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Abstract

For fulfilling the requirements of public safety in modern cities, more and more large-scale

surveillance camera systems are deployed, resulting in an enormous amount of visual data.

Automatically processing and interpreting these data promote the development and applica-

tion of visual data analytic technologies. As one of the important research topics in surveil-

lance systems, person re-identification (re-id) aims at retrieving the target person across

non-overlapping camera-views that are implemented in a number of distributed space-time

locations. It is a fundamental problem for many practical surveillance applications, e.g.,

person search, cross-camera tracking, multi-camera human behavior analysis and predic-

tion, and it received considerable attentions nowadays from both academic and industrial

domains.

Learning discriminative feature representation is an essential task in person re-id. Although

many methodologies have been proposed, discriminative re-id feature extraction is still a

challenging problem due to: (1) Intra- and inter-personal variations. The intrinsic properties

of the camera deployment in surveillance system lead to various changes in person poses,

view-points, illumination conditions etc. This may result in the large intra-personal vari-

ations and/or small inter-personal variations, thus incurring problems in matching person

images. (2) Domain variations. The domain variations between different datasets give rise

to the problem of generalization capability of re-id model. Directly applying a re-id model

trained on one dataset to another one usually causes a large performance degradation. (3)

Difficulties in data creation and annotation. Existing person re-id methods, especially deep

re-id methods, rely mostly on a large set of inter-camera identity labelled training data, re-

quiring a tedious data collection and annotation process. This leads to poor scalability in

practical person re-id applications.

Corresponding to the challenges in learning discriminative re-id features, this thesis con-

tributes to the re-id domain by proposing three related methodologies and one new re-id

setting:

(1) Gaussian mixture importance estimation. Handcrafted features are usually not dis-

criminative enough for person re-id because of noisy information, such as background clut-

ters. To precisely evaluate the similarities between person images, the main task of distance

metric learning is to filter out the noisy information. Keep It Simple and Straightforward

MEtric (KISSME) is an effective method in person re-id. However, it is sensitive to the

feature dimensionality and cannot capture the multi-modes in dataset. To this end, a Gaus-

sian Mixture Importance Estimation re-id approach is proposed, which exploits the Gaussian



Mixture Models for estimating the observed commonalities of similar and dissimilar person

pairs in the feature space.

(2) Unsupervised domain-adaptive person re-id based on pedestrian attributes. In per-

son re-id, person identities are usually not overlapped among different domains (or datasets)

and this raises the difficulties in generalizing re-id models. Different from person identity,

pedestrian attributes, e.g., hair length, clothes type and color, are consistent across differ-

ent domains (or datasets). However, most of re-id datasets lack attribute annotations. On

the other hand, in the field of pedestrian attribute recognition, there is a number of datasets

labeled with attributes. Exploiting such data for re-id purpose can alleviate the shortage

of attribute annotations in re-id domain and improve the generalization capability of re-id

model. To this end, an unsupervised domain-adaptive re-id feature learning framework is

proposed to make full use of attribute annotations. Specifically, an existing unsupervised

domain adaptation method has been extended to transfer attribute-based features from at-

tribute recognition domain to the re-id domain. With the proposed re-id feature learning

framework, the domain invariant feature representations can be effectively extracted.

(3) Intra-camera supervised person re-id. Annotating the large-scale re-id datasets re-

quires a tedious data collection and annotation process and therefore leads to poor scal-

ability in practical person re-id applications. To overcome this fundamental limitation, a

new person re-id setting is considered without inter-camera identity association but only

with identity labels independently annotated within each camera-view. This eliminates the

most time-consuming and tedious inter-camera identity association annotating process and

thus significantly reduces the amount of human efforts required during annotation. It hence

gives rise to a more scalable and more feasible learning scenario, which is named as Intra-

Camera Supervised (ICS) person re-id. Under this ICS setting, a new re-id method, i.e.,

Multi-tAsk mulTi-labEl (MATE) learning method, is formulated. Given no inter-camera

association, MATE is specially designed for self-discovering the inter-camera identity cor-

respondence. This is achieved by inter-camera multi-label learning under a joint multi-task

inference framework. In addition, MATE can also efficiently learn the discriminative re-id

feature representations using the available identity labels within each camera-view.

Keywords: Visual Surveillance, Metric Learning, Deep Learning, Unsupervised Domain

Adaptation, Intra-Camera Supervised Person Re-Identification
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Chapter 1

Introduction

1.1 Visual Surveillance

More and more large-scale surveillance camera systems are being deployed for increasing

the public safety in modern cities. Based on the statistics in [1], the number of closed-circuit

television (CCTV) surveillance cameras in the world has been increased from less than 10

millions in 2006 to over 100 millions in 2016, and the number is still rapidly increasing

in recent years. This huge amount of surveillance cameras are installed in different public

spaces for various surveillance application purposes, for example monitoring traffic flow on

highway and detecting abnormal activities in train station or shopping mall. Figure 1.1 gives

examples of several application scenarios of CCTV cameras.

Visual surveillance refers to a visual monitoring process that aims at analyzing and interpret-

ing visual data generated by CCTV cameras in order to understand the visual events of the

scene [57]. The traditional surveillance visual data processing mostly depends on manual

methods. The visual data from the cameras in a surveillance system are pooled in the control

room [38]. Several or more operators are involved in data analyzing. Specifically, operators

in the control room use a bank of wall monitors to get the quick snapshots of the scenes

(a) (b) (c)

Figure 1.1: Examples of three application scenarios of CCTV cameras. From (a) to (c),
cameras are deployed in airport, highway and metro station1.

1The images are from https://thecity.nyc/2019/10/subway-surveillance-cameras-turned-toward-the-
homeless.html, http://www.cchargelondon.co.uk/operation.html and https://camscan.ca/airports.php.

1



Feature Representation 
Extraction

High Level Visual 
Information Discovery

Machine Learning or Computer Vision TechnologiesVisual Data Acquisition

Figure 1.2: The pipeline of visual data processing in autonomous visual surveillance. The
visual data is acquired from CCTV cameras. The machine learning or computer vision
methods are used to extract feature representations and discover high level visual informa-
tion, for example activity name in activity recognition and trajectory in pedestrian trajectory
prediction.

in the area that is under surveillance. With the expansion of CCTV camera numbers, visual

surveillance done solely by human is becoming unfeasible. As one example reported in [38],

there is a control room in which one operator was responsible for 153 CCTV cameras, re-

sulting in many cameras not being monitored for long periods of time. As unexpected events

(involving specific individuals) often take place in a split second, real-time apprehension of

the events may be missed. In addition, CCTV cameras keep recording videos consistently

while for operators, continuously watching and analyzing videos is a very labor-intensive

task.

Autonomous visual surveillance provides an alternative way to solve the challenges encoun-

tered in using manual methods, as mentioned above. It aims at automatically processing

and interpreting visual data with the assistance of machine learning or computer vision tech-

nologies, for example object or human detection, tracking, action recognition and person re-

identification (re-id). The visual data processing pipeline in autonomous visual surveillance

is presented in Fig. 1.2. Compared with manual visual surveillance methods, autonomous

visual surveillance is characterized with several advantages. For example, it can provide

stable and real-time monitoring results. It is generally agreed that for human, long time of

continuous watching videos requires a bigger level of visual attention than most every day

tasks [47]. This can cause visual fatigue and thus result in errors in observing the incident

happened in the monitored areas, which can further lead to unstable monitoring results. Au-

tonomous visual surveillance methods can efficiently solve these problems using automatic

image or video processing algorithms.

Due to large demands in practical applications, substantial efforts have been devoted into

developing autonomous visual surveillance technologies [47, 145, 172, 192, 7]. Person re-id

is one of the fundamental problems in autonomous visual surveillance and it attracts lots

of attentions of both academy and industry [192, 7, 117, 132, 78, 175, 105, 186, 20]. In

2



One probe image
from Cam. 1

Gallery set 
from Cam. 2

person re-id

…
Similarity Ranking Result:

(a) Camera layout (b) Person re-id 

Figure 1.3: (a) An example of camera layout that is considered in person re-id problem [7].
There are 15 person identities (i.e., , No. 1-15) and they are color encoded. The dashed lines
denote the person trajectories; (b) A toy example of person re-id.

the following section, detailed introductions will be sequentially presented about different

aspects of person re-id, i.e., problem formulation, applications, challenges, datasets and

evaluation metrics.

1.2 Person Re-Identification

1.2.1 Problem Formulation

The origin of person re-id can be dated back to multi-camera pedestrian tracking [192,

145]. In multi-camera surveillance system, it commonly happens that pedestrians leave one

camera-view and re-appear in another camera-view. A successful tracking algorithm should

be able to associate the same pedestrian appeared in different camera views. This is a non-

trivial problem due to the variations of person poses, illuminations, occlusions etc. Person

re-id independently considers cross-camera person association procedure but under a more

challenging scenario with no overlaps between camera views. Fig. 1.3(a) gives an example

of the camera layout considered in person re-id. A general assumption in person re-id is that

individuals keep the same clothing in different camera views. This is reasonable in most of

practical cases. In a surveillance camera network, it only takes a short period of time for

pedestrians walking from one camera-view to another one and most probably, pedestrians

do not change their clothes. Based on this assumption, most of person re-id works mainly

rely on pedestrian appearance as the cue for re-identification.

In practical person re-id, associating pedestrians across non-overlapping camera views is

3



Feature Representation 
Extraction Similarity Calculation Ranking or Matching

Person Images

Figure 1.4: The general pipeline of person re-id. Input contains all of person images from
both probe and gallery sets. Different methods can be applied in feature representation
extraction part, e.g., handcrafted features, metric learning and deep learning. A full version
diagram of person re-id system can be found in [7].

converted into a cross-camera image retrieval problem. As in image retrieval, there are also

probe and gallery sets in person re-id data. The probe set contains the images of target person

while gallery set contains the images of candidates. Fig. 1.3(b) presents a toy example of

person re-id. For simplifying the problem, only two cameras are illustrated here. Given a

probe image, person re-id retrieves the target person images from the gallery set by ranking

the candidate images according to their similarities to the probe. For a successful person

re-id method, if there are images of the probe in the gallery set, theses images should be on

the top positions in the ranking list.

Generally, most of person re-id methods are composed of: (1) feature representation ex-

traction, (2) similarity calculation and (3) ranking or matching person images. Fig. 1.4

shows the general pipeline of person re-id. Learning discriminative feature representation

is the essential task in person re-id. Various methods have been proposed for extracting re-

id feature representations, including handcrafted features [78, 31, 25, 37], metric learning

[123, 61, 78, 79, 44] and deep learning [186, 23, 200, 134, 181]. According to the exist-

ing works [192, 63, 205, 204, 200], after extracting the discriminative re-id features, simple

distance functions, e.g., euclidean or cosine distance, can be applied for calculating similari-

ties between probe and gallery images. Although many methodologies have been proposed,

discriminative re-id feature extraction is still a hard problem resulted from different chal-

lenges in person re-id, as detailed in Section 1.2.3. This thesis mainly focuses on designing

discriminative feature extraction methods.

Although there are works directly applying distance functions on handcrafted features to

calculate similarities without learning or training phase [192, 31, 25, 188], most of person

re-id methods have two phases: (1) Training. With the given person re-id data, the main task

of this phase is to train the re-id model to be capable of extracting discriminative features.

There are two major types of training strategies, i.e., verification and identification [197].

Based on person re-id purpose of matching person images, verification fulfills this by ap-

plying the idea that samples from the same identity are pulled together while samples from
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different identities are pushed away. The methods based on this strategy include distance

metric learning [173, 52, 123, 61, 78, 79, 44] and deep metric learning [51, 18, 192, 177].

Some existing works also treat verification strategy as a binary classification task which

takes a pair of images as input and predicts if they are from the same person [72, 192]. On

the other hand, identification treats person re-id as a multi-class classification task, in which

person images are input into the re-id model, which provides predictions for their identi-

ties [192, 205, 165, 14, 109]. Recently, there are also works trying to benefit from both

verification and identification strategies by combining them together in training re-id model

[197, 142, 185, 134, 138]. (2) Test or evaluation. In this procedure, the images from gallery

set are ranked according to their similarities to the probe, and evaluation metrics, which will

be detailed in Section 1.2.5, are applied to evaluate the performances of the designed person

re-id methods.

1.2.2 Applications

In addition to visual surveillance, person re-id also has a wide applications in other areas, for

example robotics [39]. Several typical person re-id applications are introduced as follows:

(1) Person Search: Given a target person image and the whole scene images, person search

tries to find the target person in the scene images [169, 166, 112, 171]. For person re-id, the

dataset is created by detecting the pedestrians in the scene images and then the person image

bounding boxes are cropped out. The re-id algorithm will be performed on these cropped

person images. Person search unifies pedestrian detection and person re-id by directly per-

forming person matching on scene images. In [69], Li et al. proposed another person search

problem in which the natural language description is used for describing the target person,

and this person search aims at searching a person in the database whose attributes is same

as or close to the text description. Compared with person re-id, this person search problem

has the additional task to encode the text description into feature vector that can be used for

matching the person images in the database.

(2) Pedestrian Tracking: Visual tracking plays an important role in computer vision. The ob-

jects to be tracked can be pedestrians [172, 116], vehicles [60, 8], sport players [95], animals

[96, 135] etc. Compared with other objects, pedestrian tracking is a more challenging prob-

lem both within and across camera views. In addition to the fact that human body is non-rigid

that results in pose variations, the occlusions caused by other pedestrians or objects, espe-

cially in a crowded scenario, challenges pedestrian tracking even within camera-view. For

tracking pedestrian across camera views, the illumination changes from one camera-view

to another one, for example from indoor to outdoor environment, introduces new difficul-
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ties in tracking. On the other hand, these challenges are fully considered in many existing

person re-id algorithms. Based on this observation, several works have started to include

person re-id technology in pedestrian tracking [145, 33]. In [145], a person re-id model is

included for matching person hypotheses over longer temporal gaps in the proposed track-

ing framework. In [33], the pedestrian tracking is considered in multiple cameras but with

overlapping Field of Views (FOVs). Person re-id is used for solving the problem of identity

switches when pedestrians come close to each other. Both of these two introduced works

show that pedestrian tracking can benefit from person re-id.

(3) Vehicle Re-Identification: Vehicle is a significant object class in urban video surveil-

lance and vehicle detection, re-identification, tracking and classification are attracting more

and more attentions. Vehicle re-identification is a relative new research topic in vehicle

monitoring. Given a query vehicle image, vehicle re-id, similar with person re-id, is to

search in a database for images contained the same vehicle captured by multiple cameras

[87, 88, 183, 48, 146, 156]. Thus different from vehicle detection, tracking or classification,

vehicle re-id can be regarded as an instance-level object search problem. It is a non-trivial

problem due to the large intra-instance differences of the same vehicle in different cameras,

and subtle inter-instance differences between different vehicles in the same views. Based on

the observations on the similarities between person and vehicle re-id, the existing person re-

id methods can be adapted for vehicle re-id, for example handcrafted feature design, siamese

network and also performance evaluation metrics [88].

(4) Human-Machine Interaction: Robots are more and more involving in our human’s daily

life. One of the main tasks of mobile service robots is to accurately follow its master or

other target person. For example, he/she can be a target customer for the shopping guide

robot and a child for the nanny robot. Imagine a scenario where the robot and its master

are in a crowded place, for example shopping mall. In this case, from the FOV of the robot,

its master can disappear for several seconds due to the occlusions caused by other persons

or objects. In order to continuously follow its master, the robot needs to re-identify its

master. Re-identifying the target person is exactly the problem considered in person re-id.

Thus the algorithms in person re-id can be adapted for service robot to re-identify its master.

In addition, person re-id can be also applied for assisting industrial robot to re-identify its

cooperator.

(5) Human Behavior and Activity Analysis: The task of human behavior and activity analysis

is to automatically interpret behavior and activity patterns generated when humans interact

with others or with machines. It has a wide applications including surveillance systems,

patient monitoring systems, and a variety of systems that involve interactions between per-

sons and electronic devices such as human-computer interfaces [2]. There are still many
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(a) (b) (c)

(d) (f)(e)

Figure 1.5: Examples of six applications that can benefit from person re-id: (a) Person search
from the whole scene images [166], (b) Person search using natural language descriptions
[69], (c) Pedestrian tracking [145], (d) Vehicle re-identification [87], (e) Mobile Service
robot [6] and (f) Activity analysis [168].

open issues in this research topic, including the joint modeling of behavioral cues taking

place at different time scales, the inherent uncertainty of machine detectable evidences of

human behavior, the mutual influence of people involved in interactions, the presence of

long term dependencies in observations extracted from human behavior, and the important

role of dynamics in human behavior understanding [124]. Person re-id can be an assistance

technology in human behavior and activity analysis. In work [94, 93], person re-id is applied

for modelling correlations between multi-camera activities.

The examples of each described person re-id application are shown in Fig. 1.5.

1.2.3 Challenges

Person re-id is an inherently challenging problem due to the fact that it suffers from not

only the challenges, for example domain variations, in generic computer vision and machine

learning problems but also some specific challenges, for example intra- and inter-personal

variations. In [7], the challenges in person re-id system are summarized in two categories,

i.e., system-level challenges and component-level challenges. The component-level chal-
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lenges are further divided into descriptor issues and correspondence issues. In this thesis,

learning discriminative features for person re-id is considered.

Learning discriminative features is an essential task in person re-id. With discriminative

features, simple distance functions, e.g., euclidean and cosine distance, can be applied for

calculating the similarities between person images. Although many related methodologies

have been proposed, extracting discriminative re-id features still remains a challenging prob-

lem because of intra- and inter-personal variations, domain variations and complexities in

data creation and annotation.

1. Intra- and Inter-Personal Variations

Fig. 1.3 presents an illustrative example of the camera layout in a surveillance system.

From the figure, it can be observed that cameras are dispersedly deployed in an area with no

overlaps between camera FOVs. Due to the problems, such as the differences in camera lo-

cations and installation angles, the same person captured with different cameras can present

with many variations:

(a) Person poses: The non-rigid property of human body results in the variations of per-

son poses. This causes the problem in person re-id which is mostly based on the person

appearance features. Pose variations destroy the body part alignment in the extracted fea-

ture vectors. As shown in Fig. 1.6(a), the same positions (as indicated in the red bounding

boxes) between two images do not correspond to the same body part because of the changes

in person pose, i.e., the person is walking in one image while changes to ride the bike or mo-

torbike in the other image. This can mislead the person image matching using appearance

features. In order to mitigate this problem, the designed re-id algorithms should be capable

of extracting feature vectors against pose variations.

(b) Illuminations: Different cameras in different locations can have different illumination

conditions, results in the common illumination variation problem in person re-id data. For

images from indoor camera, usually it is darker than the images from outdoor cameras. In

addition, the images from same camera but different time, there may be also illumination

variations. Two examples are presented in Fig. 1.6(b). From the figures, it can be found the

appearance of the same person under different illuminations can be very different.

(c) Viewpoints: Due to different camera installation angles and locations, the same person

presented in images from different cameras can have different viewpoints. Take person 2

who walks from camera 2 to 1 in Fig. 1.3 for example. Most probably, the front view of

person 2 can be captured in camera 2 but after entering the FOV of camera 1, normally the

camera will only capture the back or side view of the person. This can significantly increase
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(a) Person pose variations (b) Illumination variations

(e) Occlusions

(c) Viewpoint variations

(d) Resolution variations (f) Clothing similarities

Figure 1.6: Examples of different kinds of intra- and inter-personal variations. In sub-figures
(a)-(e), the images in the same bounding box contain the same person whilst in sub-figure
(f), the images in the same bounding box refer to two different persons.

the difficulty in person re-id, especially when the target person is carrying a backpack as

shown in Fig. 1.6(c). This causes the large difference between the appearances of the front

and back view of the person.

