different

objects in the scene. Does it mean that a scene is simply a collection of different

2



1.1 Motivations - the Human Vision

Figure 1.2: Presence of certain objects belonging to specific object categories can
provide some context as to which category the scene might belong to. Left: The
scene of a living room with objects like lamp, chair, TV and fan etc. Right:
Objects like cabinets, drawers and a refrigerator are more common in the kitchen
than the living room.

physical objects? A scene, as we humans understand it, is a view of the 3D

world that consists of various objects of different shapes and sizes organized in

a meaningful way with their real-world functions known to us in a particular

environment given a particular context.

It is not just sufficient enough to identify, localize targets and estimate their

volumes in a given scene but the context is also crucial for understanding a scene

completely. Understanding the context goes beyond merely recognizing objects

and their position, it is interpreting how a number of different objects belonging

to different object classes interact with each other and/or with their environment.

For example, from Figure 1.2 the recognition of some specific objects such as TV,

chair and fan and their relationship with the environment may provide enough

context for a scene classification task to identify this particular scene to be, at the

least, different than the scene of a kitchen where objects like cabinets, sink and

a refrigerator would be more common. A combination of objects like a mirror,

sink and a toilet seat could certainly help classifying the scene as a bathroom.

3



1.1 Motivations - the Human Vision

Figure 1.3: Presence of similar objects in two scenes does not mean that the two
scenes must be the same. Without context, it is not easy to distinguish between
complex scenes. Left: A scene of a waiting area with some chairs or sofa around
a round table, a flower pot sitting on the table and some paintings on wall at the
far end. Right: A scene of a dining room with similar objects.

Thus, the presence of certain objects in a scene might provide important cues in

understanding the type of a scene.

1.1.2 Context is crucial

Even when the objects are correctly recognized and localized in a scene, without

the context there is no real understanding. In fact, there is a very high possibility

that a scene classification task, for example, would yield inaccurate results if no

context is available since the same objects could be found in any other scene. For

example, as we can notice from Figure 1.3, it is not easy to distinguish between

different complex scenes that have similar objects present. Both the waiting

area and the dining room may contain similar objects such as chairs, a round

table, a flower pot and some paintings and thus, the presence of similar objects

doesn’t provide enough discriminative information regarding the category of the

two scenes in which they are present. Hence, while recognizing the existence of

certain objects in a scene might narrow down the search space for a scene clas-

4



1.1 Motivations - the Human Vision

Figure 1.4: Humans can generalize well the already learned concepts by applying
them to a different context or domain. For example, a human can easily recognize
a place in different images obtained with different lighting conditions which is still
very complex to achieve with any autonomous system.

sification task, for instance, there is just not enough evidence to distinguish that

particular scene from another when similar objects are detected in both. In such

scenarios, some prior knowledge about the different categories of the scenes could

provide the context and thus, the discriminative factor between the two scenes.

For example, the dining room would have a certain spatial arrangement of chairs

around the round table while the waiting area would require a different arrange-

ment. Thus, an inter-object spatial relationship can be one of such examples of

a very crucial contextual information that can help us distinguish between the

given two scenes.

Once the visual concepts and the context about a particular scene are learned,

can this understanding be transferable to new variations in the same scenarios

previously observed? Humans have a tremendous capability to learn and adapt

to new and different situations. We can adapt from scene to scene, given the

context, accomplishing all the necessary tasks in every scenario like recognizing

targets and estimating their structure and motion. For example, we can recognize

the same place in different images captured in different lighting conditions such

as during the day and the night as shown in Figure 1.4. Moreover, to perform

different tasks efficiently we can adapt and vary our focus on different specific

features in an image using the context. For example, to identify a dog in an image

5



1.2 Autonomous system to understand a scene

Figure 1.5: Any autonomous system like a house-keeping robot needs to extract
both the geometric and semantic information from the images in order to create
a meaningful 3D reconstruction of the world.

of a bedroom, only the characteristics related to the dog like shape, color and

texture related to the animal are required, the characteristics of the bedroom are

not necessary. The same dog would be identified easily in any other environment

because of the high capability of the human visual system to adapt and generalize

to a new context or domain. On the other hand, to understand the characteristics

of the room, we need to pay attention to various objects like the furniture, other

common objects and their spatial relationships instead of the dog.

1.2 Autonomous system to understand a scene

So, how to design an autonomous system with a human-like perception? Taking

inspiration from the human visual system, an autonomous system with near-

human capabilities should be able to identify the visual concepts or cues such as

edges, corner points or regions and recognize various objects present in the scene.

As illustrated in Figure 1.5, both the geometric information such as camera pose,

depth etc. and semantic information such as semantic labels for various regions

6
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Figure 1.6: An autonomous agent needs to build a digital representation of the 3D
world in order to analyze and better understand it, just like humans use physical
3D models of an environment such as a famous monument like the Colosseum.

or objects are all very crucial for interpreting the structure and semantics of the

3D world.

However, designing such an autonomous system has been a continuous chal-

lenge till date for all the scientists and engineers working in the field of computer

vision for decades. To understand the challenges in semantic scene understand-

ing, it is important to discuss 3D scene reconstruction and eventually, the 3D

localization of objects.

