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Abstract

Computer vision is the science related to teaching machines to see and

understand digital images or videos. During the last decade, computer

vision has seen tremendous progress on perception tasks such as ob-

ject detection, semantic segmentation, and video action recognition,

which lead to the development and improvements of important indus-

try applications such as self-driving cars and medical image analysis.

These advances are mainly due to fast computation offered by GPUs,

the development of high capacity models such as deep neural net-

works, and the availability of large datasets, often composed by a

variety of modalities. In this thesis we explore how multimodal data

can be used to train deep convolutional neural networks.

Humans perceive the world through multiple senses, and reason over

the multimodal space of stimuli to act and understand the environ-

ment. One way to improve the perception capabilities of deep learning

methods is to use different modalities as input, as it offers different

and complementary information about the scene. Recent multimodal

datasets for computer vision tasks include modalities such as depth

maps, infrared, skeleton coordinates, and others, besides the tradi-

tional RGB.

This thesis investigates deep learning systems that learn from multiple

visual modalities. In particular, we are interested in a very practical



scenario in which an input modality is missing at test time. The

question we address is the following: how can we take advantage of

multimodal datasets for training our model, knowing that, at test

time, a modality might be missing or too noisy? The case of hav-

ing access to more information at training time than at test time is

referred to as learning using privileged information.

In this work, we develop methods to address this challenge, with spe-

cial focus on the tasks of action and object recognition, and on the

modalities of depth, optical flow, and RGB, that we use for inference

at test time. This thesis advances the art of multimodal learning

in three different ways. First, we develop a deep learning method for

video classification that is trained on RGB and depth data, and is able

to hallucinate depth features and predictions at test time. Second, we

build on this method and propose a more generic mechanism based

on adversarial learning to learn to mimic the predictions originated

by the depth modality, and is able to automatically switch from true

depth features to generated depth features in case of a noisy sensor.

Third, we develop a method that learns a single network trained on

RGB data, that is enriched with additional supervision information

from other modalities such as depth and optical flow at training time,

and that outperforms an ensemble of networks trained independently

on these modalities.
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Chapter 1

Introduction

1.1 Objective, Motivation, and Challenges

Depth perception is the ability to reason about space in the 3D world, critical

for the survival of many hunting predators and an important skill for humans

to understand and interact with the surrounding environment. It develops very

early in humans when babies start to crawl [3], and emerges from a variety of

mechanisms that jointly contribute to the sense of relative and absolute position

of objects, called depth cues. Besides binocular cues, e.g . stereovision, humans

use monocular cues that relate to a priori visual assumptions derived from 2D

single images through shadows, perspective, texture gradient, and other signals -

e.g . the assumption that objects look blurrier the further they are, or that if an

object occludes another it must be closer, etc. [4]. As matter of fact, although

humans underestimate object distance in a monocular vision setup [5], we are

still able to perform most of our vision-related tasks with good efficiency even

with one eye covered.

Similarly, depth perception is often of paramount importance for many com-

puter vision tasks related to robotics, autonomous driving, scene understanding,

1



1.1 Objective, Motivation, and Challenges

Figure 1.1: What is the best way of using all data available at training time,
considering a missing (or noisy) modality at test time?

to name a few. The emergence of cheap depth sensors and the need for big data

led to big multimodal datasets containing RGB, depth, infrared, and skeleton

sequences [6], which in turn stimulated multimodal deep learning approaches.

Traditional computer vision tasks like action recognition, object detection, or in-

stance segmentation have been shown to benefit performance gains if the model

considers other modalities, namely depth, instead of RGB only [7; 8; 9; 10].

However, it is reasonable to expect that depth data is not going to be always

available when a model is deployed in real scenarios, either due to the impossibility

to collect depth data with enough quality, e.g . due to far-distance or reflectance

issues, or to install depth sensors everywhere, sensor or communications failure,

or other unpredictable events.

Considering this limitation, we would like to answer the following question

(depicted in Fig. 1.1): what is the best way of using all data available at training

time, in order to learn robust representations, knowing that there are missing

(or noisy) modalities at test time? In other words, is there any added value in

training a model by exploiting multimodal data, even if only one modality is

2



1.1 Objective, Motivation, and Challenges

available at test time?

Unsurprisingly, the simplest and most commonly adopted solution consists in

training the model using only the modality in which it will be tested. Neverthe-

less, a more interesting alternative is to exploit the potential of the available data

and train the model using all modalities, being however aware of the fact that

not all of them will be accessible at test time. This learning paradigm, i.e., when

the model is trained using extra information, is generally known as learning with

privileged information [11] or learning with side information [12].

This work investigates multimodal learning with the goal to develop computer

vision models that leverage the complementarity offered by diverse modalities at

training time, while being robust to missing modalities at test time. We are

mainly interested in developing methods that are flexible regarding the input

modalities and training or evaluation tasks. The idea of learning from multimodal

data while being aware that modalities may be missing at test time is central for

perception in general, and in particular for the next-generation of computer vision

applications e.g . concerning robotics.

The ability to reason how different data modalities relate to each other is

linked to the practical low-level task of predicting one modality from the other.

A classical example is depth estimation from RGB images. This task can also

be defined in the feature space, rather than the input space. In this thesis, we

approach this problem from a high-level perspective, i.e. we are interested in esti-

mating high-level features and predictions that correspond to the depth network,

instead of the actual depth map of the scene. One of the main challenges of

multimodal learning is to develop a method that efficiently leverages the differ-

ent advantages that diverse modalities offer. We address this problem from the

more challenging perspective of being able to account for a missing modality for

inference. We develop deep learning methods that learn using RGB, Depth, and

3



1.2 Contributions and Outline

Optical Flow data. We extensively evaluate our methods on the task of video

action recognition, and also provide results on the task of object recognition. The

next section discusses the main contributions of this thesis.

1.2 Contributions and Outline

This thesis will describe several models for multimodal learning using privileged

information.

Chapter 2 describes the related work and places our work at the intersection

of three topics, namely Generalized Distillation, Adversarial Learning, and Mul-

timodal Deep Learning. Specific works that are closer to the methods presented

in the following chapters are discussed within the corresponding chapter.

Chapter 3 introduces a model that learns from RGB and depth, and uses RGB

only at test time for video action classification. This is accomplished by means

of an additional network that learns to mimic the missing modality features and

predictions, called hallucination network, using the modality that is available as

input. This chapter is mainly based on the publication:

• [13] N. C. Garcia, P. Morerio, and V. Murino, ”Modality distillation with

multiple stream networks for action recognition”, in The European Confer-

ence on Computer Vision (ECCV ), September 2018.

Chapter 4 extends the previous work to the task of object recognition, and

presents a novel method to learn the hallucination network. We develop an ad-

versarial learning strategy to align the features and predictions across modalities.

We also evaluate this method using noisy data, and present a mechanism to au-

tomatically switch to hallucinated features and predictions in case the input data

is too noisy. This chapter is based on the publication:

4



1.2 Contributions and Outline

• [14] - N. C. Garcia, P. Morerio, and V. Murino, ”Learning with privileged

information via adversarial discriminative modality distillation”, Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI ), 2019.

Chapter 5 investigates how multimodal data can be used in a cooperative

learning setting. We present an algorithm to learn an ensemble of multimodal net-

works simultaneously, that leverage the strengths of each corresponding modality

to the benefit of the ensemble and themselves. This algorithm is robust to missing

modalities, hence also related to the privileged information learning framework.

We evaluate this method using RGB, Depth, and Optical Flow data for the task

of video action recognition. This work refers to a paper under revision.

• [15] - N. C. Garcia, S. A. Bargal, V. Ablavsky, P. Morerio, V. Murino, and

S. Sclaroff, ”DMCL: Distillation Multiple Choice Learning”, under revision,

2019.

Chapter 6 discusses future directions and applications of multimodal learning

with privileged information, and in particular of techniques developed in this

thesis.

1.2.1 List of Publications

To summarize the publications described in this thesis are:

• [13] N. C. Garcia, P. Morerio, and V. Murino, ”Modality distillation with

multiple stream networks for action recognition”, in The European Confer-

ence on Computer Vision (ECCV ), September 2018.

• [16] N. C. Garcia, P. Morerio, and V. Murino, ”Chapter 12 - cross-modal

learning by hallucinating missing modalities in rgb-d vision,” in Multimodal

Scene Understanding (M. Y. Yang, B. Rosenhahn, and V. Murino, eds.),

pp. 383 – 401, Academic Press, 2019

5



1.2 Contributions and Outline

• [14] - N. C. Garcia, P. Morerio, and V. Murino, ”Learning with privileged

information via adversarial discriminative modality distillation”, Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI ), 2019.

• [15] - N. C. Garcia, S. A. Bargal, V. Ablavsky, P. Morerio, V. Murino, and

S. Sclaroff, ”DMCL: Distillation Multiple Choice Learning”, under revision,

2019.
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Chapter 2

Related Work

The book of reference by Goodfellow et al . [17] gives a detailed perspective on the

field of Deep Learning. In this chapter, we review mainly deep learning methods

that are closer to our work, namely related to the topics of Knowledge Distillation,

Adversarial Learning, and Multimodal Deep Learning.

2.1 Generalized Distillation

The Generalized Distillation framework, proposed in [18], gives a unifying per-

spective on two distinct theories related to the concept of machines-teaching-

machines: Privileged Information [11] and Knowledge Distillation [19][20]. The

former, also known as Learning Using Privileged Information (LUPI ), introduces

to the learning process the concept of a ”teacher” model that provides additional

information to a ”student” model, in addition to the label supervision. The in-

tuition is that the teacher’s additional explanations enable the student to learn

a better model than if it would be trained using label supervision only. Impor-

tantly, the additional information provided by the teacher is only available to the

student at training time, thus the term privileged information.

7
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On the other hand, Knowledge Distillation (KD) proposes a training proce-

dure to transfer knowledge from a previously trained large model or ensemble of

models to a small model, thus distilling information from a heavier to a lighter

model. This idea comes from the fact that speed and computation requirements

for training and testing phases are very different.

These ideas have in common the concept of machines-teaching-machines: the

model used for inference learns from a model that was previously trained in a

more advantageous condition, e.g . using additional information, better quality

data, or simply is an aggregate of several large models. The work presented in

this thesis are both related to the privileged information theory and to knowledge

distillation, and address these from a multimodal perspective.

We are interested in exploring additional modalities only available at training

time, such as depth and optical flow, which are considered to be privileged infor-

mation in our approaches. The knowledge distillation framework is at the core

of our methods as the mechanism to distill the knowledge offered by models that

use the additional modalities.

The idea of using privileged information was explored in many applications.

Luo et. al. [21] proposed an interesting model that is first trained on several

modalities (RGB, depth, and three features joints-based), but tested only in one

of these. The method uses a graph-based distillation mechanism to distill infor-

mation between all modalities at training time. The training process is split in

different stages, a first one of pretraining using all modalities and a large dataset,

and then a second one using a subset of modalities and a smaller dataset. The

test set consists of a single modality from the smaller dataset. This achieves

state-of-the-art results in action recognition and action detection tasks. Learning

with privileged information for action recognition has also been explored for re-

current neural networks. In [22], the authors devise a method that uses skeleton
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joints as privileged information to learn a better action classifier that uses depth,

even with scarce data.

The work of Hoffman et al . [12] introduced a model to hallucinate depth

features from RGB input for object detection task. This approach learns the

hallucination network by minimizing an Euclidean loss between the true depth

features and hallucinated feature maps. In addition, the final loss function in-

cludes more than ten classification and localization losses, balanced using the

corresponding hyperparameters. Our work is inspired in this approach and we

extend some of these ideas to other tasks, and by formulating our problem within

the generalized distillation framework.

An interesting work lying at the intersection of multimodal learning and learn-

ing with privileged information is ModDrop by Neverova et al . [23]. The authors

propose a modality-based dropout strategy, where each input modality is entirely

dropped (actually zeroed) with some probability during training. The resulting

model is proved to be more resilient to missing modalities at test time.

The idea of knowledge distillation was initially applied to network compression

[24], and have since then been applied in many creative ways to a variety of

domains such as language tasks [25], defending from adversarial attacks [26],

transfer labels across domains [27], unifying classifiers using unlabeled data [28],

or using distillation without a pre-trained teacher [29] [30]. The gains provided

by Knowledge Distillation are still not completely understood in the literature.

With this work, we hope to provide insights on its application to multimodal

data.
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2.2 Adversarial Learning

2.2 Adversarial Learning

Chapter 4 is closely related to this body of work. Our method implements an

adversarial strategy to generate features from the missing modality feature space,

using RGB as input.

In the seminal paper of Goodfellow et al. [31], the authors propose a generative

model that is trained by having two networks playing the so called minimax

game. A generator network is trained to generate images from noise vectors, and

a discriminator network is trained to classify the generated images as false and

images sampled from the dataset as true. As the game evolves, the generator

becomes better and better at generating samples that look like the true images

from the data distribution. This is usually referred to as Generative Adversarial

Networks (GANs).

The concept of adversarial training was explored in many different tasks and

domains other than image generation, such as disentangling semantic concepts

[32], network compression [33] [34] [35], feature augmentation [36], image to image

translation [37]. The training stability was improved by exploring different losses

[38] and other tricks related to the implementation of GANs [39][40].

An important variant of the GAN framework are Conditional GANs (CGANs)

[41], that propose to concatenate the label of desired class to be generated, to the

noise vector. The CGAN model has been used in different domains, from image

synthesis [42] to domain adaptation [36]. We extend the CGAN idea to achieve

the goal of temporal correspondence between the generated and the target feature

vectors. This is discussed in more detail in Chapter 4. Perhaps more similar to

our work is the interesting paper by Roheda et al.[43], that also approaches the

problem of missing modalities in the context of adversarial learning. The authors

address the binary task of person detection using images, seismic, and acoustic

sensors, where the latter two are absent at test time. A CGAN is conditioned
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on the available images and the generator maps a vector noise to representative

information from the missing modalities, with an auxiliary L2 loss. In contrast to

this work, our CGAN model learns a mapping directly from the test modality to

the feature space of the missing modality, with no auxiliary loss. We also focus

on different tasks, namely video action recognition and object recognition.