(d) Resolutions: To reduce the number of cameras in the surveillance system, cameras are

usually installed in high places to get the large FOVs. Thus, pedestrians are usually far

away from cameras. Even for high resolution cameras, the person image can still be of

relative low resolution. Due to the changes of the distance between pedestrians and cameras,

resolution variation is also a very common problem both for the person images from one

specific camera-view or different camera views, as illustrated in Fig. 1.6. This requires

that the designed re-id algorithm should be able to match person images not only in low-

resolution but also across different resolutions.

(e) Occlusions: In re-id data, pedestrians may be partially occluded by other pedestrians or

objects. This can happen when the pedestrian is carrying the backpack. Fig. 1.6(e) gives

the examples that the pedestrian is occluded by the motorbike or backpack. As shown in the

figure, occlusions can result in large differences between the person images from the same

person and finally leads to the misleading person re-id results.

(f) Clothing similarities: Two different pedestrians wearing very similar clothes can be also

very challenging for person re-id. Fig. 1.6(f) gives two examples. The person images in the

same bounding box are from two different pedestrians. It can be observed from the figure

that the person images are very similar to each other and hard to be distinguished even for

humans.
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(a) CAVIAR4ReID (b) QMUL iLIDS

Figure 1.7: Samples from two person re-id datasets for illustrating dataset domain varia-
tions. The person images in the same column represent the same person. (a) CAVIAR4ReID
dataset is collected from a shopping mall [25] while (b) QMUL iLIDS dataset is collected
from an airport [161].

All of these different kinds of intra- and inter-personal variations can cause the problems

in extracting discriminative re-id features. This further results in the problems of similarity

comparison.

2. Domain Variations

Domain variation is a common problem in machine learning and computer vision. The

data collected from different domains, e.g., different time and locations, usually present

different domain specific information. The conventional learning algorithms rely heavily

on the assumption that data used for training and test are drawn from the same distribution

(from same domain). If this kind of algorithms trained on one domain are directly applied

on a different one, a large performance degradation will be observed. In order to solve this

problem, many domain adaptation methodologies have been proposed [151, 152, 103, 35,

26, 141].

The domain variations in person re-id data can be roughly divided into two categories, i.e.,

dataset domain variations [179, 155, 81, 180, 178, 200] and camera-view domain variations

[199, 22, 77, 201]:

(a) Dataset domain variations. Different re-id datasets are usually collected from different

domains and this leads to different domain information presented in datasets. Fig. 1.7

shows the samples from two different datasets. One is CAVIAR4ReID collected from a

shopping mall [25] while the other one is QMUL iLIDS collected from an airport [161].

From the figure, it can be observed that pedestrians in airport are carrying luggages while

this not happens for the pedestrians in the shopping mall. If the re-id model is trained
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(a) Camera 1 (b) Camera 2

Figure 1.8: Camera-view domain variations in Market1501 dataset [191]. The persons in (a)
camera 1 are the same as in (b) camera 2.

using QMUL iLIDS dataset, the model will not only focus on person appearance but also

luggages in extracting re-id features since luggages can also provide discriminative features

for re-identifying persons. If such re-id model is directly applied on CAVIAR4ReID dataset,

it can be expected that the performance will largely degrade since most of pedestrians in

CAVIAR4ReID dataset are not carrying luggages. In addition, it can be also observed that

the resolutions and illuminations in these two datasets are also different.

(b) Camera-view domain variations. As aforementioned, person re-id is a problem of retriev-

ing person images across non-overlapping camera views. Thus, re-id data are collected from

different camera views. Because of the distributed deployment of cameras in surveillance

system, person images from one camera-view usually contain domain specific information

[201]. For example, for two cameras located in places with different illuminations, the per-

son images from these two cameras will also present with different illuminations. Fig. 1.8

gives the examples of the camera-view domain variations. The person images from camera

2 are darker than the ones from camera 1. In addition to illumination, the viewpoint can be

also one of the camera-view domain variations. For example, one camera mostly captures

the front views of pedestrians while the other one camera mostly captures the back views of

pedestrians. This can happen when two cameras are separately installed on the top of the

entrance and exit gate.

3. Difficulties in Dataset Creation and Annotation

Existing person re-id methods depend mostly on a large set of cross-camera identity labelled

training data, especially the deep learning-based methods. This requires a tedious data col-

lection and annotation process.

Specifically, in order to label a fully supervised person re-id training dataset, a human anno-

tator often needs to match manually a given person identity from one camera view with all

the persons from the other camera views. This has a quadratic complexity with the number

of both camera views and person identities. Assume an ideal case with M cameras and N
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Cam. 3Cam. 1 Cam. 4Cam. 2Cam. 𝑖

(a) (b)

Figure 1.9: (a) Illustration of manually annotating identity labels for the samples in i-th cam-
era view. (b) Illustration of manually associating identity labels across camera views (only
four camera-views are illustrated here). For inter-camera identity association, the selected
identity (e.g., the identity with black bounding box as in (b)) needs to be compared with
the identities from all of the other camera views. The arrow line denotes the comparison
made between two identities. The identities in red bounding boxes denote that they have
already been associated and will not be compared for further association. In each column,
the identities are from the same camera-view.

identities in each camera view, and each identity has one person image in each camera-view.

The cost of annotating identity labels in one single camera view isO(N). This is because for

most people, re-appearing in a camera view is rare during a limited time period. However,

the cross-camera identity association complexity isO(M2N2). Fig. 1.9 gives the illustrative

examples for manually annotate re-id data.

In addition, given the large size of most current machine learning and computer vision

datasets, the data annotation process is almost impossible to be completed by one anno-

tator. Thus, several or more annotators are usually involved in annotating one dataset. The

whole dataset is divided into many parts and each part is assigned to one annotator. For fully

supervised re-id dataset, in order to get a unified identity space, the annotators need to com-

municate to each other in the data annotation process to guarantee that the person images are

assigned with right identity labels. This communication process adds the extra complexity

in data annotation.

1.2.4 Datasets

As one of the important research topics in visual surveillance, person re-id is receiving a

large amount of attentions nowadays and various new methodologies have been proposed in
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the past one decade. In order to evaluate the designed methodologies, many datasets have

been created.

Person re-id datasets can be categorized into two groups. One is image-based datasets and

the other one is video-based datasets. Image based person re-id is a more generic problem

compared with video-based person re-id. The methods proposed for image-based person

re-id can be easily extended to video-based case by considering each frame in the video as

one image. Image based person re-id can be further separated into single-shot re-id, which

consists in matching pairs of images, a probe and a gallery image for each individual, and

multi-shot re-id, in which each individual has multiple images, either in the gallery and/or

the probe set. Compared to single shot re-id, multi-shot re-id can be exploited to accumulate

more visual information and ensure higher re-id accuracy. In this thesis, the image-based

person re-id is considered with emphasizing on multi-shot case.

A comprehensive list of person re-id datasets can be found in [42]. Here, a part of image-

based person re-id datasets are summarized in Table 1.1. These datasets are collected from

different scenarios, for example airport [161], underground station [85], shopping mall [25]

and campus [71, 70, 72, 191]. Different person re-id challenges are included in these

datasets. The re-id datasets that are used for evaluating the proposed methods in Chapters

3-5 are briefly introduced as follows:

VIPeR dataset [43] is widely used for evaluating the performance of re-id methods. It

contains 632 person image pairs from two cameras. Large variations of viewpoint and illu-

Table 1.1: Person re-id datasets.

Dataset Release Year Identity No. Camera No. Image No.
VIPeR [43] 2007 632 2 1264

QMUL iLIDS [161] 2009 119 2 476
GRID [85] 2009 1025 8 1275

CAVIAR4ReID [25] 2011 72 2 1220
CUHK01 [71] 2012 971 2 3884
CUHK02 [70] 2013 1816 10 (5 pairs) 7264
CUHK03 [73] 2014 1467 10 (5 pairs) 13164

Market1501 [191] 2015 1501 6 32217
PKU-Reid [99] 2016 114 2 1824

PRW [193] 2016 932 6 34304
DukeMTMC-reID [196] 2017 1812 8 36441

MSMT17 [159] 2018 4101 15 126441
PKU Sketch-ReID [115] 2018 200 2 400
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mination in images make it a challenging dataset. In compliance with common evaluation

scenario, 316 person image pairs are randomly selected for training, and the rest of 316

image pairs are retained for test.

GRID dataset [85] is composed of 250 person image pairs. Each pair consists of two

images of the same person but from different camera views. In addition, there are another

775 person images that do not belong to any of the 250 paired persons. In the experiment,

125 person image pairs are randomly selected for training. The remaining 125 person image

pairs and 775 unpaired person images are used for test. As a result, in the test set, there are

125 probe images and 900 gallery images.

PRID 450S dataset [123] contains 450 single-shot image pairs that depict the walking per-

sons captured in two spatially disjoint camera views. The dataset also provides the binary

segmentation masks separating the foreground from background and the person part-level

segmentation results are also contained.

Market-1501 Dataset [191] is a popular person re-id dataset in deep learning that is created

using six cameras in front of a campus supermarket. It contains 1501 identities in which 751

identities for training and the other 750 identities for test. For each identity, multiple images

are available and for training, it provide 12, 936 images. In test set, there are 19, 732 gallery

images and 3, 368 probe images.

DukeMTMC-ReID Dataset [196] is created by selecting and annotating pedestrian images

from a multi-target, multi-camera tracking dataset. There are 1, 404 identities in total from

eight cameras. 702 identities with 16, 522 images are selected for training and the other 702

identities with 17, 661 images are for test. The query set is formulated by picking one person

image for each identities in test set in each camera. Thus, there are 2, 228 query images in

total.

MSMT17 Dataset [159] is collected from a 15-camera network in campus in which there are

12 outdoor and 3 indoor cameras. Faster RCNN [121] is utilized for pedestrian bounding box

detection. The dataset is annotated with three annotators by checking all detected bounding

boxes and annotating identity labels in 2 months. The final dataset contains 126, 441 bound-

ing boxes of 4, 101 identities. The training set contains 32, 621 bounding boxes of 1,041

identities. The test set contains 93, 820 bounding boxes of 3, 060 identities, in which there

are 11, 659 query images and 82, 161 gallery images.
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Figure 3. A toy example of the difference between AP and CMC
measurements. True matches and false matches are in green and
red boxes, respectively. For all three rank lists, the CMC curve
remains 1. But AP = 1, 1, and 0.71, resp.

Fig. 3(a)). In this case, precision and recall are the same
issue. However, if multiple ground truths exist, the CMC
curve is biased because “recall” is not considered. For ex-
ample, CMC curves of Fig. 3(b) and Fig. 3(c) both equal
to 1, which fail to provide a fair comparison of the quality
between the two rank lists.

For Market-1501 dataset, there are on average 14.8
cross-camera ground truths for each query. Therefore, we
use mean average precision (mAP) to evaluate the overall
performance. For each query, we calculate the area under
the Precision-Recall curve, which is known as average pre-
cision (AP). Then, the mean value of APs of all queries, i.e.,
mAP, is calculated, which considers both precision and re-
call of an algorithm, thus providing a more comprehensive
evaluation. When average precision (AP) is used, rank lists
in Fig. 3(b) and Fig. 3(c) are effectively distinguished.

Our dataset is randomly divided into training and testing
sets, containing 750 and 751 identities, respectively. During
testing, for each identity, we select one query image in each
camera. Note that, the selected queries are hand-drawn, in-
stead of DPM-detected as in the gallery. The reason is that
in reality, it is very convenient to interactively draw a b-
box, which can yield higher recognition accuracy [20]. The
search process is performed in a cross-camera mode, i.e.,
relevant images captured in the same camera as the query
are viewed as “junk”. In this scenario, an identity has at
most 6 queries, and there are 3368 query images in total.
Queries of two sample identities are shown in Fig. 4.

4. Our Method

4.1. The Bag-of-Words Model

For three reasons, we adopt the Bag-of-Words (BoW)
model. First, it well accommodates local features, which
are indicated as effective by previous works [25, 38]. Sec-
ond, it enables fast global feature matching, instead of ex-
haustive feature-feature matching [40, 39, 3]. Third, by
quantizing similar local descriptors to the same visual word,
the BoW model achieves some invariance to illumination,

&DP�� &DP�� &DP�� &DP�� &DP�� &DP��

Figure 4. Sample query images. In Market-1501 dataset, queries
are hand-drawn bboxes. Each identity has at most 6 queries, one
for each camera.

Color Names Descriptor

Figure 5. Local feature extraction. We compute the mean CN vec-
tor for each 4×4 patch. Local features are quantized, and pooled
in a histogram for each horizontal stripe.

view, etc. We describe the individual steps below.
Feature Extraction. We employ the Color Names (CN)
descriptor [32]. Given a pedestrian image normalized to
128×64 pixels, patches of size 4×4 are densely sampled.
The sampling step is 4, so there is no overlapping between
patches. For each patch, CN descriptors of all pixels are
calculated, and are subsequently ℓ1 normalized followed by√

(·) operator [2]. The mean vector is taken as the descrip-
tor of this patch (see Fig. 5).
Codebook. For Market-1501, we generate a codebook on
its training set. For other datasets, the codebook is trained
on the independent TUD-Brussels dataset [35]. Standard
k-means is used, so codebook size is k.
Quantization. Given a local descriptor, we employ Multi-
ple Assignment (MA) [15] to find its near neighbors under
Euclidean distance in the codebook. We set MA = 10, so a
feature is represented by the indices of 10 visual words.
TF-IDF. The visual word histogram is weighted by TF-IDF
scheme. TF encodes the number of occurrences of a visual
word, and IDF is calculated as log N

ni
, where N is the num-

ber of images in the gallery, and ni is the number of images
containing visual word i. In this paper, we use the avgIDF
[41] variant in place of the standard IDF.
Burstiness. Burstiness refers to the phenomenon where a
query feature finds multiple matches in a test image [16].
For CN descriptor, burstiness could be more prevalent due
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Figure 1.10: A toy example of the difference between CMC and average precision (AveP)
measurements [191]. True matches and false matches are in green and red boxes, respec-
tively. For all of three rank lists (a)-(c), the CMC curve remains 1, whilst for AveP, its value
is 1, 1 and 0.7.

1.2.5 Evaluation Metrics

Evaluation metrics are important for evaluating the quality of the designed algorithm and

also makes it possible for comparing performances of different related algorithms. In per-

son re-identification, Cumulated Matching Characteristics (CMC) curve is the most popular

metric for evaluating the performance of person re-id methodologies. However, as discussed

in [191], CMC is valid only if there is only one ground truth match for a given query, i.e.,

single-shot person re-id. For the multi-shot re-id scenario, CMC is not enough to provide a

good evaluation about the person image retrieval quality since in CMC, the “recall” is not

considered. Fig. 1.10 shows a toy example of the evaluation bias in CMC. For (b) and (c), it

can be observed that the retrieval quality of the rank list (b) is better than the rank list (c), but

CMC cannot reflect this and its value is 1 for both of them. In order to solve this problem,

Zheng et al. proposed to use the mean average precision (mAP) for re-id algorithm evalua-

tion [191]. Both CMC and mAP are related with two image retrieval metrics, i.e., precision

and recall, which are also used in Chapter 5. Thus in the following, precision and recall will

be first described before the introduction of CMC and mAP.
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1. Precision and Recall

In image (or information) retrieval, many metrics have been proposed and used for evaluating

the retrieval quality of the designed algorithms [119, 89]. Precision and recall are two basic

and widely used evaluation metrics. Usually these two metrics are used together to reflect

different aspects of the algorithm. Precision is used to measure “how useful the search

results are” while recall is to measure “how complete the results are”. Given the top-k

images retrieved using a query (or target) image, the precision P (k) can be calculated as:

P (k) =
|{relevant images} ∩ {retrieved images}|

|{retrieved images}| (1.1)

in which |{·}| denotes the number of items in the set and ∩ is the intersection operator

between two sets. The corresponding recall R(k) can be calculated as:

R(k) =
|{relevant images} ∩ {retrieved images}|

|{relevant images}| (1.2)

From Eqs. (1.1) and (1.2), it can be observed that precision is the percentage of the top-k

retrieved images that are relevant to the query and recall is the percentage of all the relevant

images in the search database which are retrieved.

2. Cumulated Matching Characteristics

CMC curve is the most commonly used evaluation metrics in person re-id [192, 39, 73,

189, 191]. It represents results of an identification task by plotting the probability of correct

identification against the number of candidates returned [114]. The faster the CMC curve

approaches one, the better the person re-id algorithm. For the calculation of CMC curve,

there is a difference between the single-shot and multi-shot person re-id case.

Given a query image in the single-shot case, the re-id model algorithm will rank all gallery

images according to their similarities to the query image from large to small. The top-k

CMC accuracy ACCk for this query image is calculated as:

ACCk =

{
1 if top-k ranked gallery images contain the query identity,

0 otherwise.
(1.3)

The CMC accuracy will be calculated for all of query images and the final CMC curve is

obtained with averaging every ACCk over all query images. The k-th value in CMC curve

is:

CMC(k) =

∑NQ

q=1ACCk

NQ
(1.4)
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in which k ∈ [1, 2, . . . , NG]. NG and NQ denote the number of query and gallery images,

respectively.

For the multi-shot person re-id case, CMC curve calculation is still not agreed in person

re-id community. Take CUHK03 [73] and Market1501 [191] benchmarks for example, their

calculations about CMC curves are different:

(a) In CUHK03 benchmark [73], the query and gallery images are from different camera

views. In calculation of ACCk, only one of gallery images is randomly sampled for each

query identity. Then, theACCk and CMC curve are calculated as in single-shot person re-id

case. This process is performed for N times (N = 20 in [73]) and the final CMC curve is

obtained by averaging these repeatedly performed results.

(b) In Market1501 benchmark [191], the query and gallery images in Market1501 dataset

can be from the same camera views. In the calculation of ACCk for each individual query

identity, the corresponding gallery images from the same camera-view are excluded. In

addition, the random sampling is not performed on the considered gallery images for each

query. Thus in the calculation of top-k CMC accuracy for each query, only the easiest

positive gallery image (which shares the same identity as query) is considered, while for

other positive gallery images, they are ignored.

3. Mean Average Precision

From the description of CMC curve, it can be observed that CMC curve is not comprehen-

sive enough for evaluating the quality of the image rank list returned by the person re-id

algorithm, especially for the multi-shot person re-id case. For the CMC curve calculation

provided in CUHK03 benchmark [73], the randomly sampling process should be performed

for N times in which N can be varied in different work and thus may cause the problem

in algorithm comparisons. Although Market1501 benchmark provides a simple way to cal-

culate CMC cuve as shown in Fig. 1.10, it does not consider the recall and thus gives a

biased evaluation result. Zheng et al. introduced the mean average precision (mAP) metric

for solving the problems in CMC curve [191].

mAP is a popularly used metric in information retrieval and it starts to be widely used in

evaluating person re-id algorithms since the work [191]. As introduced before, precision

and recall are two complementary metrics that are used for evaluating different aspects of

the image retrieval algorithm and usually, they are used together. mAP can be regarded as

a metric that makes the trade off between precision and recall. Given a query image and

the corresponding rank list returned by one person re-id algorithm, the precision and recall

can be calculated using Eqs. (1.1) and (1.2) at every position in the rank list. A example of
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precision-recall curve is presented in Fig. 1.11. Suppose p(r) denotes the precision at recall

r. The average precision is the average value of p(r) over the recall interval [0, 1]:

AveP =

∫ 1

0
p(r)dr. (1.5)

AveP is exactly the area under the precision-recall curve.