For a complete scene understanding, a computer system needs to build a rep-

resentation of the 3D world. Just like for our better understanding of a particular

environment, say a building, we use some physical 3D models for analysis (Fig-

ure 1.6), in a similar manner the autonomous agent needs to use a digital 3D

model of the environment in order to analyze and understand it. In order to

construct such a geometric representation of the world, an autonomous system

first needs to scan the real-world to acquire data using specific sensors includ-

ing regular camera, depth sensors, multi-spectral cameras, laser scanners etc. or

sometimes even a combination of any of these sensors depending upon the type of

application. The kind of the data acquisition method used shapes how the data

7
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is processed by the system in later stages. With the advancement of 3D sensors,

many reconstruction techniques work directly with the acquired 3D data. Most

popular of them could probably be the methods using RGB-D cameras like ASUS

Xtion [16; 17] and Microsoft Kinect [18; 19] fitted with infrared sensor to capture

depth used for 3D reconstruction. Some algorithms used alternative methods of

acquiring 3D data like the popular LiDAR, the laser scanner giving 360-degree

view used in Google’s self-driving car and Stanford’s Stanley and even ultrasound

sensors [20] have been used for this purpose. For a 3D reconstruction task, 3D

data is really helpful for the tasks like the localization of the objects which can

be performed directly in 3D using the depth information as in some of the large

RGB-D datasets like ScanNet [7]. Although, these sensors have their advantages

that they also provide depth in addition to the color information (RGB), they are

not very cost-effective and also have a short range as compared to a regular cam-

era which provides only RGB data in the form of images. Another disadvantage

with the 3D sensors is that the methods that use them might not be able to per-

form in real-time since they require excessive use of GPU to process the 3D data

and thus, the cost of implementation might grow exponentially with more and

more 3D data captured while scanning larger scene for the reconstruction. On

the other hand, the RGB cameras which are easily accessible and compact in size

compared to the 3D sensors provide a very cost effective solution to perform the

same task. The cameras capture images that are 2D projections of the 3D world

loosing depth information in the projection. However, the ease of access of the

regular cameras, their size and the relative cost make them really popular in the

computer vision community who again finds the motivation in the human visual

system which recovers and understands the 3D structure while only capturing

the observations of the 3D world in 2D.
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Figure 1.7: An example of Structure from Motion methods. Bundler [1] recon-
structing the scene from unordered photos obtained from internet.

1.2.1 3D scene reconstruction

Over the years, there have been many developments in the field of extracting 3D

information and reconstructing the scene using only 2D images obtained from

the camera. Among these techniques, one of the very successful and popular

methods is Structure-from-Motion (SfM) which uses multiple images captured

from different view points to recover the pose of the camera for each view and 3D

reconstruction of the scene in the form of sparse or dense point cloud. Some of

the popular examples of the SfM systems are COLMAP [21], visualSfM [22] and

Bundler [1] (Figure 1.7) etc. There are several steps in the standard SfM process

which are: 1) extracting various interesting features from the images like corner

points, edges or regions and match these points of interest in pairs of images. 2)

The next step is to verify the pairs of images with common points of interests

to guarantee the corresponding points found in the images also match the 3D

geometry of the scene. This step serves as an initial reconstruction step and

once, the images are geometrically verified the iterative part of the pipeline is

initiated that takes in new images, remove outliers using triangulation and refine

the reconstruction through optimization techniques like bundle adjustment [21].
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Figure 1.8: Feature matching using SIFT features extracted from a set of images
shown as red circles in this image. The feature points extracted using SIFT are
invariant to changes in scale, orientation and illumination.

1.2.2 Standard Structure-from-Motion

The building blocks of an SfM pipeline are further described in this section.

Points of interest or Features The main input to the SfM pipeline are

the keypoints or point of interests or image features extracted from individual

images to be later used for finding correspondences. Various solutions have been

used in the literature for the feature extraction, most popular of them would

probably be the scale invariant feature transform (SIFT) algorithm [23]. As the

name is indicative, SIFT provides sufficient common feature points for correspon-

dence which are invariant to changes in scale, orientation and illumination (see

Figure 1.8). The presence of texture which is visually distinct and the resolution

of images affect the number of extracted features and also, the accuracy of the

correspondence.

Matching Features SfM method then tries to find correspondences between

the set of point features obtained from different images in order to establish a

relationship between the different region in the images. Based on the appearance
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Figure 1.9: Feature points are matched in multiple views captured from, for
example, the surface of an object in the 3D world. SfM methods such as shown
here from openMVG [2] use epipolar geometry and triangulation to estimate the
camera pose and the 3D coordinates of the points matched to generate a point
cloud.

description, if feature correspondences are established between the features ex-

tracted from one region of an image to the ones extracted from a certain region

of another image which is important as it establishes a common part of the scene

between the two images. As shown in Figure 1.9, the feature points extracted

from the projection of an object in multiple images is to be matched to ensure

they belong to the same object or the same region of the scene. the set of im-

ages being observed could be a series of images by a single moving camera like

in a video or it could be a set of different camera capturing the same scene from

different view points.

Verification of matched points in image pairs Matching features and

finding point correspondences between a pair of images is not good enough since

it is also important to make sure that the matched point features also correspond

with the 3D geometry of the scene. Since, many of these point correspondences
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might also be outliers, methods like RANSAC [24; 25] are used to remove them.

Hartley and Zisserman [25] described two ways for geometric verification depend-

ing upon the spatial configuration of images captured. In case of a planar scene,

the geometric transformation between two images can be given by homography

and in the case of a non-planar scenes, the camera movement can be estimated

using epipolar geometry with the essential matrix in case the camera’s intrinsic

parameters are known otherwise with the fundamental matrix. This verification

leads to generating an image graph structure where the images constitute the

nodes while the edges represent the geometrically verified pairs of images. The

points matched in a verified pair of images provides the initial reconstruction in

the form of a point cloud initializing the first two camera poses.