2.3 Multimodal Deep Learning

2.3.1 RGB-D Vision

Video action recognition and object detection have a long and rich field of liter-

ature, spanning from classification methods using handcrafted features, e.g. [44;

45; 46; 47; 48; 49] to modern deep learning approaches, e.g. [9; 50; 51; 52; 53; 54],

using either RGB-only, representations obtained from RGB such as optical flow,

depth data, or a combination of these. We point to some of the more relevant

works in video action recognition and object recognition using multimodal data

and also to state-of-the-art methods that consider the privileged information sce-

nario or a missing modality at test time.

Multimodal Video Action Recognition

A more comprehensive review is presented in [55] [56] [57]. The two-stream model

introduced by Simonyan and Zisserman [50] is a landmark on video analysis, and

since then has inspired a series of variants that achieved state-of-the-art perfor-

mance on diverse datasets. This architecture is composed by a RGB and an

optical flow stream, which are trained separately, and then fused at the pre-

diction layer. The RGB network models mainly appeareance features and the

optical flow, due to being specifically designed to represent movement, models

motion. In [1], the authors propose a variant of this architecture, which models
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spatiotemporal features by injecting the motion stream’s signal into the residual

unit of the appearance stream. They also employ 1D temporal convolutions along

with 2D spatial convolutions. The combination of 2D spatial and 1D temporal

convolutions has shown to learn better spatiotemporal features than 3D convo-

lutions [58]. The current state of the art in video action recognition [59] uses 3D

temporal convolutions and a new building block dedicated to capture long range

dependencies, using RGB data only. We explore some of these architectures on

Chapters 3, 4, and 5.

Some interesting works use modules specifically developed to learn motion

features, which are then incorporated in models that use RGB only [60] [61]

[62] [63]. Other methods learn an additional hallucination network to mimic the

features of optical flow [64].

In [7], the complementary properties of RGB and depth data are explored,

taking the NTU RGB+D dataset as testbed. This work designed a deep au-

toencoder architecture and a structured sparsity learning machine, and showed

to achieve state-of-the-art results for action recognition. Liu et al. [8] also use

RGB and depth complementary information to devise a method for viewpoint

invariant action recognition, extensively evaluated on the NTU RGB+D dataset.

Here, dense trajectories from RGB data are first extracted, which are then en-

coded in viewpoint invariant deep features, while a similar procedure is followed

for the depth stream. The RGB and depth features are then used as a dictionary

to predict the test label.

We mainly use three datasets for action recognition, which offer RGB and

Depth data. These are the UWA3DII [65], the NWUCLA [66], and the NTU60

and NTU120 RGB+D [67] [2]. We describe these datasets in the experimental

sections of the methods, along with the training and testing protocols.
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Object Recognition

Over the years, object recognition based on RGB and depth have been an insight-

ful task to reason on the complementarity of these two modalities, and whether

depth data should be handled differently compared to RGB. An example of this is

[9], in which the authors propose to encode depth images using a geocentric em-

bedding that encodes height above ground and angle with gravity for each pixel

in addition to the horizontal disparity, showing that it works better than using

raw depth. Differently, in [54], the authors focus on carefully designing a convolu-

tional neural network including a multimodal layer to fuse RGB and depth. Our

works differs from these approaches since we focus on learning a model that has

access to depth only at training time, which fundamentally changes the feature

learning approach.

2.3.2 Ensemble Learning

A comprehensive review about ensemble methods is presented in [68]. The most

relevant method to our work, specially to Chapter 5, is the Multiple Choice

Learning (MCL) framework. Guzman-Rivera et al . [69] proposed MCL to opti-

mize the oracle accuracy of an ensemble of models. The oracle accuracy refers to

the top-1 accuracy from the set of predictions produced by the ensemble models.

Lee et al . [70] proposed Stochastic MCL, an adaptation of MCL to an ensemble

of neural networks that have as input RGB, and learn via stochastic gradient

descent. Each network of the ensemble trained via Stochastic MCL produces a

set of diverse outputs. The inability to output a single prediction compromises

its use in real applications. Lee et al . [71] addressed this issue with Confident

MCL. The main idea is to avoid confident predictions for the classes not assigned

to a given specialist. This allows for the sum of all ensemble’s networks outputs

to get a single prediction. Tian et al . [72] also addressed this issue by training
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an additional network to estimate the weight of the outputs of each specialist.

While [71] and [72] propose ways to get a single prediction out of the ensemble,

they do not address how such methods can be used with multimodal data.

We draw inspiration on these works to address this issue within the MCL

framework. Chapter 5 addresses multimodal learning from the perspective of en-

semble learning, i.e. learning an ensemble of networks that have as input different

modalities and learn simultaneously and cooperatively.
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Chapter 3

Modality Distillation with

Multiple Stream Networks for

Action Recognition

3.1 Introduction

Imagine to have a large multimodal dataset to train a deep learning model on, for

example consisting in RGB video sequences, depth maps, infrared, and skeleton

joints data. However, at test time, this model may be used in scenarios where not

all of these modalities are available - for example, most of the cameras capture

RGB only, which is the most common and cheapest available data modality. 1

Considering this limitation, what is the best way of using all data available to

learn robust representations to be exploited when there are missing modalities at

test time? In other words, is there any added value to train a model by exploiting

more data modalities, even if only one can be used at test time? The simplest

and most commonly adopted solution could be to train the model using only the

1This chapter is based on the publications [16; 73]
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modality in which it will be tested. However, a more interesting alternative is

trying to exploit the potential of the available data and train the model using all

available modalities, realizing, however, that not all of them will be accessible at

test time. This learning paradigm, i.e., when the model is trained using extra

information, is generally known as learning with privileged information [11] or

learning with side information [12].

In this work, we propose a multimodal stream framework that learns from

different data modalities and can be deployed and tested on a subset of these.

We design a model able to learn from RGB and depth video sequences, but due

to its general structure, it can also be used to manage whatever combination of

other modalities as well. To show its potential, we evaluate the performance on

the task of video action recognition. In this context, we introduce a new learn-

ing paradigm, depicted in Fig. 3.1, to distill the information conveyed by depth

into an hallucination network, which is meant to “mimic” the missing stream at

test time. Distillation [19][20] refers to any training procedure where knowledge

is transferred from a previously trained complex model to a simpler one. Our

learning procedure also introduces a new loss function which is inspired to the

generalized distillation framework [18], that unifies distillation and privileged in-

formation learning theories. Our model is inspired to the two-stream network

introduced by Simonyan and Zisserman [50], which uses RGB and optical flow,

and has been notably successful in the traditional setting for video action recog-

nition task [74][1]. Differently, we use multimodal data, deploying one stream

for each modality (RGB and depth in our case), and use it in the framework of

privileged information.

Another inspiring work is [12], which proposed a hallucination network to

learn with side information. We build on this idea, extending it by devising

a new mechanism to learn and use such hallucination stream through a more
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general loss function and inter-stream connections.

To summarize, the main contributions of this work are:

• we propose a new multimodal stream network architecture able to exploit

multiple data modalities at training while using only one at test time;

• we introduce a new learning paradigm to learn a hallucination network

within a novel two-stream model;

• in this context, we have designed an inter-stream connection mechanism to

improve the learning process of the hallucination network, and a general

loss function, based on the generalized distillation framework;

• we report state-of-the-art results – in the privileged information scenario –

on the largest multimodal dataset for video action recognition, the NTU

RGB+D [67].

The implementation of our method is available at https://github.com/

ncgarcia/modality-distillation .

The rest of the chapter is organized as follows. Section 3.2 details the proposed

architecture and the novel learning paradigm. Section 3.3 reports the results ob-

tained on the NTU dataset, including a detailed ablation study and a comparative

performance with respect to the state of the art. Finally, we draw conclusions

and future research directions in section 3.4.

3.2 Model

3.2.1 Cross-stream multiplier networks

We design our model (Figure 3.1) based on the architecture presented in [1],

which in turn derives from the two-stream architecture originally proposed in

17
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3.2 Model

Figure 3.1: Training procedure described in section 3.2.3 (see also text therein).
The 1st step represents the segregate training of the appearance and depth stream
networks. The 2nd step illustrates the two-stream joint training. The 3rd step
refers to the hallucination learning step using the soft labels with temperature
si (eq. 3.6) and the novel distillation loss L (eq. 3.7), where the weights of the
depth stream network are frozen. The 4th step refers to a fine-tuning step, and
exemplifies also the testing setup, in which RGB data is the only input to the
model.

[50]. Typically, the two streams are trained separately and the predictions are

fused with a late fusion mechanism. These models use as input appearance (RGB)

and motion (optical flow) data, which are fed separately into each stream, both

in training and testing. Instead, in this work we use RGB and depth frames as

inputs for training, but only RGB at test time, as already discussed.

We use the ResNet-50-based [75][76] model proposed in [1] as baseline ar-

chitecture for each stream block of our model. In this paper, Feichtenhofer et

al . proposed to connect the appearance and motion streams with multiplicative

connections at several layers, as opposed to previous models which would only
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interact at the prediction layer. Such connections are depicted in Figure 3.1

with the � symbol. Figure 3.2 illustrates this mechanism at a given layer of

the multiple stream architecture, but, in our work, it is actually implemented

at the four convolutional layers of the Resnet-50 model. The underlying intu-

ition is that these connections enable the model to learn better spatiotemporal

representations, and help to distinguish between identical actions that require

the combination of appearance and motion features. Originally, the cross-stream

connections consisted in the injection of the motion stream signal into the other

stream’s residual unit, without affecting the skip path. ResNet’s residual units

are formally expressed as:

xl+1 = f(h(xl) + F (xl,Wl)), (3.1)

where xl and xl+1 are l-th layer’s input and output, respectively, F represents the

residual convolutional layers defined by weights Wl, h(xl) is an identity mapping

and f is a ReLU non-linearity. The cross-streams connections are then defined

as

xal+1 = f(xal ) + F (xal � f(xml ),Wl), (3.2)

where xa and xm are the appearance and motion streams, respectively, and �

is the element-wise multiplication operation. Such mechanism implies a spatial

alignment between both feature maps, and therefore between both modalities.

This alignment comes for free when using RGB and optical flow, since the lat-

ter is computed from the former in a way that spatial arrangement is preserved.

However, this is an assumption we can not generally made. For instance, depth

and RGB are often captured from different sensors, likely resulting in spatially

misaligned frames. We cope with this alignment problem in the method’s initial-

ization phase (described in the supplementary material). In order to augment the
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Figure 3.2: Detail of the ResNet residual unit, showing the multiplicative con-
nections and temporal convolutions [1]. In our architecture, the signal injection
occurs before the 2nd residual unit of each of the four ResNet blocks.

model temporal support, 1D temporal convolutions into the second residual unit

of each ResNet layer is also included [1], as illustrated in Fig. 3.2. The weights

Wl ∈ R1×1×3×Cl×Cl are convolutional filters initialized as identity mappings at

feature level, and centered in time, and Cl are the number of channels in layer l.

3.2.2 Hallucination stream

We also introduce and learn a hallucination network [12], using a new learning

paradigm, loss function and design mechanism. The hallucination stream network

has the same architecture as the appearance and depth stream models. This

network receives RGB as input, and is trained to “imitate” the depth stream at

different levels, i.e. at feature and prediction layers. In this work, we explore

several ways to implement such learning paradigm, including both the training

procedure and the loss, and how they affect the overall performance of the model.

In [12], a regression loss between the hallucination and depth feature maps is
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designed, defined as:

Lhall(l) = λl‖σ(Adl )− σ(Ahl )‖22, (3.3)

where σ is the sigmoid function, and Adl and Ahl are the l-th layer activations of

depth and hallucination network. This Euclidean loss forces both activation maps

to be similar. In [12], this loss is weighted along with another ten classification

and localization loss terms, making it hard to balance the total loss. One of the

main motivations behind our proposed new staged learning paradigm, described

in section 3.2.3, is to avoid the inefficient, heuristic-based tweaking of so many

loss weights, aka hyper-parameter tuning.

Instead, we adopt an approach inspired by the generalized distillation frame-

work [18], in which a student model fs ∈ Fs distills the representation ft ∈ Ft

learned by the teacher model. This is formalized as:

fs = arg min
f∈Fs

1

n

n∑
i=1

LGD(i), n = 1, ..., N (3.4)

where N is the number of examples in the dataset. The generalized distillation

loss is so defined as:

LGD(i) = (1− λ)`(yi, σ(f(xi))) + λ`(si, σ(f(xi))), λ ∈ [0, 1] (3.5)

and si are the soft predictions from the teacher network, that is:

si = σ(ft(xi)/T ), T > 0. (3.6)

The parameter λ in equation 3.5 allows to tune the loss by giving more importance

either to imitating hard or soft labels, yi and si, respectively, actually improving
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the transfer of information from the depth (teacher) to the hallucination (student)

network. The temperature parameter T in equation 3.6 allows to smooth the

probability vector predicted by the teacher network. The intuition is that such

smoothing may expose relations between classes that would not be easily revealed

in raw predictions, further facilitating the distillation by the student network Fs.

We suggest that both Euclidean and generalized distillation losses are indeed

useful in the learning process. In fact, by encouraging the network to decrease

the distance between hallucinated and true depth feature maps, it can help to

distill depth information encoded in the generalized distillation loss. Thus, we

formalize our final loss function as follows:

L = (1− α)LGD + αLhall, α ∈ [0, 1], (3.7)

where α is a parameter balancing the contributions of the 2 loss terms during

training. The parameters λ, α and T are estimated by utilizing a validation set.

The details for their setting will be provided in the supplementary material.

In summary, the generalized distillation framework proposes to use the student-

teacher framework introduced in the distillation theory to extract knowledge from

the privileged information source. We explore this idea by proposing a new

learning paradigm to train an hallucination network using privileged informa-

tion, which we will describe in the next section. In addition to the loss functions

introduced above, we also allow the teacher network to share information with

the student network by design, through the cross-stream multiplicative connec-

tions. We test how all these possibilities affect the model’s performance in the

experimental section through an extensive ablation study.
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3.2.3 Training Paradigm

In general, the proposed training paradigm, illustrated in Fig. 3.1, is divided in

two core parts: the first part (Step 1 and 2 in the figure) focuses on learning the

teacher network Ft, leveraging RGB and depth data (the privileged information

in this case); the second part (Step 3 and 4 in the figure) focuses on learning

the hallucination network, referred to as student network Fs in the distillation

framework, using the general hallucination loss defined in Eq. 3.7.

