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Abstract

In this article we prove the explicit Mordell Conjecture for large families of curves. In addition, we
introduce a method, of easy application, to compute all rational points on curves of quite general
shape and increasing genus. The method bases on some explicit and sharp estimates for the height
of such rational points, and the bounds are small enough to successfully implement a computer
search. As an evidence of the simplicity of its application, we present a variety of explicit examples
and explain how to produce many others. In the appendix our method is compared in detail to
the classical method of Manin–Demjanenko and the analysis of our explicit examples is carried to
conclusion.

2010 Mathematics Subject Classification: 11G50 (primary); 14G40 (secondary)

1. Introduction

The Diophantine problem of finding integral or rational solutions to a set of
polynomial equations has been investigated since ancient times. To this day there
is no general method for finding such solutions and the techniques used to answer
many fundamental questions are deep and complex. One of the leading principles

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.20
Downloaded from https://www.cambridge.org/core. Sistema Bibliotecario - Universita degli Studi di Genova, on 05 Feb 2020 at 14:17:58,

http://journals.cambridge.org/action/displayJournal?jid=FMS
HTTPS://ORCID.ORG/0000-0001-6870-6489
HTTPS://ORCID.ORG/0000-0002-2225-7769
mailto:sara.checcoli@univ-grenoble-alpes.fr
mailto:francesco.veneziano@sns.it
mailto:evelina.viada@math.ethz.ch
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.20
https://www.cambridge.org/core


S. Checcoli, F. Veneziano and E. Viada 2

in arithmetic geometry is that the geometric structure of an algebraic variety
determines the arithmetic structure of the set of points over the rational numbers.
By variety, here and in the rest of the paper, we mean a closed algebraic variety
defined over the algebraic numbers Q, and by curve a variety of dimension one.
We identify a variety V with the set of its algebraic points V (Q).

A clear picture of how the arithmetic mirrors the geometry for varieties is given
by irreducible curves defined over a number field k. For singular curves, we define
the genus as the genus of the normalization. The genus of a curve is a geometric
invariant, and it distinguishes three qualitatively different behaviours for the set
of rational points. For a curve of genus 0, either the set of k-rational point is
empty or the curve is isomorphic to the projective line, whose k-rational points
are infinitely many and well-understood. On the other hand, for genus at least 2
we have the:

MORDELL CONJECTURE. An irreducible algebraic curve of genus at least 2
defined over a number field k has only finitely many k-rational points.

This is a very deep result, first conjectured by Mordell in [30] and now known
as Faltings Theorem after the ground-breaking proof in [14]. In between these two
extremes, there are the curves of genus 1. They can be endowed with the structure
of an abelian group and the set of k-rational points, when not empty, is a finitely
generated group. This is a famous theorem of Mordell, later generalized by Weil
to the case of abelian varieties.

Vojta in [47] gave a new proof of the Mordell Conjecture and then Faltings,
in [15, 16], proved an analogous statement for rational points on subvarieties
of abelian varieties, which generalizes to points in a finitely generated subgroup
Γ . Building on these results, Hindry [21] proved the case of Γ of finite rank,
known as the Mordell–Lang Conjecture. This was later made quantitative by
Rémond [35].

MORDELL–LANG CONJECTURE. Let Γ be a subgroup of finite rank of an
abelian variety A. Let V ⊆ A be a proper subvariety. Then the set Γ ∩ V is
contained in a finite union of translates of proper abelian subvarieties by elements
of Γ .

Unfortunately, even for curves the different proofs of this theorem are not
effective, in the sense that they prove the finiteness of the desired set, but do
not hint at how this set could be determined. One of the challenges of the last
century has been the search for effective methods, but there is still no known
general method for finding all the rational points on a curve. The few available
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The explicit Mordell Conjecture for families of curves 3

methods work under special assumptions and explicit examples are mainly given
for curves of genus 2 or 3 as discussed below.

The method of Chabauty and Coleman [8, 10] provides a bound on the number
of rational points on curves defined over a number field k with Jacobian of k-rank
strictly smaller than the genus. In some examples the estimate gives the exact
number of rational points. When this happens, possibly in combination with ad
hoc descent arguments, one can manage to find them explicitly. See for example
Flynn [17] for one of the first explicit applications of the Chabauty–Coleman
method, Siksek [37] for investigations on possible extensions of the method,
McCallum and Poonen [29] and Stoll [42] for general surveys and also their
references for additional variations and applications of this method. For curves
of genus 2, one can find the rational points using an implementation by Stoll
based on [7, Section 4.4] of the Chabauty–Coleman method combined with the
Mordell–Weil Sieve in the Magma computational algebra system [4]; this works
when the Mordell–Weil rank of the Jacobian is one and an explicit point of infinite
order is known.

The Manin–Demjanenko method [13, 26] is effective and applies to curves C
defined over a number field k that admit m morphisms f1, . . . , fm from C to an
abelian variety A all defined over k and linearly independent modulo constants (in
the sense that if

∑m
i=1 ni fi is constant for some integers ni , then ni = 0 for all i).

If m > rankA(k), then C(k) is finite and may be found effectively. However the
method is far from being explicit in the sense that it does not give the dependence
of the height of the rational points, neither on the curve nor on the morphisms; this
makes it difficult for applications. See Serre [36] for a description of the method
and a few applications. In the papers of Kulesz [24], Girard and Kulesz [19] and
Kulesz et al. [25] this method has been used to find all rational points on some
families of curves of genus 2 (respectively 3) with morphisms to special elliptic
curves of rank 1 (respectively 6 2). For instance, in [24] the curves have Jacobian
with factors isogenous to y2

= x3
+a2x , with a a square-free integer and such that

the Mordell–Weil group has rank one. We refer to Section A.1 of the appendix
for a more detailed discussion on the Manin–Demjanenko method, including a
comparison with the results of this article.

We also mention that Viada gave in [45] an effective method which is
comparable with the setting of Manin–Demjanenko’s result, although different
in strategy. She obtains an effective height bound for the k-rational points on a
transverse curve C ⊆ E N , where E is an elliptic curve with k-rank at most N − 1.
Also in this case the bounds are not at all explicit and there are no examples.

A major shortcoming of these methods is that in general the bounds for the
height must be worked out case by case and this is feasible in practice only when
the equations of the curve are of a very special shape.
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S. Checcoli, F. Veneziano and E. Viada 4

In this article we provide a good explicit upper bound for the height of the
points in the intersection of a curve of genus at least 2 in E N with the union
of all algebraic subgroups of dimension one, where E is an elliptic curve without
CM (Complex Multiplication), proving explicitly a particular case of the Mordell–
Lang conjecture in an elliptic setting. With some further technical estimates, the
method works also for the CM case. Our method can be easily applied to find the
rational points on curves of a fairly general shape and growing genus. Moreover
we present a variety of explicit examples, given by curves of genus at least 2
embedded in E2, with E without CM and E(k) of rank one. These are precisely
the curves whose Jacobian has a factor isogenous to such an E2. So the method
can be easily applied to curves embedded in E2

× A, where A is an abelian
variety. This is also the first nontrivial setting, as the case of E(k) of rank zero
can be easily treated (see Theorem 4.4 and Remark 4.5). Many explicit examples
mentioned above can be covered by our method, but it also gives many new
examples in which, differently from all previous examples, the genus of the curves
tends to infinity (see also Appendix A, in particular Section A.4).

Compared to the other effective methods mentioned above, ours is easy to
apply because it provides a simple formula for the bound for the height of the
rational points. Finally, in our settings the method of Chabauty–Coleman cannot
be directly applied, as the rank of the k-rational points of the ambient variety is
not smaller than its dimension. Our assumption is instead compatible with the
Manin–Demjanenko setting.

The importance of the result is that the dependence of our bound for the height
is completely explicit both on the curve C and the elliptic curve E and it can be
directly computed from the coefficients of the equations defining the curve. More
precisely, it depends explicitly on the coefficients of a Weierstrass equation for E
and on the degree and normalized height of C.

To give some evidence of the power of our method we carry out in this paper
the following applications:

• the proof of the explicit Mordell Conjecture for several families of curves;

• the list of all rational points for more than 104 explicit curves.

To state our main theorem, we first fix the setting (see Section 2 for more
details). Let E be an elliptic curve given in the form

y2
= x3

+ Ax + B.

Via the given equation, we embed E N into PN
2 and via the Segre embedding in

P3N−1.

subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.20
Downloaded from https://www.cambridge.org/core. Sistema Bibliotecario - Universita degli Studi di Genova, on 05 Feb 2020 at 14:17:58,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.20
https://www.cambridge.org/core


The explicit Mordell Conjecture for families of curves 5

The degree of a curve C ⊆ E N is the degree of its image in P3N−1 and h2(C)
is the normalized height of C, which is defined in terms of the Chow form of the
ideal of C, as done in [33, Section 2, page 346]. We let ĥ be the Néron–Tate height
on E N (normalized as explained in Section 2.1).

We finally define the rank for a point of E N as the End(E)-rank of the ring
generated by its coordinates or more in general:

DEFINITION 1.1. Let A be an abelian variety that is a projective variety with a
(fixed) group structure. The rank of a point of A is the minimal dimension of an
algebraic subgroup containing the point.

In particular, the points of rank 0 in A are precisely the torsion points. See also
later the related Definition 4.1.

We can now state our main result:

THEOREM 1.2. Let E be an elliptic curve without CM defined over a number
field. Let C be an irreducible curve of genus at least 2 embedded in E N . Then
every point P ∈ C(Q) of rank at most one has Néron–Tate height bounded as

ĥ(P) 6 γ1 · h2(C)(deg C)2 + γ2(E)(deg C)3

where

γ1 = 17 · 3N
· N !

γ2(E) = 10 · 32N
· N ! · c1(E).

Moreover if N = 2

ĥ(P) 6 C1 · h2(C) deg C + C2(E)(deg C)2 + C3(E)

where

C1 = 72.251
C2(E) = C1(6.019+ 4c1(E))
C3(E) = 4c2(E),

and the constants c1(E) and c2(E) are defined in Table 1 and depend explicitly
on the coefficients of E.

The case N = 2 of Theorem 1.2 is treated in Theorem 4.2, proved in Section 5,
while the bound for N > 3 is a simplified form of that given in Theorem 4.3,
proved in Section 4.
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S. Checcoli, F. Veneziano and E. Viada 6

We remark that if E(k) has rank one then the set of k-rational points of C is
contained in the set of points of rank one and so it has height bounded as above.
We underline that our method to bound the height of the rational points does not
require the knowledge of a generator for E(k) to work and that the bound we
obtain is also independent on k. These aspects are rather important, specifically
for applications.

Our search for effective and even explicit methods for the height of the k-
rational points on curves started some years ago in the context of the Torsion
Anomalous Conjecture (TAC), introduced by Bombieri et al. [3]. It is well
known that this very general conjecture on the finiteness of the maximal torsion
anomalous varieties implies the Mordell–Lang Conjecture and that effective
results in the context of the TAC carry over to effective cases of the Mordell–
Lang Conjecture (see [46] for a survey). Several of the methods used in this
field are based on a long-established strategy of using theorems of diophantine
approximation to obtain results about the solutions to diophantine equations. This
general approach goes back at least to Thue and Siegel and has been often applied
with success in the field of unlikely intersections as well as in number theory
in general (see [48] and references there for a nice overview). Despite much
effort there are few effective methods in this context and ours is probably the
first explicit one in the setting of abelian varieties.

Our main theorem generalizes and drastically improves a previous result
obtained in [9] where we considered only weak-transverse curves, that is curves
not contained in any proper algebraic subgroup (see Definition 4.1), a stronger
assumption which does not cover all curves of genus > 2 and we could only
bound the height of the subset of points of rank one which are also torsion
anomalous. From [9, Theorem 1.3] it is possible to deduce by a geometric
argument a general result for all curves of genus > 2, but the numerical constants
would not be explicit and the exponents in the degrees would be higher than
necessary. Even in the weak-transverse case, in spite of the more restrictive setting,
the bounds obtained in [9] are much worse than the present ones, both in the
numerical constants and in the exponents, and they are beyond any hope of being
implemented in any concrete case.

For instance, in this article, Theorem 4.3, for weak-transverse curves in E N

with N > 3 we obtain

ĥ(P) 6 4(N − 1)C1h2(C) deg C + (N − 1)C2(E)(deg C)2 + N 2C3(E),

while in [9] under the same hypothesis we got

ĥ(P) 6 B1(N ) · 2(N − 1)C1h2(C)(deg C)N−1

+ B2(N ) · (N − 1)C2(E)(deg C)N
+ N 2C3(E)
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The explicit Mordell Conjecture for families of curves 7

where B2(N ) > B1(N ) > 1027 N N 2
(N !)N . Note that not only the constants here

are linear instead of exponential in N , but also the exponents of deg C are now
independent of N and better already for N = 3.

By introducing new key elements in the proof, we go beyond what we could
prove in [9]; this change in approach leads to improvements of the bounds crucial
for the practical implementation.

In more details, this is a sketch of the proof of the main theorem given in
Sections 4 and 5. At first instance we avoid to restrict ourselves to the concept of
torsion anomalous points as done in [9] and study all points of rank one. To treat
the case of a general N we use a geometric construction to reduce it to the case of
N = 2. In this case we do a typical proof of diophantine approximation: if P is a
point in E2 of rank one, we construct a subgroup H of dimension 1 such that the
height and the degree of the translate H + P are well controlled. To this aim we
use some classical results of the geometry of numbers, in a way that prevents the
bounds from growing beyond the computational limits of a computer search. We
then conclude the proof using the Arithmetic Bézout Theorem, Zhang’s inequality
and an optimal choice of the parameters.

Another significant feature of our main theorem is that it can easily be applied
to find the rational points on curves of quite general shape. We present here some
of these applications, remarking that, for instance, any curve of genus at least 2 in
E2 with E(Q) of rank one is suitable for further examples of our method.

Let E be an elliptic curve defined over Q. We write

y2
1 = x3

1 + Ax1 + B

y2
2 = x3

2 + Ax2 + B
(1.1)

for the equations of E2 in P2
2 using affine coordinates (x1, y1) × (x2, y2) and we

embed E2 in P8 via the Segre embedding.
In Section 6 we give a method to construct several families of irreducible curves

in E2 of growing genus and we show how to compute bounds for their degree and
normalized height. In Theorem 6.3 we prove a sharper version of the following
result.

THEOREM 1.3. Assume that E is without CM, defined over a number field k and
that E(k) has rank one. Let C be the projective closure of the curve given in E2

by the additional equation
p(x1) = y2,

with p(X) ∈ k[X ] a nonconstant polynomial of degree n. Then C is irreducible
and for P ∈ C(k) we have

ĥ(P) 6 1301(2n + 3)2(hW (p)+ log n + 2c6(E)+ 3.01+ 2c1(E))+ 4c2(E)
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where hW (p) = hW (1 : p0 : . . . : pn) is the height of the coefficients of p(X), and
the constants c6(E), c1(E) and c2(E) are defined in Table 1.

We then consider two specific families which have particularly small invariants.
Clearly these are just examples and many similar others can be given.

DEFINITION 1.4. Let {Cn}n be the family of the projective closures of the curves
in E2 defined for n > 1 via the additional equation

xn
1 = y2.

Let {Dn}n be the family of the projective closures of the curves in E2 defined for
n > 1 via the additional equation

Φn(x1) = y2,

where Φn(x) is the nth cyclotomic polynomial.

In order to directly apply our main theorem we cut these curves on E2, with E
varying in the set of elliptic curves over Q without CM and Q-rank one. Several
examples of such E have been tabulated below and others can be easily found, for
instance in Cremona’s tables [11].