Image registration After an initial reconstruction is attained, new images

are added to it by finding correspondences between the 2D feature points from

the new images and the already known 3D points in the reconstruction obtained

from the previous images. This 2D-3D correspondence to estimate the camera

pose relative to a reference world coordinate system for a new image is known as

image registration.

Triangulation The image registration step identifies the new images that

contain feature points corresponding with the 3D points in the point cloud re-

constructed so far. The new points are added to the existing 3D point cloud by

a process called triangulation. Again, using epipolar geometry, the triangulation

process estimates the 3D coordinates of every individual corresponding feature

points between two images by using the relative camera poses of the two images.

With triangulation, new feature points observed in the new images registered

that can be added to the reconstruction which might lead to a denser 3D point

cloud. In an ideal case, this addition of the new points into the reconstructed

3D point cloud would be accurate, however, that’s not the case in practice since
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Figure 1.10: SfM methods provide 3D representation of the world in terms of
sparse or dense point clouds [3].

there might be errors and inaccuracies accumulating from the previous steps till

the triangulation phase.

Bundle adjustment To reduce the inaccuracies in the previous stages of the

pipeline namely the estimation of camera poses and the new points added to the

reconstruction by triangulation, the SfM method adopts optimization techniques

like bundle adjustment [26] to minimize the accumulation of errors as the pipeline

moves forward incrementally. Thus, an optimization technique such as bundle

adjustment optimizes both the calibration parameters of the camera and the

structure too by refining the reconstruction which provides an optimal 3D point

cloud.

1.2.3 Object-based representation

Although, the SfM technique has been very popular and successful for the 3D

reconstruction task, the representation of the 3D world has largely been limited

to sparse or dense 3D point clouds (Figure 1.10). These point clouds may provide

a great deal of geometrical information about a particular scene but this repre-

sentation lacks any semantic information and thus, does not provide the crucial
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Figure 1.11: Sparse or dense point clouds generated from multiple images pro-
vide rich geometric information but they lack crucial semantic labels. The 3D
representation shown here contains a semi-dense 3D point cloud. We can observe
that the point cloud highlighted within the inset box belongs to the object class
chair, however, a 3D point cloud such as this generated by an SfM method can
only provide the structural details.

context in order to achieve a complete semantic scene understanding as shown in

Figure 1.11.

For a better representation of the 3D world, we need to include the semantic

information along with the geometric information in the models that we build of

the 3D world. In the literature, a lot of methods have been studied for building an

object-centric representation of the world that provides richer information about

the scene in terms of the objects present in the scene. For example, [4] proposed

a method to solve both the object recognition and online version of SfM known

as simultaneous localization and mapping (SLAM) which resulted in a represen-

tation of the 3D world in terms of point cloud with segments recognized as 3D
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Figure 1.12: An example of an object-centric 3D reconstruction of a scene. [4]. In
addition to the 3D point cloud of the whole scene, the representation also shows
the point cloud segments belonging to the objects detected.

point clouds for the corresponding objects (Figure 1.12). Thus, this object-centric

approach requires that the objects in the scene are detected and localized in 3D.

Many times, the objects localized are shown by 3D bounding boxes depending

upon the type of the data and semantic labels are assigned to them.

There are several methods [27; 28; 29; 30] in the literature that localize ob-

jects in 3D using the depth information obtained through 3D sensors. However,

the aim of these techniques was not to accurately localize objects in 3D. A sliding

window approach was used in [31] to scan over the whole space to generate 3D

bounding boxes and then, classify each 3D bounding box using 3D CAD model

renderings. However, this method was computationally expensive as sliding win-

dow over 3D space is very slow and demanding. Using the SUN-RGBD dataset,
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the methods like [32] propose to generate 3D bounding box proposals and classify

these 3D bounding boxes using contextual features along with the oriented gra-

dient descriptors and depth information. The other approach used is to parse the

image into multiple segments and semantically label each segment pixel-wise. Lin

et al. [28] proposed one such approach to use 2D segmentation in case of indoor

scenes to generate bounding box proposals and used a conditional random field

(CRF) to integrate the depth information and the data from different sources.

There are other methods like [33; 34; 35; 36; 37] that parse images semantically

into segments using RGB and depth information.

With the emergence of deep learning in computer vision, many algorithms

have been developed over the years that use convolutional neural network for

object localization in 3D. Some of the popular techniques are Fully Conventional

Network [38] that provide pixel-level semantic segmentation and a deep learning

based sliding window method that uses a 3D ConvNet [39] taking inspiration

from 2D object detection techniques like the region proposal network (RPN) [40].

