
1 
 

Paper published in: 

D. Gallipoli, A.W. Bruno, F. D’Onza, C. Mancuso (2015). 

A bounding surface hysteretic water retention model for deformable soils.  

Géotechnique, 65(10): 793–804 

http://www.icevirtuallibrary.com/doi/full/10.1680/jgeot.14.P.118 

 

 

A BOUNDING SURFACE HYSTERETIC WATER RETENTION MODEL 
FOR DEFORMABLE SOILS  

 

 

Domenico Gallipoli1, Agostino Walter Bruno2, Francesca D’Onza3, Claudio Mancuso4 

 

1
 Professor, Laboratoire SIAME, Université de Pau et des Pays de l'Adour, Anglet, France, email: 

domenico.gallipoli@univ-pau.fr 
2
   PhD student, Laboratoire SIAME, Université de Pau et des Pays de l'Adour, Anglet, France, 

email: agostinowalter.bruno@univ-pau.fr 
3
    Researcher, ENEA, Italian National Agency for new technologies, energy and sustainable 

economic development, Portici, Italy, email: francesca.donza@enea.it 
4
  Professor, Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli Federico II, 

Napoli, Italy, email: mancuso@unina.it  

  

 

 

 

 

DATE OF SUBMISSION: 2/5/2015 

NUMBER OF WORDS: 5846 

NUMBER OF TABLES: 2 

NUMBER OF FIGURES: 12 

CORRESPONDING AUTHOR:  Prof Domenico Gallipoli 

   Université de Pau et des Pays de l'Adour 

   Laboratoire SIAME - Bâtiment ISABTP  

   Allée du Parc Montaury 

   64600 Anglet 

   France  

   e-mail: domenico.gallipoli@univ-pau.fr  

  

http://www.icevirtuallibrary.com/doi/full/10.1680/jgeot.14.P.118
mailto:mancuso@unina.it
mailto:domenico.gallipoli@univ-pau.fr


2 
 

ABSTRACT: The paper presents a soil water retention model that takes into account the effects of 

void ratio and hydraulic hysteresis on the variation of degree of saturation. Based on a modified 

form of van Genuchten equation, the model defines two bounding surfaces, i.e. a main drying 

surface and a main wetting surface, which delimit the region of admissible soil states in the space of 

degree of saturation, suction and void ratio. Suction and void ratio are then combined into a single 

auxiliary variable, named scaled suction, and the main surfaces are recast as main curves in the 

plane of degree of saturation and scaled suction. The effects of both suction and void ratio on the 

drying/wetting behaviour of the soil are simply incorporated by relating degree of saturation to 

scaled suction. The soil is dried when the scaled suction is increased and is wetted when the scaled 

suction is decreased. The model assumes that, inside the region of admissible soil states, the 

derivative of degree of saturation with respect to the scaled suction depends on the distance of the 

soil state from the main curves. This assumption ensures a smooth transition of the drying and 

wetting paths towards their respective main curves. Interestingly, the derivative of degree of 

saturation with respect to scaled suction can be integrated in a closed form and all wetting and 

drying paths can therefore be described by two explicit equations (one for drying paths and one for 

wetting paths), where different wetting or drying paths are characterized by different values of the 

integration constant. The integration of the model in a closed form facilitates its implementation 

into numerical codes. The model requires seven parameters, whose values can be obtained from a 

single drying-wetting test. Predictions are validated against two different data sets published in the 

literature, which shows the capability of the model to capture the behaviour observed during 

laboratory tests on fine grained soils. 

   

KEYWORDS: soil water retention, soil water characteristic curve, unsaturated soils, partial saturation, 

suction, constitutive relations, bounding surface 
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INTRODUCTION 

 

Understanding water retention in soils is essential for many applications in agriculture and engineering, 

from irrigation to groundwater pumping, from the design of superficial foundations to the study 

underground gas/liquid flow. A number of authors have proposed a variety of soil water retention laws, 

ranging from simple curves relating the degree of saturation to suction (e.g. Brooks & Corey, 1964; Van 

Genuchten, 1980; Fredlund & Xing, 1994), to more complex models where water retention is influenced by 

soil deformation through the dependency of degree of saturation on void ratio (e.g. Gallipoli et al., 2003; 

Sun et al., 2008; Mašín, 2010; Salager et al., 2010). In a limited number of models, the effect of deformation 

on water retention has been introduced by taking into account the change of the entire pore size 

distribution rather than void ratio alone (e.g. Hu et al., 2013; Russell, 2014). Finally, other authors have 

improved the description of soil water retention by incorporating the influence of hydraulic hysteresis (e.g. 

Wheeler et al., 2003; Li, 2005; Khalili et al., 2008; Nuth & Laloui, 2008; Tarantino, 2009; Pedroso & Williams, 

2010; Gallipoli, 2012; Zhou et al., 2012; Tsiampousi et al., 2013). 

 

This paper presents a water retention model that takes into account the effects of both soil deformation 

and hydraulic hysteresis on the variation of degree of saturation with suction. Similar to Gallipoli (2012), 

the model is based on the definition of two bounding surfaces, i.e. a “main drying surface” and a “main 

wetting surface”, which delimit the region of admissible soil states in the space of degree of saturation, 

suction and void ratio. However, unlike Gallipoli (2012), the model combines void ratio and suction into a 

single variable, named “scaled suction”, so that the main surfaces can be recast as main curves delimiting 

the region of admissible soil states in the plane of degree of saturation and scaled suction. Inside this 

region, the derivative of degree of saturation with respect to scaled suction is assumed to depend on the 

distance of the current soil state from the main curves, which ensures a smooth transition of all drying and 

wetting paths towards their respective main curves. An important advantage is that the derivative of 

degree of saturation with respect to scaled suction can be integrated in a closed form, so that all wetting 
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and drying paths can be described by two explicit equations (one for drying paths and one for wetting 

paths), with distinct wetting or drying paths characterized by different values of the integration constant. 