We consider the following elliptic curves:

E1 : y2
= x3

+ x − 1,

E2 : y2
= x3

− 26811x − 7320618,

E3 : y2
= x3

− 675243x − 213578586,

E4 : y2
= x3

− 110038419x + 12067837188462,

E5 : y2
= x3

− 2581990371x − 50433763600098.

These are five elliptic curves without CM and of rank one over Q. The curves
E1, E3, E4, E5 are, respectively, the curves 248c.1,10014b.1, 360009g.1 and
360006h.2 of [11]. The curve E2 was considered by Silverman in [41, Example 3]
and it does not appear in the Cremona tables because its conductor is too big. The
curves E3, E4 and E5 were chosen because they have generators of the Mordell–
Weil group of large height. This choice may speed up the computations, but it is
not necessary (see Section 9 for more details)

A remarkable application of our theorem is the following result, proven in
Section 9. If E is an elliptic curve, we denote by O its neutral element.

subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.20
Downloaded from https://www.cambridge.org/core. Sistema Bibliotecario - Universita degli Studi di Genova, on 05 Feb 2020 at 14:17:58,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.20
https://www.cambridge.org/core


The explicit Mordell Conjecture for families of curves 9

THEOREM 1.5. For the 79600 curves Cn ⊆ Ei × Ei with 1 6 n 6 19900 and
i = 2, 3, 4, 5, we have

Cn(Q) = {O × O}.

For the 9900 curves Cn ⊆ E1 × E1 with 1 6 n 6 9900, we have

Cn(Q) = {O × O, (1,±1)× (1, 1)}.

For the 5600 curves Dn ⊆ Ei × Ei where 1 6 n 6 1400 and i = 2, 3, 4, 5 we
have

Dn(Q) = {O × O}.

For the 400 curves Dn ⊆ E1 × E1 with 1 6 n 6 400 we have

D1(Q) = {O × O, (2,±3)× (1, 1)}
D2(Q) = {O × O, (2,±3)× (2, 3)}
D3k (Q) = {O × O, (1,±1)× (2, 3)}
D47k (Q) = {O × O, (1,±1)× (13, 47)}
Dpk (Q) = {O × O} if p 6= 3, 47 or p = 2 and k > 1
D6(Q) = {O × O, (1,±1)× (1, 1), (2,±3)× (2, 3)}
Dn(Q) = {O × O, (1,±1)× (1, 1)}

if n 6= 6 has at least two distinct prime factors.

For these curves the bounds for the height of the rational points are very good
especially for the Cn; in fact they are so good that we can carry out a fast computer
search and determine all their rational points for n quite large. The computations
have been executed with the computer algebra system PARI/GP [43] using an
algorithm by K. Belabas discussed in Section 9 based on a sieving method.

The computations for the 9900 curves Cn in E2
1 took about 7 days. The 79600

curves Cn in E2
i , i = 2, . . . , 5 took about 11 days, while the computations on

the 6000 curves Dn took about three weeks. A single curve in this range takes
between a few seconds and a few minutes, for example C1000 in E2

2 takes about
6.8 s.

In Appendix A M. Stoll completes the study of the rational points on the
families Cn and Dn for all n. More precisely, he proves that for n large enough
all rational points on the curves must be integral, by combining our upper bound
for the height of the rational points with a lower bound obtained by studying the `-
adic behaviour of points on the curve close to the origin, see Sections A.3 and A.4.
Thus our computations are required only for n small. However the data above
give an idea of the time needed to find the rational points on other curves with
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S. Checcoli, F. Veneziano and E. Viada 10

invariants similar to those considered in Theorem 1.5, even when the approach of
the Appendix A does not apply.

For a few curves in which the bounds are particularly small, we first used a
naive algorithm, which took about six weeks for each curve C1. Then we used
a floating point algorithm suggested by J. Silverman: for each i = 1, . . . , 5 this
algorithm took about one week for the 10 curves Cn ∈ E2

i with 1 6 n 6 10. The
striking improvement in the running time is due to the idea of performing the
computations after reducing modulo many primes; arithmetic operations in finite
fields are much faster than exact arithmetic. More details on how to construct
suitable new examples are given in Section 6.

The results of this article could be generalized in several ways. A possibility is
to find rational points on new explicit examples of families of curves. One could
also study curves in a product of abelian varieties or surfaces in a power of an
elliptic curve. We intend to investigate in these directions. For instance, in [44]
Viada applies the results obtained here to establish some generalizations.

The paper is organized as follows: Sections 2 and 3 contain the notations,
definitions and some useful standard results. In Section 4 we state Theorem 4.2
which is a sharper version of our main result for curves in E2. This is crucial for
the applications and we use it to prove Theorem 1.2. Section 5 is dedicated to
the proof of Theorem 4.2. Sections 6–9 are devoted to describe the families
of examples and applications of our main method, proving in particular
Theorems 1.3 and 1.5.

2. Notation and preliminaries

In this section we introduce the notations that we will use in the rest of the
article. We define different heights and, among the main technical tools in the
theory of height, we recall the Arithmetic Bézout Theorem and Zhang’s inequality.
We also recall some standard facts on subgroups of E N and give some basic
estimates for the degree of the kernel of morphisms on E N .

2.1. Heights and degrees. In this article we deal only with varieties defined
over the algebraic numbers. We will always identify a variety V with the set of its
algebraic points V (Q). Throughout the article E will be an elliptic curve defined
over the algebraic numbers and given by a fixed Weierstrass equation

E : y2
= x3

+ Ax + B (2.1)

with A and B algebraic integers (this assumption is not restrictive). If E is defined
over a number field k we write in short E/k. As usual, we define the discriminant
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The explicit Mordell Conjecture for families of curves 11

of E as
∆ = −16(4A3

+ 27B2),

(notice that ∆ 6= 0 because E is an elliptic curve) and the j-invariant

j =
−1728(4A)3

∆
.

We also define
hW(E) = hW (1 : A1/2

: B1/3) (2.2)

to be the absolute logarithmic Weil height of the projective point (1 : A1/2
: B1/3).

We recall that if k is a number field, Mk is the set of places of k and P = (P0 :

. . . : Pn) ∈ Pn(k) is a point in the projective space, then the absolute logarithmic
Weil height of P is defined as

hW (P) =
∑
v∈Mk

[kv : Qv]

[k : Q]
log max

i
{|Pi |v}

where [kv : Qv] denotes, as usual, the local degree at v and the absolute values
| · |v are normalized in such a way that the product formula∏

v∈Mk

|x |[kv :Qv ]/[k:Q]v = 1

holds for every nonzero element x ∈ k.
We also consider a modified version of the Weil height, differing from it at the

Archimedean places

h2(P) =
∑
v finite

[kv : Qv]

[k : Q]
log max

i
{|Pi |v} +

∑
v infinite

[kv : Qv]

[k : Q]
log
(∑

i

|Pi |
2
v

)1/2

.

(2.3)
If x is an algebraic number, we denote by h∞(x) the contribution to the Weil
height coming from the Archimedean places, more precisely

h∞(x) =
∑

v infinite

[kv : Qv]

[k : Q]
max{log |x |v, 0}.

To compute heights and degrees of subvarieties of E N , we consider them as
embedded in P3N−1 via the following composition of maps

E N ↪→ PN
2 ↪→ P3N−1, (2.4)
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S. Checcoli, F. Veneziano and E. Viada 12

where the first map is, on each of the N factors, the embedding of E in P2 given
by the Weierstrass form of E , while the second map is the Segre embedding.

For V a subvariety of E N we consider the canonical height h(V ), as defined
in [32, page 281]; when the variety V reduces to a point P , then h(V ) = ĥ(P) is
the Néron–Tate height of the point (see [32, Proposition 9]) defined as

ĥ(P) = lim
n→∞

hW (2n
· P)

4n
.

In general if P = (P1, . . . , PN ) ∈ E N , then we have

h(P) =
N∑

i=1

h(Pi) (2.5)

for h equal to hW , h2 and ĥ (see for instance [2, Proposition 2.4.4]).
For a subvariety V ⊆ Pm we denote by h2(V ) the normalized height of V

defined in terms of the Chow form of the ideal of V , as done in [33, Section 2,
page 346]. This height extends the height h2 defined for points by formula (2.3)
(see [20, page 6] and [5, equation (3.1.6)]).

If V is defined as an irreducible component of the zero set in Pm of
homogeneous polynomials f1, . . . , fr , then by the result at [33, page 347
and Proposition 4] and standard estimates, one can prove that

h(V ) 6
r∑

i=1

hW ( fi)
∏
j 6=i

deg( f j)+ c deg( f1) · · · deg( fr )

where hW ( fi) is the Weil height of the vector of coefficients of fi , considered as a
projective point and c is an explicit constant, which can be taken as c = 4m log m.

The degree of an irreducible variety V ⊆ Pm is the maximal cardinality of a
finite intersection V ∩ L , with L a linear subspace of dimension equal to the
codimension of V .

The degree is often conveniently computed as an intersection product; we show
here how to do it for a curve C ⊆ PN

2 .
Let L be the class of a line in the Picard group of P2 and let πi : PN

2 → P2 be
the projection on the i th component. Set `i = π

∗

i (L). The `i ’s have codimension
1 in PN

2 and they generate its Chow ring, which is isomorphic as a ring to Z[`1,

. . . , `N ]/(`
3
1, . . . , `

3
N ).

The pullback through the Segre embedding of a hyperplane of P3N−1 is given by
`1+· · ·+`N as can be seen directly from the equation of a coordinate hyperplane
in P3N−1. The degree of C is therefore given by the intersection product C.(`1 +

· · · + `N ) in the Chow ring of PN
2 .
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The explicit Mordell Conjecture for families of curves 13

Assume now that Ci := πi(C) is a curve for all i ; by definition, deg Ci =

deg(Ci .L).
We see that

πi∗(C.`i) = πi∗(C.π∗i (L)) = πi∗(C).L = diCi .L

where di is the degree of the map C → Ci given by the restriction of πi to
C, and the equality in the middle is given by the projection formula (see [18,
Example 8.1.7]). Taking the degrees we have

deg(C.`i) = deg(πi∗(C.`i)) = di deg Ci

so that

deg C = deg(C.(`1 + · · · + `N )) = deg(C.`1)+ · · · + deg(C.`N )

= d1 deg C1 + · · · + dN deg CN .

If in particular the curve C is contained in E N , then all the Ci ’s are equal to E
and have degree 3.

Notice that this formula remains true if for some of the i’s the restriction of πi

to C is constant, provided that we take 0 as the degree of a constant map.
We recall now two classical results on heights that will be important in the

proof of our theorems. The first is an explicit version of the Arithmetic Bézout
Theorem, as proved in [33, Théorème 3]:

THEOREM 2.1 (Arithmetic Bézout theorem). Let X and Y be irreducible
subvarieties of Pm defined over the algebraic numbers. If Z1, . . . , Zg are the
irreducible components of X ∩ Y , then

g∑
i=1

h2(Z i)6 deg(X)h2(Y )+deg(Y )h2(X)+C0(dim X, dim Y,m) deg(X) deg(Y )

where

C0(d1, d2,m) =
( d1∑

i=0

d2∑
j=0

1
2(i + j + 1)

)
+

(
m −

d1 + d2

2

)
log 2.

The second result is Zhang’s inequality. In order to state it, we define the
essential minimum µ2(X) of an irreducible algebraic subvariety X ⊆ Pm as

µ2(X) = inf{θ ∈ R | The set {P ∈ X | h2(P) 6 θ} is Zariski dense in X}.

The following is a special case of [49, Theorem 5.2]:
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THEOREM 2.2 (Zhang’s inequality). Let X ⊆ Pm be an irreducible subvariety.
Then

µ2(X) 6
h2(X)
deg X

6 (1+ dim X)µ2(X). (2.6)

We also define a different essential minimum for subvarieties of E N , relative to
the height function ĥ:

µ̂(X) = inf{θ ∈ R | The set {P ∈ X | ĥ(P) 6 θ} is Zariski dense in X}.

Using the definitions and a simple limit argument, one sees that Zhang’s inequality
holds also with µ̂, namely

µ̂(X) 6
h(X)
deg X

6 (1+ dim X)µ̂(X). (2.7)

2.2. Algebraic Subgroups of EN . We recall that the uniformization theorem
implies that E(C) is isomorphic, as complex Lie group, to C/Λ for a lattice
Λ ⊂ C unique up to homothety. The N th power of this isomorphism gives
the analytic uniformization CN/ΛN ∼

→ E N (C) of E N (see for instance [38,
Section VI, Theorem 5.1 and Corollary 5.1.1]). Through the exponential map
from the tangent space of E N at the origin to E N , the Lie algebra of an abelian
subvariety of E N is identified with a complex vector subspace W ⊂ CN for which
W∩ΛN is a lattice of full rank in W . The orthogonal complement B⊥ of an abelian
subvariety B ⊂ E N is the abelian subvariety with Lie algebra corresponding to
the orthogonal complement of the Lie algebra of B with respect to the canonical
Hermitian structure of CN (see for instance [2, 8.2.27 and 8.9.8] for more details).

We end this section by recalling how the essential minimum µ̂ and the
canonical height ĥ behave with respect to orthogonality in E N . This is an easy
consequence of the main result of [34].

LEMMA 2.3. Let H be a connected algebraic subgroup of E N and let H⊥ be its
orthogonal complement. Then:

(1) if P1 ∈ H and P2 ∈ H⊥ then ĥ(P1 + P2) = ĥ(P1)+ ĥ(P2);

(2) if V ⊆ H is an irreducible subvariety of E N and Q ∈ H⊥ then µ̂(V +Q) =
µ̂(V )+ ĥ(Q).

Proof. By [34] H and H⊥ are orthogonal with respect to the Néron–Tate pairing,
proving immediately part (1). To prove part (2), notice that
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The explicit Mordell Conjecture for families of curves 15

µ̂(V + Q)
= inf{θ ∈ R | The set {P ′ + Q ∈ V + Q | P ′ ∈ V, ĥ(P ′ + Q) 6 θ}

is Zariski dense in V + Q}
= inf{θ ∈ R | The set {P ′ ∈ V | ĥ(P ′) 6 θ − ĥ(Q)}

is Zariski dense in V } = µ̂(V )+ ĥ(Q).

3. Basic estimates for heights

This is a self-contained technical section in which we give several explicit
estimates on heights, used later. The readers who wish to skip these technical
results may refer to the following table for the definition of the relevant constants.
The notation was introduced in Section 2.

Summary of Constants. For ease of reference, we collect here the definition of
the constants c1, . . . , c7 that will intervene in our computations. Some of these
quantities have a sharper expression when the curve E is defined over Q and we
deal with rational points.

Table 1. Table of constants.