Again, working directly with the 3D data, 3D encoding of depth and 3D con-

volutions make these algorithms slow and computationally expensive and it also

becomes hard to generalize them to all scene configurations if they use tools like

3D CAD model renderings, for example. As we have seen so far that the 3D

reconstruction methods that need to localize objects in 3D use captured 3D data

from specific sensors, they suffer from the challenges like missing 3D data, ex-

cessive computation and GPU usage. However, there have been a few methods

recently developed that use the 2D data instead and gain a lot from the advance-

ment of 2D object detection techniques with the deep learning networks. Faster

R-CNN [40], Mask R-CNN [5] (Figure 1.13), YOLO [14] are some of the very

popular 2D object detection methods that has become very robust, efficient and

fast over the years. Apart from the fact that the 2D convolution process is much
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Figure 1.13: Objects detected in an image by Mask R-CNN [5] that also provides
instance segmentation masks along with the bounding boxes.

faster than the 3D convolutions, the 2D data is much more consistent and reli-

able in comparison to the missing 3D voxels in a volumetric 3D representation

of a scene. Since many recent 2D object detectors can very accurately detect

thousands of object classes in the 2D images, it makes it easier to generalize over

different scenarios consisting of various types of objects. Also, it is much faster

and less computationally demanding to focus on specific regions bounded by 2D

windows than the much more exhaustive search of the whole 3D area in the case

of the sliding window approach.

One such technique is given by Lahoudv and Ghanem [41] that used 2D object

detections to constraint the 3D projections in order to obtain tight 3D bounding

boxes around the objects. The aim of the method is to place 3D bounding boxes

over objects using the RGB-D data. The 2D bounding box when projected into

3D provided a much reduced search space in 3D by bounding the planes projected

in 3D which are further constrained by the depth information to accurately detect

objects in 3D.

However, there is another method that uses 2D object detections to extract 3D
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Figure 1.14: From the 2D ellipses fit to the object detection bounding boxes, the
SfMO [6] method estimates the 3D ellipsoids in dual space that represent the
position and occupancy of the objects in 3D providing a sparse reconstruction of
the scene.

information without any need of an additional depth information. The method

is aptly called Structure from Motion with objects (SfMO) [6] method which is

also a closely related work described later in this thesis. Just like in the standard

Structure-from-Motion (SfM) method where the 2D feature points are extracted,

matched and are later used to estimate the camera pose and the 3D structure

from multiple images, the SfMO method extends the approach to use 2D object

detection instead of 2D points by developing a technique called localization from

detection (LfD). Crocco et al. [6] and Rubino et al. [15] developed a method

to recover objects’ 3D position and occupancy from multiple view images of a

scene using only 2D object detections. The problem was reformulated as the

estimation of a quadric (ellipsoid) in 3D given a set of 2D ellipses fitted to the

object detection bounding boxes in multiple views as shown in Figure 1.14. After

having detections matched for all the images, 2D ellipses were fit to the bounding

boxes and the localization of objects in 3D was instantiated as a quadric (a 3D
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ellipsoid) estimation from multiple 2D ellipses problem.

As we have seen, for complete semantic scene understanding, an object-centric

3D representation of the scene by localizing objects in 3D is necessary since the

3D point cloud alone doesn’t provide any semantic information. This thesis will

now discuss the methods we propose such as a probabilistic approach for 3D

object localization with respect to the related work and why object instance re-

identification is important.

1.3 Contributions

The following section summarizes the contributions of this thesis towards building

such a semantic scene understanding system.

1.3.1 Re-identifying multiple instances of objects in in-

door environments

The performance of a 3D scene reconstruction method such as the standard

Structure-from-Motion using 2D feature points or an object-oriented SfM method

such as SfMO [6], relies on extracting a good amount of geometric information

from a set of different views. Just like the standard SfM techniques require to

detect various 2D feature points in multiple images and find correspondences

in multiple views, in a similar manner methods like Localization-from-Detection

(LfD) [15] employed by methods like SfMO that work need to detect objects in

2D images and associate the 2D bounding boxes across multiple views. The LfD

method takes advantage of a wide camera baseline where objects can be seen

in different viewpoints. Different viewpoints provide richer information about

the objects in those views which informs an accurate estimation of 3D quadrics.

Thus, a very crucial step for the estimation of quadrics involves the the matching
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Figure 1.15: Similar looking objects in rigid, indoor scenes from ScanNet
dataset [7]. Multiple instances of the same object class, chair, in this case,
are hard to differentiate with each other. The goal of an object instance re-
identification (re-OBJ) system is to be able to correctly identify different instances
of the same object class in multiple views.

of 2D object detections in multiple frames. While working with SfMO method on

images of an indoor environment provided by real-world datasets like ScanNet [7],

we observed that a major reason behind the lower performance of SfMO on some

of the scenes was poor data association of the 2D detections observed in multiple

views.

We observed that given an indoor scene, where the environment is frequently

cluttered with several near-identical objects, it is challenging to identify and track

a particular instance of an object among a number of objects present in the scene

(Figure 1.15). The problem is even more challenging when there is a wide baseline

among multiple views (or temporally disjoint views).

Considering a static indoor video dataset where large displacement in the

camera motion is unlikely and so the background of an instance cannot undergo

a sudden drastic change. Therefore, we showed that in rigid scenarios, where the

objects are stationary and only the camera is moving, it is not good enough to

learn the appearance of an object (foreground) only but the background around

the object is also important which can provide a lot of useful information regard-

ing the surroundings of an instance of object which is unique to that instance at

any given viewpoint. Described with more details in Chapter 3, we described a
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Figure 1.16: System description in three stages for the re-OBJ approach

novel method to jointly learn the foreground and background for object instance

re-identification (re-OBJ).

