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Abstract

Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system which

causes lesions in brain tissues, especially visible in white matter with magnetic resonance

imaging (MRI). The diagnosis of MS lesions, which is often performed visually with MRI, is

an important task as it can help characterizing the progression of the disease and monitoring

the efficacy of a candidate treatment. automatic detection and segmentation of MS lesions

from MRI images offer the potential for a faster and more cost-effective performance which

could also be immune to expert bias segmentation.

In this thesis, we study automated approaches to segment MS lesions from MRI images.

The thesis begins with a review of the existing literature on MS lesion segmentation and

discusses their general limitations. We then propose three novel approaches that rely on

Convolutional Neural Networks (CNNs) to segment MS lesions.

The first approach demonstrates that the parameters of a CNN learned from natural images,

transfer well to the tasks of MS lesion segmentation. In the second approach, we describe

a novel multi-branch CNN architecture with end-to-end training that can take advantage

of each MRI modalities individually. In that work, we also investigated the combination

of MRI modalities leading to the best segmentation performance. In the third approach,

we show an effective and novel generalization method for MS lesion segmentation when

data are collected from multiple MRI scanning sites and as suffer from (site-)domain shifts.

Finally, this thesis concludes with open questions that may benefit from future work. This

thesis demonstrates the potential role of CNNs as a common methodological building block

to address clinical problems in MS segmentation.

Keywords: Multiple Sclerosis, Lesions, Brain, Multiple Image Modality, Segmentation, Do-

main Generalization, Convolutional Neural Network.
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DSC Dice Similarity Coefficient

LTPR Lesion-wise True Positive Rate

LFPR Lesion-wise False Positive Rate

SD Average Symmetric Surface Distance

LFPR Lesion-wise False Positive Rate

HD Hausdorff Distance

PPV Positive Prediction Value

VD Absolute Volume Difference

SC Overall Evaluation Score
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Chapter 1

Introduction

1.1 Background and Motivations

Image segmentation is one of the most important tasks in image processing and computer

vision when information needs to be extracted from image components. It is a method to

partition an image into several coherent regions/objects, without any attempt however at un-

derstanding what these regions/objects represent. Therefore, the definition of the regions/ob-

jects is completely ambiguous [28, 85]. Instead, semantic image segmentation which is one

of the most crucial tasks for visual scene understanding attempts to partition the image into

semantically meaningful regions/objects. This task aims at automatically extracting mean-

ingful information from images. It does so by assigning a unique label/category to every

single pixel in the image. This computer vision problem can also be addressed as a dense

classification problem. There is a large amount of research on semantic image segmenta-

tion, most of them based however on hand-crafted features which are designed be forehand

by human experts to extract a given set of chosen characteristics [34, 50, 69, 72, 87].

Recently, deep convolutional neural networks (CNNs) [55] have achieved great success in a

large variety of artificial intelligence tasks, including image classification [39, 42, 53, 82, 97]

and object detection [33, 38, 77, 78]. In contrast to traditional methods, where handcrafted

features are used, CNNs automatically learn representative complex features directly from

the data itself.

Based on the successful and excellent performance of CNNs on image recognition, semantic

segmentation has also been adapted using CNNs by extending them to fully convolutional

networks (FCNs) for pixel-wise classification [63]. Afterward, many semantic segmentation

networks have been proposed based on FCNs [6, 15, 16, 17, 58, 73, 110].

Medical image segmentation is one of the most challenging tasks in medical image analy-

sis. In this task, the pixels of organs or lesions need to be separated from the background
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of medical images. This identification delivers critical information about the shapes and

volumes of the mentioned organs or lesions which are necessary for diagnosis, monitoring

and treatment [40, 112]. In the last few years, medical image segmentation based on deep

neural network, particularly FCNs, has received vast attention [84]. Important improvement

has been demonstrated in different problems such as neuronal structures segmentation in

microscopy images [80], retinal blood vessel segmentation in fundus images [59], multiple

organ segmentation in computed tomography (CT) images [113] and skin lesion segmenta-

tion in dermoscopy images [106].

Medical imaging devices to study the brain such as positron emission tomography (PET),

CT, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are all

used to provide valuable information about shape, size, location, and metabolism of brain

tissues, tumors and lesions assisting in diagnosis. While all these imaging techniques are

used in combination to provide the highest detailed information about the brain, MRI is con-

sidered as the standard and more convenient technique for brain imaging due to its good

soft-tissue contrast and wide availability [84]. Recent performances of deep learning meth-

ods, specifically FCNs, in several brain MRI segmentation challenges increased their pop-

ularity resulting in multiple applications such as brain tumor [37], tissue [66] and lesion

segmentation [4].

The focus of the current study is multiple sclerosis (MS) lesion segmentation, one of the

most important areas of brain lesion segmentation. MS is one of the most common demyeli-

nation diseases and the effects of demyelination is especially visible in white matter with

MRI which is typically required to diagnose the disease [93]. During the last years, several

methods have been proposed for MS lesion segmentation [10, 83, 86, 96, 104]. However,

there is a limited number of methods based on deep learning [8, 9, 32, 36, 81, 101, 102].

In this thesis, we will investigate most of the aforementioned deep learning-based methods

for MS lesion segmentation and we will propose new solutions with improvements compared

to the state-of-the-art methods.

1.2 Challenges

MS is a chronic, autoimmune and demyelinating disease of the central nervous system caus-

ing lesions in brain tissues. This disease is a persistent inflammatory-demyelinating and de-

generative disease that is characterised pathologically by areas of inflammation, axonal loss,

and gliosis scattered throughout the central nervous system, often causing motor, sensorial,

vision, coordination, deambulation, and cognitive impairment. MS is the most non-traumatic
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disease causing disability, especially in young people. This disease is very common in Eu-

rope, the United States, Canada, New Zealand, and Australia. In countries or regions with

template climate, the incidence, and prevalence of MS increase with latitude. MS is more

common in women than in men. The incidence of MS in children is low. However, it in-

creases drastically after the age of 18, having a peak between 25 and 35 and then slowly

decreases, so becoming very rare after 50 age. It is reported that there exist between 1.3 and

2.5 million MS cases in the world and according to the latest studies, the prevalence and

incidence of MS have been increasing during the last years [93].

Nowadays, MRI scans are the most common solution to visualize the alterations owing to

their sensitivity to detect WM damage especially common in MS [21]. Four standard MRI

modalities are traditionally used for visualizing and diagnosing MS lesions including T1-

weighted MRI (T1w), T2-weighted MRI (T2w), proton density-weighted (PDw), and fluid-

attenuated inversion recovery (FLAIR).

Clinically, there exists two main important phenomena of MS: relapses and progression.

Following the changes in lesion volume over time via the precise segmentation of lesions is

an important step to understand and characterize the progression of the disease [79]. To this

aim, both manual and automated methods are used to compute the total number of lesions

and total lesion volume.

The most basic form of assessment includes manually tracing the outline of each MS lesion

on each MRI brain slice to compute the total area and volume of lesions [27]. Although

manual segmentation of MS lesions is considered the gold standard [88], this approach is

affected by various difficulties such as lesions’ deformable shapes, locations, intensities and

texture characteristics which can be significantly different across patients. Moreover, delin-

eation of 3-dimensional (3D) information from MRI modalities is time-consuming, tedious

and prone to intra- and inter-observer variability [96]. This motivates machine learning

(ML) experts to develop automated lesion segmentation techniques, which can be orders of

magnitude faster and immune to variability in expert bias.

1.3 Datasets

Automated MS lesion segmentation methods are still in the early stage of development and

are not fully applicable to real clinical applications. One of the most important problems in

this field is the lack of sufficient publicly available dataset. Moreover, most of the existing

datasets consist of a very limited number of subjects. In this section, we provide a list of

datasets including publicly available and private clinical datasets which were used for this
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thesis.

1.3.1 ISBI 2015 Longitudinal MS Lesion Segmentation Challenge:

The ISBI dataset [11] includes 19 subjects divided into two sets, 5 subjects in the train set

and 14 subjects in the test set. All subjects were scanned using a Philips 3 Tesla (T) MRI

scanner. Each subject was scanned more than once at different time-points, ranging from 4

to 6. For each time-point, T1w, T2w, PDw, and FLAIR image modalities were provided. The

volumes were composed of 182 slices with FOV=182mm×256mm and 1-millimeter cubic

voxel resolution. All images available were already segmented manually by two different

raters, therefore representing two ground truth lesion masks. For all 5 training images, lesion

masks were made publicly available. For the remaining 14 subjects in the test set, there is

no publicly available ground truth. The performance evaluation of the proposed method

over the test dataset is done through an online service by submitting the binary masks to

the challenge1 website. The preprocessed version of the images were available online at the

challenge website. All images were already skull-stripped using brain extraction tool (BET)

[91], rigidly registered to 1mm3 MNI-ICBM152 template [74] and N3 intensity normalized

[90]. An example of the preprosseced version of a subject related to ISBI dataset can be seen

in Figure 1.1.

1.3.2 Clinical Private Dataset 1:

The Neuroimaging Research Unit (NRU) dataset [4] is a private clinical dataset collected by

a research team from Ospedale San Raffaele, Milan, Italy. The dataset consists of 37 MS

patients acquired on a 3T Philips Ingenia CX scanner (Philips Medical Systems). The fol-

lowing sequences were collected: Sagittal 3D FLAIR sequence, FOV=256mm×256mm,

pixel size=1mm×1mm, 192 slices, 1mm thick; Sagittal 3D T2w turbo spin-echo (TSE)

sequence, FOV=256mm×256mm, pixel size=1mm×1mm, 192 slices, 1mm thick; Sagit-

tal 3D high resolution T1w, FOV=256mm×256mm, pixel size=1mm×1mm, 204 slices,

1mm thick. For the creation of the ground truth lesion masks, two different readers per-

formed the lesion delineation blinded to each other’s results. They estimated the agreement

between the two expert raters by using the Dice similarity coefficient as a measure of the

degree of overlap between the segmented lesion masks (they found a mean Dice of 0.87).

Following the common clinical practice of considering a single consensus mask between

raters, the two masks created by the two expert raters were used to generate a high quality,

gold standard, mask by intersecting the two binary masks of each rater. An example of a

subject from the NRU dataset can be seen in Figure 1.2.
1http://iacl.ece.jhu.edu/index.php/MSChallenge
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Figure 1.1: An example of a subject from the ISBI dataset with four MRI modalities (FLAIR,
T1w, T2w and PD) visualized through orthogonal views of the brain (axial, coronal and
sagittal planes).

1.3.3 Clinical Private Dataset 2:

This dataset [9] was collected by an hospital in University of British Columbia (UBC)

from 56 different centers (5 sites with 3T scanner and 41 sites with 1.5T scanner). Each

site has a different number of patients, ranging from 1 to 11 which resulted in totally 117

patients. Each patient had several scanning sessions, with each session including 4 MRI

modalities: T1w, T2w, PDw, and FLAIR. Each volume is composed of 60 slices with

FOV=256mm×256mm and 1mm×1mm×3mm voxel resolution. All volumes were al-

ready segmented manually by several technicians, using a semi-automated method that was

assisted by a clustering method. The gold standard mask was obtained by the intersection of

the binary masks. An example of a subject from the UBC dataset can be seen in Figure 1.3.

Table 1.1: Publicly available and private clinical datasets related to MS lesion segmentation.
Dataset Date # patients # modalities Publicly available
ISBI [11] 2015 19 4 X
Clinical 1 [4] 2018 37 4
Clinical 2 [9] 2015 117 4
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Figure 1.2: An example of a subject related to NRU dataset with four MRI modalities
(FLAIR, T1w, T2w and PD) visualized through orthogonal views of the brain (axial, coronal
and sagittal planes)

1.4 Evaluation

Different metrics have been used to evaluate the performance of the proposed methods in

MS lesion segmentation. In this section, we introduce them briefly.

1.4.1 Dice Similarity Coefficient (DSC):

The DSC is a statistic used for measuring the similarity (intersection) of two samples (seg-

mentation results and ground truth labels).

DSC =
2TP

FN + FP + 2TP
(1.1)

where TP, FN and FP indicate the true positive, false negative and false positive voxels,
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Figure 1.3: An example of a subject from the UBC dataset with four MRI modalities
(FLAIR, T1w, T2w and PD) visualized through orthogonal views of the brain (axial, coronal
and sagittal planes)

respectively. An illustration is depicted in Figure 1.4.

1.4.2 Lesion-wise True Positive Rate (LTPR):

The LTPR is the lesion-wise ratio of true positives to the sum of true positives and false

negatives.

LTPR =
LTP
RL

(1.2)

where LTP denotes the number of lesions in the reference segmentation that overlap with a

lesion in the output segmentation (at least one voxel overlap), and RL is the total number of

lesions in the reference segmentation.
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Figure 1.4: Schematic illustration of the measuring the similarity between segmentation
result and ground truth label.

1.4.3 Lesion-wise False Positive Rate (LFPR):

The LFPR is the lesion-wise ratio of false positives to the sum of false positives and true

negatives.

LFPR =
LFP
PL

(1.3)

where LFP denotes the number of lesions in the output segmentation that do not overlap with

a lesion in the reference segmentation and PL is the total number of lesions in the produced

segmentation.

1.4.4 Average Symmetric Surface Distance (SD):

The SD is the average of the distance from the lesions in ground truth mask to the nearest

lesion identified in segmentation output plus the distance from the lesions in segmentation

output to the nearest lesion identified in ground truth mask.

SD =
1

|Ngt|+ |Ns|
·

 ∑
x∈Ngt

min
y∈Ns

d(x, y) +
∑
x∈Ns

min
y∈Ngt

d(x, y)

 (1.4)
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whereNs andNgt are the set of voxels in the contour of the automatic and manual annotation

masks, respectively. d(x, y) is the Euclidean distance (quantified in millimetres) between

voxel x and y.