For E/Q and P ∈ E(Q) For E/Q and P ∈ E(Q)

c1(E)

hW (∆)+ h∞( j)
4

+
hW ( j)

8

+
hW (A)+ hW (B)

2
+ 3.724

min
(

log |∆| + h∞( j)
4

+
hW ( j)

8
+

log(|A| + |B| + 3)
2

+ 2.919, 3hW (E)+ 4.709
)

c2(E)

hW (∆)+ h∞( j)
4

+
hW (A)+ hW (B)

2
+ 4.015

min
(

log |∆| + h∞( j)
4

+
log(|A| + |B| + 3)

2
+ 3.21,

3hW (E)
2

+ 2.427
)

c3(E)
hW (∆)

12
+

h∞( j)
12
+ 1.07

c4(E)
hW ( j)

24
+

hW (∆)

12
+

h∞( j)
12
+ 0.973

c5(E) c1(E) 3hW (E)+ 6 log 2

c6(E)
hW (A)+ hW (B)+ log 5

2
log(3+ |A| + |B|)

2

c7(E)
hW (A)+ hW (B)+ log 3

2
log(1+ |A| + |B|)

2

All the above constants are computed below. More precisely, the constants
c1(E) and c2(E), first appearing in Theorem 1.2, are computed in Proposition 3.2,
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S. Checcoli, F. Veneziano and E. Viada 16

by combining bounds of Silverman and Zimmer. The constants c3(E) and c4(E)
come from formula (3.2) proved in [40, Theorem 1.1]. Moreover c5(E) is given
in Zimmer’s bound [50, page 40] recalled in (3.3). We remark that, more recently,
algorithms by Cremona et al. [12] and by Bruin [6] have been given to bound
the difference in (3.2). These algorithms give better bounds in many numerical
examples, but they do not provide explicit general formulae for the bounds in
terms of the coefficients of a Weierstrass equation for the elliptic curve E , as done
in [40, 50]. Moreover, in the available implementations of [12], the Weierstrass
model for E is required to be minimal. Therefore we cannot use these bounds for
our general theorem.

Finally the constants c6(E) and c7(E) are computed in Lemma 3.1.
We now give the details for determining these constants.
If P is a point in Pm , from the definition of hW and h2, we have

hW (P) 6 h2(P) 6 hW (P)+ log(m + 1)/2. (3.1)

If P ∈ E , then, from [40, Theorem 1.1], we have

−c4(E) 6
ĥ(P)

3
−

hW (x(P))
2

6 c3(E) (3.2)

where

c3(E) =
hW (∆)

12
+

h∞( j)
12
+ 1.07

and

c4(E) =
hW ( j)

24
+

hW (∆)

12
+

h∞( j)
12
+ 0.973

(notice that the Néron–Tate height used by Silverman in [40] is one third of our ĥ,
as defined in [32]).

If E is defined over Q and P ∈ E(Q), Zimmer [50, page 40], proved that:

−
3hW(E)

2
−

7
2

log 2 6 hW (P)− ĥ(P) 6 3hW(E)+ 6 log 2. (3.3)

We remark that Silverman’s bound is better than Zimmer’s one for elliptic
curves with big coefficients. Nevertheless we included here Zimmer’s estimates
because they are sharper in some of our examples.

In the following lemma we compare h2 and hW for points in E .

LEMMA 3.1. For every point P ∈ E we have

|h2(P)− 3
2 hW (x(P))| 6 c6(E),
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The explicit Mordell Conjecture for families of curves 17

|h2(P)− hW (y(P))| 6 c6(E),

|hW (y(P))− 3
2 hW (x(P))| 6 c7(E)

where

c6(E) =
hW (A)+ hW (B)+ log 5

2

and

c7(E) =
hW (A)+ hW (B)+ log 3

2
.

If moreover E is defined over Q we may take the sharper values

c6(E) =
log(|A| + |B| + 3)

2

and

c7(E) =
log(|A| + |B| + 1)

2
.

Proof. We write both hW and h2 in terms of local contributions and bound each
of them. Let P = (x, y) ∈ E and let k be a number field of definition for P and
E . Let us first compare h2(P) and hW (x(P)).

For every place v of k, we set λv = [kv : Qv]/[k : Q].
By the definitions of hW and h2, if v is a non-Archimedean place, then the

contribution to the difference h2(P)− 3
2 hW (x(P)) coming from v is

λv(log max(1, |x |v, |y|v)− 3
2 log max(1, |x |v)).

We see that if |x |v 6 1 then |y|v 6 1 as well, because A and B are algebraic
integers, and this contribution is 0. If instead |x |v > 1, then |y|2v = |x

3
+ Ax +

B|v = |x |3v thanks to the ultrametric inequality, and the contribution is again 0.
If v is an Archimedean place, then the contribution coming from v is

λv

(
1
2

log(1+ |x |2v + |y|
2
v)−

3
2

log max(1, |x |v)
)

=
λv

2
(log(1+ |x |2v + |x

3
+ Ax + B|v)− 3 log max(1, |x |v)).

If |x |v 6 1 this quantity is at most (λv/2) log(3 + |A|v + |B|v). If |x |v > 1 we
write
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λv

2
(log(1+ |x |2v + |x

3
+ Ax + B|v)− 3 log |x |v)

=
λv

2

(
log
(

1
|x |3v
+

1
|x |v
+

∣∣∣∣1+ A
x2
+

B
x3

∣∣∣∣
v

))
,

which is again at most (λv/2) log(3 + |A|v + |B|v). If E is defined over Q, then
the sum of all λv, for v ranging in the Archimedean places, is 1 (as the sum of the
local degrees is the global degree) and we get the bound in the statement. If this
is not the case, then we check that

log(3+ a + b) 6 log 5+max(0, log a)+max(0, log b) ∀a, b > 0

so that the quantity |h2(P)− 3
2 hW (x(P))| is bounded by

∑
v Archimedean

λv
max(0, log |A|v)+max(0, log |B|v)+ log 5

2

=
hW (A)+ hW (B)+ log 5

2
.

Let us now compare h2(P) and hW (y(P)). Just as in the case discussed
above, the non-Archimedean absolute values give no contribution. Let v be an
Archimedean absolute value. The quantity to bound is

λv(
1
2 log(1+ |x |2v + |y|

2
v)− log max(1, |y|v)).

We consider two cases:
If |x |2v 6 1+ |A|v + |B|v then one easily checks that

1
2 log(1+ |x |2v + |y|

2
v)− log max(1, |y|v) 6 1

2 log(3+ |A|v + |B|v)

for all values of |y|v.
If |x |2v > 1+ |A|v + |B|v then

|y|2v > |x |
2
v|x |v − |Ax |v − |B|v > |x |v + |B|v|x |v − |B|v > |x |v > 1

and therefore the quantity to bound is

λv

2
log
(

1+
|x |2v + 1

|x3 + Ax + B|v

)
.

To see that
|x |2v + 1 6 (2+ |A|v + |B|v) · |x3

+ Ax + B|v
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The explicit Mordell Conjecture for families of curves 19

we write

(2+ |A|v + |B|v) · |x3
+ Ax + B|v

> (2+ |A|v + |B|v)|x |3v − (2+ |A|v + |B|v)(|Ax |v + |B|v)
> |x |3v + (1+ |A|v + |B|v)

2
|x |v − (2+ |A|v + |B|v)(|Ax |v + |B|v)

> |x |2v + 1.

The bound in the statement now follows as in the first case. The bound between
hW (x(P)) and hW (y(P)) is proved analogously.

The following proposition combines in a single statement the bounds by
Silverman and Zimmer that we recalled before and Lemma 3.1. It gives a bound
between ĥ and h2 for a point in E N . This estimate is used in the proof of our main
theorem.

PROPOSITION 3.2. Let P ∈ E N . Then

−Nc2(E) 6 h2(P)− ĥ(P) 6 Nc1(E),

where

c1(E) =
hW (∆)+ h∞( j)

4
+

hW ( j)
8
+

hW (A)+ hW (B)
2

+ 3.724,

c2(E) =
hW (∆)+ h∞( j)

4
+

hW (A)+ hW (B)
2

+ 4.015.

Moreover, if E is defined over Q and P ∈ E(Q) one can take

c1(E) = min
(

log |∆| + h∞( j)
4

+
hW ( j)

8
+

log(|A| + |B| + 3)
2

+ 2.919, 3hW(E)+ 4.709
)
,

c2(E) = min
(

log |∆| + h∞( j)
4

+
log(|A| + |B| + 3)

2

+ 3.21,
3hW(E)

2
+ 2.427

)
.

Proof. The general bounds are obtained by (3.2) combined with Lemma 3.1.
When E is defined over Q and the point P ∈ E(Q), they can be sharpened
by taking the minimum between the bounds obtained combining (3.2) with
Lemma 3.1 and the ones obtained combining (3.3) with (3.1).
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Using Proposition 3.2 we immediately deduce the following relation between
the two essential minima µ2(X) and µ̂(X) introduced in Section 2, for any
irreducible subvariety X of E N . We have

−Nc2(E) 6 µ2(X)− µ̂(X) 6 Nc1(E) (3.4)

where the constants are defined in Proposition 3.2.
Finally, using (3.4), (2.6) and (2.7) we get:

h2(X)
1+ dim X

− Nc1(E) deg X 6 h(X) 6 (1+ dim X)(h2(X)+ Nc2(E) deg X).

(3.5)

4. Main results and consequences

In this section we prove a sharper version of Theorem 1.2. The proof relies on
a geometrical induction on the dimension N of the ambient variety. We split the
statement and the proof in two parts: the base of the induction given by N = 2 is
Theorem 4.2, and we postpone its proof to Section 5; the inductive step given for
N > 3 is Theorem 4.3. Finally we give some more general formulations of our
main theorem and additional remarks.

It is evident that our Theorem 1.2 in the Introduction is a direct consequence
of Theorems 4.2 and 4.3, where the bounds in Theorem 1.2 are less sharp.
This sharper version and the finer constants for points overs Q are used in the
applications to keep the bounds for the height of the rational points on a curve as
small as possible.

In our context, we characterize arithmetically points by their rank (see
Definition 1.1), while geometrically we characterize a curve by its transversality
property.

DEFINITION 4.1. A curve C in an abelian variety A is transverse (respectively
weak-transverse) if it is irreducible and it is not contained in any translate
(respectively in any torsion variety).

Here by translate (respectively torsion variety) we mean a finite union of
translates of proper algebraic subgroups of A by points (respectively by torsion
points).

We remark that curves of genus 1 are translates of an elliptic curve and that,
in an abelian variety A of dimension 2, a curve has genus at least 2 if and only
if it is transverse. Thus, for C in E2 assuming transversality is equivalent to the
assumption that the genus is at least 2. Then it is equivalent to state the following
theorem for transverse curves.
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The explicit Mordell Conjecture for families of curves 21

THEOREM 4.2 (Base of the reduction). Let E be an elliptic curve without CM.
Let C be an irreducible curve in E2 of genus > 2. Then every point P on C of
rank 6 1 has height bounded as:

ĥ(P) 6 C1 · h2(C) deg C + C2(E)(deg C)2 + C3(E)

where

C1 = 72.251
C2(E) = C1(6.019+ 4c1(E))
C3(E) = 4c2(E),

and the constants c1(E) and c2(E) are defined in Table 1.

The proof of this theorem is the content of the following Section 5.
We now show how to use Theorem 4.2 to prove the following sharper version

of our main Theorem 1.2 for N > 3. The central idea is to argue by induction and
project C from E N to En for n < N in such a way that the projection is transverse
and its height and degree are well controlled. In order to obtain better bounds, we
study different cases according to the geometric conditions satisfied by C.

THEOREM 4.3 (Reduction step). Let E be an elliptic curve without CM. Let N >
3 be an integer. If C is an irreducible curve of genus at least 2 embedded in E N ,
then every point P of rank at most one in C has Néron–Tate height bounded as

ĥ(P) 6 2 · 3N−2 N !C1h2(C)(deg C)2 + 3N−2 N !
2

C2(E)(deg C)3

+ 3N−2(N − 2)!h2(C)

+ deg C(3N−2(N − 2)!)
(

N (N − 1)
(

C3(E)
2
+ c1(E)

)
+ C0(N )

)
+ Nc2(E).

If C is weak-transverse we get

ĥ(P) 6 4(N − 1)C1h2(C) deg C + (N − 1)C2(E)(deg C)2 + N 2C3(E).

If furthermore C is transverse, then

ĥ(P) 6 NC1h2(C) deg C + N
2

C2(E)(deg C)2 + N
2

C3(E).

Here

C0(N ) = (3N
− 3/2) log 2+

N−1∑
i=1

1
i
−

1
2N
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C1 = 72.251
C2(E) = C1(6.019+ 4c1(E))
C3(E) = 4c2(E),

and the constants c1(E) and c2(E) are defined in Table 1.

Proof. If P has rank 0 then it is a torsion point and its height is trivial. So we
assume that P has rank one.

We first suppose that C is also transverse in E N . Let π : E N
→ E2 be the

projection on any two coordinates. Since C is transverse in E N , then π(C) is a
transverse curve in E2.

By [27, Lemma 2.1] we have that degπ(C)6 deg C. Clearly h2(π(P))6 h2(P)
for every point P in E N , therefore µ2(π(C)) 6 µ2(C). By Theorem 2.2 with
π(C) ⊆ E2 embedded in P8 as in formula (2.4), we have that

h2(π(C)) 6 2µ2(π(C)) degπ(C) 6 2µ2(C) deg C 6 2h2(C).

Let now P = (P1, . . . , PN ) ∈ C be a point of rank one. Up to a reordering of
the factors of E N we may assume that ĥ(P1) > ĥ(P2) > · · · > ĥ(PN ) and let π
be the projection on the first two coordinates. Then

ĥ(P) 6 ĥ(P1)+ (N − 1)ĥ(P2) 6
N
2

ĥ(π(P)). (4.1)

We apply Theorem 4.2 to bound the height of π(P) on π(C) in E2, obtaining

ĥ(π(P)) 6 C1 · h2(π(C)) degπ(C)+ C2(E)(degπ(C))2 + C3(E)

6 2C1 · h2(C) deg C + C2(E)(deg C)2 + C3(E).

Substituting this estimate in formula (4.1) we get the wished bound for C
transverse.

Suppose now that C is weak-transverse, but it is not transverse. If the set of
points of C of rank one is empty nothing has to be proven. We show that if it is
not empty, then we can reduce to the case of a transverse curve in E N−1.

Since C is not transverse, but weak-transverse, it is contained in a proper
nontorsion translate of minimal dimension H + Q, where H is a proper abelian
subvariety of E N and Q is a point in the orthogonal complement H⊥ of H , defined
in Section 2.2.

We now prove that dim H⊥ = 1. Let P be a point of C of rank one. Since Q is
the component of P in H⊥, we deduce that Q has rank at most one. But Q cannot
be torsion, so it has rank one and dim H⊥ = 1.
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Up to a reordering of the coordinates of P = (P1, . . . , PN ), we can assume that
ĥ(P1) > ĥ(Pi) for all i = 1, . . . , N . We denote by πi : E N

→ E N−1 the natural
projection which omits the i th coordinate.

Assume first that there exists an index i 6= 1 such that the restriction of πi

to H is surjective. In this case πi(C) is a transverse curve in E N−1. We easily
see that µ2(πi(C)) 6 µ2(C); by [27, Lemma 2.1] degπi(C) 6 deg C; by Zhang’s
inequality h2(πi(C)) 6 2h2(C).

So if N = 3 we apply Theorem 4.2 and if N > 3 we apply the first part of the
proof to πi(C) transverse in E N−1 obtaining

ĥ(πi(P)) 6 (N − 1)C1 · h2(πi(C)) degπi(C)+
N − 1

2
C2(E)(degπi(C))2

+
N − 1

2
C3(E)

6 2(N − 1)C1 · h2(C) deg C + N − 1
2

C2(E)(deg C)2 + N − 1
2

C3(E).

Moreover, the height of P is easily bounded as ĥ(P) 6 2ĥ(πi(P)), because the
first coordinate has maximal height for P and it is in the projection as i 6= 1. This
gives the desired bound for C weak-transverse.

We are left with the case where the restriction of πi to H is not surjective for all
i 6= 1. Then H ⊇ kerπi for all i 6= 1 and by counting dimensions H = {O}×E N−1.
Therefore Q is, up to a torsion point, the first component P1 of the point P and

ĥ(P) 6 Nĥ(P1) = Nĥ(Q). (4.2)

By Lemma 2.3 we obtain ĥ(Q) = µ̂(C) − µ̂(C − Q) 6 µ̂(C) 6 h(C)/ deg C.
Substituting this in (4.2) and using (3.5) we have

ĥ(P) 6 N
h(C)
deg C 6 2N

(
h2(C)
deg C + Nc2(E)

)
,

where c2(E) is defined in Table 1. This concludes the weak-transverse case as this
bound is smaller then the one in the statement.