In practical calculation, this integral is obtained with a finite sum over every position in the

ranked list of gallery images:

AveP =

NG∑

k=1

P (k)∆R(k) (1.6)

P (k) and R(k) are the same as in Eqs. (1.1) and (1.2). N is the number of gallery images.

∆R(k) is the change of the recall from k − 1 to k: ∆R(k) = R(k)−R(k − 1).

Based on the average precision, i.e., AveP, the mAP is the average of AveP over all query

images and it can be formulated as:

mAP =

∑NQ

q=1 AvePq
NQ

(1.7)

in which AvePq denotes the AveP for the q-th query image.

Compared with CMC curve, mAP gives a more comprehensive evaluation of person image

retrieval results by considering both precision and recall. Consider the rank lists (b) and (c)

in Fig. 1.10, the true matches are all in top-2 in (b) and its retrieval result is better than rank

list (c) in which only one true match is contained in top-2. The CMC curve of these two

rank lists cannot reflect their retrieval qualities with the value 1 for both of them, while mAP

gives its metric value 1 for rank list (b) and 0.7 for rank list (c). However, mAP is not as

intuitive as CMC curve. In most of recent person re-id works [192, 73, 189, 39, 7], both of

CMC curve and mAP are considered for algorithm performance evaluation.

1.3 Contributions of This Thesis

As discussed in Section 1.2.3, learning discriminative person re-id features has the chal-

lenges of (1) Intra- and inter-personal variations, (2) domain variations and (3) difficulties in

data creation and annotation. Corresponding to these three challenges, this thesis contributes

to the re-id domain by proposing three related methodologies and one new re-id setting:
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Exercise 8.3 [⋆⋆]

Derive the equivalence between the two formulas for F measure shown in Equa-
tion (8.5), given that α = 1/(β2 + 1).

8.4 Evaluation of ranked retrieval results

Precision, recall, and the F measure are set-based measures. They are com-
puted using unordered sets of documents. We need to extend these measures
(or to define new measures) if we are to evaluate the ranked retrieval results
that are now standard with search engines. In a ranked retrieval context,
appropriate sets of retrieved documents are naturally given by the top k re-
trieved documents. For each such set, precision and recall values can be
plotted to give a precision-recall curve, such as the one shown in Figure 8.2.PRECISION-RECALL

CURVE Precision-recall curves have a distinctive saw-tooth shape: if the (k + 1)th

document retrieved is nonrelevant then recall is the same as for the top k
documents, but precision has dropped. If it is relevant, then both precision
and recall increase, and the curve jags up and to the right. It is often useful to
remove these jiggles and the standard way to do this is with an interpolated
precision: the interpolated precision pinterp at a certain recall level r is definedINTERPOLATED

PRECISION

Figure 1.11: Precision-recall curve. The blue line denotes the interpolated precision at a
certain recall level. Refer to [127] for more information

(1) Gaussian mixture importance estimation. Handcrafted features are usually not dis-

criminative enough for person re-id because of noisy information, such as background clut-

ters. To precisely evaluate the similarities between person images, the main task of distance

metric learning is to learn the Mahalanobis matrix to filter out the noisy information. KISS

metric learning is an effective method in person re-id. However, it is sensitive to the feature

dimensionality and can not capture the multi-modes in dataset. To this end, a Gaussian Mix-

ture Importance Estimation re-id approach is proposed, which exploits the Gaussian Mixture

Models for estimating the observed commonalities of similar and dissimilar person pairs in

the feature space. This work has been accepted in IEEE International Conference on Ad-

vanced Video and Signal Based Surveillance (AVSS), 2017 [203] and it was recognized as

the Best Paper, Honorable Mention.

(2) Unsupervised domain-adaptive person re-id based on pedestrian attributes. Differ-

ent from person identity, pedestrian attributes, e.g., hair length, clothes type and color, are

consistent across different domains (or datasets). However, most of re-id datasets lack at-

tribute annotations. On the other hand, in the field of pedestrian attribute recognition, there

is a number of datasets labeled with attributes. Exploiting such data for re-id purpose can

alleviate the shortage of attribute annotations in re-id domain and improve the generaliza-

tion capability of re-id model. To this end, an unsupervised domain-adaptive re-id feature

learning framework is proposed to make full use of attribute annotations. Specifically, an ex-

isting unsupervised domain adaptation method has been extended to transfer attribute-based

features from attribute recognition domain to the re-id domain. With the proposed re-id

feature learning framework, the domain invariant feature representations can be effectively

extracted. This work has been accepted in the IEEE International Conference on Image

Processing (ICIP), 2019 [204].

(3) Intra-camera supervised person re-id. Annotating the large-scale re-id datasets re-
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quires a tedious data collection and annotation process and therefore leads to poor scal-

ability in practical person re-id applications. To overcome this fundamental limitation, a

new person re-id setting is considered without inter-camera identity association but only

with identity labels independently annotated within each camera-view. This eliminates the

most time-consuming and tedious inter-camera identity association annotating process and

thus significantly reduces the amount of human efforts required during annotation. It hence

gives rise to a more scalable and more feasible learning scenario, which is named as Intra-

Camera Supervised (ICS) person re-id. Under this ICS setting, a new re-id method, i.e.,

Multi-tAsk mulTi-labEl (MATE) learning method, is formulated. Given no inter-camera

association, MATE is specially designed for self-discovering the inter-camera identity cor-

respondence. This is achieved by inter-camera multi-label learning under a joint multi-task

inference framework. In addition, MATE can also efficiently learn the discriminative re-id

feature representations using the available identity labels within each camera-view. This

work has been accepted in a workshop of IEEE International Conference on Computer

Vision (ICCV), 2019 [205] and its journal extension has been submitted to International

Journal of Computer Vision (IJCV).

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents a review on related works about different categories of person re-id

problems and various related strategies and methodologies that proposed for solving these

problems.

Chapter 3 describes a new metric learning methodology, i.e., Gaussian Mixture Importance

Estimation (GMIE), for person re-id. Different from the existing re-id methodologies, it

shows that GMIE not only can model the multi-modes in re-id dataset but also it is robust to

the increase of feature dimension.

Chapter 4 proposes a new person re-id framework which bridges the pedestrian attribute

recognition and person re-id. Based on the observation that attributes are consistent across

dataset while person identities are not, the proposed framework applies an extended unsuper-

vised domain-adaptive method to adapt the trained attribute recognition model to the re-id

domain for extracting attribute related features for person re-id.

Chapter 5 explains the intra-camera supervised (ICS) person re-id setting and a new method-

ology using this re-id setting. It shows that in ICS person re-id, the data is annotated with-
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out inter-camera identity association but only with identity labels independently annotated

within each camera-view and thus significantly reduces the data annotation efforts. Under

this ICS setting, a new re-id method, i.e., Multi-tAsk mulTi-labEl (MATE) learning method,

is formulated and the experiments validates that the effectiveness of MATE in solving ICS

person re-id problem.

Chapter 6 concludes this thesis and several potential re-id research directions are discussed

as the future works.

The outline of this thesis is visualized in Fig. 1.12.

Chapter 1: 
Introduction

Chapter 2:
Related works

Chapter 3:
Gaussian Mixture 
Importance Estimation

Chapter 4:
Unsupervised Domain-Adaptive 
Person Re-identification Based 
on Attributes

Chapter 5: 
Intra-Camera Supervised 
Person Re-Identification 

Deep LearningMetric Learning

Chapter 6:
Conclusions and Future work

Figure 1.12: Visualization of thesis outline.
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Chapter 2

Related Works

The related works of person re-id are roughly separated into (1) Handcrafted Feature Extrac-

tion and Metric Learning, (2) Pedestrian Attribute Based Methods and (3) Deep Learning

Methods. Although the second category has overlaps with first and third categories, there

are a large number of person re-id methods based on pedestrian attributes and these methods

are grouped as a single category.

2.1 Handcrafted Feature Extraction and Metric Learning

Before deep learning, person re-id is mainly based on handcrafted feature extraction and

metric learning. In this category, part of works propose to directly apply distance func-

tions on handcrafted features for calculating similarities for person re-id [31, 25, 188, 192].

However, handcrafted features are usually not discriminative enough due to the noisy in-

formation, for example background clutters. The learning-based methods aims at apply-

ing metric learning to filter out noisy information and extract more discriminative features

[123, 61, 78, 79, 44, 192].

2.1.1 Handcrafted Feature Extraction

Handcrafted feature extraction aims at manually designing feature extraction methods to ex-

tract appearance features, e.g., color and texture, based on the experiences from designer.

A common way in designing handcrafted feature is firstly dividing the person image in

hand into horizontal stripes [10, 78, 175], triangular graph [37], regions clustered by color

[157], symmetry and assymetrical parts [31], semantic or meaningful parts [25, 9], concen-

tric rings [37] or grid of localized patches [5]. Then, different kinds of descriptors, e.g.,

HSV histogram, Scale Invariant Local Ternary Pattern (SILTP) [80] and Local Binary Pat-

tern (LBP) [113], are applied for extracting color and/or texture features from each divided

image parts. In order to extract robust and discriminative person re-id feature representa-

tions, many handcrafted features have been proposed, e.g., the ensemble of local features
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(a) (b) (c) (d) (e)

Figure 2.1: SDALF handcrafted feature extraction [31]. (a) two images of the same per-
son; (b) x- and y-axes of asymmetry and symmetry, respectively; (c) weighted histogram
back-projection (brighter pixels mean a more important color), (d) Maximally Stable Color
Regions; (e) Recurrent Highly Structured Patches.

(ELF) [44], Symmetry-Driven Accumulation of Local Features (SDALF) [31], Custom Pic-

torial Structure (CPS) [25], kBiCov [98], fisher vectors (LDFV) [97], Local Maximal Occur-

rence (LOMO) [78], Gaussian Of Gaussian (GOG) [105, 106]. Several popular handcrafted

feature extraction methods are presented in the following.

In [31], a handcrafted feature named SDALF has been proposed. Fig. 2.1 presents the

SDALF handcrafted feature extraction method. The person images are pre-processed in

SDALF by segmenting out the pedestrian foreground, and then salient parts of the body fig-

ure are selected by adopting perceptual principles of symmetry and asymmetry. Specifically,

as shown in Fig. 2.1(b), two horizontal axes of asymmetry (blue and red lines) are firstly ob-

tained in each person image which isolate the person body into three main regions, i.e., head,

torso and legs. Then, the vertical axes of appearance symmetry (green and yellow lines) are

separately estimated for the torso and legs part. At last, three complementary aspects of the

human body appearance are extracted from each part, including: (i) the general chromatic

content via HSV histogram; (ii) the per-region color displacement, through Maximally Sta-

ble Colour Regions (MSCR) [34]; (iii) the presence of Recurrent Highly Structured Patches

, estimated through a novel per-patch similarity analysis. In order to minimize the effects

of pose variations, the extracted features are weighted by the distance with respect to the

vertical axis. Matching these features gives the similarity measure between the candidates.

In [25], Pictorial Structures (PS) [32] is applied to localize human body parts. With fitting

PS to person image in single-shot re-id, an ensemble of features are extracted from each

localized body parts. Fig. 2.2(a) illustrates the PS fitting result. As in SDALF [31], different

local descriptors are introduced to encoding complementary aspects, such as the chromatic
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Figure 2.2: Illustration of localizing body parts [31]. Single-shot PS in (a). Multi-shot
CPS at iteration 1: (b) initial PS fitting; (c) the parts are aligned and per-pixel statistics is
collected employing spatio-temporal reasoning; (d) the ad-hoc part detectors are estimated,
whose means Îij are shown. At every iteration until L, the fitting becomes more accurate due
to the improving part detectors.

(a) (b) (c)

Figure 2.3: (a) Example pairs of images from the VIPeR database [43]. The images in the
same column are from same person. (b) Processed images in (a) by Retinex. (c) Illustration
of the LOMO feature extraction method.

content and the spatial arrangement of colors. The local descriptors include HSV histograms

and MSCR [34, 31]. The features of each part are subsequently combined into a single ID

signature. Matching between signatures is carried out by standard distance minimization

strategies. For the multi-shot re-id, a model called Custom Pictorial Structure (CPS) has been

proposed to get more accurate body parts. The main idea is to learn the local appearance

of each part in a given subject so that ad- hoc appearance part detectors can provide more

accurate PS fitting [25]. Localizing body parts using CPS is illustrated in Fig. 2.2. As in

single-shot re-id case, after localizing body parts, the features of each part are extracted and

combined to get the final features for each person image.

In [78], Liao et al. proposed the Local Maximal Occurrence (LOMO) handcrafted feature

for person re-id. LOMO feature is designed by considering two main challenges in ex-

tracting person re-id features: (1) Illumination variations. Color is an important feature for

describing person images. However, as shown in Fig. 2.3(a), the illumination conditions

across cameras can be very different. In order to deal with this problem, the Retinex al-

gorithm is applied to pre-process person images. It aims at producing a color image that

is consistent to human observation of the scene. The restored image usually contains vivid
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Figure 2.4: Illustration of GOG feature extraction process [105, 106].

color information, especially enhanced details in shadowed regions. Fig. 2.3(b) shows the

images processed using Retinex algorithm. It can be observed that the illuminations vari-

ations have been reduced. In addition, SILTP descriptor, which is robust to image noise

and has the invariant property under monotonic gray-scale transforms, is introduced for en-

coding person appearance features [78, 80]. (2) Viewpoint changes. As aforementioned in

Chapter 1, pedestrians under different cameras usually present with different viewpoint. In

LOMO, the sliding windows is used to describe local details of a person image. As shown

in Fig. 2.3(c), a subwindow size of 10 × 10 is used with an overlapping step of 5 pixels

to locate local patches in 128 × 48 images. Within each subwindow, the SILTP and HSV

histograms are extracted. In order to deal with the viewpoint changes, all the subwindows at

the same horizontal stripe are considered at one time and the maximal value of each patterns

among these subwindows are selected and combined to formulated the final histogram of the

horizontal stripe. In addition, to further consider the multi-scale information, a three-scale

pyramid representation is built for each person image. The LOMO feature extraction process

as shown in Fig. 2.3(c) is repeatedly performed on all of these scaled representations. The

final LOMO feature is formulated by concatenating all of local maximal occurrences.

In [105], a Gaussian of Gaussian (GOG) handcrafted feature has been proposed. The co-

variance descriptor describes a region of interest based on the covariance of pixel features

[149]. It can encode different modalities, e.g., color and texture, of pixel features into a

single meta-descriptor. According to the experimental results in [105], the mean of pixel

features is also important in describing person appearance. Based on this observation, GOG

feature introduces hierarchical Gaussian distribution of pixel features as region descriptor

for person re-id. Fig. 2.4 sketches the process of GOG feature extraction. Specifically, re-

gions are extracted from the original person image. For each region, it is densely divided

into many patches as shown in Fig. 2.4(a). The pixel features in each patch is modeled by

a Gaussian distribution. Thus for each region, it is represented with a set of Gaussian distri-
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butions. This set of Gaussian distributions corresponding to one region are again modeled

with one Gaussian distribution. The parameters of these Gaussian distributions are used as

feature vectors to represent regions. The final GOG feature representation is formulated by

concatenating all the feature vectors corresponding to different regions of the person image.

2.1.2 Metric Learning

After extracting handcrafted features from person images, there are usually two categories

of post-processing methods. The first category is directly applying the distance function on

handcrafted features for calculating similarities for person re-id [31, 25, 188]. For example,

in work [31], the similarity is calculated as:

d(IA, IB) =βWH · dWH(WH(IA),WH(IB))+

βMSCR · dMSCR(MSCR(IA),MSCR(IB))+

βRHSP · dRHSP (RHSP(IA),RHSP(IB)),

(2.1)

in which WH(·), MSCR(·) and RHSP(·) are the weighted histograms, MSCRs, and Recur-

rent High-Structured Patches, respectively, and βWH , βMSCR and βRHSP are normalized

weights. dWH(·), dMSCR(·) and dRHSP (·) are the distance functions.

However, handcrafted features are usually not discriminative enough for person re-id be-

cause of the included noisy information, for example the background information from per-

son images. In order to precisely evaluate the similarities between person images, the second

category is based on learning methods which is capable of two functions: (1) filtering out

the noisy information contained in handcrafted features, and (2) calculating similarity. Take

the commonly used distance metric learning [173] for example, its basic formulation is:

d2M(zi,vj) = (zi − vj)
TM(zi − vj), (2.2)

in which M � 0 is the Mahalanobis matrix which is a positive semidefinite matrix. zi and

vj are the handcrafted features corresponding to i-th and j-th samples from two different

camera-views. Since M is a Hermitian and positive semi-definite matrix, M can be further

decomposed into:

M = LTL (2.3)

Thus, the distance d2M(zi,vj) can be reformulated as:

d2M(zi,vj) =(zi − vj)
TLTL(zi − vj)

=||Lzi − Lvj ||2
(2.4)
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Figure 2.5: Illustration of training process in LMNN [163, 162]. Before training (Left),
samples randomly locate in the space. During training, the target samples with same class
(yellow circles) are gradually pulled into a smaller radius while differently labeled samples
(squares) are pushed outside the smaller radius by some finite margin, as shown in the right
diagram.

in which || · ||2 is the Euclidean distance function. From Eq. (2.4), it can be found that the

task of Mahalanobis matrix M functions is to filter out the noisy information in handcrafted

features, i.e., zi and vj , and thus obtain more discriminative person re-id features, i.e., Lzi

and Lvj . Finally, the Euclidean distance function is applied on these discriminative features.

The main task of distance metric learning is to learn the Mahalanobis matrix M.

Many learning based re-id methods have been proposed. As aforementioned, distance metric

learning is popular in person re-id [173, 52, 123, 61, 78, 79, 44, 128, 110]. In [123], the ex-

isting metric learning methods in machine learning are customized for re-id. These methods

include Large Margin Nearest Neighbor Learning (LMNN) [163, 162], Information The-

oretic Metric Learning (ITML) [27] and Logistic Discriminant Metric Learning (LDML)

[45]. LMNN aims at learning a Mahanalobis distance metric for k-nearest neighbor (kNN)

classification [163, 162]. The metric is trained based on the idea that samples from the

same class (positive pairs) are pulled together while samples from different classes (negative

pairs) are separated by a large margin. The training process is illustrated in Fig. 2.5. How-

ever, LMNN is sometimes prone to the over-fitting problem due to the lack of regularization

[61]. ITML mitigates overfitting by introducing a regularization step [27]. It is based on

information-theoretic setting by leveraging the relationship between the multivariate Gaus-

sian distribution and the set of Mahalanobis distances. For LDML [45], Guillaumin et al.

introduce a probabilistic view on learning a Mahalanobis metric where the a posteriori class

probabilities are treated as (dis)similarity measures. As in LMNN and ITML, the objective

of LDML is also to learn a metric with which positive pairs have smaller distances than

negative pairs. In addition to these existing metric learning methods in machine learning,

there are also metric learning methods specifically designed for person re-id. As introduced
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Figure 2.6: Illustration of the idea behind learning the discriminative null space [184]. Sam-
ples with the same identity are projected into a single point.

in Chapter 1, person re-id is a cross-camera image retrieval problem. Based on this obser-

vation, Hirzer et al. proposed a person re-id metric learning method, i.e., Relaxed pairwise

Metric Learning (RPML), with considering the transition of samples from one camera [52].

They found RPML can achieve state-of-the-art results even with less sophisticated features

describing color and texture information. In [61], Köstinger et al. proposed a simple but ef-

ficient metric named KISSME (Keep It Simple and Straightforward Metric Learning), which

measures the similarity and dissimilarity between samples based on the likelihood ratio test.