The first training step consists in training both streams separately, which

is a common practice in two-stream architectures. Both depth and appearance

streams are trained minimizing cross-entropy, after being initialized with a pre-

trained ImageNet model for all experiments. As in [77], depth frames are encoded

into color images using a jet colormap.

The second training step is still focused on further training the teacher model.

This step gives the basis for the following hallucination network training, which,

receiving in input RGB data, should behaves like an actual depth stream network.

For this reason, we must train the depth stream network in the same setting as

the hallucination model will act, hence, it is trained considering the cross-stream

connections and adding the prediction fusion layer with the RGB stream model.

Since the model trained in this step has the architecture and capacity of the final

one, and has access to both modalities, its performance represents an upper bound

for the task we are addressing. This is one of the major differences between our

approach and the one used in [12]: by decoupling the teacher learning phase with

the hallucination learning, we are able to both learn a better teacher and a better

student, as we will show in the experimental section.

In the third training step, we focus on learning the hallucination network from

the teacher model, i.e., the depth stream network just trained. Here, the weights

of the depth network are frozen, while receiving in input depth data. Instead,
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the hallucination network, receiving in input RGB data, is trained with the loss

defined in 3.7, while also receiving feedback from the cross-stream connections

from the depth network. We found that this helps the learning process.

In the fourth and last step, we carry out fine tuning of the whole model,

composed by the RGB and the hallucination streams. This step uses RGB only

as input, and it also precisely resembles the setup used at test time. The cross-

stream connections inject the hallucinated signal into the appearance RGB stream

network, resulting in the multiplication of the hallucinated feature maps and the

RGB feature maps. The intuition is that the hallucination network has learned

to inform the RGB model where the action is taking place, similarly to what the

depth model would do with real depth data.

A summary of the whole training process is reported as in the following box:
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• training step 1

– initialize RGB and depth streams with ImageNet-pretrained weights;

– train depth and RGB streams separately, with depth and RGB data respec-

tively and standard cross entropy classification loss;

• training step 2 (learning the teacher network)

– initialize both streams with weights learned in step 1;

– train both streams jointly as a two-stream model [1] (i.e. with multiplier

connections), using both RGB and depth data, with cross entropy loss;

• training step 3 (learning the student network)

– freeze depth network weights learned in step 2;

– initialize hallucination network with depth weights;

– train with cross-stream connections and the proposed loss L (eq. 3.7);

• training step 4 (finetune the final model)

– initialize the hallucination stream with weights learned in step 3;

– initialize RGB stream with weights from step 2;

– fine-tune the joint model composed by hallucination + RGB branches (with

cross-stream connections) using RGB data only and cross entropy loss;

3.3 Experiments

3.3.1 NTU RGB+D Dataset

We evaluate our model on the NTU RGB+D dataset [67], which is one of the

largest public dataset for multimodal video action recognition. It is composed by

56,880 videos, available in four modalities: RGB videos, depth sequences, infrared

frames, and 3D skeleton data of 25 joints. It was acquired with a Kinect v2
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Figure 3.3: Example of RGB and depth frames from the NTU RGB+D Dataset.

sensor in 80 different viewpoints, and includes 40 subjects performing 60 distinct

actions, including daily simple actions (e.g ., brushing teeth, drinking, writing),

interactions (e.g ., kicking other person, hugging other person), and health-related

actions (e.g ., nausea or vomiting condition, sneeze/cough). We follow the two

evaluation protocols originally proposed in [67], which are cross-subject and cross-

view. As in the original paper, we use about 5% of the training data as validation

set for both protocols, in order to select the parameters λ, α and T . In this work,

we use only RGB and depth data. The masked depth maps are converted to a

three channel map via a jet mapping, as in [77].

3.3.2 Comparison with state of the art

Table 3.1 compares performances of different methods on the NTU RGB+D

dataset. Classification accuracy is the standard performance measure used for

this dataset: it is estimated according to the protocols (training and testing

splits) reported in the respective works we are comparing with. The first part of

the table (indicated by × symbol) refers to the unsupervised method proposed

in [78], which achieve surprisingly high results even without relying on labels in

learning representations. The second part refers to supervised methods (indicated

by 4), divided according to the modalities used for training and testing. Here,

we list the performance of the separate RGB and depth streams trained in step
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Method Test Modalities Cross Subject Cross View

Luo [78] Depth 66.2% - ×
Luo [78] RGB 56.0% -

HOG-2 [79] Depth 32.4% 22.3%

4

Ours - depth model,
step 1

Depth 70.44% 75.16%

Ours - RGB model,
step 1

RGB 66.52% 71.39%

Deep RNN [67] Joints 56.3% 64.1%
Deep LSTM [67] Joints 60.7% 67.3%
Sharoudy [67] Joints 62.93% 70.27%
Kim [80] Joints 74.3% 83.1%
Sharoudy [7] RGB+D 74.86% -
Liu [8] RGB+D 77.5% 84.5%
Ours - step 2 RGB+D 79.73% 81.43%

Hoffman et al. [12] RGB 64.64% -
�Ours - step 3 RGB 71.93% 74.10%

Ours - step 4 RGB 73.42% 77.21%

Table 3.1: Classification accuracies and comparisons with the state of the art.
Performances referred to the several steps of our approach (ours) are highlighted
in bold. × refers to comparisons with unsupervised learning methods. 4 refers to
supervised methods: here train and test modalities coincide. � refers to privileged
information methods: here training exploits RGB+D data, while test relies on
RGB data only.

1, as a reference. Of course, we expect our final model to perform better than the

one trained on RGB only. We also propose our baseline, consisting in the teacher

model trained in step 2. Its accuracy represents an upper bound for the final

model, which will not rely on depth data at test time. The last part of the table

(indicated by �) reports our model’s performances at 2 different stages together

with the other privileged information method [12]. For both protocols, we can

see that our privileged information approach outperforms [12], which is the only

fair direct comparison we can make (same training & test data). Besides, as ex-
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pected, our final model performs better than “Ours - RGB model, step 1” since

it exploits more data at training time, and worse than “Ours - step 2”, since it

exploits less data at test time. Other RGB+D methods perform better (which is

comprehensible since they rely on RGB+D in both training and test) but not by

a large margin. More details and additional comments on the compared methods

are provided in the supplementary material.

3.3.3 Ablation study

In this subsection, we discuss the results of the experiments carried out to under-

stand the contribution of each part of the model and of the training procedure.

Table 3.2 reports performances at the several training steps, different losses and

model configurations.

Rows #1 and #2 refers to the first training step, where depth and RGB

streams are trained separately. We can note that the depth stream network

provides better performance with respect to the RGB one, as expected.

The second part of the table (Rows #3-5) shows the results using Hoffman et

al . ’s method [12], i.e. adopting a model initialized with the pre-trained networks

from the first training step, and the hallucination network initialized using the

depth network. Row #3 refers to the original paper [12] (i.e., using the loss Lhall,

Eq. 3.3), and rows #4 and #5 refer to the training using the proposed losses LGD

and L, in Eqs. 3.5 and 3.7, respectively. It can be noticed that the accuracies

achieved using our proposed loss functions overcome that obtained in [12] by a

significant margin (about 6% in the case of the total loss L).

The third part of the table reports performances after the training step 2.

Rows #6 and #7 refer to the depth and RGB stream networks belonging to the

model of row #8. This model corresponds to the architecture described in [1] and

constitutes the upper bound for our hallucination model, since it uses RGB and
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# Method Test Modality Loss Cross-Subject Cross-View

1
Ours - step 1,
depth stream

Depth x-entr 70.44% 75.16%

2
Ours - step 1,
RGB stream

RGB x-entr 66.52% 71.39%

3
Hoffman [12]

w/o connections
RGB eq. (3.3) 64.64% -

4
Hoffman [12]

w/o connections
RGB eq. (3.5) 68.60% -

5
Hoffman [12]

w/o connections
RGB eq. (3.7) 70.70% -

6
Ours - step 2,
depth stream

Depth x-entr 71.09% 77.30%

7
Ours - step 2,
RGB stream

RGB x-entr 66.68% 56.26%

8 Ours - step 2 RGB & Depth x-entr 79.73% 81.43%

9
Ours - step 2

w/o connections
RGB & Depth x-entr 78.27% 82.11%

10
Ours - step 3

w/o connections
RGB (hall) eq. (3.3) 69.93% 70.64%

11
Ours - step 3

w/ connections
RGB (hall) eq. (3.3) 70.47% -

12
Ours - step 3

w/ connections
RGB (hall) eq. (3.4) 71.52% -

13
Ours - step 3

w/ connections
RGB (hall) eq. (3.7) 71.93% 74.10%

14
Ours - step 3

w/o connections
RGB (hall) eq. (3.7) 71.10% -

15 Ours - step 4 RGB x-entr 73.42% 77.21%

Table 3.2: Ablation study. A full set of experiments is provided for cross-subject
evaluation protocol, and for the cross-view protocol, only the most important
results are reported.

depth for training and testing. Performances obtained by the model in row #8

and #9, with and without cross-stream connections, respectively, are the highest
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in absolute when using both modalities (around 78-79% for cross-subject and 81-

82% for cross-view protocols, respectively), largely outperforming the accuracies

obtained using only one modality (in rows #6 and #7).

The fourth part of the table (rows #10-14) shows results for our hallucination

network after the several variations of learning processes, different losses and

using or not using the cross-stream connections. One can note that the achieved

performances when only RGB data are given in input, are in line with those

achieved by the model fed by depth data. Depending on the variant adopted,

accuracies are around 70-72%, reaching about 72% in the case of application

of our full model before the fine-tuning step (row #14, cross-subject protocol).

The depth stream model (in row #6) reaches 71%, whereas the model with both

modalities in input (fixing the upper bound, row #8) reaches about 79%: only 6

percentage points separate the 2 models, showing the goodness of our proposed

approach.

Finally, the last row, #15, reports results after the last fine-tuning step, which

allows to reach the best accuracy with only the RGB modality as input, increasing

the previous performance of about 1.5%, so narrowing the gap to the upper bound

to about 4.5%.

Contribution of the cross-stream connections

We claim that the signal injection provided by the cross-stream connections helps

the learning of a better hallucination network. Row #13 and #14 show the per-

formances for the hallucination network learning process, starting from the same

point and using the same loss. The hallucination network that is learned using

multiplicative connections performs better than its counterpart. This is illus-

trated in figure 3.4: even after approximately half the number of iterations, the

hallucination network learned with the multiplicative cross-stream connections is
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w/o connections
lr = 10−3

w/o connections
lr = 10−4

w/ connections
lr = 10−4

Hallucination Loss vs Time

Figure 3.4: The plot shows the hallucination loss Lhall of Eq. 3.3: the gray and
blue curves refers to the model where no multiplicative connections are used to
learn the hallucination stream (row #14 of Table 3.2). We started the experiment
with learning rate set to 0.001, and continued after a while with learning rate set
to 0.0001. The red curve shows instead Lhall after plugging the inter-stream
connections (row #13 of Table 3.2).

able to better minimize the Euclidean loss of Eq. 3.3.

Contributions of the proposed distillation loss (Eq. 3.7)

The distillation and Euclidean losses have complementary contributions to the

learning of the hallucination network. This is observed by looking at the perfor-

mances reported in rows #3, #4 and #5, and also #11, #12 and #13. Within

both the training procedure proposed by Hoffman et al . [12] and our staged train-

ing process, the distillation loss improves over the Euclidean loss, and the com-

bination of both improves over the rest. This suggests that both Euclidean and

distillation losses have its own share and act differently to align the hallucination

(student) and depth (teacher) feature maps and outputs’ distributions.

Contributions of the proposed training procedure

The intuition behind the staged training procedure proposed in this work can

be ascribed to the dividi et impera (divide-and-conquer) strategy. In our case,

it means breaking the problem in two parts: learning the actual task we aim to

solve and learning the hallucination network to face test-time limitations. Row #5
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reports accuracy for the architecture proposed by Hoffman et al ., and rows #15

report the performance for our model with connections. Both use the same loss

to learn the hallucination network, and both start from the same initialization.

We observe that our method outperform the one in row #5, which justifies the

proposed staged training procedure.

Finally, we motivate for the use of the hallucination model in comparison with

other naive approaches when dealing with missing or noisy modalities. Comparing

rows #2 with #15, we further confirm (if still needed) that using the hallucination

model is in fact more useful than training only with RGB data. We also observe

that it is more useful to use our hallucination model than naively use totally

corrupted depth data as input to the two-stream model. This is observed by

comparing results in Table 3.3 and the performance at row #15 in Table 3.2.

The following section studies with further detail the behavior of our model when

tested using noisy depth data as input.

3.3.4 Inference with noisy depth

Suppose that in a real test case we can only access unreliable, i.e. noisy, depth

data. Now the question is: how much we can trust such data? How better would

it be to use a model in which depth is provided by an hallucination network, like

that proposed in this work? In other words, we are finally interested in exploring

how our model works under stress, and, more precisely, at which level of noise,

hallucinating the depth modality becomes favorable with respect to using the full

model with both input modalities (step 2).

The depth sensor used in the NTU dataset (Kinect), is an IR emitter coupled

with an IR camera, and has very complex noise characterization comprising at

least 6 different sources [81]. It is beyond the scope of this work to investigate

noise models affecting the depth channel, so, for our analysis we choose the most
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σ2 no noise 10−3 10−2 10−1 100 101 void
Accuracy 81.43% 81.34% 81.12% 76.85% 62.47% 51.43% 14.24%

Table 3.3: Accuracy of the model tested with clean RGB and noisy depth data.
Accuracy of the proposed hallucination model, i.e. with no depth at test time, is
77.21%.

commonly adopted noise model, i.e., the multiplicative speckle noise.

Hence, we inject multiplicative Gaussian noise in the depth image I in order

to simulate speckle noise: I = I ∗ n, n ∼ N(1, σ). Table 3.3 shows how perfor-

mances of the network degrade when depth is corrupted with such Gaussian noise

with increasing variance (cross-view protocol only). Results show that accuracy

significantly decreases wrt the one guaranteed by our hallucination model (row

#15 in Table 3.2), even with low noise variance. This means, in conclusion, that

training an hallucination network is an effective way not only to obviate to the

problem of a missing modality, but also to deal with noise affecting the input

data channel.