We finally treat the case of C of genus at least 2, but not weak-transverse.
Then C is contained in a translate H + Q of minimal dimension with Q ∈ H⊥,

where this time there are no conditions on the rank of Q. We first notice that the
translate H + Q is unique. Indeed, suppose that H ′+ Q ′ is another such translate
and let P ∈ C be a point. Then H + P = H + Q and H ′ + P = H ′ + Q ′, thus
C ⊆ (H ∩ H ′) + P . The hypothesis on the minimality of the dimension implies
then H + Q = H ′ + Q ′.

We also notice that C − Q is transverse in H and the dimension of H is at least
2 otherwise C = H + Q would have genus 1. Consider the natural projections
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π : E N
→ Edim H that omit some d = N − dim H coordinates. For a question of

dimensions, at least one projection π is surjective when restricted to H . Thus the
image π(C) is transverse in Edim H . Moreover, like in the previous cases, we have
degπ(C) 6 deg C and h2(π(C)) 6 2h2(C). We can then apply the first part of the
proof to π(C) transverse in Edim H to get

ĥ(π(P)) 6 2(N − d)C1h2(C) deg C + N − d
2

C2(E)(deg C)2 + N − d
2

C3(E).
(4.3)

To bound h2(P) we first remark that P is a component of C ∩ (kerπ + π(P)),
otherwise C − Q ⊆ kerπ + π(P) ∩ H ( H would not be transverse in H .
We then use the Arithmetic Bézout Theorem for C ∩ (kerπ + π(P)), where we
bound h2(kerπ+π(P)) using Zhang’s inequality, equation (3.4) and the fact that
µ̂(kerπ + π(P)) = ĥ(π(P)) by Lemma 2.3. All of this gives

h2(P) 6 (1+ d)(deg kerπ)ĥ(π(P)) deg C + (deg kerπ)h2(C)
+ ((1+ d)Nc1(E)+ C0(1, d, 3N

− 1))(deg kerπ) deg C, (4.4)

where

C0(1, d, 3N
− 1) =

d+2∑
i=1

1
i
−

d + 3
2(d + 2)

+

(
3N
−

d + 3
2

)
log 2

is the constant appearing in the Arithmetic Bézout Theorem 2.1 by choosing d1 =

1, d2 = d and m = 3N
− 1.

Clearly d 6 N − 2 and deg kerπ = 3dd! 6 3N−2(N − 2)!, so setting

C0(N ) = (3N
− 3/2) log 2+

N−1∑
i=1

1
i
−

1
2N

we have
C0(1, d, 3N

− 1) 6 C0(N )

and

h2(P) 6 3N−2(N − 1)!ĥ(π(P)) deg C + 3N−2(N − 2)!h2(C)
+ 3N−2(N − 2)!(N (N − 1)c1(E)+ C0(N )) deg C. (4.5)

Finally, substituting (4.3) into (4.5) and using Proposition 3.2 to compare ĥ(P)
and h2(P), we get the bound in the statement.

Clearly, if E and C are defined over k and E(k) has rank one then the set C(k)
of k-rational points of C is a subset of the set of points on C of rank one, thus of
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height bounded as above. We now show how a similar strategy applies to curves
transverse in an abelian variety with a factor E2. The bounds are explicit when an
embedding of the abelian variety in some projective space is given, even though
this happens rarely for abelian varieties of higher dimension.

PROPOSITION 4.4. Let E be an elliptic curve and A an abelian variety, both
defined over a number field k; let E be embedded in P2 through equation (2.1)
and let us fix an embedding of A in some projective space.

(a) Assume that E is without CM. Let C be a curve transverse in E2
× A. Then

every point P in C of rank at most one has:

h2(P) 6 h2(A)(1+ dim A) deg C + deg A(h2(C)+ C0 deg C)
+ (1+ dim A) deg A
× ((C3(E)+ 2c1(E)) deg C + 2C1(E)h2(C)(deg C)2

+C2(E)(deg C)3).

(b) Assume that E(k) has rank zero. Let C be a curve over k weak-transverse in
E × A. Then for every point P ∈ C(k) we have:

h2(P) 6 (1+ dim A)(2c1(E) deg A + h2(A)) deg C + deg Ah2(C)
+C0 deg A deg C.

(c) Assume that E is without CM and that E(k) has rank one. Let C be a curve
over k transverse in E2

× A. Then for every point P ∈ C(k) we have:

h2(P) 6 h2(A)(1+ dim A) deg C + deg A(h2(C)+ C0 deg C)
+ (1+ dim A) deg A
× ((C3(E)+ 2c1(E)) deg C + 2C1(E)h2(C)(deg C)2

+C2(E)(deg C)3).

Here the constants C1,C2(E),C3(E) are defined in Theorem 1.2, C0 in
Theorem 2.1 and c1(E) in Table 1.

Proof. Part (c) is an immediate corollary of part (a).
To prove parts (a) and (b), we use Theorem 4.2 and the same strategy as in the

proof of Theorem 4.3.
Let P be a point in C of rank one in case (a), respectively, a k-rational point in

case (b), and let π : E2
× A→ E2 be the natural projection on E2 for the case (a)

and let π : E × A→ E be the natural projection on E for the case (b).
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The point P is a component of C intersected with A′ = {π(P)}× A, in case (a)
because the curve C is transverse, in case (b) because C is weak-transverse and
π(P) is a torsion point. By the Arithmetic Bézout Theorem we deduce

h2(P) 6 h2(A′) deg C + h2(C) deg A′ + C0 deg C deg A′ (4.6)

where the constant C0 is explicitly given in Theorem 2.1.
Clearly deg A′ = deg A, so we are left to bound h2(A′).
Using Zhang’s inequality we get

h2(A′) 6 (1+ dim A) deg Aµ2(A′) = (1+ dim A) deg A(h2(π(P))+ µ2(A)).
(4.7)

Moreover µ2(A) 6 h2(A)/ deg A and h2(π(P)) 6 ĥ(π(P)) + 2c1(E) by
Proposition 3.2. Thus

h2(A′) 6 (1+ dim A)(deg A(ĥ(π(P))+ 2c1(E))+ h2(A)). (4.8)

In case (b), π(P) is a torsion point, so ĥ(π(P)) = 0 and we directly deduce the
bound.

To bound ĥ(π(P)) in case (a), we apply Theorem 4.2 to the curve π(C)
transverse in E2 and we use that degπ(C) 6 deg C by [27, Lemma 2.1] and
µ2(π(C)) 6 µ2(C) by the definition of essential minimum and thus h2(π(C)) 6
2h2(C) by Zhang’s inequality. We obtain

ĥ(π(P)) 6 2C1 · h2(C) deg C + C2(E)(deg C)2 + C3(E). (4.9)

Combining (4.9), (4.8) and (4.6) we get the bound in part (a).

REMARK 4.5. Using the universal property of the Jacobian one can extend the
above argument to any curve such that the Jacobian has a factor E of rank zero or
E2 with E of rank one.

In addition in Proposition 4.4 case (b), with k = Q, the number of rational
points of C is easily bounded using Mazur’s theorem [28, Theorem 8] and
Bézout’s theorem, giving

#C(Q) 6 16 deg A deg C.

Similarly, a bound for the number of k-rational points can be given using Bézout
Theorem and the bound of Parent [31] for the size of the torsion group in terms
of the degree of k.
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As a final remark in this section we notice that the bounds given in Theorem 4.2
use, among others, the estimates of Proposition 3.2. We give here a more
intrinsic formulation of our result, where the dependence on the height bounds
of Proposition 3.2 is explicitly given.

THEOREM 4.2′. Let E be an elliptic curve without CM. Let C be a transverse
curve in E2. Let d2(E), d1(E) > 0 be two constants such that

−d2(E) 6 h2(Q)− ĥ(Q) 6 d1(E) ∀Q ∈ E(Q). (4.10)

Then for every point P in C of rank at most one, we have:

ĥ(P) 6 D1 · h2(C) deg C + D2(E)(deg C)2 + D3(E)

where

D1 = 72.251
D2(E) = D1(6.019+ 4d2(E))
D3(E) = 4d1(E).

This formulation might help for potential future applications; indeed for
specific elliptic curves one can prove different versions of the bounds in (4.10)
(using, for instance, the algorithms in [12] or [6] instead of the more explicit
bounds in [40]) and possibly improve, in those cases, the bounds in our main
theorem.

5. The proof of the main theorem for N = 2

In this section we first prove the new key estimate at the base of the bound in
Theorem 4.2 and then we show how to conclude its proof.

5.1. Bounds for the degree and the height of a translate. Here we prove
some general bounds for the degree and the height of a proper translate H + P in
E2 in terms of ĥ(P) and of the coefficients of the equation defining the algebraic
subgroup H .

PROPOSITION 5.1. Let P = (P1, P2) be a point in E2, where E is without CM.
Let H be a component of the algebraic subgroup in E2 defined by the equation
αX1+βX2 = O, where O is the neutral element of E and u = (α, β) ∈ Z2

\ {(0,
0)}. Then

deg(H + P) 6 3‖u‖2
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where ‖u‖ denotes the euclidean norm of u,

h(H + P) 6 6ĥ(u(P)),

and
h2(H + P) 6 6ĥ(u(P))+ 12‖u‖2c1(E)

where u(P) = αP1 + βP2 and c1(E) is defined in Table 1.

Proof. A bound for the degree of H + P.
We compute the degree of H+P as explained in Section 2.1. We have H+P ⊆

E2, with E2 embedded in P2
2 via the Weierstrass form of E (see formula (2.4)).

For 1 6 i 6 2, let πi : P2
2 → P2 be the projection on the i th component and let `i

be the pullback via πi of the class of a line in the Picard group of P2. The maps
π1 and π2 have degree, respectively, β2 and α2, thus

deg((H + P).`1) = β
2 deg E = 3β2,

deg((H + P).`2) = α
2 deg E = 3α2.

Therefore computing the degree as intersection product we get

deg(H + P) = 3(α2
+ β2) = 3‖u‖2. (5.1)

A bound for the height of H + P. Let P = (P1, P2) be a point in E2. Let H
be a component of the algebraic subgroup defined by the vector u = (α, β) ∈ Z2.
Let u⊥ = (−β, α). Then u⊥ defines an algebraic subgroup H⊥, and for any point
P ∈ E2 there exist two points P0 ∈ H , P⊥ ∈ H⊥, unique up to torsion points in
H ∩ H⊥, such that P = P0 + P⊥. Let

U =
(
α β

−β α

)
be the 2× 2 matrix with rows u and u⊥.

We remark that u(P0) = 0 because P0 ∈ H , and u⊥(P⊥) = 0 as P⊥ ∈ H⊥.
Therefore

U P⊥ =
(

u(P⊥)
0

)
=

(
u(P0 + P⊥)

0

)
=

(
u(P)

0

)
.

We have that UU t
= U tU = (det U )I2; hence

[det U ]P⊥ = U tU P⊥ = U t

(
u(P)

0

)
.
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Computing canonical heights we have

(det U )2ĥ(P⊥) = ĥ([det U ]P⊥) = ĥ
(

U t

(
u(P)

0

))
= ĥ

((
α −β

β α

)(
u(P)

0

))
= (α2

+ β2)ĥ(u(P)) = (det U )ĥ(u(P)),

and so

ĥ(P⊥) =
ĥ(u(P))

det U
.

By Lemma 2.3 we know that

µ̂(H + P) = ĥ(P⊥)

and therefore, by Zhang’s inequality (2.7)

h(H + P) 6 2(deg H)µ̂(H + P) = 2(deg H)ĥ(P⊥)

= 2
(deg H)

det U
ĥ(u(P)) = 2

(deg H)
‖u‖2

ĥ(u(P)).

Analogously for h2 using (2.6) and (3.4) we obtain

h2(H + P) 6 2(deg H)µ2(H + P) 6 2 deg H(µ̂(H + P)+ 2c1(E))

= 2 deg H
(

ĥ(u(P))
det U

+ 2c1(E)
)
= 2 deg H

(
ĥ(u(P))
‖u‖2

+ 2c1(E)
)
.

By (5.1) we get
deg H 6 3‖u‖2,

which leads to the bounds for h(H + P) and h2(H + P) in the statement.

5.2. Geometry of numbers. In this section we use a classical result from the
Geometry of Numbers to prove a sharp technical lemma that will be used to build
an auxiliary translate so that both its degree and height are small.

LEMMA 5.2. Let L ∈ R[X1, X2] be a linear form and let 1 < κ . If

T >
κ

√
2(κ − 1)1/4

,

then there exists u ∈ Z2
\ {(0, 0)} such that

‖u‖ 6 T

|L(u)| 6
κ‖L‖

T
,
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where ‖u‖ denotes the euclidean norm of u, ‖L‖ the euclidean norm of the vector
of the coefficients of L and |L(u)| is the absolute value of L(u).

Proof. Let ST ⊆ R2 be the set of points (x, y) satisfying the two inequalities√
x2 + y2 6 T
|L(x, y)| 6 κ‖L‖/T .

Geometrically ST is the intersection between a circle of radius T and a strip of
width 2κ/T , as presented in the following figure (the set ST is lightly shaded).

Figure 1. The set ST .

The statement of the theorem is equivalent to ST ∩ Z2
6= {(0, 0)}. By

Minkowski’s Convex Body Theorem if the set ST has an area bigger than 4, then
the intersection ST ∩ Z2 contains points other than the origin.

The area of ST is bigger than four times the area of the dark grey trapezoid in
the picture, which can be easily computed as

κ

2T

(
T +

√
T 2 −

κ2

T 2

)
.

Therefore we need to check that

κ

2T

(
T +

√
T 2 −

κ2

T 2

)
> 1.

This is trivially true for all κ > 2 (notice that κ/
√

2(κ − 1)1/4 >
√
κ). If

1 < κ < 2 an easy computation shows that the inequality holds as soon as
T > κ/

√
2(κ − 1)1/4.
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5.3. The auxiliary subgroup. In Proposition 5.4 we apply our Lemma 5.2 to
construct the auxiliary translate H + P used in the proof of Theorem 4.2.

LEMMA 5.3. Let E be without CM. Let P = (P1, P2) ∈ E2 be a point of rank
one. Then there exists a linear form L ∈ R[X1, X2] with ‖L‖ = 1 and

ĥ(t1 P1 + t2 P2) = |L(t)|2ĥ(P)

for all t = (t1, t2) ∈ Z2.

Proof. Let g be a generator for 〈P1, P2〉Z and let (a, b) ∈ Z2
\ {(0, 0)} and T1,

T2 torsion points such that P1 = [a]g + T1 and P2 = [b]g + T2. Thus ĥ(P) =
ĥ(ag)+ ĥ(bg) = (a2

+ b2)ĥ(g). Consider the linear form

L(X1, X2) =
aX1 + bX2
√

a2 + b2
.

Then for all t = (t1, t2) ∈ Z2 we have:

ĥ(t1 P1 + t2 P2) = ĥ([at1 + bt2]g) = (at1 + bt2)
2ĥ(g)

=
(at1 + bt2)

2

a2 + b2
ĥ(P) = |L(t)|2ĥ(P).

We can now construct the auxiliary translate.

PROPOSITION 5.4. Let E be without CM. Let P ∈ E2 be a point of rank one. Let
1 < κ and T > κ2/2(κ − 1)1/2.