1.4.5 Hausdorff Distance (HD):

The HD measures the maximum distance between the nearest contours for all pairs of seg-

mented lesion and ground truth lesion.

HD = max

{
max
x∈Ngt

min
y∈Ns

d(x, y),max
x∈Ns

min
y∈Ngt

d(x, y)

}
(1.5)

1.4.6 Positive Prediction Value (PPV):

The PPV is the voxel-wise ratio of the true positives to the sum of the true and false positives.

PPV =
TP

TP + FP
(1.6)

1.4.7 Absolute Volume Difference (VD):

The VD is the absolute difference in volumes divided by the true volume,

VD =
|TPs − TPgt|

TPgt
(1.7)

where TPs and TPgt reveal the total number of the segmented lesion voxels in the output and

manual annotations masks, respectively.

1.4.8 Overall Evaluation Score (SC):

As described in [11], the ISBI challenge website provides the overall score based on most of

the previous metrics described.

SC =
1

|R| · |S|
·
∑
R,S

(
DSC
8

+
PPV
8

+
1− LFPR

4
+

LTPR
4

+
Cor
4

)
(1.8)
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where S is the set of all subjects, R is the set of all raters and Cor is the Pearson’s correlation

coefficient of the volumes.

1.5 Thesis Contributions

The following sections summarize the chapters within the thesis. Each section briefly de-

scribes a chapter highlighting the contributions and concludes with a reference to the asso-

ciated published or submitted paper.

1.5.1 Deep 2D Encoder-Decoder CNN for MS Lesion Segmentation

The number of annotated brain MRI images for MS lesion segmentation is always much

less than the number of labeled natural images (i.e., non-brain specific images). This makes

applying supervised machine learning approaches challenging in MS lesion segmentation.

Natural images are completely different in appearance from brain MRI images (Figure 1.5).

However, we know that a CNN trained on one domain may generalize to another domain.

In chapter 3, we show that the parameters of a CNN trained on natural images in the clas-

sification task can generalize well to brain MRI images in MS lesion segmentation task. To

this end, we demonstrate that a simple modification on a CNN trained on natural images can

produce encouraging MS lesion segmentation results from a clinical perspective. Further,

the proposed model is the first whole-brain slice-based (2D) approach allowing to exploit

the overall structural information and multi-plane strategy to take advantage of full contex-

tual information for MS lesion segmentation. We evaluate the proposed model on the ISBI

dataset (section 1.3.1). Comparing with other state-of-the-art methods, our experiments have

shown that the proposed architecture performed better proving evidence that it has a higher

capability to effectively identify unhealthy regions while having an overall good overlap

with the ground truth in terms of global lesion volume. This can be particularly important

in clinical settings where detecting all potential lesions is prioritized over discarding easily

identifiable false negatives.

Contributions

• First work to use the parameters from a CNN trained on natural images and fine-tuned

to perform MS lesion segmentation of MRI images.

• First whole-brain slice-based FCN for MS lesion segmentation.

• providing evidence that the performance of the proposed method is comparable to the
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Figure 1.5: The learned parameters of a CNN trained to classify natural images of a large
dataset (left side) will generalize to segment MS lesion in brain MRI images (right side).

inter-rater score.

The content of this chapter was published in the MICCAI Workshop on Brain Lesion.

[3] S. Aslani, M. Dayan, V. Murino, D. Sona, "Deep 2D Encoder-Decoder Convolutional

Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI", In International

MICCAI BrainLesion Workshop, pages 132-141, Springer, 2018.

1.5.2 Multi-branch CNN for MS Lesion Segmentation

We presented the usefulness of pre-trained parameters to segment MS lesions in the previous

section, and the method proposed in this chapter relies on pre-trained parameters. Moreover,

we take advantages of a whole-brain slice-based approach and a multi-plane strategy. How-

ever, rather than using a single branch CNN, in this chapter, we propose a multi-branch CNN

which enables the network to encode information from multiple modalities separately. This

feature enables the network to take advantage of each modality individually and allows the

network to abstract higher-level features at different granularities specific to each modality.

Further, we evaluate different versions of the proposed multi-branch model to find the most

performant combination of MRI modalities (T1w, T2w and FLAIR) for MS lesion segmen-

tation. The proposed CNN is evaluated on two different datasets, the ISBI dataset (section

1.3.1) and the NRU dataset (section 1.3.2) showing top performance in comparison to the

state-of-the-art.

Contributions

• Multi-modal approach for MS lesion segmentation based on multi-branch CNN.

• Analysis of MRI modalities combination leading to best segmentation performance.
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• Providing evidence of top performance on two different datasets.

The content of this chapter was published in NeuroImage.

[4] S. Aslani, M. Dayan, L. Storelli, M. Filippi, V. Murino, M.A. Rocca, D. Sona, "Multi-

branch Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation", Neu-

roImage, 169:1-15, 2019.

1.5.3 Scanner Invariant MS lesion Segmentation

Medical data acquisition can vary strongly between centers. Specifically, MRI is often sub-

ject to variations due to scanner properties and MRI sequence characteristics. These speci-

ficities cause high domain differences between datasets from different centers, which even-

tually can result in poor generalization. In this chapter, a simple and effective solution is

proposed to generalize well our backbone model in the presence of high domain differences.

To this aim, an auxiliary loss function has been added to a standard encoder-decoder network

to deal with the generalization problem. We test the proposed method showing that using

auxiliary loss helps the network to generalize better when using data from multiple centers.

The proposed method is evaluated on the UBC dataset (section 1.3.3).

Contributions

• First approach to scanner invariant model for MS lesion segmentation.

• Outperforming base-line methods.

The content of this chapter was published in the ISBI.

[5] S. Aslani, V. Murino, M. Dayan, R. Tam, D. Sona, G. Hamarneh, "Scanner Invariant

Multiple Sclerosis Lesion Segmentation from MRI", ISBI, 2020.

1.6 Thesis Outline

The remaining of this thesis is organized as follows:

Chapter 2 presents a general overview of basic models for semantic image segmentation

using CNNs. It starts with traditional models for natural image segmentation using CNNs.

Further, it introduces different semantic segmentation approaches in medical images. Fi-

nally, it surveys MS lesion segmentation approaches using algorithms based on deep learn-

ing. Chapter 3 through Chapter 5 present the proposed approaches to automated MS lesion
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segmentation. Finally, Chapter 6 summarizes the proposed works and contributions and

suggests future directions.
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Chapter 2

Previous Works

During the last decade, there have been significant improvements in semantic image segmen-

tation using CNNs, which have been applied on both natural and medical images [29, 60].

This Chapter will explore literature of semantic image segmentation based on CNNs for nat-

ural and medical images, which is mostly attributed to both exploring new architectures by

modifying depths, widths, connectivity and proposing new types of components or layers.

2.1 CNN-based Semantic Segmentation of Natural Images

One of the first attempts in CNN-based semantic image segmentation is based on Fully Con-

volutional Network (FCN), which was proposed by Long et al. [63]. FCN is considered as

a stem of most of the successful state-of-the-art methods for semantic image segmentation

based on deep learning. The general idea of this approach is to take advantage of existing

CNNs as powerful visual models that can learn hierarchies of features [39, 42, 53, 60, 89, 97]

and to successfully transfer them into the corresponding FCN versions. This approach is

done by replacing the fully connected layers in CNNs with convolution layers to keep the

spatial information of the low-resolution attributes which is useful for semantic segmen-

tation. Then those low-resolution attributes are up-sampled using deconvolutional layers

to produce a dense pixel-wise classification. One of the most considerable advancements

in this approach is that any CNN can be effectively trained end-to-end for semantic image

segmentation with inputs of arbitrary sizes. Moreover, FCNs showed state-of-the-art perfor-

mance over other traditional methods in many datasets like PASCAL VOC [26]. The overall

architecture and conventionalizing procedure of a CNN are visualized in Figure 2.1.

Although FCNs have good segmentation performance, they still have a couple of critical

limitations. The most important limitation of FCNs is that small objects are often ignored

and classified as background. The reason is that the detailed structures of the small objects

are often lost or smoothed since the low-level attributes at the end of the network are too
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Figure 2.1: overall architecture of FCN [63]. The first row shows a simple CNN for image
classification. The second row transfers the mentioned CNN to produce attributes including
spatial information of the object by replacing the fully connected layers with convolutional
layers. The last row includes an up-sampling stage using deconvolutional layer which allows
dense image classification (per-pixel labeling).

coarse and a single deconvolutional procedure for up-sampling is overly simple. To over-

come such a limitation, Noh et al. [73] proposed an encoder-decoder network known as

Deconv-Net including multi-stage upsampling layers to capture a different level of shape

details; lower layers for overall shape and higher layers for class-specific fine details. They

proposed two layers in the decoder part of the network including deconvolution and un-

pooling layers. Generally speaking, pooling operation is used in the encoders to filter noisy

activations and keep the robust activations. However, this operation removes spatial infor-

mation of the objects which is not good for semantic segmentation. To address this problem,

an un-pooling layer was proposed to reconstruct the original size of activation in the decoder

network by recording the place of maximum activation during the pooling operation and

putting it back to its original place during the decoding stage. Although output activations of

the un-pooling are enlarged correctly based on information coming from pooling layers, the

resulted activations are sparse activations that are useful to find the location of the objects.
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Figure 2.2: An illustration of the Deconv-Net [73] architecture.

Figure 2.3: An illustration of the U-Net [80] (left) and V-Net [65] (right) architectures.

The deconvolution layer has been used after un-pooling layers for densifying the sparse

activations which is useful for capturing class-specific information. Therefore, un-pooling

operation attempts to find the location of the objects and the deconvolution layer is useful

for class-specific information and also using these layers at multi-stage of the decoder helps

to reconstruct fine-detailed information of the objects. Figure 2.2 shows a general overview

of the proposed network.

Following the same idea, Ronneberger et al. [80] proposed a network called U-Net including

an encoder to capture the context and a symmetric decoder which enables precise localiza-

tion. The most important contribution in this work is the skip-connections between encoder

and decoder which improved the segmentation performance drastically and addressed the

problem of vanishing gradients. The general framework of the network can be seen in Fig-

ure 2.3. Milletari et al. [65] proposed a similar network known as V-Net adding residual con-

nections and replacing 2D operations with their 3D versions to process volumetric datasets.

Moreover, they also proposed a new loss function based on a widely used segmentation

metric, Dice. The general framework of the network can be seen in Figure 2.3.

Pyramid scene parsing network (PSP-Net) proposed by Zhao et at. [110] is another CNN-
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Figure 2.4: An illustration of the PSP-Net [113] architectures. (a) input image, (b) using
a CNN to extract the initial feature maps, (c) pyramid parsing module: extracting different
sub-region representations followed by up-sampling and concatenation layers to get the final
feature maps, (d) final feature maps feeding to a convolution layer to get the final prediction.

based method giving a promising direction for a pixel-level classification task. This network

exploits local and global context information, which is the most important problem of FCNs.

The aforementioned approach is done by utilizing different region-based context aggregation

via a pyramid pooling module. Figure 2.4 shows the general architecture of the PSP-Net.

According to the literature, there exist several networks which are the modified versions

(changing the depth of the network by adding/removing blocks) of the described architec-

tures [6, 15, 16, 58, 76].

Recently, Chen et al. [17] proposed a network based on DeepLabV3 [16] which takes the

advantage of dilated convolutions [16] and the pyramid parsing module [113]. The proposed

network outperformed many state-of-the-art methods on several datasets like PASCAL VOC

[26] and Cityscapes [111]. Specifically, DeepLabv3+ [17] uses a simple yet effective de-

coder module to refine the segmentation results, especially along object boundaries using

dilated convolutions and pyramid features. The general framework of the network can be

seen in Figure 2.5.

2.2 CNN-based Segmentation of Medical Images

During the last years, deep learning methods, especially CNNs [55] have demonstrated out-

standing performance in medical image segmentation. They could provide state-of-the-art

results in different problems such as segmentation of neuronal structures [80], retinal blood

vessel extraction [59] and brain extraction [52].

In particular, CNN-based medical image segmentation methods can be categorized into two

different groups: patch-based (region-based) and image-based (FCN-based) methods.
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Figure 2.5: An illustration of the DeepLabV3+ [17] architecture. The network includes the
encoder part which extracts multi-scale contextual information by applying dilated convolu-
tion at multiple scales using pyramid parsing module, while the simple yet effective decoder
part refines the segmentation results along object boundaries.

In patch-based methods, a moving window scans the image generating a local representation

for each pixel/voxel. Then, a CNN is trained using all extracted patches, classifying the

central pixel/voxel of each patch. These methods are frequently used in medical image

analysis since they considerably increase the number of training samples. However, they

suffer from an increased training time due to repeated computations of the over-lapping

features associated with the sliding window. Moreover, they neglect the information on

the global structure because of the small size of patches [100]. Figure 2.6 shows different

examples of patch-based methods for white matter hyper-intensities segmentation proposed

by Ghafoorian et al. [32].

On the contrary, image-based approaches process the entire image exploiting the information

on the global structure [9, 100]. These methods can be further categorized into two groups

according to the processing of the data: slice-based segmentation of 3D data [100] and 3D-

based segmentation [9].

In slice-based segmentation methods, each 3D image is converted to a set of 2D slices,

which are then processed individually. Subsequently, the segmented slices are concatenated

together to reconstruct the 3D volume. In most of the proposed pipelines based on this

approach, the segmentation is not accurate, most likely because the method ignores part of

the contextual information. Figure 2.7 shows an example of the slice-based segmentation

which is proposed by [100].
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Figure 2.6: Patch preparation process (left bottom) and different CNN architectures (right)
proposed by Ghafoorian et al. [32]. As a first stage, they extract patches with three different
sizes in patch preparation step. Then a different version of CNNs has been trained based
on the early fusion (second row right) and late fusion (third and fourth rows right) of the
extracted patched. They also added a set of auxiliary handcrafted spatial features to the
networks to increase the segmentation performance.