The description of the hysteretic water retention behaviour of the soil by means of closed form equations 

facilitates the implementation of the model into numerical codes. The model requires seven parameters, all 

with clear physical meanings, whose values can be obtained from a single drying-wetting test. In the second 

part of the paper, the model is calibrated and validated on the basis of two different laboratory data sets 

published in the literature, showing a good capability to capture the behaviour of fine grained soils.  

 

FORMULATION OF MAIN SURFACES 

 

The water retention equation of van Genuchten (1980) has been widely used to describe the relationship 

between degree of saturation    and suction   in soils:  

 

    (  (   )
 )   (1 ) 

 

where  ,   and   are soil parameters. 

 

Gallipoli et al. (2003) presented a modified form of equation (1) that takes into account the dependency of 

degree of saturation not only on suction but also on deformation. This was achieved by expressing the 

parameter   of equation (1) as a power function of void ratio  : 

 

        (2 a) 

 

where   and   are soil parameters. To simplify the geometrical interpretation of model parameters in the 

following part of the paper, we here replace the parameter   with its reciprocal   
 

 
 so that equation 

(2a) is rewritten as: 
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 (2 b) 

 

While the retention equation of van Genuchten (1980) describes a curve in the      plane, the retention 

equation of Gallipoli et al. (2003) describes a surface in the        space as: 

 

    (  ( 
   

 
*
 

)

  

 (3 ) 

 

Accordingly, the number of parameters increases from three ( ,   and  ), in the model of van Genuchten 

(1980), to four ( ,  ,   and  ), in the model of Gallipoli et al. (2003). 

 

Gallipoli (2012) extended the model of Gallipoli et al. (2003) by incorporating hydraulic hysteresis via the 

definition of two main retention surfaces, i.e. a main drying surface and a main wetting surface, which 

delimit the region of attainable soil states in the         space and are both described by equations (3) 

but with different parameter values: 

 

    (  ( 
   

  
*

  

)

   

 (4 a) 

 

In equations (4a), the parameter subscript “i” is equal to either “d” or “w” depending on whether the 

equation refers to a main drying or a main wetting surface. A total of eight parameters are therefore 

needed to describe the main hysteretic behaviour: four parameters for the main drying surface (  ,   ,    

and  
 

) and four parameters for the main wetting surface (  ,   ,    and  
 

). 

 

As shown by Gallipoli (2012), the retention surface of equation (4a) can be recast in the            

     space as: 
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            (          )                  (  (
  
     

)
  
* (4 b) 

 

The cross sections of the main drying and wetting surfaces at constant  , are named “main isochoric 

desiccation curves” and “main isochoric soaking curves”, respectively. Similarly, the cross sections of the 

main drying and wetting surfaces at constant  , are named “main isosuction swelling curves” and “main 

isosuction compression curves”, respectively. 

 

Inspection of equation (4b) indicates that: 

 

1. in a            plane at constant  , the main isochoric desiccation and soaking curves tend, as     

grows large, towards their respective linear asymptotes with slopes          (see Fig. 1); 

 

2. in a            plane at constant  , the main isosuction swelling and compression curves tend, 

as     grows large, towards their respective linear asymptotes with slopes            (see Fig. 2); 

 

3. in the            plane at constant    , the intercepts of the linear asymptotes of the main 

isochoric desiccation and soaking curves with the         axis are equal to       (see Fig. 3); 

 

4. by recalling equation (4a), the last term of equation (4b), i.e.      (  (
  

     
)
  
), can be 

rewritten as      (  
 

  
  
 
    

+, where only the degree of saturation and the parameter    

appear.  

 

Based on the above observations, the main retention surfaces of equations (4a) and (4b) are rewritten 

below in terms of parameters   ,   ,     and    , instead of parameters   ,   ,    and  
 
. This is preferable 
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given the clearer geometrical/physical interpretation of the former set of parameters compared to the 

latter one. 

 

    

(

 
 
  ( 

  
   
   

  
,

   
  

)

 
 

   

 (5 a) 

 

           (          )               (  
 

  
 
 
    

) (5 b) 

 

As before, in equations (5a) and (5b), the subscript “i” is equal to “d” for the main drying surface and to “w” 

for the main wetting surface. 

 

PARAMETERS FOR THE MAIN RETENTION SURFACES 

 

In this section, we show that, based on experimental evidence, the number of parameters governing the 

main hysteretic behaviour can be reduced from eight to six and a number of restrictions can also be placed 

on the range of parameter values.  

 

Several authors (Salager et al., 2013; Casini et al., 2012; Romero et al., 2011; Tarantino, 2009) have 

observed that the main isochoric desiccation and soaking curves, when expressed in terms of water ratio 

       (or, equivalently, in terms of water content   
    

  
 ) instead of degree of saturation, become 

independent of void ratio at high suction levels (see Fig. 4). In other words, the curves relating    and   at a 

constant   tend to merge into a unique relationship when suction becomes large (see Fig. 4). This is 

because the soil attains a given void ratio through the deformation of its larger pores, which are 

drained/filled at low suctions, while the smaller pores, which are drained/filled at high suctions, tend to 
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remain undeformed. Therefore, two different suction (or pore) ranges can be identified for each main 

isochoric desiccation or soaking curve: 

 

a) A low suction range corresponding to the drainage/flooding of the larger “deformed” pores. 

Given that these pores have previously experienced some degree of deformation, this part of 

the curve depends on the current value of void ratio. 