Then there exists an elliptic curve H ⊆ E2 such that

deg(H + P) 6 3T,

h2(H + P) 6
6κ2

T
ĥ(P)+ 12T c1(E)

where c1(E) is defined in Table 1.

Proof. By Lemma 5.3, there exists a linear form L ∈ R[X1, X2] with ‖L‖ = 1
such that ĥ(t1 P1 + t2 P2) = |L(t)|2ĥ(P) for all vectors t = (t1, t2) ∈ Z2.

By Lemma 5.2, applied to L , κ and
√

T , there exists u ∈ Z2 such that ‖u‖ 6√
T and |L(u)| 6 κ‖L‖/

√
T = κ/

√
T .

Consider the subgroup defined by the equation u(X) = O and denote by H the
irreducible component containing O . By Proposition 5.1, we have that

deg(H + P) 6 3‖u‖2
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and
h2(H + P) 6 6ĥ(u(P))+ 12‖u‖2c1(E).

Combining these bounds with the above inequalities, we get that

deg(H + P) 6 3T,

h2(H + P) 6
6κ2

T
ĥ(P)+ 12T c1(E).

5.4. Conclusion of the proof of Theorem 4.2. In this section we conclude the
proof of Theorem 4.2. We shall approximate a point of rank one with a translate
constructed as above. Combining the Arithmetic Bézout Theorem and a good
choice of the parameters we conclude that the height of P is bounded.

Proof of Theorem 4.2. If P has rank zero then its height is zero and the statement
is true.

Let T and κ be real numbers with κ > 1 and
√

T > κ/
√

2(κ − 1)1/4. We apply
Proposition 5.4 to the point P of rank one, thus obtaining an elliptic curve H with

deg(H + P) 6 3T, (5.2)

h2(H + P) 6
6κ2

T
ĥ(P)+ 12T c1(E).

The values of the free parameters T and κ will be chosen later.
We now want to bound ĥ(P) in terms of deg(H + P) and h2(H + P).
Notice that the point P is a component of the intersection C∩(H+ P), because

otherwise C = H + P , contradicting the fact that C has genus > 2. Therefore
we can apply the Arithmetic Bézout Theorem to the intersection C ∩ (H + P),
obtaining:

h2(P) 6 h2(C) deg H + h2(H + P) deg C + C0(1, 1, 8) deg H deg C

where C0(1, 1, 8) = 7
6 (1+ 6 log 2) 6 6.019.

By Proposition 3.2 we have ĥ(P) 6 h2(P) + 2c2(E) so, using the bounds in
formula (5.2), we get

ĥ(P) 6 3T h2(C)+
6κ2

T
ĥ(P) deg C

+ 3T deg C(4c1(E)+ C0(1, 1, 8))+ 2c2(E).

Let now

c8(C) = 6 deg C,
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c9(C, E) = 3h2(C)+ 3 deg C(4c1(E)+ C0(1, 1, 8)),
c10(C, E) = 2c2(E),

so that

ĥ(P) 6 c8
κ2

T
ĥ(P)+ c9T + c10. (5.3)

We set

κ = 1+
1

16c2
8

T = c8κ
2

(
1+

√
1+

c10

c8c9κ2

)
.

Notice that 1 < κ , T > κ2/2
√
κ − 1, so our assumptions on κ and T are

satisfied. Furthermore

2c8κ
2 6 T 6 2c8κ

2
+

c10

2c9
(5.4)

and the coefficient of ĥ(P) on the right hand side of (5.3) is smaller than 1, so
we can bring it to the left hand side and express ĥ(P) in terms of the rest. After
simplification, and using the definition of T , (5.3) becomes

ĥ(P) 6 2c9T + c10 =
c9T 2

c8κ2
.

Using (5.4) this simplifies to

ĥ(P) 6 4c8c9κ
2
+ 2c10. (5.5)

After substituting everything back and noticing that κ 6 1+ 1
576 , the last inequality

(5.5) becomes the bound in the statement of the theorem.

REMARK 5.5. Theorem 4.2′ is proven in an analogous way, replacing
Proposition 3.2 and the constants c1(E), c2(E) with relation (4.10) and the
constants d1(E), d2(E), respectively.

6. Transversality and invariants for a large family of curves in E2

In this section we give a simple criterion to prove the transversality of a curve in
E2. We also show an easy argument to explicitly bound the height and the degree
of a large class of curves.
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LEMMA 6.1. Let C ⊆ E2 be an irreducible curve. Assume that:

(i) C is not of the form {P} × E or E × {P} for some point P ∈ E;

(ii) for every point (P1, P2) ∈ C the point (−P1, P2) also belongs to C.

Then C is transverse.

Proof. By (i), the curve C is not {P}× E , so the natural projection C→ E on the
first coordinate is surjective. Thus C contains at least one point (P1, P2) with P1

not a torsion point in E . By (ii), then C contains also the point (−P1, P2). Observe
that the only nontransverse curves in E2 are translates. So if C were not transverse,
then it would be a translate H+Q of an elliptic curve H by a point Q = (Q1, Q2).
Therefore the difference (P1, P2)− (−P1, P2) = (2P1, 0) would belong to H , and
so would all its multiples. This implies that H = E × {0} and C = E × {Q2},
contradicting (i).

This last lemma is useful to show the transversality of the following curves.

THEOREM 6.2. Let E be defined over a number field k. Let E2 be given as in
(1.1) and let C be the projective closure of the curve in E2 given by the additional
equation

p(x1) = y2,

where p(X) = p0 X n
+ p1 X n−1

+ · · · + pn is a nonconstant polynomial in k[X ]
of degree n having m coefficients different from zero.

Then C is transverse and its degree and normalized height are bounded as

deg C = 6n + 9

and
h2(C) 6 6(2n + 3)(hW (p)+ log m + 2c6(E))

where hW (p) = hW (1 : p0 : . . . : pn) is the height of the polynomial p(X) and
c6(E) is defined in Table 1.

Proof. Clearly the curve C is not of the form E × {P} or {P} × E for some point
P ∈ E . Moreover, as the equation p(x1) = y2 does not involve the coordinate
y1, we have that if (P1, P2) ∈ C, then also (−P1, P2) ∈ C. The transversality of
C then follows from Lemma 6.1, once we have proved that C is irreducible. To
this aim, it is enough to check that the ideal generated by y2

1 − x3
1 − Ax1 − B

and x3
2 − Ax2 + B − p(x1)

2 is a prime ideal in k(x1)[x2, y1]. This follows by
observing that both polynomials are irreducible over k(x1) and involve only one
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of the two unknowns, with coprime exponents. To check the irreducibility of x3
2−

Ax2 + B − p(x1)
2 we observe that a root f (x1) of this polynomial over k(x1)

gives a morphism x1 7→ ( f (x1), p(x1)) from P1 to E which is not constant as
deg p(x) > 1. Such a morphism cannot exist.

The degree of C is computed as an intersection product as explained in
Section 2.1. The preimage in C of a generic point of E through the projection on
the first component consists of three points. The preimage through the projection
on the second component has generically 2n points. Therefore deg C = 3(2n+3).

We now want to estimate the height of C. By Zhang’s inequality we have
h2(C) 6 2 deg Cµ2(C). We compute an upper bound for µ2(C) by constructing
an infinite set of points on C of bounded height. Let Qζ = ((ζ, y1), (x2, y2)) ∈ C,
where ζ ∈ Q is a root of unity. Clearly there exist infinitely many such points on
C. Using the equations of C and classical estimates on the Weil height we have:

hW (ζ ) = 0,
hW (y2) 6 hW (1 : p0 : . . . : pn)+ log m.

By Lemma 3.1 we get:

h2(ζ, y1) 6 c6(E),
h2(x2, y2) 6 hW (1 : p0 : . . . : pn)+ log m + c6(E)

where c6(E) is defined in Table 1. Thus for all points Qζ we have

h2(Qζ ) = h2(x1, y1)+ h2(ζ, y2) 6 hW (1 : p0 : . . . : pn)+ log m + 2c6(E).

By the definition of essential minimum, we deduce

µ2(C) 6 hW (1 : p0 : . . . : pn)+ log m + 2c6(E).

Finally, by Zhang’s inequality (2.6)

h2(C) 6 2 deg Cµ2(C) 6 6(2n + 3)(hW (1 : p0 : . . . : pn)+ log m + 2c6(E))

as wished.

We now apply Theorem 4.2 in order to prove an effective Mordell theorem
for the large family of curves defined above. The following theorem is a sharper
version of Theorem 1.3 in the Introduction. If P is a rational point on one of
our curves, we also give bounds for the integers a, b such that P = ([a]g, [b]g),
where g generates E(k). These bounds are used in the algorithm in Section 9 to
list all the rational points and their shape explains why a g with large height is
advantageous for us.
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THEOREM 6.3. Assume that E is without CM, defined over a number field k and
that E(k) has rank one. Let C be the projective closure of the curve given in E2

by the additional equation
p(x1) = y2,

with p(X) ∈ k[X ] a nonconstant polynomial of degree n having m nonzero
coefficients.

Then C is irreducible and for P ∈ C(k) we have

ĥ(P) 6 1300.518(2n+ 3)2(hW (p)+ log m+ 2c6(E)+ 3.01+ 2c1(E))+ 4c2(E)

where hW (p) = hW (1 : p0 : . . . : pn) is the height of the polynomial p(X) and
the constants c6(E), c1(E) and c2(E) are defined in Table 1.

Writing P = ([a]g, [b]g) where a and b are integers and g is a generator of
E(k) we have that

max(|a|, |b|) 6
(

ĥ(P)

ĥ(g)

)1/2

.

Proof. Let P ∈ C(k). In view of Theorem 6.2, C is transverse in E2, thus
irreducible. We can apply Theorem 4.2 to C in E2 and use the bounds for deg C
and h2(C) computed in Theorem 6.2 to obtain the desired upper bound for ĥ(P).
The bound on |a| and |b| follows from the equality (a2

+ b2)ĥ(g) = ĥ(P).

7. Estimates for the family Cn

In the following two sections we study two special families of curves. The
rough idea is to cut a transverse curve in E2 with an equation with few small
integral coefficients and choosing E without CM defined by a Weierstrass
equation with small integral coefficients and with E(Q) of rank one. A generator
of large height can help in the implementation, but it does not play any role in the
height bounds. Such a choice of the curve keeps the bound for the height of its
rational points very small, so small that we can implement a computer search and
list them all.

In this section we investigate the family {Cn}n of curves given in Definition 1.4,
that is cut in E2 by the additional equation xn

1 = y2.
As a direct application of Theorem 6.2 with p(x1) := xn

1 we have:

COROLLARY 7.1. For every n > 1, the curve Cn is transverse in E2 and its degree
and normalized height are bounded as

deg Cn = 6n + 9,
h2(Cn) 6 6(2n + 3) log(3+ |A| + |B|).
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Even if it is not necessary for the results of this paper, it is interesting to remark
that the genus of the curves in the family {Cn}n is unbounded for generic rational
integers A and B, as shown by the following lemma.

LEMMA 7.2. Suppose that the coefficients A and B of the elliptic curve E are
rational integers such that −3A and −3∆ are not squares, where ∆ is the
discriminant of E, and B(2A3

+ B2)(3A3
+ 8B2) 6= 0. Then the curve Cn of

Definition 1.4 has genus 4n + 2.

Proof. Consider the morphism πn : Cn → P1 given by the function y2. The
morphism πn has degree 6n, because for a generic value of y2 there are three
possible values for x2, n values for x1, and two values of y1 for each x1 in Q.

Let α1, α2, α3 be the three distinct roots of the polynomial f (T )= T 3
+AT+B;

let also β1, β2, β3, β4 be the roots of the polynomial g(T ) = 27T 4
− 54BT 2

+

4A3
+27B2, which are the values such that f (T )−β2

i has multiple roots. If−3A
and −3∆ are not squares then the polynomial g(T ) is irreducible over Q [23,
Theorem 2]; in particular, the βi are all distinct.

The βi have degree 4 over Q, and therefore they cannot be equal to any of the αn
j ,

which have degree at most 3. Also for all n > 1 the three αn
j are distinct, otherwise

the ratio αi/α j would be a root of 1 inside the splitting field of a polynomial of
degree 3, which is easily discarded (if the ratio is 1, then ∆ = 0, if the ratio is
−1 then B = 0, if the ratio is i then 2A3

+ B2
= 0, if the ratio is a primitive

third root of unity, then A = 0, if the ratio is a primitive sixth root of unity, then
3A3
+ 8B2

= 0).
The morphism πn is ramified over β1, β2, β3, β4, 0, αn

1 , α
n
2 , α

n
3 ,∞. Each of the

points βi has 2n preimages of index 2 and 2n unramified preimages. The point 0
has 6 preimages ramified of index n. The points αn

i have 3 preimages ramified of
index 2 and 6n − 6 unramified preimages. The point at infinity is totally ramified.

By Hurwitz formula

2− 2g(Cn) = degπn(2− 2g(P1))−
∑
P∈Cn

(eP − 1)

2− 2g(Cn) = 12n − (4 · 2n + 6(n − 1)+ 3 · 3+ 6n − 1)
g(Cn) = 4n + 2.

We remark that the five curves E1, . . . , E5 satisfy the hypotheses of Lemma 7.2.
We now prove an effective Mordell theorem for the family {Cn}n ⊆ E2.
The bound for the canonical height of a point P ∈ Cn(k) is a simple corollary of

Theorem 6.3 while, for this specific family, we sharpen the bounds for the integers
a, b such that P = ([a]g, [b]g), where g generates E(k). This improvement
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speeds up the computer search. We use here some technical height bounds proved
in Section 3.

THEOREM 7.3. Let E be an elliptic curve defined over a number field k, without
CM and such that E(k) has rank one. Let {Cn}n be the family of curves of
Definition 1.4. For every n > 1 and every point P ∈ Cn(k) we have

ĥ(P) 6 1300.518(2c6(E)+ 3.01+ 2c1(E))(2n + 3)2 + 4c2(E).

Writing P = ([a]g, [b]g) where a and b integers and g is a generator of E(k),
we have that

|a| 6
(

3ĥ(P)+ 3c5(E)+ 6nc3(E)

(2n + 3)ĥ(g)

)1/2

and

|b| 6
(

2nĥ(P)+ 6nc4(E)+ 9c3(E)+ 3c7(E)

(2n + 3)ĥ(g)

)1/2

.

Here the constants c1(E), . . . , c7(E) are defined in Table 1.

Proof. From Theorem 6.3 applied to p(x1) := xn
1 we have

ĥ(P) 6 1300.518(2c6(E)+ 3.01+ 2c1(E))(2n + 3)2 + 4c2(E).

By the definition of ĥ on E2 (see formula (2.5)) and the standard properties of the
Néron–Tate height, we have

ĥ(P) = ĥ([a]g)+ ĥ([b]g) = (a2
+ b2)ĥ(g),

and
(x([a]g))n = y([b]g) (7.1)

because P is on the curve with equation xn
1 = y2.