In 3D-based segmentation, a CNN with 3D kernels is used for extracting meaningful in-

formation directly from the original 3D image. The main significant disadvantage of these

methods is related to the training procedure, which usually fits a large number of parameters

with a high risk of over-fitting in the presence of small datasets. Unfortunately, this is a

quite common situation in medical applications [9]. To overcome this problem, 3D cross-

hair convolution has been proposed [61, 98], where three 2D filters are defined for each of

the three orientations around a voxel (each one is a plane orthogonal to X, Y, or Z axis).

Then, the sum of the result of the three convolutions is assigned to the central voxel. The

most important advantage of the proposed idea is the reduced number of parameters, which

makes training faster than a standard 3D convolution. However, compared to standard 2D

convolution (slice-based), still, there are three times more parameters for each layer, which

increases the chance of over-fitting in small datasets. An example of 3D-based segmentation

method proposed by Milletari et al. [65] can be seen in Figure 2.3 (right).
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Figure 2.7: An illustration of the slice-based segmentation method architecture proposed
by [100]. Multi-modal encoder extracts feature maps from different modalities. Then the
cross-modality convolution blocks aggregate the extracted features maps after pooling lay-
ers. The final feature maps are fed into convolutional LSTM and decoder to generate the
final prediction.

2.3 CNN-based Segmentation of Multiple Sclerosis

The literature offers some methods based on CNNs for MS lesion segmentation.

Vaidya et al. [101] proposed a shallow 3D patch-based CNN including two convolution

layers, one multi-layer perceptron and a softmax layer as can be seen in Figure 2.8. Sparse

convolution idea [57] has been used for effective and fast training. Moreover, they added

a post-processing stage, which increased the segmentation performance by applying a WM

mask to the output predictions. ISBI dataset [11] including 4 MRI modalities has been used

to evaluate the performance of the proposed method.

Ghafoorian et al. [32] developed a deep CNN based on 2D patches to increase the number of

training samples and avoid the over-fitting problems of 3D-based approaches. The proposed

method was 5 layers patch-based CNN taking 32×32 patches in four channels (ISBI dataset

with four MRI modalities [11]) as its input samples. There were also four convolution layers

with 15 filters of size 13× 13, 25 filters of size 9× 94, 60 filters of size 7× 7 and eventually

130 filters of size 3× 3. A final softmax layer classified the resulting responses to the filters

in the last convolution layer.

Similarly, in [8], multiple 2D patch-based CNNs have been designed to take advantage of the
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Figure 2.8: An illustration of the patch-based segmentation method proposed by [57]. This
3D patch-based CNN has 4 layers: 1) convolution layer with 60 filters of 4 × 4 × 4 with
average pooling of 2× 2× 2, 2) convolution layer with 60 filters of 3× 3× 3 with average
pooling of 2×2×2, 3) a Multi-layer Perceptron, 4) a softmax layer for final prediction. O1,
O2, and O3 show sizes of the respective outputs of the corresponding layers.

common information within longitudinal data. The main difference between the proposed

CNNs is the type and number of input patches to the network, for instance: single modality

with single time point (SMST), multiple modalities with single time point (MMST), sin-

gle modality with multiple timepoints (SMMT) and multiple modalities with multiple time

points (MMMT). The main network which can be considered as a common block for all

other networks is V-Net shown in Figure 2.9(a). This block has the flexibility to be fed

with a single input (SMST) or multiple-input (MMST) by modifying the parameter C. The

network proposed to process the longitudinal data (SMMT or MMMT) is L-Net shown in

Figure 2.9(b). This network includes two V-Nets which process the current and previous

time points separately. The two separate representations are then concatenated and pro-

cessed by other layers to get the final prediction. To take advantage of the full representation

of the input patch, they proposed another version of CNN including three different views of

a single voxel (axial, coronal and sagittal) as input patches to the network as can be seen in

Figure 2.9(c). Each view is processed by separate V-Net and the resulted representations are

concatenated for final prediction. Moreover, to take advantage of multiple time points, they

replaced the V-Nets blocks with L-Nets shown in Figure 2.9(d). The proposed models have

been evaluated using ISBI dataset with four MRI modalities [11].

Valverde et al. [102] proposed a pipeline relying on a cascade of two 3D patch-based CNNs.

As a first step, they created a set including all available patches from each single MRI modal-

ities. Then, patches with central voxel intensities less than 0.5 in FLAIR modality have been

removed from the set. Moreover, to deal with the data imbalance problem, they randomly

removed negative samples (healthy) in the set. They trained the first network using selected

patches in the mentioned set, and the second network was used to refine the training proce-

dure utilizing misclassified samples from the first network. The general processing pipeline
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Figure 2.9: The network architectures proposed by Birenbaum et al. [8]. (a) V-Net: the
main block of the proposed CNNs (b) L-Net: the network to process longitudinal dataset (c)
Multi-view CNN to take advantage of different views of the each voxel (SMST with c=1 and
MMST with c=4 (d) Multi-view longitudinal CNN take advantage of both different views of
each voxel and longitudinal dataset (SMMT with c=1 and MMMT with c=4).

of the cascade-based training can be seen in Figure 2.10(a) and also the overall architecture

of CNN (7 layers) which was same for first and second training can be seen in Figure 2.10(b).

The proposed network has been evaluated using two different datasets: The MICCAI 2008

dataset [94] and a clinical private dataset, both composed by three MRI modalities.

Roy et al. [81] proposed a method based on FCNs (slice-based) including two pathways as

can be shown in Figure 2.11. They used different MRI modalities as input for each pathway

and the outputs were concatenated and processed with another shallow network to create
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Figure 2.10: An illustration of 3D patch-based segmentation method proposed by Valverde
et al. [102]. (a) Cascade-based pipeline: the output of the first network was used to refine
the training procedure of the second network by selecting the misclassified samples from
first training (b) The proposed 7-layer CNN model trained using 3D patches from different
MRI modalities.

a membership function for healthy or healthy regions. Only a single view of each voxel

(axial side) was selected to extracted 2D slices. Then, from each extracted axial slice, small

patches with the size of 35 × 35 generated for each MRI modality as input to the network.

Note that the sizes of the input and outputs of all layers are kept identical to the original

input patch size by zero paddings. They evaluated the proposed method using two datasets:

ISBI dataset [11] and a clinical private dataset, using only two MRI modalities: FLAIR and

T1w.

Recently, Hashemi et al. [36] proposed a method relying on FCNs (3D-based) using the idea

of densely connected blocks. The general architecture of the proposed method can be seen in

Figure 2.12. They generated a set including 3D patches related to different MRI modalities

with the size of 64 × 64 × 64 and 50% overlap area as the input to the proposed network.

The overall architecture is similar to the U-Net [80] with contacting path, expanding path

and also shortcut connections between them. However, instead of using simple convolution

layers, they used densely connected blocks [42] with the idea of skip connection between

layers. They also developed an asymmetric loss function for dealing with highly unbalanced

data. They evaluated the proposed method on two publicly available datasets: ISBI dataset

[11] and MSSEG dataset [20].
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Figure 2.11: The general overview of the network architecture proposed by Roy et al. [81].
2D patches were extracted from axial slices of two different MRI modalities and were fed
into the network in parallel pathways. The feature maps related to each pathway were con-
catenated and supplied to another shallow pathway to predict the final membership function
of the input patch.

Figure 2.12: The general framework of the proposed network by Hashemi et al. [36]. The
proposed network is fed using the patches with a size of 64 × 64 × 64 and five channels
corresponding to the five different MRI modalities. It includes eleven densely connected
blocks, five transitions down blocks, five transition up blocks and four convolution layers
in both contracting and expanding paths. A sigmoid layer is used as the last layer of the
network to get the final prediction.

Even though all the proposed patch-based techniques have good segmentation performance,

they suffer from lacking global structural information. This means that the global structure
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of the brain and the absolute location of lesions are not exploited during the segmentation.

In contrast to the above-mentioned methods, Brosch et al. [9] developed a whole-brain

segmentation method using a 3D CNN. They used a single shortcut connection between the

coarsest and the finest layers of the network, which enables the network to concatenate the

features from the deepest layer to the shallowest layer to learn information about the structure

and organization of MS lesions. However, they did not exploit middle-level features, which

have been shown to have a considerable impact on the segmentation performance.

2.4 Summary and Conclusion

In this Chapter, we presented a general overview of the basic models for semantic image

segmentation based on CNNs for natural and medical images.

Given the presented literature related to MS lesion segmentation using CNNs, most of the

proposed methods show good segmentation performance. However, as it was mentioned

previously, there are some limitations that can be addressed to improve the segmentation

performance. For instance, the 2D/3D patch-based methods which are commonly used in

medical image segmentation suffer from lacking global structural information. Regarding

the slice-based approaches, the segmentation is not accurate, because the methods ignore

part of the contextual information due to considering a single view of each voxel (usually

axial view). Regarding the 3D-based approaches, the main significant disadvantage of these

methods is related to the training procedure, which usually have high risk of overfitting in the

presence of small datasets. Moreover, almost all of the proposed methods suffer from poor

generalization since they are optimized to produce segmentation performance on a single

domain (datasets from a single center).

In the following two Chapters, we propose two deep models to address the lack of global

structural and contextual information. Moreover, to avoid overfitting problem, we used a pre-

trained network. Then, in the last chapter, a regularization method is proposed to generalize

the backbone segmentation model in the presence of multi-center dataset.
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Chapter 3

Deep 2D Encoder-Decoder CNN for MS Le-

sion Segmentation

3.1 Introduction

MS is known as one of the most important diseases of the central nervous system of the

brain. The detection, segmentation, and quantification of the MS lesions is an important task

as it can help to characterize the progression of the disease and monitor the efficacy of a

candidate treatment [62].

Recently, CNNs have shown excellent performance in image classification task and are con-

sistently used in many competitions such as ImageNet challenge in which competitors try

to propose solutions to classify hundreds of different natural objects [82]. CNNs not only

show state-of-the-art performance when trained for a specific task with millions of images,

but experiments have shown that a pri-trained CNN on a dataset can generate a set of useful

representations that are generic for different image tasks that the CNN was not originally

trained for [25]. Among all tasks, image segmentation is one of the most important and

common tasks in which researchers manipulated and adapted pre-trained CNNs to obtain

state-of-the-art performance in several datasets [35].

In this Chapter, we propose an automated segmentation approach based on a two-dimensional

(2D) CNN pre-trained on ImageNet dataset to segment brain multiple sclerosis lesions from

multi-modal magnetic resonance images. The proposed model is made as a combination of

two deep sub-networks. An encoding network extracts different feature maps at various res-

olutions and a decoding part upconvolves the feature maps combining them through shortcut

connections during an upsampling procedure. We concentrated on whole-brain slice-based

segmentation to prevent both the overfitting present in 3D-based segmentation [9] and the
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lack of global structure information in patch-based methods [31, 81, 102]. The robustness

of the method is improved by exploiting the volumetric slicing in all three possible imaging

planes (axial, coronal and sagittal). Indeed, we used the three different imaging axes of each

3D input MRI in an ensemble framework to exploit the contextual information in all three

anatomical planes. Moreover, this model has been used as a multi-modal framework to make

use of all of the information available within each available MRI modality, typically FLAIR,

T1w, and T2w.

3.2 Method

We propose a 2D end-to-end CNN based on the residual network (ResNet) [39]. The core

idea of ResNet is the use of identity shortcut connections, which allows for preventing gra-

dient vanishing. Thanks to this benefit, ResNets have shown outstanding performance in

computer vision problems, specifically in the image recognition task.

We modified ResNet50 (version with 50 layers) to work as a pixel-level segmentation net-

work. This has been obtained by changing the last prediction layer with a dense pixel-level

prediction layer inspired by the idea of the fully convolutional network [63]. Since the out-

put of the last convolutional layer of ResNet is very coarse compared with the input image

resolution (32 times smaller than the original image), upsampling such high-level feature

maps with a simple operation like bilinear interpolation as described in FCNs [63] is not an

effective solution. Therefore, inspired by [80], we propose a multi-pass upsampling network

using the advantages of multi-level feature maps with skip connections.

In the following sections, we first describe how the input features were generated by decom-

posing 3D data into 2D images. Then, we describe the proposed network architecture in

detail and the training procedure.
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Figure 3.1: Input feature extraction pipeline. From each original 3D MRI image, axial,
coronal and sagittal planes were extracted for each modality. Since the size of extracted
slices was different with respect to the plane orientations (axial= 182× 218, coronal=182×
182, sagittal=218×182), all slices were zero-padded while centering the brain so to obtain all
slices with the same size (218×218), no matter their orientation. In our specific application,
3 modalities were used (FLAIR, T1w, T2w), hence, multi-channel slices (represented here as
RGB images) were created by grouping together the corresponding slices of each modality.

3.2.1 Input Features Preparation

From each original volumetric MRI modality, axial, coronal and sagittal planes are consid-

ered by extracting 2D slices along the x, y, z axes of the 3D image. Since the size of the

imaging planes differed according to the imaging axes (axial= 182×218, coronal=182×182,

sagittal=218× 182), we zero-padded each slice (while centering the brain), so to obtain the
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same consistent size irrespective of the imaging plane. Further, the same operation was

applied to all modalities. Then, for all slices belonging to each plane orientation and all

modalities were stacked together to create a single multi-channel input stack. Since three

modalities were used in our experiments, the obtained multi-channel slices included three

channels which can be represented as RGB images. Figure 3.1 illustrates the described

procedure using three modalities, FLAIR, T1w, and T2w.