 

b) A high suction range corresponding to the drainage/flooding of the smaller “virgin” pores. 

Given that these pores have not yet experienced any deformation, this part of the curve is 

independent of the current value of void ratio. 

 

The upper limit of the low suction range corresponds to the size of the smallest deformed pore, while the 

lower limit of the high suction range corresponds to the size of the largest virgin (i.e. undeformed) pore. By 

assuming a continuous pore size distribution, these two pore sizes coincide, which means that the upper 

limit of the low suction range and the lower limit of the high suction range also coincide at a “transition” 

value of suction. This value of suction, which marks the transition from drainage/flooding of the (larger) 

deformed pores to drainage/flooding of the (smaller) virgin pores, becomes bigger as the void ratio 

decreases due to the fact that increasingly smaller pores are being affected by deformation. Because of 

this, distinct isochoric desiccation or soaking curves at a different value of void ratio should have a different 

value of transition suction. 

 

As demonstrated by Gallipoli (2012), if parameter     is set equal to one in equation (5), the predicted 

relationship between    and    becomes independent of void ratio at high suction levels, which is in 

agreement with the above experimental evidence. Fig. 5 shows typical    versus   isochoric desiccation 

and soaking curves predicted by equation (5) with       for different values of void ratio. When suction 

grows large, these isochoric desiccation and soaking curves tend towards the drying and wetting 
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asymptotes (here referred to as “virgin drying line” and “virgin wetting line” because they describe the 

drying/flooding of the virgin, undeformed pores). Consistent with experimental evidence, the predicted 

relationship between    and   in Fig. 5 becomes independent of void ratio at high suction levels and also 

shows increasing values of transition suction as the void ratio decreases. 

 

After setting      equal to one for both drying and wetting surfaces, the number of independent parameters 

governing the main retention behaviour of the soil reduces from eight to six (namely three parameters for 

the main drying surface   ,   ,     and three parameters for the main wetting surface   ,   ,    ) and 

equations (5a) and (5b) are therefore rewritten as:  

 

    

(

 
 
  ( 

  
 
   

  
)

   
  

)

 
 

   

 (6 a) 

 

           (          )            (  
 

  
 
 
    

) (6 b) 

 

Note that, when     or     (i.e. when     ), the last term of equation (6b) vanishes and the main 

retention surface tends towards a planar asymptote,      ⃗⃗  ⃗: 

 

      ⃗⃗  ⃗      (          )       (7 ) 

 

The deviation,        of the main retention surface from this planar asymptote is therefore: 

 

                   ⃗⃗  ⃗        (  
 

  
 
 
    

) (8 ) 
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Inspection of equations (7) and (8) indicates that, while the two parameters    and     control the intercept 

and slope of the log-linear asymptotes of the isochoric desiccation and soaking curves, the parameter    

describes the progressive deviation of these two curves from their respective asymptotes as degree of 

saturation increases (see Fig.6). 

 

The values of the above six parameters must also satisfy the following restrictions: 

 

                       (9 ) 

 

Positiveness of     is necessary to ensure that the degree of saturation decreases 

monotonically with increasing suction (see equation (5) in Gallipoli, 2012); 

 

                     (10 ) 

Positiveness of    is necessary to ensure that the term   
  

 
   

  
  in equation (6a) is also positive 

(recall that   and   are both positive). This term has to be positive because it is the argument 

of a fractional power with exponent  
   

  
; 

 

                     (11 ) 

 

Positiveness of    is necessary to ensure that the calculated value of degree of saturation    is 

always comprised between zero and one. This is because the term    ( 
  

 
   

  
+

   
  

 in equation 

(6a) ranges between one and infinity and is the argument of a power with exponent –  . This 
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exponent must always be negative (   must, hence, be always positive) in order for the degree 

of saturation to be bound between zero and one. 

 

  
  

  
 

   

   
   (12 a) 

 

This restriction is introduced because, for any pair of    and  , the suction on the main drying 

surface must always be greater than the suction on the main wetting surface. In particular, this 

must be true when      and when      , which leads to the restriction on parameter 

values of equation (12a) (see Appendix A for a proof). If any of the two relationships in 

equation (12a) is verified with the equal sign, the following additional restriction must be 

verified over the relevant range of   (see Appendix A for a proof): 

 

  
  

  
 (

   

   
)

  
    

  
       
        (12 b) 

 

BOUNDING SURFACE RETENTION MODEL 

 

This section presents a bounding surface retention model capable of predicting the variation of degree of 

saturation along generic wetting and drying paths over the region of admissible soil states delimited by the 

two main retention surfaces.  

We first introduce the auxiliary variable   ̅     
 

   , which we name scaled suction (see also Tarantino, 

2009). By using the scaled suction  ̅, we recast the three-dimensional main drying and main wetting 

surfaces of equation (6a) into two-dimensional main drying and wetting “scaled curves” in the     ̅ plane: 
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    (  (
 ̅

  
*

   
  
)

   

 (13 ) 

 

Drying paths are then simply defined as paths where the value of the scaled suction  ̅ increases, while 

wetting paths are defined as paths where the value of the scaled suction  ̅ decreases. Another important 

consequence of formulating the model in terms of scaled suction is that the two parameters     and     

must now be identical in order to ensure the continuity of the stress path at the reversal point of a drying-

wetting cycle in the      ̅ plane. In fact, if the two parameters     and     are not identical, the value of 

scaled suction  ̅ corresponding to a given pair of   and   is no longer unique but depends on whether the 

soil is assumed to be on a drying path, in which case   ̅     
 

   , or on a wetting path, in which case 

  ̅     
 

   . In order to avoid this problem, we pose           . A consequence of this is that the 

parameter restrictions of equations (9) to (12) can now be rewritten in a simpler form as: 

 

       (14 ) 

 

          (15 ) 

 

          (16 ) 

 

The derivatives of the main scaled curves are obtained by differentiating equation (13): 

 

 
   
  ̅
  

  
 ̅
  
  

 
  (  

 
 
    + (17 ) 

 

while the value of scaled suction  ̅  corresponding to a given value of    on the main scaled curves is 

obtained by inverting equation (13) as: 
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  ̅    (  
 
 
    +

  
  

 (18 ) 

 

As before, the subscript “i” in equations (13)-(18) is equal to either “d” or “w” depending on whether a 

main drying or a main wetting scaled curve is being considered. 