3.3.5 Inverting the data modalities: RGB distillation

Despite the proposed architecture is general and can be applied to any multimodal

pair of data streams, our model is not symmetric under the swap of the depth

and RGB modalities. The connection between streams is engineered such that

the RGB stream is fed with a signal coming from the depth stream, and not

vice versa. The intuition for such choice of direction is that the depth stream

learns from cleaner, more representative data (foreground depth maps), agnostic

to texture, and is able to inform the RGB stream where the action is taking place,

practically working as an augmentation tool for those regions of the feature map.
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In fact, the depth stream alone performs better the the RGB alone.

In [1], the authors tested different locations where to inject the optical flow

signal, e.g . inside or outside the ResNet residual unit. Bi-directional connections

were also investigated, i.e. both streams were injected one into the other. It was

concluded that injecting signal into the optical flow stream decreases the model

performance, and suggest that the reason can be ascribed to the RGB stream

becoming dominant during training. We hypothesize that the same reasoning

can be applied to the depth stream, which in our model takes the place of optical

flow. In [1], the authors did not try to invert the connection, i.e. to inject signal

from RGB to optical flow. We report the results of such experiment in Table 3.4.

Line #8a reports the accuracy obtained by the teacher network at the end

of step 2: not only such accuracy is lower than the one of our original teacher

network (line #8), but also is only marginally higher than the one obtained by the

final model (line #15), which only uses RGB at test time. Line # 8a represents

thus a very poor upper bound (as compared to line # 8). This translates in a

worse hallucination network (lines #13a) and worse distilled model (#15a).

3.3.6 Implementation details

Pre-processing & alignment

The multiplicative cross-stream connections present in our model require both

RGB and depth frames to be spatially aligned, since they are element-wise

operations over the feature maps. Such alignment comes for free when us-

ing RGB and optical flow - which is computed directly from the appearance

frames. However, this is not normally the case when using depth and RGB

frames that are acquired with different sensors, and have different dimensions

and aspect ratios as in the NTU RGB+D dataset, or other Kinect-acquired data.

Fortunately, the NTU dataset provides the joints’ spatial coordinates in every
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# Method Test Modality Loss Cross-Subject Cross-View

1
Ours - step 1,
depth stream

Depth x-entr 70.44% 75.16%

2
Ours - step 1,
RGB stream

RGB x-entr 66.52% 71.39%

Depth → RGB (compare to Table 2 of the paper)

6
Ours - step 2,
depth stream

Depth x-entr 71.09% 77.30%

7
Ours - step 2,
RGB stream

RGB x-entr 66.68% 56.26%

8 Ours - step 2 RGB & Depth x-entr 79.73% 81.43%
13 Ours - step 3 RGB (hall) eq. (7) 71.93% 74.10%
15 Ours - step 4 RGB x-entr 73.42% 77.21%

Inverted - RGB → Depth

6a
Ours - step 2,
depth stream

Depth x-entr 66.6% 73.68%

7a
Ours - step 2,
RGB stream

RGB x-entr 63.98% 61.18%

8a Ours - step 2 RGB & Depth x-entr 74.45 % 78.55 %
13a Ours - step 3 RGB (hall) eq. (7) 68.47% 72.77%
15a Ours - step 4 RGB x-entr 66.86 % 73.34%

Table 3.4: Inverting the cross-stream connection study. The last section of the
table refers to results where the direction of the cross-stream connection has been
inverted. The other results are also reported in the paper, as they refer to the
model proposed.
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RGB and depth frames, rgbx,y and depthx,y respectively, which we use to align

both modalities. For every frame of a given video, we first compute the ratio

ratioA,Bx = (rgbAx − rgbBx )/(depthAx −depthBx )∀A,B ∈ S, using all depth and RGB

x coordinates from the frame’s well-tracked joints set S, and similarly for the y

dimension. The video aspect ratio is then calculated as the mean between the

median aspect ratio for x and the median aspect ratio for y dimensions. The

RGB frames of a given video are scaled according to this ratio. Finally, both

RGB and depth frames are overlaid by aligning both skeletons, and the inter-

section is cropped on both modalities. The cropped sections are then rescaled

according to the network’s input dimension, in this case 224x224. Similarly to

what was done in [1], we sample 5 frames evenly spaced in time for each video,

both for training and testing. For training, we also flip horizontally the video

frames with probability P = 0.5.

Hyperparameters and validation set

After validation, we have selected the following set of hyperparameters: α = 0.5,

λ = 0.5, T = 10. The validation set is not defined in the original paper where

the dataset is presented [67]. For the sake of experiments reproducibility, we

explain here how we defined the validation set. For the cross-subject protocol,

we choose the subject #1 (from the training set), which corresponds to around

5% of the training set. For the cross-view protocol, we do the following: 1) create

a dictionary of sorted videos for each key=action (from the training set); 2) set

numpy random seed equal to 0; 3) sample 31 videos using numpy.random.choice

for each action, which in the end will correspond to around 5% of the training

set.
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3.4 Summary

In this chapter, we addressed the task of video action recognition in the context

of privileged information. We have proposed a new learning paradigm to teach an

hallucination network to mimic the depth stream, yet receiving RGB as input. We

have confirmed the value of knowledge distillation for multimodal learning, which

we continue to explore in the following chapters. Our model outperforms many

of the supervised methods evaluated on the NTU RGB+D dataset to the date,

as well as the hallucination model proposed in [12]. We conducted an extensive

ablation study to verify how the several parts composing our learning paradigm

contribute to the model performance.
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Chapter 4

Learning with Privileged

Information via Adversarial

Discriminative Modality

Distillation

4.1 Introduction

Similarly to Chapter 3, this work addresses the problem of learning with multi-

modal data in the context of privileged information 1. We continue to investigate

the case of having RGB and depth data for training, but RGB only for testing. In

this work, we propose an adversarial strategy within a multimodal-stream frame-

work to learn a hallucination network. We evaluate its performance on the task

of video action recognition and object classification.

We introduce a new adversarial learning strategy to learn a hallucination net-

work (Fig. 4.1), which goal is to mimic the test time missing modality features,

1This chapter is based on the publication [14].
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while preserving their discriminative power. The implementation of the adver-

sarial strategy replaces the distance-base metric usually used to align the feature

vectors, such as the Euclidean loss. It can be thought as a sort of programmable

loss composed by the discriminator network and the adversarial loss. The halluci-

nation network uses RGB only as input and tries to recover useful depth features

for the task at hand. Such network can be thought as a source of monocular

depth cues, i.e. a source of depth cues from a single 2D RGB image.

We would like to stress the fact that, in contrast to estimating real depth

maps from RGB, we operate at feature level. Conceptually, it may seem that

directly estimating depth maps from RGB is a more straightforward approach

to deal with missing depth at test time. However, the task of depth estimation

is arguably a much more difficult task to accomplish compared to the primary

task at hand, which is action/object recognition from RGB sequences. A more

reasonable approach is to reduce the depth estimation problem from the pixel

space to a low dimensional space, while continuing to profit to some extent of the

discriminative benefits offered by the depth modality.

On the one hand, our work is inspired by previous works using hallucination

networks in the context of learning with privileged information. This was primar-

ily proposed in [12], that presented an end-to-end single step training method to

learn a hallucination network. This work was recently revisited in [13] considering

a multi-step learning paradigm using a loss inspired by the generalized distillation

framework [18]. On the other hand, adversarial learning has been shown to be a

powerful tool to model data distributions [31; 82]. Building upon these ideas, we

propose a new approach to learn the hallucination network via a discriminative

adversarial learning strategy. Our proposed method has several advantages: it is

agnostic regarding the pair of modalities used, which greatly simplifies its exten-

sion beyond RGB and depth data; and it is able to deal with videos by design,
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by exploiting a form of temporal supervision as auxiliary information. Further-

more, it dumps the need to balance the different losses used in the other methods

[12] [13]. Finally, thanks to the discriminator design, which includes an auxiliary

classification task, our method is able to transfer the discriminative capability

from a so-called teacher network [18] (depth network) to a student (hallucination

network), up to a full recovery of the teacher’s accuracy. The implementation of

this method is available at https://github.com/pmorerio/admd.

To summarize, the main contributions of this work are the following:

• We propose a new approach to learn a hallucination network within a

multimodal-stream network architecture: it consists in an adversarial learn-

ing strategy that exploits multiple data modalities at training while using

only one at test time. It proved to outperform its distance-based method

counterparts [12; 13], and to augment its flexibility by being agnostic to

components like distance metrics, data modalities, and size of the halluci-

nated feature vectors.

• More technically, we propose a discriminator network which is time-aware,

and jointly solves 1) the classical binary classification task (real/generated),

and 2) an auxiliary task, which inherently endows the learned features with

discriminative power.

• We report results – in the privileged information scenario – on the NYUD

[83] dataset for the task of object classification, and on the large-scale NTU

RGB+D [67] and the Northwestern-UCLA [66] datasets for the task of

action recognition.

The rest of the chapter is organized as follows. Section 4.2 presents the details

of the proposed architecture and the novel learning strategy. Section 4.3 reports

results on object recognition and video action recognition datasets, comparing
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them to the current state of the art, and investigating how the different parts of

our approach contribute to the overall performance through an extensive ablation

study. Finally, we draw conclusions and future research directions in Section 4.4.

4.2 Model

Our goal is to train a hallucination network that, having as input RGB, is able

to produce similar features to the ones produced by the depth network. The

reasoning behind this idea is that on one hand depth and RGB provide comple-

mentary information for the task, but on the other hand RGB alone contains

some cues for depth perception. Therefore, the goal of the hallucination network

is to extract from RGB frames the complementary information that depth data

would provide. It is important to emphasize that we are interested in recovering

useful depth features, in contrast to estimating real depth maps from RGB.

This is accomplished in a two-step training procedure, illustrated in Fig. 4.1,

and described in the following. The first step (Fig. 4.1, top) consists in training

the RGB and depth streams individually, with the respective input modality, as

two standard, separate, supervised learning problems. The resulting ensemble,

obtained by fusing the predictions of the two sub-networks (not fine-tuned), rep-

resents the full model (two-stream) that can be used when both modalities are

available at test time. Its accuracy should be taken as an upper bound for the

model we are proposing. In the second step (Fig. 4.1, bottom), we actually train

the hallucination network by means of the proposed adversarial learning strategy.

As the hallucination network is trained in the context of adversarial learning to

generate depth features, it can be also interpreted as the generator network in the

traditional GAN framework [31]. However, strictly speaking, it is clearly to be

considered as an encoder, which tries to extract monocular depth features from
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Figure 4.1: Architecture and training steps (solid lines - module is trained ; dashed
lines - module is frozen ). Step 1: Separate pretraining of RGB and Depth
networks (Resnet-50 backbone with temporal convolutions). The bottleneck de-
scribed in section 4.2.2 is highlighted as a separate component. At test time the
raw predictions (logits) of the two separate streams are simply averaged. The
complementary information carried by the two streams bring a significant boost
in the recognition performance. Step 2: The depth stream is frozen. The hallu-
cination stream H is initialized with the depth stream’s weights and adversarially
trained against a discriminator. The discriminator is fed with the concatenation
of the bottleneck feature vector and the temporal frame ordering label yt, as de-
tailed in Section 4.2.1. The discriminator also features an additional classification
task, i.e. not only it is trained to discriminate between hallucinated and depth
features, but also to assign samples to the correct class (Eq. 4.2). The halluci-
nation stream thus learns monocular depth features from the depth stream while
maintaining discriminative power. At test time, predictions from the RGB and
the hallucination streams are fused.

RGB input data. The test time setup of step 2 is again a two-stream model (not

fine-tuned), composed by the RGB and hallucination networks, both having RGB
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data as input.

4.2.1 Training procedure

Inspired by the generalized distillation paradigm, we follow a staged learning

procedure, where the “teacher” net is trained first (Step 1) and separately from

the ”student” (Step 2). This is in contrast with [12], where everything is learned

end-to-end, but in line with [13], where separated learning steps proved to be

more effective.

Step 1. The RGB and depth streams are trained separately, which is common

practice in two-stream architectures. Both depth and appearance streams are

trained by minimizing the cross-entropy loss, after being initialized with a pre-

trained ImageNet model for all experiments as common practice [12; 13; 21].

We test both streams individually and in a two-stream setup, where the final

prediction results from the average of the two streams’ logits. We found that fine-

tuning the two-stream model does not increase performance consistently. This

step can also be regarded as training the teacher network - depth stream - for the

next step (see Fig. 4.1, top).

Step 2. The depth stream Ed, trained in the previous step, is now frozen, in

order to provide a stable target for the hallucination network (generator) H,

which plays the adversarial game with a discriminator D (see Fig. 4.1, bottom).

The primary task of the discriminator D is to distinguish between the features

FH generated by the hallucination network H and Fd generated by the depth

network Ed. However, as already mentioned, the discriminator is also assigned

an auxiliary discriminative task, as detailed in the following.

The architecture of the networks Ed and H is a mix of 2D and 3D convolutions
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that process a set of frames, and output a feature vector for every frame t of the

input volume, i.e. F t
H and F t

d. This means that each frame have a corresponding

feature vector, and these may vary even if sampled from the same video, depend-

ing on its dynamics and its position t in the input volume. For example, the first

frame (and feature vector) of a clip belonging to the action ”shaking hand” might

be very different from its the middle frame, but similar to the first frame of a

clip belonging to the class ”pushing other person”. This increases the complexity

for the generator, that have not only to generate features similar to Fd, but also

to match the order in which they are generated. Namely, F t
H should be similar

to F t
d, for every frame t of the input volume. We ease this issue by providing as

input to D the one-hot encoding vector of the relative index t, which we denote

yt, concatenated with the respective feature vector, which relates to the CGAN

mechanism [41].

In standard adversarial training, the discriminator D would try to assign the

binary label true/fake to the feature vector coming from the two different streams.

However, we found that features FH generated with this mechanism, although

being very well mixed and indistinguishable from Fd, were struggling to achieve

good accuracy for the classification tasks, i.e. were lacking discriminative power.

For this reason we assign to the discriminator the auxiliary task of classifying

feature vectors with their correct class.