3.2.2 Network Architecture Details

In deep networks, features from deep layers include high-level semantic information. On

the contrary, features from the early layers contain low-level spatial information. It was

shown that features from the middle layers also provide information which can be effective

to increase the performance of the segmentation [80]. Therefore, combining multi-level

features from different stages of the network makes the feature map richer than just using

single scale feature maps. The intuition behind our architecture is to use these multi-level

feature maps by adding multiple upsampling layers with skip connections [80] to the ResNet

output of all intermediate layers. The diagram of the proposed network for segmentation can

be seen in Figure 3.2.

We divided the ResNet50 into 5 blocks in the downsampling part according to the resolution

of feature maps. In the original ResNet50 architecture, the first layer is composed of a 7× 7

convolution layer with stride 2 to downsample the input by an order of 2. Then, a 3 × 3

max pooling layer with stride 2 is applied to further downsample the input followed by a

bottleneck block without downsampling. Subsequently, three other bottleneck blocks are

applied, each one followed by a downsampling convolution layer with stride 2. Therefore,

ResNet50 can be organized into five blocks with different resolutions (109 × 109, 54 ×
54, 27 × 27, 14 × 14, 7 × 7). In the upsampling sub-network, the encoded features from

different scales are decoded step by step using upsampling fused features (UFF) blocks.

Each UFF block includes one upconvolution layer with kernel size 2 × 2 and stride 2, one

concatenation/fusion layer and two convolution layers with kernel sizes 3 × 3. After each

layer, a rectifier linear activation function (ReLU) is applied [71]. The upconvolution layer

is used to transform low-resolution feature maps into the higher resolution maps. Then a

simple concatenation layer is used for combining the two sets of input feature maps. Two

convolution layers are further used for adaptation as described in [80], and the output goes

to the next block. The number of feature maps after each UFF block is halved. At the end

of the network, a soft-max layer of size 2 is used to get output probability maps, identifying

pixel-wise positive (lesion) or negative (non-lesion) classes.
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Figure 3.2: General framework of the proposed network for MS lesion segmentation. The
first sub-network (ResNet50) encodes the input 2D slices (with the size of 218 × 218) into
different feature sets at various resolutions. This sub-network was organized into 5 blocks
according to the resolution of the representations during the encoding. For example, the first
block denotes 64 representations with resolution 109 × 109. The second sub-network (Up-
sampling) decodes the representations provided by the encoder network. This sub-network
gradually converts low-resolution representations back to the original resolution of the input
image using UFF blocks. Each UFF block has two sets of input representations with differ-
ent resolutions. This block is responsible for upsampling the low-resolution representations
and combining them with higher-resolution representations.

3.2.3 Implementation Details

To train the proposed CNN, a training set was created using the pipeline mentioned in section

3.2.1. To remove uninformative samples and limit extremely unbalanced data from the whole

training set, a subset was determined by selecting only slices with at least one lesion pixel.

This meant that 2D slices without lesions were omitted from the training set.

As suggested in [37], simple off-line data augmentation was applied to the training set to

increase training samples. Increasing training samples has been shown to increase the per-

formance of the network. Therefore, we increased the number of the samples by a factor of

5 simply by either rotating each extracted slice by 4 possible angles (5◦, 10◦, -5◦, -10◦) and

flipping (right to left) the images with their original rotation (no combination of flipping and

rotation were included in the data augmentation procedure).
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To optimize network weights with early stopping criteria, we split the training set into differ-

ent training and validation sets depending on the experiments as described in the following

section. According to the network initialization, in the first sub-network, the pre-trained

ResNet50 on ImageNet was used and the weights from the second sub-network (Upsam-

pling) were randomly initialized. The adaptive learning rate method (ADADELTA) [107]

was used to tune the learning rate with an initial learning rate of 0.001. Binary cross-entropy

was used as a loss function to train the proposed network. The maximum number of training

epochs was fixed to 500, and the best model was selected according to the validation set.

We implemented our proposed model in Python language 1 using Keras2 [18] with Tensor-

flow3 [1] backend. We used a Nvidia GTX Titan X GPU for all experiments.

3.3 Experiments

We evaluate the performance of the proposed method on ISBI dataset (refer to section 1.3.1

for details). From the ISBI dataset, we selected the preprocessed version of the images avail-

able online at the challenge website. All images were already skull-stripped using Brain Ex-

traction Tool (BET) [91], rigidly registered to the 1mm3MNI-ICBM152 template [74] using

FMRIB’s Linear Image Registration tool (FLIRT) [46, 47] and N3 intensity normalized [90].

For evaluation purposes, two different experiments were implemented according to the avail-

ability of ground truth. In the first experiment, we ignored the official ISBI test set to only

considering data with the available ground truth. To get a fair result, we did a leave-one-out

cross-validation training (at subject level: 3 subjects for training, 1 subject for validation

and 1 subject for testing). In this experiment, DSC, LTPR, and LFPR measures were used to

make our results comparable to those obtained in [9, 48, 64].

For the second experiment, the official ISBI test set was used as our test set so the ground

truth was not available. We trained the network using leave-one-out cross-validation over all

5 subjects in the training set (4 subjects for training and 1 subject for validation). We did

majority voting over all classifiers evaluated the ensemble of 5 models on the test set. The

3D output binary lesion maps were submitted to the website of ISBI for evaluation purposes.

In this experiment, a score is measured online (using the challenge website). As described in

section 1.4.8, the mentioned score is a weighted average of different metrics including DSC,

LTPR, LFPR, PPV, and VD.
1https://www.python.org
2https://keras.io
3https://www.tensorflow.org
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Table 3.1: Comparison of our method with the other state-of-the-art methods. GT1 and GT2
show that the corresponding model was trained using annotation provided by rater 1 and
rater 2 as the ground truth respectively.

Method Rater 1 Rater 2
DSC LTPR LFPR DSC LTPR LFPR

Rater 1 - - - 0.7320 0.6450 0.1740
Rater 2 0.7320 0.8260 0.3550 - - -
Jesson et al. [48] 0.7040 0.6111 0.1355 0.6810 0.5010 0.1270
Maier et al. [64] (GT1) 0.7000 0.5333 0.4888 0.6555 0.3777 0.4444
Maier et al. [64] (GT2) 0.7000 0.5555 0.4888 0.6555 0.3888 0.4333
Brosch et al. [9] (GT1) 0.6844 0.7455 0.5455 0.6444 0.6333 0.5288
Brosch et al. [9] (GT2) 0.6833 0.7833 0.6455 0.6588 0.6933 0.6199
Ours (GT1) 0.6980 0.7460 0.4820 0.6510 0.6410 0.4506
Ours (GT2) 0.6940 0.7840 0.4970 0.6640 0.6950 0.4420

Note that for each test subject, we first extracted all the slices, following the approach de-

scribed in the previous section 3.2.1. Feeding each 2D slice to the network, we got as output

the associated 2D binary lesion classification map. Since the original data was duplicated

three times in the input, once for each slice orientation (coronal, axial, sagittal), concate-

nating the binary lesion maps belonging to the same orientation resulted in three 3D lesion

classification maps. These three lesion maps were combined via majority voting (the most

frequent lesion classification was selected).

3.4 Results

In the first experiment, as described previously, we evaluate the performance of our network

on the training set. Table 3.1 shows the performance of our method in comparison with other

previously proposed methods. As can be seen, our method has the highest performance

regarding LTPR metric while having a high DSC which means that the proposed method

can identify lesions with higher precision than other methods, also having a good overlap in

terms of lesion volume overall. Figure 3.3 shows an example of the output of our network

in comparison to the corresponding ground truth.

In the second experiment, the performance of the proposed method was also evaluated on the

official ISBI test set using the challenge web service. At the time we submitted the results,

we obtained a score of 89.85 which is comparable to the ISBI inter-rater score scaled to 90.

The detailed result for each subject is available online on the ISBI MS lesion segmentation

challenge website4.
4http://iacl.ece.jhu.edu/index.php/MSChallenge
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Figure 3.3: An example of our network results in the axial, coronal and sagittal planes. First
column: original FLAIR modality from different views, second column: ground truth related
to the rater 1, third column: ground truth related to the rater 2, last column: segmentation
output from the proposed method

3.5 Discussion and Conclusion

We have proposed an automated method for the brain MS lesion segmentation based on

a pre-trained 2D CNN. The presented approach is a deep end-to-end CNN including two

pathways, a contracting path which extracts multi-resolution representations by encoding

the input image (ResNet) and an expanding path which decodes the provided representations

gradually by upsampling and fusing them. Our CNN has been trained using whole-brain

slices as inputs to take advantage of the spatial information about the location and shape of

MS lesions. Moreover, it has been designed for multi-modality (FLAIR, T1w, T2w) and

multi-planes (axial, coronal and sagittal) analysis of MRI images. Transfer learning has

showed to be a good solution in deep learning based approaches when inadequate amount of

data is available for training which is very common problem in medical domain [13, 14, 41].

Therefore, we have used a CNN pre-trained on ImageNet. This approach not only helps
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boosting the performance of the network but also significantly reduces overfitting.

The proposed method has been evaluated using the publicly available dataset (ISBI 2015

challenge). Comparing with other state-of-the-art methods, our experiments have shown

that the proposed architecture performed better with high capability to effectively identify

unhealthy regions (LTPR=0.7840) while having overall a good overlap with the ground truth

in terms of overall lesion volume (DSC=0.6980). This can be particularly important in

clinical settings where detecting all potential lesions is prioritized over discarding easily

identifiable false negatives.

Unlike previously proposed 3D-based CNN approach by Brosch et al. [9] which used a sin-

gle short-cut connection between the deepest and the shallowest layers, our proposed archi-

tecture includes multiple short-cut connections between several layers of the network com-

bining multi-level features from different stages of the network. In our opinion, the obtained

results suggest that the combination of multi-level features during the upsampling proce-

dure helps network to exploit more contextual information of the shape of the lesions. This

could explain why the segmentation performance of our proposed network (DSC=0.6980)

improved compared with the method proposed by Brosch et al. [9] (DSC=0.6844).

To avoid overfitting problem, unlike Brosch et al. [9] that proposed a two steps approach

for training based on restricted Boltzman machines [56], we used a CNN pre-trained on

ImageNet for contracting path of our model. Moreover, they used four modalities in their

approach. However, the our approach is based on three modalities. The results in Table 3.1

shows that the proposed model outperforms their model with respect to all available mea-

sures.

The proposed method also has some limitations. Our network cannot use 4-dimensional

(4D) modalities such as functional MRI or diffusion MRI. Moreover, the maximum number

of MRI modalities that can be used in our architecture is three. This results from the fact

that we used pre-trained ResNet as the encoder part in our network, which can only handle

an input with three channels. Therefore in the case of more modalities, we have to train a

model from scratch. Another limitation is that CNN based approaches in MS segmentation

highly depend on the training which is costly to acquire due to the time consuming manual

segmentation by experts it requires.
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Chapter 4

Multi-branch CNN for MS Lesion Segmenta-

tion

4.1 Introduction

In the previous chapter, we showed that a pre-trained CNN for classification on natural

images can generalize well for other tasks like MS lesion segmentation. It was observed that

the proposed model can produce better segmentation performances compared with other

CNN based methods, thanks to shortcuts at different resolutions. Moreover, it was shown

that the proposed results are very close to the expert level segmentation performances.

As mentioned before, using single pre-trained ResNet as an encoder has some limitations

such as it’s input with three channels which resulted, in our case, the use of maximum

three MRI modalities and in the case of more modalities available, they would be omitted

to choose three amongst all. Modalities have different information regarding MS lesions.

For instance, sagittal T1w MRI depicts multiple hypointense lesions in the corpus callo-

sum which is characteristic of multiple sclerosis, coronal FLAIR MRI in a patient with MS

demonstrates periventricular high signal intensity lesions, which exhibit a typical distribu-

tion for multiple sclerosis, Axial T2w MRI in a patient with MS demonstrates numerous

white matter plaques in a callosal and pericallosal white matter distribution, etc. Combin-

ing all the available modalities with the mentioned different information into a single input

to the model can not be the optimal solution for extracting the accurate location of the le-

sion. Moreover, it is vague that which modality caries informative and effective knowledge

regarding the MS lesion segmentation when using deep CNN models.

Unlike our previous single-branch model, in this work, we propose a novel deep architec-

ture consisting of a multi-branch 2D convolutional encoder-decoder network to address the
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above-mentioned problems. We designed an end-to-end encoder-decoder network including

a multi-branch downsampling path as the encoder, a multi-scale feature fusion and a multi-

scale upsampling block as the decoder. In the encoder, each branch is assigned to a specific

MRI modality to take advantage of each modality individually. During the decoding stage

of the network, different scales of the encoded attributes related to each modality, from the

coarsest to the finest, including the middle-level attributes, were combined and upconvolved

gradually to get fine details (more contextual information) of the lesion shape. Moreover, we

evaluate different versions of the proposed model to find the most performant combination

of MRI modalities for MS lesion segmentation.

4.2 Method

Following the idea in the previous chapter, we propose a model based on pre-trained 2D

CNN. Similar to the approach described in section 3.2, ResNet50 [39] was used and con-

verted to FCN [63]. However, to exploit the MRI multi-modality analysis, we built a pipeline

of parallel ResNets without weights sharing. A multi-modal feature fusion block (MMFF)

and a multi-scale feature upsampling block (MSFU) were proposed to combine and upsam-

ple the features from different modalities and different resolutions, respectively. We also

concentrated on whole-brain slice-based segmentation and used three different(orthogonal)

planes for each 3D modality as an input to the network. Moreover, we study a multi-plane

reconstruction block, which defines and shows the suitable combination of the 2D binary

slices of the network output to match the original 3D data.