 

Drying surfaces 

 

Following Zhou et al. (2012), we assume that inside the region of admissible soil states in the     ̅ plane, 

the derivative (
   

  ̅
)
 

 of a generic drying scaled curve is proportional to the derivative (
   

   ̅
)
  

 of the main 

drying scaled curve at the same value of    as:  

 

 (
   
     ̅

*
 

 (
 ̅

 ̅ 
*
  
 (

   
     ̅ 

*
  

        (
   
  ̅
*
 
 
 ̅    

 ̅ 
    

 (
   
  ̅ 
*
  

 (19 ) 

 

Inspection of equation (19) indicates that the proportionality factor between the two derivatives is a power 

function (with exponent   ) of the ratio between the current value of scaled suction,  ̅, and the “image” 

value of scaled suction,  ̅ . The image value of scaled suction is the value of scaled suction on the main 

drying scaled curve corresponding to the current value of    and is given by equation (18). The ratio 
 ̅

 ̅ 
 is 

therefore always smaller than one and tends towards one as suction increases and the drying path 

approaches the main drying scaled curve. So, according to equation (19), the slope of a generic drying 

scaled curve increases progressively towards the slope of the main drying scaled curve as the scaled suction 

increases. This, in turn, means that a generic drying scaled curve tends asymptotically towards the main 

drying scaled curve as scaled suction grows large. 
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In equation (19) we substitute equation (17) for (
   

   ̅
)
  

 and equation (18) for  ̅ , which yields the 

following expression for the derivative of a generic drying scaled curve: 

 

 (
   

  ̅
*
 

  
  

  
 
  ̅       

  
 
  (  

 
 
    +

  
     
  

 (20 ) 

 

Very interestingly, equation (20) can be integrated in a closed form to give: 

 

 (  )  (  (
 ̅     

  
  

+

  
     

,

   

 (21 ) 

 

where    is a constant of integration greater than or equal to zero (see Appendix B), which must be 

calculated by imposing a suitable boundary condition, i.e. by imposing that the drying scaled curve of 

equation (21) passes through a known soil state in the     ̅ plane. For example, the value of    can be 

calculated to match the initial soil state by substituting the initial values of degree of saturation and scaled 

suction in equation (21) (or, equivalently, in equation (B1) of Appendix B), where the initial value of scaled 

suction is, of course, obtained from the initial values of suction and void ratio, i.e.   ̅     
 

  .  

 

By substituting the definition of scaled suction   ̅     
 

   inside equation (21), we obtain the following 

expression for the generic drying surface in the         space: 

 

 (  )  

(

 
 
 
 

  

(

 
 
(    

 

  )

  

   

  
  

)

 
 

  
     

)

 
 
 
 

   

 (22 ) 
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Equation (22) describes all drying paths inside the region delimited by the two main surfaces, including the 

drying paths that take place on the main drying surface itself (indeed, equation (22) reduces to the main 

drying surface of equation (6a) when    is equal to zero). A single equation is therefore needed to describe 

all drying paths, each path being identified by a different value of the constant   .  

 

Wetting surfaces 

 

As for the drying case, we assume that the derivative (
   

  ̅
)
 

 of a generic wetting scaled curve inside the 

region of admissible soil states is proportional to the derivative (
   

   ̅
)
  

 of the main wetting scaled curve 

at the same value of    :  

 

 (
   
     ̅

*
 

 (
 ̅ 
 ̅
*
  
 (

   
     ̅ 

*
  

        (
   
  ̅
*
 
 
 ̅ 
      

 ̅    
 (
   
  ̅ 

*
  

 (23 ) 

 

In this case, the proportionality factor linking the two derivatives in equation (23) is a power function of the 

ratio between the image value of scaled suction  ̅  and the current value of scaled suction  ̅ (instead of 

being the ratio between the current value of scaled suction and the image value of scaled suction as in the 

drying case). The image value  ̅  is calculated on the main wetting scaled curve in correspondence of the 

current value of    and is given by equation (18). According to equation (23), when the scaled suction 

decreases and the soil state approaches the main wetting scaled curve, the slope of the wetting path 

increases towards the slope of the main wetting scaled curve. This means that, as in the drying case, the 

soil path tends asymptotically towards the main wetting scaled curve when scaled suction is reduced. 

 

By substituting equations (17) and (18) into equation (23), we obtain the following expression for the 

derivative of the generic wetting scaled curve: 
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(24 ) 

 

Remarkably, equation (24) can also be integrated in a closed form to give: 

 

 (  )  (  (
 ̅  

  
  (      ̅

  )
+

  
    

,

   

 (25 ) 

 

where     is a constant of integration greater than or equal to zero (see Appendix B). The value of    is 

obtained by imposing a suitable boundary condition, e.g. it can be calculated from the initial soil state by 

substituting the initial values of degree of saturation and scaled suction in equation (25) (or, equivalently, in 

equation (B3) of Appendix B). 

