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Summary 

Cognitive flexibility, defined as the ability to switch a specific response in a quick manner depending on 

changes in the environment, is an executive function critically altered in psychiatric disorders such as 

schizophrenia (Nęcka and Orzechowski, 2004; Collins and Koechlin, 2012; Lunt et al., 2012). The prefrontal 

cortex (PFC) is a major hub involved in the mediation of cognitive flexibility. This brain area receives 

consistent dopaminergic inputs (Carr et al., 1999; Björklund and Dunnett, 2007; Puig, Antzoulatos and 

Miller, 2014), indeed, dopamine signaling within the PFC is suggested to be implicated in the causes and 

treatment responses of cognitive deficits evident in schizophrenia. However, how the PFC might code 

different components of cognitive flexibility at the single-cell level and how this might be modulated by 

dopamine- and clinically-relevant functional genetic variants is still not clear. Here, I addressed this by using 

in vivo electrophysiology recordings in the PFC of wild-type and clinically-relevant mouse mutants with 

genetic variants altering D2 receptors while performing a cognitive flexibility task with high clinical 

translational relevance. 

In particular, while mice were performing a recently validated automated Intra-/Extra-Dimensional 

Attentional Set-Shifting task for mice (Scheggia et al., 2014, 2018), I recorded PFC activity with in vivo 

oximetry and then single-unit extracellular electrophysiology. I used wild-type mice and three different 

genetically modified mice with the alteration of the dopamine/D2 signaling: Dysbindin +/- mice, with 

overexpression of cortical D2 receptors, D2L +/- mice, with an unbalance of D2 isoforms and the 

combination of these genetic variants (dys+/-D2L+/-).   

The main finding I found was that, while WT animals show an increase in both oxygen consumption and 

neuronal activity, particularly during the extra-dimensional shift (EDS) following correct response, the same 

effect was altered in dys+/- mice. Unbalancing the ratio of the two D2 isoforms, there was an alteration of 

the neural activity during serial reversal learning. The concurrent alteration of both genes differentially 

impacted mice's behavior together with their respective cortical activity across the different stages. 

These findings provide specific associations between schizophrenia-relevant genetic variants related to 

dopamine/D2 signaling and PFC neuronal activity related to cognitive flexibility. This has implications in the 

understanding of cognitive flexibility alterations present in psychiatric disorders and in the possible 

development of genetic-based personalized approaches for these deficits. 
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Introduction 

Within the central nervous system, the fine modulation of dopamine release appears to be one of the most 

critical aspects that are often affected in genetic or neurodegenerative disorders (Rangel-Barajas, Coronel and 

Florán, 2015; Robinson and Gradinaru, 2018). Such impairment of the dopaminergic system can be associated 

with a variation of the number of neurons (i.e. Parkinson’s disease) (Giguère, Nanni and Trudeau, 2018; 

Mamelak, 2018), modification of the release (i.e. drug addiction) (Volkow et al., 2007; Wanat et al., 2009), or 

at the level of the dopaminergic receptors (i.e. schizophrenia) (Abi-Dargham et al., 2000; Seeman, 2010, 2013). 

While, the dopaminergic system, is one of the most studied, its exact function in multiple structures of the 

brain is making it one of the most complex. One structure, receiving significant input from dopaminergic 

neurons, is the prefrontal cortex (PFC) (Carr et al., 1999; Björklund and Dunnett, 2007; Puig, Antzoulatos and 

Miller, 2014), which is also one of the brain structures most involved in cognitive flexibility (Yoon et al., 

2008; Keeler and Robbins, 2011; Orellana and Slachevsky, 2013; Granseth, Andersson and Lindström, 2015; 

Zhang et al., 2015). In schizophrenic disorders, cognitive flexibility’s impairments are considered as being 

associated with a dysfunction of dopamine in the PFC (Gaspar, Bloch and Moine, 1995; Santana, Mengod and 

Artigas, 2009). Here, following a short description of Schizophrenia and the related symptoms, I will focus on 

the tasks use for their diagnoses. Finally, using our novel described behavioral task, I will show, in mice, how 

cognitive flexibility is encoded in the PFC by dopaminergic receptors in normal and clinically relevant 

conditions. Here, in rodent models of schizophrenia together with our task in mice, adapted from the human 

tasks, I uncover the participation of the PFC and dopaminergic receptors in behavioral flexibility. 

 

Schizophrenia 

Schizophrenia spectrum disorders and other psychotic disorders show a prevalence of about 0.7-1% of the 

world population, affecting both males and females, even if in males it might appear earlier than females and 

might present slightly qualitatively different symptoms. While not yet specifically defined, it is accepted that 

the etiology of schizophrenia implicates multiple contributing factors, including genetic and environmental 

(Hultman et al., 1999; Dean and Murray, 2005; Gejman, Sanders and Duan, 2010). As an example of genetic 

factors, first-degree relatives of a patient with schizophrenia have a 10% increased risk to develop the disorder. 

The risk while reduced is maintained at 3% with second-degree relatives, for a risk of less than 1% in the 

general population (McDonald and Murphy, 2003; Chou et al., 2017). Moreover, the two major genetic risk 

factors to develop schizophrenia are considered to be 1) having a monozygotic twin affected or 2) two affected 

parents (Gejman, Sanders and Duan, 2010; Henriksen, Nordgaard and Jansson, 2017). Some epigenetic and 

environmental risks have also been associated with schizophrenia, these risks include exposure to cannabis or 

malnutrition in critical developmental periods, childhood trauma, stress-related minority ethnicity, residence 

in an urban area, and possibly social isolation (Brown, 2011; Walder et al., 2014). While the exact etiology is 
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unknown, currently the diagnosis of schizophrenia is based on the assessment of different behavioral 

alterations, that can be grouped into two major types (Jablensky, 2010; Patel et al., 2014): 

1) Positive symptoms: These symptoms include enhanced or repetitive functions considered as an abnormal 

exaggeration of ideas, perception or idea including delusions, hallucinations, grossly disorganized or abnormal 

motor behavior. 

2) Negative symptoms: These symptoms include the loss or impairment of functions including diminished 

emotional expression, avolition, alogia, anhedonia, and anti-social behavior. 

Despite not yet defining the pathology such as positive and negative symptoms, it is commonly accepted that 

at the core of the schizophrenia neuropathology there are cognitive deficits. These cognitive deficits most 

commonly reported include impairment of attention and working memory, together with reduced executive 

functions and cognitive flexibility. Notably, these cognitive (and concomitant social) dysfunctions precede the 

manifestation of psychosis (Cornblatt et al., 1997, 1998; Erlenmeyer-Kimling, 2000), and they persevere or 

worsen over time (Albus et al., 2002). Moreover, cognitive dysfunctions continues to be present after remission 

of psychosis, and are less effectively affected by currently available treatments (Cuesta, Peralta and Zarzuela, 

2001; Harvey and Keefe, 2001; Snitz et al., 2005; Keefe et al., 2011; MacKenzie et al., 2018; Scheggia et al., 

2018). Thus, to date, cognitive alterations in schizophrenia are considered the most incapacitating long-term 

features, having the most critical impact on public health due to combined economic and social costs (National 

Institute of Health and Clinical Excellence, 2014).  

 

Cognitive flexibility and implication for schizophrenia 

Cognitive processes, most commonly reported to be impaired in schizophrenia, refer to “Executive functions”, 

which include all cognitive abilities necessary to carry out a behavior, and/or that serve to optimize 

performance by coordinating the various components of complex cognitive domains (Miyake et al., 2000; 

Miller and Cohen, 2001; Lehto and Elorinne, 2003; Espy et al., 2004; Nęcka and Orzechowski, 2004; Burgess 

and Simons, 2005; Collins and Koechlin, 2012; Lunt et al., 2012).  

These executive functions are hierarchically organized into three main categories:  

1) inhibitory control: the ability to suppress one response in favor of another 

2) working memory: the ability to maintain and manipulate multiple pieces of information at the same time 

while performing complex tasks and is coordinated by related executive processing (e.g. attention, inhibition, 

and planning behavior)  

3) cognitive flexibility: the ability to adjust a specific response or attention in a quick manner, while facing 

change in environmental circumstances (attentional set-shifting and reversal learning) (Miyake et al., 2000; 

Lehto and Elorinne, 2003).  
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These executive functions change throughout body and mind development and are considered to reach 

maturation during or after adolescence (Best and Miller, 2010; Arain et al., 2013). 

Most psychiatric disorders, including schizophrenia, present disruptions of executive functions (Morice and 

Delahunty, 1996; Moritz et al., 2002; Hill, 2004; Brown, Reichel and Quinlan, 2009; Kleinhans et al., 2011). 

Some evidence suggests that these cognitive deficits can be considered as predisposing factors to developing 

a psychiatric disorder, or as a potential early marker of subsequent illness (Trivedi, 2006; Etkin, Gyurak and 

O’Hara, 2013). Additionally, cognitive deficits can be considered as predictors of recovery,  even if 

controversial findings are still present (González-Blanch et al., 2010).  

One of the first work describing impairment of executive function in schizophrenia is by Kraepelin in 1913, in 

which he reported that patients with schizophrenia present mental deficiency, distraction, inattentive behavior, 

and they could not keep the thought in mind  (Kraepelin, 1913). In the following years, neuropsychological 

studies have shown that the most prominent cognitive impairments exhibited by patients with schizophrenia 

include deficits in abstract and conceptual thinking, distractibility, loose associations, disorganized or socially 

inappropriate behavior (Braver, Barch and Cohen, 1999). In these studies, impairment of executive functions 

is considered to be a  feature of schizophrenia and is directly related to poor functional outcomes in patients 

(Blanchard et al., 2011; Fett et al., 2011). Cognitive disorders, in schizophrenia, are heterogeneous and 

sometimes they are selective and specific. These disorders are manifested by different patterns of associated 

and dissociated performance on different cognitive tasks (Kuperberg and Heckers, 2000). In schizophrenia, 

neuropsychological deficits are associated with psychosocial dysfunction and are dissociated from psychiatric 

symptoms, global cognitive efficiency, and intelligence (Addington and Addington, 1999; Dickerson et al., 

1999; Goldberg and Green, 2002, Badcock, Michie and Rock, 2005; Kopald et al., 2012; Green, Lee and 

Ochsner, 2013). Below I will briefly describe how executive functions, and in particular cognitive flexibility, 

is commonly assessed in patients with schizophrenia. 

 

Attentional set-shifting tasks 

On a clinical level, executive functions can be assessed by specific parameters, such as action generation and 

action selection in the so-called “attention set-shifting tasks”(ASST). In humans, these tasks provide an 

adequate measurement of cognitive-attentional set formation and the ability to switch between different task 

rules. In psychology study, a widely used and well-validated task for studying this function is the Wisconsin 

Card Sorting Task (WCST) (Figure 1A) (Berg, 1948; Milner, 1982; Everett et al., 2001; Eling, Derckx and 

Maes, 2008; Nyhus and Barceló, 2009).  

The WCST consists of four cards used as a stimulus and 128 possible combinations that represent figures with 

different forms (stars, circles, crosses, and triangles), colors (yellow, green, red, and blue), and the number of 

objects (one, two, three, and four). Among trials, the subject receives a card from which he is asked to follow 

a specific “rule” that is unknown to the subject. Classically, the test is based on the succession of 10 trials, 

with direct delivery of the response, either “correct” or “incorrect”. Following the 10 consecutive correct trials 
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with the same rule, the experimenter switches the rule for the next 10 consecutive correct trials. The 3 classic 

rules to follow are the shape, the number or the color. The interpretation of data is based on a within-trial 

response (“did the subject followed the rules?”), a between trial response (did the subject followed the rule of 

the previous trials?”), a perseverative answer (“did the subject repeated multiple time the same answer, despite 

the “correct/incorrect” answer to previous trial?). Based on the outcome decisions, the experimenter will be 

able to define the number of trials necessary to switch from one rule to another (behavioral flexibility), non-

perseverative answer or perseverative answer (can be correct or error). The test is considered to be finished 

when all 6 categories have been covered or the 128 combinations have been tested (see Figure 1A). 

 

 

Figure 1. Human tasks used for studying cognitive dysfunctions. A) Wisconsin Card Sorting Task. On the left, there is 

an example of the performance of the task: a card is given to the subject and he has to understand whether to follow 

number, color, or shape. On the right, the table is an example of a possible performance of 6 consecutive trials done by 

the subject.  B) the Intra- and Extra-dimensional set-shifting task (IE/ED) CANTAB. On the left is reported the SD 

stage in which only one dimension is present (shape). Once the SD and its reversal SDRe is completed, a new 

dimension (line) is introduced and used as a confounder.  

 

While the WCST is commonly used in clinical and psychological studies, a more modern and refined task has 

been developed, the Intra- and Extra-dimensional set-shifting task (IE/ED). This task is one of the 3 mains test 

of the Cambridge Neuropsychological Test Automated Battery (CANTAB), together with the tower or London 

(testing planning functions) and the working memory task. For clarity purposed, I will only describe the IE/ED 
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tasks, but more details explanations can be found elsewhere (Roberts, Robbins and Everitt, 1988; Barnett et 

al., 2010). 

In the ID/ED, the performance of the testing subjects is evaluated through 9 different and sequential stages 

with different stimuli and/or rules.  

The test starts with a simple discrimination stage (SD) in which only one dimension is presented and the subject 

has to choose between the two stimuli. After six correct consecutive responses, the reversal stage (SDRE) is 

introduced, in which the correct choice is inverted. Following several trials of SD and SDRe, the test will 

introduce compound discrimination, in which a second dimension is aligned (CD1), and then superimposed to 

the start dimension (CD2). Commonly, the first dimension is the shape of a symbol (see Figure 1B), while the 

second is the line, and CD2 is followed by the corresponding reversal stage. Then, an intra-dimensional shift 

is introduced, in which the shapes and lines change, and the first dimension is always the relevant (IDS). This 

stage is followed by its reversal (IDSR). Finally, once the attentional set is established meaning that the subject 

is able to follow the adequate dimension, an attentional shifting is introduced in the extradimensional shift 

stage (EDS). In that EDS stage, the dimension that was previously considered as irrelevant is now considered 

relevant, while the dimension previously relevant became irrelevant. (Jazbec et al., 2007). Also this stage is 

followed by its reversal (EDSRE). 