In the following sub-sections, we first describe how the input features were generated by

decomposing 3D data into 2D images. Then, we describe the proposed network architecture

in detail and the training procedure. Finally, we introduce the multi-plane reconstruction

block, which defines how we combined the 2D binary slices of the network output to match

the original 3D data.

4.2.1 Input Features Preparation

We followed the same approach described in section 3.2.1 which for each MRI volume

(and each modality), three different plane orientations (axial, coronal and sagittal) were

considered (centering the brain by zero-padding each slice) to generate 2D slices along x,

y, and z axes as input to the network. The aforementioned procedure was applied to all

three modalities (FLAIR, T1w, and T2w). However, unlike our previous approach, we kept

separating the extracted slices from each MRI modality (without stacking them together).
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Figure 4.1: Input features preparation. For each subject, three MRI modalities (FLAIR, T1w,
and T2w) were considered. 2D slices related to the orthogonal views of the brain (axial,
coronal and sagittal planes) were extracted from each modality. Since the size of extracted
slices was different with respect to the plane orientations, all slices were zero-padded while
centering the brain so to obtain all slices with the same size, no matter their orientation.

Figure 4.1 illustrates the described procedure using FLAIR, T1w, and T2w modalities.

4.2.2 Network Architecture Details

The proposed model essentially integrates multiple ResNets with other blocks to handle

multi-modality and multi-resolution approaches, respectively. As can be seen in Figure 4.2,

the proposed network includes three main parts: downsampling networks, multi-modal fea-

ture fusion using MMFF blocks, and multi-scale upsampling using MSFU blocks.

In the downsampling stage, multiple parallel ResNets (without weights sharing) are used for

extracting multi-resolution features, with each ResNet associated to one specific modality (in

our experiments, we used FLAIR, T1w, and T2w). As mentioned in section 3.2.2, ResNet

can be organized into five blocks according to the resolution of the generated feature maps.

Thanks to this organization, we can take advantage of the multi-resolution. Features with the

same resolution from different modalities are combined using MMFF blocks as illustrated in

Figure 4.3. Each MMFF block includes 1× 1 convolutions to reduce the number of feature

maps (halving them), followed by 3×3 convolutions for adaptation. A simple concatenation
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layer is then used to combine the features from different modalities.

Figure 4.2: General overview of the proposed method. Input data is prepared as described
in section 4.2.1, where volumes for each modality (FLAIR, T1w, and T2w) are described
by slices (with the size of 218 × 218). Data is presented in input by slices, and the model
generates the corresponding segmented slices. The downsampling part of the network (blue
blocks) includes three parallel ResNets without weight sharing, each branch for one modal-
ity (we used three modalities: FLAIR, T1w, and T2w). Each ResNet can be considered
composed by 5 blocks according to the resolution of the representations. For example, the
first block denotes 64 representations with resolution 109 × 109. Then, MMFF blocks are
used to fuse the representations with the same resolution from different modalities. Finally,
the output of MMFF blocks is presented as input to MSFU blocks, which are responsible for
upsampling the low-resolution representations and for combining them with high-resolution
representations.

In the upsampling stage, MSFU blocks fuse the multi-resolution representations and grad-

ually upsize them back to the original resolution of the input image. Figure 4.3 illustrates

the proposed MSFU block consisting of a 1 × 1 convolution layer to reduce the number of

feature maps (halving them) and an upconvolution layer with 2 × 2 kernel size and a stride

of 2, transforming low-resolution feature maps to higher resolution maps. Then, a concate-

nation layer is used to combine the two sets of feature maps, followed by a 1×1 convolution

layer to reduce the number of feature maps (halving them) and a 3× 3 convolution layer for
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adaptation.

After the last MSFU block, a soft-max layer of size 2 is used to generate the output prob-

ability maps of the lesions. In our experiments the probabilistic maps were thresholded at

0.5 to generate binary classification for each pixel (lesion vs. non-lesion). It is important to

mention that in all proposed blocks before each convolution and upconvolution layer, we use

a batch normalization layer [43] followed by a rectifier linear unit activation function [71].

Size and number of feature maps in the input and output of all convolution layers are kept

the same.

Figure 4.3: Building blocks of the proposed network. a) MMFF block is used to combine
representations from different modalities (FLAIR, T1w, and T2w) at the same resolution.
b) MSFU block is used to upsample low-resolution features and combine them with higher-
resolution features.

4.2.3 Implementation Details

The proposed model was implemented in Python language 1 using Keras2 [18] with Ten-

sorflow3 [1] backend. All experiments were done on a Nvidia GTX Titan X GPU. Our

multi-branch slice-based network was trained end-to-end. In order to train the proposed

CNN, we created a training set including the 2D slices from all three orthogonal views of

the brain, as described in Section 4.2.1. Then, to limit extremely unbalanced data and omit

uninformative samples, a training subset was determined by selecting only slices containing

at least one pixel labeled as lesion (the number of slices ranged approximately from 150 to

300 per subject).

To optimize the network weights and early stopping criterion, the created training set was

divided into training, and validation subsets, depending on the experiments as described
1https://www.python.org
2https://keras.io
3https://www.tensorflow.org
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in the following section. In all experiments, the split was performed on the subject base,

to simulate a real clinical condition and all the hyperparameters were selected through grid

search. We trained our network using the Adam optimizer [51] with an initial learning rate of

0.0001 multiplied by 0.95 every 400 steps. The size of mini-batches was fixed at 15 and each

mini-batch included random slices from different orthogonal views. The maximum number

of training epochs was fixed to 1000 for all experiments, well beyond the average converging

rate. The best model was then selected according to the validation set. Experimentally, we

found that the best performance on validation set was systematically reached before 1000

training epochs.

Figure 4.4: The MPR block produces a 3D volumetric binary map by combining the 2D
output binary maps of the network. First, the output 2D binary maps associated to each
plane orientation (axial, coronal, and sagittal) are concatenated to create three 3D binary
maps. Then, a majority vote for each voxel is applied to obtain a single lesion segmentation
volume.

Regarding the network initialization, in the downsampling branches, we used ResNet50 pre-

trained on ImageNet and all other blocks (MMFFs and MSFUs) were randomly initialized

from a Gaussian distribution with zero mean and standard deviation equal to
√
2/(a+ b)

where a and b are respectively the number of input and output units in the weight tensor. It

is worth noticing that we did not use parameter sharing in parallel ResNets. The soft Dice

Loss function (DL) was used to train the proposed network:

DL = 1−
2
∑N

i gipi∑N
i gi2 +

∑N
i pi2

(4.1)
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where pi ∈ [0, 1] is the predicted value of the soft-max layer and gi is the ground truth binary

value for each pixel i. We slightly modified the original soft dice loss [65] by replacing (-

Dice) with (1-Dice) for visualization purposes. Indeed, the new equation returns positive

values in the range [0, 1]. This change does not impact the optimization.

4.2.4 3D binary image reconstruction

Output binary slices of the network are concatenated to form a 3D volume matching the

original data. To reconstruct the 3D image from the output binary 2D slices, we proposed a

multi-planes reconstruction (MPR) block. Feeding each 2D slice to the network, we get as

output the associated 2D binary lesion classification map. Since each original modality is

duplicated three times in the input, once for each slice orientation (coronal, axial, sagittal),

concatenating the binary lesion maps belonging to the same orientation results in three 3D

lesion classification maps. To obtain a single lesion segmentation volume, these three lesion

maps are combined via majority voting for each voxel (the most frequent classification is

selected) as illustrated in Figure 4.4. To justify the choice of majority voting instead of other

label fusion methods, we tested alternative well known label fusion methods (refer to the

section 4.3.2).

4.3 Experiments

In order to evaluate the performance of the proposed method for MS lesion segmentation,

two different datasets were used: the publicly available ISBI 2015 Longitudinal MS Lesion

Segmentation Challenge dataset [11] (refer to section 1.3.1 for more details), and an in-house

dataset NRU (refer to section 1.3.2).

4.3.1 Experiments on the ISBI dataset

From the ISBI dataset, we selected the preprocessed version of the images available online

at the challenge website. All images were already skull-stripped using Brain Extraction Tool

(BET) [91], rigidly registered to the 1mm3 MNI-ICBM152 template [74] using FMRIB’s

Linear Image Registration tool (FLIRT) [46, 47] and N3 intensity normalized [90].

To evaluate the performance of the proposed method on the ISBI dataset, two different ex-

periments were performed according to the availability of the ground truth.

Since the ground truth was available only for the training set, in the first experiment we ig-

nored the official ISBI test set for which no ground truth was provided. We only considered
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data with available ground truth (training set with 5 subjects) as mentioned in [3, 9]. To ob-

tain a fair result, we tested our approach with a nested leave-one-subject-out cross-validation

(3 subjects for training, 1 subject for validation and 1 subject for testing - refer to Table 4.1

for more details). To evaluate the stability of the model, this experiment was performed

evaluating separately our method on the two sets of labels provided by the two raters.

Table 4.1: This table shows the implementation of first experiment in Section 4.3.1. In
this experiment, we evaluated our model using the ISBI dataset with available ground truth
(training set with 5 subjects only). We implemented a nested leave-one-subject-out cross-
validation (3 subjects for training, 1 subject for validation, and 1 subject for testing). The
numbers indicate the subject identifier.

Training Validation Testing
1,2,3 4 5
1,2,4 3 5
1,3,4 2 5
2,3,4 1 5
1,2,3 5 4
1,2,5 3 4
1,3,5 2 4
2,3,5 1 4
1,2,4 5 3
1,2,5 4 3
1,4,5 2 3
2,4,5 1 3
1,3,4 5 2
1,3,5 4 2
1,4,5 3 2
3,4,5 1 2
2,3,4 5 1
2,3,5 4 1
2,4,5 3 1
3,4,5 2 1

In the second experiment, the performance of the proposed method was evaluated on the of-

ficial ISBI test set (with 14 subjects), for which the ground truth was not available, using the

challenge web service. We trained our model doing a leave-one-subject-out cross-validation

on the whole training set with 5 subjects (4 subjects for training and 1 subject for validation

- refer to Table 4.2 for more details). We executed the ensemble of 5 trained models on the

official ISBI test set and the final prediction was generated with a majority voting over the

ensemble. The 3D output binary lesion maps were then submitted to the challenge website4

for evaluation.
4http://iacl.ece.jhu.edu/index.php/MSChallenge
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Table 4.2: This table shows the implementation of the second experiment in Section 4.3.1.
In this experiment, our model was evaluated using official ISBI test set including 14 subjects
without publicly available ground truth. We trained our model doing a leave-one-subject-out
cross-validation on whole training set (4 subject for training, 1 subject for validation, and 14
subject for testing). The numbers indicate the subject identifier.

Training Validation Testing
1,2,3,4 5 ISBI test set
1,2,3,5 4 ISBI test set
1,2,4,5 3 ISBI test set
1,3,4,5 2 ISBI test set
2,3,4,5 1 ISBI test set

4.3.2 Experiment on the NRU dataset

In the NRU dataset, all sagittal acquisitions were reoriented in the axial plane and the exceed-

ing portion of the neck was removed. T1w and T2w sequences were realigned to the FLAIR

MRI using FLIRT and brain tissues were separated from non-brain tissues using BET [91]

on FLAIR volumes. The resulting brain mask was then used on both registered T1w and

T2w images to extract brain tissues. Finally, all images were rigidly registered to a 1mm3

MNI-ICBM152 template using FLIRT [46, 47] to obtain volumes of size 182 × 218 × 182

and then N3 intensity normalized [90].

To test the robustness of the proposed model, we performed two experiments using the NRU

dataset including 37 subjects. In the first experiment, we implemented a nested 4-fold cross-

validation over the whole dataset (21 subjects for training, 7 subjects for validation and 9

subjects for testing - refer to Table 4.3 for more details). Since for each test fold we had an

ensemble of four nested trained models, the prediction on each test fold was obtained as a

majority vote of the corresponding ensemble.

To aggregate the outputs of the ensembles, beyond majority voting, we tested alternative

well-known label fusion methods. Specifically, we repeated the aforementioned experiment

on the NRU dataset substituting the majority vote framework with averaging and STAPLE

(Simultaneous Truth and Performance Level) [105] methods, used to aggregate both the

output volumes of the three plane orientations and the output volumes of the different models

during cross-validation.

For comparison, we tested three different publicly available MS lesion segmentation soft-

ware: OASIS (Automated Statistic Inference for Segmentation) [96], TOADS (Topology re-

serving Anatomy Driven Segmentation) [86], and LST (Lesion Segmentation Toolbox)[83].

OASIS generates the segmentation exploiting information from FLAIR, T1w, and T2w

modalities, and it only requires a single thresholding parameter, which was optimized to ob-
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Table 4.3: This table gives detailed information regarding the training procedure for the
first experiment in Section 4.3.2. In this experiment, we implemented a nested 4-fold cross-
validation over the whole NRU dataset including 37 subjects. [A-B @ C-D] denotes subjects
A to B and C to D.