Together with the LOMO handcrafted feature as introduced above, Liao et al. proposed a

re-id metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA)

[78]. It learns a low dimensional subspace, which can be used for extracting the discrimina-

tive re-id features by cross-view quadratic discriminant analysis, and simultaneously, based

on KISSME, XQDA also learns a metric for measuring the similarities between samples.

One common problem existed in person re-id is that the numbers of positive and negative

sample pairs are largely unbalanced. In order to deal with this problem, a logistic metric

learning approach has been proposed for re-id in [79]. Logistic metric learning approach

learns the metric using positive semidefinite (PSD) constraint based on the observation that

PSD constraint provides a useful regularization to smooth the solution of the metric, and

hence the learned metric is more robust than without the PSD constraint. One of the chal-

lenges in person re-id is dataset creation. As aforementioned, collecting training samples of

matched person pairs across camera-views is labour intensive and tedious and this results in

the small sample size (SSS) problem [17]. With a small sample size of the training dataset,

the within-class scatter matrix becomes singular. Zhang et al. proposed to solve this small

sample size problem by learning a discriminative null space of the training data [184]. Fig.

2.6 illustrates the idea behind learning discriminative null space, with which the samples of

the same identity are projected into a single point and thus, the distances of positive pairs

are extremely minimized and simultaneously, the distances of negative pairs are maximized.
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Based on the fact that person re-id is a cross-camera image retrieval problem, the ranking

methods as in image retrieval domain can be also used for training the re-id model to learn

discriminative features. Several works started to exploit the ranking loss for re-id. In works

[19, 114], the authors try to directly optimize the re-id evaluation metric CMC and mAP.

Since these two list-wise based methods only use the binary similarity information, i.e.,

relevant and irrelevant pair, they still cannot exploit the discriminative feature from negative

pairs and only exploit the local discriminative features. In order to learn the discriminative

features from negative image pairs, Chen et al. proposed a relevance metric learning method

with list-wise constrains and the similarity of arbitrary image pairs can be learned from the

algorithm [16].

2.2 Pedestrian Attribute Based Methods

Although person identity shows the good performance as the supervision to learn the fea-

ture representation for person re-id, many works have also demonstrated that re-id can also

benefit a lot from person attribute supervision [64, 65, 136, 55, 107, 83]. Generally, person

attribute and identity represent the features from different levels in person images. As shown

in Fig. 2.7, person attribute represents the local part of a person [83], for example the hair

length belonging to the attribute on the head part while the up-body clothing type mainly

focusing on the torso part. For the person identity, it represents the global description of

a whole person. Most of existing re-id algorithms are trained only considering the person

identity [120, 143, 198, 192]. For these methods, if the training dataset is small or the person

image variations are not sufficiently included in the training set, the algorithm may fail to

learn discriminative local features and lead to inaccurate re-id results. Attribute is treated

as a kind of mid-level feature that represents the local part of the person, it provides more

details to describe the person. In addition, another one advantage of attribute over identity

Figure 2.7: Two sample examples of identity and attribute labels.

29



Figure 2.8: Overview of the learning strategy which combines identity and attribute as super-
vision for learning discriminative re-id features [83]. The model contains two classification
parts, one for attribute recognition and the other for identification. The person feature rep-
resentation of each image is extracted using the CNN extractor. The attribute classifiers
predict attributes based on the image feature. For identity classification part, the attribute
predictions are treated as additional cues. Specifically, the local attribute predictions are re-
weighted by the Attribute Re-weighting Module and then concatenate them with the global
image feature. The final identification is built upon the concatenated local-global feature.

label is that attribute is consistent between different domains [204] and thus the re-id model

trained under the supervision of attributes can be easily generalized to other domains.

Many works have exploited as supervision for training person re-id model. In [64], a fusion

strategy is designed to merge the discriminations of both person attributes and low level fea-

tures for re-id. Considering the color and type of the clothes are the main cues for appearance

based re-id, Li et al. proposed a latent Support Vector Machines framework to embed the

clothing attributes into person re-id [65]. Su et al. proposed the low rank attribute embed-

ding method as a preprocessing procedure to rectify the incorrect and incomplete attributes

in the dataset, and with using a multi-task framework, a person identity and attribute based

discriminative model is constructed [136]. For these works, the attributes are directly used

as a feature vector and fused with low-level features for improving re-id performance. There

are also part of works using attribute as the label to learn the attribute supervised discrimi-

native features. In [55], the so-called attribute-consistent model is designed for leaning two

projections to map the hand-crafted features into a joint subspace. These two projections re-

spectively correspond to the person identity and attribute, and the experimental results show

that, compared with the feature learned only considering person identity, the projected fea-

tures in the joint subspace are more discriminative and efficient in re-id. Similarly, Lin et

al. also jointly consider the identity and attribute as the supervisions but in a deep multi-

task model to learn the discriminative re-id features [83], they found not only the attribute

recognition can help person re-id, but re-id can also improve the attribute recognition per-

formance. The learning strategy in [83] is illustrated in Fig. 2.8. Matsukawa et al. only

consider the attribute as the supervision to learn the feature representation, and in addition
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to the attribute classification loss, a combination attribute loss is designed to improve the

feature discrimination [107]. The experiments show that the learned feature representation

can be comparable with the hand-crafted features even in the small datasets.

For the works discussed above, one of the prerequisites is that the considered re-id dataset

should contain the attribute labels. However, as aforementioned, most of the re-id datasets

are still lack of attribute labels, while in attribute recognition domain, there are many datasets

labeled with sufficient attributes. Based on this observation, several works started to exploit

making use of the attribute recognition dataset for re-id. In [132], the so called Indian Buf-

fet Process (IBP) is used to learn the mid-level representation based on the user defined

attributes, and then transfer the learned attribute recognition knowledge from fashion do-

main to surveillance domain. With the learned attribute representation for each image in

surveillance, the metric learning algorithm is used to measure the similarities between im-

ages. However, as stated in [117], the user defined semantic attributes may not enough to

describe a person. Two different persons may share the same user defined attributes. In

addition, there are some latent attributes that are not nameable/semantic but still useful for

re-id. To overcome these problems, the work [117] introduces the dictionary learning model

to jointly considers the semantic and latent attributes for both zero shot learning and per-

son re-id. However, one limitation of this work lies in that the source and target domain

should share user defined attributes if annotated and some latent attributes [117]. Although

a same set of attributes across different domains can be extracted by removing the domain

specific user defined attributes, the proposed algorithm cannot make full use of the user de-

fined attributes. In [137], a deep attribute learning algorithm has been introduced, and the

attribute recognition knowledge is transferred from one dataset to another one using a fine

tuning strategy. However, it has been shown that fine tuning a network will degrade its per-

formance on the original task (attribute recognition) [76], and thus the network may fail to

extract discriminative features related to attributes. The proposed attribute adaption re-id

framework learns to extract local discriminative features under the supervision of attribute

labels, and it overcomes the limitations mentioned above inn domain adaptation. In addition,

it can make full use of the label information for re-id in both the source and target domains.

2.3 Deep Learning Methods

In 2014, Yi et al. [177] and Li et al. [72] both proposed to use siamese neural network

for person re-id by training the network to determine if a pair of input images belongs to

the same identity or not. During the following years, many person re-id methods based on

Convolutional Neural Networks (CNNs) have been proposed [192, 63]. In this section, these
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CNN based re-id methods are grouped into several categories according to the label infor-

mation used in training the re-id models, i.e., fully supervised person re-id, unsupervised

domain-adaptive person re-id, semi-supervised person re-id, weakly supervised person re-

id, unsupervised person re-id, unsupervised tracklet learning person re-id. Except for fully

supervised person re-id and unsupervised domain-adaptive person re-id, there are very few

works in other groups and thus they are together grouped into the “others” category.

2.3.1 Fully Supervised Person Re-Identification

Most existing deep learning based person re-id models are created by supervised learning

methods on a separate set of cross-camera identity labelled training data [73, 186, 23, 74,

133, 12, 130, 190, 192, 86]. Relying on the strong supervision of cross-camera identity

labelled training data, they have achieved remarkable performance boost.

One of the challenges in person re-id is the pose variations. However, existing benchmarks,

e.g., Market1501 [191], DukeMTMC-reID [196], do not provide sufficient pose coverage

to train a robust re-id model. In order to solve this problem, Liu et al. proposed a pose-

transferrable person re-id framework [86]. Specifically, the framework is composed of two

parts. One is the image generation. Based on GAN [40], person image is generated using

the appearance from existing datasets and poses extracted from MARs dataset [189]. The

second part is re-id model training. The generated images are combined with the realistic

images to train the re-id model. In order to balance the contribution between real samples

and generated samples during training, a label smoothness scheme is introduced for cross

entropy training. The work [50] considers the occlusion problem in person re-id under deep

neural network framework. The person re-id model can fail to re-identify a person when

the person body is severely occluded. To solve this problem, several solutions have been

Figure 2.9: Different solutions for partial person re-id: (a) The probe person image and
gallery person image are resized to fixed-size (Resizing model). (b) Sliding window match-
ing. (c) Part-based model. (d) The proposed Deep Spatial feature Reconstruction [50].
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Figure 2.10: Illustration of the person re-id model proposed in [158]. Features from multiple
convolutional network layers are fused together in the final loss function to train the model.

provided, e.g., re-scaling an arbitrary patch of the person to a fixed-size image, Sliding

Window Matching [194] and part-based model. These three solutions are illustrated in Fig.

2.9. However, all of them suffer from some drawbacks. For example re-scaling an arbitrary

patch cannot deal with the case when the size of the probe person is bigger than the size of

the gallery person and part-based model has a high computational cost. Deep Spatial feature

Reconstruction (DSR) solves these problem by take advantage of both Fully Convolutional

Network (FCN) and dictionary learning. FCN is utilized to generate spatial feature maps

of certain sized. With the dictionary learning, each pixel in the probe spatial maps can be

sparsely reconstructed on the basis of spatial maps of gallery images, and thus, the model is

independent of the size of images and naturally avoids the time-consuming alignment step.

Multi-level features are considered in [13, 46, 158] for person re-id. Different-level features

contains different discriminative information for re-identifying a person. In [13], the Multi-

Level Factorisation Net (MLFN) is proposed in which a network architecture is designed

to factorise the visual appearance of a person into latent discriminative factors at multiple

semantic levels without manual annotation. Guo et al. propose an end-to-end fully convo-

lutional Siamese network that computes the similarities at multiple levels [46]. According

to their experimental results, the bottom convolutional layers contain low level visual infor-

mation while the higher layers contain semantical information. The work [158] proposes to

solve the resolution variations in person re-id by combining effective embeddings built on

multiple convolutional network layers, trained with deep-supervision. Fig. 2.10 illustrates

the person re-id model proposed in [158]. Li et al. designed a harmonious attention deep

network for joint learning of soft pixel attention and hard regional attention along with si-

multaneous optimisation of feature representations [74]. Zheng et al. designed a pose fusion

CNN architecture to reduce the impact of pose estimation errors and information loss in

person re-id task [190].

As in handcrafted feature extraction, part-to-part matching is an intuitive idea for person re-

id [31, 25]. This is also exploited under deep neural network framework [186, 187, 140, 142,
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Figure 2.11: Examples of body regions extracted using the model in [187].

185, 174]. In [186], Zhao et al. proposed a novel CNN (Spindle Net) which is based on hu-

man body region guided multi-stage feature decomposition and tree-structured competitive

feature fusion. Spindle Net features with (1) it separately captures semantic features from

different body regions thus the macro- and micro-body features can be well aligned across

images, and (2) the learned region features from different semantic regions are merged with

a competitive scheme and discriminative features can be well preserved. The work [187]

provides an approach to decompose the human body into regions (parts) which are discrimi-

native for person matching. The proposed model can extract features from each regions and

concatenate them together for formulating the final feature representation for person re-id.

Several examples of the extracted body regions are presented in Fig. 2.11. Suh et al. pro-

posed to align person body parts based on 2D pose estimation results [140]. The proposed

model consists of a two-stream network, which generates appearance and body part feature

maps respectively. A bilinear-pooling layer is added after two network streams for fusing

two feature maps into one image descriptor. The network architecture is presented in Fig.

2.12.

Figure 2.12: The network architecture proposed in [140].
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2.3.2 Unsupervised domain-adaptive Person Re-Identification

Unsupervised domain adaptation is proposed to solve the domain shift problem when the

label information is not provided in the target domain. The basic idea behind lots of do-

main adaptation works is to match the feature distributions in the source and target domains

[35, 26, 152, 141]. Ganin et al. proposed an unsupervised domain adaptation method that

can simultaneously train the network to learn discriminative and domain invariant feature

representations by using the gradient reversal layer [35]. In works [141, 111], the corre-

lation alignment (CORAL) is considered for unsupervised adaptation. CORAL minimizes

the domain shift by aligning the second-order statistics of the source and target domains.

In recent years, with the emergence of generative adversarial networks (GANs) [41], there

are also some works trying to use adversarial adaptation strategy for adapting the network

from source to target domain. Tzeng et al. proposed an adversarial adaptation framework in

which the network is firstly trained in the source domain and then adversarially adapt to the

target domain with the help of a discriminator as in GANs [41, 151]. The work [152] extends

this adversarial adaptation framework with adding the step to train a feature generator and

the domain invariant features can be learned.

In order to improve the generalization capability of re-id model and also reduce the human

efforts consumed in annotating dataset, unsupervised domain-adaptive technologies are also

exploited in person re-id [29, 199, 179, 155, 81, 180, 178, 200, 134, 164, 181]. The works

[155, 81] try to adapt the re-id model by using both identity and attribute labels. Wang et

al. developed a neural network method in which two network branches are included [155].

As shown in Fig. 2.13, one is for learning discriminative features under the supervision of

identity labels and the other one is applied for learning the discriminative features under the

supervision of attribute labels. Considering the fact that attribute label is consistent across

domains while identity label is not, an encoder-decoder network is designed to bridge the gap

Figure 2.13: The re-id model proposed in [155].
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between identity and attribute information, and then both identity and attribute knowledge

are fused into one network branch which is further adapted to the target domain for person

re-id. Lin et al. proposed to fuse attribute and identity knowledge by using a multi-task net-

work framework and multi-level features are aligned for training a re-id model which works

in both source and target domains [81]. Yu et al. proposed a deep model for unsupervised

domain-adaptive person re-id using soft multilabel learning [179]. The soft multi-labels

are obtained in the target domain by comparing the unlabeled person with a set of known

reference persons from an auxiliary domain. Then the soft multilabel-guided hard negative

mining is applied to learn a discriminative embedding for the unlabeled target domain by ex-

ploring the similarity consistency of the visual features and the soft multilabels of unlabeled

target pairs.

The re-id works [155, 81, 179] try to adapt re-id model on the feature level while some

other works are trying to adapt re-id model by transforming the image style between source

and target domain [29, 4, 160, 22]. In [29], Deng et al. proposed a similarity preserving

image-image translation model to transform the image style from the source domain to tar-

get domain. With the designed image-image translation model, two types of unsupervised

similarities can be preserved: (1) self-similarity of an image before and after translation,

and (2) domain-dissimilarity of a translated source image and a target image. The re-id

model is trained based on the translated images. The diagram is illustrated in Fig. 2.14.

Wei et al. also consider generative model for unsupervised domain adaptation [160]. A

Person Transfer Generative Adversarial Network (PTGAN) has been proposed to transform

the image style in the source domain to the target domain. The transferred persons from A

can still keep their identities, meanwhile present similar styles, e.g., backgrounds, lightings,

etc, with persons in B. In [164], Wu et al. proposed to solve unsupervised domain-adaptive

person re-id problem by distilling the knowledges from teacher networks which have been

trained on fully labeled re-id datasets. Although there are several large-scale person re-id

datasets, it still cannot include enough variations for training a discriminative and robust

re-id model. Based on this observation, the work [4] considers using generative model to

synthesize virtual humans and then create samples from these virtual humans with differ-

ent variations, e.g., different person poses and illuminations. These synthesized samples are

Figure 2.14: The pipeline of the re-id method proposed in [29].
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Figure 2.15: The pipeline of the re-id method proposed in [201].

transformed into the target re-id dataset by employing cycle-consistent adversarial networks.

The translated images are then used to fine-tune the person re-id model.

Figure 2.16: The re-id model proposed in [22].

In addition to dataset domain variations, several works also consider camera domain vari-

ations for improving re-id model generalization ability [199, 22, 77, 201]. Zhong et al.

consider to take advantages camera-style variations to augment the re-id dataset and thus

improve the discriminative and robust of the extracted re-id features [201]. The pipeline is

illustrated in Fig. 2.15. Chen et al. proposed to generate person images with same per-

son appearance but different contextual variations, e.g., background and illuminations [22].

This is based on the observation that in open surveillance camera system, the contextual

variations can be quite diverse, due to wide-of-the-field imagery and varying times of the

day. Camera-view variation is also considered in the person image generation model. The

designed model is illustrated in Fig. 2.16 In work [199], a Hetero-Homogeneous Learning

(HHL) method is proposed. The method simultaneously can obtain two domain invariances:

(1) camera invariance, learned via positive pairs formed by unlabeled target images and their

camera style transferred counterparts; (2) domain connectedness, by regarding source/target

images as negative matching pairs to the target / source images. The first property is ob-

tained by homogeneous learning because training pairs are collected from the same domain
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while the second property is achieved by heterogeneous learning because training pairs are

sampled from both the source and target domains.

2.3.3 Other Methods

In addition to the fully supervised and unsupervised domain-adaptive person re-id works

based on deep learning framework, there are also some other works trying to reduce the

human efforts consumed in dataset annotation and improve the discriminative power of re-id

features. These works include semi-supervised person re-id, weakly supervised person re-id,

unsupervised person re-id, unsupervised tracklet learning person re-id.

Figure 2.17: The semi-supervised person re-id method proposed in [167].

A typical strategy for reducing label supervision is by semi-supervised learning. The key

idea is to self-mine supervision information from unlabelled training data based on the

knowledge learned from a small proportion of labelled training data. The work [167] ap-

proaches the semi-supervised person re-id problem by constructing a set of heterogeneous

CNNs fine-tuned using the labeled portion, and then propagating the labels to the unla-

beled portion for further fine-tuning the overall system. A novel multi-view clustering

method is proposed for estimating labels of the unlabeled samples. The method is pre-

sented in Fig. 2.17. Weakly supervised person re-id aims at training re-id model based

on weakly labeled data. In [108], Meng et al. proposed a weakly supervised person re-id

paradigm where the identity labels are annotated at the untrimmed video level. Unsuper-

vised model learning is an intuitive solution to avoid the need of exhaustively collecting a

large number of labelled training data for every application domain. Compared to the su-

pervised learning methods, early hand-crafted feature based unsupervised learning methods
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Figure 2.18: The unsupervised person re-id method proposed in [82]. (a) The unlabeled
images are used as input to train the network and then features of all training images are
extracted for clustering. Fig. (b)-(d) depict the cluster merging procedure.

[153, 59, 58, 56, 101, 176, 90] offer significantly inferior re-id matching performance. The

deep learning based method [82] reduces this performance gap, in which the re-id model is

first trained using the instance loss by treating each image belonging to one single unique

identity. After pre-training the model, the clustering method is applied for further learn-

ing the discriminative features for person re-id. This unsupervised person re-id method is

illustrated in Fig. 2.18. Instead of assuming transferable source domain training data, a

small number of methods [67, 68, 21] leverage the auto-generated tracklet data with rich

spatio-temporal information for unsupervised re-id model learning. In many cases this is a

feasible solution as long as video data are available. However, it remains highly challenging

to achieve good model performance due to noisy tracklets with unconstrained dynamics.
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Chapter 3

Gaussian Mixture Importance Estimation

3.1 Introduction

Despite the devoted efforts, re-id remains a rather challenging task due to the nonrigid struc-

ture of the human body, the different perspectives in which a pedestrian can be observed,

and the highly variable illumination conditions, which are also introduced in Chapter 1.