Compared to the WCST, the ID/ED task incorporates several metrics to compare cognitive set-formation and 

shifting abilities, challenging three main forms of cognitive flexibility: 

1) the intra-dimensional shift: reinforce the cognitive attentional-set towards the specific relevant dimension, 

improving the task performance 

2) the reversal learning: allow determining whether the subject can shift from a previously rewarded cue to the 

previously not-rewarded choice 

3) the extra-dimensional shift: measure the ability to apply a new strategy that involves disengage and shift 

from a previously formed cognitive set 

Finally, while the psychological test is often based on two-dimensions, ID/ED task allows the same assessment 

with 3 dimensions, which allows for the differentiation of two distinct cognitive mechanisms during the EDS 

stage (Owen et al., 1993). That is, using three distinct dimensions allows testing the inability to release 

attention from a relevant perception dimension during EDS (i.e. perseveration or also called ‘stuck-in-set’). 

While using only two dimensions, allow testing the inability to re-engage attention to a previously irrelevant 

dimension during EDS (i.e. ‘learned irrelevance’). Neuropsychological studies in patients diagnosed with 

schizophrenia have consistently found a deficit in the performance of attentional set-shifting paradigms with 

both the WCST and the CANTAB ID/ED. Interestingly, the development of these tests allows the acquisition 

of imaging data, in normal and disease-related patients. For example, dysfunction of the frontal lobe is found 

in patients with psychologic dysfunction (Weinberger, Berman and Zec, 1986; Owen et al., 1991) or patients 

diagnosed with schizophrenia that present impairment in the EDS stage (Elliott et al., 1995; Pantelis et al., 

1999; Turner et al., 2004; Ceaser et al., 2008). The development of these tests has been of great interest to the 

understanding of behavioral flexibility in psychiatric disorders and of possible underlying mechanisms mostly 



P a g e  | 16 

 

using functional MRI assessments (Kramer et al., 2007; Tyrer et al., 2010; Heisler et al., 2015). However, the 

neuronal mechanisms underlying the different components of cognitive flexibility using these tasks are still 

limited by the resolution of currently available techniques. In this context, research in animal studies is proving 

to be effective, still, an appropriate choice of the correct test must be addressed as briefly explained in the 

following paragraph. 

 

Automated two-chamber “Operon” ID/ED task for mice 

Recently, the various components of the WCST and ID/ED tasks have been successfully modified and adapted 

for animal models research  (Bissonette and Powell, 2012; Scheggia et al., 2014; Tait, Chase and Brown, 

2014). In general, the inter-species conservation of the central nervous system, and the data reported so far 

suggest that executive function and the brain. Indeed, in humans, non-human primates and rodents, the 

performance on attentional set-shifting tasks are similar, with a first challenging stage during the first reversal 

followed by the next challenging stage with the extra-dimensional shift (Roberts, Robbins and Everitt, 1988; 

Birrell and Brown, 2000; Trobalon et al., 2003; Scheggia et al., 2014). 

In 2014 (Scheggia et al., 2014) my group developed a mouse-adapted equivalent and fully automated version 

of the ID/ED CANTAB. This Operon is characterized by two opposed chambers separated by a transparent 

Plexiglas door, which is automatically dropped in each trial and allows the mouse to switch to the second 

chamber (Figure 2A). The apparatus has been optimized in order to be testing 2 or 3 different stimuli that could 

vary in three different perceptual dimensions: visual (Figure 2B-1), olfactory (Figure 2B-3) and tactile (Figure 

2B-4) with as the outcome to the relevant dimension a classical sugar pellet (Figure 2B-2).  

Similarly to the IE/ED CANTAB, the operon is based on the succession of nine stages briefly described below: 

- Simple Discrimination (SD) introduces mice to a dimension (odor or light or texture) that is relevant in all 

the tasks until the EDS. Mice follow one of the two stimuli to receive the reward (Figure 2C) 

- Compound Discrimination (CD) introduces the second dimension, (light or texture or odor), which is the 

irrelevant one. The correct and incorrect stimuli are the same as in SD. (Figure 2D)  

- Reversal of the Compound Discrimination (CDRe) leaves the stimuli and the relevant dimension unchanged, 

but here the mice learn that the previously correct stimulus is now incorrect. These same conditions will be 

found for the other reversal phases (i.e., IDSRe, IDS2Re, and EDSRe) (Figure 2E). 

 - Intra-dimensional shift (IDS) introduce new stimuli for both the relevant and irrelevant dimensions (a total 

change design). However, ensure that the testing subjects keep following the same relevant dimension in order 

to find the correct response (Figure 2F) 

- Reversal of the Intra-dimensional shift (IDSRe) uses the same conditions as in CDRe (Figure 2G). 

- Intra-dimensional shift 2 (IDS2) uses the same conditions as in IDS. 

- Reversal of the Intra-dimensional shift 2 (IDSRe2) uses the same conditions as in CDRe.  

- Extra-dimensional shift (EDS) changes the role of the dimensions, that is the previously relevant dimension 

now becomes irrelevant (Figure 2H) 

- Reversal of the Extra-dimensional shift (EDSRe) uses the same conditions as in CDRe. 
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At the level of the EDS, two possibilities are based on the 2-dimensions or 3-dimensions design: 

1)  If the paradigm used is of two dimensions, the previously irrelevant now becomes relevant dimension 

and vice versa;  

2) if the paradigm used is of three dimensions, the previously irrelevant dimension is discarded, the 

previous relevant become irrelevant, and the new dimension is introduced and used as relevant. The 

conditions are the same as the other non-reversal stages; 

At the difference of the CANTAB, in the automated version for mice, the IDS/IDSRe stages are repeated under 

the IDS2 and IDS2Re. This slight difference has been introduced to allow the mice to develop a strong 

attentional set and to provide with “stronger” conclusion in the EDS. 

 

 

Figure 2. Automatized attentional set-shifting task. A) The two identical chambers of the operon, separated by a door. 

B) The characterization of each chamber. 1: disposition of the LEDs; 2: food magazine where the sugar pellets will be 

released in case of correct choice; 3,5: nose pokes, where mice have to poke and where odors come out; 4: texture;  6: 

plexigas door; 7: house light;  8: photobeam.  

 

The design of the Operon, based on the CANTAB, has been optimized to allow the mice tested to develop a 

robust set acquisition towards the correct, in opposition to the incorrect stimulus. This novel operant-based 

task presents several advantages over previously used ID/ED task for rodents: (1) it has less labor-intensive 

procedures than the manual versions; (2) it eliminates any source of subjectivity in the measured parameters; 

(3) it eliminates potential experimental bias due to reinforcement-related cues; (4) it avoids arbitrary 

environmental conditions; (5) and it allows manipulation of multiple dimensions with a large range of different 

stimuli, in accordance with the equivalent human tasks used in the clinical setting. Overall, these advantages 

will enable us to test executive functions in mice, together with the introduction of genetic mutation relevant 

in schziphrenia and to provide a tool for possible therapeutic approaches, such as drug-screening. Finally, one 

advantage to apply the CANTAB in mice is the possibility to use a more invasive and robust approach to 

characterize the participation of structure in a specific behavior. In particular, during my thesis, I took 

advantage of this novel task to dissect electrophysiological readouts of executive function performance and 
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the impact of different clinically relevant genetic variants, using a mice model for a classic mutation in 

schizphrenia. As the symptomatology of schizophrenia together with imaging studies suggest that executive 

function impairment is associated with dysfunction of the prefrontal cortex (Miller, 2000; Orellana and 

Slachevsky, 2013; Gruber, Santuccione and Aach, 2014), I decided to focus on the mice equivalent, the medial 

prefrontal cortex. 

 

The prefrontal cortex (PFC) in executive functions 

In human, non-human primate and rodent, executive functions have been associated with prefrontal cortex 

(PFC) functionality (Yoon et al., 2008; Keeler and Robbins, 2011; Orellana and Slachevsky, 2013; Granseth, 

Andersson and Lindström, 2015; Zhang et al., 2015). Indeed, the PFC has long been considered to be the main 

area controlling high-order cognitive functions, including planning, organization and decision making (Ingvar 

and Franzén, 1974; Weinberger and Berman, 1996; Goldman-rakic, 1998; Karlsgodt et al., 2009). Lesions 

studies suggest that, while the PFC is typically not necessary for learning and performing simple tasks, the 

shift of the task requires the change of PFC activity, and affecting such change will significantly slow proper 

adjustment in behavior. Accordingly, humans with accidental damages to frontal areas often show behavioral 

impairments that include inflexibility, perseveration, isolation, and apathy (Barrash, Tranel and Anderson, 

2000) or antisocial behavior (Anderson et al., 1999). When these patients were tested using the CANTAB, 

studies report deficits in performance during the EDS, while a low effect on IDS (Owen et al., 1993). Studies 

using the WCST on patients presenting lesions of the frontal cortex conclude to an increase in “perseverative” 

compare to “non-perseverative” error  (i.e. they frequently continued to sort cards according to a previously 

acquired rule, even when the rule has been explicitly changed) (Milner, 1963). These conclusions suggest that 

not only patients with frontal lobe lesions were presenting impairment of cognitive flexibility, but also they 

were showing “perseverative” behavior. Functional MRI (fMRI) measurements during the ID/ED task and 

measurements of regional cerebral blood flow (rCBF) during the WCST further confirmed that dorsal PFC is 

crucially implicated in attentional set-shifting abilities (Hampshire and Owen, 2006). In conclusion, the WCST 

and the ID/ED of the CANTAB are considered sensitive tasks for revealing PFC dysfunctions, but the 

limitation of the imaging studies in humans together with the lesions studies cannot provide a clear 

understanding of the exact role of the frontal cortex in executive functions. Furthermore, it is important to note 

that the PFC doesn’t act on its own but it functions in connections also with other brain regions such the 

striatum (Chudasama and Robbins, 2006) and the parietal cortex (Fox, Barense and Baxter, 2003; Crowe et 

al., 2013), making the conclusion based exclusively on PFC activity relatively challenging. 

The PFC is often referred to as a single brain region, but many subdivisions into distinct areas have been made, 

each defined by specific cytoarchitecture, cytochemistry, connectivity, and functional properties. While the 

cortical anatomy and functions seem to be highly conserved, defining and comparing the functional properties 

of these areas across species is complex: a large interspecies difference in the layering per area has been 

described, raising the debate on whether or not rodents possess a region equivalent to the human dorsolateral 
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PFC. In General, the rodent equivalent to the dorsolateral PFC in humans is the medial PFC (mPFC), as both 

structures lack a granular zone in this area (Ongur and Price, 2000; Elston, 2003). However, it has been noted 

that the formation of the general laminar pattern in the PFC shows a relation with phylogenesis. Indeed, in 

“higher” mammalian species, such as humans and non-human primates, PFC regions possess a granular layer 

IV, as well as an agranular layer while in rodents, the granular PFC regions are reduced (Ongur and Price, 

2000; Elston, 2003). In rodents, the mPFC is classified into three distinct neuroanatomical subregions based 

on connectivity and cytoarchitecture: the anterior cingulate (ACC), prelimbic (plPFC), and infralimbic (ilPFC) 

cortices (Vertes, 2004). These three regions have strong homology at the level of their functional and 

connectivity to the human Brodmann areas 24b, 32, and 25, respectively (Gabbott et al., 2005). The mPFC is 

mainly composed of glutamatergic pyramidal neurons (~80–90%) and an array of local interneuron 

populations (~10–20%).  

The excitatory pyramidal neurons mediate output projections to other cortical areas such as sensory and 

association cortices, as well as to subcortical areas of the cognitive circuitry including the striatum, the 

amygdala, and the postero-parietal cortex.  

Neuroimaging studies (rCBF and fMRI) have associated stuck-in-set perseverative scores in attentional set-

shifting tasks with reduced activity within the PFC, while other types of perseveration, such as recurrent or 

continuous, fail to correlate with PFC activity. Moreover, consistent with frontal lobe patients (Owen et al., 

1993), lesion studies in non-human primates and in rodents have demonstrated that parts of the PFC have a 

functional homology to human lateral PFC in attentional set-shifting tasks (Berg, 1948; Milner, 1982; 

Roberts, Robbins and Everitt, 1988; Dias, Robbins and Roberts, 1996; Birrell and Brown, 2000; Everett et 

al., 2001; Bissonette et al., 2008; Eling, Derckx and Maes, 2008; Nyhus and Barceló, 2009; Barnett et al., 

2010; Keeler and Robbins, 2011; Zhang et al., 2015; Granseth, Andersson and Lindström, 2015). 

In particular, damage of the lateral (in primates) or medial(in rodents) PFC impairs set-shifting abilities 

while sparing reversal learning. 

Clinical study of human patients with lesions of the OFC (Rahman et al., 1999), or study lesions in non-

primates and rodents (Dias, Robbins and Roberts, 1996; McAlonan and Brown, 2003; Bissonette et al., 2008) 

have found an impairment of the reversal learning stages, but not the EDS stage. This data suggests a double 

dissociation or functional specialization between PFC and OFC (Dias, Robbins and Roberts, 1996; Brown and 

Bowman, 2002; Robbins, 2007; Bissonette et al., 2008). Similarly, in rodents, lesions of the dorsomedial 

striatum revealed a deficit in serial reversal learning (Castañé, Theobald and Robbins, 2010; Clarke et al., 

2011). Thus, the neural substrates that control the cognitive functions assessed by attentional set-shifting tasks 

seem to be well conserved between humans, primates, rats, and mice (Robbins, 2007; Goyal et al., 2008). 

 

Neural correlates of set-shifting in the PFC 

The activity of PFC has been linked in rodents to set-shifting abilities (Rich and Shapiro, 2009; Totah et al., 

2009; Cho et al., 2015; Kim et al., 2016). Specifically, two research papers are of great interest for further 

study. The first one, Kim et al., 2016 (Kim et al., 2016) studied the pre-limbic/infra-limbic (PL/IL) neuronal 
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activity during a plus-maze task in rats. In that study, two main conclusions emerge: 1) these two regions help 

the initiation and the establishment of a new strategy (as PL dynamics anticipated learning performance while 

IL lagged); 2) their activity changed as the rats switch memory strategies while performing identical behaviors, 

underling the PFC contribution to the coordination of memory strategies.  