Training Validation Testing
[17-37] [10-16] [1-9]

[10-16 @ 24-37] [17-23] [1-9]
[10-23 @ 31-37] [24-30] [1-9]
[10-30 @ 31-37] [31-37] [1-9]
[8-9 @ 19-37] [1-7] [10-18]
[1-7 @ 24-37] [8-9 @ 19-23] [10-18]

[1-9 @ 19-23 @ 31-37] [24-30] [10-18]
[1-9 @ 19-30] [31-37] [10-18]

[8-18 @ 28-37] [1-7] [19-27]
[1-7 @ 15-18 @ 27-37] [8-14] [19-27]

[1-14 @ 31-37] [15-18 @ 28-30] [19-27]
[1-18 @ 28-30] [31-37] [19-27]

[8-37] [1-7] [28-37]
[1-7 @ 15-27] [8-14] [28-37]

[1-14 @ 22-27] [15-21] [28-37]
[1-21] [22-27] [28-37]

tain the best DSC. TOADS does not need parameter tuning and it only requires FLAIR and

T1w modalities for segmentation. Similarly, LST works with FLAIR and T1w modalities

only. However, it needs a single thresholding parameter that initializes the lesion segmenta-

tion. This parameter was optimized to get the best DSC in this experiment.

We also tested the standard 2D U-Net [80] that was developed for biomedical image seg-

mentation, repeating the training protocol described in Table 4.3. Indeed, we used the same

training set as described in Sections 4.2.1 and 4.2.2, with the difference that 2D slices from

all modalities were aggregated in multiple channels. This network was trained using the

Adam optimizer [51] with an initial learning rate of 0.0001 multiplied by 0.9 every 800

steps. For the sake of comparison, optimization was performed on the soft Dice Loss func-

tion (Equation 4.1) [65]. To get the 3D volume from output binary slices of the network, we

used the proposed MPR block as described in Section 4.2.4.

Differences in performance metrics between our method and each of the 4 other methods

were statistically evaluated with resampling. For a given method M and metric C, resam-

pling was performed by randomly assigning for each subject the sign of the difference in

C between method M and our method in 10 million samples. The test was two-sided and

corrected for multiple comparisons with Holm’s method (28 comparisons in total with 7

metrics assessed for the 4 methods to compare ours with). The alpha significance threshold

level was set to 0.05.
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While for the ISBI dataset, we evaluated our method on two separate sets of masks, one

for each rater, in the NRU dataset, we considered the manual consensus segmentation as a

more robust gold standard against which to validate the proposed method. Nevertheless, to

evaluate the stability of the model trained with the gold standard labeling, we also tested it

separately on the two sets of masks.

In the second experiment, to investigate the importance of each single modality in MS le-

sion segmentation, we evaluated our model with various combinations of modalities. This

means that the model was adapted in the number of parallel branches in the downsampling

network. In this experiment, we randomly split the corresponding dataset into fixed training

(21 subjects), validation (7 subjects) and test (9 subjects) sets.

Single-branch (SB): In a single-branch version of the proposed model, we used a single

ResNet as the downsampling part of the network. Attributes from different levels of the

single-branch were supplied to the MMFF blocks. In this version of our model, each MMFF

block had single input since there was only one downsampling branch. Therefore, MMFF

blocks included a 1× 1 convolution layer followed by a 3× 3 convolution layer. We trained

and tested the single-branch version of our proposed network with each modality separately

and also with a combination of all modalities as a multi-channel input.

Multi-branch (MB): The multi-branch version of the proposed model used multiple parallel

ResNets in the downsampling network without weights sharing. In this experiment, we used

two-branch and three-branch versions, which were trained and tested using two modalities

and three modalities, respectively. We trained and tested the mentioned models with all

possible combination of modalities (two-branches:[FLAIR, T1w], [FLAIR, T2w], [T1w,

T2w] and three-branches: [FLAIR,T1w, T2w]).

4.4 Results

4.4.1 ISBI dataset

In the first experiment, we evaluated our model using three measures: DSC, LTPR, and LFPR

to make our results comparable to those obtained in [3, 9, 48, 64]. Table 4.4 summarizes

the results of the first experiment when comparing our model with previously proposed

methods. The table shows the mean DSC, LTPR, and LFPR. As can be seen in that table, our

method outperformed other methods in terms of DSC and LFPR, while the highest LTPR was

achieved by our proposed method in privious chapter. Figure 4.5 shows the segmentation

outputs of the proposed method for subject 2 (with high lesion load) and subject 3 (with low
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Table 4.4: Comparison of our method with other state-of-the-art methods in the first ISBI
dataset experiment (in this experiment, only images with available ground truth were consid-
ered). GT1 and GT2 denote the corresponding model was trained using annotation provided
by rater 1 and rater 2 as ground truth, respectively (the model was trained using GT1 and
tested using both GT1 and GT2 and vice versa). Mean values of DSC, LTPR, and LFPR for
different methods are shown. Values in bold and italic refer to the first-best and second-best
values of the corresponding metrics, respectively.

Method Rater 1 Rater 2
DSC LTPR LFPR DSC LTPR LFPR

Rater 1 - - - 0.7320 0.6450 0.1740
Rater 2 0.7320 0.8260 0.3550 - - -
Jesson et al. [48] 0.7040 0.6111 0.1355 0.6810 0.5010 0.1270
Maier et al. [64] (GT1) 0.7000 0.5333 0.4888 0.6555 0.3777 0.4444
Maier et al. [64] (GT2) 0.7000 0.5555 0.4888 0.6555 0.3888 0.4333
Brosch et al. [9] (GT1) 0.6844 0.7455 0.5455 0.6444 0.6333 0.5288
Brosch et al. [9] (GT2) 0.6833 0.7833 0.6455 0.6588 0.6933 0.6199
Aslani et al. [3] (GT1) 0.6980 0.7460 0.4820 0.6510 0.6410 0.4506
Aslani et al. [3] (GT2) 0.6940 0.7840 0.4970 0.6640 0.6950 0.4420
Ours (GT1) 0.7649 0.6697 0.1202 0.6989 0.5356 0.1227
Ours (GT2) 0.7646 0.7002 0.2022 0.7128 0.5723 0.1896

lesion load) compared to both ground truth annotations (rater 1 and rater 2). Confirming the

above-mentioned point, Figure 4.5 shows that the proposed method is robust to identify both

small and big lesions having overall a good overlap with the ground truth (DSC>0.7).

In the second experiment, the official ISBI test set was used. Indeed, all 3D binary output

masks computed on the test set were submitted to the ISBI website. Several measures were

calculated online by the challenge website. Table 4.5 shows the results on all measures

reported as a mean across raters. At the time of the submission, our method had an overall

evaluation score of 92.12 on the official ISBI challenge web service5, making it amongst the

top-ranked methods with a published paper or a technical report.

4.4.2 NRU dataset

Table 4.6 reports the results of the first experiment on NRU dataset showing the mean values

of DSC, LFPR, LTPR, PPV, VD, SD and HD. It summarizes how our method performed

compared to others. As shown in the table, our method achieved the best results with respect

to DSC, PPV, LFPR, VD, SD and HD measures while showing a good trade-off between

LTPR and LFPR, comparable to the best results of the other methods.

Figure 4.8 shows boxplots of the DSC, LFPR, LTPR, PPV, VD, SD and HD evaluation
5http://iacl.ece.jhu.edu/index.php/MSChallenge
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Table 4.5: Results related to the top-ranked methods (with published papers or technical re-
ports) evaluated on the official ISBI test set and reported on the ISBI challenge website. SC,
DSC, PPV, LTPR, LFPR, and VD are mean values across the raters. For detailed information
about the metrics, refer to Section 1.4. Values in bold and italic refer to the metrics with the
first-best and second-best performances, respectively.

Method SC DSC PPV LTPR LFPR VD
Hashemi et al. [36] 92.48 0.5841 0.9207 0.4135 0.0866 0.4972
Ours 92.12 0.6114 0.8992 0.4103 0.1393 0.4537
Andermatt et al. [2] 92.07 0.6298 0.8446 0.4870 0.2013 0.4045
Valverde et al. [102] 91.33 0.6304 0.7866 0.3669 0.1529 0.3384
Maier et al. [64] 90.28 0.6050 0.7746 0.3672 0.2657 0.3653
Birenbaum et al. [8] 90.07 0.6271 0.7889 0.5678 0.4975 0.3522
Aslani et al. [3] 89.85 0.4864 0.7402 0.3034 0.1708 0.4768
Deshpande et al. [24] 89.81 0.5960 0.7348 0.4083 0.3075 0.3762
Jain et al. [45] 88.74 0.5560 0.7300 0.3225 0.3742 0.3746
Sudre et al. [95] 87.38 0.5226 0.6690 0.4941 0.6776 0.3837
Tomas et al. [99] 87.01 0.4317 0.6973 0.2101 0.4115 0.5109
Ghafoorian et al. [30] 86.92 0.5009 0.5491 0.4288 0.5765 0.5707

Table 4.6: Results related to the first NRU dataset experiment. Mean values of DSC, PPV,
LTPR, LFPR, VD, SD and HD were measured for different methods. Values in bold and
italic indicate the first-best and second-best results.

Method DSC PPV LTPR LFPR VD SD HD
TOADS [86] 0.5241 0.5965 0.4608 0.6277 0.4659 5.4392 13.60
LST [83] 0.3022 0.5193 0.1460 0.3844 0.6966 7.0919 14.35
OASIS [96] 0.4193 0.3483 0.3755 0.4143 2.0588 3.5888 18.33
U-NET [80] 0.6316 0.7748 0.3091 0.2267 0.3486 3.9373 9.235
Ours 0.6655 0.8032 0.4465 0.0842 0.3372 2.5751 6.728
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Figure 4.5: Segmentation results of the proposed method on two subjects of the ISBI dataset compared to ground truth annotations provided by
rater 1 and rater 2. From left to right, the first three columns are related to subject 2 with high lesion load and reported DSC values of 0.8135
and 0.8555 for rater 1 and rater 2, respectively. Columns 4 to 6 are related to the subject 3 with low lesion load and reported DSC values of
0.7739 and 0.7644 for rater 1 and rater 2, respectively. On all images, true positives, false negatives, and false positives are colored in red, green
and blue, respectively.
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Table 4.7: The proposed model was tested with different combinations of the three modali-
ties in the second NRU dataset experiment. SB and MB denote the single-branch and multi-
branch versions of the proposed model, respectively. Mean values of DSC, PPV, LTPR,
LFPR, VD, SD and HD were measured for different methods. Values in bold and italic
indicate the first-best and second-best values.

Method Set of Modalities DSC PPV LTPR LFPR VD SD HD
SB FLAIR 0.6531 0.5995 0.6037 0.2090 0.3034 1.892 9.815

T1w 0.5143 0.5994 0.3769 0.2738 0.3077 4.956 8.201
T2w 0.5672 0.5898 0.4204 0.2735 0.1598 4.733 9.389
FLAIR, T1w, T2w 0.6712 0.6029 0.6095 0.2080 0.2944 1.602 9.989

MB FLAIR, T1w 0.6624 0.6109 0.6235 0.2102 0.2740 1.727 9.526
FLAIR, T2w 0.6630 0.6021 0.6511 0.2073 0.3093 1.705 9.622
T1w, T2w 0.5929 0.6102 0.4623 0.2309 0.1960 4.408 9.004
FLAIR, T1w, T2w 0.7067 0.6844 0.6136 0.1284 0.1488 1.577 8.368

metrics obtained from the different methods and summarized in Table 4.6. This Figure

shows statistically significant differences between model performances for most metrics and

methods when compared to ours, after multiple comparison correction with the conservative

Holm’s method. The output segmentation of all methods applied to a random subject (with

medium lesion load) can be seen with different plane orientations in Figure 4.6.

Figure 4.7 depicts the relationship between the volumes of all ground truth lesions and the

corresponding estimated size for each evaluated method (one datapoint per lesion). With

a qualitative evaluation, it can be seen that TOADS and OASIS methods tend to overesti-

mate lesion volumes as many lesions are above the dashed black line, i.e., many lesions are

estimated larger than they really are. On the contrary, LST method tends to underestimate

the lesion sizes. U-Net and our method, on the contrary, produced lesions with size more

comparable to the ground truth. However, with a quantitative analysis, our model produced

the slope closest to unity (0.9027) together with the highest Pearson correlation coefficient

(0.75), meaning our model provided the stronger global agreement between estimated and

ground truth lesion volumes. Note that a better agreement between lesion volumes does not

mean the segmented and ground truth lesions better overlap – the amount of overlap was

measured with the DSC.

Table 4.7 shows the performance of the proposed model with respect to different combina-

tions of modalities in the second experiment. The SB version of the proposed model used

with one modality had noticeably better performance in almost all measures when using

FLAIR modality. However, all modalities carry relevant information as better performance

in most metrics was obtained when using a combination of modalities. In MB versions of

the model, all possible two-branch and three-branch versions were considered. As shown in

Table 4.7, two-branch versions including FLAIR modality showed a general better perfor-

mance than the single-branch version using single modality. This emphasizes the importance
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Table 4.8: This table shows the results of the first experiment on the NRU dataset using our
model as described in Section 4.3.2. We implemented the same experiment using different
methods for fusing output volumes (when merging the outputs from each plane orientation,
and also when merging the outputs of models from different cross-validation folds). Mean
values of DSC, PPV, LTPR, LFPR, VD, SD and HD were measured for each method. Values
in bold indicate the first-best results.

Method DSC PPV LTPR LFPR VD SD HD
Majority Voting 0.6655 0.8032 0.4465 0.0842 0.3372 2.575 6.728
Averaging 0.5883 0.8391 0.3220 0.0788 0.4625 3.216 8.503
STAPLE [105] 0.6632 0.7184 0.3989 0.0802 0.3883 2.330 8.629

Table 4.9: This table indicates the performance of our trained model in first experiment of
NRU dataset when using different ground truth masks as testing. Mean values of DSC, PPV,
LTPR, LFPR, VD, SD and HD were measured for each method. Values in bold indicate the
first-best results.