The adversarial learning problem is formalized as follows. Consider the RGB-

D dataset (Xrgb, Xd, Y ) where xtrgb, x
t
d ∼ (Xrgb, Xd) are time aligned RGB and

depth frames, y ∼ Y , is the C-dimensional one-hot encoding of the class label,

and C is the number of classes for the problem at hand.
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Now, let the extended label vector with C + 1 components (classes):

ŷ =

[zeros(C) || 1], for xrgb

[yi || 0] for xd

(4.1)

where zeros(C) represents a vector of zeros of dimension C, and || is the con-

catenation operator. Using this label vector instead of the classical 0/1 (real/-

generated) binary label in the discriminator encourages feature representations

FH learned by H to encode not only depth (monocular) features, but also to be

discriminative. This is possibly why the hallucination network often recovers the

accuracy of the teacher and sometimes performs even better, as further discussed

in the experimental section. In summary, we want FH features to be as discrim-

inant as real ones: the adversarial procedure produces fake features which not

only are classified as real by the discriminator, but are also assigned to the correct

class.

Based on the above definitions, we define the following minimax game:

min
θD

max
θH

` = E(xi,yi)∼(Xrgb,Y )L(D(H(xi)||yt), ŷi)

+ E(xi,yi)∼(Xd,Y )L(|D(Ed(xi)||yt), ŷi)
(4.2)

where θH and θD indicate the parameters of the hallucination stream H and

of the discriminator D, || denotes a concatenation operation and L is the softmax

cross-entropy function. Eq. 4.2 is optimized via the well known ”label flipping

hack” [84], which makes the loss function easier to minimize in practice.

4.2.2 Architectural details

All three networks (depth stream - Ed, RGB stream - Ergb, and hallucination

stream H) are modified Resnet-50 [75] augmented with temporal convolutions
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and endowed with a final bottleneck layer. The hallucination networks H are

initialized with the respective depth stream weights Ed, following the findings of

[12] for object detection, and [13] for action recognition.

Temporal convolutions

1D temporal convolutions are inserted in the second residual unit of each ResNet

layer as illustrated in Fig. 4.2, following the recent work of Feichtenhofer et al .

[1]. For layer l, the weights Wl ∈ R1×1×3×Cl×Cl are convolutional filters initial-

ized as identity mappings at feature level, and centered in time, where Cl is the

number of channels in layer l. More in detail, all the [1× 1× 3] temporal kernels

contained in Wl are initialized as [0, 1, 0], i.e. only the information of the cen-

tral frame is used at the beginning. This progressively changes as training goes

on. Very recently, in [58], the authors explored various network configurations

using temporal convolutions, comparing different combinations for the task of

video classification. This work suggests that decoupling 3D convolutions into 2D

(spatial) and 1D (temporal) filters is the best setup in action recognition tasks,

producing best accuracies. The intuition for the latter setup is that factorizing

spatial and temporal convolutions in two consecutive convolutional layers eases

training of the spatial and temporal tasks (also in line with [85]).

Bottleneck

Generating, encoding, or aligning high dimensional feature vectors via adversarial

training is often a difficult task, due to the inherent instability of the saddle

point defined by the GAN minimax game. For this reason, [36] proposes to align

a lower dimensional vector, obtained by adding a bottleneck layer to standard

architectures. This usually does not affect performances of baseline models.

Indeed, the size of the last ResNet-50 layer (before the logits) is [7, 7, 2048],
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Figure 4.2: Detail of the ResNet residual unit with temporal convolutions (blue
block).

or simply [2048] after pooling. For this reason, we further modify the ResNet-

50 by adding either i) an additional convolutional layer, whose weights Wb ∈

R7×7×2048×128, applied with no padding, reduce the dimensionality to 128; or ii)

a simple 128-dim fully connected layer after pooling. In Section 4.3.2 we further

explore the choice of the bottleneck.

Input

For the task of action recognition, the input to the encoder networks E and

H is five 3-channel frames, uniformly sampled from each video sequence, which

motivates temporal convolution. Instead, for the task of object classification

(from single images), no temporal kernels are added to the architecture. We

try different encodings for the depth channel: for the task of action recognition

they are encoded into color images using a jet colormap, as in [77]; for the object

recognition task, HHA encoding [86] is already provided in the dataset considered.

Discriminator

The discriminator used to play the adversarial game has different architectures

depending on the task. These architectures follow the empirically validated com-

mon practices in the adversarial learning literature, more specifically to what is
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Figure 4.3: Architectures for the discriminators used for the two different tasks.
Left: D1 for object recognition. Right: D2 for action recognition.

described in [36]. Its basic structure is that of a multilayer perceptron, stack-

ing fully connected (fc) layers only, since it takes a vector as input (bottleneck

features, possibly concatenated with temporal ordering for tasks involving time).

For the task of action recognition, the structure is quite shallow, consisting in

D1=[fc(2048), fc(1024), fc(C + 1)]. For the task of object classification the struc-

ture is instead more complex D2=[fc(1024), fc(1024), fc(1024), fc(2048), fc(3072),

fc(C + 1)], with skip connections in the lower layers. Being the former discrim-

inator quite deep, residual connections were inserted in order to allow gradient
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to flow through the underlying hallucination stream. Details of the architectures

are sketched in Fig. 4.3.

4.3 Experiments

4.3.1 Datasets

We evaluate the performance of our method on one object classification and

two video action classification datasets. For both tasks the model is initialized

with ImageNet pretrained weights. For the experiments on the smaller action

recognition dataset NW-UCLA, we fine-tune the model starting from the RGB

and depth streams trained on the larger NTU RGB+D dataset.

NTU RGB+D [67]. We follow the two evaluation protocols originally pro-

posed in [67], which are cross-subject and cross-view. As in the original paper,

we use about 5% of the training data as validation set for both protocols. The

masked depth maps are converted to a three channel map via a jet mapping, as

in [77].

Northwestern-UCLA [66]. This action recognition dataset provides RGB,

depth and skeleton sequences for 1475 samples. It features 10 subjects performing

10 actions captured in 3 different views.

NYUD (RGB-D) This dataset of objects (see examples in Fig. 4.4) is gath-

ered by cropping out tight bounding boxes around instances of 19 object classes

present in the NYUD [83] dataset. It comprises 2,186 paired labeled training im-

ages and 2,401 test images (RGB-D). Depth images are HHA-encoded [86]. This

version of the dataset was proposed in [12] but also used in [36; 87; 88] for the

task of modality adaptation, in the framework of domain adaptation (train on
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Figure 4.4: Examples of RGB and depth frames from the NYUD (RGB-D)
dataset.

one modality, adapt and test the model on the other modality). The task here is

object classification, training on both modalities and testing on RGB only.

4.3.2 Ablation Study

The ablation study is performed on part of the NTU RGB+D dataset, designated

as mini-NTU, which consists of random samples from the training set, considering

approximately a third of the original dataset size. The test set is still the same

as used in the other experiments and defined originally in [67].

We study how the hallucination network performance is affected by (1) feeding

different types of input to the discriminator, and (2) having the discriminator to

perform different tasks.

Bottleneck size

The discriminator receives as input the feature vector FH or Fd from either the

hallucination or the depth stream, respectively, along with the frame index label
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Network Dataset X-Subject

Depth stream, normal - (target) NTU 70.53%
Hall. net, Fx ∈ R2048 NTU 54.25%
Hall. net, Fx ∈ R2048 NTU-mini 60.95%

Depth stream, w/ bottleneck - (target) NTU 69.13%
Hall. net, Fx ∈ R128 NTU 72.14%

Table 4.1: Ablation Study - Bottleneck size. Hallucination network underper-
forming with Fx ∈ R2048.

yt. It is known that a too big feature vector may cause the GAN training to

underperform [36], which we also observe in our experiments, reported in Table

4.1.

We first trained our depth network without bottleneck on the full NTU

dataset, reaching 70.53% accuracy. This network is then used as target to learn

the hallucination model. We observed that the hallucination model trained with-

out bottleneck, i.e., the input to the discriminator is the 2048-dimensional fea-

ture vector, is far from recovering the performance of the target (reaching only

54.25%), even if the training space is reduced to the NTU-mini dataset (60.95%).

We then train a network with a 128-dimensional bottleneck (69.13%), initial-

ized with the previous depth stream, except for the bottleneck that is randomly

initialized with the MSRA initialization [89]. The hallucination model that learns

using the bottleneck feature vector is able not only to recover, but to surpass the

performance of the depth stream, reaching 72.14% accuracy. We observed this

behaviour in other experiments along the paper, and we comment that later in

Section 4.3.4.

Bottleneck implementation

In Table 4.2 we investigate different ways to decrease the size of Fx from R2048

to R128, as suggested in [36]. After the last feature map, which is of dimension
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Depth stream - versions X-Subject X-View

Depth stream wo/ bottleneck 63.95% 62.70%
One conv 55.64% 57.91%

Spatial conv + 1D conv 53.21% 52.58%
pool + conv 61.41% 63.15%

Table 4.2: Ablation Study - Investigating different bottleneck implementations.
The Table reports Hallucination network performances on NTU-mini.

7*7*2048, we tested the three following ways:

• convolution of [128,7,7] to 1*1*128,

• spatial convolution of [7,7] to 1*1*2048 followed by 1D convolution to

1*1*128, and

• pooling layer to 1*1*2048 followed by 1D convolution to 1*1*128

Even though the depth stream is just trained on the NTU-mini (63.95% for

cross subject, and 62.70% for cross view), the hallucination stream that imple-

ments the pool+conv bottleneck is able to recover almost completely (61.41%

for cross subject), or even surpass (63.15% for cross view), the original depth

stream performance. This was the architectural choice we used in the rest of the

experiments.

Discriminator: inputs and tasks

In this section, we explore whether the task assigned to the discriminator influ-

ences the hallucination performance. As introduced in Section 4.2, our hypothesis

is that the generator has the difficult task of generating features that not only

correspond to depth features, but also need to be temporally paired with these.

We solve this by introducing the additional information of the frame index yt,

which specifies the desired alignment. Table 4.3 shows results regarding the (1)
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Input Task X-Subject

Teacher network
- 61.41%

(pool + conv, Table 4.2)

F(x) 0/1 classification 1.81%
F(x) ŷ classification 59.87%

F(x) ||yt ŷ classification 63.03%

Table 4.3: Ablation Study - Investigating different inputs and tasks for the dis-
criminator. The Table reports Hallucination network performances (NTU-mini).

traditional binary task of a GAN generator having as input the feature bottleneck,

(2) the ŷ classification task having the same input as before, and (3) the proposed

approach. The traditional binary task (1) converges to a perfect equilibrium, but

the hallucination stream’s accuracy is close to random chance, meaning that the

learned features are not discriminant at all. The second approach (2) is able

to learn discriminative features, but the addition of the frame order supervision

yt (3) shows an increase in performance. It is reasonable that this mechanism

produces maximized gains on more challenging and diverse datasets, as the full

NTU dataset, or in fully 3d-convolutional architectures such as I3D [74], due to

the higher dependence on temporal convolutions.

4.3.3 Action recognition performance and comparisons

Table 4.4 compares performances of different methods in the literature, across the

two datasets for action recognition - two protocols for the NTU RGB+D and the

NW-UCLA. The standard performance measure used for this task and datasets is

classification accuracy, estimated according to the protocols, training and testing

splits defined in the respective works. The first part of the table (indicated by ×

symbol) refers to unsupervised methods, which achieve surprisingly high results

even without relying on labels in learning representations.
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The second part refers to supervised methods (indicated by 4), divided ac-

cording to the modalities used for training and testing. Here, we report the per-

formance of the separate RGB and depth (with and without bottleneck) streams

trained in step 1 (rows #7 and #8). The small increase in performance is proba-

bly due to the extra training steps with small learning rate, after initialized with

the bottleneck version trained on the mini-NTU (used for the ablation study).

Importantly, the depth stream with bottleneck represents the teacher network

used for the hallucination learning. We expect our final model to perform better

than the one trained on RGB only, whose accuracy constitutes a lower bound

for the usefulness of our hallucination model. The values reported for our step

1 models for the NW-UCLA dataset, i.e. the RGB and depth streams, refer to

the fine-tuning of our NTU model. In contrast with [13], and for clearer analysis,

the two-stream setup is always not finetuned. Its accuracy represents an upper

bound for the final model, which will not rely on depth data at test time. We

have experimented training using pre-trained ImageNet weights instead of the

NTU, but it led to lower accuracy.

The last part of the table (indicated by �) reports the performance of methods

in the privileged information framework, thus directly comparable to ours. The

performance values that refer to the Hoffman et al . method [12] (row #20 of

Table 4.4) are taken from the implementation and experiments in [13]. Row

#21 refers to the method by Luo and colleagues [21], that uses 6 modalities at

training time (RGB, depth, optical flow, and three different encoding methods

for skeleton data), and RGB only at test time. Step 3 and 4 of [13] (row #22

and #23) refer to the two-stream model after the hallucination learning, and

its fine-tuning, respectively. We note that, for simplicity, the results of ADMD

Two-Stream models are merely the outcome of the average of the two streams’

logits, and are not subject to any fine-tuning, which means that they are directly
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comparable with row #22. In addition, results of row #24 correspond to the

hallucination stream only.

We note that the hallucination stream (row #24) manages to recover and

surpass the depth teacher stream (row #8) for the NW-UCLA dataset (83.94%

compared to 71.09%), while for the NTU p1 (67.57%) and p2 (71.80%) protocols

is around 4% below the respective teacher (71.87% and 75.32%). Nevertheless,

when combined with the RGB stream, it performs better (NTU p2 - 81.50%)

or comparable (NTU p1 - 73.11%) to the fine-tuned model presented in [13].