To include the background information (Figure 1.16), the first step (Stage 1)

in our approach is to use an off-the-shelf object detector like Mask-RCNN [5]

and obtain foreground masks of the objects within the bounding boxes that are

expanded in order to include a substantial background around the object within

the bounding boxes. Encodings from the separated masked foregrounds and the

masked backgrounds are extracted using ResNet50 [42], which are concatenated

(Stage2) to obtain joint embeddings. These embeddings then are sampled into

triplets{positive, negative, anchor} and fed to a triplet-based network architec-

ture (Stage 3) consisting of three identical ConvBlocks with the pairwise ranking

model to learn image similarity for a triple-based ranking loss function.
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Figure 1.17: Given the object classes, the ShapeNet dataset [7] is used to cre-
ate a realistic prior on the detected objects. Then, the Probabilistic Structure
from Motion with Objects (PSfMO) method provides the metric localization,
occupancy and pose of object as a set of quadrics in the 3D space.

1.3.2 Probabilistic framework to include object priors in

SfMO

We have seen how the related work SfMO developed by Crocco et al. [6] and

Rubino et al. [15] performs 3D object localization using the 2D detections. This

thesis describes a way to extend the SfMO method in terms of extracting a more

reliable estimate of the geometry in the direction of optical axis by including

the object priors in addition to the object detections to estimate the object’s

position, occupancy and pose, called Probabilistic structure from motion with

objects (PSfMO).

Described with more details in Chapter 4, PSfMO is a probabilistic framework

to include the 3D objects priors to correct the ellipsoid axes lengths. As shown in

Figure 1.17, given the ellipses in multiple views fitted inside the detection bound-
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ing boxes, firstly the SfMO method was applied to obtain the camera matrix and

ellipsoid orientations were estimated. These values were used as an initialization

for the PSfMO method. The matrix factorization used in SfMO could be framed

inside the Probabilistic Principal Component Analysis (PPCA) [43] framework,

thus enabling the inclusion of the object priors in the ellipsoid estimation. The

object priors were given by the statistics on the dimensions of the objects col-

lected by processing the CAD models from the ShapeNet dataset [44]. For each

object category, the prior took the form of a 2D Gaussian that modelled the

distribution of the ratio between the different object axes lengths.

1.3.3 An Augmented Reality (AR)-based embedded ap-

plication

By combining the two proposed methods, PSfMO and re-OBJ, we show in Chap-

ter 5 how an improved semantic 3D scene reconstruction can be utilized on an

Augmented Reality (AR)-based platform such as a mobile phone device or a

tablet. Such AR-based technologies allow users to render customizable virtual

content over the real-world images they capture using the AR-enabled device.

Discussed with more details in Chapter 5, we propose a pipeline to integrate

both PSfMO for 3D object localization and re-OBJ for the correct association

of the 2D bounding boxes in multiple views. We show our results on a sequence

taken from a Tango-enabled mobile phone and show that the both the meth-

ods combined can provide an improved 3D scene reconstruction and thus, an

enhanced AR experience.
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1.4 Overview of the Thesis

This section provides an outline of the organization of remaining of the thesis.

Chapter 2 will provide an extensive insight into the previous research work

and studies with respect to the study provided in this thesis on the topics of 3D

object localization (Section 2.1). In this chapter, we will discuss how the attempt

to 3D object localization would lead to the problem of multiple object associa-

tion (Section 2.2) and how it can be handled by object instance re-identification

(Section 2.3).

Chapter 3 will describe the method of object instance re-identification (re-

OBJ) with details like the system design, triplet sampling, the loss function used

etc. (Section 3.2) and will provide the experimental details including the training

data (Section 3.3) and evaluation (Section 3.3.3).

Chapter 4 will provide details on the probabilistic structure from motion

(PSfMO) method (Section 4.1) with experimental details (Section 4.2) with re-

spect to the related work in the literature and an extensive evaluation with both

synthetic (Section 4.2.1.2) and real-world data (Section 4.2.1.4).

Chapter 5 will discuss a real-world embedded application of the 3D quadric

estimation for object’s 3D location and occupancy using the PSfMO method de-

scribed in Chapter 4 with an improved performance based on the re-OBJ method

described in Chapter 3 using Tango application on a mobile device.

Chapter 6 will summarize the methods proposed in this thesis and their

contributions of each of the components towards building a complete semantic

scene understanding system. Also, based on each individual task, some potential

future applications will also be discussed.
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1.5 Publications

This section lists down the publications related to this thesis.

1.5.1 Conference

• Bansal, V., James, S. and Del Bue, A., 2019. re-OBJ: Jointly Learning

the Foreground and Background for Object Instance Re-identification. In

International Conference on Image Analysis and Processing (pp. 402-413).

Springer, Cham. (related to Chapter 3)

• Gay, P., Bansal, V., Rubino, C., and Del Bue, A., 2017. Probabilistic

structure from motion with objects (PSfMO). In Proceedings of the IEEE

International Conference on Computer Vision (pp. 3075-3084). (related to

Chapter 4)

1.5.2 Journal

• Bansal, V., James, S. and Del Bue, A., (To be published yet). Extension

of re-OBJ with an improved architecture for a robust Object Instance Re-

identification. (related to Chapter 3)
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Chapter 2

Related Work

Summary

An autonomous system needs to build a 3D model of the scene it is observing.