Method DSC PPV LTPR LFPR VD SD HD
Rater1 0.6827 0.8010 0.5039 0.0977 0.3727 2.085 6.704
Rater2 0.6607 0.7784 0.4458 0.0860 0.3638 2.511 7.009
Gold Standard (Consensus Mask) 0.6655 0.8032 0.4465 0.0842 0.3372 2.575 6.728

of using FLAIR modality together with others (T1w and T2w). However, overall, a com-

bination of all modalities in the three-branch version of the model showed the best general

performance compared to the other versions of the network.

In order to aggregate the outputs of the ensembles, beyond majority voting, we tested alter-

native well known label fusion methods. Specifically, we repeated the first experiment on

NRU dataset as described in Section 4.3.2, substituting the majority vote framework with

averaging and STAPLE methods, used to aggregate both the output volumes of the three

plane orientations and the output volumes of the different models during cross-validation.

Table 4.8 indicates the performance of each method. Overall, majority voting had better

performance than other methods. Therefore, we selected this method for all experiments.

In the first experiment on NRU dataset, beyond verifying the quality of the proposed model

on the ground truth generated from the consensus of two experts, we also compared the

performance with the ground truth from each individual experts. The rationale behind the

experiment was to assess the consistency of the system across raters. Table 4.9 shows the

corresponding results. As expected from the high consensus between the masks provided

by the two raters (as mentioned in Section 1.3.2), our trained model using the gold standard

mask (derived from the two raters’ masks) showed comparable results when evaluated with

either raters’ masks or the consensus mask as ground truth.
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Figure 4.6: Output segmentation results of the different methods for one subject with medium lesion load from the NRU dataset compared with
ground truth annotation. Reported DSC values for TOADS, OASIS, LST, U-Net and our proposed method for this subject are 0.7110, 0.4266,
0.6505, 0.7290 and 0.7759, respectively. On all images, true positives, false negatives, and false positives are colored in red, green and blue,
respectively.
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Figure 4.7: Comparison of the lesion volumes produced by manual and automatic segmentation on the NRU dataset with different methods.
Each point is associated with a single lesion. Colored (solid) lines indicate the correlation between manual and segmented lesion volumes.
Black (dotted) lines indicate the ideal regression line. Slope, intercept, and Pearson’s linear correlation (all with p << 0.001) between manual
and estimated masks can also be seen for different methods.
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4.5 Discussion and Conclusions

In this chapter, we have designed an automated pipeline for MS lesion segmentation from

multi-modal MRI data. The proposed model is a deep end-to-end 2D CNN consisting of

a multi-branch downsampling network, MMFF blocks fusing the features from different

modalities at different stages of the network, and MSFU blocks combining and upsampling

multi- scale features.

When having insufficient training data in deep learning based approaches, which is very

common in the medical domain, transfer learning has demonstrated to be an adequate solu-

tion [13, 14, 41]. As we showed in first chapter, not only it helps boosting the performance

of the network but also it significantly reduces overfitting. Therefore, in this chapter, we

also used the parallel ResNet50s pre-trained on ImageNet as a multi-branch downsampling

network while the other layers in MMFF and MSFU blocks were randomly initialized from

a Gaussian distribution. We then fine-tuned the whole network on the given MS lesion seg-

mentation task.

In brain image segmentation, a combination of MRI modalities overcomes the limitations

of single modality approaches, allowing the models to provide more accurate segmentations

[3, 52, 66]. Unlike previously proposed deep networks [3, 9], which stacked all modalities

together as a single input, we designed a network with several downsampling branches,

one branch for each individual modality. We believe that stacking all modalities together

as a single input to a network is not an optimal solution since during the downsampling

procedure, the details specific to the the most informative modalities can vanish when mixed

with less informative modalities. On the contrary, the multi-branch approach allows the

network to abstract higher-level features at different granularities specific to each modality.

Independently of the ground truth used for training and testing the model, results in Table 4.4

confirm our claim showing that a network with separate branches generated more accurate

segmentations (e.g., DSC=0.7649) than single-branch networks with all modalities stacked,

as proposed by Brosch et al. [9] (e.g., DSC=0.6844) and our model in first chapter [3] (e.g.,

DSC=0.6980). Indeed, the mentioned methods (single-branch) generally obtained higher

LTPR values (e.g., 0.7455 and 0.7460) than multi-branch (e.g., 0.6697). However, they also

obtained very high LFPR values showing a significant overestimation of lesion volumes.

The proposed method, instead, showed the best trade-off between LTPR and LFPR.
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Figure 4.8: Boxplots showing the performance of tested models with all measures on NRU
dataset. Among all methods, the proposed one had the best trade-off between the lesion-
wise true positive rate and lesion-wise false positive rate, while having the best mean value
for dice similarity coefficient, positive prediction value, absolute volume differences, mean
surface distance and hausdorff distance. Statistically significant differences between our
method and the others were assessed using resampling statistics with multiple comparison
correction. The significance threshold was set as α = 0.05. p-values were annotated as
follows: ’*’ for p < 0.05, ’**’ for p < 0.005, ’***’ for p < 0.0005, and ’n.s.’ for non-
significant values.

When examining the influence of different modalities, results in Table 4.7 demonstrated that

the most important modality for MS lesion segmentation was FLAIR (DSC>0.65). This is

likely due to the fact that FLAIR sequences benefit from CSF signal suppression and hence

provide a higher image contrast between MS lesions and the surrounding normal appearing
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WM. Using all modalities together in a SB network (by concatenating them as single multi-

channel input) and in a MB network (each modality as single input to each branch) showed

good segmentation performance. This could be due to the combination of modalities helping

the algorithm identifying additional information regarding the location of lesions. However,

supporting our claim that stacking all modalities together as a single input to the network is

not an optimal solution, top performance, indeed, was obtained in most measures with the

MB network when using all available modalities, as can be seen in Table 4.7.

In deep CNNs, attributes from different layers include different information. Coarse lay-

ers are related to high-level semantic information (category specific), and shallow layers

are related to low-level spatial information (appearance specific) [63], while middle layer

attributes have shown a significant impact on segmentation performance [80]. Combining

these multi-level attributes from the different stages of the network makes the representa-

tion richer than using single-level attributes, like in the CNN based method proposed in [9],

where a single shortcut connection between the deepest and the shallowest layers was used.

Following the same idea in the first chapter [3], our model, instead, includes several shortcut

connections between all layers of the network, in order to combine multi-scale features from

different stages of the network as inspired by U-Net architecture [80]. The results shown

in Table 4.4 suggest that the combination of multi-level features during the upsampling pro-

cedure helps the network exploiting more contextual information associated to the lesions.

This could explain why the performance of our proposed model (DSC=0.7649) is higher

than the method proposed in [9] (DSC=0.6844).

Patch-based CNNs suffer from lacking globalspatial information about the lesions because

of the patch size limitation. To deal with this problem, we proposed a whole-brain slice-

based approach. Compared with patch-based methods [30, 102], we have shown that our

model has better performance for most measures, as seen in Table 4.5. Although the CNN

proposed in [102] had the highest DSC value among all, our method showed better perfor-

mance regarding the LTPR and LFPR, which indicates that our model is robust in identifying

the correct location of lesions. The method proposed in [8] has been optimized to have the

highest LTPR. However, their method showed significantly lower performance in LFPR.

Compared with this method, our method has better trade-off between LTPR and LFPR.

As mentioned in [11], manual delineation of MS lesions from MRI modalities is prone to

intra- and inter-observer variability, which explains the relatively low DSC between two ex-

perts delineating the same lesions (∼0.73 for ISBI data as shown in Table 4.4). Automated

methods are therefore expected to have a maximum performance in the same order of mag-

nitude when comparing their generated segmentation with the rater’s one. Accordingly, it

is important to notice that, our model obtained a performance (DSC) close to the experts
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agreement, as can be seen in Table 4.4.

The proposed method also has some limitations. We observed that the proposed pipeline is

slightly slow in segmenting a 3D image since segmenting whole-brain slices takes a longer

time compared to other CNN-based approaches [81]. The time required to segment a 3D

image is proportional to the size of the image and is based on the computational cost of

three sequential steps: input features preparation 4.2.1, slice-level segmentation 4.2.2, and

3D image reconstruction 4.2.4. In both the ISBI and NRU datasets, the average time for

segmenting an input image with our model, including all 3 steps, was approximately 90

seconds.
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Chapter 5

Scanner Invariant MS Lesion Segmentation

5.1 Introduction

Deep learning models, in particular CNNs [55] have shown excellent performance in a large

variety of computer vision tasks, including image classification [53], object detection [33],

semantic segmentation [63], etc. It is, therefore, common to expect that successful deep

models can obtain good performances. However, it has been shown that, in practice, these

approaches easily fail to generalize well [12, 108].

According to the literature, the most important reasons for this failure are (i) the small size of

the training data which causes overfitting and (ii) the large difference between training and

test data which is typically addressed as domain shift. Therefore, one of the most important

problems that arises is how to improve the quality of models so that they generalize well to

unseen data from a different domain. During the last years, several algorithms have been

proposed to tackle the mentioned problem, improving the models generalization through

heuristic techniques such as dropout [92], early stopping [67], weight decay [54], data aug-

mentation [44], randomization methods [108], and other theoretical generalization methods

[49, 7].

Thanks to these regularization methods, deep models are reaching expert-level accuracy in

medical image segmentation. However, they still have a limited clinical application due to

the aforementioned challenge (i), which is also considered as one of the most relevant and

common problem in medical image analysis tasks [11, 19, 68]. To tackle this challenge,

several strategies have been proposed, such as increasing the dataset size using 2.5D repre-

sentations (slices) rather than full-size 3D images, initializing parameters of the proposed

model with pre-trained weights on natural images, and adopting special data augmentation

techniques [109]. An effective solution, however, would be to merge datasets collected from

different centers. This, however, introduces another important challenge. The medical data
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acquisition can vary significantly between different centers. For instance, in magnetic res-

onance imaging (MRI), this procedure is often subject to the variation of several specific

properties such as scanner, magnet strength, and acquisition protocol. This causes high do-

main variability between datasets which eventually can result in poor generalization. In

order to tackle this problem, several methods have been proposed such as scanner invariant

representations for medical image harmonization [70], one-shot domain adaptation [103],

and unsupervised methods [75] for medical image segmentation.

In this chapter, we propose a novel simple domain generalization method to enhance baseline

models and diminish the effect of domain differences in the data. To this end, a regularization

network, equipped with an auxiliary loss function, is proposed to incorporate regularization

into a standard encoder-decoder segmentation network. We tested the model with a standard

cross-validation procedure using an in-house dataset on MS lesion segmentation. Results

show that the proposed regularization network has a significant impact on the generalization

of the standard segmentation network when data from multiple centers are used.

5.2 Method

Generally, the performance of models suffers when they are applied to domains other than

the ones they were trained upon. In this work, the goal is to improve the generalizabil-

ity of a backbone segmentation model by training it on a collection of datasets presenting

high domain variability. The selected backbone encoder-decoder model has a traditional

loss function used for image segmentation. However, to handle the domain shift problem,

we propose a regularization network including an auxiliary loss function that is designed to

encourage the model to ignore domain-specific information. This property emerges from

optimizing cross entropy or correlation coefficient as detailed below. Training the backbone

segmentation network incorporated with regularization network reduces the domain differ-

ences problem across the datasets.

5.2.1 Network Architecture Details

The overall architecture of the proposed model includes three main components (Figure 5.1).

The first component is a feature extractor network consisting of an encoder φE which is

fed by an input image xi ∈ X . The output of the encoder φE is a p-dimensional vector

ri = {rij ∈ R}pj=1 ∈ R representing the latent features.

The second component is a segmentation network consisting of a decoder φD which recon-

struct from the latent features ri ∈ R a feature representation with the resolution of the input
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image xi ∈ X . The output layer then produces a dense pixel-wise prediction output si ∈ S
using a softmax activation. This network includes a traditional loss term used to update

the weights to improve the segmentation performance (see section 5.2.2). Note that the de-

scribed architecture composed of the mentioned encoder φE and decoder φD is very similar

to the model presented in [80], using 3D operations rather than 2D ones and removing the

regularization layers (dropout). For simplicity, we removed skip-connections in Figure 5.1.

The third component of the presented model is a regularization network φR including three

perceptron layers and a softmax layer. The network receives the latent features ri ∈ R to

produce category-wise prediction ci ∈ C, which in our case corresponds to the prediction of

the input’s domain.

Our observation is that during training, the model without φR learns how to segment the in-

put images also encoding their source domain. This results in overfitting of the model with a

domain bias. As a result, the segmentation performance of the network on data coming from

unseen source domains is very poor. The goal of the regularization network is therefore to

steer the whole model to reduce the domain bias, to obtain a better generalization and, hence,

a fairer segmentation performance on seen and unseen domains. To this aim, we introduce

an auxiliary loss term whose aim is to confuse the model about the dataset domains, thus

forcing the model to learn how to segment the image while maximally reducing the domain

bias.

Figure 5.1: Overall architecture of the proposed method including three main components:
An encoder network φE for extracting latent features, a decoder network φD for segmenta-
tion and a regularization network φR for domain generalization.
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5.2.2 The Loss Functions

Our method has been tested using multiple loss terms to enable the network to precisely

segment the input image while generalizing over the domains. Specifically, the proposed

model was optimized according to the loss function formulated as:

L(X ,S, C,H,G) = Lseg(X ,S,G) + λLreg(X , C,H) (5.1)

where λ ∈ [0, 1] is a hyperparameter controlling the trade-off between segmentation and reg-

ularization losses. H and G are the domain-wise and pixel-wise ground truth, respectively.