Since the RGB stream is performing equally well in this work and in [13], we can

conclude that the gains in performance are due to better hallucination features.
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# Method Test Mods. NTU (p1) NTU (p2) NW-UCLA

1 Luo [78] Depth 66.2% - -
×2 Luo [78] RGB 56.0% - -

3 Rahmani [90] RGB - - 78.1%

4 HOG-2 [79] Depth 32.4% 22.3% -

4

5 Action Tube [91] RGB - - 61.5%
6 Depth stream [13] Depth 70.44% 75.16% 72.38%

7
ADMD -

Depth stream
Depth 70.53% 76.47% -

8
ADMD -

Depth stream w/ bott.
Depth 71.87% 75.32% 71.09%

9 RGB stream - [13] RGB 66.52% 80.01% 85.22%

10
ADMD -

RGB stream
RGB 67.95% 80.01% 85.87%

11 Deep RNN [67] Joints 56.3% 64.1% -
12 Deep LSTM [67] Joints 60.7% 67.3% -
13 Sharoudy [67] Joints 62.93% 70.27% -
14 Kim [80] Joints 74.3% 83.1% -
15 Sharoudy [7] RGB+D 74.86% - -
16 Liu [8] RGB+D 77.5% 84.5% -

17 Rahmani [92]
Depth+
Joints

75.2 83.1 -

18 Two-stream, step 2 [13] RGB+D 79.73% 81.43% 88.87%

19
ADMD - Two-stream

(no finetune)
RGB+D 77.74% 85.49% 89.93%

20 Hoffman et al. [12] RGB 64.64% - 83.30%

�

21 Luo et al. [21] RGB 89.50% - -

22
Hallucination model,

step 3 [13]
RGB 71.93% 74.10% 76.30%

23
Hallucination model,

step 4 [13]
RGB 73.42% 77.21% 86.72%

24
ADMD - Hall.

stream alone
RGB 67.57% 71.80% 83.94%

25
ADMD - Hall.

two-stream model
RGB 73.11% 81.50% 91.64%

Table 4.4: Classification accuracies and comparisons with the state of the art for video
action recognition. Performances referred to the several steps of our approach (ours)
are highlighted in bold. × refers to comparisons with unsupervised learning methods.
4 refers to supervised methods: here train and test modalities coincide. � refers to
privileged information methods: here training exploits RGB+D data, while test relies
on RGB data only. The 4th column refers to cross-subject and the 5th to the cross-
view evaluation protocols on the NTU dataset. The results reported on the other two
datasets are for the cross-view protocol.
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Method Trained on Tested on Accuracy

Depth alone Depth Depth 40.19%
RGB alone RGB RGB 52.90%
RGB ensemble RGB RGB 54.14%

Two-stream (average logits) RGB+D RGB+D 57.39%
Two-stream after finetuning RGB+D RGB+D 58.73%
ModDrop [23]

RGB+D RGB+D 58.93%(finetuned from Two-stream)

ModDrop [23] RGB+D RGB+blankD 47.86%
ModDrop [23] RGB+D RGB 53.73%
Autoencoder RGB+D RGB 50.52%
FCRN [93] depth estimation RGB+D RGB 50.23%
Hallucination model [11] RGB+D RGB 55.94%
Ours (naive adversarial) RGB+D RGB 50.81%
Ours (ADMD) RGB+D RGB 57.52%

Table 4.5: Object Recognition

4.3.4 Object recognition performance and comparisons

Table 4.5 illustrates the main results obtained for NYUD dataset for the object

recognition task.

As opposed to action recognition, depth information is often noisy here (cfr.

Fig. 4.4 - chair and lamp), probably due to the small resolution of the bounding

box crops. Depth alone is in fact performing worse than RGB alone (more than

10% gap). Still, the amount of complementary information carried by the two

modalities is able, when fused in the two-stream model, to boost recognition

accuracy by more than 5 percentage points, despite the poor depth performance

(RGB→52.90%, Depth→40.19% ⇒ two-stream→57.39%).

It is well established that ensemble methods tend to outperform their single-

model counterparts: an ensemble of two CNNs, each trained started from a differ-

ent initialization, outperforms either independent model [94]. Since, in principle,

the proposed ADMD strategy is the combination of an RGB model trained using a
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standard supervised approach and another adversarially trained RGB model, we

additionally compare our approach to an ensemble of RGB classifiers (third line of

Table 4.5). Interestingly, despite starting from a two relatively high single-stream

performances, the fusion process of two RGB networks only marginally increases

the final accuracy (RGB1→53.19%, RGB2→52.60% ⇒ Ensemble→54.14%).

As noticed for the task of action recognition, we found that fine-tuning the

fused streams does not always bring significant improvements, as opposed to

[13], were the architecture features cross-stream multiplier connections, which

need to be trained in an further step. Fine-tuning with the strategy proposed by

Neverova et al . [23] looks slightly more effective, since ModDrop introduces a light

dropout at the input layers, both on the images and on the whole modalities. The

resulting model is tested in both the original setup proposed in [23], namely by

blanking out the depth stream, and by simply using RGB predictions. The latter

scheme slightly improves the performance of the RGB stream, possibly thanks to

dropout. However, although the model shows more robustness to missing depth

at test time, it clearly fails to extract any monocular depth cue.

Another interesting comparison we perform is the following: we train a cross-

modal autoencoder with an L2 loss in order to reconstruct depth maps from RGB.

The encoder-decoder architecture consists in the very same RGB ResNet-50 for

the encoder, and in 5 stacked deconvolutional blocks intertwined with batch-norm

layers for the decoder. At test time, when depth is not available, we provide RGB

frames to the autoencoder, which reconstructs the missing modality to feed the

corresponding branch of the two-stream architecture. The performance of this

setup is quite poor. We observe that the autoencoder easily overfits the training

set, generating high quality depth maps for the training set, while it performs very

poorly for the test set. Similarly, we reconstruct depth by means of FCRN [93],

a state-of-the-art depth estimator trained on the entire NYUD dataset. Again,
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performance is quite poor, since depth estimated by FCRN misses many fine

details needed for object classification. This suggest that, for the recognition

task, hallucinating task specific features is more effective than estimating depth.

This claim is again confirmed with the result for the Hallucination model pro-

posed in [13], adapted in this case for object recognition (Table 5, 3rd to last

row). This method outperforms both the RGB stream and the RGB ensemble,

confirming the value of hallucinating depth. It also outperforms the other base-

lines that use RGB only at test time (3rd section of Table 5). In particular, it

performs considerably better than FCRN depth estimation, which indicates again

that depth feature hallucination is more effective than predicting depth maps at

pixel level. More importantly, we can directly compare it with ADMD proposed

in this paper (55.94% vs 57.52%), concluding that, similarly to action recognition

experiments, the adversarial approach performs better.

Eventually, we tested our adversarial scheme in two different setups: i) the

naive setup where the discriminator D is assigned the binary task only, and ii)

the ADMD setup, where the discriminator is also assigned the classification task.

While the former performs as the autoencoder, the latter is able to fully recover

the accuracy of the Two-stream model, being only slightly below that of the

fine-tuned model.

4.3.5 Inference with noisy depth

In real test scenarios, it is often the case that we can only access noisy depth

data. In this section, we address two questions: i) how much such noisy data can

degrade the performance of a multimodal setup? ii) At which level of noise does

it become favorable to hallucinate the depth modality with respect to using the

teacher model (Two-stream) with noisy depth data?

The depth sensor used in the NTU dataset (Kinect), is an IR emitter coupled
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Figure 4.5: Discriminator confidence at predicting ’fake’ label as a function of
noise in the depth frames. The more corrupted the frame, the more confident D,
and the lower the accuracy of the Two-stream model (NYUD dataset).

with an IR camera, and has very complex noise characterization comprising at

least 6 different sources [81]. It is beyond the scope of this work to investigate

noise models affecting the depth channel, so, for our analysis we choose the most

influencing one, i.e., multiplicative speckle noise. Hence, we inject Gaussian noise

in the depth images I in order to simulate speckle noise: I = I ∗ n, n ∼ N(1, σ).

Table 4.6 shows how performances of our Two-stream network degrade when

depth is corrupted with such Gaussian noise with increasing variance (NTU cross-

view protocol and NYUD). Results show that accuracy significantly decreases

with respect to the one guaranteed by our hallucination model (81.50% - row

#25) in Table 4.4, even with low noise variance of σ2=10−1. For the task of

object recognition, we can see that ModDrop [23] is slightly more resilient to depth

corruption than the simple Two-stream, since fine-tuned with noise (dropout) in

the input layer.
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NTU RGB+D action dataset - ADMD performance is 81.50%.

σ2 no noise 10−3 10−2 10−1 100 101 void
Two-stream 85.49% 85.52% 82.05% 68.99% 2.16% 3.35% 8.55%

NYUD object dataset - ADMD performance is 57.52%.

σ2 no noise 10−3 10−2 10−1 100 101 void
Two-stream 58.73% 58.68% 58.23% 57.18% 48.27% 28.40% 47.44%

ModDrop [23] 58.93% 58.89% 58.56% 57.49% 48.90% 25.95% 47.86%

Table 4.6: Accuracy values for the two-stream model trained on RGB and depth,
and tested with RGB and noisy depth data.

This experiment shows, in conclusion, that ADMD is able not only deal with

a missing modality, but also with a noisy one. In an online scenario, the discrim-

inator D, trained in step 2, can give an indication on when to operatively switch

from Two-stream to ADMD, that is, when to substitute the depth branch with

the hallucination. When training reaches equilibrium, D is maximally fooled by

the features generated by H, and cannot distinguish them from those encoded

by Ed. In practice, this means that the predicted probability for the fake class

(last class in ŷ, eq. 4.1) is p(ŷ = C + 1) ≈ .5 on average. However, when features

computed from corrupted depth start to flow inside D, its prediction for the fake

class starts to be more and more confident. Figure 4.5 plots the behavior of D

as noise increases, together with accuracy of the Two-stream model. There is a

clear turning point in both accuracy and confidence, which can be employed in

practice to decide when to switch from Ed to H i.e. when to drop depth as a

modality and start using monocular depth features extracted from RGB.
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4.3.6 Discussion

Some interesting points arise from the analysis of our findings, which we summa-

rize in the following.

1. RGB and depth actually carry complementary information. As

a matter of fact, the Two-stream setup always provides a surprisingly better

accuracy than the two streams alone. As additional evidence, a multimodal

ensemble (i.e. the Two-stream) performs better than a mono-modal ensemble

(Table 4.5), despite the lower accuracy of one of its single-stream components

(either depth or RGB, depending on task and dataset).

2. There is (monocular) depth information in RGB images. This is

evident from the fact that the hallucination stream often recovers and sometimes

surpasses the accuracy of its depth-based teacher network. Besides, fusing hallu-

cination and RGB streams always bring the benefits, as fusing RGB and Depth.

3. Standard supervised learning has limitations in extracting informa-

tion. In fact, given the evidence that there is depth information to exploit

in RGB images, minimizing cross-entropy loss is not enough to fully extract it.

For that we need a student-teacher adversarial framework. This has an interesting

parallel in adversarial network compression [33], where the performance of a fully

supervised small network can be boosted by adversarial training against a high-

capacity (and better performing) teacher net. In [33], it is also observed that the

student can surpass the teacher in some occasions.

4. Adversarial training alone only is not enough. The naive discriminator

trained for the binary task (real/generated) is not sufficient to force the halluci-

nation network to produce discriminative features. The auxiliary discriminative
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task is necessary to extract monocular depth cues which are also discriminative

for a given task (on the other hand, the auxiliary task only is not enough, as

suggested by the performance of the RGB ensemble).

5. Hallucinating task-specific depth features is more effective than esti-

mating full depth images. Not only estimated depth is often missing details

needed for classification, but also its estimation is driven by mere reconstruction

objectives. On the contrary, feature hallucination addresses a specific classifica-

tion task and requires estimating low dimensional vectors instead of images.

4.4 Summary

In this work, we have introduced a novel technique to exploit additional informa-

tion, in the form of depth images at training time, to improve RGB only models

at test time. This is done by adversarially training a hallucination network which

learns from a teacher depth stream how to encode monocular depth features from

RGB frames. The proposed approach outperforms previous ones in the privileged

information scenario in the tasks of object classification and action recognition

on three different datasets. Additionally, the hallucination framework is shown

to be very effective in cases where depth is noisy.
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Chapter 5

Distillation Multiple Choice

Learning

5.1 Introduction

Humans perceive the environment by processing a combination of modalities.

Such modalities can include audio, touch and sight, with each modality being

distinct from and complementary to the others. Deep learning methods may

likewise benefit from multimodal data. In this work, we explore how to leverage

the complementary nature of multimodal data at training time, in order to learn

a better classifier that takes as input only RGB data for inference.

One popular way to train multimodal deep learning models is to train one

network per modality, and mean pool all the network predictions for inference.

This is a sub-optimal use of multimodal training data, as modalities do not ex-

change information while training. For example, considering the task of action

recognition, some actions are easier to discriminate using certain modalities over

others: the action “open a box” may be confused with “fold paper” when solely

relying on the RGB modality, while it is easily classified using depth data [2].
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This suggests that an ensemble of networks could use multimodal data in a

more efficient way, e.g . by encouraging the network trained with a given modality

to focus on the set of classes or samples that maximizes its discriminative power.

In this case, each network is referred to as a specialist network, as it only sees

part of the dataset and specializes in that part of the problem. Assuming that

all modalities are available, the ensemble should be able to fuse the specialists’

predictions and produce a single output.

The problem of multimodal fusion becomes more challenging when some

modalities are not available at test time. This is particularly problematic if

the training process encourages the specialization of each modality network of

the ensemble. In this case, a missing modality means that the ensemble loses the

ability to correctly classify the corresponding part of the task assigned to this

specialist.

In this work, we propose a novel method that is at the intersection of MCL

framework and Knowledge Distillation [18; 95], called Distillation Multiple Choice

Learning (DMCL). DMCL addresses two practical dimensions of multimodal

learning: a) leveraging the complementarity of multiple modalities, and b) being

robust to missing modalities at test-time.

We take inspiration from the Multiple Choice Learning (MCL) framework,

which is a popular way to train an ensemble of RGB networks [70; 71; 72]. This

method chooses the best performing network of the ensemble to backpropagate

the task loss. However, extending it to multiple modalities is not straightforward.

Networks that are trained using different modalities learn at different speeds.

Consequently, the network that learns faster in the beginning of the training

dominates the traditional MCL algorithm, and is encouraged to remain dominant

during training. We extend MCL to a) address such challenges associated with

multimodal data, and b) deal with modalities that may be missing at test time.
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Figure 5.1: Distillation Multiple Choice Learning (DMCL) allows multi-
ple modalities to cooperate and strengthen one another. For each training sam-
ple, the modality specialist m that achieves the lowest loss ` distills knowledge
to strengthen other modality specialists. At test time, any subset of available
modalities can be used by DMCL to make predictions.