Most of the re-id works suggest that, normally, individuals do not change their clothings

across a camera network. This assumption inspired the contributions to regard the visual

aspect as a main cue in chacarterizing person images. In particular, the mainstream re-id

literature can be broadly categorized in two classes, namely direct and learning-based meth-

ods. The former group tends to handcraft, robust features and potentially their combination

thereof. In the latter group, i.e., learning based methods, a dataset of similar and dissimilar

persons is used to ‘learn’ personalized features and/or a metric space where to match them.

The underlying assumption is that the knowledge extracted from the training set generalizes

to unseen samples.

In this chapter, a new re-id method has been proposed, i.e., Gaussian mixture importance es-

timation (GMIE, for short), which is also based on likelihood ratio test, inspired by KISSME.

However, GMIE offers several advantages with respect to KISSME. As described in [61],

KISSME uses the Gaussian densities to separately approximate the distributions of intrap-

ersonal and interpersonal variations. In this case, if the intrapersonal and/or interpersonal

variations are characterized by a multi-modal distribution, which is commonly encountered

in practice, the distribution approximation in KISSME would be inaccurate based only on

Gaussian densities. Fig. 3.1 demonstrates a toy example of approximating a bimodal dis-

tribution with Gaussian density in a one projected dimension case. From the figure, it can

be observed that the estimated (red) curve does not accurately fit the actual (blue) one. In

addition, what is important in KISSME is to estimate the covariance matrices of intraper-

sonal and interpersonal variations. In practice, due to the small sample size problem in re-id

dataset, it is always difficult to accurately estimate these two covariance matrices, especially

in high-dimensional cases. Although the principal component analysis (PCA) is used for
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Figure 3.1: Illustration example of approximating a distribution with two modes using Gaus-
sian density. Blue line is the true probability density and the red line is the approximated
probability density.

dimension reduction, KISSME remains sensitive to the feature dimension as reported in the

existing works [78, 105]. Considering these disadvantages in KISSME, we introduce a novel

re-id method based on Gaussian mixture importance estimation, which is robust to feature

dimension. Unlike KISSME, our method directly estimates the ratio of the aforementioned

probability densities via GMMs, which maintains the performance as the feature dimension

rises. Rigorous experiments are performed to validate the advantages of our approach over

existing alternatives on multiple benchmark datasets.

3.2 Background

The proposed GMIE is related to the Mahalanobis metric, KISSME [61] and Gaussian mix-

ture models. As in KISSME, GMIE is also based on the likelihood ratio between intraper-

sonal and interpersonal probability densities. However, in order to capture the multi-modes

in the data structure, the Gaussian mixture models is used in GMIE. In the following, the

brief descriptions about KISSME and Gaussian mixture models will be provided as the back-

grounds of the proposed methodology.

3.2.1 KISS Metric Learning

Given a pair of labeled samples {zi, yi} and {vj , lj}, in which yi and lj denote the label of

person identities corresonding to the i-th and j-th person images, respectively. zi and vj are

the feature vectors extracted from i-th and j-th person image in the corresponding camera-
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view. The difference between these two feature vectors is calculated as xij = zi−vj . If yi =

lj , xij is called the intrapersonal difference, and if yi 6= lj , xij is called the interpersonal

difference. In the following, the indexes i, j are omitted in xij for simplicity. Let ΩI denotes

the class that includes the intrapersonal differences, while ΩE denotes the class that holds

the interpersonal differences. In KISSME, the likelihood ratio test is used to determine if x

belongs to ΩE . The likelihood ratio is:

δ(x) = log

(
pE(x)

pI(x)

)
, (3.1)

where pE(x) is the probability density for class ΩE and pI(x) is for ΩI . Since the set of

sample difference x is zero mean, the approximations of pE(x) and pI(x) with Gaussian

densities can be formulated as:

pE(x) =
1

(2π)d/2|ΣE |1/2
exp(−1

2
xTΣ−1E x), (3.2)

pI(x) =
1

(2π)d/2|ΣI |1/2
exp(−1

2
xTΣ−1I x), (3.3)

in which ΣE and ΣI represent the covariance matrices of ΩE and ΩI , respectively, and d is

the dimension of x.

Substitute Eqs. (3.2)-(3.3) into Eq. (3.1), the likelihood ratio can be reformulated as:

δ(x) =
1

2
xT (Σ−1I −Σ−1E )x +

1

2
log

( |ΣI |
|ΣE |

)
. (3.4)

Removing the constant terms, we can get the simplified likelihood ratio:

δ(x) = xT (Σ−1I −Σ−1E )x. (3.5)

To ensure the nonnegative value of δ(x), KISSME further re-projects M = Σ−1I −Σ−1E into

the cone of positive semi-definite matrix.

With Eq. (3.5), the likelihood ratio δ(x) is converted into the calculations of the covariance

matrices ΣE and ΣI . However, there is a high computation requirement for calculating

these two covariance matrices. Suppose there are two sets Z and V respectively containing

the samples from two different camera views. Specifically, Z = (z1, z2, . . . , zn) ∈ Rd×n

and V = (v1,v2, . . . ,vm) ∈ Rd×m. The computations of ΣE and ΣI require O(Nkd2)

and O(nmd2) multiplication operations, respectively, in which N = max(m,n), and k is

the average number of images for each class (identity). To reduce the computation, the work
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[78] proposed to derive ΣE and ΣI as:

nIΣI = Z̃Z̃
T

+ ṼṼ
T − SRT −RST (3.6)

in which




Z̃ = (
√
m1z1,

√
m1z2, . . . ,

√
m1zn1 , . . . ,

√
mczn)

Ṽ = (
√
n1v1,

√
n1v2, . . . ,

√
n1zm1 , . . . ,

√
ncvm)

S = (
∑

yi=1 zi,
∑

yi=2 zi, . . . ,
∑

yi=c
zi)

R = (
∑

li=1 vi,
∑

li=2 vi, . . . ,
∑

li=c
vi)

(3.7)

in which nk is the number of samples of class k in Z and similarly, mk is the number of

samples of class k in V and c is the number of classes.

Based on ΣI , ΣE can be derived as:

nEΣE = mZZT + nVVT − srT − rsT − nIΣE (3.8)

in which




s =
∑n

i=1 zi

r =
∑m

i=1 vi
(3.9)

With Eqs. (3.6) and (3.8), the computations of ΣE and ΣI are both reduced to O(Nd2).

In addition, Eqs. (3.6) and (3.8) also show that both ΣE and ΣI can be computed from the

sample mean and covariance of each class and all classes. Thus, there is no need to actually

calculate the mn pairs of sample differences as in the original KISS metric learning [61].

3.2.2 Gaussian Mixture Models

The Gaussian Mixture Models (GMMs) is a parametric probability density function that is

represented with a weighted sum of Gaussian components. It has the wide applications in

different areas involving clustering and classification, for example pattern recognition, data

mining, image analysis and machine learning etc.

Given the feature vectors x as in subsection 3.2.1, the GMMs can be formulated as:

f(x) =

b∑

l=1

πlN(x|ul,Σl), (3.10)
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Figure 3.2: Illustration example of approximating a one dimensional distribution with
GMMs (composed of three Guassian components). There are multi-modes existed in the
true distribution denoted with blue line. The approximated distribution is denoted using
dashed red line which is composed of three weighted Gaussian components which are de-
noted using dashed green lines.

where πl, l ∈ [1, 2, . . . , b] are the weights, and b is the number of Gaussian mixture com-

ponents. ul and Σl respectively denote the mean vector and covariance matrix of the l-th

Gaussian component which can be formulated as:

N(x|ul,Σl) =
exp

(
−1

2(x− ul)
TΣ−1l (x− ul)

)

(2π)d/2|Σl|1/2
. (3.11)

where d is the dimension of the feature vector x.

The estimation of GMMs f(x) relies on estimating the parameters πl, ul and Σl (l ∈
[1, 2, . . . , b]) and usually they can obtained using Expectation-Maximization (EM) algorithm

based on training data. Fig. 3.2 gives an illustration example of using GMMs to approximate

a multi-mode distribution. From the figure, it can be observed that GMMs can effectively

capture the multi-modes in the true data distribution and thus offers a more accurate dis-

tribution approximation compared with using Gaussian density (only with one Gaussian

component).

3.3 Our Proposed Approach

Based on the aforementioned background, the proposed approach, i.e., Gaussian mixture

importance estimation (GMIE), aims at directly approximating the ratio of intrapersonal

and interpersonal probability densities pE(x) and pI(x) using the GMMs. In this way,

it avoids explicitly estimating pI(x) and pE(x) and effectively improves its robustness to
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high dimensional features as demonstrated in the experiments. In addition, using GMMs

as approximation function, GMIE can also capture the multi-modes existed in pI(x) and/or

pE(x). The details of GMIE is introduced in the following.

3.3.1 Gaussian Mixture Importance Estimation

Different from KISSME, we here consider the likelihood of x belonging to ΩI . Thus, the

ratio used in GMIE between pE(x) and pI(x) is:

w(x) =
pI(x)

pE(x)
. (3.12)

As aforementioned, GMIE approximates the ratio w(x) via the GMMs, which combines a

number of Gaussian components. Hence, the approximation of w(x) is:

ŵ(x) =

b∑

l=1

πlN(x|ul,Σl), (3.13)

where as in Eq. (3.10), πl (l ∈ [1, 2, . . . , b]) are the weights, and b is the number of Gaussian

components. ul and Σl respectively denote the mean vector and covariance matrix of the

l-th Gaussian component.

Based on Eq. (3.13), the likelihood ratio as in Eq. (3.5) can be reformulated as:

δ(x) = logw(x) ≈ log
b∑

l=1

πlN(x|ul,Σl). (3.14)

To estimate the parameters πl, ul, Σl and b, the minimization of the Kullback-Leibler diver-

gence from pI(x) to its approximation p̂I(x) is used:

KL[pI(x)||p̂I(x)] =

∫
pI(x)log

pI(x)

p̂I(x)
dx. (3.15)

Take Eqs. (3.12) and (3.13) into consideration, the estimation of p̂I(x) can be formulated

as:

p̂I(x) = ŵ(x)pE(x). (3.16)

Substitute Eq. (3.16) into Eq. (3.15), the Kullback-Leibler divergence can be reformulated
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as:

KL[pI(x)||p̂I(x)] =

∫
pI(x)log

pI(x)

pE(x)
dx

−
∫
pI(x)logŵ(x)dx.

(3.17)

The unknown parameters are only contained in the second term of the equation. Thus,

minimizing Kullback-Leibler divergence equals to maximizing the second term as:

J =

∫
pI(x)logŵ(x) dx =

1

nI

nI∑

i=1

logŵ(xIi ), (3.18)

where nI is the number of samples in ΩI , and xIi denotes the ith sample from ΩI .

Since pI(x) is a probability density, thus the following constraint should be held:

1 =

∫
p̂I(x) dx =

∫
ŵ(x)pE(x) dx

≈ 1

nE

nE∑

j=1

ŵ(xEj ),
(3.19)

where nE is the number of samples in ΩE , and xEj denotes the the jth sample from ΩE .

Consider Eqs. (3.13), (3.18) and (3.19), the optimization problem of GMIE can be formu-

lated as:

max
{πl,ul,Σl}bl=1

nI∑

i=1

log

(
b∑

l=1

πlN(xIj |ul,Σl)

)

s.t.
nE∑

j=1

b∑

l=1

πlN(xEj |ul,Σl) = nE

π1, ..., πb ≥ 0.

(3.20)

The parameters µl, Σl and πl can be estimated by employing the Lagrangian multiplier

method on this optimization problem. More detailed estimation procedure can be found in

[170].

The parameter b can be determined through the likelihood cross validation method as intro-

duced in [139, 170]. Considering the small simple size problem in re-id, we determine b by

providing several candidates and select the one that maximize J in Eq. (3.18). It is worth to

note that a large b will lead to the over fitting problem.
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3.3.2 Person Re-Identification Process Using GMIE

With the estimated GMMs parameters, i.e., µl, Σl and πl (l ∈ [1, 2, . . . , b]), the likelihood

ratio of two given samples zi and vj can be calculated using:

δ(xij) ≈ log

b∑

l=1

πlN(xij |ul,Σl). (3.21)

in which xij = zi − vj . zi and vj can be obtained using the handcrafted feature extraction

methodology, for example LOMO [78] and GOG [105]. A high value of δ(xij) means that

zi and vj are highly similar to each other and thus has the high probability to be the same

person. The re-id procedure of GMIE is summarized in Algorithm 1.

Algorithm 1 Person re-id procedure of GMIE.

Training:
step 1: Extract handcrafted features from training dataset;
step 2: Calculate differences x between feature vectors;
step 3: Estimate GMMs parameters by solving the optimization problem in Eq. (3.20).

Evaluation:
step 1: Extract handcrafted features from test dataset;
step 2: Calculate likelihood ratios between query and gallery images using Eq. (3.21);
step 3: Rank the similarities between query and gallery images based on likelihood ratios.

3.4 Experiments

We assess our introduced method on three datasets, i.e., VIPeR dataset [43], GRID dataset

[85] and PRID 450S dataset [123]. In the experiments, b is determined using five candidates,

i.e., b = [1, 2, 3, 4, 5], and the one that maximizes J is selected as mentioned earlier. The

evaluation procedure in every dataset is repeatedly carried out 10 times. It is to note that

PCA is employed for feature dimension reduction. We report the results in terms of re-id

rate by means of Cumulative Matching Characteristic (CMC) curve, which accumulates the

re-id accuracy as the rank index increases. For a through analysis, the performance of our

method is evaluated from three different aspects, i.e. robustness to subspace dimensions,

effect of different descriptors and re-id rate. The details and discussions on each dataset are

presented in following three subsections.
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(a) (b)

Figure 3.3: Experimental results on VIPeR dataset with GOG feature: (a) dimensionality
influence; (b) CMC curves with 300 dimensions.

3.4.1 Experiments on VIPeR Dataset

Fig. 3.3 shows evaluation results on VIPeR dataset by adopting the Gaussian Of Gaussian

(GOG) feature [105]. Its sub-figure (a) presents the trend of rank 1 scores with increasing

the subspace dimension. For comparison, the KISSME, Mahalanobis distance trained with

genuine pairs [61] and Euclidean distance are implemented. It can be found in the figure that

KISSME and Mahalanobis distance work well only within the range from 100th to 250th di-

mensions. For the dimension larger than 250, their rank 1 scores decrease dramatically since

the estimated covariance matrices become inaccurate in high dimensional subspace. How-

ever, the proposed GMIE method estimates the parameters based on the Kullback-Leibler

divergence instead of a direct inference from samples. This renders it robust to the dimen-

sion increase which is also demonstrated in the Fig. 3.3 (b). Although the Euclidean distance

is also robust to dimensionality, its re-id accuracy is relatively low. We further compare our

method for a dimension of 300 with other methods, i.e., CPS [24], SDALF [31], and ELF

[44]. The CMC curves for these considered methods are displayed in Fig. 3.3 (b). It can be

seen that GMIE works better than the considered methods, often by a large margin.

To assess the performance of our method in other feature descriptors, we also repeat the

experiments on VIPeR dataset using the LOMO feature [78]. The experimental results are

depicted in Fig. 3.4. From the figure, the same behavior is observed. It is to note from

these outcomes that GOG seems to incur more robustness on the KISSME and Mahalanobis

distance.

3.4.2 Experiments on GRID Dataset

In the experiment, the KISSME, Mahalanobis and Euclidean distance are also included for

comparison as in VIPeR dataset. To evaluate the effectiveness of GMIE on different feature
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(a) (b)

Figure 3.4: Experimental results on VIPeR dataset with LOMO feature: (a) dimensionality
influence; (b) CMC curves with 300 dimensions.

(a) (b)

Figure 3.5: Experimental results of dimensionality influence on grid dataset with (a) GOG
feature and (b) LOMO feature.

descriptors, the experiments are performed with both GOG and LOMO features. The results

are presented in Fig. 3.5. It can be viewed from the figure that KISSME and Mahalanobis

distance are not robust to the dimension increase. In the high dimensional subspace (the

dimension greater than 80), their re-id accuracies decrease largely, especially at 120-th di-

mension of LOMO feature, the re-id accuracies of KISSME and Mahalanobis distance are

even lower than the Eluclidean’s. However, GMIE always works well in the high subspace

dimension both in GOG and LOMO cases as demonstrated in Fig. 3.5.

To make a comparison with the state of the art results reported on GRID dataset, we calculate

the re-id accuracy in the subspace dimension with which the related method has the highest

re-id accuracy, and the final results are listed in Tab. 3.1. The table shows that for the rank

1, re-id accuracy of GMIE (24.64%) almost equals to the highest state of art result (24.70%)

reported by XQDA with using GOG feature [105]. However, for the rank 5, 10, 15 and 20,

GMIE has the best accuracies compared with other considered methods. The main reason

of the high re-id accuracy of GMIE traces back to the fact that GMIE is based on GMMs,

which makes it more accurate in capturing the multi-modal properties in the densities pI(x)

and pE(x) in Equ. (3.12).
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Table 3.1: Experimental results on GRID dataset of different methods comparing with our
GMIE approach (%).

Methods Rank1 Rank5 Rank10 Rank15 Rank20
MRank-RankSVM [92] 12.24 27.84 36.32 42.24 46.56

MtMCML [100] 14.08 34.64 45.84 52.88 59.84
PolyMap [15] 16.30 35.80 46.00 52.80 57.60

SSDAL+XQDA [137] 22.40 39.20 48.00 – 58.40
KEPLER [104] 18.40 39.12 50.24 57.04 61.44

NLML [54] 24.54 35.86 43.53 – 55.25
DR-KISS [147] 20.60 39.30 51.40 – 62.60

SCSP [15] 24.24 44.56 54.08 – 59.68
GOG+KISS 18.32 39.36 51.84 58.48 63.44

GOG+XQDA [105] 24.70 47.00 58.40 – 69.00
GOG+GMIE (ours) 24.64 49.52 63.84 69.48 73.32

3.4.3 Experiments on PRID 450S Dataset

The experimental results are illustrated in Fig. 3.6. From its sub-figure (a), it can be found

that KISS and Mahalanobis distance perform well only in the certain subspace dimension

range (between 50-th and 150-th dimension) as in VIPeR and GRID datasets. For the low

or high dimensions, their re-id accuracies decrease. However, GMIE still works well in the

high dimensional case. It can be seen from the figure that the GMIE’s trend of rank 1 re-id

accuracy consistently keeps stable from 50-th dimension. By setting the subspace dimension

to 220, the CMC curves for these four methods are plotted in Fig. 3.6 (b). As shown in the

figure, Euclidean distance works better than both KISS and Mahalanobis distance in high

dimensional subspace. GMIE always has the highest re-id accuracy compared with other

considered methods.

From the experimental results on these three datasets, it can be found that KISS and Maha-

lanobis distance are sensitive to the subspace dimension. In particular their performances

degrade significantly in the high dimensional case. Thus, in order to use the KISS and

Mahalanobis distance for re-id task, a cross validation procedure may be necessary in the

training stage in order to find an appropriate subspace dimension which will come at the

cost of more complexity. However, our approach GMIE always performs well in the high

dimensional subspace on all three datasets. In addition, GMIE also has high re-id accuracy,

especially on the GRID datasets.
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(a) (b)

Figure 3.6: Experimental results on PRID 450S dataset with GOG feature: (a) dimensional-
ity influence; (b) CMC curves with 220 dimensions.