The second work of interest,  (Cho et al., 2015) is based on the fact that a subpopulation of PFC interneurons, 

co-expressing the calcium-binding protein Parvalbumin (PV), also considers as fast-spiking interneurons 

(FSI), fire normally at γ frequencies. Using the classically described digging version of the ASST, they found 

a decrease of the γ rhythms of FSI during specific stages, in particular when the “rule” associated with the 

reward is shifted. The conclusions of the study underlie that the rule-shifting task measures a specific aspect 

of cognitive flexibility, that is dependent on the normal functioning of PFC interneurons. 

However, in both studies, the exact role of the PFC in the flexibility of cognitive functions, the adaptation to 

rules, and the processes required for problem-solving are not considered. Additionally, while dopamine activity 

in the PFC is often associated with behavioral flexibility, both research focuses on the intrinsic properties of 

the PFC neurons, while ignoring the possible role of dopamine in such functions. 

 

Dopamine system, PFC, and cognitive flexibility 

In schizophrenia, several hypotheses on the emergence of symptoms and the etiology have been proposed, 

with one of the most robust based on dopamine deficiency (Abi-Dargham et al., 2000; Seeman, 2010, 2013). 

This dopamine hypothesis has direct implications in therapeutic strategies with the use of antipsychotic drugs 

targeting D2-receptors for the treatment of schizophrenia symptomatology (Seeman, 2010; Li, L. Snyder and 

E. Vanover, 2016; Scheggia et al., 2018). This neurochemical view of schizophrenia yielded medications that 

transformed the treatment of psychosis, and in some cases, result in remission of the positive symptoms of the 

illness (Amminger et al., 1997; Puri and Steiner, 1998). However, how alterations of D2 signaling might be 

linked to cognitive flexibility deficits and related treatments is still not clear. 

The PFC receives remarkably dense input from dopamine neurons (Carr et al., 1999; Björklund and Dunnett, 

2007; Puig, Antzoulatos and Miller, 2014), and, in agreement, dopamine exerts powerful influences on PFC 

and related executive functions (Gaspar, Bloch and Moine, 1995; Santana, Mengod and Artigas, 2009). 

Dopamine signaling is processed throughout two distinct classes of receptors based on the associated G-

coupled protein: D1-like family, associated with the Gs (excitatory) protein (include subunit D1 and D5) and 

the D2-like family, associated to the Gi-(inhibitory) protein (include subunit D2, D3 and D4). Interestingly, 

the D1-like receptors show a lower affinity to dopamine than the D2-like, suggesting a response mostly during 

the phasic stage of dopamine activity  (Girault and Greengard, 2004; Burkett and Young, 2012). 

Dopamine D1- and D2-like family receptors often appear to yield the opposite effects in terms of behavioral 

outcomes and they operate via different intracellular signaling pathways (Vallone, Picetti and Borrelli, 2000; 

Jenni, Larkin and Floresco, 2017). Furthermore, in several brain structures and specific neurons, but not all, 

these two classes of receptors are expressed on separate cells (Gaspar, Bloch and Moine, 1995; Hasbi, O’Dowd 

and George, 2011), but despite these functional and anatomical differences in their expression, animal study 
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has shown that both D1-like receptors and D2-like receptors were involved in the regulation of cognitive 

functions (Ragozzino, 2002; Floresco and Magyar, 2006). 

Extensive work on the role of D1-signalisation in the PFC has been done using cognitive functions tasks 

 (Vijayraghavan et al., 2007; Takahashi, Yamada and Suhara, 2012; Spencer, Devilbiss and Berridge, 2015), 

ignoring the possible participation of D2 receptor (DRD2). Indeed, there are evidences suggesting an 

implication of D2-like family receptors in the modulation of PFC-dependent executive functions. In particular, 

several studies have found that potentiation of D2 pathways in the PFC of humans, non-human primates, and 

rodents facilitate executive functions (Glickstein, Hof and Schmauss, 2002; Wang, Vijayraghavan and 

Goldman-Rakic, 2004; Puig, Antzoulatos and Miller, 2014; Amato, Vernon and Papaleo, 2018; Scheggia et 

al., 2018). Based on these evidences linking DRD2 to PFC-dependent executive functions, the fact that 

schizophrenia therapeutic mostly targets DRD2, and the impairment of PFC activity in schizophrenia patients 

that undergo the CANTAB or the WCST, I focus my work on the role of DRD2 in encoding executive 

functions. 

 

Dopamine D2 long (D2L) and short isoform (D2S) 

In the central nervous system, DRD2 has two distinct isoforms: the short isoform, D2S, and the long isoform, 

D2L. These two isoforms are co-expressed in a positive D2L/D2S ratio (Usiello et al., 2000; Kaalund et al., 

2014). D2L differs from D2S by the presence of the 29 amino acids in the third intracellular loop, a region 

involved in the interaction between receptors and G-proteins. D2L and D2S have also different functions. 

Treatments with the D2-specific agonist, quinpirole, suppress locomotor activity throughout the reduction of 

dopamine release (Eilam, Golani and Szechtman, 1989; Starke, Gothert and Kilbinger, 1989), while similar 

treatments with D2 antagonist, haloperidol, increase dopamine release (Boulay et al., 2000). Interestingly,  

such effects of D2-antagonist have been observed in D2R-/- mice,  in which both D2L and D2S receptors are 

suppressed, and not in D2L-/- mice, where D2S isoform is conserved. Such results suggest that the preservation 

of D2R presynaptic responses is ascribed to D2S receptors. 

The effect of D1 agonist treatments that increase locomotor activity (Protais, Dubuc and Costentin, 1983) are 

reduced or abolished in D2L-/- mice, suggesting an inhibitory control of the D1-response by D2S. Altogether, 

these evidences suggest that D2S can be considered to be of crucial interest for presynaptic DRD2 and 

negatively modulates DRD1-dependent responses (Usiello et al., 2000).  

Therapeutic responses to antipsychotic drugs are highly dependent on a strict range of D2 occupancy, with the 

lower or higher binding being potentially detrimental to neurocognitive functions. It has been suggested that 

commonly used antipsychotic drugs preferentially bind D2L receptors (Usiello et al., 2000; De Mei et al., 

2009). Thus, chronic treatments based on the specific antagonist of D2L-receptors might shift the D2L/D2S 

balance toward the D2S isoform. 

At the difference of D2S, which is considered as a presynaptic form, D2L is often defined as a post-synaptic 

receptor, which mediates the responses of D2-receptors and their cooperative activities with D1-receptors 

(Usiello et al., 2000). 
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In schizophrenia, several studies have found a variation of D2-receptors (Abi-Dargham et al., 2000; Bertolino 

et al., 2009; Zhang, Lencz and Malhotra, 2010; Kaalund et al., 2014). For example, in a post mortem study, 

researchers have found an increase of the  D2S/D2L ratio, specifically in the dorsolateral PFC of patients 

diagnosed with schizophrenia. Such perturbations of dopamine signaling in the PFC can thus contribute to 

cognitive deficits, as unbalance of D2S/D2L ratio is often associated with poor plasticity of the network 

involved in working memory. Functional genetic variants in the D2 gene might be of high interest to the 

participation of the D2S/D2L ratio in schizophrenia-related phenotypes (Bertolino et al., 2009). However, the 

mechanistic that combine D2 genetic variations influencing PFC activity and schizophrenic related executive 

functions remains unclear.  

 

The dystrobrevin binding protein 1 (DTNBP1) gene, encoding 

dysbindin-1 

Dysbindin-1, a gene implicated in the regulation of vesicle formation, synaptic release (Chen et al., 2008) and 

also a key component of the biogenesis of lysosome-related organelles complex (BLOC-1) (Li et al., 2003) is 

encoded by the dystrobrevin-binding protein 1 gene (DTNBP1). This DTNBP1 gene is widely expressed in 

human and mouse central nervous system (Benson et al., 2001). Recent studies in mice show that dysbindin-

1 is more highly expressed during embryonic and early postnatal development compared to adulthood and 

BLOC-1 is involved in neurite outgrowth (Ghiani et al., 2010). Altogether, these findings highlight a potential 

role of dysbindin-1 in the normal development of brain structures and functions.  

Together with abnormal neuronal development, mutation of dysbindin-1 has been associated with abnormal 

behavior in humans, as variation in the DTNBP1 gene is been shown to play a role in the alterations of cognitive 

ability (Burdick et al., 2006; Fallgatter et al., 2006; Hashimoto, Noguchi, Hori, Nakabayashi, et al., 2009; 

Hashimoto, Noguchi, Hori, Ohi, et al., 2009; Luciano et al., 2009; Markov et al., 2009; Wolf et al., 2011). 

Genetic variations reducing dysbindin-1 expression, impact cognitive abilities in humans as well as in mice 

(Scheggia et al., 2018) and lead to the up-regulation of D2 receptors available at the neuronal surface (Iizuka 

et al., 2007).  

 In the context of schizophrenia, genetic variations, and in particular the single nucleotide polymorphism 

rs1018381, are often found in patients presenting poor performance in executive control tasks (Straub et al., 

2002; Thimm et al., 2010). Such interpretation of the mutation and the behavioral effect are considered to be 

related to a decrease of neuronal activity in the left superior frontal gyrus and the lateral PFC (Thimm et al., 

2010). However, while these two regions are key in the pathophysiology of schizophrenia, their exact 

correlation with the genetic mutation remains unknown. Additional evidences suggest that variability in the 

dysbindin gene, and in particular the polymorphism rs1047631, contribute to interindividual differences during 

cognitive performance, and in particular working memory capacity  (Wolf et al., 2011).  

Several studies have found a correlation between genetic variation in DTNBP1 and psychiatric conditions. 

One of the first reports for schizophrenia, was provided by the  Irish Study of High-Density Schizophrenia 
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Families that include 1770 individuals (Straub et al., 2002). Subsequent studies have confirmed the link 

between DTNBP1 and schizophrenia in multiple, independent populations (Schwab et al., 2003; Van Den 

Bogaert et al., 2003) and it remains among the leading candidate genes in meta-analyses (Allen et al., 2008). 

Relatively common SNPs and/or combinations of them (haplotypes) in DTNBP1 have been associated with 

schizophrenia. Most of these variants were reported to confer an increased risk to develop schizophrenia, but 

five studies also reported haplotypes conferring protection against (i.e., reduced risk for) the disorder (Kirov 

et al., 2004; Williams et al., 2004; Vilella et al., 2008; Hashimoto, Noguchi, Hori, Ohi, et al., 2009).  

Patients diagnosed with schizophrenia generally have lower expression levels of dysbindin-1 mRNA and 

protein in the cortex and hippocampus, regions commonly associated with dysfunction of executive control 

and working memory (Talbot et al., 2004; Weickert et al., 2004, 2008; Tang et al., 2009). The cause of altered 

dysbindin-1 gene and protein expression found in schizophrenia is probably not limited to the DTNBP1 

haplotypes reported to be associated with the disorder. 

An animal model of dysbindin-1 functions is available in the sandy (dys) mouse (Figure 3), which has a 

naturally occurring deletion mutation of exons 6 and 7 in the gene (DTNBP1) encoding of the mouse protein. 

The mutation results in loss of dysbindin-1 in homozygous animals. Mice with disrupted dysbindin (dys-/-) 

show selective alterations in internal trafficking of specific components related to dopamine and glutamate 

signaling, including D2 receptors and NR2A receptor subunits (Karlsgodt et al., 2011; Papaleo et al., 2012). 

 

 

 

Figure 3. WT mice vs Sandy (dys-/-) mice. Here are reported: the DTNBP1 gene, with the square around the 

two exons (6 and 7) of the gene deleted in dys-/- mice, and the Dysbindi-1 protein with the part deleted in 

dys-/- mice. 
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Studies using cortical neuronal cultures taken from dys−/− mice have shown signaling alterations that may 

underlie the deficits in cognitive performance. In particular, dysbindin-1 has been associated with various 

aspects of synaptic function in both dopamine and glutamate neurons (Cox et al., 2009; Dickman and Davis, 

2009; Papaleo and Weinberger, 2011). In vitro experiments suggest that dys-/- mice have increased cell surface 

expression of the dopamine D2 receptor due to an increase in the rate of the membrane insertion (Ji et al., 

2009). In particular, pyramidal excitatory neurons of the PFC layer II/III recorded in dys-/- mice showed an 

increase in their activity together with a decrease of the D2-mediated response compare to WT mice (Ji et al., 

2009; Papaleo et al., 2012). Not only the impairment of dysbindin-1 functions affect dopamine signaling, but 

evidence suggests an impairment of glutamatergic signaling  (Numakawa et al., 2004).   
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Aims of the thesis 

The overreaching goal of my thesis work was to understand at the level of single-cell activity how the PFC 

encodes cognitive flexibility, adaptation to behavioral strategies switches, and problem-solving processed. 

In particular, I wanted to focus on the exact role of the dopaminergic signaling found in the PFC in the context 

of executive functions, their possible implication in psychiatric disorders, and their related therapeutic 

approaches. 

Because, intrinsic limitation of human studies and imaging do not allow temporal and spatial resolution 

required for the understanding of such aims, I used genetically modified mice together with single-unit in vivo 

recording in freely behaving mice that underwent the Operon ID/E. 

These overall objectives were addressed through two aims, based on the normal and clinically relevant model: 

 

Specific aim 1. How do the PFC neurons encode different phases 

of cognitive flexibility in a WT mice model? 

Using in vivo recordings in freely moving mice performing the Operon ID/ED, I first tested the involvement 

of the mPFC in different part of this cognitive task. In particular, using two different approaches, the first one 

based on oxygen level consumption and the second one based on single-cell recording, I tested the specific 

timestamp of the PFC participation. Oxygene level consumption has been selected to provide parallelism to 

human studies, while single-cell recording was chosen to provide the time resolution needed to understand the 

participation in different stages of the complex behavioral task used. In particular, the recorded signals were 

analyzed in relation with the presentation of different cognitive rules (i.e.. simple discrimination, simple and 

serial reversal, attentional control within and between different dimensions), different dimensions (i.e. 

olfactory or visual), and during the different phases of the cognitive challenge  (i.e. when mice started to be 

presented with a new rule to follow or when they acquired that specific rule). 