The case of a missing modality at test time is related to learning using Privi-

leged Information [11] and Knowledge Distillation [95]. This type of approaches

is usually structured as a two-step process: training a teacher network, and then

using its knowledge to train a student network. The teacher network has usually

a larger capacity, or has access to more data than the student. For example, con-

sider the problem of learning a model for action recognition using a multimodal

dataset composed of RGB, depth, and optical flow videos. In practice, it is rea-

sonable to assume that only RGB modality is present for test inference: depth

sensors are expensive and optical-flow computation incurs runtime cost that may

not meet real-time budget. At the same time, depth and optical flow can provide

valuable information on the samples or classes that it perform better, and that

could be distilled to the RGB network [50] [96].
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We build on these ideas to develop a model that learns from multimodal

data, exploiting the strength of each modality in a cooperative setting as the

training proceeds. This is summarized in Figure 5.1. Furthermore, our proposed

model is able to account for one or more missing modalities at test time. The

code of our Tensorflow [97] implementation will be made publicly available at

https://github.com/ncgarcia/DMCL. Our main contributions are:

• We conduct a deep evaluation of the MCL framework in the context of

multimodal learning and give insights on how multiple modalities behave

in such ensemble learning methods.

• We propose DMCL, a MCL framework designed for multimodal data where

modalities cooperate to strengthen one another. Moreover, DMCL is able

to account for missing modalities at test time.

• We present competitive to or state-of-art results for multimodal action

recognition using privileged information on three video action recognition

benchmark datasets.

This work is at the intersection of three topics: generalized distillation [18],

video action recognition, and ensemble learning. These topics are discussed in

Chapter 2, and the comparison with the several MCL algorithms is discussed in

detail later in section 5.2.

5.2 Model

Our goal is to learn an ensemble of multimodal specialists that leverages the

specific strengths of each modality to the benefit of the ensemble. This is accom-

plished by setting a cooperative learning strategy where stronger networks teach

weaker networks through knowledge distillation, depicted in Figure 5.2. For a
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Figure 5.2: Distillation Multiple Choice Learning (DMCL) In the Forward
Pass, we calculate the classification cross-entropy losses ` for each modality and
identify the teacher network - in this case, the Depth network. In the Backward
Pass, we compute the soft targets of the teacher, SD, and use them as an extra
supervision signal for the student networks. The loss for the student networks
`GD refers to the Generalized Distillation loss, defined on Eq. 5.3. The loss for
the teacher network D uses the normal logits, i.e. soft targets with temperature
T = 1. At test time, we are able to cope with missing modalities. The final
prediction is obtained by averaging the predictions of the available modalities.

given data point at training time, we identify the best-performing network as a

teacher for the remaining networks in the ensemble.

5.2.1 Distillation Multiple Choice Learning

Algorithm 1 describes our method DMCL. Let D = {(xi, yi)}N be a multimodal

dataset having N training samples. Each sample xi represents the data for the

M modalities available, xi = {x1i , . . . , xMi }, and yi represents its label.

Our ensemble is composed of a set of M networks f , each using as input

a different modality f 1(x1i ), . . . , f
M(xMi )). The MCL algorithm maximizes the

ensemble accuracy, often referred to as oracle accuracy. The oracle accuracy

assumes that we can choose the correct prediction out of the set of outputs

produced by each network. This translates to the minimization of the ensemble

loss L, which is defined as the lowest of the individual networks’ loss values,

calculated for a given data point.

Formally, MCL minimizes the ensemble loss L with respect to a specific task
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loss `(yi, ŷi) for each network prediction ŷi = fm(xmi ) for a specific modality m:

L(D) =
N∑
i=1

min
m∈{1,...,M}

`(yi, f
m(xmi )). (5.1)

In practice, we get all the networks’ predictions for each sample of the batch.

We calculate the loss `criterion for each network and sample (line 5, Algorithm 1).

In this case, `criterion corresponds to the standard cross-entropy loss. The network

with the lowest loss value is designated as the winner network, and the others

are set to be loser networks. The loss and gradient updates for a network depend

on whether it is a winner or loser network (lines 10-14, Algorithm 1). In our

proposed privileged-information formulation, we view the winner network as a

teacher, and the loser networks as students.

DMCL function of update winner and update losers of Algorithm 1 define

how the teacher network distills information to the student networks, strengthen-

ing them. DMCL updates teachers with respect to the cross-entropy training loss

computed using the ground-truth label. The loser networks are updated using a

distillation loss, which aims to transfer knowledge from the winner network.

Knowledge Distillation

Matching the students’ with the teachers’ soft targets is one way to transfer

knowledge from one model to another. Soft targets are a smoothed probability

distribution than the originally produced by the modality network fm:

smi = σ(fmi (xmi )/T ), (5.2)

where σ is the softmax function, fmi are the logits, and T is a scalar value.

The default temperature T value is set to 1 for models that do not incorporate

distillation. Setting T to a higher value produces a smoother probability distri-
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bution that reveals valuable information about the relative probabilities between

classes, which has shown to improve knowledge transfer and generalization of the

new model. In practice, very small probability values become more evident with

higher temperatures.

The Generalized Distillation (GD) [18] method consists of three sequential

steps: (1) learn the teacher network; (2) fix the teacher and compute the soft

target for all samples; (3) use the teacher’s soft targets as additional targets to

the ground truth to learn student networks. The Generalized Distillation loss is

defined as:

`GD(i) = (1− λ)`(yi, σ(f(xi)))

+λ`(si, σ(f(xi))), λ ∈ [0, 1]
(5.3)

In contrast, we use distillation in an online fashion in the context of the MCL

framework. The role of teacher / student network is assigned to the winner /

loser network respectively, for each sample of the batch. The soft targets are

computed using the winner network output, which is used to compute the loss

and update the loser networks. We do not pretrain teachers as per conventional

distillation, i.e. all networks are randomly initialized. In DMCL, teachers and

students learn together in a cooperative setting.

This cooperative setting is beneficial in two ways: It gives loser networks the

opportunity to build good representations even if they are not the argmin chosen

network ; It still enables networks to specialize in parts of the problem.

Missing Modalities

Our training method encourages each network to learn using ground truth labels

for its specialty samples (those obtaining lowest loss), and from the other spe-

cialist networks for samples otherwise. By doing so, each specialist incorporates
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knowledge related to all samples/classes of the task. This enables each network to

classify any sample at test time, therefore rendering the ensemble able to account

for missing modalities.

5.2.2 Relationship to other MCL methods

The general framework for MCL is described in lines 1-17 of Algorithm 1. The

main idea is to enable each of the networks of the ensemble to specialize in dif-

ferent parts of the problem. This algorithm was first devised for RGB ensembles.

Two recent instances of MCL are Stochastic MCL (SMCL) [70] and Confident

MCL (CMCL) [71]. These methods differentiate from each other and from the

general MCL framework in two fundamental ways: 1) the criterion loss used to

decide whether a network is a winner or a loser (line 10, Algorithm 1), and 2) how

winner and loser models are updated (line 11 and 14, Algorithm 1). In SMCL,

`criterion corresponds to the task loss, e.g . standard cross-entropy for classifica-

tion. The winner model is updated with respect to that same loss, while the loser

models are not updated. This update scheme is also used in [72]. In CMCL,

the `criterion corresponds to the task loss plus an additional loss that measures

how well the other networks predict the uniform distribution, for the given sam-

ple. The winner model is updated as in the SMCL method and the loser models

are updated with respect to the KL divergence between its predictions and the

uniform distribution.

Neither variations of MCL satisfy our problem statement. SMCL does not

result in a single prediction. While CMCL does result in a single prediction by

averaging the predictions, it does not account for the idiosyncrasies of multimodal

data. The first aspect has to do with heterogeneous training dynamics resulting

from having multimodal data as input. Figure 5.3 shows the cross-entropy loss of

three networks independently trained for action recognition, using RGB (blue),
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optical flow (orange), and depth (green). Optical flow learns at a much faster

speed than the other modalities. This results in an undesired effect when using

CMCL: the optical flow network repeatedly achieves the lowest loss. This behav-

ior is reinforced by the argmin operator and the update scheme of CMCL, that

does not allow useful gradients to pass to the loser networks. Eventually, the

optical flow network ends up winning for all the training samples, which renders

the other networks and modalities useless. The second challenge is the probable

overfitting. The current training update scheme dictates that only the winner

network gets useful gradients to build good representations for the given task,

which reduces the data used to train each network. To address this and prevent

overfitting, CMCL proposes to share the lower layers of the feature encoders. This

is not feasible when the different networks are learning from different modalities

as their representations/domains are significantly different.

DMCL addresses these issues for multimodal data by using a cooperative

learning setting where the ensemble networks teach each other via Knowledge

Distillation. At the same time, DMCL leverages the ensemble learning strategy

of the traditional MCL framework, where models specialize depending on their

performance with respect to a given input.

5.3 Experiments

In this section, we present the action recognition benchmark datasets we use

to evaluate our approach. We then present the architecture and setup of our

experiments. We analyze the performance of our DMCL in comparison to other

MCL training strategies. We give insight into why other MCL training strategies

fall short for multimodal data. We then demonstrate our privileged information

state-of-the-art results and conclude with a discussion of our experimental results.
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5.3.1 Datasets

We test DMCL on three video action recognition datasets that offer RGB and

depth data. We augment the three datasets with optical flow frames obtained

using the implementation available at [98], based on Liu et al . [99].

Northwestern-UCLA (NW-UCLA). This dataset [66] features ten people

performing ten actions, captured simultaneously at three different viewpoints.

We follow the cross-view protocol suggested by the authors in [66], using two

views for training and the remaining for testing.

UWA3DII. This dataset [65] features ten subjects performing thirty actions

for four different trials, each trial corresponding to a different viewpoint. As

suggested in [65], we follow the cross-view protocol using two views for training

and two for testing.

NTU120. The very recent NTU RGB+D 120 dataset [2] is one of the largest

multimodal dataset for video action recognition. It consists of a total of 114,480

trimmed video clips of 106 subjects performing 120 classes, including single person

and two-person actions, across 155 different viewpoints and 96 background scenes.

We follow the cross-subject evaluation protocol proposed in the original paper,

using fifty three subjects for training and the remaining for testing. We also

create three versions of NTU120, which we refer to as NTU120mini, that contains

50% sampled training data from the 120 classes. We note that NTU120 and

NTU120mini share the same test data. When results are reported on NTU120mini

they are averaged over the three runs. We also evaluate our method on the smaller

less recent version of this dataset, NTU60 [67], that has 60 classes, in order to

compare against state-of-the-art reported results.
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5.3.2 Architecture and Setup

Each modality network is implemented as the R(2+1)D-18 architecture proposed

in [58]. This architecture is based on a Resnet-18 network [75], modified such

that a 1D temporal convolution is added after every 2D convolution, thus giving

the network the ability to learn spatiotemporal features. The factorization of

a 3D convolution into a combination of 2D + 1D convolution has shown to be

more effective for video classification tasks. The ensemble of modality networks

is simultaneously trained following Algorithm 1.

The input of each modality network is a clip of eight frames of the correspond-

ing modality. For each training step, a video is split into eight equal parts and

we randomly sample a frame from each of them. Each training input frame is

a crop of dimension [224,224,3], cropped around a randomly shifted center, for

each video. We also use other data augmentation techniques such as random

horizontal flipping and random color distortions. The networks are trained from

scratch for all the experiments, using SGD optimizer with Momentum 0.9, and

an initial learning rate of 10−3. At test time, we sample ten clips per video, each

clip consisting of eight frames randomly sampled, centered, and with no data

augmentation techniques. The final prediction for each video is the average of

the ten clip predictions. We have experimented with different values of temper-

ature T and hyperparameter λ, and found that T={2,5} and λ={1, 0.5} works

best, with little accuracy variations. Further details related to hyperparameters

are given in the supplementary material.

5.3.3 Results

In this section, we demonstrate how DMCL leverages multiple modalities to learn

an RGB network that outperforms an independently trained RGB classifier - our

baseline, and other MCL training strategies. All MCL strategies are trained using
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the same training process as our method, including data augmentation techniques,

optimizer, and number of steps, and are considered as ablation experiments of

our method. We then demonstrate state-of-the-art privileged information results.

Comparison vs. MCL variants

Table 5.1 shows the action classification performance on the three video action

recognition benchmark datasets for MCL variants and independently trained

modality networks. We present the classification accuracy using the RGB modal-

ity, the sum of predictions of RGB, Flow, and Depth modalities (Σ), and the

oracle accuracy (Φ). An oracle Φ is assumed to have the ability to select the

modality that gives the best prediction among the ensemble. Our DMCL ap-

proach performs better than modalities trained independently, i.e. without MCL,

and better than SMCL and CMCL variants. While Table 5.1 focuses on improve-

ment with regard to the RGB modality, we provide similar results for Depth and

Optical Flow in the supplementary material. We note that the effect of knowledge

distillation is more visible in the three smaller datasets.