 

By substituting the definition of scaled suction   ̅     
 

   inside equation (25), we obtain the following 

expression for the generic wetting surface in the         space: 

 

 (  )  

(

 
 
 
 

  

(

  
 (    

 
  )

  

  
  (    (    

 
  )

  

+
)

  
 

  
      

)

 
 
 
 

   

 (26 ) 

 

 

As for the drying case, equation (26) describes all wetting paths in the region of admissible states and 

reduces to the main surface of equation (6a) when    is equal to zero. Equation (26) is the only equation 
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needed to describe the wetting behaviour of the soil, with each wetting path being characterized by a 

different value of the constant   .  

 

MODEL CALIBRATION AND VALIDATION 

 

Two alternative strategies can be used to calibrate the proposed retention model.  

 

The first strategy may be employed if the experimental data describe with sufficient accuracy the 

asymptotes of the main retention surfaces of the soil, i.e. if at least part of the experimental data lies 

sufficiently close to the asymptotes of the main drying and wetting surfaces. In this case, according to 

equation (7), the parameters    and    are determined as the intercept and slope, respectively, of the 

asymptotes of the experimental drying and wetting curves presented in terms of       versus      (recall 

that                        ). Next, the parameter    is obtained by fitting equation (8) to the 

difference         between the experimental drying and wetting curves and their respective asymptotes, 

plotted against experimental values of    (asymptotes are calculated by equation (7) using the 

experimental values of   and  ). Finally, the parameter    is defined by fitting equations (21) and (25) to 

drying and wetting paths inside the region between two main curves in the in the      ̅ plane. 

 

The second calibration strategy consists in simply performing a least square regression of equations (21) 

and (25) to all available data by using a suitable software to simultaneously optimize parameters   ,   ,    

and   . For each test used during calibration, the integration constant    of equation (21) or (25) may be 

treated as an additional fitting variable. If the test consists of one or more wetting-drying cycles, only the 

integration constant    of the first drying or wetting path is treated as a fitting variable. Instead, the 

integration constants of the subsequent drying and wetting paths are calculated by imposing the continuity 

of the soil path at the reversal points of the cycle, i.e. by using equation (B1) and (B3) of Appendix B, 

respectively. 
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The first calibration strategy provides a clearer physical interpretation of model parameters, yet the second 

calibration strategy might lead to better predictions because all parameter values are simultaneously 

optimized to reproduce soil behaviour. Note that, for both calibration strategies, all parameter values are 

subjected to the restrictions of equations (14), (15) and (16). 

 

In the following part of this section, model predictions are validated against two different experimental 

data sets published in the literature. The first data set is taken from Romero and Vaunat (2000), who 

performed suction controlled tests on statically compacted samples of a moderately swelling clay (20%-

30% kaolinite, 20% - 30% illite and 10% - 20% smectite) with a liquid limit of 56% and a plastic limit of 29%. 

The second data set is taken from Sun et al. (2007), who performed suction controlled tests on statically 

compacted Pearl Clay (50% silt and 50% clay) with a liquid limit of 49% and a plastic limit of 27%. Both the 

above data sets refer to fine grained materials and further validation is therefore needed to demonstrate 

the applicability of the proposed model to coarser soils. 

 

Model predictions are calculated by using standard spreadsheet software (e.g. Microsoft Excel). The soil is 

assumed to move along a drying path if the value of scaled suction increases, and along a wetting path if 

the value of scaled suction decreases. The value of scaled suction is calculated from the experimental 

values of void ratio and suction and is then used to predict the variation of degree of saturation according 

to the model. The use of the experimental values of void ratio is acceptable in the present context to 

validate the capabilities of the proposed model. However, in the case of practical applications, 

experimental values of void ratio are usually unknown and a mechanical law must therefore be introduced 

for predicting the changes of void ratio during generic stress/suction paths. 

 

DATA BY ROMERO AND VAUNAT (2000) 
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All parameter values were simultaneously determined by fitting at the same time two isochoric drying-

wetting cycles at void ratios of 0.63 and 0.92, respectively (i.e. the second of the above mentioned 

calibration strategies was used). Fig. 7 shows the two drying-wetting cycles together with the best fit 

curves. The resulting parameter values are summarised in Table 1, which also gives the values of the 

integration constant    of each drying and wetting path. In each of the two cycles, the integration constant 

   of the initial drying path is treated as an additional independent fitting variable, similar to other model 

parameters. Instead, the integration constant    of the subsequent wetting path is calculated from 

equation (B3) of Appendix B by imposing the continuity of the soil path at the reversal point of the cycle, 

and therefore depends on model parameters. Inspection of Table 1 indicates that all integration constants 

   are nearly zero, which confirms that the drying and wetting paths of both cycles lie very close to the 

main surfaces, in agreement with the findings of Romero and Vaunat (2000). 

 

Model predictions were subsequently validated against two additional tests not used during calibration. 

The comparisons between predictions and experiments are presented in the          and       planes.  

 

In the first test (Fig. 8), a low-porosity specimen was subjected to a constant isotropic net stress of 0.085 

MPa and wetted from an initial suction of 1.9 MPa to a suction of 0.01 MPa (path A-B). This was followed 

by a drying-wetting cycle between suctions of 0.01 MPa and 0.45 MPa (path B-C-D) and by another drying 

path to a suction of 0.20 MPa (path D-E). Finally, the specimen was subjected to an isotropic loading-

unloading cycle (path E-F-G) between mean net stresses of 0.085 MPa and 0.8 MPa at a constant suction of 

0.20 MPa.  
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In the second test (Fig. 9), a high-porosity specimen was subjected to oedometric loading with 

measurement of radial stresses. The specimen was first wetted, under a constant vertical net stress of 0.60 

MPa, from an initial suction of 1.9 MPa to a suction of 0.01 MPa (path A-B). This was followed by a drying-

wetting cycle between suctions of 0.45 MPa and 0.01 MPa (path B-C-D) and a drying path to a suction of 

0.20 MPa (path D-E). The last part of the test consisted in an oedometric loading-unloading-reloading cycle 

at a constant suction of 0.20 MPa (E-F-G-H). 