Combining the bounds (7.1) with (3.2), (3.1) (respectively (3.3) if k = Q) and
Proposition 3.2, proved in Section 3, we get

2
3 na2ĥ(g) 6 nhW (x([a]g))+ 2nc3(E) = hW (y([b]g))+ 2nc3(E)

6 hW ([b]g)+ 2nc3(E)

6 h2([b]g)+ 2nc3(E) 6 ĥ([b]g)+ c5(E)+ 2nc3(E)

= b2ĥ(g)+ c5(E)+ 2nc3(E)
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where c5(E) = c1(E) in general, while if k = Q one can take c5(E) = 3hW(E)+
6 log 2. Therefore

2n + 3
3

a2ĥ(g) 6 ĥ(P)+ c5(E)+ 2nc3(E),

which gives the bound in the statement.
Using (3.2) and Lemma 3.1, proved in Section 3, we get

b2ĥ(g) 6
3
2

hW (x([b]g))+ 3c3(E) 6 hW (y([b]g))+ c7(E)+ 3c3(E)

= nhW (x([a]g))+ c7(E)+ 3c3(E)

6
2na2

3
ĥ(g)+ 2nc4(E)+ c7(E)+ 3c3(E)

where c7(E) = (hW (A)+ hW (B)+ log 3)/2 and, if k = Q one can take c7(E) =
log(1+ |A| + |B|)/2. Therefore

2n + 3
3

b2ĥ(g) 6
2n
3

ĥ(P)+ 2nc4(E)+ c7(E)+ 3c3(E)

which gives the desired bound.

We remark that the bound for |a| in Theorem 7.3 grows like
√

n (while the one
for |b| grows like n).

8. Estimates for the family Dn

We can do similar computations for the family Dn of Definition 1.4. Thanks
to the arithmetic properties of the cyclotomic polynomials we can prove a better
bound for h2(Dn) than the one that follows directly from Theorem 6.2.

PROPOSITION 8.1. For every n > 2, the curve Dn is transverse in E2 and its
degree and normalized height are bounded as

degDn = 6ϕ(n)+ 9,

h2(Dn) 6 6(2ϕ(n)+ 3)(2ω2(n) log 2+ 2c6(E)),

where ϕ(n) is the Euler function, ω2(n) is the number of distinct odd prime factors
of n, and c6(E) is defined in Table 1.

Proof. Transversality and the bound for the degree follow directly from
Theorem 6.2.
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Now we follow the same strategy as in the proof of Theorem 6.2 and we
construct an infinite set of points on Dn of bounded height, getting an upper bound
for µ2(Dn).

Let Qζ = ((ζ, y1), (x2, y2)) ∈ Dn , where ζ ∈ Q is a root of unity. Clearly there
exist infinitely many such points on Dn .

We claim that for every root of unity ζ and for every n > 1 we have:

hW (Φ(ζ )) 6 2ω2(n) log 2,

where ω2(n) is the number of distinct odd prime factors of n. To show this, we
first show that we can assume n to be square-free.

Let r be the product of the distinct prime divisors of n. Then we have that
Φn(x) = Φr (xn/r ) and if ζ is a root of 1 so is ζ n/r .

We can also assume n to be odd, because if n = 2d with d odd, then Φn(x) =
Φd(−x).

Now we write
Φn(x) =

∏
d|n

(xd
− 1)µ(n/d),

where µ(n) is the Möbius function, and we observe that when n is odd and square-
free then there are exactly 2ω2(n) factors in the product, and that hW (ζ

d
−1)6 log 2

for all ζ and d .
Using the equations of Dn we have:

hW (y2) 6 2ω2(n) log 2.

Thus by Lemma 3.1

h2(ζ, y1) 6 c6(E), h(x2, y2) 6 2ω2(n) log 2+ c6(E)

and, using (3.1), for all points Qζ we have

h2(Qζ ) = h2(x1, y1)+ h2(ζ, y2) 6 2ω2(n) log 2+ 2c6(E).

By the definition of essential minimum, we deduce

µ2(Dn) 6 2ω2(n) log 2+ 2c6(E).

and by Zhang’s inequality h2(Dn) 6 2 degDnµ2(Dn) which gives the bounds in
the statement.

To give an idea of the growth of the bounds above in terms of n when n tends to
+∞, we recall that n/(log log n)� ϕ(n)� n and that ω2(n) has a normal value
of log log n.

Now a direct application of Theorem 4.2 gives the following:
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COROLLARY 8.2. Let E be an elliptic curve without CM such that E(k) has rank
one. Let {Dn}n be the family of curves of Definition 1.4. For every n > 2 and every
point P ∈ Dn(k) we have

ĥ(P) 6 1300.518(2ω2(n) log 2+ 2c6(E)+ 3.01+ 2c1(E))(2ϕ(n)+ 3)2 + 4c2(E)

where the constants c1(E), c2(E) and c6(E) are defined in Table 1. Writing P =
([a]g, [b]g) where a and b are integers and g is a generator of E(k) we have that

max(|a|, |b|) 6
(

ĥ(P)

ĥ(g)

)1/2

.

Proof. The bound on ĥ(P) is a direct application of Theorem 4.2 and the bound
on a and b follows from Theorem 6.3.

9. Rational points on explicit curves

In this section we prove Theorem 1.5 from the Introduction, which gives all the
rational points of several curves. The strategy here is to build many examples by
keeping fixed the equation

xn
1 = y2

or
Φn(x1) = y2

in P2×P2 and taking many different elliptic curves E in order to define the curves
Cn and Dn in E2; see Definition 1.4. We also recall that for i = 1, 2, 3, 4, 5 we
defined:

E1 : y2
= x3

+ x − 1

E2 : y2
= x3

− 26811x − 7320618

E3 : y2
= x3

− 675243x − 213578586

E4 : y2
= x3

− 110038419x + 12067837188462

E5 : y2
= x3

− 2581990371x − 50433763600098.

For these elliptic curves the discriminant and the j-invariant are the following:

∆(E1) = −496, j (E1) =
6912

31
, (9.1)

∆(E2) = −21918062700048384, j (E2) = −
979146657
10069019

,

subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.20
Downloaded from https://www.cambridge.org/core. Sistema Bibliotecario - Universita degli Studi di Genova, on 05 Feb 2020 at 14:17:58,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.20
https://www.cambridge.org/core


S. Checcoli, F. Veneziano and E. Viada 42

∆(E3) = −1765662163329024, j (E3) = −
15641881075729

811134
,

∆(E4) = −62828050697723854898526892032,

j (E4) = −
2507136440062325499
1068992890181390681

,

∆(E5) = 2830613675881894730558078976,

j (E5) =
874525671242290400569417

1300365970941935616
.

We recall that all CM elliptic curves have an integral j-invariant; this shows that
the curves Ei are without CM for i = 1, . . . , 5.

Using databases of elliptic curve data such as [11] or [1], we checked that for
every i 6= 2, Ei has no torsion points defined over Q and that Ei(Q) has rank one.
We also found in the tables an explicit generator gi for Ei(Q) and we computed
ĥ(gi) using the function ellheight of PARI/GP [43] (notice that the canonical
height of PARI/GP is two thirds of ours). A generator for the curve E2, which has
a conductor too big to appear in Cremona’s tables, was given in [41, Example 3].
Collecting these informations we have that the generators of Ei(Q) are:

g1 = (1, 1),

g2 =

(
290083549425751

23921262225
,

4940195839487330160124
3699782022029625

)
,

g3 =

(
930273

484
,−

796052583
10648

)
,

g4 =

(
3228005993902971489

128791448271424
,

7316042869129182048724448529
1461606751179427091968

)
,

g5 =

(
−9750023890880795040300239250862047101114

335283704622805743122062106485469025
,

47202993140158532858227353349489655613892905428267026719866
194141629146024723477365694402532030141467059091092625

)
,

where

ĥ(g1) > 0.377, ĥ(g2) > 47.888, ĥ(g3) > 17.649, (9.2)
ĥ(g4) > 60.674, ĥ(g5) > 136.823.

We can now state our bounds for the five families of curves {Cn}n in E2
i .

THEOREM 9.1. Let P ∈ Cn(Q) ⊆ E2 where E is one of the curves Ei for i = 1,
. . . , 5. We write P in terms of the generator gi as P = ([a]gi , [b]gi). Then:
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(1) If E = E1 we have

ĥ(P) 6 73027 · n2
+ 219081 · n + 164320,

|a| 6
(

581115 · n2
+ 1743376 · n + 1307618

2n + 3

)1/2

,

|b| 6
(

387410 · n3
+ 1162229 · n2

+ 871760 · n + 54
2n + 3

)1/2

.

(2) If E = E2 we have

ĥ(P) 6 311345 · n2
+ 934033 · n + 700566,

|a| 6
(

19505 · n2
+ 58515 · n + 43889

2n + 3

)1/2

,

|b| 6
(

13004 · n3
+ 39010 · n2

+ 29260 · n + 2
2n + 3

)1/2

.

(3) If E = E3 we have

ĥ(P) 6 373925 · n2
+ 1121775 · n + 841382,

|a| 6
(

63561 · n2
+ 190683 · n + 143021

2n + 3

)1/2

,

|b| 6
(

42374 · n3
+ 127121 · n2

+ 95349 · n + 5
2n + 3

)1/2

.

(4) If E = E4 we have

ĥ(P) 6 534732 · n2
+ 1604195 · n + 1203216,

|a| 6
(

26440 · n2
+ 79320 · n + 59494

2n + 3

)1/2

,

|b| 6
(

17627 · n3
+ 52880 · n2

+ 39663 · n + 2
2n + 3

)1/2

.

(5) If E = E5 we have

ĥ(P) 6 566995 · n2
+ 1700984 · n + 1275813,

|a| 6
(

12433 · n2
+ 37297 · n + 27974

2n + 3

)1/2

,

|b| 6
(

8289 · n3
+ 24865 · n2

+ 18650 · n + 1
2n + 3

)1/2

.
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Proof. The proof is an application of Theorem 7.3. First, we need to compute all
the invariants intervening in the bounds. Notice that deg Cn , h2(Cn) are bounded
in Corollary 7.1, while ∆(Ei) and j (Ei) are bounded in (9.1) and a lower bound
for ĥ(gi) is given in (9.2).

We are left to estimate hW(Ei) = hW (1 : A1/2
i : B1/3

i ) as defined in (2.2). We
obtain:

hW(E1) = 0, hW(E2) 6 5.269, hW(E3) 6 6.712,
hW(E4) 6 10.041, hW(E5) 6 10.836.

In addition, by Table 1 we get:

c1(E1) 6 4.709, c2(E1) 6 2.423, c3(E1) 6 2.037, c4(E1) 6 2.31,
c1(E2) 6 20.515, c2(E2) 6 10.33, c3(E2) 6 4.587, c4(E2) 6 5.353,
c1(E3) 6 24.843, c2(E3) 6 12.494, c3(E3) 6 5.394, c4(E3) 6 6.563,
c1(E4) 6 34.83, c2(E4) 6 17.487, c3(E4) 6 6.667, c4(E4) 6 8.336,
c1(E5) 6 37.216, c2(E5) 6 18.68, c3(E5) 6 7.456, c4(E5) 6 9.656,

and

c5(E1) 6 4.159, c6(E1) 6 0.805, c7(E1) 6 0.55,
c5(E2) 6 9.428, c6(E2) 6 7.905, c7(E2) 6 7.904,
c5(E3) 6 10.871, c6(E3) 6 9.592, c7(E3) 6 9.592,
c5(E4) 6 14.2, c6(E4) 6 15.061, c7(E4) 6 15.061,
c5(E5) 6 14.995, c6(E5) 6 15.776, c7(E5) 6 15.776.

We can now replace all the above values in the formulae of Theorem 7.3 and
obtain the bounds in our statement.

We have an analogous result for the five families of curves Dn in E2
i , which we

write for simplicity for the subfamilies consisting of all elements for which the
index n is a prime.

THEOREM 9.2. Let P ∈ Dn(Q) ⊆ E2 where E is one of the curves Ei for i = 1,
. . . , 5. We write P in terms of the generator gi as P = ([a]gi , [b]gi). Assume that
n is a prime number. Then:

(1) If E = E1 we have

ĥ(P) 6 80239n2
+ 80239n + 20070,

max(|a|, |b|) 6
√

212834n2 + 212834n + 53235.
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(2) If E = E2 we have

ĥ(P) 6 318556n2
+ 318556n + 79681,

max(|a|, |b|) 6
√

6653n2 + 6653n + 1664.

(3) If E = E3 we have

ĥ(P) 6 381137n2
+ 381137n + 95335,

max(|a|, |b|) 6
√

21596n2 + 21596n + 5401.

(4) If E = E4 we have

ĥ(P) 6 541943n2
+ 541943n + 135556,

max(|a|, |b|) 6
√

8933n2 + 8933n + 2235.

(5) If E = E5 we have

ĥ(P) 6 574207n2
+ 574207n + 143627,

max(|a|, |b|) 6
√

4197n2 + 4197n + 1050.

Proof. These bounds are a direct application of Corollary 8.2. The relevant
numerical constants are already listed in the proof of Theorem 9.1.

With these sharp estimates we are ready to implement the computer search up
to the computed bounds for the rational points on our curves, and so to prove
Theorem 1.5.

To perform the computer search, we used the PARI/GP [43] computer algebra
system, an open source program freely available at http://pari.math.u-bordeaux.fr

We first tried to implement a naive algorithm that performs the multiples of the
points gi on the elliptic curve using PARI’s implementation of the exact arithmetic
of the elliptic curve over the rationals. This has proved far too time-consuming and
was only done for n = 1.

Then we used a more efficient algorithm pointed out by Joseph H. Silverman.
The idea is to identify the elliptic curve E with a quotient C/Λ and see the
multiplication by a on E as induced by the multiplication by a in C. This
algorithm is quite fast and capable of performing the computations up to about
n = 50.

The algorithm that we used in our final computation is due to K. Belabas and
uses a sieving technique. It is very general and it can be applied to any of the
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curves of Theorem 6.3 when k = Q, although we performed the computations
only for curves belonging to the families Cn and Dn .

The idea is that, in order to test which of a finite but very big number of points
actually lie on the curve, we test when this happens modulo many big primes.

We are very thankful to K. Belabas for providing us the sieving algorithm
presented in the following proof.

Proof of Theorem 1.5. Theorem 1.5 is now a consequence of Theorems 9.1
and 9.2 and an extensive computer search.

For each of the curves Ei and for each n, Theorem 9.1 gives us upper bounds
for the integers a, b such that ([a]gi , [b]gi) ∈ Cn , therefore we only need to check
which of finitely many points lie on the curve Cn (respectively Dn).

Even though, as remarked in the Introduction, the computations for large n are
superseded by the results in Section A.4 of the appendix, we think it is worthwhile,
for future applications, to give some details on how they were performed. In
particular, we present here the PARI code used to implement Belabas’ algorithm
in the general case for curves C as in Theorem 6.3, cut in E2 by the additional
equation p(x1) = y2, with p(X) a polynomial in Z[X ]. The algorithm can
possibly be adapted to curves of different shapes.

We fix the polynomial p(X), called Pol(X) in the code, of degree n and we
start by initializing the following variables

A,B,Ba,g,ntest

where A and B are the coefficients of the Weierstrass model of E , Ba is the ceiling
of the bound on |a| obtained for the chosen polynomial p(X), g is the generator of
E(Q) and ntest is a parameter used to decide when to stop the sieving process.