As we have understood in the previous chapter, to achieve this 3D representation

which would also be meaningful we need to localize objects in 3D. Before we

describe the method that we use for 3D localization using 2D data in the later

chapters, we discuss in this chapter (Section 2.1) the extensive research work

existing in the literature on the topic. As we discussed in Section 1.3.2, for a

structure from motion pipeline that works with 2D object detections instead of

2D points it is crucial to associate the detections in multiple views. Section 2.2

will discuss the previous work in the literature review related to matching mul-

tiple objects in multiple views. We would also discuss the challenges of these

related methods to perform the required task in the indoor scenarios especially

re-identification of multiple instances of the object belonging to the same object

category in multiple views in Section 2.3.

27



2.1 3D Object Localization

2.1 3D Object Localization

Initial work within the context of recovering 3D information from multiple-view

images mostly involved the estimation of 3D position of the point correspondences

extracted from 2D images[25]. Using point correspondences extracted from 2D

images has inspired so many other research work like [45; 46; 47; 48] which use the

standard structure from motion technique to estimate accurate 3D point clouds

that are obtained from matched 2D point on the surface of realistic objects, even

at a very large scale. However, the representation of the 3D world based on 3D

point clouds is providing only a spatial information in terms of the 3D localiza-

tion but is devoid of any semantic information as the context of the scene being

reconstructed. On the other hand, the 3D localization of objects present in the

scene can instead provide richer geometrical and much higher semantic informa-

tion than a 3D point cloud which should, consequently, improve the performance

of a classification or a recognition task in multiple views.

Localizing objects in 3D finds many practical applications like object ma-

nipulation using a robot[49; 50] and some classical computer vision tasks like

Visual Question and Answering (VQA)[51; 52] and 3D-aware scene understand-

ing [53; 54; 55; 56]. Some other previous work [57; 58; 59; 60; 61; 62] also em-

phasize how critical it is to utilize a higher semantic information that is provided

by localizing objects in classical 3D reconstruction problems. This object-based

semantic and geometric reasoning has been made possible now because of the

accuracy and generalization of modern object detectors that can provide very

accurate localization of objects belonging to various object classes in realistic

scenarios[40; 63; 64; 65]. The approach that we have adopted and would discuss

in a later chapter is a previous work SfMO [6], a Structure from Motion (SfM)

method using 2D object detections obtained from a standard object detector in-

stead of using 2D points as discussed in Section 1.1. The proposed work in this
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thesis, in comparison, uses objects’ 3D shape priors in a probabilistic framework

in order to obtain a reliable estimate of the geometry especially in the direction

of optical axis where the original SfMO work lacks accuracy if the number of

viewpoints with wide enough camera baseline is not available. There have been

several examples in the literature providing probabilistic solution for SfM, mainly

to improve the estimate of the 3D scene geometry. Forsyth et al. [66] recast the

decomposition of the bi-linear components in factorization, camera matrices and

3D points coordinates, as a Bayesian inference problem. The motivation is to

encode in the prior the metric constraints involved in the problem, thus pro-

viding better results in the presence of degenerate configurations of points. In

face modelling problems, the work of Solem and Kahl [67] used a learned shape

model to aid the 3D inference over regions for which there is no 2D information

available. Del Bue et al. [68] used the information of the rigidity of some points

to obtain reliable estimations of the 3D object structure with deforming objects.

Information derived from object detections has already been used in SfM. The

work described by Bao and Savarese [69] takes advantage of both semantic and

geometrical properties associated with objects in the perspective case.

Another factorization problem that highly relies on priors is non-rigid SfM.

This is due to the presence of objects 3D deformations that make the problem

severely ill-posed. Torresani et al. [70] used Gaussian priors in a Probabilistic

Principal Components Analysis (PPCA) framework together with a linear dy-

namic model over the deformation parameters. This framework is close to our

method, however, our object representation enables us to build a better prior

which is representative of a particular scene instead of a generic one. Similarly,

[71] imposed a prior over temporal variations of the camera parameters combined

with constraints over the proximity of projected 2D points and reconstructed 3D

points. Again related to 3D points estimation, [72] defined a shape prior in a

29



2.1 3D Object Localization

factorization based approach to help 3D reconstruction in case of degenerate mo-

tions. Akhter et al. [73] showed that a prior parametrization of the 3D trajectory

motion can provide more efficient results. The work of Gotardo and Martinez [74]

proposed a similar principle using DCT bases to represent the camera motion in

order to regularise intrinsic and extrinsic parameters. Finally, [75] used a novel

Procrustean Normal distribution to minimise geometrical deformations under an

optimality criterion.

All these approaches deal with 2D point trajectories or matches in multi-view,

only few work directly localise objects in a factorization framework. Previous

methods attempted the joint reconstruction of different geometrical entities such

as lines [76; 77], curves [78; 79; 80; 81] and conics [82; 83; 84]. However, even if

these methods were able to obtain an inference of the 3D structure, the goal of

these methods was not an object-based representation of the 3D world. Recently,

the work of Crocco et al. [6] proposed the SfM with Objects (SfMO). This method

provides a solution to the 3D localization of objects in a factorization framework

by using the output of detectors only as is described in Chapter 1, Figure 1.13.

However, even if the method provides a closed-form solution, it can lead to unre-

liable estimates, especially for the object occupancy, if the detector output is not

accurate enough or if very few views are available with limited camera baseline.