3.5 Conclusions

In this chapter, a GMIE person re-id method has been proposed. Unlike KISSME, it directly

approximates the density ratio between the intrapersonal and interpersonal variations. By

adapting the Kullback-Leibler divergence technique, GMIE can maintain its re-id perfor-

mance even in the high dimensional case, which is difficult for KISSME. In addition, thanks

to the GMMs used for approximating the density ratio, GMIE is also capable of capturing the

multi modal properties existed in the underlying densities of intrapersonal and interpersonal

variations. These advantages of GMIE have been validated with detailed experiments on

three datasets. The re-id accuracy of GMIE is also satisfactory compared with other works.
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Chapter 4

Unsupervised Domain-Adaptive Person
Re-identification Based on Attributes

4.1 Introduction

Pedestrian attributes, e.g., hair length, clothes type and color, locally describe the appearance

of a person. Training person re-id algorithms under the supervision of such attributes have

proven to be effective in extracting the discriminative re-id features [64, 65, 136, 55, 83, 107].

Different from person identity, which denotes the global description of the person, attribute

represents the local part of a person. For example, hair length refers to the head part while

the up-body clothing type mainly focuses on the torso part. Thus, with the supervision of

pedestrian attributes, the re-id model can learn the local semantic person appearance fea-

tures.

However, most of datasets in re-id domain come without pedestrian attributes [192, 73, 189,

159]. In addition, attribute annotation is also a complex and time consuming task. Part

of attributes, for example wearing sunglass or not and with or without backpack, are fre-

quently not coherent along time since for the changes of illumination, person pose etc. De-

spite the effort of Lin et al. [83] in annotating two re-id datasets, i.e., Market1501 [191]

and DukeMTMC-reID [196], with attributes labels, there is still a big shortage of attribute-

annotated large-scale re-id datasets. On the other hand, there is a number of attribute-labeled

datasets in the domain of pedestrian attribute recognition [66, 75, 129]. Unfortunately, this

kind of datasets cannot be directly exploited for re-id, since no identity label is provided and

usually there is only one image for each identity.

As shown in Fig. 4.1, our work bridges the gap between attribute recognition and person re-

id. In the proposed framework, an attribute recognition model is first trained on the attribute

recognition dataset. Considering there is no attribute labels in the re-id dataset, unsuper-

vised domain adaptation is applied for model adaptation. To learn the domain-invariant fea-

ture, a modified adversarial discriminative domain adaptation method is introduced based on

[151, 152]. Compared with the original adversarial discriminative domain-adaptive (ADDA)
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Figure 4.1: Overview of the considered re-id problem based on the annotated attribute recog-
nition dataset. Source domain only labeled with attributes and no labels are needed in target
domain. The images are picked from RAP (attribute classification dataset) [66] and Mar-
ket1501 (re-id dataset) [191].

method in [151], both the source and target images are fed into the target model in the ad-

versarial adaptation procedure of the proposed adaptation method. There are at least two

advantages to do this. First, the domain-invariant capability of the model has been improved

with that the adapted model is invariant to both source and target domains, while in ADDA,

the adapted model (target CNN) can only be applied in the target domain [151]. The second

advantage is that the modified ADDA is easier to converge compared with the original one

according to our experimental results. The training of ADDA is separated into two steps,

the model is first trained in the source domain and then it is adapted to the target domain.

This stepwise training procedure can degrade the attribute recognition performance during

domain adaptation and thus result in the decrease of re-id performance. In order to maintain

the attribute recognition performance in the adversarial adaptation procedure, an additional

classifier is added along with the discriminator. To evaluate the effectiveness of the pro-

posed unsupervised adaptive re-id framework, three datasets have been used, namely the

attribute recognition dataset RAP [66] and two re-id datasets, i.e., Market-1501 [191] and

DukeMTMC-reID [196].

4.2 Background

As aforementioned, in order to bridge the gap between attribute recognition and person re-

id, unsupervised domain adaptation is applied in the proposed person re-id framework by

extending an existing method, i.e., ADDA [151]. Thus, before introducing the proposed
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Figure 4.2: Overview of the ADDA method. The training and evaluation is separated into
three steps, i.e., pre-training, adversarial adaptation and testing. The figure is from [151].

re-id framework, the brief introductions about adversarial process [40] and ADDA will be

made.

4.2.1 Adversarial Process

The adversarial training strategy has gained considerable attentions since the work [40] in

which the effectiveness of adversarial process is validated to train the image generation nets.

After this work, many efforts have been devoted in studying adversarial process from dif-

ferent machine learning and computer vision topics, e.g., image generation [40], domain

adaptation [151], feature learning, person re-id [204], face recognition etc.

Here the adversarial process is briefly introduced considering the image generation net in

[40]. Suppose there is a image dataset X = [x1,x2, . . . ,xn] with n samples. The generator

is denoted as G(z) which is used to generate images with inputing the noise that is sampled

from a noise distribution p(z). Z is used to denote the set containing the noise sampled

from p(z). The discriminator is represented as D(x). In the adversarial training process, the

discriminator D(x) is trained to accurately separate the training samples (or true samples)

and the generated samples from G(z). At the same time, G(z) is trained to generate the

samples as similar as the samples in the dataset X so that the discriminator cannot correctly

separate them from the true samples. This adversarial process can be converted to play a

minimax game with value function Ladv:

min
G

max
D

Ladv = Exi∼X [logD(xi)]+

Ezi∼Z [log(1−D(G(zi))].
(4.1)

With a well trained generatorG(z), its generated samples will be similar to the true samples,

i.e., accurately approximating the true data distribution.
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4.2.2 Adversarial Discriminative Domain Adaptation

ADDA is an unsupervised domain adaptation method which is based on adversarial process

to adapt a trained network from the source domain to the target domain [151]. Different from

the existing works [36, 150, 91, 11], ADDA considers independently the source and target

mappings, i.e., unshared weights between the two network streams, allowing domain specific

feature extraction to be learned, where the target weights are initialized by the network

pretrained on the source.

Suppose the samples from source and target domain are denoted as Xs = {(xsi , ysi )}ns
i=1 and

Xt = {(xti, yti)}nt
i=1, respectively. ns and nt denote the number of samples in source and

target domain. Ms is used to denote the network stream in source domain while Mt denotes

the network stream in target domain. The discriminator is denoted as D. ADDA is trained

and evaluated in three steps as shown in Fig. 4.2 and they can be formulated as follows:

Step one: Pre-train the classification network in the source domain. The classifier is denoted

as C and the classification loss is formulated as:

min
Ms, C

Lcls = −Exs
i∼Xs

K∑

k=1

1[k=ysi ]
logC(Ms(x

s
i )) (4.2)

Step two: For the domain variations between the source and target domain, a large classifica-

tion performance drop will be observed if the network trained on source domain is directly

applied to the target domain. The adversarial process is used in ADDA for adapting the

trained network to the target domain. The adversarial adaptation loss is:

max
Mt

min
D

Ladv =− Exs
i∼Xs [logD(Ms(x

s
i ))]

− Ext
i∼Xt [log(1−D(Mt(x

t
i)))]

(4.3)

Step three: As shown in Fig. 4.2, the trained target mappingMt and the classifier C are used

for evaluation purpose in the target domain.

4.3 Our Proposed Methodology

As shown in Fig. 4.1, the problem considered is to learn the attribute-related person re-id

features with the assistance of the labeled attribute recognition dataset. Specifically, suppose

there are na samples from the attribute recognition (source) domain Da = {(xai ,ai)}na
i=1, in
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Figure 4.3: The proposed attribute related re-id feature learning framework.

Figure 4.4: The attribute recognition network architecture.

which xai represents the i-th sample, featuring m attributes ai ∈ Rm. For the person re-id

(target) domain Dp = {xpi }
np

i=1, there are np samples xpi , but, on the contrary, no annotation

is available. Based on the data from these two domains Da and Dp, we want to learn a

domain-invariant mapping M, which can be used to extract attribute-related features in re-id

domain.

In the proposed framework, depicted in Fig. 4.3, the convolutional neural network (CNN)

is used to learn the mapping M. The network is first trained in the attribute recognition

domain Da and then adapted to the person re-id domain Dp. Since the label information is

not available in re-id domain, an unsupervised domain adaptation method, based on [151],

is applied for adapting the trained attribute recognition network from attribute recognition

domain Da to person re-id domain Dp. In the following, this framework will be introduced

in detail from three aspects, i.e., attribute recognition, unsupervised domain adaptation and

feature extraction for re-id.

4.3.1 Attribute Recognition

As shown in Fig. 4.4, the attribute recognition is treated as a multi-label classification task.

Given one sample xai ∈ Da, there are m attributes ai = [ai,1, . . . , ai,m] ∈ Rm. Thus,

instead of using softmax cross entropy loss, the sigmoid cross entropy loss is used to train
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Figure 4.5: The proposed unsupervised adversarial adaptation. The source CNN is pre-
trained on attribute recognition dataset. The classifier is only used for attribute classification
on the source images (from attribute recognition domain Da). Dashed bounding box indi-
cates fixed weights, while solid bound box indicates the weight that can be learned.

the network:

Lattr =− Exi∼Xa

m∑

j=1

(
ai,j log(Ca(Ma(xi)))

+ (1− ai,j) log(1−Ca(Ma(xi)))
)
,

(4.4)

in which Ca is the attribute classifier, as in Fig. 4.4, and Ma denotes the feature mapping in

the attribute recognition domain. The attribute recognition network is trained by minimizing

the loss Lattr.

4.3.2 Unsupervised Domain Adaptation

Given the learned mapping Ma in the attribute recognition domain Da, the objective of the

domain adaptation step is to learn a domain-invariant mapping M for attribute discriminative

feature extraction in the re-id domain Dp. Since the attribute label is unavailable in Dp, an

unsupervised domain adaptation method is used to adapt the network trained in Da to the

person re-id domainDp. To this end, the ADDA proposed in work [151] is modified to make

it more suitable for our purpose in network adaptation.

As aforementioned, the classification network in ADDA is first trained in source domain

with the supervision of labels, and in order to adapt the trained source network to the tar-

get domain, the adversarial adaptation process is used to learn the target mapping. A good

adapted target mapping means the discriminator network D cannot reliably predict the do-

main label of the feature vector from source or target mapping.
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Since in ADDA only samples from the target domain are fed into the target network, the

adapted target network is not domain-invariant and it can be only used in the target domain.

To learn a domain-invariant mapping, samples from both the target (person re-id) and source

(attribute recognition) domain are used as in [152]. There are at least two advantages to

do this. Firstly, the target mapping is invariant to both the attribute recognition and re-id

domains and thus the extracted features are more robust to the domain shift compared to the

original ADDA. The second one is that more samples are used to train the target encoder.

In our experiments, we found that this makes the modified adversarial adaptation easier to

converge than the original one. The least square GANs, which uses the least square loss

function for the discriminator, has been reported as a stable variation of GANs [152, 103].

The feature mapping in the target domain is denoted as Mt and Mt is usually initialized

with the weights from Ms which is trained in the source domain. In the modified adversarial

adaptation, the least square loss function is also used in the adversarial loss Ladv as:

min
M

max
D

Ladv =Exi∼Xa ∪Xp‖D(M(xi))− 1‖2

+ Exi∼Xa‖D(Ma(xi))‖2,
(4.5)

in which Xp = [xp1, . . . ,x
p
np ] and M is initialized with the weights from Ma, which is fixed

during domain adaptation.

With the domain-invariant M, we can now extract attribute-related discriminative features

in Dp. In our experiments, we also found that the attribute recognition performance of the

original ADDA decreases during the domain adaptation procedure and this influences the

attribute-related feature extraction. In order to cope with this drop of attribute recognition

performance, an additional attribute classifier is added for source samples, as shown in Fig.

4.5. Thus, the final optimization problem in unsupervised domain adaptation is:

min
{M,C}

max
D

Ladv + αLattr, (4.6)

where α is a hyper-parameter. Lattr is the same as in Eq. (4.4) with C,M in place of

Ca,Ma. The weights of C,M are initialized with Ca,Ma, as usually done in domain

adaptation. Only the samples from source domain (attribute recognition domain) are used

to calculate the loss Lattr. With the additional attribute classifier, the attribute recognition

performance can be maintained during domain adaptation.
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Figure 4.6: Person re-id feature extraction network. The target images are from re-id domain.

4.3.3 Feature Extraction

After domain adaptation, the target CNN (or feature mapping M) is used for extracting

attribute-related features of person images in the re-id domain Dp. The feature extraction

network is presented in Fig. 4.6. The similarities between these extracted features are cal-

culated simply using the Euclidean distance as in deep re-id works [192, 189, 155]. Finally,

matching or ranking person images can be performed based on their similarities.

4.4 Experiments

In this section, experimental results are presented to demonstrate the effectiveness of the

proposed re-id feature learning framework. To measure the performances of the proposed

method, the Cumulative Matching Characteristic (CMC) and mean average precision (mAP)

are used.

4.4.1 Dataset

Three datasets, i.e., RAP, Market-1501 and Duke-MTMC-reID, are included to evaluate

the proposed re-id framework [192, 66]. RAP is an attribute recognition dataset that in-

cludes 41, 585 images in total. For each image 91 pedestrian attributes have been annotated.

In our experiments we removed some extremely unbalanced attributes, selecting only 70

attributes. Market-1501 and DukeMTMC-reID are two popular large-scale re-id datasets.

Thanks for the work [83], they are also labeled with pedestrian attributes i.e., 27 attributes in

Market-1501 and 22 in DukeMTMC-reID. However, in our method, we never use attribute

annotations in the target domain.
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Table 4.1: Performance comparisons with existing attribute based unsupervised adaptive
person re-id methods.

Source→ Target Market-1501→ DukeMTMC-reID
Metric Rank1 Rank5 Rank10 mAP

TJ-AIDL 24.3% 38.3% 45.7% 10.0%
MMFA 15.8% 26.0% 48.2% 5.7%
Ours 28.6% 44.2% 51.7% 13.1%

Source→ Target DukeMTMC-reID→Market-1501
Metric Rank1 Rank5 Rank10 mAP

TJ-AIDL 38.0% 59.2% 67.6% 13.6%
MMFA 35.5% 55.3% 64.0% 12.7%
Ours 43.0% 63.3% 70.6% 17.1%

4.4.2 Implementation Details

In all experiments, the input images are resized to (224, 224, 3). The hyper-parameter α is

fixed to 0.1. MobileNet is selected as the backbone network and it is pretrained on ImageNet.

Adam optimizer with a learning rate of 0.0001 is used in all experiments. Two fully con-

nected (FC) layers are included in the attribute classifier (1024→ 512→ m, in which m is

the number of pedestrian attributes as aforementioned). The discriminator is also composed

of two FC layers (1024→ 384→ 1).

4.4.3 Comparisons with State-Of-The-Art Results

In order to compare with state-of-the-arts methods, the experiments using Market-1501 and

DukeMTMC-reID datasets are performed. Compared with the re-id works using person

identity supervision, pedestrian attribute supervised re-id works are much less. In the work

[155], a Transferable Joint Attribute-Identity Deep Learning (TJ-AIDL) is proposed to si-

multaneously learn an attribute-semantic and identity-discriminative feature representation

space transferrable to the new (unseen) target domain for re-id tasks. Lin et al. pro-

posed the multi-task mid-level feature alignment (MMFA) network for the unsupervised

cross-dataset person re-id task. Different from TJ-AIDL, the Maximum Mean Discrepancy

(MMD) is used to transfer the learned label information from one fully labeled domain to

another domain without label information. The comparisons are made using Market-1501

and DukeMTMC-reID datasets and as in TJ-AIDL [155] and MMFA [81], the experiments

are one of the datasets is used as the source domain and the other one is for target domain.

In our proposed unsupervised domain adaptation re-id method, only the attribute labels are

used as the supervision information for training the model. Thus, for fair comparison, the
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Table 4.2: Comparing experimental results before and after adaptation. The network is first
trained on the attribute recognition dataset RAP.

Market-1501 DukeMTMC-reID
Metric Rank1 mAP Rank1 mAP

w/o adaptation 28.2% 8.7% 15.6% 4.9%
w adaptation 32.1% 10.6% 18.7% 6.5%

experimental results of TJ-AIDL and MMFA with only using attribute label are selected and

presented in Table 4.1.

From Table 4.1, it shows our proposed method outperforms the state-of-arts. For example,

in the case of Market-1501 → DukeMTMC-reID, there are 4.3% improvements in Rank1

compared with TJ-AIDL and 12.8% improvements compared with MMFA. This improve-

ment mainly due to the proposed unsupervised adversarial adaptation which can effectively

transfer the attribute recognition capability from source domain (with attribute labels) to tar-

get domain (not labelled), and with the added attribute classifier, it can also maintain the

attribute recognition performance during domain adaptation. The table also shows that the

re-id performance in the case of DukeMTMC-reID → Market-1501 is better than Market-

1501→ DukeMTMC-reID (from 28.6% to 43.0% for Rank1 in our proposed method). This

results from that DukeMTMC-reID contains more variations in samples and thus it makes

the network trained on it has better generalization ability.

4.4.4 Domain Adaptation Influences

As aforementioned, since the label information is not available in the target domain, unsu-

pervised domain adaptation is used for adapting the trained model from the source domain

to the target domain. To evaluate the influence of the adaptation procedure on the proposed

unsupervised adaptive re-id framework, Tab. 4.2 shows the experimental results before and

after domain adaptation. The network is first trained on the attribute recognition dataset RAP.

For the experiments without using adaptation, the trained attribute recognition network is di-

rectly used on re-id dataset, i.e., Market-1501 or DukeMTMC-reID, to extract re-id feature

representations. For the experiments with adaptation, the proposed unsupervised adversarial

adaptation, as shown in Fig. 4.5, is used to adapt the trained model from attribute recognition

domain to re-id domain before re-id feature extraction.

From the table, it can be found that after adaptation, the re-id performance of the network

has been improved. There are 3.9% Rank1 improvements on Market-1501 and 3.1% for

DukeMTMC-reID. This validates the positive influence of the proposed unsupervised ad-
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versarial adaptation on transferring attribute related features across domains. An interest-

ing observation from the table is that both the rank1 and mAP metrics of Market-1501 are

much higher than DukeMTMC-reID. This is mainly because there are large domain dif-

ferences between RAP and DukeMTMC-reID dataset while it is small between RAP and

Market-1501 dataset. Fig. 4.7 gives the person image examples from RAP, Market1501 and

DukeMTMC-reID dataset. From the figure, it can be observed that the domain variation

between RAP and Market1501 dataset is smaller than the domain variation between RAP

and DukeMTMC-reID dataset.

4.4.5 Attribute Classifier Influences

In the original adversarial discriminative domain adaptation (ADDA) [151], the classifica-

tion task and unsupervised domain adaptation are separated into two steps. In our exper-

iments, we found that the attribute recognition performance degrades in the domain adap-

tation procedure. In order to guarantee the attribute recognition performance, an attribute

classifier is added based on ADDA as shown in Fig. 4.5. To evaluate the influence of this

added attribute classifier on re-id performance, the comparison experiments are performed

using the proposed unsupervised domain-adaptive re-id framework with and without the at-

tribute classifier.

Fig. 3 shows the experimental results. The experiments are performed on RAP and Market-

1501 datasets. The network is first trained on RAP dataset and then adapted to Market-1501

dataset. For the re-id framework without classifier, the classifier, as shown in Fig. 4.1, has

been deleted in the adaptation step. In the experiments, we found the attribute recognition

performance degrades during adapting the network. As observed in Fig. 4.8, this results

in the decrease of the re-id performance during domain adaptation. With the additional

classifier, the re-id performance, as the red curve in the figure, are more stable.

(a) RAP dataset (b) Market1501 dataset (b) DukeMTMC-reID dataset

Figure 4.7: Person image samples from (a) RAP dataset, (b) Market1501 dataset and (c)
DukeMTMC-reID dataset.
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Figure 4.8: Adaptation performance comparisons between the unsupervised domain-
adaptive re-id frameworks with and without the additional classifier. 0 epoch means there is
no adaptation in the proposed re-id framework.