Then we define the following program, that we indent here for readability

0 E = ellinit([A,B]);
1 D=abs(E.disc);
2 Sievea() =
3 {
4 p = nextprime(Ba);
5 L = [1..Ba];
6 cnt = 1;
7 while(1,
8 if(D%p==0,next);
9 if(denominator(g[1])%p==0,next);
10 oldnL = #L;
11 ag = [0];
12 Ep = ellinit(E, p);
13 Lp = List([]);
14 for (a = 1, Ba,
15 ag = elladd(Ep, ag, g);
16 if (#ag == 1, listput(Lp, a); next);
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17 x = ag[1];
18 xp = Mod(x,p);
19 if(polrootsmod(’Xˆ3 + A*’X + B - Pol(xp)ˆ2, p), listput(Lp, a)) ;
20 );
21 listsort(Lp);
22 L = setintersect(L, Vec(Lp));
23 if (#L == oldnL, cnt++, cnt = 0);
24 if (#L == 0 || cnt > ntest, break);
25 p = nextprime(p+1);
26 );
27 printf("L=%s\n",L);
28 }

The core of the algorithm is the while loop in line 7. This loop iterates over the
prime p, which is initialized in line 4 to a value bigger than Ba. At each iteration
the algorithm takes the list L, which initially contains all positive values of a up
to the bound Ba, and checks for which of these values there exists a point ([a]g,
[b]g) on the curve Cn reduced modulo p. This check is done in the for loop at
line 14. The a that correspond to points modulo p are stored in the list Lp and the
values of a that do not correspond to a point are removed from the list L at line
22. The algorithm then changes the prime number p to the next one, and the loop
starts again. The check at lines 8 and 9 ensures that the primes of bad reduction for
the curve E and those that divide the denominator of the generator are discarded.
The algorithm keeps sieving through the list L until either the list becomes empty,
which proves that there are no rational points, or ntest iterations pass without
any value of a being discarded. When this happens the program outputs these
values of a, which are candidate solutions and need to be investigated further.

In our explicit examples we found that setting ntest to 25 was enough, and
no candidate solution was ever found other than those arising from rational points
on E1 × E1.

The variable Ba, and hence the length of the list L in line 5, is directly
proportional to the square root of the height of the coefficients of the Weierstrass
model of E and inversely proportional to the square root of the height of the
generator of E(Q), which explains the speed improvement when the generator
has a big height compared to the coefficients.

We remark that with a simple modification this algorithm can be made
deterministic by stopping the iteration in a suitably chosen way depending on
the degree and the coefficients of the curve. However this increases, in general,
the running time compared to a good heuristic choice of the parameter ntest.

When adapting the algorithm to other examples, if for a certain choice of
ntest the above algorithm returns a list of possible values, one can either
increase ntest or directly check the values with the floating point algorithm.
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We finally notice that for our method it is not necessary to know a priori a
generator g of E(Q). Indeed we can argue as follows. Theorem 6.3 gives the
bound ĥ(P) 6 D for any rational point on C. Thus we only need to search for a
generator g of E(Q) such that ĥ(g) 6 ĥ(P), otherwise C(Q) is trivially empty. To
this purpose, one can use a suitable search algorithm for generators of height at
most D on elliptic curves of rank one, as described in [41]. For instance with
Silverman’s Canonical Height Search Algorithm finding a generator of E(Q)
takes about O(

√
NE + D), where NE is the conductor of E . This is also one

of the few algorithms that can deal with curves of high conductor.
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Appendix A.

M. STOLL1

As mentioned in the Introduction, the approach taken in the main paper applies
in basically the same setting as Demjanenko’s method. The first goal of this
appendix is to provide a comparison between the two approaches, first in general
terms, and then more concretely for a family of curves of genus 2 to which
Demjanenko’s approach can be applied quite easily.

In the main paper, the bound obtained is used to find explicitly the set of rational
points on certain curves Cn(E) and Dn(E) sitting in E × E for certain elliptic
curves E , where the parameter n ranges up to an upper bound depending on E .
The second goal of this appendix is to complete the analysis of these examples
by determining the set of rational points on the curves Cn(E) and Dn(E) (for
the five curves E considered there) for all n. The additional ingredient we use
1 Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany. Michael.Stoll@
uni-bayreuth.de. WWW: http://www.computeralgebra.uni-bayreuth.de.
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is an analysis of the `-adic behaviour of points on the curves close to the origin.
This analysis leads to a fast-growing lower bound for the height of a point (P1,

P2) ∈ C(Q) that is not the origin (O, O) and is also not a pair of integral points
on E . Since this lower bound grows faster than the upper bound, this implies that
all rational points on C distinct from (O, O) must be pairs of integral points as
soon as n is large enough. Since the number of integral points on E is finite, this
result shows that Cn(E)(Q) and Dn(E)(Q) are contained in a fixed finite set for all
sufficiently large n. It is then an easy matter to determine which of these finitely
many points are on which of the curves. This approach can be used more generally
when the curve C is given by an equation of the form F1(x1, y1) = F2(x2, y2) with
polynomials F1, F2 such that the degrees of F1(x, y) and F2(x, y), considered
as rational functions on E , differ. If the ratio of the degrees is sufficiently large
compared to the height and degree of C, then all rational points on C distinct
from (O, O) must be pairs of S-integral points on E (for an explicit finite set S
of primes), of which there are only finitely many.

A.1. Comparison with Demjanenko’s method. The setting of Demjanenko’s
method is a curve C, which we take to be defined over Q, that allows N
independent morphisms φ j : C → E , j = 1, 2, . . . , N , to a fixed elliptic curve E
also defined over Q. ‘Independent’ here means that no nontrivial integral linear
combination of the φ j is constant. This is equivalent to saying that the image of C
in E N under the product of the φ j is transverse, and so this setting is essentially
the same as considering a transverse curve in E N as is done in the main paper.

We now paraphrase Demjanenko’s method [13] in the case N = 2 as applied
in [19, 24, 25]. The description below is close to Silverman’s in [39]. Consider a
curve C (of genus > 2) over Q with two independent morphisms φ1, φ2 : C → E
to an elliptic curve E defined over Q. The independence of the morphisms implies
that the quadratic form

Z2
3 (α1, α2) 7−→ deg(α1φ1 + α2φ2)

is positive definite. Fix a height h on C, which is scaled so that ĥ(φ j(P)) =
(degφ j + o(1))h(P) for P ∈ C(Q) as h(P)→ ∞. Then there are constants c j ,
depending on C, φ1, φ2 and h, but not on P , such that for all P ∈ C(Q) with
h(P) > 1 (see [22, Theorem B.5.9])

|(degφ1)h(P)− ĥ(φ1(P))| 6 c1

√
h(P),

|(degφ2)h(P)− ĥ(φ2(P))| 6 c2

√
h(P),

|(deg(φ1 + φ2))h(P)− ĥ(φ1(P)+ φ2(P))| 6 c3

√
h(P).
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We write 〈P1, P2〉 =
1
2 (ĥ(P1 + P2) − ĥ(P1) − ĥ(P2)) for the height pairing and

similarly 〈φ1, φ2〉 =
1
2 (deg(φ1 + φ2)− degφ1 − degφ2). Then we deduce that

|〈φ1, φ2〉h(P)− 〈φ1(P), φ2(P)〉| 6 c4

√
h(P)

with c4 =
1
2 (c1 + c2 + c3). This gives that

deg(α1φ2+α2φ2)h(P)−ĥ(α1φ1(P)+α2φ2(P))6 (α2
1c1+2|α1α2|c4+α

2
2c2)

√
h(P)

and so (still for h(P) > 1)

h(P) 6
ĥ(α1φ1(P)+ α2φ2(P))

deg(α1φ2 + α2φ2)
+ γ (α1, α2)

√
h(P), (A.1)

where

γ (α1, α2) =
α2

1c1 + 2|α1α2|c4 + α
2
2c2

α2
1(degφ1)+ 2α1α2〈φ1, φ2〉 + α

2
2(degφ2)

.

Since the denominator is positive definite, there is a uniform upper bound, for
example

γ (α1, α2) 6 γ :=
2 max{c1, c2} + c3/2

λ
,

where λ is the smaller eigenvalue of the matrix (〈φi , φ j 〉)16i, j62.
Now let P ∈ C(Q) be such that φ1(P) and φ2(P) generate a subgroup of rank 1

in E . Then there are α1, α2 ∈ Z, not both zero, such that α1φ1(P)+α2φ2(P) = O .
Then from (A.1) we obtain the bound h(P) 6 max{1, γ 2

}. In particular, if C, E
and the morphisms are defined over some number field K and E(K ) has rank 1,
then h(P) 6 max{1, γ 2

} for all K -rational points P on C. (For this application it
is sufficient to use bounds c j that are only valid for K -rational points.)

We get a better bound when (writing φ3 = φ1 + φ2) suitable positive multiples
of the pulled-back divisors φ∗j (O) are linearly equivalent, for j = 1, 2, 3. We can
then take the height h so that

(degφ j)h(P) = 3hφ∗j (O)(P)+ O(1) = 3hO(φ j(P))+ O(1) = ĥ(φ j(P))+ O(1),

where hD denotes a height associated to the divisor D, compare [22,
Theorem B.3.2]. Then everything we did above is valid when replacing

√
h(P)

by 1 throughout; in particular, the final bound is then just h(P) 6 max{1, γ }.
One situation where this applies is when C is hyperelliptic. In this case, after

translation by a constant point in E , any morphism φ : C → E descends to a
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morphism φ̃ : P1
→ P1 on x-coordinates, so that we have a commutative diagram

C
πC

��

φ // E

πE

��
P1 φ̃ // P1

where πC and πE are the x-coordinate morphisms. Then

2φ∗(O) = φ∗(2O) = φ∗π∗E(∞) = π
∗

Cφ̃
∗(∞) ∼ (degφ)π∗C(∞)

and so 2φ∗(O) is linearly equivalent to a multiple of π∗C(∞) for every φ.
We can expect c j to be of the order of (degφ j)h(C) (with φ3 = φ1 + φ2) with

some notion of height for C. The resulting height bound will then have order of
magnitude h(C) in the special case just discussed (the contribution of the degrees
will cancel, since the degrees also occur in the denominator of γ (α1, α2)). This
will usually be better than the bound obtained in the main paper; see for example
the comparison in Section A.2. In the general case, we obtain a bound that has
order of magnitude h(C)2; this is to be compared with deg(C)(h(C)+ deg(C)) for
the bound obtained in the main paper (which likely has a larger constant in front).

If one starts with a concrete curve C with two morphisms to E , then it will
usually not be very hard to find the constants needed to get a bound as derived
in this section, in particular when C is hyperelliptic. On the other hand, starting
from a curve C given as a subvariety of E × E by some equation, one first has
to fix a suitable height on C. It appears natural to take the height used previously,
namely ĥ(P1) + ĥ(P2), suitably scaled, which means that we divide by the sum
of the degrees of the two morphisms to E . We then have to bound

(degφ2)ĥ(P1)− (degφ1)ĥ(P2)

and (say) (deg(φ1 + φ2))ĥ(P1)− (degφ1)ĥ(P1 + P2)

to obtain the necessary constants. This may be not so easy in general. So in this
situation, the method of Checcoli, Veneziano and Viada produces a bound that
is easy to compute, but is likely to be larger than what we would obtain from
Demjanenko’s method. One possible source for the comparative weakness of the
bound is that the Arithmetic Bézout Theorem bounds the sum of the heights of all
points in the fibre of α1φ1 + α2φ2 : C → E that contains P , and this sum (with
potentially many terms) is used to bound a single summand.

A.2. An application to curves of genus 2. We illustrate the comparison
between the two approaches by considering a family of curves of genus 2 whose
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members have two independent morphisms to the same elliptic curve. This is
a setting where Demjanenko’s method can be applied fairly easily (this has
been done in [25]) and with constant height difference bounds, which gives
Demjanenko’s approach a considerable advantage.

A curve of genus 2 over Q is given by an affine equation

C : y2
= f6x6

+ f5x5
+ · · · + f1x + f0

with f0, . . . , f6 ∈ Z and such that the right hand side has degree at least 5 and
has no multiple roots. Assume that C has two morphisms φ1, φ2 to the same
elliptic curve E . The simplest case is when both φ1 and φ2 have degree 2. If C is a
double cover of E , then C has an ‘extra involution’ σ , which is an automorphism
of order 2 that is not the hyperelliptic involution ι. One can check that in this
situation σ has two fixed points with the same x-coordinate, and the same is
true for σ ι. (The other possibility would be that σ and σ ι have the same two
Weierstrass points as fixed points, but this would force σ to be of order 4.) These
two x-coordinates are then rational (we assume that C → E and hence σ is
defined over Q), and so we can assume that they are 0 and∞; then σ is given by
(x, y) 7→ (−x, y) and σ ι is (x, y) 7→ (−x,−y). The equation of C then has the
form

y2
= ax6

+ bx4
+ cx2

+ d

and the quotient elliptic curve C/〈σ 〉 is E1 : y2
= x3
+ bx2

+ acx + a2d , whereas
the quotient C/〈σ ι〉 is E2 : y2

= x3
+ cx2

+ dbx + d2a. In the simplest situation,
E2 = E1, so b = c and a = d . (In general, E2 can be isomorphic to E1 without
being equal to it.) So we now consider the curve

C : y2
= ax6

+ bx4
+ bx2

+ a,

where a, b ∈ Z. We assume that a 6= 0,−b, b/3 to ensure that C has genus 2. A
Weierstrass equation for E = E1 = E2 is

y2
= x3

+ bx2
+ abx + a3.

To apply the results of the main paper, we transform this into the short Weierstrass
equation

E : y2
= x3

+ 27b(3a − b)x + 27(27a3
− 9ab2

+ 2b3).

(We remark that this increases the height of the equation defining E , which leads
to a final bound that is worse than what could be obtained by working with the
‘long’ equation directly.) We can then embed C ↪→ E × E via

(x, y) 7−→ ((9ax2
+ 3b, 27ay), (9ax−2

+ 3b, 27ax−3 y)).
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Its image is the projective closure of the affine curve given inside E × E by

(x1 − 3b)(x2 − 3b) = 81a2.

The image C ′ of C under the composition of morphisms

C ↪→ E × E ⊆ P2
× P2 Segre

−→ P8

has degree 12.
We need a bound on the height h2(C ′). Setting ξ j = (x j − 3b)/(9a), we

have ξ1ξ2 = 1. Taking ξ1 = ζ and ξ2 = ζ−1, where ζ is a root of unity,
we get x1 = 9aζ + 3b, x2 = 9aζ−1

+ 3b, and y1, y2 are square roots of
(27a)2(aζ±3

+ bζ±2
+ bζ±1

+ a). Using that a and b are rational integers,
which implies that the contributions to the height coming from non-Archimedean
places vanish, and the triangle inequality to bound the contributions from the
Archimedean places shows that there are infinitely many points P = (P1, P2)

defined over Q on the image of C in E × E such that

h2(P) = h2(P1)+ h2(P2) 6 log(1456a2(|a| + |b|)+ (9|a| + 3|b|)2 + 1).

So by Zhang’s inequality, we find that

h2(C ′) 6 24 log(1456a2(|a|+|b|)+ (9|a|+3|b|)2+1) 6 24 log 3057+72 log m,
(A.2)

where m = max{|a|, |b|}.

COROLLARY A.1. Let C : y2
= ax6

+ bx4
+ bx2

+ a with a, b ∈ Z, a 6= 0,−b,
b/3, and let E be as above. Assume that E(Q) has rank 1, and let P0 ∈ E(Q)
generate the free part of E(Q). For a point P ∈ C(Q), write φ1(P) = n1 P0 + T1,
φ2(P) = n2 P0 + T2 with n1, n2 ∈ Z and T1, T2 ∈ E(Q)tors. Then

min{|n1|, |n2|} 6

√
433.506h2(C ′)+ 31311.3+ 20808.3c1(E)+ 2c2(E)

ĥ(P0)

6

√
358956.08+ 93638.80 log m

ĥ(P0)
,

where m = max{|a|, |b|}.

Proof. From Theorem 4.2 and deg(C ′) = 12, we obtain the bound

ĥ(P)= ĥ(φ1(P))+ĥ(φ2(P))6 72.251(12h2(C ′)+144(6.019+4c1(E)))+4c2(E)
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for points P ∈ C(Q), where c1(E), c2(E) are as in Table 1. Since hW(E) 6
1
2 log 108+ log m, we have

c1(E) 6 11.733+ 3 log m and c2(E) 6 5.939+ 3
2 log m,

which using (A.2) gives

ĥ(P) 6 717912.16+ 187277.60 log m.