 

Specific aim 2. How do clinically-relevant and dopamine-related 

functional genetic variants affect cognitive flexibility and/or PFC-

neuronal activity? 

Here, I wanted to focus on dopamine/D2-relevant functional genetic variants with clear clinical relevance for 

schizophrenia  and its pharmacological treatments. As explained above, I used three different models of 

genetically modified mice. The first one with the hemideletion of the gene encoding dysbindin-1 (dys+/-), the 

second one with the depletion of the dopamine D2-receptor long isoform (D2L +/-). Finally, due to the 

evidence of the molecular interactions between Dys1 and D2L, we used a mouse model with the hemideletion 

of both (dys+/- x D2L+/-), further characterized as double-mutant. Similarly to what has been done in specific 
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aim 1, I tested the effect of each individual mutation in the cognitive flexibility using the OperonID/ED. 

Finally, I used single-cell recording in vivo, to first characterize the effect of the genetic variations on PFC 

neuronal activity, but also the effect on the way PFC neurons encode behavioral flexibility. 
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Materials and Methods 

Animals. All procedures were approved by the Italian Ministry of Health (Animal license n. 230/2009-B) and 

strictly adhere to the recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. Dys-heterozygous (dys+/−), D2L +/- and wild-type (dys/D2L +/+) littermate mice were 

generated suing controlled breeding between male heterozygous double mutant (dys +/- x D2L+/-, DM) with 

female WT mice (C57BL/6J, Charles River Laboratories (France)). For all offspring the genotype was 

confirmed at two stages points, weaning period and termination, using ear snips and tails DNA. All adult male 

mice used in this study were between 3 to 7 months of age. Animals were cage housed with 2 to 4 littermates. 

During the entire period of the experiments, mice's environmental conditions were controlled with a 

temperature ( (22°C ± 2°C) and a dark/light cycle maintained (lights ON 07.00-19.00). All animals were given 

ad libitum access to water and behavioral testing occurs during the light phase. Different cohorts of naïve mice 

were used for every single experiment. Experimenters were blind to the genotype during testing.  

 

ID/ED Operon task. 

Apparatus. The experimental apparatus consisted of two identical chambers with Plexiglas walls and 

aluminum floor (16 x 16 x 16 cm for each chamber), connected to a PC equipped with MED-PC IV software 

(Med Associates, St. Albans, VT, USA). Chambers were separated by a transparent Plexiglas door. The door 

could be automatically dropped to allow the mouse to change the chamber. Each chamber presented two nose-

poke holes with infrared photobeams (ENV-314M), and, between them, a food magazine with photo beams 

(ENV-303M) where a pellet dispenser delivered the food reinforcement (ENV-203-14P). A fan and a 

houselight (ENV-315M) were located above each of the two food magazines. Each nose-poke hole was 

equipped with a series of changeable stimuli that could vary in three different perceptual dimensions (odor, 

view, tact). For olfactory stimuli, liquid odorant was diluted in mineral oil (1:20; M5904, Sigma Aldrich) and 

presented on paper filter disc (15uL, 2 cm) enclosed in metal pods placed on a rotating wheel mounted beside 

each nose-poke hole outside the chambers. There were ten different odor stimulus exemplars that were possible 

to be presented to the testing subject. For visual stimuli, light-emitting diodes (LED) were placed on top of 

each nose-poke hole. Up to six different colors stimulus exemplars were possible to be presented to the testing 

subject. For tactile stimuli, changeable floor textures were mounted in front of each nose poke hole. There 

were up to ten different textures of stimulus exemplars when possible. Thus, the discriminative association 

between a correct response (which will result in food delivery) and a nose poke hole could be varied by their 

odor, visual cue or the floor texture. 

 Testing. To conduct the behavioral tests I used the two-dimension ID/ED paradigm, with odor and light as 

stimuli selected (Scheggia et al., 2014). For habituation to the apparatus, in the first two days, mice were put 

for 60 minutes in the apparatus with only neutral stimuli (Habituation 1), trained to move from one chamber 

to the other (Habituation 2) and the third day, mice were trained to perform two randomly presented simple 

discriminations (e.g. lights on vs. lights off; apricot vs. lemon) so that they were familiar with the stimulus 
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dimensions (Habituation 3). A criterion of 8 correct choices out of 10 consecutive trials was set for the mice 

to complete each following testing stage. The time from the raising of the middle door divider to a nose-poke 

response and the time to finish each stage were also recorded. Each session was terminated after 40 minutes 

or if a mouse failed to make any response for five consecutive minutes, whichever came first. The test was 

then continued the next day. The order of the discriminations was always the same, but the dimensions and the 

pairs of exemplars were randomly changed and equally represented within groups and counterbalanced 

between groups (Table 1). 

 

Stage Dimension Discrimination1 

LIGHT/ODOR 

Discrimination2 

LIGHT/ODOR 

Discrimination1 

ODOR/LIGHT 

 

Discrimination2 

ODOR/LIGHT Releva

nt 

Irrelevan

t 

SD Light Odor L1 L2 L1 L2 O1 O2 O1 O2 

CD Light Odor L1/O1 L2/O2 L1/O2 L2/O1 O1/L1 O2/L2 O1/L2 O2/L1 

CDRe Light Odor L2/O1 L1/O2 L2/O2 L1/O1 O2/L1 O1/L2 O2/L2 O1/L1 

IDS Light Odor L3/O3 L4/O4 L3/O4 L4/O3 O3/L3 O4/L4 O3/L4 O4/L3 

IDSRe Light Odor L4/O3 L3/O4 L4/O4 L3/O3 O4/L3 O3/L4 O4/L4 O3/L3 

IDS2 Light Odor L5/O5 L6/O6 L5/O6 L6/O5 O5/L7 O6/L8 O5/L8 O6/L7 

IDS2Re Light Odor L6/O5 L5/O6 L6/O6 L5/O5 O6/L7 O5/L8 O6/L8 O5/L7 

EDS Odor Light O7/L7 O8/L8 O7/L8 O8/L7 L5/O7 L6/O8 L5/O8 L6/O7 

EDSRe Odor Light O8/L7 O7/L8 O8/L8 O7/L7 L6/O7 L5/O8 L6/O8 L5/O7 

Table 1. An example of the ID/ED ‘stuck in set’ paradigm adapted and modified from previous studies (Garner et al., 

2006; Papaleo et al., 2008). SD: Simple Discrimination; CD: Compound Discrimination; CDRe: Compound 

Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-

Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-

Dimensional Shift Reversal. Pairs of stimuli (either ‘Discrimination 1’ or ‘Discrimination 2’) are randomly presented in 

each stage, and the mouse must choose the correct stimulus in each pair. In the first stage (SD or simple discrimination), 

the stimuli presented in the two holes differed along one of three dimensions and the mouse is rewarded for choosing 

the correct exemplar. Mice were counterbalanced so that half received light as the initial relevant dimension, other half 

received odor. In the example table 1, the correct exemplar is reported in bold. Stimuli: L1: blue. L2: yellow. L3: white. 

L4: orange. L5: red. L6: green. L7: yellow+white. L8: blue+orange. O1: vanilla. O2: lavender. O3: strawberry. 04: 

cinnamon. O5: peach. O6: sage. 07: oregano. 08: grapefruit. 

 

 The performance was measured in all phases of all experiments using a number of trials to reach the criterion; 

time (in minutes) to reach the criterion; time (in seconds) to make a response (latency to respond). A session 

started when a mouse was placed in one of the two chambers where all the stimuli were neutral. Then the 

transparent door was dropped to give the mouse access to the other chamber where the stimuli cues were on.  
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Figure 4. Timeline of experiments. Mice had to perform 4 types of habituations (from hab1 to hab3 2) to 

become familiar with the apparatus. After successes all of them, they are stopped two days with all the food 

put back into the cage, they were undergoing surgery, and after one week of recovery (in which they were 

put back to food restriction in the last 3 days), they started again with the last habituation (hab3 2), and 

finally tested through the entire stages of the task. 

 

Surgery. After successfully completing stages hab 1, hab 2, hab 3 odor/light and hab 3 light/odor of the ID/ED 

Operon task (Figure 4), mice were prepared for cranial implantations surgery. Mice were deeply anesthetized 

using vaporized isoflurane (2% in O2) before to be positioned on a mice stereotaxic mask (Kopf) using mice 

ear-bars and mice nose-mask. Following careful shaving of the mice head, a small cutaneous application of 

anesthetic cream and the administration i.p. of painkiller (Baytril) and antibiotic (Ketophrene) a large 

transversal cut was done on the mice head skin. Skull was prepared using peroxide hydrogen (H2O2), 2 to 4 

anchor screws (FST, Heidelberg, Germany) and in skull scratches. Next, a small unilateral cranial window was 

performed above the PFC (side were randomized) and the tetrodes/electrodes were gently lowered to reach 

half their final distance. In order to protect the brain from infection and to avoid movement artifact, 

tetrodes/electrodes were surrounded by a fast-curing silicone (Kwik-Kast silicone elastomer, World Precision 

Instruments) and the entire apparatus affixed using dental cement acrylic. Two reference electrodes further 

used as ground and reference electrodes were prior positioned above the cerebellum and then connected to 

their appropriate channel on the recording implant. 

In my experiment, two groups of animals were recorded using either a multielectrode arrays design or a 

custom-made movable tetrode design. The microelectrode array (Neuronexus, Michigan) is based on a 16 

channels vertical configuration located on 4 equally distant shanks (A4x3mm-100-125-177-Z16). Individual 

channel impedance was set at 1MΩ and a contact surface of 177µm2 was used to favorize single unit 

acquisition. The second design using tetrodes (Axona, Ltd.) was set as 4 twisted tetrodes (tungsten 

12µm,#M408870, CFW) with their impedance adjust at 0.4MΩ using the goal-cyanided coating. 

Hab1 Hab2 
Hab3 1 
(MAX 5 

days)

Hab3 2 
(MAX 5 

days

2 days 
stop

surgery
one week 
recovery

Hab3 2 
(MAX 5 

days)

TASK 
(SD-

EDSRE)
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Both implants were positioned within (for the non-movable multielectrode design) or halfway (for the tetrodes 

configuration) to the PFC using the coordinates AP: +1.9 mm; ML: 0.30 mm; DV: -2.5 mm (the mouse brain 

atlas Paxinos and Watson, 1998). The tetrode configuration allows us to move each electrode individually, and 

prior to all recording I daily adjust their dorsoventral position by 50-100µm to reach the dorsal edge of the 

PFC. 

 

Electrophysiology recording.  For both implant types, extracellular activity was acquired using a mouse-

adapted head-stage (ZIF-Clip® 16-Channel Microwire Array, TDT, Florida) and a Cheetah acquisition system 

(Neuralynx, Bozeman, USA). To avoid any constraint the rotation of the animals was compensated using an 

automated commutator (Saturn X, Neuralynx). Individual signal channels were acquired at 32KHz, prior to 

being band-pass filtered at 300-9000Hz and digitally stored. After a week of recovery, in a single-cage housing 

mode, all the mice were tested in the ID/ED Operon task to repeat the last habituation stage prior to surgery 

for habituating them to the head-stage. After this, they were tested through all the stages of the task and the 

PFC activity was recorded (Figure 4). At the end of the behavior test, a 500µA current was passed throughout 

each channel (electrolesions) and mice were deeply euthanized using urethane (2g/kg) before to be 

transcardially perfused with phosphate buffer solution (PBS, 20-30ml) and paraformaldehyde (PFA, 4% in 

PBS, 20-30 ml). Brains were collected, conserved 24h in 4% PFA (post perfusion) and then conserved in a 

cryo-protective solution (30%sugar in PBS) before to be coronally slice using a microtome (50µm thick slice, 

VT1200 Leica). Brain tissue slices were then mounted on glass coverslips and stained with Nissl staining 

(Nissl based mounting medium) before to be examined on a fluorescent microscope (Nikon). A Neurolucida 

system (MBF Bioscience, Vermont, USA ) was used to scan and reconstruct brain slice together with the exact 

localization of the recording site. Mice that present signs of infection, poor recovery to the surgery, poor 

implant stability or misplacement of the electrode/tetrodes were discarded of all further analyses. 

 

Data analysis of electrophysiology recording. All recorded data were analyzed offline after the 

experiments. Each daily session of recordings was loaded on a personal computer with the data analyses 

software Spike2 15.0  (Cambridge electronic department, CED). Prior to analyses, signals were band-pass 

filtered at 300-5000Hz to remove any persistent movement artifact and action potentials were extracted using 

built-in functions. In order to obtain single units sorting, only action potential presenting a signal-ratio-noise 

(SNR) of their amplitude of more than 1/3 were analyzed (1.5 of the standard deviation of the overall signal), 

(Lewicki, 1998; Tolias et al., 2007; Vyazovskiy et al., 2009; Rey, Pedreira and Quian Quiroga, 2015). 

Action potentials (AP) were then further sorted using a semi-automatic approach based on the principal 

component analyses (PCA) using the AP waveform, a refractory period of 2ms, the variation of the AP 

waveform (<95% of the confident interval), the inter-spike-interval (ISI) distribution histogram and the 

PCA-cluster analyses. A recorded neuron was considered as a single unit if it was presenting all these 

parameters (Olcese, et al., 2013) and was conserved on the same channel during the entire recording period. 
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Prior to any further analyses, the firing activity (express in Hz) and the variability of the firing activity 

(defined as the coefficient of variation, CV) during the recording session were used to further characterize 

the neurons into putative interneurons or putative pyramidal neurons.  

Because the number of sessions and the number of single-unit recorded during each session present a very 

strong variability, I pooled together all the units recorded during each stage, without considering their 

individual location in the trial number. This allows me to not biased the results, considering that I could not 

be certain that two units recorded on the same electrode on two consecutive days were originating from the 

same neuron. Similarly, due to the low-firing activity of the principal cells in the PFC, I discarded all cells 

with a firing rate of <0.1Hz that could not be clearly identified due to an insufficient PCA and waveform 

comparison. 