 

In the simulations, the value of the constant of integration    of the first wetting path was obtained from 

equation (B3) of Appendix B by imposing that the start point of the predicted curve coincides with the start 

point of the experimental curve. The constants of integrations    of the subsequent drying or wetting paths 

were instead calculated from equations (B1) or (B3) by imposing the continuity of the soil path at the 

reversal points of the cycle. Inspection of Figs. 8 and 9 indicates that the model is capable of adequately 

representing experimental behaviour, including the scanning behaviour between main surfaces. Yet, one 

aspect of the model that requires further refinement relates to the effect of deformation on degree of 

saturation. This is evident in the simulations of the loading-unloading cycles of Figs. 8 and 9, where changes 

of degree of saturation are underestimated by the model, especially during the first loading. Indeed, as it 

will be shown in the next section, the model accurately captures the variation of degree of saturation 

during main compression at constant suction but reproduces less well the effect of deformation on degree 

of saturation along soil paths between the main surfaces. 

 

DATA BY SUN ET AL. (2007) 

 

Also in this case parameter values were determined according to the second calibration strategy by fitting a 

single test in which a specimen with an initial void ratio of 1.78 was subjected to two consecutive drying-

wetting cycles under a constant isotropic net stress of 0.020 MPa. Fig. 10 presents the experimental data 
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together with the best fit curve computed by the model in the      plane, while Table 2 summarizes the 

corresponding parameter values and integration constants. Note that, unlike the previous calibration based 

on data by Romero and Vaunat (2000), in this case the void ratio is not constant during the test and 

therefore the curves shown in Fig. 10 are not isochoric drying and wetting curves.  

 

As for the data by Romero and Vaunat (2000), the integration constant    of the initial drying path is 

treated as an independent fitting variable while the integration constants    of the subsequent wetting and 

drying paths are calculated from equations (B1) and (B3) by imposing the continuity of the soil path at 

reversal points. In Table 2, the constants of integration    of the two drying paths are relatively large 

suggesting that these paths start from a point that is relatively distant from the main drying surface and 

converge towards the main drying surface only when suction grows large. Conversely, the constants of 

integration    of the two wetting paths are relatively small, suggesting that both these paths lie close to 

the main surface at the start of wetting.  

 

Model predictions were subsequently validated against another test not used during calibration (Fig. 11). In 

this test, a specimen was subjected to a constant net isotropic stress of 0.020 MPa and wetted from a 

suction of 0.196 MPa to a suction of 0.002 MPa (path A-B) followed by a drying path from 0.002 MPa to 

0.490 MPa (path B-C) and finally wetted from 0.490 MPa to 0.002 kPa (path C-D).  

 

As before, the constant of integration    of the first wetting path was obtained by imposing that the 

predicted and experimental curves coincide at the start of the test, while the constants of integrations    of 

the subsequent drying or wetting paths were calculated by imposing the continuity of the soil path at 

reversal points.  
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Inspection of Fig. 11 indicates that the model captures reasonably well the experimental behaviour, though 

the quality of the predictions is worse than in the case of Romero and Vaunat (2000). In both the first and 

second wetting paths, the model overestimates degree of saturation at low suctions. In particular, as 

suction tends to zero, the experimental value of degree of saturation stays at a level slightly smaller than 

one while the model predicts full saturation. This might be due to air being trapped into the sample during 

the wetting branch of the test, a phenomenon that might occur also in full-scale problems. Note also that 

the two tests used for calibration and validation, respectively, cover different ranges of void ratios (1.11 to 

1.78 for the calibration test and 1.03 to 1.09 for the validation test). This is different from the case of 

Romero and Vaunat (2000), where the range of void ratio was approximately the same for both calibration 

and validation tests (the two calibration tests were performed at constant void ratios of 0.63 and 0.92, 

respectively, while, in the validation tests, the void ratio varied between 0.58 to 0.88).  

 

Finally, Sun et al. (2007) performed four triaxial tests at a constant suction of 0.147 MPa, namely two 

isotropic compression tests, where specimens with initial void ratios of 1.40 and 1.24 were loaded up to net 

stresses of 0.40 MPa and 0.60 MPa, respectively, and two triaxial tests, where specimens with initial void 

ratios of 1.34 and 1.65 were isotropically compressed up to 0.20 MPa and then sheared at constant mean 

net stress. Fig. 12 presents the results from these four tests and shows that, as the void ratio reduces, the 

degree of saturation increases along the same straight line in the            plane. This linear response 

indicates that all four specimens lie, at the start of the test, close to the log-linear asymptotic plane of the 

main wetting surface. The degree of saturation subsequently increases along the same main isosuction 

compression curve at a constant suction of 0.147 MPa while remaining near the log-linear asymptote. Fig. 

12 also shows that the data points can be reasonably interpolated by a line with slope  
       

      
   , which 

supports the earlier assumption of       in equation (5).  
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It is interesting to note that, in the calibration test of Fig. 10, the slopes of the two wetting paths are less 

well predicted than those of the two drying paths, which might also affect calculation of water flow in 

coupled analyses (e.g. Wong et al., 1998). As mentioned earlier, one possible explanation for this behaviour 

is that the effect of deformation on degree of saturation is less accurately described in the region between 

the main surfaces (Fig. 10) than near the main surfaces (Fig. 12). 