Also, ĥ(P) = (n2
1 + n2

2)ĥ(P0), so min{|n1|, |n2|} 6
√

ĥ(P)/(2ĥ(P0)), which

together with the bound for ĥ(P) gives the statement.

The bound in the theorem was chosen to be in a simple form. In concrete cases,
one will use the more precise bound in terms of a and b in (A.2) and also better
bounds on c1(E) and c2(E).

We compare this with the bound obtained in [25]. There curves with a = 1 are
studied, where b (denoted t in [25]) can be rational. Then (if E(Q) has rank 1)
they show that for all P ∈ C(Q)

hW (x(P)) 6 7
2 h(b)+ 1

2 log 81468 6 7
2 h(b)+ 5.654.

Since the x-coordinates of the images of P on E are given by 9x(P)±2
+ 3b, this

translates into

min{|n1|, |n2|} 6

√
12h(b)+ 22.946+ 3c3(E)

ĥ(P0)
. (A.3)

This is considerably smaller than the bound given in Corollary A.1.

EXAMPLE A.2. For a concrete example, consider the curve with a = b = 1:

C : y2
= x6

+ x4
+ x2
+ 1.

Then E is the curve 128a1 in the Cremona database [11] (and [1, 128.a2]), and
E(Q) ∼= Z/2Z × Z. We have ĥ(P0) > 0.6485. The bound in the theorem above
(using the bound for h2(C ′) in (A.2) and the bounds for c1(E) and c2(E) from
Table 1) gives

min{|n1|, |n2|} 6 728.

For comparison, the bound in (A.3) gives

min{|n1|, |n2|} 6 7.
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From this, it is easy to find the set of rational points on C:

C(Q) = {∞+,∞−, (−1,±2), (0,±1), (1,±2)}.

For an example with a larger b, consider b = 1003 (this is the smallest b > 1000
such that E(Q) has rank 1). Corollary A.1 gives a bound of 354 for the minimum
of |n1| and |n2|, whereas (A.3) gives a bound of 4.

The fairly large discrepancy (roughly a factor 100 for the bound on n1 and n2

and a factor 104 for the bound on the height) between the bounds obtained by
the method of the main paper and by Demjanenko’s method suggests that it
might be possible to obtain better bounds from the approach taken by Checcoli,
Veneziano and Viada than given in Theorem 4.2. In any case, the comparison in
this specific case is perhaps a bit unfair, since the setting is rather advantageous
for an application of Demjanenko’s method.

A.3. A lower bound for nonintegral points. Let E be an elliptic curve over Q
of rank 1 given by a Weierstrass equation with integral coefficients. In this section,
we consider a curve C ⊆ E × E that is given by an affine equation of the form

F1(x1, y1) = F2(x2, y2)

(where (x1, y1) are the affine coordinates on the first and (x2, y2) on the second
factor E) with polynomials F1, F2 ∈ Z[x, y]. Using the equation of E , we can
assume that F j(x, y) = f j(x)+g j(x)y with univariate polynomials f j , g j ∈ Z[x].
Note that F j is a rational function on E whose only pole is at the origin O and
that d j := deg F j = max{2 deg f j , 3+ 2 deg g j }. The leading coefficient of F j is
the coefficient of the term of largest degree present in F j . We also require in the
following that d1 is strictly greater than d2. Our goal in this section is to obtain a
lower bound on the height of a point P ∈ C(Q).

Let ` be a prime number. For our purposes the kernel of reduction K`(E) of E
at ` is the subgroup of E(Q`) consisting of points reducing mod ` to the origin
on the model of E defined by the given equation. (This may differ from the more
usual notion, which refers to a minimal model of E , when E has bad reduction
at `.) We write v` for the (additive) `-adic valuation on Q`, normalized so that
v`(`) = 1.

We let t := x/y be the standard uniformizer of E at O . Then if a point P ∈
E(Q`) is in the kernel of reduction, we have v`(t (P)) > 0, and standard properties
of formal groups imply when ` is odd or when ` = 2 and E is given by an integral
Weierstrass equation without ‘mixed terms’ y or xy that

v`(t (n P)) = v`(t (P))+ v`(n). (A.4)
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Let S be a finite set of primes containing the primes dividing the leading
coefficients of F1 and F2 and also the prime 2 if the equation defining E contains
mixed terms. Then for a prime ` /∈ S and a point P ∈ E(Q`), we have that

P ∈ K`(E) ⇐⇒ v`(F j(P)) < 0, (A.5)

and in this case we have the relation

v`(F j(P)) = −d jv`(t (P)). (A.6)

We denote the ring of S-integers by ZS .

THEOREM A.3. Consider E, C and S as above (with d1 > d2). Set

λ = ĥ(P0)min{a2
``

2dd1/d2e−2
: ` /∈ S},

where P0 is a generator of the free part of E(Q) and a` is the smallest positive
integer such that a`P0 ∈ K`(E)+ E(Q)tors. Then

C(Q) ⊆ {(O, O)} ∪ (E(ZS)× E(ZS)) ∪ {P ∈ E(Q)× E(Q) : ĥ(P) > λ}.

Proof. Assume P = (P1, P2) ∈ C(Q), but P 6= (O, O) and P /∈ E(ZS)× E(ZS).
Since O is the only pole of F1 and F2, we have P1 = O ⇐⇒ P2 = O , but this
case is excluded. By assumption, one of P1 and P2 is not S-integral. If P1 is not S-
integral, then there is a prime ` /∈ S such that P1 ∈ K`(E). By (A.5), this implies
that P2 ∈ K`(E) as well. If P2 is not S-integral, the same argument applies. So P1

and P2 are both nontrivial points in K`(E) ∩ E(Q). Then by (A.6) we must have

d1v`(t (P1)) = −v`(F1(P1)) = −v`(F2(P2)) = d2v`(t (P2)).

Now let P ′ ∈ E(Q) be a generator of the intersection E(Q) ∩ K`(E) (this group
is isomorphic to Z when E(Q) has rank 1; recall that the kernel of reduction does
not contain nontrivial elements of finite order when ` is odd; ` = 2 is taken care
of by our choice of S). We can then write P1 = n1 P ′, P2 = n2 P ′ with n1, n2 ∈ Z,
and we have by (A.4) that

v`(t (P ′))+ v`(n1) = v`(t (P1)) and v`(t (P ′))+ v`(n2) = v`(t (P2)).

Combining this with the relation between v`(t (P1)) and v`(t (P2)), we obtain

v`(n2) = v`(t (P2))− v`(t (P ′)) =
d1 − d2

d2
v`(t (P ′))+

d1

d2
v`(n1) >

d1 − d2

d2
,
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since v`(n1) > 0 and v`(t (P ′)) > 1. It follows that n2 > `dd1/d2e−1. We have that
P ′ = ±a`P0 + T` with T` ∈ E(Q)tors, and so

ĥ(P) = ĥ(P1)+ ĥ(P2) = a2
` (n

2
1 + n2

2)ĥ(P0) > a2
``

2dd1/d2e−2ĥ(P0) > λ,

which was to be shown.

We can combine these results with the upper bound from Theorem 4.2. If this
upper bound is smaller than λ, then it follows that

C(Q) ⊆ {(O, O)} ∪ (E(ZS)× E(ZS)).

Note that E(ZS) is a finite set that can easily be determined in practice once a
generator P0 of the free part of E(Q) is known.

In the following, `min denotes the smallest prime not in S.
One way of applying Theorem A.3 is to consider families of curves in E × E

such that `d1/d2
min tends to infinity sufficiently fast compared to the height and the

degree of the curves. Once the parameter is sufficiently large, it follows that the
rational points of all the curves must be contained in some explicit finite set, so
that one can determine the set of rational points on all the curves in the family. We
will do this in the next section for the examples Cn and Dn given in Theorem 1.5.

Given a concrete curve, one can also increase the set S until λ exceeds the upper
bound. This is always possible, since λ > `2

minĥ(P0). The conclusion is again that
all rational points on the curve other than (O, O) must be S-integral, which may
lead to a simpler way of determining this set.

We also state the following special case.

THEOREM A.4. Assume that, in the situation of Theorem A.3, E(Q)tors = 0 and
P0 /∈ E(Z`) for some ` /∈ S. Then

C(Q) ⊆ {(O, O)} ∪ {P ∈ E(Q)× E(Q) : ĥ(P) > `2dd1/d2e−2ĥ(P0)}.

Proof. In this case, all points P = (P1, P2) ∈ C(Q) have P1, P2 ∈ K`(E). The
argument in the proof of Theorem A.3 then applies to all these points with this
fixed ` (here a` = 1, since P0 ∈ K`(E)).

If the lower bound `2dd1/d2e−2 exceeds the upper bound given by Theorem 4.2,
then it immediately follows that the only rational point on C is (O, O).

A.4. The curves Cn and Dn. We recall the examples given in Theorem 1.5.
The first family of examples consists of the curves Cn(E) defined as the closure
of the subset of (E \ {O})2 given by the equation xn

1 = y2, for n > 1 and the
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five elliptic curves E = E1, . . . , E5 as defined in the Introduction. The second
family consists of the curves Dn(Ei) given by Φn(x1) = y2, where Φn is the nth
cyclotomic polynomial, for the same set of elliptic curves Ei .

In Theorem 1.5 the sets of rational points Cn(Ei)(Q) and Dn(Ei)(Q) are
determined for varying ranges of n. We will use our results to find Cn(Ei)(Q)
and Dn(Ei)(Q) for all n. We recall the upper bounds on ĥ(P) for P ∈ Cn(Ei)(Q)
from Theorem 9.1:

E1 : ĥ(P) 6 b1(n) = 73027n2
+ 219081n + 164320

E2 : ĥ(P) 6 b2(n) = 311345n2
+ 934033n + 700566

E3 : ĥ(P) 6 b3(n) = 373925n2
+ 1121775n + 841382

E4 : ĥ(P) 6 b4(n) = 534732n2
+ 1604195n + 1203216

E5 : ĥ(P) 6 b5(n) = 566995n2
+ 1700984n + 1275813.

From Corollary 8.2 we obtain the following bounds for P ∈ Dn(Ei)(Q):

E1 : ĥ(P) 6 b′1(n) = (901.5 · 2ω2(n) + 18257)(2ϕ(n)+ 3)2 + 9.7

E2 : ĥ(P) 6 b′2(n) = (901.5 · 2ω2(n) + 77837)(2ϕ(n)+ 3)2 + 41.4

E3 : ĥ(P) 6 b′3(n) = (901.5 · 2ω2(n) + 93482)(2ϕ(n)+ 3)2 + 50

E4 : ĥ(P) 6 b′4(n) = (901.5 · 2ω2(n) + 133683)(2ϕ(n)+ 3)2 + 70

E5 : ĥ(P) 6 b′5(n) = (901.5 · 2ω2(n) + 141749)(2ϕ(n)+ 3)2 + 75.

In all cases, we can take S = ∅ in Theorem A.3, since the leading coefficients
of F1(x, y) = xn orΦn(x) and F2(x, y) = y are both 1 and the curves are given by
short integral Weierstrass equations. We have d1 = 2n (respectively, d1 = 2ϕ(n))
and d2 = 3, so for n > 2 (respectively, n > 3), the assumption d1 > d2 is satisfied.

We first consider E1. Let P0 = (1, 1); this is a generator of E1(Q). Since P0,
2P0 and 3P0 are all integral, we have a` > 4 for all ` (and indeed a2 = 4). So we
have

λ(n) = 16 · 22d2n/3e−2ĥ(P0) > 24n/3+2ĥ(P0).

This is larger than b1(n) as soon as n > 19. For Dn(E1), we have to compare
λ(ϕ(n)) with b′1(n). We use the crude bound 2ω2(n) 6 ϕ(n); we then have that
λ(ϕ(n)) > b′1(n) for ϕ(n) > 19, which covers all n > 61. So for n > 19, we get
from Theorem A.3 that

Cn(E1)(Q) ⊆ {(O, O)} ∪ (E1(Z)× E1(Z))

and for n > 61, we get that

Dn(E1)(Q) ⊆ {(O, O)} ∪ (E1(Z)× E1(Z)).
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We have that

E1(Z) = {(1,±1), (2,±3) (13,±47)} = {±P0,±2P0,±3P0}

(as obtained by a quick computation in Magma [4], for example).
To deal with Cn(E1), we now only have to check which pairs of such points can

satisfy the relation xn
1 = y2. The only possibilities are y2 = 1, so P2 = (1, 1) and

x1 = 1, so P1 = (1,±1). Since the cases n < 19 are covered by Theorem 1.5, we
obtain the following result.

COROLLARY A.5. For all n > 1, we have

Cn(E1)(Q) = {(O, O), ((1, 1), (1, 1)), ((1,−1), (1, 1))}.

We now consider Dn(E1). We have to solve the equation Φn(x1) = y2, with
x1 ∈ {1, 2, 13} and y2 ∈ {±1,±3,±47}. The easy estimate |Φn(2)| > 5ϕ(n)/4 and
the even easier estimate |Φn(13)| > 12ϕ(n) show that x1 = 1 is the only possibility
(when n > 61). We have the well-known fact that Φn(1) = 1 unless n = 1 or
n is a prime power, and Φpm (1) = p. This proves the following statement for
n > 61; the remaining cases with n > 7 are covered by Theorem 1.5, which also
shows that for n 6 6, it is still true that all rational points other than (O, O)
on Dn(E1) are pairs of integral points on E1, but there are some deviations from
the pattern in the statement below (coming from small values ofΦn(2):Φ1(2)= 1,
Φ2(2) = Φ6(2) = 3).

COROLLARY A.6. For all n > 7,

Dn(E1)(Q) = {(O, O), ((1, 1), (1, 1)), ((1,−1), (1, 1))}
if n is not a prime power,

Dn(E1)(Q) = {(O, O)} if n = pm with p 6= 3, 47,
Dn(E1)(Q) = {(O, O), ((1, 1), (2, 3)), ((1,−1), (2, 3))} if n = 3m ,
Dn(E1)(Q) = {(O, O), ((1, 1), (13, 47)), ((1,−1), (13, 47))} if n = 47m .

Now we consider the remaining curves Ei , i = 2, 3, 4, 5. In each case
Ei(Q) ∼= Z, and the generator is not `-adically integral for ` = 491, 11, 1418579,
and 3956941, when i = 2, 3, 4 and 5, respectively. So we can apply Theorem A.4
with this `. The lower bound exceeds the upper bound bi(n) (respectively, b′i(n))
when n > 3 (respectively, n > 7) for i = 2, when n > 6 (respectively, n > 19)
for i = 3 and when n > 3 (respectively, n > 7) for i = 4 and i = 5. So for these
ranges, we obtain immediately that Cn(Ei)(Q) = Dn(Ei)(Q) = {(O, O)}. The
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remaining cases are taken care of by Theorem 1.5; therefore we have now proved
the following.

COROLLARY A.7. For all n > 1 and i = 2, 3, 4, 5, we have

Cn(Ei)(Q) = Dn(Ei)(Q) = {(O, O)}.
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[27] D. W. Masser and G. Wüstholz, ‘Estimating isogenies on elliptic curves’, Invent. Math. 100(1)

(1990), 1–24.
[28] B. Mazur, ‘Modular curves and the Eisenstein ideal’, Publ. Math. Inst. Hautes Études Sci. 47

(1978), 33–186. 1977.
[29] W. McCallum and B. Poonen, ‘The Method of Chabauty and Coleman’, Explicit methods

in number theory; rational points and diophantine equations, Panoramas et Synthèses 36
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