In this work, we propose three different regularization approaches using loss functions Lreg
based on two well-established measures, namely cross-entropy and the Pearson correlation

coefficients. Hence, Lreg can take on either of these three options:

Lreg(X , C,H) = {Lpc(X , C,H),Lrand(X , C,H),Ldu(X , C,H)} (5.2)

Pearson Correlation Loss Lpc: Given an input image xi ∈ X , the regularization net-

work φR generates the corresponding output vector ci = {cij ∈ [0, 1]}nj=1 ∈ C which

shows the probabilities for xi to be in one of the n domains. For each input image xi
the corresponding one-hot encoded vector as ground truth domain labeling is also given by

hi = (0, 0, ..., 1, 0, ..., 0) ∈ H.

The Pearson correlation coefficient measures the strength of linear correlation or similarity

between two variables, where higher values correspond to higher similarity. Hence, to re-

move the domain bias, the model can be trained to minimize the Pearson correlation between

C andH

Lpc(xi, ci, hi) =
∑

j(cij − ci)(hij − hi)√∑
j(cij − ci)2

∑
j(hij − hi)2

(5.3)

where hi and ci denote the mean values of elements in the vectors hi and ci, respectively.

Randomized Cross-Entropy LossLrand: The most commonly used loss function for image

classification is the cross-entropy:
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Lrand(xi, ci, hi) = −
∑
j

hij log cij (5.4)

which allows comparing the class predictions vector ci ∈ C and the ground truth one-hot

encoded vector hi ∈ H, penalizing the correct classes having a probability diverging from

the expected value. Our ultimate goal is to push the network to filter unnecessary domain

information during training. This can be easily obtained by shuffling the ground truth hi ∈ H
at each training iteration and for every single input. This encourages the model to avoid

learning the correct classes as they are always changing.

Discrete Uniform LossLdu: Analyzing the problem from a different prospective, to remove

the domain bias, the encoder network φE should generate a representation ri ∈ R from

which the domain classifier in φR cannot extract information. This should correspond to a

classifier in φR that classify any class with equal probability, independently from the input.

We can obtain this result training the model with the cross-entropy loss (Equation 5.4),

forcing the domain ground truth to be a uniform distribution hi : {hij = 1
n}

n
j=1 ∈ H

Segmentation Loss Lseg: To fit the model according to the segmentation task, we used a

well-known loss function for image segmentation, namely the soft-Dice loss function [4]:

Lseg(xi, si, gi) = 1−
2
∑

i sigi∑
i s

2
i +

∑
i g

2
i

(5.5)

where si ∈ S is the dense pixel-wise prediction and gi ∈ G is the corresponding ground

truth segmentation. This function penalizes φE and φD based on the overlap between the

prediction and the ground truth segmentation.

5.2.3 Implementation Details

We designed a backbone model based on the U-Net [80], built by concatenating a down-

sampling encoder φE made by 4 stages with an up-sampling decoder φD made by 4 stages.

However, differently from the U-Net, the regularization layers (dropout) were removed and

all 2D operations were replaced by their 3D counterparts. During the training procedure, the

backbone model was combined with the proposed regularization network. On the contrary,

during the testing phase, the regularization network was removed addressing only the seg-

mentation task. The model was executed on 3D patches with size 64×64×64 cropped from

each volume (with 50% overlap [36]). The model was trained only using patches containing

at least one voxel labeled as a lesion. During the test, on the contrary, all patches were used.
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The evaluation of the model was performed on the reconstructed full-size volumes, fusing

the predictions for all patches.

The proposed model was implemented in Python language 1 using Keras2 [18] with Ten-

sorflow3 [1] backend. We trained our model using Adam optimizer with an initial learning

rate of 0.0001. The size of batch and the maximum number of training epochs were fixed

respectively at 15 and 500 (with 300 steps per epoch). Regarding the model initialization,

all blocks were randomly initialized from a Gaussian distribution. The hyperparameter λ in

Equation 5.1 was selected through grid search with values equal to 0.2, 0.3 and 0.1 for Lpc,
Ldu and Lrand, respectively.

5.3 Experiments

We evaluate the performance of the proposed method on two different datasets: an in-house

clinical dataset from UBC (refer to section 1.3.3 for more details) and the publicly available

ISBI 2015 Longitudinal MS Lesion Segmentation Challenge dataset [11] (refer to section

1.3.1 for more details).

5.3.1 Experiments on the UBC dataset

In the UBC dataset, all images were skull-stripped using BET [91], and rigidly registered to

the 1mm3 MNI-ICBM152 template [74] using FLIRT [46].

We considered each site as a separate domain and to keep data balanced over all available

sites, a single subject including one time point with four MRI modalities (T1w, T2w, PDw,

and FLAIR) was selected from each site. We implemented 5-fold cross-validation over the

whole data (60%:20%:20% for training, validation, and test, respectively).

For comparison purpose, we repeated the above-mentioned experiment (using exactly the

same folds) for the backbone model without any regularization (denoted as the BM) and

the same backbone model with additional dropout layers (denoted as the BDM). Note that

BDM model is equivalent the U-net model [80] with replacing the 2D operations by their

3D counterparts.
1https://www.python.org
2https://keras.io
3https://www.tensorflow.org
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5.3.2 Experiments on the ISBI dataset

From the ISBI dataset, we selected the preprocessed version of the images available online

at the challenge website. All images were already skull-stripped using BET [91], rigidly

registered to the 1mm3 MNI-ICBM152 template [74] using FLIRT [46, 47] and N3 intensity

normalized [90].

In this experiment, we consider the whole UBC dataset as a training set with the same

assumption described in aforementioned section 5.3.1. However, the performance of the

trained model was evaluated on the official ISBI test set (with 14 subjects), for which the

ground truth was not available. The extracted 3D output binary lesion maps were submit-

ted to the challenge website4 for evaluation. Moreover, for comparison purpose, we also

repeated the above-mentioned experiment using the BM model.

5.4 Results

5.4.1 UBC dataset

We evaluated our model using four measures: DSC, LTPR, LFPR, and PPV (refer to section

1.4 for more details).

Table 5.1 summarizes the results of our experiment on the test set comparing our model

with other baseline methods. The Table shows the mean value of DSC, LTPR, LFPR, and

PPV. As can be seen, our proposed methods outperformed baseline methods on the DSC

measure. Moreover, in terms of LTPR and LFPR measures, our model with the randomized

and discrete uniform auxiliary loss functions showed more balanced performance compared

with the other models. Figure 5.2 shows an example of segmentation of all methods for a

random subject. Figure 5.3 compares the DSC performance of the proposed methods with

other models on the validation set. Confirming the results reported in the test set, as shown

in Figure 5.3, our model with all three possible auxiliary loss terms depicts better DSC

performance than the baseline methods.

5.4.2 ISBI dataset

All 3D binary output masks computed on the test set were submitted to the ISBI website.

Therefore, the performance of the methods was evaluated by the challenge web service. At
4http://iacl.ece.jhu.edu/index.php/MSChallenge
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Figure 5.2: Segmentation of a random subject obtained by different methods against ground truth annotation. On all images, true positives, false
negatives, and false positives are marked in red, green and blue, respectively (refer to the section for yellow circles).
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Table 5.1: Results related to our experiment on UBC dataset. Mean values of DSC, LTPR,
LFPR, and PPV were measured for different methods. Values in bold and italic indicate the
first-best and second-best results.

Method DSC LTPR LFPR PPV
Our (Lpc) 0.4638 0.4267 0.3954 0.4865

Our (Lrand) 0.5001 0.4618 0.3348 0.5193
Our (Ldu) 0.4893 0.4670 0.3525 0.5182

BM 0.4540 0.4318 0.3383 0.5088
BDM 0.4598 0.5821 0.5151 0.4577

the time we submitted the results, we obtained a score of 86.65 for our proposed method

with randomized cross-entropy loss. Regading the BM model, the overall evaluation score

was 85.14. The detailed result for each subject is available online on the ISBI MS lesion

segmentation challenge website5.

5.5 Discussion and Conclusions

In this chapter, we have introduced a generalization method implemented via an auxiliary

loss with three variants. We tested this method on medical image segmentation, particularly

MS lesion segmentation from MRI modalities in the presence of domain shift originating

from multi-center datasets. The proposed model is the combination of a traditional encoder-

decoder network for segmentation and an additional regularization network including an

auxiliary loss term for domain generalization.

Investigating the impact of the proposed method summarized in Table 5.1, our model al-

ways outperformed the baseline models when considering the DSC measures (regardless of

which of the adopted auxiliary loss variant was used). However, the best performance in

terms of DSC, LFPR, and PPV measures among all tested models is provided by our model

with the randomized auxiliary loss function. The BDM model showed the best LTPR mea-

sure together with the worst LFPR measure showing that this model has very poor trade-off

between LTPR and LFPR.

Confirming the above-mentioned point, Figure 5.2 shows that BDM model tends to over

segmented lesion regions (referring to the yellow circles in the last column). Moreover, it can

be seen that BM model did not identify some lesions (referring to the yellow circles in third

column). However, the proposed method with randomized loss term shows a considerable

good performance by not only identifying the mentioned small lesions but also ignoring the

false positives (referring to the yellow circles in the second column).
5http://iacl.ece.jhu.edu/index.php/MSChallenge
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Figure 5.3: Comparison of the DSC measure performance of the proposed methods with
other baseline models on validation set during training.

The reported performance related to the proposed method evaluated on the official ISBI test

(SCour = 86.65) is comparable to the ISBI inter-rater score scaled to 90. Althouth the
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repoeted score is lower than the other scores related to the state-of-the-art methods (refer

to the Table 4.5), it is important to notice that our model has never been trained on the

ISBI dataset. Moreover, it showed higher score than the BM model (SCBM = 85.14) with

highlights the impact of the proposed generalization method.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

This thesis provided several approaches to advance automated image-based machine diag-

nosis of MS.

Chapter 2 provided a comprehensive review on state-of-the-art deep learning-based methods,

particularly CNNs commonly used as top performing machine-based approaches for natural

and medical image segmentation. It started by a review of the literature on CNN-based

approaches for semantic segmentation of natural images. Then, it provided a brief review

on CNN-based methods for segmentation of medical images. Finally, this chapter discussed

several studies for MS lesion segmentation based on CNNs.

Chapter 3 presented our first published work examining whether the parameters of a CNN

learned from natural images transfer well to MS lesion segmentation from MRI images.

The results show that the parameters of a CNN trained on natural images in the classifica-

tion task can generalize to brain MRI images in MS lesion segmentation task. Moreover,

multiple short-cut connections between several layers of the network combining multi-level

features from different stages of the network helps the network exploiting more contextual

information about the shape of the lesions.

As the pre-trained CNN worked well for MS lesion segmentation, Chapter 4 discussed our

second published work based on a novel multi-branch CNN architecture with end-to-end

training that can take advantage of each MRI modality individually for MS lesion segmenta-

tion. Further, in the mentioned model, MRI modalities combination was analyzed to identify

the best MS lesion segmentation performance. Combination of modalities helps the algo-

rithm leveraging additional information regarding the location of lesions. However, support-

ing our claim that stacking all modalities together as a single input to the network is not an

optimal solution, top performance, indeed, was obtained in most metrics with the proposed
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multi-branch network when using all available modalities. Moreover, examining the influ-

ence of different modalities, results show that the most important modality for MS lesion

segmentation is FLAIR.

Going beyond the segmentation of MS lesions in data collected from a single center, Chapter

5, our third published work, presented an effective and novel generalization method for

MS lesion segmentation when data are collected from multiple MRI scanning sites and are

consequently affected by (site-)domain shifts. The proposed network includes an auxiliary

loss function that is designed to encourage the model to ignore domain-specific information.

Considering the impact of the proposed method, our model always outperformed the baseline

models regardless of which of the adopted auxiliary loss variant was used.

CNNs played a key component in all these approaches, where each proposed work mod-

ified the traditional CNN architecture to suit a particular aspect of our tasks. The thesis

progression mirrored the increase in sophistication and generalizability of our CNN imple-

mentations, starting with a pre-trained CNN (Chapter 3), then relying on a multi-branch

pre-trained CNN benefiting from modality specific information (Chapter 4), finally utilizing

a generalized CNN in the presence of domain shift originating from multi-center datasets

(Chapter 5).

6.2 Future Directions

An open problem in MS lesion segmentation is the identification of cortical and sub-cortical

lesions. To this aim, we plan to use other MRI modalities such as double inversion recovery

(DIR) sequences, which benefit from signal suppression from both cerebrospinal fluid and

WM.

Moreover, we believe that introducing information from tissue class could help improve the

network identifying cortical, sub-cortical and WM lesions. Therefore, it could be promising

to design a multi-task network for segmenting different parts of the brain including differ-

ent tissue classes (WM, gray matter, cerebrospinal fluid) and different types of MS lesions

(including cortical lesions).

Since the assessment of the disease burden of MS patients from MRI requires the quan-

tification of the volume of hyper intense lesions on T2-weighted images, the final goal of

this proposed thesis is to obtain a fully automated and robust MS lesion segmentation tool.

This will be particularly useful to facilitate scaling advanced MS analysis based on myelin

imaging [22] or multi-modal characterization of white matter tracts [23] to large datasets.
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The long term goal, more generally, is the translation of the proposed automated methods

into a clinical tool. However, to be fully ready for clinical applications, the proposed meth-

ods should be also validated on healthy subjects and in a longitudinal framework. Testing

on healthy subjects needs to be done to evaluate the amount of false positives generated by

our approach on healthy brain scans. The experiments in a longitudinal framework would

be useful to assess the model reliability and capability to identify new, enlarged and stable

lesions. Achieving both these aims would bring our methodological approach closer to our

ultimate objective of deploying it in clinical settings. Note that automated methods can also

help study the effect of treatment in clinical trials involving multiple centers without the

bias typically introduced by specific raters. While they cannot help for screening yet (would

require research including other diseases to differentiate from) and will not replace clini-

cians to make the diagnosis, they can help refine the diagnosis by characterizing MS lesions,

notably the lesion load.
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