 

CONCLUSIONS 

 

The paper presents a soil water retention model which takes into account the effects of both hydraulic 

hysteresis and pore deformation on the variation of degree of saturation. The model is based on the 

definition of two bounding surfaces, i.e. a main drying surface and a main wetting surface, which delimit 

the region of attainable soil states in the space of degree of saturation, suction and void ratio. The two 

main surfaces are recast as curves in the plane of degree of saturation and scaled suction, where the scaled 

suction is an auxiliary variable defined in terms of void ratio and suction. Drying paths correspond to an 

increase of scaled suction while wetting paths correspond to a decrease of scaled suction. The introduction 

of scaled suction therefore simplifies the definition of drying or wetting paths by taking into account the 

effects of both suction and void ratio.   

 

Only two equations are required to describe the soil retention behaviour inside the region delimited by the 

two scaled main curves, one equation for drying paths and one equation for wetting paths. These two 

equations are obtained by integrating, in a closed form, the corresponding derivatives of degree of 

saturation with respect to scaled suction. These derivatives are defined to ensure a smooth, asymptotic 

transition of the drying and wetting paths towards the respective main curves. The integration constants 

are different for each wetting or drying path and are defined by imposing that the relevant curve passes 

through a point with known values of degree of saturation and scaled suction. The main advantage of the 

proposed model is that all wetting and drying paths can be described by closed form equations which 
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uniquely relate the degree of saturation to the scaled suction and, hence, uniquely relate degree of 

saturation to suction and void ratio. This feature significantly facilitates the implementation of the model 

into numerical codes. 

 

The model is formulated in terms of seven independent parameters, whose values can be obtained from a 

single drying-wetting cycle by using two alternative calibration strategies. All model parameters have a 

clear physical interpretation and their values are subjected to a number of restrictions to ensure physical 

consistency. Parameter values have been calibrated on the basis of two different laboratory data sets 

published in the literature and the resulting predictions have been validated against additional data from 

the same sets but not used during calibration. The predicted variation of degree of saturation has been 

calculated by using experimental values of void ratio and suction as input variables to the model. However, 

in most real boundary value problems, the experimental values of void ratio are unknown and the 

proposed model must therefore be coupled with a suitable stress-strain law to predict the variation of void 

ratio during changes of stress and suction.  

 

 

APPENDIX A 

For any given pair of     and  , the ratio between the two values of   calculated by equation (6a) on the 

main drying and wetting surfaces, respectively, must be greater or equal to one. This restriction leads, after 

some algebraic manipulations, to the following inequality between model parameters, which must be 

satisfied for any value of    and  : 

 

 
  
  

 

(    

 

  )

  
   

(    

 

  )

  
   

  (   )
  
       
        (A1 ) 
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In particular, equation (A1) must be verified at the two extremes of the range of   , i.e. for      and 

    .  

 

Case of      

When     , equation (A1) is verified for any value of   provided that the exponent of the power term 

(   )
  
       
        has negative sign, i.e. provided that         or, in other words, provided that  

   

   
  . If  

   

   
  , the exponent of the power term (   )

  
       
        is equal to zero and equation (A1) is satisfied only 

if the additional condition  
  

  
   is simultaneously verified. Finally, if  

   

   
  , the exponent of the power 

term (   )
  
       
        has positive sign and equation (A1) is never satisfied.  

 

 

Case of      

Let us first pose    (   ) which yields the following alternative form of equation (A1) in terms of the 

auxiliary variable  : 

 

 
  
  

 

(  (   )
 

  )

  
   

(  (   )
 

  )

  
   

((   ) )
  
       
        (A2 ) 

 



26 
 

Equation (A2) is now rewritten by replacing the two expressions inside the brackets at the numerator and 

denominator of the right hand side with a first order Taylor series approximation at    : 

 

 
  
  

 

(
 
  
   ( ))

  
   

(
 
  

   ( ))

  
   

((   ) )
  
       
        (A3 ) 

 

By neglecting the terms of second and higher order in the Taylor series approximation, equation (A3) is 

rewritten as: 

 

 
  
  

 

(
 
  
)

  
   

(
 
  
)

  
   

   
  
   
  
  
   ((   ) )

  
       
        (A4 ) 

 

When     , then      and equation (A4) is satisfied for any value of   provided that the exponent of 

the power term    
  
   

 
  
    is negative, i.e. provided that 

  

   
 
  

   
 or, alternatively, 

  

  
 
   

   
. If 

  

  
 
   

   
, 

the exponent of the power term    
  
   

 
  
    is equal to zero and equation (A4) is satisfied only if the 

additional inequality 
  

  
 (

  

  
)

  
    

  
       
        is simultaneously verified over the experimental range of  . 

Finally, when 
  

  
 
   

   
, the exponent of the power term    

  
   

 
  
    is positive and equation (A4) is never 

satisfied. 

 

Consequences for model parameter values 
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By taking into account both the above cases of      and     , the following constraint must be 

imposed on model parameters: 

 

 
  
  

 
   
   

   (A5 ) 

 

If the right hand side relationship of equation (A5) is verified with the equal sign (i.e.  
   

   
  ), the 

following additional restriction must also be verified: 

 
  
  

   (A6 ) 

 

Similarly, if the left hand side relationship of equation (A5) is verified with the equal sign (i.e. 
  

  
 
   

   
), the 

following additional restriction must be verified over the experimental range of  : 

 
  
  

 (
   

   
*

  
   
 
  
       
        (A7 ) 

 

Let us now note that, if  
   

   
  , equation (A7) reduces to equation (A6). So we can conclude that, if any of 

the two relationships in equation (A5) is verified with the equal sign, equation (A7) must be fulfilled as an 

additional condition. 