One major obstacle in my analyses was the variability in the latency to respond to the cue, that was 

apparently affected in genetically mutated mice. This leads me to use 6 behavioral events to normalized my 

data: response to the light stimulus (CUE), correct response (CORRECT), incorrect response 

(INCORRECT), collection of the reward (REWARD) and entry inside the food magazine in case of incorrect 

response (NO REWARD). The time period prior to the CUE and the REWARD/NO REWARD was then 

considered as the inter-trial interval (ITI). 

Based on the distribution of each neuron using the firing activity and CV, I could distinguish 4 clusters: 

1)Low Firing/low CV, 2)High firing/High CV, 3)Low firing/High CV and finally 4) High firing/Low CV. 

Once the action potential timestamp of each neuron was extracted and converted into Matlab, I performed 

two separate analyses. The first one based on the variation of the firing activity normalized to the ITI of each 

stage using z-score normalization, the second one using the average firing rate between each relevant period 

of the stage. The first one provides a higher time resolution, but is strongly dependent on the variability of 

the firing rate; the second allows a pairwise analysis for each neuron with a loss of time resolution. Changes 

in the neuronal activity were compared in the behaviorally relevant phases: 

-the entire period of the latency to respond (defined as the time between the presentation of the cue and the 

response) plus 3 seconds of baseline; 

- the entire period of latency to reward /no reward (defined as the time between the response and the entry 

inside the food magazine) plus 3 seconds of baseline. 

The z-score was calculated as follow:  

𝑍=(observed#of spikes)−mean(observed#of spikes in the 3 seconds of baseline)/SD(observed#of spikes in 

the 3 seconds of baseline). 

For each event, a 10 ms time bin was used for the analysis of the firing rate in the window considered. 

The raw firing activity was extracted as a number of spike per second (Hz) during the entire period of the 

response or the reward/no reward. 
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Chronic Oxygen Probes Implants and Brain ppO2 measurements. Brain partial pressure of oxygen (ppO2) 

was measured with an Oxylite system (Oxford Optronics, UK) using a fiber-optic probe designed for chronic 

implantation in mice brain tissues. The probes consist of a Teflon holder with a fiber optic of 1.8 mm in length 

and 250 μm in diameter. The Oxylite system detects the oxygen quenching of the fluorescence generated by a 

dye (platinum(II) meso-tetra-pentafluorophenyl-porphine) embedded into the tip of the probe by an optical 

pulse in an oxygen-dependent fashion. The probes are pre-calibrated by Oxford Optronics in solutions of 

multiple temperatures and PO2 values (Ortiz-Prado et al., 2010). The probe was implanted in medial PFC 

(X=+0,3; Y=+1,9; Z=-2,4 from Bregma) according to the Paxinos and Franklin mouse brain atlas coordinates 

using the similar surgical procedure as above. Healthy conditions were monitored daily for one week after 

surgery procedure, before starting tests.  

PpO2 was recorded in the ID/ED Operon task chamber during a daily session of 40 min of the test. Baseline 

oxygen level and resting oxygen levels were recorded in the home cage respectively for 15min and 10min, 

before and after the test session. PpO2 was recorded every 2 s (2Hz) and digitized using the ANY-maze 

software (Stoelting Co.). There were no significant signs of inflammation or gliosis. 

 

Statistical analyses. Results are expressed as mean±standard error of the mean (s.e.m.) throughout the thesis. 

Electrophysiology data of each genotype were analyzed using a one-way repeated measure ANOVA, followed 

by Tukey post hoc tests. The behaviors were analyzed using a two-sample t-test, followed by Bonferroni 

correction. The comparison of the behavior between different genotypes was analyzed using a two-sample t-

test, followed by Bonferroni correction. Statistical analyses were performed using Origin. 
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Results 

1) Selective increase of oxygen consumption in mice mPFC 

during the extradimensional set shift stage of the Operon ID/ED 

Similar to imaging data in humans, attentional set-shifting abilities and the dependence of PFC have been 

corroborated in non-human primates, rats, and mice using lesions, pharmacological and genetic studies (Berg, 

1948; Milner, 1982; Roberts, Robbins and Everitt, 1988; Dias, Robbins and Roberts, 1996; Birrell and Brown, 

2000; Nagahama et al., 2001; Everett et al., 2001; Bissonette et al., 2008; Eling, Derckx and Maes, 2008; 

Nyhus and Barceló, 2009; Barnett et al., 2010; Keeler and Robbins, 2011; Zhang et al., 2015; Granseth, 

Andersson and Lindström, 2015) . In the clinical setting, using fMRI analyses, it is commonly reported that a 

preponderant altered engagement of the PFC is evident and correlated with executive-function deficits in 

patients diagnosed with SCHIZOPHRENIAwhen tested in the IDS/EDS test of the CANTAB  or in the 

analogous category shift of the WCST.  

To study the mPFC activity in mice performing the ID/ED Operon task with some proxy measure of similar 

assessments done in fMRI human studies, I then first used an amperometry oxygen approach, implanting 

Carbon paste electrodes in the mPFC of wild-type mice (Figure 5). This method measuring oxygen 

consumption has been correlated with the blood-oxygen-level-dependent (BOLD) contrast imaging (Ortiz-

Prado et al., 2010) used in functional magnetic resonance imaging (fMRI) in humans. 

Following similar MRI protocols in humans, I measured the partial pressure of oxygen (ppO2) during each 

stage of the ID/ED Operon task and compared this activity to the resting-state immediately after the test (Figure 

6). Only the values of oxygen consumption in the EDS stage were significantly higher compared to its own 

resting state and all other stages (repeated measures ANOVA, interaction stages resting F(1,2)=28,957; 

p=0.032; post hoc p<0.05 vs EDSResting and other stages). Conversely, I did not find differences in the other 

stages vs resting state. These data confirmed with a similar measurement between humans and mice, that in 

the ID/ED Operon task there is a higher PFC engagement during the EDS stage, which requires major fatigue 

and activity. 
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Figure 5. Stereotaxic positioning of the oxytometry carbon paste electrodes implanted in the mPFC of WT mice. The 

graphical representation is based on the dorsoventral coordinates on the Mice brain Atlas. N=3 mice. 

 

 



P a g e  | 35 

 

 

Figure 6. Consumption of oxygen in mPFC during the different stages of the task of  WT mice. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Red dashed line: baseline recorded 

before the beginning of the task. Black bar: consumption of oxygen recorded during the performance of the task. Grey 

bar: consumption of oxygen recorded 10 minutes after the test when mice returned to the homecages. Statistics: * p<0.05, 

EDS Stage VS EDS Resting. Data are expressed like mean±SEM. N=3 mice. 

 

2) The behavior of WT mice with silicon probes 

Similar to what has been reported using imaging studies in humans, my data on the oxygen consumption 

supported an implication of the PFC in ID/ED set-shifting. However, two major limitations appear, the first 

one is the time resolutions (previously discussed) and the second is that oxytometry results are only an indirect 

indication of the neuronal population within the PFC. Thus, to directly investigate the neuronal activity of the 

mPFC during every single phase of the ID/ED Operon task, following training and implantation, I performed 

an in vivo extracellular recording of mPFC neurons activity in wild-type (wt) mice performing the ID/ED 

automated operon task. 

I used a linear multi-site extracellular electrode, with a design containing 4x4shanks for a total of 16 recording 

sites: this design is sufficient to cover the entire mPFC (see Material&Methods). 

My initial experiments involved 12 mice that were chronically implanted, and to reduce the number of 

experimental animals,  all the mice were first pre-screened and trained on our protocol prior to undergoing the 

surgical implantation (Figure 4). The majority of tested mice (9/12, 75%) completed the test within a short 

period of time (10.88+/-1.25 days) while the remaining mice (3/12, 25%) were not able to fully complete the 
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test (criterion <8/10 for 6 consecutive days). Following behavioral testing, posthoc analyses of the electrode 

placement were done using immunohistochemistry (Figure 7). Due to the misplacement of the electrode, I 

exclude one mouse from further analyses. 

 

 

Figure 7. Stereotaxic positioning of the silicon probes electrodes implanted in the mPFC of WT mice. The graphical 

representation is based on the dorsoventral coordinates on the Mice brain Atlas. N=8 mice. 

 

An initial analysis of the behavioral performance of the remaining mice (8/12) revealed an increase of the trial 

and time to reach criterion in the CDRe stage compare to the immediate previous stages (CD). These results 

are in agreement with our previous observations from naïve mice with no prior surgery or implant, and support 

the expected increase of difficulty to complete the first reversal stage (Scheggia et al., 2014). Similarly, to our 

previous report using the ID/ED Operon, I found an improvement of the behavior, as reported by the number 

of trial to criterion, during the following reversal stages  (IDSRe, IDS2Re, and EDSRe). These results confirm 

the ability to the tested mice to face repeated reversal following the first exposition. Following the completion 

of the CDRe stage, I found a decrease in the number of trials and time to reach the criterion using a stage by 

stage comparison.  However, in contrast to what we observed in mice naïve to surgery/implant,  I did not 

observe a significant increase in the number of trials required to solve the EDS stage compared to the previous 

IDS stages for both trials and time to reach criterion (Figure 8, 9).  
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Figure 8. The number of trials to reach the criterion of WT mice. Following testing of mice implanted for extracellular 

recording, I obtained the number of trials to reach the behavioral predetermined criterion. SD: Simple Discrimination; 

CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-

Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-

Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Data are expressed as Mean±SEM. N=8 mice. 

 

 

Figure 9. The time spent to reach the criterion of WT mice. Following testing of mice implanted for extracellular 

recording, I obtained the time spent to reach the behavioral predetermined criterion. SD: Simple Discrimination; CD: 

Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-

Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-

Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Data are expressed as Mean±SEM. The time is in minutes. 

N=8 mice. 
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However, a more refined analysis revealed that half of these mice (4/8) were showing an increased number of 

trials and time needed to reach the criteria in the EDS stage, while the other half did not show it (Figure 10).  

The EDS stage is the most sensitive stage of this task, and it is the stage that has been consistently and 

selectively reported to depend on the proper functioning of the mPFC (Dias, Robbins and Roberts, 1996; Birrell 

and Brown, 2000; Bissonette et al., 2008). Thus, while I did not observe any sign of infection or major lesions 

during the implantation, it remains possible that the surgery and/or the implantation of the silicon probes might 

be influencing the behavior in this specific stage. It will be interesting to see in further study, if low- to 

moderate-lesions of the PFC, similar to what I induced using the electrode implantation, affect the EDS stage. 

Because of the variability in the behavioral test, with half the mice showing difficulties during the EDS stage, 

I pooled together and then analyzed separately the two groups of mice, based on their behavior (see paragraph 

3, Extra Dimensional Shift (EDS)). During the analyses of the electrophysiological recording, mice showing 

an abnormal behavior during the EDS stage can be then used to compare with the other stages without the 

potential confounding factor linked to the EDS increase of the number of trials and test duration. Interestingly, 

this comparison appears to be a condition paralleling equivalent cognitive human assessments with fMRI. In 

the cases of human imaging, comparing brain activity between two different periods require a similar design 

and conditions. Based on that, differences in brain activity might be interpreted as a different engagement of 

that particular brain region to achieve an equivalent level of behavioral performance. 
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Figure 10. The number of trials and time to reach the criterion of two different groups of WT mice. A) Trials to criterion. 

B) Time to criterion. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination 

Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; 

IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. 

EDS YES: mice that performed in a correct way EDS (n=4). EDS NO: mice that performed in a wrong way the EDS 

(n=4).  White bars: trials to the criterion of WT with EDS YES. Gray bars: trials to the criterion of WT EDS NO. Statistics: 

A)* p<0.05, EDS WT EDS YES vs IDS2Re WT EDS YES. # p<0.05, EDS WT EDS YES vs EDS WT EDS NO. B) # 

P<0.05, SD wt EDS YES vs IDS2 WT EDS YES, EDSRe WT EDS YES. * p<0.05, EDS WT EDS YES vs IDS2Re WT 

EDS YES. Data are expressed as Mean±SEM. Time is in minutes. N=4 for each group. 

 

Following this preliminary observation, I hypothesized that the implantation of a rigid and immovable 

extracellular electrode composed of 4 shank of 50µm might affect the normal functioning of the PFC, due to 

potential lesions. To test that hypothesis, I tested a second cohort of animals (n=7 WT mice) using a custom-

design Microdrive with 4 tetrodes that were individually mobile. Not only this tetrode design allows smaller 
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tetrodes (4x12µm), but also the custom-made drive allows me to slowly move in a dorsoventral axis the 

tetrodes, reducing the pressure on the brain during implantation and allowing to screen a much bigger surface 

of the PFC. Finally, considering the discomfort given by the head-implant, I also modified the food magazine 

of our apparatus. This new 3D-printed design was adjusted in order to have the pellet-collector extruding out 

of the apparatus wall, allowing the mice to collect the sugar pellet without touching the walls. 

These experiments were performed more recently, so the electrophysiological analyses for these mice are still 

ongoing and not included in this thesis. Concerning the behavioral performance of these mice (tetrodes 

implanted mice), I found that their overall behavioral performance during CDRe was increased, similarly to 

our previous report (Scheggia et al., 2014). Similarly, the performance of the mice during the following 

reversal stages was similar to classical results, and so confirmed the acquisition of the attentional set. Finally, 

during EDS, I found a significant increase in the trials and time to reach the criterion in a similar amplitude as 

the one previously reported (Figure 11, 12). In particular, the number of trials to reach the criterion was 

significantly higher in EDS compared to those in SD, CD, IDS, and EDSRe (ONE WAY repeated measure 

ANOVA, F(8,48)= 2.82329, P= 0.01191, posthoc HSD TUKEY: PEDSvSD= 0.0038. Paired t-test, Bonferroni 

correction, , PEDS_vs_CD= 0.01469;   PEDS_vs_IDS= 0.04411;   PEDS_vs_EDSRe= 0.01669). I next tested the time to 

reach criterion, and found a significant increase during EDS compared to SD, CD or IDS (ONE WAY repeated 

measure ANOVA, F(8,48)= 3.83169, P= 0.00149, posthoc HSD TUKEY: PEDSvSD= 7,51213E-4; PEDSvCD= 

0.00875; PEDSvIDS= 0.00224) 

These findings confirm that implantation itself is not a problem for the correct performance of the task. 