4.4.6 Sample Feeding Influences

In the adaptation procedure of ADDA, only samples from source domain are fed into the

target network. However, in the proposed method, the samples from both source and tar-

get domains are fed into the target network as shown in Fig. 4.5. This is based on the

observations that: (1) after domain adaptation with feeding samples from both source and

target domains, the target network will be invariant to both these two domains; (2) with more

samples for training, the adversarial adaptation becomes easier to converge as shown in our

experiments.

In order to verify the advantages of the applied sample feeding strategy, three experiments

are designed for ablation study: (1) the network is trained on Market-1501 dataset without

adaptation and then it is used for re-id feature extraction on Market-1501 and DukeMTMC-

reID dataset; (2) the network is first trained on Market-1501 dataset and then it is adapted to

DukeMTMC-reID dataset. During adaptation, only the samples from source domain are fed

into the target network. After the adaptation, the adapted network is used for extracting re-id

features on Market-1501 and DukeMTMC-reID dataset; (3) as in the second experiment,

the network is pre-trained on Market-1501 dataset but in adaptation, the samples from both

domains are fed into the target network. The adapted network is used for extracting re-id

feature on Market-1501 and DukeMTMC-reID dataset.

The experimental results are presented in Table 4.3. From the table, it can be observed

that after the adaptation in the second experiment, the adapted network can get higher re-id

performance on the target domain which verifies the effectiveness of adaptation. However,

it can be also found that the adapted network has a degradation of the re-id performance on
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Table 4.3: Ablation study results for evaluating the sample feeding influences. In all of three
experiments, the networks are first trained on Market-1501 dataset.

Market-1501 DukeMTMC-reID
Metric Rank1 mAP Rank1 mAP

w/o adaptation 66.8% 40.9% 22.4% 9.54%
Target Samples 63.8% 37.8% 23.6% 10.9%

Target+Source Samples 67.7% 42.7% 25.4% 12.1%

source domain. This results from the fact that the target network has been adapted to target

domain and it is not optimal for the source domain due to the domain variations between

source and target domain. With feeding the samples from both source and target domains

into the target network in adaptation, the results of third experiment show that the adapted

network can maintain its re-id performance on source domain, which verifies that the adapted

network is invariant to both source and target domains. It can be also found that the adapted

network largely improves the re-id performance on target domain. The reason can lie in

that compared with the second experiment, more samples are involved in the adaptation

procedure for the third experiment. In the experiments, we also observed that the converging

epoch number of the third experiment is generally less than that of the second experiment.

4.5 Conclusions

In this chapter, we presented an unsupervised domain-adaptive re-id framework for extract-

ing attribute-related features. Considering that most re-id datasets are not labeled with pedes-

trian attributes, a modified domain adaptation method has been proposed for adapting the

attribute recognition network. Based on the observation that the attribute recognition per-

formance degrades during domain adaptation procedure, an additional classifier has been

added. The experimental results using three large-scale datasets proved the effectiveness of

the proposed unsupervised adaptive re-id framework.
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Chapter 5

Intra-Camera Supervised Person
Re-Identification

5.1 Introduction

Although deep learning based person re-id methods [20, 74, 144, 53, 195, 202] have demon-

strated remarkable performance advances, they rely on supervised model learning using a

large set of cross-camera identity labelled training samples. This paradigm needs an exhaus-

tive and expensive training data annotation process. As introduced in Chapter 1, for an ideal

case with M cameras and N identities in each camera view, the annotation complexity can

reach O(MN +M2N2). This expensive data annotation process dramatically degrades the

usability and scalability of re-id methods for large scale deployment in real-world applica-

tion.

This problem has received significant attentions. Representative attempts for minimising the

annotation cost include: (1) Domain generic feature design [44, 31, 78, 105, 191], (2) Unsu-

pervised domain adaptation [118, 29, 155, 81, 199, 179, 22], (3) Unsupervised model learn-

ing [154, 21, 82, 68], and (4) Weakly supervised learning [108]. By hand-crafting generic

appearance features with prior knowledge, the first paradigm of methods can perform re-id

matching universally. However, their performances are often inferior due to limited knowl-

edge encoded in such image representations. This can be addressed by transferring the la-

belled training data of a source dataset (domain), as demonstrated in the second paradigm of

methods. Implicitly, these methods assume that the source and target domains share reason-

ably similar camera viewing conditions for ensuring sufficient transferable knowledge. The

heavy reliance on the relevance and quality of source datasets [204] renders this approach

less practically useful, since this assumption is often invalid. The third paradigm of meth-

ods is more scalable, as they need only unlabelled target domain data. While having high

potential, unsupervised re-id methods usually yield the weakest performance, making them

fail to meet the deployment requirements. In contrast, the fourth paradigm of methods con-

siders a weakly supervised learning setting, where the person identity labels are annotated at

the video level without fine-grained bounding boxes. Apart from insufficient re-id accuracy,
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Figure 5.1: Labels in person re-id data. (a) Fully supervised training data needs both per-
camera and cross-camera identity labelling in a unified class space. (b) Intra-camera super-
vised (ICS) training data annotation only needs per-camera identity labelling independently,
each camera view with a separate class space. Camera-view index is encoded as superscript
of identity label in ICS person re-id data. Solid and dashed arrows denote intra-camera and
inter-camera association, respectively.

this paradigm is mostly sensible only when such weak labels can be cheaply obtained from

certain domain knowledge, which however is not generically accessible.

In this work, we suggest another novel person re-identification paradigm for scaling-up the

model training process, called Intra-Camera Supervised (ICS) person re-id (Fig. 5.1(b)).

As the name indicates, ICS eliminates the sub-process of cross-camera identity association

during annotation, therefore its corresponding complexity O(M2N2) has been eliminated,

which is the majority component of the standard annotation cost, as discussed above. Under

the ICS paradigm the training data involves only the intra-camera annotated identity labels

with each camera view labelled independently. This labelling complexity is hence only

O(MN) with M the camera view number and N the average per-camera person identity

number, therefore being significantly more affordable. Importantly, ICS naturally enables

a parallel annotation process by camera views without labelling conflict due to no cross-

camera identity association (Fig. 5.2(b)). This desirable merit is lacking in the conventional

training data labelling due to the difficulty of obtaining disjoint labelling tasks, e.g. subsets

of person identity classes without overlap (Fig. 5.2(a)). While being similar to the concur-

rent work [108] since they both consider explicitly the training data labelling process, the

proposed ICS paradigm however does not assume specific domain knowledge therefore it is

more generally applicable.

To solve the ICS re-id problem, we propose a Multi-tAsk mulTi-labEl (MATE) deep learn-

ing model. Unlike the conventional fully supervised re-id methods using inter-camera iden-

tity labels, MATE is designed specially for overcoming two ICS challenges: (1) how to learn

effectively from per-camera independently labelled training data, and (2) how to discover re-
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Communicating

Figure 5.2: Illustrations of data annotation process. (a) Conventional fully supervised person
re-id vs. (b) ICS person re-id in the process of training data collection. Suppose each
annotator needs to label the training data from a different camera view. In order to minimise
the labelling conflict, an annotator may have to check if a person has been labelled or not by
others. This gives rise to expensive communication costs, which is totally eliminated in the
proposed ICS re-id paradigm, due to the independence nature between camera views.

liably the missing identity association across camera views. Specifically, MATE integrates

two complementary learning components into a unified model: (a) Per-camera multi-task

learning that separately learn individual camera views for modelling their specificity and

the implicit shared information in a multi-task learning manner (Sec. 5.3.1). This assigns

a specific network branch (i.e. a learning task) for modelling each camera view while con-

straining all the per-camera tasks to share a feature representation space. (b) Cross-camera

multi-label learning that associates the identity labels across camera views in a multi-label

learning strategy (Sec. 5.3.2). This is based on an idea of curriculum cyclic association that

can associate reliably multiple cross-camera identity classes from self-discovered identity

matches for multi-label model optimisation.

The contributions of chapter are: (1) We present a novel person re-identification paradigm

for scaling up the model training process, dubbed as Intra-Camera Supervised (ICS) person

re-id. ICS is characterised by no need for exhaustive cross-camera identity matching during

training data annotation, whilst allowing naturally parallel labelling by camera views with-

out conflict. Consequently, it makes the training data collection substantially cheaper and

faster than the standard cross-camera identity labelling, therefore offering a more scalable

mechanism to large re-id deployments. (2) We formulate a Multi-tAsk mulTi-labEl (MATE)

deep learning method for solving the proposed ICS person re-id problem. In particular,

MATE combines the strengths of multi-task learning and multi-labelling learning in a uni-

fied framework to account for independent camera-specific identity label information and
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self-discovering their cross-camera association relationships concurrently. This represents a

natural strategy for fully leveraging the ICS supervision with per-camera independent iden-

tity label spaces. (3) Through extensive benchmarking and comparisons on the ICS variant of

three large re-id datasets (Market-1501 [191], DukeMTMC-reID [196, 122], and MSMT17

[159]), we demonstrate the cost-effectiveness advantages of the ICS re-id paradigm using our

MATE model over the existing representative solutions including supervised learning, semi-

supervised learning, unsupervised learning, unsupervised domain adaptation, and tracklet

learning.

5.2 Problem Formulation

We formulate the Intra-Camera Supervised (ICS) person re-identification problem. As illus-

trated in Fig. 5.1(b), ICS only needs to annotate intra-camera person identity labels indepen-

dently, whilst eliminating the most-expensive inter-camera identity association as required

in the conventional fully supervised re-id setting.

Suppose there are M camera views in a surveillance camera network. For each camera view

p ∈ {1, 2, · · · ,M}, we independently annotate a set of training images Dp = {(xpi , y
p
k)}

where each person image xpi is associated with an identity label ypk ∈ {y
p
1 , y

p
2 , · · · , ypNp},

and Np is the total number of unique person identities in Dp 1. For clarity, we express the

camera view index in the superscript due to the per-camera independent labelling nature

in the ICS setting. By combining all the camera-specific labelled data Dp, we obtain the

entire training set as D = {D1,D2, . . . ,DM}. For any two camera views p and q, their

k-th person identities ypk and yqk usually describe two different people, i.e. they are two

independent identity label spaces (Fig. 5.1(b)). This means exactly that the cross-camera

identity association is not available, in contrast to the fully supervised re-id data annotation

(Fig. 5.1(a)).

The ICS re-id problem presents a couple of new modelling challenges: (1) how to effectively

exploit the per-camera person identity labels, and (2) how to automatically and reliably as-

sociate independent identity label spaces across camera views. The existing fully supervised

re-id methods do not apply due to the need for identity annotation in a single label space

across camera views. A new learning method tailored for the ICS setting is required to be

developed.

1We use i, j to denote image indexes, k, l, t to denote identity indexes and p, q to denote camera indexes.
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Figure 5.3: Overview of the proposed Multi-tAsk mulTi-labEl (MATE) deep learning
method. (a) Given per-camera independently labelled training images, MATE aims to learn
an identity discriminative feature representation model. This is achieved by designing two
learning components: (b) Per-camera multi-task learning where we consider each individual
camera view as a separate learning task with its own identity class space and optimise these
camera-specific tasks on a common feature representation (Sec. 5.3.1), and (c) Cross-camera
multi-task learning where we self-discover the underlying identity matching relationships
across camera views via curriculum cyclic association and design a multi-label optimisation
algorithm to exploit these discovered cross-camera association information during model
training. The two components are integrated together in a single MATE formulation, result-
ing in an end-to-end trainable model.

5.3 Method

We introduce a novel ICS deep learning method, capable of conducting Multi-tAsk mulTi-

labEl (MATE) model learning to fully exploit the independent per-camera person identity

label spaces. In particular, MATE solves the aforementioned two challenges by integrating

two complementary learning components into a unified solution: (i) Per-camera multi-task

learning that assigns a separate learning task to each individual camera view for dedicatedly

modelling the respective identity space (Sec. 5.3.1), (ii) Cross-camera multi-label learning

that associates the independent identity label spaces across camera views in a multi-label

strategy (Sec. 5.3.2). Combining the two capabilities with a unified objective function,

MATE explicitly optimises their mutual compatibility and complementary benefits via end-

to-end training. An overview of MATE is depicted in Fig. 5.3.
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5.3.1 Per-Camera Multi-Task Learning

To maximise the use of multiple camera-specific identity label spaces with some underlying

correlation (e.g. partial identity overlap) in the ICS setting, multi-task learning is a natural

choice for model design [3]. This allows to not only mine the common knowledge among

all the camera views, but also to improve per-camera model learning concurrently given

augmented (aggregated) training data.

Specifically, given the nature of independent label spaces we consider each camera view as

a separated learning task, all of which share a feature representation network for extracting

the common knowledge in a multi-branch architecture design. One branch is in charge of

a specific camera view. This forms per-camera multi-task learning in the ICS context. By

such multi-task learning, our method can favourably derive a person re-id representation with

implicit cross-camera identity discriminative capability, facilitating cross-camera identity

association [68]. This is because during training, all the branches concurrently propagate

the respective camera-specific identity label information through the shared representation

network fθ (Fig. 5.3(b)), leading to a camera-generic representation. This process is done

by minimising the softmax cross-entropy loss.

Formally, for a training image (xpi , y
p
k) ∈ Dp from camera view p, the softmax cross-entropy

loss is used for formulating the training loss:

Lpmt(i) = −1(ypk)log
(
gp
(
fθ(x

p
i )
))

(5.1)

where given the camera-shared feature vector fθ(x
p
i ) ∈ Rd×1, the classifier gp(·) for the

camera view p predicts an identity class distribution in its own label space with Np classes:

R
d×1 → R

Np×1. The Dirac delta function 1(·) : R→ R
1×Np returns a one-hot vector with

“1” at the specified index.

By aggregating the loss of training samples from all the camera views, we formulate the

per-camera multi-task learning objective function as:

Lmt =
1

M

M∑

p=1

( 1

Bp

Bp∑

i=1

Lpmt(i)
)

(5.2)

where Bp denotes the number of training images from the camera view p in a mini-batch.
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5.3.2 Cross-Camera Multi-Label Learning

Cross-camera person appearance variation is a key challenge for re-id. Whilst this is implic-

itly modelled by the proposed multi-task learning as detailed above, the per-camera multi-

task learning is still insufficient to fully capture the underlying identity correspondence re-

lationships across camera-specific label spaces.

However, it is non-trivial to associate identity classes across camera views. One major rea-

son is that a different set of persons may appear in a specific camera view, leading to no

one-to-one identity matching between camera views. Conceptually, this gives rise to a very

challenging open-set recognition problem where a rejection strategy is often additionally

required [125, 126]. Compared to generic object recognition in natural images, open-set

modelling in re-id is more difficult due to small training data, large intra-class variation,

subtle inter-class difference, and ambiguous visual observations of surveillance person im-

agery. Besides, existing open-set methods often assume accurately and completely labelled

training data, and the unseen classes only in model test. In contrast, we need to discover

cross-camera identity correspondences during training with small (unknown) overlap across

different spaces.

This is hence a harder learning scenario with a higher risk of error propagation from noisy

cross-camera association. An intuitive solution for open-set recognition is to find an operat-

ing threshold, e.g. by Extreme Value Theory [28] based statistical analysis. This relies on

optimal supervised model learning from a sufficiently large training dataset, which however

is unavailable in the ICS setting.

To circumvent the above problems, we design a cross-camera multi-label learning strategy

for robust cross-camera identity association. This is realised by (i) designing a curriculum

cyclic association constraint to find reliable cross-camera identity association, and (ii) form-

ing a multi-label learning algorithm to incorporate the self-discovered cross-camera identity

association into discriminative model learning (Fig. 5.3(c)).

1. Curriculum Cyclic Association

For more reliable identity association across camera views, we form a cyclic prediction

consistency constraint. Specifically, given an identity class ypk ∈ {y
p
1 , y

p
2 , · · · , ypNp} from a

camera view p ∈ {1, 2, . . . ,M}, we need to find if a true matching identity (i.e. the same

identity) exists in another camera view q. We achieve this in the following process.

(i) We first project all the images of each person identity ypk from camera view p to the

classifier branch of camera view q to obtain a cross-camera prediction ỹp→qk via averaging
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as:

ỹp→qk =
1

Spk

Sp
k∑

i=1

gq
(
f(xpi )

)
∈ RNq×1, (5.3)

where Spk is the number of images from identity ypk. Each element of ỹp→qk , denoted as

ỹp→qk (l), means the identity class matching probability at which ypk (an identity from camera

view p) matches yql (an identity from camera view q) in a cross-camera sense.

(ii) We then nominate the person identity yql∗ from camera view q with the maximum likeli-

hood probability as the candidate matching identity:

l∗ = arg max
l

ỹp→qi (l), l ∈ {1, 2, . . . , Nq}. (5.4)

With such one-way (p→ q) association alone, the matching accuracy should be not satisfac-

tory since it cannot handle the cases of no-true-match as typical in the ICS setting. To boost

the matching robustness and correctness, we further design a curriculum cyclic association

constraint.

(iii) Specifically, in an opposite direction of the above steps, we project all the images of

identity yql∗ from camera view q to the classifier branch of camera view p in a similar way

as Eq. (5.3), and obtain the best candidate matching identity ypt∗ with Eq. (5.4). Given this

back-and-forth matching between camera view p and q, we subsequently filter the above

candidate pair (ypk, y
q
l∗) by a cyclic constraint as:

(ypk, y
q
l∗)

{
is a candidate match, if ypt∗ = ypk,

is not a candidate match, otherwise.
(5.5)

This removes non-cyclic association pairs. While being more reliable, it is observed that

only the cyclic association in Eq. (5.5) is not sufficiently strong for hard cases (e.g. different

people with very similar clothing appearance), leading to false association.

(iv) To overcome this problem, inspired by the findings of cognitive study which suggest a

better learning strategy is to start small [30, 62], we design a curriculum association con-

straint. It is based on the cross-camera identity matching probability. Formally, we define a

cyclic association degree as:

ψp⇔qk⇔l∗ = ỹp→qk (l∗) · ỹq→pl∗ (k) (5.6)

which measures the joint probability of a cyclic association between two identities ypk and

yql∗ . Given this unary measurement, we can deploy a curriculum threshold τ ∈ [0, 1] for
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selecting candidate matching pairs via:

Cyclic (ypk, y
q
l∗)

{
is a match, if ψp⇔qk⇔l∗ > τ,

is not a match, otherwise.
(5.7)

This filtering determines if a cyclically associated identity pair (ypi , y
q
k∗) will be considered

as a match.

Curriculum threshold. The design of the curriculum threshold τ has a crucial influence

on the quality of cross-camera identity association. In the spirit of curriculum learning, we

consider τ as an annealing function of the model training time to enable a progressive selec-

tion. Meanwhile, we need to take into account that the magnitude of maximum prediction

usually increases along the training process as the model gets more mature. Taking these

into consideration, we formulate the curriculum threshold as:

τ r = min
(
τu, τ l +

r

R− 1
(1− τ l)

)
(5.8)

where r specifies the current training round, with a total of R rounds. We maintain two

thresholds: τu, which denotes the upper bound, and τ l, which denotes the lower bound.

Both of these two thresholds can be estimated by cross-validation.

Summary. We perform the above curriculum cyclic association process for every camera

view pairs, which outputs a set of associated identity pairs across camera views. This self-

discovered pairwise information will be used to improve model training as detailed in the

following.
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2. Multi-Label Learning

To leverage the above identity association results for improving model discriminative learn-

ing, we introduce a multi-label learning scheme in a cross-camera perspective. It consists of

(i) multi-label annotation and (ii) multi-label training.