The proposed work in this thesis (Chapter 4) is a probabilistic extension of

the SfMO method where we refine the estimation of 3D quadrics by using 3D

object shape priors which improves the accuracy in the direction of the optical

axis and provides a better estimation of the objects’ occupancy in 3D. But, in

order for this method to work, the object detections need to be matched across the

multiple views. In a real-world scenario, the environment might have multiple

objects with similar appearance or even multiple instances of the same object

that are all to be matched across the multiple views. In a similar way that
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the point correspondences are utilized to estimate the 3D position of the points

in the world coordinates in the standard Structure from Motion (SfM) method,

2D object detections are used for the 3D object localization in SfMO [6] and

its extension that we proposed in PSfMO. Since we need to associate the correct

bounding boxes for each object, the multiple object association is necessary across

the multiple views. When this multiple object association is performed for the

already seen object instances across different views, especially when the camera

revisits the same region of the scene after a long time, we define the problem as

object instance re-identification. The next section will first discuss the related

work in the literature regarding the multiple object association and how the

challenges face by them eventually lead us to the task of object instance re-

identification (Chapter 3).

2.2 Multiple Object Association

Conventional methods use two major approaches to build a re-identification sys-

tem: appearance-based and motion-based. Most methods use an appearance-

based approach because motion prediction based systems try to localize each

object instance based on a motion model, however, due to the possibility of huge

unpredictable trajectories across the camera views, these methods tend to fail

when the same object instance reappear after a long time.

2.2.1 Appearance-based

Many image similarity models [85; 86; 87] simply extract features like Gabor

filters, SIFT [88], HOG [89] features to learn similarity between images. However,

the representation of the hand-crafted features limited the performance of these

methods since the accuracy of the methods detecting these features in the images
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Figure 2.1: The architecture of a triplet-based model used by Wang et al. [8] to
learn a fine-grained image similarity function for both, inter-class and intra-class
variations in images.

vary with the datasets. Some other previous studies work on finding similarity in

images [90; 91] where they are considered based on the category they fall under.

On the other hand, deep learning methods like the Convolutional Neural Network

(CNN) need not to be provided such features instead they can learn them from

the images. Some deep learning-based models popular in the image classification

tasks [92] have shown great success in learning features from the images. For

example, Nguyen et al. [93] showed that the learned deep features perform better

than the hand-crafted ones in a face recognition task. But, even these deep models

cannot directly fit similar image ranking especially the fine-grained distinction

between similar images. Thus, in order to learn a fine-grained image similarity

function, a deep ranking model (Figure 2.1) was proposed by Wang et al. [8].

Pairwise ranking model is a widely used learning-to-rank formulation especially

in the image retrieval task. In the image retrieval methods like [94; 95], the

goal of learning-to-rank is to learn a ranking function that extracts the most

relevant images in the top-k results when probed by a query image based on user-
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preferences. Learning-to-rank has also been used to learn image ranking models

in [86; 96; 97]. This learning-to-rank model for finding similar images becomes

the foundation for our work for object instance re-identification explained in

Chapter 3.

Other deep learning-based methods find similarity in the images based on

the category they fall under. Taylor et al. [87] developed their method that

finds semantic similarity between a pair of images to find if they both belong to

the same category or not. Friedman and Russell [98] explored the relationship

between visual and semantic similarities where they found that it is possible that

the two images that are semantically similar (i.e. belonging to the same category)

might differ visually.

Thus, applications that build upon image similarity like re-identification, im-

age retrieval, search-by-example etc. require learning a fine-grained image simi-

larity function that can also distinguish the differences between visually different

images of the same category. Thus, the appearance-based approaches discussed

so far might be good at distinguishing inter-class or even intra-class variations in

the images, but for our task where we need to associate two similar looking object

instances of the same semantic class in multiple views, these methods trained only

on the foreground appearance tend to fail. In the scenario of an indoor scene that

we consider in our work, the multiple instances of the same object category are

both visually and semantically similar. Hence, compared to the previous work,

we will focus on the instance’s relationship to its background to jointly learn a

foreground and background discriminative feature as described in Chapter 3.

2.2.2 Motion-based

A number of methods in the literature address the problem of matching multiple

objects by detecting motion across the multiple views. For the static scenes or in
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other words, the environments where the camera is fixed, there has been a trend

to utilize methods based on temporal averaging of an image sequence [99; 100] and

video object segmentation based methods [101] where the aim is to segment the

objects’ foreground achieved by analyzing the motion [102; 103] and clustering

trajectory [104; 105; 106]. In [102], Faktor and Irani proposed a method to

estimate the motion salient regions by identifying dominant motion present in

the scene. The saliency scores are obtained from estimating the motion difference

against the detected dominant motion. On the other hand, Papazoglou and

Ferrari [103] identify motion salient regions using optical flow by detecting the

motion boundaries. Some recent works like [107; 108; 109] utilize deep learning

based methods in an unsupervised manner for finding motion patterns in the

sequence of images.

If the target for the motion detection is an object within a video then Multiple

Object Tracking (MOT) becomes the most popular application for a motion-

based object association method. The Multiple Object Tracking (MOT) task

is to track a target object and predict its position in the successive views in a

static or dynamic environment captured in a video sequence. One very popular

technique to predict the motion of a target is Kalman filter [110] which uses the

change in the state of the target from the previous point in time to the current one

for the prediction of its future state. Also, a very popular technique to describe

motion across different camera views within a video is optical flow developed by

Lucas and Kanade [111].

Another popular framework for MOT is tracking-by-detection which takes

advantage of the tremendous development in the field of object detection in the

past few years. Previous methods like Bochinski et al. [9] detect objects in the

images using an object detector and then, associate the bounding boxes in multi-

ple views to estimate the trajectory of a targeted object as shown in Figure 2.2.
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2.2 Multiple Object Association

Figure 2.2: The tracking-by-detection methods like proposed by Bochinski et
al. [9] estimate the trajectory of the bounding boxes in multiple views. For the
estimation of trajectory, these bounding boxes need to be associated in all the
views.