Table 5.1 also shows that combining the predictions of three modalities (Σ)

generally improves accuracy. The fact that the oracle accuracy (Φ) is significantly

higher than Σ indicates that, for some cases, at least one modality predicted

the correct class, however, the sum of predictions (Σ) resulted in an incorrect

prediction. However, the gap between Σ and Φ is lower for DMCL compared to

the other approaches. This indicates that DMCL combines modality predictions

in a more optimal fashion to improve overall accuracy. The low accuracies of

SMCL and CMCL are due to artifacts created by the use of multimodal data,

which we investigate in the next section. We have checked the implementation

of these methods on RGB-only ensembles, which lead to similar results to those

reported in the original papers.
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Algorithm 1: DMCL

Input: Dataset D = {(xi, yi)}Ni , and randomly initialized networks
f 1, . . . , fM parameterized by θ1, . . . , θM

Output: M trained networks f 1, . . . , fM

1 for step ← 1 to convergence do
2 Sample batch B ⊂ D
3 for m← 1 to M do
4 Forward Pass:
5 `mcriterion = cross entropy (yi, ŷ

m)

6 end
7 for i← 1 to |B| do
8 // Backward Pass:
9 // Update winner network m∗

10 m∗ ← arg min
m∈{1,...,M}

{`mcriterion}

11 θm
∗

=update winner (θm
∗
, xm

∗
i , yi, f)

12 // Update loser networks mc

13 mc ← {1, ...,M} \ {m∗}
14 θm

c
= update losers (θm

c
, xm

c

i , yi, f)

15 end

16 end
17 return f 1, . . . , fM

18 // Function Definitions

19 Function update winner(θm
∗
, xm

∗
i , yi, f):

20 // Compute the gradient w.r.t. cross-entropy loss ;

21 ∇θm∗ ` =
∂`(yi,f

m∗
(xm

∗
i ))

∂θm∗ ;

22 // Update parameters of the winner network ;
23 θm

∗ ← θm
∗ − η∇θm∗ ` ;

24 return θm
∗
;

25 Function update losers(θm
c
, xm

c

i , yi, f):
26 // Compute soft targets of fm

∗
using Eq. 5.2;

27 sm
∗

i = σ(fm
∗

i (xm
∗

i )/T );
28 // Compute soft targets of fm

c
using Eq. 5.2;

29 sm
c

i = σ(fm
c

i (xm
c

i )/T );
30 // Compute the gradient w.r.t. GD loss using Eq. 5.3;

31 ∇θmc `GD =
∂`GD(yi,f

mc
,sm

∗
i ,sm

c

i )

∂θmc ;
32 // Update parameters of the loser networks ;
33 θm

c ← θm
c − η∇θmc `GD ;

34 return θm
c
;
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Independent SMCL CMCL Our DMCL
RGB

∑
Φ RGB

∑
Φ RGB

∑
Φ RGB

∑
Φ

NWUCLA 87.53 93.79 97.86 24.83 49.00 86.79 11.13 84.73 89.65 93.64 93.28 97.64
UWA3DII 73.74 89.75 95.52 25.19 60.70 88.51 22.28 31.90 83.89 78.39 89.50 94.96
NTU120mini 79.66 86.57 92.11 26.67 62.22 86.19 29.61 5.28 86.29 81.25 86.23 91.71
NTU120 84.86 89.74 94.36 22.31 5.54 79.81 22.37 5.06 85.20 84.31 88.46 93.21

Table 5.1: Comparing MCL methods. We compare the performance of SMCL and CMCL with our proposed DMCL
on the NWUCLA, UWA3DII, and NTU120 datasets. We also compare against independently trained modality
networks. For each method we present the accuracy of the RGB modality network, the sum of all modality network
predictions (

∑
), and the oracle accuracy (Φ). For each row, corresponding to one dataset, we highlight in bold the

best result using RGB only at test time. Using our DMCL methods results in better RGB networks for three out of
four datasets.

Dataset NWUCLA UWA3DII
Test Modality RGB Depth Flow Σ Φ RGB Depth Flow Σ Φ

Independent 87.53 80.30 89.58 93.79 97.86 73.74 77.09 89.66 89.75 95.52
Random Teacher 89.57 57.81 89.43 86.93 95.71 71.07 79.07 85.03 84.47 92.60

Our DMCL 93.64 83.29 91.07 93.28 97.64 78.39 81.87 88.26 88.51 94.59

Table 5.2: Selecting the right teacher network is important. We present the action recognition classification accuracy
on the NWUCLA and UWA3DII datasets for three scenarios, where: modality networks are trained independently;
a random teacher is assigned for every sample to guide the other modality networks; and DMCL, where the best-
performing teacher (lowest loss) is selected to guide other modality networks. For each column, corresponding to a
test modality, we highlight in bold the best result across the three scenarios.
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Learning speed for different modalities

One of the goals of this work is to investigate and bring new insights on multi-

modal learning. In a MCL setting, having a specific modality learn at a faster

pace compared to others often leads to an imbalance of the number of data points

each modality network is presented with at training time. Networks specializing

in different modalities typically do not share a backbone of parameters due to the

very different nature of the inputs - in contrast to the SMCL and CMCL variants

where there is a shared backbone. As a consequence, if a modality network dom-

inates the training process, i.e. being the one to consistently achieve the lowest

loss for training batches, it will be presented with significantly more training data

compared to the other modality networks. We observed that optical flow often

dominates the ensemble training process particularly when training using CMCL.

This is depicted in Figure 5.3 where the training loss curves of the independently

trained networks for Optical Flow, Depth, and RGB are shown over the train-

ing steps. Namely, looking at the first steps of the curve we see that Optical

Flow curve is consistently lower than Depth, which in turn has lower values than

RGB. This is consistent with what we find during training of CMCL, where the

RGB network is often ignored, the Depth network learns from a few samples and

overfits early, and the Optical Flow network sees the vast majority of the samples.

We further investigate why optical flow dominates the learning process in

our action recognition setting. We compute random features extracted from a

randomly initialized untrained network for each of the modalities using the same

architecture described previously. We then run a kNN classifier using the random

features. Table 5.3 shows results of this experiment on the NWUCLA dataset

for k = 1, 5, 10, 50, 120. The accuracy of the random features of the optical flow

modality is almost twice that achieved using Depth and RGB. The fact that the

kNN classifier achieves such good performance compared to the other modalities
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suggests that Optical Flow data naturally clusters better per class. From the

perspective of a deep neural network learning process, this could be interpreted

as a better initialization, thus speeding the initial stage of learning.

KNN accuracy with random features
Modality k=1 k=5 k=10 k=50 k=120

RGB 10.53 10.74 11.11 11.32 12.26
Depth 9.72 10.68 10.77 15.37 13.31

Optical Flow 23.23 23.96 25.31 26.35 24.53

Table 5.3: Accuracy of a KNN classifier with varying k on the NWUCLA dataset.
Classified features are computed using randomly initialized networks for each
modality. Although all features are randomly generated, optical flow random
features tend to achieve a significantly higher accuracy. This helps to explain
why optical flow networks learn faster than other modalities.

Leveraging Teacher Strength

In this section, we ablate the mechanism by which the teacher role is determined.

The teacher role is assigned to the network that achieves the lowest loss for each

sample of the batch, therefore being in the best position to guide/strengthen the

other networks. To verify this claim, we train our model with a random assign-

ment of a teacher for each sample of the batch. This can be though of as a

randomized distillation process. We then compare the overall action recognition

classification accuracy of both approaches in Table 5.2. Choosing the right net-

work as teacher consistently achieves better performance compared to a randomly

assigned teacher, for every modality. This is in-line with work that combines dis-

tillation and graphs, where the distillation process has a specific direction specified

by the direction of the edges [100]. It is interesting to note that random teacher

assignment may result in better performance than individual modality networks,

e.g . for NWUCLA the RGB individual network accuracy is 87.53% vs . 89.57% for
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Figure 5.3: The cross-entropy loss of three networks independently trained for
action recognition on the UWA3DII dataset, using RGB (blue), depth (green),
and optical flow (orange). These plots are averaged over three runs. We ob-
serve that for the first 10K steps, the training loss of the optical flow network
is consistently lower, resulting in a winner-takes-all behavior in traditional MCL
algorithms. However, in DMCL, the winner network also teaches the loser net-
works, strengthening the other modality networks and avoiding this behavior.

a random teacher assignment. These may be related to the known regularization

effect of knowledge distillation, that has been empirically shown to lead to better

performance [25; 95].

State-of-the-art Comparisons

We now compare DMCL to state-of-the-art privileged information methods, and

modality baselines, for the task of human action recognition from videos. Table

5.4 shows results for the UWA3DII and NWUCLA datasets. The top part of

the table presents modality baselines for methods that use the same number of

modalities in training and testing, including our individually trained modality
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networks. The bottom part of the table refers to methods that have missing

modalities at test time. Our DMCL using RGB only for testing achieves higher

accuracy compared to all baselines that use RGB at training and testing, and

compared to all state-of-the-art privileged information methods that use RGB

at test time, including those that use additional hallucination networks at test

time, achieving an absolute improvement of 4.7% for UWA3DII and 6.1% for

NWUCLA. Similarly, our DMCL outperforms all baselines when the only avail-

able modality is Depth by 4.8% absolute improvement and the state-of-the-art

method by 1.3% on UWA3DII.

Table 5.5 presents results on three versions of the NTU dataset: NTU60,

NTU120mini, and the full NTU120. We see that the distillation effect is much

more visible in the case of less data. For example, for NTUmini, we achieve an

absolute improvement of 1.6% over the baseline for the RGB modality, and of 6%

for NTU60. Our best modality network for NTU60 achieves 85.65% compared to

the 89.5% of [100] that uses twice the number of modalities we use for training

and an additional graph network module.

5.4 Summary

MCL is a powerful way for training ensembles of networks, originally proposed for

RGB data. We demonstrate undesirable behaviors of this framework when naively

applied to multimodal data. We propose DMCL that extends MCL frameworks

to leverage the complementary information offered by the multimodal data to the

benefit of the ensemble. The cooperative learning is enabled via knowledge distil-

lation that allows the ensemble networks to exchange information and learn from

each other. We demonstrate that modality networks trained using our DMCL

achieve competitive to or state-of-the-art results compared to the privileged infor-
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mation literature, and significantly higher accuracy compared to independently

trained modality networks for human action recognition in videos.
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Method Training Modalities Testing Modalities UWA3DII NWUCLA

M
o
d
a
li

ty
B

a
se

li
n

e
s

R-NKTM [90] Syn* RGB 66.3 78.1
Action Tubes [91] RGB RGB 33.7 61.5
Long-term RCNN [101] RGB RGB 74.5 64.7
Baseline (RGB) RGB RGB 73.74 87.52
MVDI+CNN [102] Depth Depth 68.3 84.2
Baseline (D) Depth Depth 77.09 80.30
Baseline (F) Flow Flow 89.66 89.58
Baseline (RGB, D, F) RGB, Depth, Flow RGB, Depth, Flow 89.75 93.9

P
ri

v
il

eg
ed

In
fo

.

Hoffman et al. [12] RGB, Depth RGB+ 66.67 83.30
Garcia et al. [73] RGB, Depth RGB+ 73.23 86.72
ADMD [14] RGB, Depth RGB+ - 91.64
DMCL RGB, Depth, Flow RGB 78.39 93.64
DMCL RGB, Depth, Flow Depth 81.87 83.29
DMCL RGB, Depth, Flow Flow 88.26 91.07

Table 5.4: Accuracy for UWA3DII and NWUCLA dataset. The first part of the table refers to methods that use
unsupervised feature learning (*) or that use the same number of modalities for training and testing. The second
part of the table refers to methods that use more modalities for training than for testing. Methods that use RGB+

at test time use an additional network that mimics the missing modality. For each column, corresponding to one
dataset, we highlight in colored bold the best result and in normal colored font the second best between our method
and the baselines. Each color corresponds to a different test modality. To conduct a fair comparison with baseline
methods, this table presents results for the most common view setting for UWA3DII and NWUCLA. Other view
settings follow the same trend and results are presented in the supplementary material.
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Method Training Modalities Testing Modalities NTU60 NTU120mini NTU120

M
o
d
a
li

ty
B

a
se

li
n

e
s

ST-LSTM [103][2] Skeleton Skeleton 69.2 ∼ 50.0 55.7
VGG [2] RGB RGB - ∼ 40.0 58.5
Baseline (RGB) RGB RGB 77.59 79.66 84.86
VGG [2] Depth Depth - ∼ 20.0 48.7
Baseline (D) Depth Depth 78.97 78.67 83.32
Baseline (F) Flow Flow 81.43 84.21 86.72
VGG [2] RGB,Depth RGB, Depth - - 61.9

VGG [2]
RGB, Depth,
3D Skeleton

RGB, Depth,
3D Skeleton

- - 64.0

Baseline (RGB, D, F) RGB, Depth, Flow RGB, Depth, Flow 87.25 86.57 89.74

P
ri

v
il

eg
ed

In
fo

.

Garcia et al. [14] RGB, depth RGB 73.11 - -
ADMD [73] RGB, Depth RGB 73.4 - -

Luo et al. [100]
RGB, OF, Depth,
3D Skeleton1,2,3 RGB 89.5 - -

DMCL RGB, Depth, Flow RGB 83.61 81.25 84.31
DMCL RGB, Depth, Flow Depth 80.56 78.98 82.22
DMCL RGB, Depth, Flow Flow 85.65 84.45 86.44

Table 5.5: Evaluation on NTU datasets. The test sets for NTU120mini and NTU120 are the same. For each column,
corresponding to one dataset, we highlight in bold the best result and in normal colored font the second best between
our method and the baselines. Each color corresponds to a different test modality. The approximated values are
inferred from a plot in [2]. We note that the effect of the distillation method is more visible on the smaller scale
versions NTU60 and NTU120mini of the dataset.
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Chapter 6

Conclusions

In this thesis, we have explored the problem of multimodal learning in the context

of privileged information, i.e. having access to more modalities for training than

for testing. We have developed three deep learning methods to this end, and

evaluated these on the tasks of video action recognition and object recognition.

Our work is framed around the concept of machines-teaching-machines, i.e. we

are interested in learning models using multimodal data that are able to teach or

guide the learning process of other models, used at test time, and with acess to

less resources, namely less modalities.

The first solution consists in learning an hallucination network that, using

RGB data, mimics the features and predictions of a network trained with depth

data. This is accomplished using a teacher network that was trained using depth

images, and provide targets for every training data point. At test time, since

RGB is the only modality available, the hallucination network is used to com-

pensate for the missing depth data, and enhance the RGB model. The second

solution extends this work by introducing a novel learning algorithm to train the

hallucination network. Instead of using a distance-based distance, we develop

an adversarial learning algorithm to align the features and predictions of both

networks. This achieves a better performance, and allows for the interesting ap-
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plication of automatically switching to hallucinated features in case of a noisy

input. The third solution focus on leveraging the complementarity offered by

the diverse modalities. We developed a method to learn an ensemble of multi-

modal networks in a cooperative setting. The algorithm explores the networks

and modalities that perform better for each data point. By dynamically assigning

the role of teacher and students networks throughout the training, the strongest

modality networks are used to the benefit of the ensemble and each individual

networks.

In a deep learning era, where algorithms are flexible and able to learn from

huge amounts of data from diverse modalities, the ability to understand the re-

lation between modalities and leverage the complementarity of information is

fundamental. With theses works, we have shown that multimodal learning may

be used to produce better single modality models. The paradigm of machines-

teaching-machines is a promising framework to develop multimodal learning. Fu-

ture work could address this topic by extending to other modalities such as sound

or text. This work focused on fully-supervised methods. The future of feature

learning is probably moving towards a self-supervised setting, in which multi-

modal data offers very exciting possibilities and challenges regarding cross-modal

methods. We hope this thesis is a step forward in this direction, and hope to

encourage the development of more methods in this field.
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