(i) Multi-label annotation. For easing presentation and understanding, we assume two cam-

era views, and it is straightforward to extend to more camera views. Given an associated

identity pair (ypk, y
q
l∗) obtained as above, we annotate all the images Xp

i of ypi from camera

view p with an extra label yql∗ of camera view q. We do the same for all the imagesXq
l∗ of yql∗

in an inverse direction. Both image sets are therefore annotated with the same two identity

labels, i.e. these images are associated. See an illustration example in Fig. 5.3(c). Given M

camera views, for each identity ypk we perform at most M − 1 times such annotation when-

ever a cross-camera association is found, resulting in a multi-label set Y p
i = {ypk, y

q
l∗ , · · · }

for Xp
i , with the cardinality 1 ≤ |Y p

i | ≤ M . When |Y p
i | = 1, it means no cross-camera

association is obtained. When |Y p
i | = M , it means an identity association is found in every

other camera view.

(ii) Multi-label training. Given such cross-camera multi-label annotation, we then formu-

late a multi-label training objective for an image xpi as

Lpml(i) =
1

|Y p
i |

∑

yc∈Y p
i

−1(yc)log
(
gc
(
fθ(x

p
i )
))

(5.9)

where c indices the camera view of Y p
i with the corresponding identity label simplified as

yc. For mini-batch training, we design the cross-camera multi-label learning objective as:

Lml =
1

B

∑

i,p

Lpml(i) (5.10)

which averages the multi-label training loss of all the B number of training images in a

mini-batch.

Remarks. It is noteworthy to point out that, in contrast to the conventional single-task multi-

label learning [148], we jointly form multi-label learning and multi-task learning in a unified

framework, with a unique objective of associating different label spaces and merging the

independently annotated labels with the same semantics.
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5.3.3 Final Objective Loss Function

By combining per-camera multi-task (Eq. (5.2)) and cross-camera multi-label (Eq. (5.10))

learning objectives, we obtain the final model loss function as:

L = Lmt + λLml, (5.11)

where the weight parameter λ ∈ [0, 1] is to trade-off the two loss terms. With this formula

as model training supervision, our method can effectively learn discriminative re-id model

using both camera-specific identity label spaces available under the ICS setting (Lmt) and

cross-camera identity association self-discovered by MATE itself (Lml) concurrently. The

MATE model training process is summarised in Algorithm 2.

Algorithm 2 The MATE model training procedure.
Input: Intra-camera independently labelled training data;
Output: A trained person re-id model;
Model training:

for r = 1 to R do:
Calculate the curriculum threshold τ r;
Cross-camera identity association as in Eqs. (5.3)-(5.7);
for e = 1 to epoch_number do:

for t = 1 to per-epoch mini-batch number do:
Feed forward a mini-batch of training images;
Compute learning loss using Eq. (5.11);
Update the network model by back-propagation;

end for
end for

end for

5.4 Experiments

Datasets. Due to no existing re-id datasets for the proposed scenario, we introduced three

ICS re-id benchmarks. We simulated the ICS identity annotation process on three existing

large person re-id datasets, Market-1501 [191], DukeMTMC-reID [122, 196] and MSMT17

[159]. Specifically, for the training data of each dataset, we independently perturbed the

original identity labels for every individual camera view, and ensured that the same class la-

bels of any pair of different camera views correspond to two unique persons (i.e. no labelled

cross-camera association). We used the same original test data of each dataset for model

performance evaluation.
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Table 5.1: Benchmarking the ICS person re-id performance.

Dataset Market-1501
Metric (%) R1 R10 R20 mAP

MCST 34.9 60.1 69.3 16.7
EPCS 42.6 64.6 71.2 19.6
PCMT 78.4 93.1 95.7 52.1

MATE (Ours) 88.7 97.1 98.2 71.1
Dataset DukeMTMC-reID

Metric (%) R1 R10 R20 mAP
MCST 25.0 50.1 58.8 16.3
EPCS 38.8 58.9 64.6 22.1
PCMT 65.2 81.1 85.6 44.7

MATE (Ours) 76.9 89.6 92.3 56.6
Dataset MSMT17

Metric (%) R1 R10 R20 mAP
MCST 12.1 26.3 33.0 4.8
EPCS 16.8 31.5 37.4 5.4
PCMT 39.6 59.6 65.7 15.9

MATE (Ours) 46.0 65.3 71.1 19.1

Performance metrics Following the common person re-id works, the Cumulative Match-

ing Characteristic (CMC) and mean Average Precision (mAP) metrics were used for model

performance measurement.

Implementation details The ImageNet pre-trained ResNet-50 [49] was selected as the

backbone network of our MATE model. As shown in Fig. 5.3, each branch in MATE was

formed by a fully connected (FC) classification layer. We set the dimension of the re-id

feature representation to 512. The person images were resized to 256 × 128 in pixel. The

standard stochastic gradient descent (SGD) optimiser was adopted. The initial learning rate

of the backbone network and classifiers were set to 0.005 and 0.05, respectively. We set a

total of 10 rounds to anneal the curriculum threshold τ (Eq. (5.7)), with each round covering

20 epochs (except the last round where we trained 50 epochs to guarantee the convergence).

We empirically estimated τ l = 0.5 (the lower bound of τ ) and τu = 0.95 (the upper bound of

τ ) for Eq. (5.8). In order to balance the model training across camera views, we randomly

selected from each camera the same number of images, i.e. 4 images, per identity and

the same number of identities, i.e. 2 identities, to construct a mini-batch. Unless stated

otherwise, we set the loss weight λ = 0.5 for Eq. (5.11). In test, the Euclidean distance was

applied to the camera-generic feature representations for re-id matching.
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Figure 5.4: Three baseline learning methods for ICS person re-id: (a) Multi-Camera Single-
Task (MCST) learning. (b) Ensemble of Per-Camera Supervised (EPCS) Learning. (c)
Per-Camera Multi-Task (PCMT) learning.

5.4.1 Benchmarking the ICS Person Re-ID

While there has been no dedicated methods for solving the proposed ICS person re-id prob-

lem, we formulated and benchmarked three baseline methods based on the generic learning

algorithms:

1. Multi-Camera Single-Task (MCST) learning (Fig. 5.4(a)): Given no identity asso-

ciation across camera views, we simply consider any identity classes from different

camera views are distinct people and merge all the per-camera label spaces into a joint

space cumulatively. This enables the conventional supervised model learning based

on identity classification. We therefore train a single re-id model, as in the common

supervised learning paradigm. At test time, we extract the re-id feature vectors and

apply the Euclidean distance as the metrics for re-id matching.

2. Ensemble of Per-Camera Supervised (EPCS) learning (Fig. 5.4(b)): Without inter-

camera identity labels, for each camera view we train a separate re-id model with its

own single-camera training data. During deployment, given a test image we extract

the feature vectors of all the per-camera models, concatenate them into a single repre-

sentation vector, and utilise the Euclidean distance as the matching metrics for re-id.

3. Per-Camera Multi-Task (PCMT) learning (Fig. 5.4(c)): While being a variant of our

MATE model without the cross-camera multi-label learning component, we simulta-

neously consider it as a baseline due to using the multi-task learning strategy.

To implement fairly the baseline learning methods, we used the same backbone ResNet50

as our method, a widely used architecture in the re-id literature. We trained each of these

models with the softmax cross-entropy loss function in their respective designs.

Results We compared our MATE model with the three baseline methods in Table 5.1. Sev-
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Figure 5.5: Feature distribution visualization of a randomly selected person identity appear-
ing under all the six camera views of the Market-1501 dataset. This is made by t-SNE [102].
Camera views are colour-coded. Best viewed in colour.

eral observations can be derived:

1. Concatenating simply the per-camera identity label spaces, MCST yields the weakest

re-id performance. This is not surprised because there is a large (unknown) proportion

of duplicated identities but mistakenly labelled with different classes, misleading the

model training process.

2. The above problem can be addressed by independently exploiting camera-specific

identity class annotations, as what EPCS does. This method does produce better re-

id model generalisation consistently. However, the over accuracy is still rather low,

due to the incapability of leveraging the shared knowledge between camera views and

mining the inter-camera identity matching information.

3. To address this cross-camera association issue, PCMT provides an implicit solution

and significantly improves the model performance.

4. Moreover, the proposed MATE model further boosts the re-id matching accuracy by

explicitly associating the identity classes across camera views in a reliable formula-

tion. This verifies the efficacy of our model in capitalising such cheaper and more

scalable per-camera identity labelling.

To further examine the model performance, in Fig. 5.5 we visualised the feature distribu-

tions of a randomly selected person identity with images captured from all the camera views

of Market-1501. It is shown that the feature points of our model present the best camera-

invariance property, qualitatively validating the superior re-id performance over other com-

petitors.
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5.4.2 Comparing Different Person Re-ID Paradigms

As a novel re-id person scenario, it is informative and necessary to compare with existing

other scenarios in the problem-solving and supervision cost perspectives. To that end, we

compared ICS with existing representative re-id paradigms in an increasing order of training

supervision cost:

1. Unsupervised learning (no supervision): RKSL [154], ISR [84], DIC [59], and BUC

[82];

2. Tracking data modelling: TAUDL [67] and UTAL [68];

3. Unsupervised domain adaptation (source domain supervision): CAMEL [178], TJ-

AIDL [155], CR-GAN [22], MAR [180], and ECN [200];

4. Semi-supervised learning (cross-camera supervision at small size): ResNet50 [49],

WRN50 [182], and MVC [167];

5. Supervised learning (cross-camera supervision): HA-CNN [74], SGGNN [131], PCB

[144], JDGL [195], and OSNet [202].

Table 5.2 presents a holistic comparative evaluation of different person re-id paradigms in

terms of the model performance versus supervision requirement. We have the following

observations:

1. Early unsupervised learning re-id models (RKSL, ISR, DIC), which rely on hand-

crafted visual feature representations, often yield very limited re-id matching accu-

racy. While deep learning clearly improves the performance as shown in BUC, the

results are still largely unsatisfied.

2. By exploiting tracking information including spatio-temporal object appearance con-

tinuity, TAUDL and UTAL further improve the model generalisation.

3. Unsupervised domain adaptation is another classical approach to eliminating the te-

dious collection of labelled training data per domain. The key idea is knowledge

transfer from a source dataset (domain) with cross-camera labelled training samples.

This strategy continuously pushes up the matching accuracy. It has a clear limita-

tion that a relevant labelled source domain is assumed which however is not always

guaranteed in practice.

4. While semi-supervised learning enables label reduction, the model performance re-

mains unsatisfactory and is relatively inferior to unsupervised domain adaptation. This
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Figure 5.6: Dynamic statistics of cross-camera identity association over the training rounds.
Dataset: Market-1501.

paradigm relies on expensive cross-camera identity annotation despite at smaller sizes.

5. With full cross-camera identity label supervision, supervised learning methods pro-

duce the best re-id performance among all the paradigms. However, the need for

cross-camera identity association leads to very high labelling cost per domain, re-

stricting significantly its scalability in realistic large scale applications typically with

limited annotation budgets.

6. The ICS re-id is proposed exactly for solving this low cost-effectiveness limitation

of the conventional supervised learning re-id paradigm, without the expensive cross-

camera identity association labelling. Despite much weaker supervision, MATE can

approach the performance of the latest supervised learning re-id methods on Market-

1501. However, the performance gap on the largest dataset MSMT17 is still clearly

bigger, suggesting a large room for further ICS re-id algorithm innovation.

5.4.3 Further Evaluations

We conducted a sequence of in-depth component evaluations for the MATE model on the

Market-1501 dataset.

5.4.3.1 Component Analysis

We started by evaluating the three components of our MATE model: Per-Camera Multi-Task

(PCMT) learning, Cross-Camera Multi-Label (CCML) learning, and Curriculum Thresh-

olding (CT). The results in Table 5.3 show that: (1) Using the PCMT component alone, the

model can already achieve fairly strong re-id matching performance, thanks to the ability of

learning implicitly cross-camera feature representation via a specially designed multi-task
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Table 5.3: Evaluating the model components of MATE: Per-Camera Multi-Task (PCMT)
learning, Cross-Camera Multi-Label (CCML) learning, and Curriculum Thresholding (CT).
Dataset: Market-1501.

Component R1 R10 R20 mAP
PCMT 78.4 93.1 95.7 52.1
PCMT+CCML 85.3 96.2 97.6 65.2
PCMT+CCML+CT (full) 88.7 97.1 98.2 71.1

inference structure. (2) Adding the CCML component significantly boosts the accuracy,

verifying the capability of our cross-camera identity matching strategy in discovering the

underlying image pairs. (3) With the help of CT, a further performance gain is realised, vali-

dating the idea of exploiting curriculum learning and the design of our curriculum threshold.

As a key performance contributor, we further examined CCML by evaluating its essen-

tial part – cross-camera identity association. To that end, we tracked the statistics of self-

discovered identity pairs across camera views over the training rounds, including the previ-

sion and recall measurements. It is shown in Fig. 5.6 that our model can mine an increasing

number of identity association pairs whilst maintaining very high precision which there-

fore well limits the risk of error propagation and its disaster consequence. This explains

the efficacy of our cross-camera multi-label learning. On the other hand, while failing to

identify around 40% identity pairs with further improvement to be made, our model can

still achieve very competitive performance as compared to fully supervised learning models.

This suggests that our method has already discovered the majority of re-id discrimination

information from the associated identity pairs, missing only a small fraction embedded in

those hard-to-match pairs. In this regard, we consider the proposed model is making a sat-

isfactory trade-off between error association and knowledge mining. To check the impact of

cross-camera identity association together with per-camera learning, we visualised the fea-

ture distribution change for a set of multi-camera images from a single person. It is observed

from Fig. 5.7 that the same-person images are associated gradually in the re-id feature space,

reaching a similar distribution as in the supervised learning case. This is consistent with the

numerical performance evaluation above.

5.4.3.2 Hyper-Parameter Analysis

We examined the performance sensitivity of three parameters of MATE: the loss weight λ

(default value 0.5) in Eq. (5.11), the lower (default value 0.5) and upper (default value 0.95)

bound of curriculum threshold in Eq. (5.8). The evaluation in Fig. 5.8 shows that all these

parameters have a wide range of satisfactory values in terms of performance. This suggests

the convenience of setting up model training and good accuracy stability of our method.
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Figure 5.7: (a-d) The feature distribution evolution of a set of multi-camera images from a
single random person over the training rounds, in comparison to (e) the feature distribution
by supervised learning. Dataset: Market-1501. Best viewed in colour.
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Figure 5.8: Hyper-parameter analysis: (a) the loss weight λ in Eq. (5.11), the (b) lower and
(c) upper bound of curriculum threshold in Eq. (5.8). Dataset: Market-1501.

5.5 Conclusions

In this chapter, a novel person re-id paradigm, i.e., intra-camera supervised (ICS) person

re-id, is presented which is characterised by training re-id models with only per-camera in-

dependent person identity labels but no the conventional cross-camera identity labels. The

key motivation is for eliminating the tedious and expensive process of manually associ-

ating identity classes across every pair of camera views in a surveillance network, which

makes the training data collection too costly to be affordable in large-scale real-world ap-

plication. To address the ICS re-id problem, a Multi-Task Multi-Label (MATE) learning

model is formulated which is capable of fully exploiting the per-camera re-id supervision

whilst simultaneously self-mining cross-camera identity association. Extensive evaluations

were conducted on three re-id benchmarks to validate the advantages of the proposed MATE

model over the state-of-the-art alternative methods in the proposed ICS learning setting. The

detailed component analysis is also provided for giving insights on our model design. Ex-

tensive comparative evaluations have been conducted to demonstrate the cost-effectiveness

advantages of the ICS re-id paradigm over existing representative re-id settings and the per-

formance superiority of our MATE model over alternative learning methods. In addition,

in-depth model component analysis is also performed to give insights on the MATE model

formulation.
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Chapter 6

Conclusions and Future Work

Person re-id is one of the fundamental problems in visual surveillance. Due to wide practical

applications, it is attracting more and more attentions and substantial efforts have been made

towards developing new technologies. This thesis focused on designing methodologies for

learning discriminative features for person re-id. The first two chapters respectively pre-

sented an overview of person re-id and a summarization of existing related works. Extract-

ing discriminative re-id features is inherently challenging due to (1) intra- and inter-personal

variations, (2) domain variations and (3) difficulties in data creation and annotation. This

thesis sequentially considered these three aspects with proposing three methodologies and

one new person re-id setting. Specifically,

In Chapter 3, a robust metric learning, i.e., Gaussian Mixture Importance Estimation (GMIE),

has been proposed. Unlike KISSME, one of the popular metric learning method in person

re-id, GMIE directly approximates the density ratio between the intra- and inter-personal

variations. By adapting the Kullback-Leibler divergence technique, GMIE can maintain its

re-id performance even in the high dimensional case, which is difficult for KISSME. In addi-

tion, thanks to the Gaussian Mixture Models used for approximating the density ratio, GMIE

is also capable of capturing the multi modal properties existed in the underlying densities of

intra- and inter-personal variations.

In Chapter 4, an unsupervised domain adaptive re-id framework has been proposed for ex-

tracting attribute-related features. Considering that most re-id datasets are not labeled with

pedestrian attributes, a modified domain adaptation method has been proposed for adapt-

ing the attribute recognition model. Based on the observation that the attribute recognition

performance degrades during domain adaptation procedure, an additional classifier has been

added along with the discriminator.

In Chapter 5, a novel person re-id paradigm, i.e., intra-camera supervised (ICS) person re-

id, is presented which is characterized by training re-id models with only per-camera in-

dependent person identity labels but no the conventional cross-camera identity labels. The

key motivation is for eliminating the tedious and expensive process of manually associ-

ating identity classes across every pair of camera views in a surveillance network, which
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makes the training data collection too costly to be affordable in large-scale real-world ap-

plication. To address the ICS re-id problem, a Multi-Task Multi-Label (MATE) learning

model is formulated which is capable of fully exploiting the per-camera re-id supervision

whilst simultaneously self-mining cross-camera identity association. Extensive evaluations

were conducted on three re-id benchmarks to validate the advantages of the proposed MATE

model over the state-of-the-art alternative methods in the proposed ICS learning setting. The

detailed component analysis is also provided for giving insights on our model design. Ex-

tensive comparative evaluations have been conducted to demonstrate the cost-effectiveness

advantages of the ICS re-id paradigm over existing representative re-id settings and the per-

formance superiority of our MATE model over alternative learning methods. In addition,

in-depth model component analysis is also performed to give insights on the MATE model

formulation.

The potential research direction of future work can be on minimizing the supervision in-

formation required in training person re-id model. Annotating person re-id data requires

an expensive and tedious data annotation process. This dramatically degrades the usability

and scalability of re-id methods for large scale deployment in real-world application. Most

of current works are trying to solve this problem based on unsupervised domain adaptation

methods. However, this kind of methods need an auxiliary dataset that is fully annotated

with identity labels. In addition, these methods have heavy reliance on the relevance and

quality of source datasets which renders them less practically useful, since this assumption

is not always valid. The proposed ICS person re-id setting in this thesis provides a way to

significantly reduce the annotation efforts in creating dataset. The method MATE designed

under this setting can automatically discover cross-camera identity associations. Although it

gets satisfactory results on Market1501 dataset, its performance decreases with the increase

of camera numbers in datasets. New methods or improvements on MATE are still needed

under ICS person re-id setting. Fully unsupervised person re-id can be an alternative way

to totally eliminate the data annotation process by training re-id model based on unlabeled

data. Although fully unsupervised learning methods have been widely studied in other ma-

chine learning and computer vision topics, there are very few related works in person re-id

domain, especially under deep learning framework.
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