However, I could not conclude if the restoration of the expected behavior was due to the size of the implant, 

the ability to move the electrode, or the novel design of the pellet magazine.  
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Figura 11. The number of trials to reach the criterion of WT mice. Following testing of mice implanted with Microdrives 

for extracellular recording, I obtained the number of trials to reach the behavioral predetermined criterion. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Statistics: * p<0.05, EDS vs SD, 

CD, IDS, and EDSRE. Data are expressed as Mean±SEM. N=7 mice. 

 

 

Figure 12. The time spent to reach the criterion of WT mice. Following testing of mice implanted mice with 

Microdrives for extracellular recording, I obtained the time spent to reach the behavioral predetermined criterion. SD: 

Simple Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-

Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-

Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Statistics: ** 

p<0.01, EDS vs SD, CD, and IDS. Data are expressed as Mean±SEM. Time is expressed in minutes. N=7 mice. 
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In order to better understand the behavioral output of the 1st group, I performed additional analyses. These 

analyses were not produced in our previous report and were expected to provide a better understanding of the 

mice's behavior during the different stages. In particular, I focused on the latency to respond, characterized as 

the time between the onset of the cue presentation and the onset of the nose poke, defined as the period of 

decisional processing. Based on the accuracy of the behavioral output, I could divide such latency as “latency 

to correct” or “latency to incorrect”.  Overall, I found that the latency to make a choice was variable across 

stages, with the latency during SD greater than all other stages (Figure 13) (ONE WAY repeated measure 

ANOVA, F(8,120)= 8,84148, P=0.01191, posthoc HSD TUKEY: PSDvCD= 0,0038; PSDvCDRe= 5,63645E-5; 

PSDvIDS= 4,88415E-7; PSDvIDSRe= 1,99502E-7; PSDvIDS2= 6,1136E-7; PSDvIDS2Re= 8,74431E-6; PSDvEDS= 

3,45381E-8; PSDvEDSRe= 3,92103E-7). This adaptative latency seems to suggest an improvement over time of 

the animal response time and the possibility to develop a habituation behavior to the operant conditioning. 

 

 

Figure 13. Latency to respond of WT mice. It represents the time, in seconds, between the delivery of the cues and the 

responses. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; 

IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: 

Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Red 

line: the exponential trend of the values across the different stages. Statistics: **p<0.01, SD vs 

CD,CDRe,IDS,IDSRe,IDS2,IDS2Re,EDS,EDSRe. Data are expressed as Mean±SEM. N=7 mice. 

 

I next separated each trial based on the accuracy of the response. I found that the latency decrease across stages 

for both correct and incorrect outcomes. In particular, the latency to correct choice was higher in the SD stage 

compared to IDS2Re or EDS (Figure 14) (ONE WAY repeated measure ANOVA, F(8,56)= 2,84081, P= 

0,01013, posthoc HSD TUKEY: PSDvIDS2Re= 0,03707; PSDvEDS= 0,00302); in the case of an incorrect decision 

making,  the latency in SD was always higher than the latency for all the other stages (Figure 14)  (ONE WAY 

repeated measure ANOVA, F(8,56)= 7,23162, P= 1,53591E-6, posthoc HSD TUKEY: PSDvCD= 0,00681; 
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PSDvCDRe= 3,16176E-4; PSDvIDS= 9,61843E-6; PSDvIDSRe= 1,24851E-5; PSDvIDS2= 1,30061E-5; PSDvIDS2Re= 

9,03645E-4; PSDvEDS= 1,03105E-5; PSDvEDSRe= 8,12079E-6). Interestingly, I did not find any differences in the 

between stages latency for a correct or incorrect decision making (Figure 14). 

 

 

Figure 14. Latency to correct and incorrect responses of WT mice. They are the time, in seconds, between the delivery of 

the cues and the correct and incorrect responses. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: 

Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: 

Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-

Dimensional Shift Reversal. Light gray bar: latency to correct responses. Dark gray bar: latency to incorrect responses. 

Green line: the exponential trend of the latency to correct responses across the different stages. Red line: the exponential 

trend of the latency to incorrect responses across the different stages. Statistics: *p<0.05, SD correct vs IDS2Re correct, 

EDS correct. ## p<0.01, SD incorrect vs CD incorrect, CDRe incorrect, IDS incorrect, IDSRe incorrect, IDS2 incorrect, 

IDS2Re incorrect, EDS incorrect, EDSRe incorrect. Data are expressed as Mean±SEM. N=7 mice. 

 

A second analysis that could provide a better understanding of the mice's behavior was the latency to collect 

the reward (in the case of correct outcome). 

Interesting, I found that the latency to collect following correct trial was lower in the IDS2 compare to the 

previous IDS stages (P=0.03438) (Figure 15). When the relevant dimension was changed (EDS), the latency 

to reward was significantly higher than previous stages, and in particular the immediately prior stage IDS2 

(P=0.033).  
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Figure 15. Latency to reward of  WT mice. It is the time, in seconds, between a correct poke and the time of the first head 

entry to the food pellet magazine. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: Compound 

Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-

Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-

Dimensional Shift Reversal. Red line: the exponential trend of the latency to reward across the different stages. Statistics: 

# p<0.05, IDS vs IDS2. *p<0.05, EDS vs IDS2. Data are expressed as Mean±SEM. N=7 mice. 

 

3) Electrophysiology of WT implanted with silicon probes 

I recorded the neuronal activity of PFC using well-identified single units during the entire performance. The 

analyses reported here are based on all the mice implanted with silicon probes analyzed together in one pool 

or separated based on their performance during the EDS state (see above in paragraph 2). 

For all stages, neurons were grouped independently of their position within the completion of the stage. As I 

show before, the period between the cue delivery and the decision making (1) and the period between the 

decision making and the reward collection (2) are highly affected in the different stages. And so, I decided to 

analyze the neuronal activity of the PFC during several behavioral events as set stimuli for the 

electrophysiology analysis (Figure 16).  

In particular: 

- Cue event: defined as the  moment to which the visual/olfactory cues are delivered 

- Correct event: defined as the moment to which the mouse produces a correct poke in response to the 

cue. Following that behavioral outcome, a delay of 10ms is generated before the sugar pellet delivery 

in the correct side and the reward falls down in the food magazine (latency10ms); 

- Reward event: defined as the moment to which the reward is delivered, this event is always associated 

to an auditory cue resulting from the pellet dispenser servo-motor and the pellet falling within the 

magazine 

- Incorrect event: defined as the moment to which the mice produce an incorrect poke in response to 

the cue. Following that behavioral outcome, a 5s period where the house-light is turned On, as a signal 

for the incorrect response. 
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- House-light event: Defined as the entire period where the house light is turned ON in response to 

incorrect decision.. 

 

 

Figure 16.  Behavioral events considered for electrophysiological analysis. These events are the main events of the task 

characterized a correct (CUE, CORRECT, REWARD) or incorrect (CUE, INCORRECT, HOUSE-LIGHT) trial. 

 

One of the challenging aspects of in vivo electrophysiology recording of PFC neurons is the low firing activity 

of the principal neurons (Stark et al., 2013; Blaeser, Connors and Nurmikko, 2017). Indeed, these neurons also 

called pyramidal neurons have a firing activity of less than 1 Hz when recorded in freely behaving mice (Lee 

et al., 2016). Because the extraction of action potential (spike sorting) is based on the comparison of different 

components of the action potential shape (principal component analyses, PCA), a neuron with low firing will 

result in the oversampling (increase noise artifact) or downsampling (elimination action potential). Similarly, 

detection of variation in the firing rate of slow-firing neurons have often been shown to be challenging, and 

require careful sampling (Dautan et al., 2016). Thus, I made the decision to extract only neurons that were 

clearly identified as single units and presenting a signal-ratio-noise higher than 3. While this approach does 

not allow me to analyses multi-unit activity (MUA) due to the low number of neurons sampled, it allows us to 

be confident that the units analyzed were clearly identified as single unit. Additionally, because the recordings 

were performed throughout different consecutive days, and I could not be certain that from day-to-day the 
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same neuron was conserved, I conservatively decided to analyze every single-unit individually without 

considering a possible conservation between stages or days. 

During the spikes sorting, I had to discard an animal from the analysis for a large amount of noise in the traces, 

and therefore for the impossibility to obtain a clean neuronal signal. 

From all animals recorded (n=7), a total of 172 single units were recorded across the entire behavioral testing. 

Because there are different types of neurons in the mPFC, I tried to distinguish them using classically defined 

clustering (Scheggia et al., 2020) and see if there was an electrophysiological effect due to a specific type of 

neuron across stages. To classify neurons, I considered the average firing rates (Hz) and the coefficient of 

variation (CV). The CV is a standardized measure of the dispersion of a probability distribution or frequency 

distribution based on the formula: 

CV = 
STANDARD DEVIATION (Firing rate)

𝑀𝐸𝐴𝑁 (𝐹𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)
 

Based on the previous report using optogenetic identification or large-scale recording, I decided to clusters my 

recorded unit based on their average firing rate and their CV: 

- SLOW&REGULAR  average firing rate <= 0.6 Hz; CV <= 2; 

- SLOW&BURSTY  average firing rate <= 0.6 Hz; CV > 2; 

- FAST&REGULAR  average firing rate > 0.6 Hz; CV <= 2; 

- FAST&BURSTY  average firing rate  > 0.6 Hz; CV > 2. 

As expected, in all the stages of the task, the great majority of the neurons that I recorded belong to the group 

of SLOW&REGULAR and SLOW&BURSTY neurons (Figure 17), considered as putative pyramidal neurons 

(Stark et al., 2013). Indeed, a bursting factor is very difficult to identify based on the CV only, due to the use 

of the standard error in the formula, that introduce a firing rate effect. For that slow-firing neurons were 

considered as pyramidal. 
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Figure 17. Type of single-unit recorded in WT mice. Each color represents a different stage of the task. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. X-axis: average firing rate of the 

single units, expressed in the number of spikes per second. Y-axis: Coefficient of Variation: STANDARD DEVIATION 

(FIRING)/MEAN(FIRING). Red lines: delimitations for characterized the 4 different groups of single-units. N=7 mice. 

 

For the successive analyses, I first focused on the variation of the firing activity in the proximity of specific 

events, and in particular the time of correct poke and the time of incorrect poke, using peristimulus time 

analyses, considering bin of 10ms amplitude, and using normalized z-score analyses. For proper analyses, I 

normalized the z-score to the firing rate during baseline. Due to the great number of neurons, and to previous 

reports in the PFC, I considered the firing rate variation as binomial distribution, that allowed me to consider 

a significant change to the baseline as presenting an increase of the z-score of <or> of 1.96. Because I could 

not be confident that neurons presenting a firing rate <0.1Hz were not oversampled, and due to limitations in 

the analyses, I discarded all units with an average firing activity <0.1Hz in the intervals considered. 

The PSTH (peristimulus time histogram) were divided into different periods and normalized using z-score 

normalization for a 3s period defined as immediately preceding the mean + 2SD of the cue delivery time.  

In case of correct choice to the cue delivery: 

1) PRE-CUE DELIVERY: is defined as the period to which less than 40% of the cue has been delivered, 

and is considered as a period immediately before the cue is delivered for the majority of the trials (-2 

standard deviation from the mean cue delivery period). 

2) CUE DELIVERY: is defined as the period to which for most of the trial (95%) the cue has been 

delivered and is defined as the mean ±SEM.  
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3) DECISION MAKING: is defined as the period to which there were for less than 40% of trials the cue 

has to be presented, defined as mean +2SD. For the majority of the trials, this period will correspond 

to the decision-making period, where the animal is giving the choice to produce a correct or an incorrect 

response. 

4) POST-DECISION: it is defined as the period to which the decision has been made and bordered by the 

mean+SEM of the reward collection (in the case of incorrect “and the food magazine entries”)  

5) REWARD: is defined as the period to which the animals have been receiving the reward and collect it 

in more than 95% of the trials (mean ±SEM). 

6) POST-REWARD: is defined as the period to which for most of the trial (>95%) the animal has received 

the reward and is now considered as the inter-trial interval. 

In case of incorrect choice to cue delivery: 

1) PRE-CUE DELIVERY: is defined as the period to which less than 40% of the cue has been delivered, 

and is considered as a period immediately before the cue is delivered for the majority of the trials (-2 

standard deviation from the mean cue delivery period). 

2) CUE DELIVERY: is defined as the period to which for most of the trial (95%) the cue has been 

delivered and is defined as the mean ±SEM. 

3) DECISION MAKING: is defined as the period to which there were for less than 40% of trials the cue 

has to be presented, defined as mean +2SD. For the majority of the trials, it will correspond to the 

decision-making period, where the animal is giving the choice to produce a correct or an incorrect 

response. 

4) POST-DECISION/ HOUSE LIGHT: is defined as the time period in which the house light is turned 

on as a sing of wrong response (5 seconds); 

5) POST HOUSE LIGHT: it is the time period after the 5 seconds of house light. I decided to take 3 

seconds, as the baseline before the PRE-CUE DELIVERY period. 

Here, I will describe the variation of the firing activity in the 9 different stages of the task. 

 

1. SIMPLE DISCRIMINATION (SD) 

In the 7 recorded animals, I collected recordings for a total period of 16 days across all animals (1.17±0.18). 

The number of neurons recorded was 52, and the number of neurons analyzed was 23.  

During the intertrial interval, the firing rate was 0.18±0.04 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.097), so I pooled together the average activity. The activity 

decreased during the correct post-decision period (0.09±0.02 Hz; paired t-test, p=0.02) and the reward 

collection (0.05±0.02 Hz; paired t-test,  p=0.005). But for the same period, no effect was found during incorrect 

trial (paired t-test , p>0.05). For all other epochs in correct and incorrect trials, no significant differences in the 

average firing rate were observed (paired t-test, p>0.05). Pairwise comparison of the variation of the firing rate 
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using paired t-test in correct and incorrect show that the firing was significantly higher during the cue period 

associated with correct trials compared to incorrect (p=0.036). All other comparisons were not showing any 

significant differences (p>0.05) (Figure 18). 