 

APPENDIX B 

The constant of integration    is calculated from equation (21) by imposing that the drying scaled curve 

passes through a known point of coordinates *    ̅+: 
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   (  

  
 
    )

      
  

  ̅    (B1 ) 

 

By taking into account equation (18), equation (B1) can be rewritten as: 

 

     ̅ 
     ̅    (B2 ) 

 

where  ̅  is the image value of scaled suction, i.e. the value of scaled suction on the main drying scaled 

curve corresponding to the current value of   . Given that the image value of scaled suction on the main 

drying scaled curve is always greater or equal to the current value of scaled suction, the constant    in 

equation (B2) is always greater or equal than zero. In particular,    is equal to zero when the current and 

image values of scaled suction are identical, i.e. when the soil state lies on the main drying scaled curve. 

 

Similarly, the constant of integration    is calculated from equation (25) by imposing that the curve passes 

through a known point of coordinates *    ̅+: 

 

    
 

  
   
(  

  
 
    )

  
       
   

 
 

 ̅   
 (B3 ) 

 

Again, by taking into account equation (18), equation (B3) can be rewritten as:: 

 

    
 

 ̅ 
   
 

 

 ̅   
 (B4 ) 

 

where  ̅  is the image value of scaled suction this time on the main wetting scaled curve. Given that the 

image value of scaled suction on the main wetting scaled curve is always smaller or equal to the current 



29 
 

value of scaled suction, the constant    in equation (B4) is always greater or equal than zero. In particular, 

   is equal to zero when the soil state lies on the main wetting scaled curve. 
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LIST OF TABLES AND RELATIVE CAPTIONS 

 

DRYING PATHS WETTING PATHS 

Parameter values 

md 0.238 mw 0.625 

λsd = λs 0.413 λsw = λs 0.413 

ωd 0.751 MPa ωw 0.383 MPa 

βd 0.832 βw 1.38 

Integration constant values 

Cd  for e=0.92 

(independent 

fitting parameter) 

0.328 

Cw for e=0.92 

(dependent  

parameter) 

0.0012 

Cd  for e=0.63 

(independent 

fitting parameter) 

0.0077 

Cw for e=0.63 

(dependent  

parameter) 

0.0039 

Table 1. Parameter values for Romero and Vaunat (2000) 
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DRYING PATHS WETTING PATHS 

Parameter values 

md 0.382 mw 0.913 

λsd = λs 0.894 λsw = λs 0.894 

ωd 0.159 MPa ωw 0.092 MPa 

βd 2.97 βw 2.01 

Integration constant values 

Cd   

(independent 

fitting parameter) 

6.23 x 10
7
 

Cw  

(dependent  

parameter) 

3.64 x 10
-6

 

Cd   

(dependent 

parameter) 

4.28 x 10
5
 

Cw  

(dependent  

parameter) 

1.45 x 10
-5

 

Table 2. Parameter values for Sun et al. (2007) 
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LIST OF FIGURES AND RELATIVE CAPTIONS 

 

 

Figure 1. Slopes and intercepts of the asymptotes of the main isochoric desiccation and soaking curves in 

the            plane. 
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 Figure 2. Slopes and intercepts of the asymptotes of the main isosuction swelling and compression curves 

in the            plane. 
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Figure 3. Slopes and intercepts of the asymptotes of the main isochoric desiccation and soaking curves in 

the            plane at    . 
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Figure 4. (a) Drying paths on a clayey silt at different void ratios (after Salager et al., 2013); (b) wetting 

paths on Boom Clay, Febex bentonite and Barcelona clayey silt at different void ratios (after Romero et al., 

2011).  
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Figure 5. Typical curves of water ratio     versus suction   predicted by the model during drying and 

wetting at different constant values of void ratio (after Gallipoli, 2012). 
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Figure 6. Deviation of the isochoric desiccation and soaking curves from their respective asymptotes. 
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Figure 7. Model calibration through best-fitting of drying-wetting cycles at constant void ratio of (a) 0.63 

and (b) 0.92 (experimental data from Romero and Vaunat, 2000). 
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Figure 8. Comparison between computed and experimental behaviour during isotropic  test on low-porosity 

specimen in (a)         plane and (b)      plane (experimental data from Romero and Vaunat,2000). 
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Figure 9. Comparison between computed and experimental behaviour during oedometric  test on high-

porosity specimen in (a)         plane and (b)      plane (experimental data from Romero and 

Vaunat,2000). 
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Figure 10. Model calibration through best-fitting of drying-wetting cycles at constant isotropic net stress of 

0.020 MPa (experimental data from Sun et al., 2007). 
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Figure 11. Comparison between computed and experimental behaviour during wetting-drying cycles at 

constant isotropic net stress of 0.020 MPa in (a)         plane and (b)      plane (experimental data 

from Sun et al., 2007). 
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Figure 12. Isotropic compression and triaxial shearing at constant suction of 0.147 MPa (experimental data 

from Sun et al., 2007).  
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NOTATION 
 

 

     parameter governing drying between main surfaces  
     parameter governing wetting between main surfaces  
     constant of integration during drying paths 
     constant of integration during wetting paths 
    void ratio 
     water ratio 
     specific gravity of solids 
          asymptotic slopes of main drying surface  
         asymptotic slopes of main wetting surface  
        parameters of water retention curve in van Genuchten (1980) model 
          parameters of main drying surface  
          parameters of main wetting surface  
         parameters of water retention surface in Gallipoli et al. (2003) model 
             parameters of main drying surface in Gallipoli (2012) model 

            parameters of main wetting surface in Gallipoli (2012) model 

     degree of saturation 
    suction 
 ̅   scaled suction 
 ̅    image value of scaled suction during drying paths 
 ̅    image value of scaled suction during wetting paths 
    auxiliary variable 
 
 
 
 

 

 