However, methods that estimate motion using Kalman filter, optical flow or even

tracking-by-detection might fail in the case where there is a sudden change in

the camera motion in the video. The tracking-by-detection relies heavily on the

performance of the object detectors which might not detect many objects in all

of the images due to challenges like occlusion, motion blurr or low resolution of

the images.

Many methods used deep learning to solve these challenges. To handle chal-

lenges like the drift accumulated by occlusion etc., Chu et al. [112] proposed a

spatial-temporal attention framework in a single object tracker settings. Meth-

ods like deepSort [113] combined an appearance model based on the deep features

extracted from the bounding box of a detected object with the motion informa-

tion to build a deep association metric for matching the objects (pedestrians,
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in this case). For the real-world scenarios that suffer from challenges like oc-

clusion, camera jitters and unpredictable trajectory changes, the methods based

on motion segmentation or motion prediction tend to fail in a robust object

matching task. For our task, where we need to differentiate and re-identify the

already seen object instances in multiple views, even methods like deepSort [113]

that employ appearance-based model in combination with a motion model but

there appearance-based model suffer the same challenges as are described in Sec-

tion 2.2.1. In almost all of the object tracking methods, the switching IDs is the

most common problem where the tracking algorithm switches the target’s track-

ing ID from one object to another mostly because of the unpredictable camera

motion leading to poor data association from frame to frame.

Thus, the multiple object tracking methods try to locate and track a feature, a

segment or a bounding box, depending upon the principle used, in different views

by utilizing the frame-to-frame temporal information. This is in contrast with

our problem of re-identifying multiple instances of an object in different views of

a rigid scene. The current motion-based object tracking methods in the literature

would fail because of the challenges explained so far such as unpredictable camera

trajectory particularly in the scenario where the camera revisits the same area

of the scene after a long time while our proposed method would re-identify the

same instance already seen before given a similar point of view.

2.3 Object Instance Re-identification

There is a vast literature for object re-identification that is mostly focused on

person re-identification where the goal is to assign a correct ID of an instance of

a specific class (i.e. a pedestrian) across multiple-views obtained from cameras

with possibly non-overlapping views. In general, these methods try to learn
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discriminative features based on person’s face [114], clothing [115] or symmetry-

driven local features [116] to re-ID people. In contrast, the problem of associating

a unique ID to instances of objects is often solved as the association of multiple

unknown objects between views [117]. This problem is closely related to person

re-ID and is often evaluated in the pedestrian (person) scenario with early work

on PET2009 [118]. There are many other re-identification methods that use

appearance-based object association as discussed in Section 2.2.1. To re-identify

objects in the images such methods heavily rely on finding a similar set of images

for a given image of the target object using visual search to retrieve similar

images to the given query image. Some work in the literature like [116; 119]

exploit the knowledge that the same individual is been detected in consecutive

frames and then learning an appearance-based transfer function for a robust re-

identification system. Additionally, in [116], Farenzena et al. extract features

from three different complementary modalities: the chromatic content, spatial

arrangement of colors and local motifs derived from different parts of the human

body to accumulate local features. FaceNet [114] showed that the recognition of a

human face could be improved using a triplet loss function which is more suitable

for the verification, recognition and clustering than the verification loss [120]. The

difference is that the verification loss minimizes the L2-distance between objects

of the same identity and enforces a margin between the distance of objects of

different identities whereas the triplet loss also encourages a relative distance

constraint to discriminate between dissimilar identities.

However, the object instance re-identification we discuss in this thesis is

different than the pedestrian/person re-identification. The specific task of re-

identifying multiple near-identical objects in a rigid scene presents a different

challenge, we refer to as re-OBJ, a specific case of re-ID. A closely related work,

RIO [121], introduced a method for object instance re-localization in 3D. They
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Figure 2.3: The problem in a real-world scenario is to identify different instances
of an object in multiple views. An important observation is that in a video
dataset, the background does not change a lot with time as can be seen with
these two adjacent views of a scene.

use a fully-convolutional 3D correspondence network to find matching features

related to multiple objects in changing 3D scans in order to estimate their cor-

responding 6DoF poses in another scan of the same indoor environment differed

by time.

We consider a static indoor video dataset where large displacement in the

camera motion is unlikely and so the background of an instance cannot undergo a

sudden drastic change. Therefore, we propose to jointly learn the foreground and

the background to build a robust object re-identification system at the instance

level. We propose not only to learn the appearance of an object’s foreground

but also the background that can provide a lot of useful information regarding

the surroundings of an instance which is unique to that instance at any given

viewpoint. Consider a scene of a dining room with multiple chairs present around

a table as shown in Figure 2.3. To re-identify a particular instance across multiple

images, it is important to be able to distinguish it from other instances of the

same object class. Intuitively, if we can observe and encode the surroundings of

that instance within a stream of images, we can be confident to an extent that the

target object instance has been seen before and it is different from other instances

of the same class because the environment around it is unique at any given point
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of time even when other instances have similar appearance. Our work is inspired

from the deep ranking model proposed by Wang et al. [8] with an efficient triplet

sampling algorithm where we sample different object instances into triplets as

described in Section 3.2.1 of Chapter 4.
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