 

Figure 18. Firing rate of mPFC cells, recorded in WT mice, during SD stage. The firing rate is averaged for different 

periods around correct and incorrect choices. SD: Simple Discrimination. Statistics: * AVG BSL vs all periods; # 

correct vs incorrect; * p<0.05, AVG BSL vs post-decision correct, reward; # p<0.05 cue correct VS cue incorrect. Data 

are expressed as Mean±SEM. N=7 mice. 

 

Following pairwise analyses of the individual firing rate during all periods, I focused on the PSTH of the firing 

rate during each trial. I found that the average latency between the cue delivery and the correct poke was 

14.27±2.27s, while the latency between the correct poke and the reward was 4.59±0.92s. I used twice the 

standard deviation of the cue and reward to define the edge of the PSTH. I obtained a PSTH starting 26s prior 

to the cue response and ending 10s after. Before the onset and the offset, I considered 3 seconds of baseline 

activity (from -29s to -26s, from 10s to 13s). Immediately following cue delivery, I observed an increase in 

the z-score that quickly returned to the baseline (Figure 19). This effect could be associated with the cue 

delivery itself, as many studies demonstrated that the PFC responds to cue presentation associated with reward 

(Otis et al., 2017) throughout dense inputs from the somatosensory, auditory or visual cortex. Concerning the 

remain time period, I did not find any significant change of the firing rate, at the exclusion of the post-reward 

delivery, where an increase was evident (Figure 19). These data might be in line with previous evidence, in 

humans or rodents, showing a marginal involvement of the mPFC in simple discrimination (Dias, Robbins and 

Roberts, 1996; Birrell and Brown, 2000; Bissonette et al., 2008). 
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Figure 19. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of SD stage. It 

represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. SD: Simple 

Discrimination. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: represents 

the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. Yellow arrow: 

it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time of cue delivery. 

Red line: the instant of correct poke. Green arrow: it represents the average time of the first entry in the food magazine. 

Green square: represent the ±SEM of the average time of first entry in the food magazine. Data are expressed as 

Mean±SEM. N=7 mice. 

 

When testing incorrect outcome trials, the house light is turned on during 5 seconds as a sign of error. I used 

twice the standard deviation of the cue and period of the house light to define the edge of PSTH. Focusing on 

the PSTH of the incorrect poke, I found that the average latency between the cue delivery and the incorrect 

poke was 22.90±4.48s. I obtained a PSTH onset o -42s and an offset of +5s. Before the onset and after the 

offset, I considered 3 seconds of baseline activity (total studied period: from -45s to -42s; from 5s to 8s). 

Interestingly, when I compared the firing activity during an incorrect poke, I found that the presentation of 

cues was delivered at much longer timescale than for correct poke, confirming the higher latency to incorrect.  

I then observed a similar increase in the z-score of the firing activity immediately before the cue delivery. I 

also found a change in the firing activity during the delivery of the cue,  similar to the one observed following 

correct response. This might suggest a cortical expectation and reaction to the cue signal.  In contrast, to correct 

choices, during the decision period, I observed a very strong increase of the firing activity, maintained while 

the decision was already made, both in the house-light period and post-house light period (Figure 20). This 

suggests that in my hands, the mPFC is mostly involved in response inhibition and the reward prediction error 

than for the correct choice. This confirms some reports in rats and mice showing that the PFC inputs to the 

dorsomedial striatum and the nucleus accumbens can be required for the maintenance of goal-directed behavior 

(Balleine and Dickinson, 1998; Goto and Grace, 2005; Gremel and Costa, 2013). 
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Figure 20. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of SD stage. It 

represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. SD: Simple 

Discrimination. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. Gray square: represents 

the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. Yellow arrow: 

it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time of cue delivery. 

Red line: the instant of correct poke. Red square: represent the duration of the house-light on. Data are expressed as 

Mean±SEM. N=7 mice. 

 

2. COMPOUND DISCRIMINATION (CD) 

For the CD stage, I collected recordings for a total period of 13 days across all animals (1.63±0.26 day per 

animals). The number of neurons recorded was 29, and the number of neurons analyzed was 9.  

During the intertrial interval, the firing rate was 0.13±0.05 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.308), so I pooled together the average activity. The activity 

decreased during the reward collection (0.06±0.03 Hz; paired t-test, p=0.047) and increased during the 

decision-making related to an incorrect choice (0.17±0.05 Hz; p= 0.045). But for the same period, no effect 

was found during correct trials (paired t-test, p=0.152) For all other epochs in correct and incorrect trials, no 

significant differences in the average firing rate were observed (paired t-test, p>0.05). Pairwise comparison of 

the variation of the firing rate using paired t-test in correct and incorrect show any significant differences 

(p>0.05) (Figure 21). 
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Figure 21. Firing rate of mPFC cells, recorded in WT mice, during CD stage. The firing rate is averaged for different 

periods around correct and incorrect choices. CD: Compound Discrimination. Statistics: * AVG BSL vs all periods; * 

p<0.05, AVG BSL vs reward, decision-making incorrect. Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke was 10.98±1.89s, while the latency between the correct 

poke and the reward was 4.83±1.05s. I then obtained the PSTH with an onset positioned -22s before the correct 

behavioral outcome and an offset at +10s. Before the onset and after the offset, I considered 3 seconds of 

baseline activity (total studies period: from -25s to -22s; from 10s to 13s). Compared to the baseline, I observed 

a significant variation of the firing rate in the post-decision period, as described using the z-score. These 

observations suggest that PFC can play a role between the association cue-reward, which is similar to previous 

work suggesting participation in goal-directed (Locke and Braver, 2008). I also found a significant increase in 

the firing rate in the post-reward delivery (Figure 22).  
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Figure 22. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice,  for the correct choice of CD stage. It 

represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. CD: Compound 

Discrimination. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: represents 

the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. Yellow arrow: 

it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time of cue delivery. 

Red line: the instant of correct poke. Green arrow: it represents the average time of the first entry in the food magazine. 

Green square: represent the ±SEM of the average time of first entry in the food magazine. Data are expressed as 

Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke) and I found that the 

average latency between the cue delivery and the incorrect poke was 11.61±1.86s. Similarly, the PSTH was 

obtained between -22s and +5s of the incorrect poke. Before the onset and after the offset, I considered 3 

seconds of baseline activity  (total studied period: from -25s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke, I found an 

increase of the firing rate during the cue delivery, and the decision making period. This again seems to 

confirmed, as found for the SD period, that the PFC might encode behavioral inhibition. I also found an 

increase of the firing activity when the light-house was turned ON (Figure 23).  
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Figure 23. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of CD stage. It 

represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. CD: 

Compound Discrimination. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. Gray 

square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light 

on. Data are expressed as Mean±SEM. N=7 mice. 

 

3.COMPOUND DISCRIMINATION REVERSAL (CDRe) 

For the CDRe stage, I collected recordings for a total period of 17 days across all animals (2±0.33 days per 

animal). The number of neurons recorded was 45 and the number of neurons analyzed was 15.  

During the intertrial interval, the firing rate was 0.12±0.02 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.474), so I pooled together the average activity. The activity 

increased during the incorrect decision-making (0.28±0.04 Hz; paired t-test, p=0.006) and the incorrect post-

decision when the house light was turned on (0.20±0.02 Hz; p= 0.021). But for the same periods, no effects 

were found during correct trials (paired t-test, p>0.05). For all other epochs in correct and incorrect trials, no 

significant differences in the average firing rate were observed (paired t-test, p>0.05). Pairwise comparison of 

the variation of the firing rate using paired t-test in correct and incorrect show that the firing was significantly 

higher during the cue period associated with incorrect trials compared to correct (p=0.027). All other 

comparisons were not showing any significant differences (p>0.05)  (Figure 24). 
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Figure 24. Firing rate of mPFC cells, recorded in WT mice, during CDRe stage. The firing rate is averaged for different 

periods around correct and incorrect choices. CDRe: Compound Discrimination Reversal. Statistics: * AVG BSL vs all 

periods; # correct vs incorrect; * p<0.05, AVG BSL vs decision-making incorrect,house light; # p<0.05 decision-making 

correct VS decision-making incorrect. Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke is 9.72±2.05s, while the latency between the correct 

poke and the reward is 5.51±2.71s. I obtained a PSTH onset of -21s and an offset of +20s to the correct poke. 

Before the onset and after the offset, I considered 3 seconds of baseline activity (total studied period: from -

24s to 23s). In this case, what I found is that in all the different periods of the PST, no significantly increased 

activity was observed compared to the baseline (Figure 25). This could be associated to the fact that the mPFC 

is not involved in the reversal learning (Dias, Robbins and Roberts, 1996; Birrell and Brown, 2000; Bissonette 

et al., 2008) 
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Figure 25.  Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of CDRe stage. 

It represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. CDRe: 

Compound Discrimination Reversal. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. 

Gray square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first 

entry in the food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. 

Data are expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke) and I found that the 

average latency between the cue delivery and the incorrect poke was 8.92±1.23s. I obtained a PSTH onset of 

-17s and an offset of +5s to the incorrect poke. Before the onset and after the offset, I considered 3 seconds of 

baseline activity (total studied period: from -20s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke, I found that 

the cue delivery was delivered at a similar timescale than for the correct poke. As for the correct choice, what 

I found was that in all the different periods of the PST, no significantly increased activity was observed 

compared to the baseline (Figure 26). This is in line with previous evidence indicating a scarce involvement 

of the mPFC in simple and initial reversal learning (Dias, Robbins and Roberts, 1996; Birrell and Brown, 2000; 

Bissonette et al., 2008). 
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Figure 26. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of CDRe stage. 

It represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. CDRe: 

Compound Discrimination Reversal. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. 

Gray square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light 

on. Data are expressed as Mean±SEM. N=7 mice. 

 

4. INTRA-DIMENSIONAL SHIFT (IDS) 

For the IDS stage, I collected recordings for a total period of 15 days across all animals (1.887±0.20). The 

number of neurons recorded was 43, and the number of neurons analyzed was 14. 

During the intertrial interval, the firing rate was 0.16±0.08 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.234), so I pooled together the average activity. The activity 

increased during the decision-making related to an incorrect choice (0.39±0.11 Hz; paired t-test, p= 0.033). 

But for the same period, no effect was found during correct trials (paired t-test, p=0.271). For all other epochs 

in correct and incorrect trials, no significant differences in the average firing rate were observed (paired t-test, 

p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test in correct and incorrect show 

any significant differences (p>0.05) (Figure 27). 
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Figure 27. Firing rate of mPFC cells, recorded in WT mice, during IDS stage. The firing rate is averaged for different 

periods around correct and incorrect choices. IDS: Intra-Dimensional Shift. Statistics: * AVG BSL vs all periods; * 

p<0.05, AVG BSL vs decision-making incorrect. Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke is 8.61±0.71s, while the latency between the correct 

poke and the reward is 6.47±1.89s. I obtained a PSTH onset o -13s and an offset of +11s to the correct poke.  

Before the onset and after the offset, I considered 3 seconds of baseline activity (total studied period: from -

16s to +14s). As for SD and CD (Figure 19, 22), but not for CDRe, during the immediate period preceding 

cue delivery and during the post-reward period, I observed a significant increase of the firing activity. 

Moreover, immediately during the cue delivery, I found an increase in the firing activity, which could again 

be associated with the cue delivery itself, which was maintained during the decision making period. This 

increase was maintained in the post-decision period and strongly increased in the reward collection, like CD 

(Figure 22), probably due to the collection of the reward (Figure 28) (Locke and Braver, 2008).   
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Figure 28. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of IDS stage. It 

represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. IDS: Intra-

Dimensional Shift. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first entry in the 

food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. Data are 

expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke), and I found that the 

average latency between the cue delivery and the incorrect poke was 6.12±0.83s. 

I obtained a PSTH onset o -11s and an offset of +5s to the incorrect poke. Before the onset and after the offset, 

I considered 3 seconds of baseline activity (total studied period: from -14s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke,  I found 

that the cue delivery was delivered at a similar timescale than for the correct poke. I observed the same increase 

of the firing activity during the decision making period. In the case of a pre-cue period, delivery of the cue, 

post-decision, and post-house-light, there was no significant increase in the activity compared to the baseline 

(Figure 29), unlike SD and CD (Figure 20, 23).  
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Figure 29. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of IDS stage. It 

represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. IDS: Intra-

Dimensional Shift. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light on. Data are 

expressed as Mean±SEM. N=7 mice. 

 

5. INTRA-DIMENSIONAL SHIFT REVERSAL (IDSRe) 

For the IDSRe stage, I collected recordings for a total period of 13 days across all animals (1.63±0.26). The 

number of neurons recorded was 42, and the number of neurons analyzed was 11.  

During the intertrial interval, the firing rate was 0.20±0.07 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.706), so I pooled together the average activity. For all the epochs 

in correct and incorrect trials, no significant differences in the average firing rate were observed (paired t-test, 

p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test in correct and incorrect show 

any significant differences (p>0.05) (Figure 30). 
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Figure 30. Firing rate of mPFC cells, recorded in WT mice, during IDSRe stage. The firing rate is averaged for different 

periods around correct and incorrect choices. IDSRe: Intra-Dimensional Shift Reversal. Data are expressed as 

Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke is 7.64±2.23s, while the latency between the correct 

poke and the reward is 4.95±1.26s. I obtained a PSTH onset of -20s and an offset of +12s to the correct poke. 

Before the onset and after the offset, I considered 3 seconds of baseline activity (total studied period: from -

23s to 15s). In this case, like for CDRe (Figure 25), no significantly increased activity was observed in all the 

other periods compared to the baseline(Figure 31). This could be associated to the fact that the mPFC is not 

involved in the reversal learning (Dias, Robbins and Roberts, 1996; Birrell and Brown, 2000; Bissonette et al., 

2008). 
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Figure 31.  Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of IDSRe stage. 

It represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. IDSRe: Intra-

Dimensional Shift Reversal. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray 

square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first 

entry in the food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. 

Data are expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke), and I found that the 

average latency between the cue delivery and the incorrect poke was 6.32±1.61s. 

I obtained a PSTH onset of -15s and an offset of +5s to the incorrect poke. Before the onset and after the offset, 

I considered 3 seconds of baseline activity (total studied period: from -18s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke, I found that 

the cue delivery was delivered at a similar timescale than for the correct poke. I observed a strong increase of 

the firing activity immediately before the cue delivery. What I found is that in all the other different periods of 

the PST, no significantly increased activity was observed compared to the baseline (Figure 32), like CDRe 

(Figure 26), but no the stages with an introduction of new stimuli (SD, CD, IDS) (Figure 20, 23, 29). 
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Figure 32. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of IDSRe stage. 

It represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. IDSRe: 

Intra-Dimensional Shift Reversal. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. 

Gray square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light 

on. Data are expressed as Mean±SEM. N=7 mice. 

 

6. INTRA-DIMENSIONAL SHIFT 2 (IDS2) 

The IDS2 is a stage introduced for reinforcing the attentional set developed through the previous stages. Here 

I collected recordings for a total period of 14 days across all animals(1.44±0.24). The number of neurons 

recorded was 49, and the number of neurons analyzed was 20. 

During the intertrial interval, the firing rate was 0.17±0.03 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.059), so I pooled together the average activity. The activity 

increased during almost all the epochs of correct choice: pre-cue (0.31±0.06 Hz; paired t-test, p=0.027), cue 

(0.24±0.04 Hz; paired t-test, p=0.016), decision-making (0.36±0.07 Hz, paired t-test, p=0.027), post-decision 

(0.28±0.05 Hz; paired t-test, p=0.039), and reward (0.34±0.07 Hz; paired t-test, p=0.031). This did not happen 

after the reward collection (paired t-test, p=0.838). For all the epochs in incorrect trials, no significant 

differences of the average firing rate were observed (paired t-test, p>0.05). Pairwise comparison of the 

variation of the firing rate using paired t-test in correct and incorrect show that the firing was significantly 

higher during the decision-making period associated with correct trials compared to incorrect (p=0.009). All 

other comparisons were not showing any significant differences (p>0.05) (Figure 33). 
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Figure 33. Firing rate of mPFC cells, recorded in WT mice, during IDS2 stage. The firing rate is averaged for different 

periods around correct and incorrect choices. IDS2: Intra-Dimensional Shift 2. Statistics: * AVG BSL vs all periods; # 

correct vs incorrect; * p<0.05, AVG BSL vs pre-cue correct, cue correct, decision-making correct, post-decision correct, 

reward; # p<0.05 decision-making correct VS decision-making incorrect. Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke is 8.56±1.97s, while the latency between the correct 

poke and the reward is 2.79±0.63s. I obtained a PSTH onset o -20s and an offset of +7s to the correct poke. 

Before the onset and after the offset, I considered 3 seconds of baseline activity (total studied period: from -

23s to 10s).  

Again, as for SD, CD, and IDS (Figure 19, 22, 28), but not for reversal stages, during the immediate period 

preceding cue delivery and during the post-reward period, I observed a significant increase of the firing 

activity. Moreover, immediately during the cue delivery, I found an increase in the firing activity, which could 

again be associated with the cue delivery itself, which was maintained during the decision making period. This 

increase was maintained in the post-decision period and strongly increased in the reward collection (Figure 

34), like CD and IDS (Figure 22, 28). 
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Figure 34. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of IDS2 stage. It 

represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. IDS2: Intra-

Dimensional Shift 2. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first entry in the 

food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. Data are 

expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke), and I found that the 

average latency between the cue delivery and the incorrect poke was 6.35±2.07s. 

I obtained a PSTH onset of -19s and an offset of +5s to the incorrect poke. Before the onset and after the offset, 

I considered 3 seconds of baseline activity (total studied period: from -22s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke, I found that 

the cue delivery was delivered at a similar timescale than for the correct poke. As for correct choice, I observed 

the same increase of the firing activity immediately before the cue delivery, and in the cue-delivery period, the 

cue delivery itself.  In all the other periods, the activity didn’t increase (Figure 35). This is different from what 

was found in SD, CD, and IDS (Figure 20, 23, 29), where the mPFC significantly increases the activity in the 

decision-making for an incorrect choice. 

 

 

 



P a g e  | 66 

 

 

Figure 35. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of IDS2 stage. 

It represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. IDS2: Intra-

Dimensional Shift 2. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light on. Data are 

expressed as Mean±SEM. N=7 mice. 

 

7. INTRA-DIMENSIONAL SHIFT 2 REVERSAL (IDS2Re) 

In the IDS2Re stage, I collect recordings for a total period of 13 days across all animals (1.63±0.26). The 

number of neurons recorded was 46 and the number of neurons analyzed was 19.  

During the intertrial interval, the firing rate was 0.18±0.05 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.175), so I pooled together the average activity. For all the epochs 

in correct and incorrect trials, no significant differences in the average firing rate were observed (paired t-test, 

p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test in the correct and incorrect 

trials show that the firing was significantly higher during the pre-cue period associated with correct trials 

compared to incorrect (p=0.04). All other comparisons were not showing any significant differences (p>0.05) 

(Figure 36). 
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Figure 36. Firing rate of mPFC cells, recorded in WT mice, during IDS2Re stage. The firing rate is averaged for different 

periods around correct and incorrect choices. IDS2Re: Intra-Dimensional Shift 2 Reversal. Statistics: # correct vs 

incorrect; # p<0.05 pre-cue correct VS pre-cue incorrect. Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke is 7.27±1.18s, while the latency between the correct 

poke and the reward is 3.91±0.97s. I obtained a PSTH onset o -16s and an offset of +10s to the correct poke. 

Before the onset and after the offset, I considered 3 seconds of baseline activity (total studied period: from -

19s to +13s). During the immediate period preceding cue delivery, I observed a significant strong increase of 

the firing activity (-22 to -16s, average z-score). Immediately during the cue delivery, this strong increase was 

maintained, which can again be associated with the cue delivery itself, also during the decision making period. 

This case is completely different from what happened for the other reversal stages (Figure 25, 31), where there 

was no involvement of the mPFC. The activity was quickly returning to baseline in the post-decision (Figure 

37), like in the previous reversal stages (Figure 25, 31).  
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Figure 37. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of IDS2Re stage. 

It represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. IDS2Re: Intra-

Dimensional Shift 2 Reversal. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray 

square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first 

entry in the food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. 

Data are expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke), and I found that the 

average latency between the cue delivery and the incorrect poke 9.80±2.61s. 

I obtained a PSTH onset o -22s and an offset of +5s to the incorrect poke. Before the onset and after the offset, 

I considered 3 seconds of baseline activity (total studied period: from -25s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke,  I found 

that the cue delivery was delivered at a similar timescale than for the correct poke.  What I found is that in all 

the other different periods of the PSTH, no significantly increased activity was observed compared to the 

baseline (Figure 38), like reversal stages (Figure 26, 32), but no the stages with an introduction of new stimuli 

(SD, CD, IDS, IDS2) (Figure 20, 23, 29, 35).  

The mPFC in case of correct choice in IDS2Re, a serial reversal stage, once reinforced the attentional set and 

becoming familiar with the reversal, behaved like in stages in the introduction of new stimuli, increasing the 

activity in the pre-responses periods. 
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Figure 38. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of IDS2Re stage. 

It represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. IDS2Re: 

Intra-Dimensional Shift 2 Reversal. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. 

Gray square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light 

on. Data are expressed as Mean±SEM. N=7 mice. 

 

8. EXTRA-DIMENSIONAL SHIFT (EDS) 

This is the stage in which the relevant dimension change and in which the mPFC has been reported to be more 

involved. In this stage, I collected recordings for a total period of 16 days across all animals (1.75±0.31). The 

number of neurons recorded was 40, and the number of neurons analyzed was 11.  

During the intertrial interval, the firing rate was 0.21±0.05 Hz, but in this stage a significant difference was 

found for correct and incorrect trials (paired t-test, p=0.012), so I didn’t pool together the average activity. The 

firing rate in the intertrial interval before correct responses was 0.18 ±0.05 Hz, and before incorrect responses 

was 0.24±0.05 Hz. The activity decreased during the incorrect decision-making period (0.14±0.03 Hz; paired 

t-test, p=0.049) and during the house light period (0.09±0.01 Hz; paired t-test, p=0.013). For all other epochs 

in incorrect trials, and for all the epochs in correct trials no significant differences of the average firing rate 

were observed (paired t-test, p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test 

in correct and incorrect show that the firing was significantly higher during the post-decision period associated 

with correct trials compared to incorrect (p=0.013). All other comparisons were not showing any significant 

differences (p>0.05) (Figure 39). 
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Figure 39. Firing rate of mPFC cells, recorded in WT mice, during EDS stage. The firing rate is averaged for different 

periods around correct and incorrect choices. EDS: Extra-Dimensional Shift. Statistics: * AVG BSL vs all periods; # 

correct vs incorrect; * p<0.05, AVG BSL vs decision-making incorrect, house light;# p<0.05 post-decision correct VS 

post-decision incorrect (house light). Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke, I found that the average 

latency between the cue delivery and the correct poke is 5.49±1.13s, while the latency between the correct 

poke and the reward is 6.76±1.56s. I used twice the standard deviation of the cue and reward delivery to define 

the edge of the PST. I obtained a PSTH onset o -12s and an offset of +11s to the correct poke. Before the onset 

and after the offset, I considered 3 seconds of baseline activity (total studied period: from -15s to +14s).  

As for the previous IDS stages and IDS2Re (Figure 19, 22, 28, 34, 37) during the immediate period preceding 

cue delivery, I observed a significant increase in the firing activity which could be related to the learned 

expectancy of the cue. However, unlike the IDS stages and IDS2Re, the activity was quickly returning to 

baseline immediately during the cue delivery and the decision making period. However, it was evident a strong 

increase in the post-decision period after making the nose poke. This increase was maintained in reward-

collection and post-reward collection periods (Figure 40).  
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Figure 40. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of EDS stage. It 

represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. EDS: Extra-

Dimensional Shift. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first entry in the 

food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. Data are 

expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke), and I found that the 

average latency between the cue delivery and the incorrect poke was 6.17±0.95s. 

I obtained a PSTH onset o -12s and an offset of +5s to the incorrect poke. Before the onset and after the offset, 

I considered 3 seconds of baseline activity (total studied period: from -15s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke, I found that 

the cue delivery was delivered at a similar timescale than for the correct poke. As for the correct choice, I 

observed an increase in the firing activity in the decision-making period. In all the other periods, the activity 

did not increase (Figure 41). This pattern of activity was similar to the reversal stages, and differed to the 

previous IDS stages, in which there was an increase in the decision-making period. This confirms a specific 

and different implication of mPFC in the EDS stage (Dias, Robbins and Roberts, 1996; Birrell and Brown, 

2000; Bissonette et al., 2008). 
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Figure 41. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of EDS stage. 

It represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. EDS: Extra-

Dimensional Shift. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light on. Data are 

expressed as Mean±SEM. N=7 mice. 

 

As said in paragraph 2, I divided the WT animal into two groups, based on the better or worst performance of 

EDS, to see if there were electrophysiological differences coming from these two groups of mice. 

What I found, was that the activity pattern of the mPFC was similar in both groups, with an increase in the 

post-decision period (Figure 42). 
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Figure 42. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of EDS stage. It 

represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. EDS: Extra-

Dimensional Shift. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first entry in the 

food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine.A) Z-score of 

IFR for WT that performed in a correct way the EDS (EDS YES). B) Z–score of IFR for WT that performs in an incorrect 

way the EDS (EDS NO). Data are expressed as Mean±SEM. N=7 mice. 

 

9. EXTRA-DIMENSIONAL SHIFT REVERSAL (EDSRe) 

This stage is the first reversal with the new relevant dimensions.  

For the EDSRe stage, I collected recordings for a total period of 16 days across all animals(1.75±0.37). The 

number of neurons recorded was 35 and the number of neurons analyzed was 20. 

During the intertrial interval, the firing rate was 0.14±0.02 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.645), so I pooled together the average activity. The activity 

increased during the post house light period (0.40±0.10 Hz; paired t-test, p=0.018). For all other epochs in 

incorrect trials, and for all the epochs in correct trials no significant differences of the average firing rate were 

observed (paired t-test, p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test in 

correct and incorrect show any significant differences (p>0.05) (Figure 43). 
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Figure 43. Firing rate of mPFC cells, recorded in WT mice, during EDSRe stage. The firing rate is averaged for different 

periods around correct and incorrect choices. EDSRe: Extra-Dimensional Shift Reversal. Statistics: * AVG BSL vs all 

periods; * p<0.05, AVG BSL vs post-house light. Data are expressed as Mean±SEM. N=7 mice. 

 

When focusing on the PSTH of the behavioral response towards the correct poke,  I found that the average 

latency between the cue delivery and the correct poke is 8.56±1.85s, while the latency between the correct 

poke and the reward is 5.85±1.81s. I used twice the standard deviation of the cue and reward delivery to define 

the edge of the PST. I obtained a PSTH onset o -19s and an offset of +16s to the correct poke. Before the onset 

and after the offset, I considered 3 seconds of baseline activity (total studied period: from -22s to 19s). In this 

case, as for IDS2Re (Figure 37) what I found is that there is a significant increase during the immediate period 

preceding cue delivery. No significantly increased activity is observed in the following periods (Figure 44), as 

for the other reversal stages (Figure 25, 31, 37).  
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Figure 44. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the correct choice of EDSRe stage. 

It represents the variation of the mPFC activity around a correct poke. X-axis: time, expressed in seconds. EDSRe: Extra-

Dimensional Shift Reversal. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray 

square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Green arrow: it represents the average time of the first 

entry in the food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. 

Data are expressed as Mean±SEM. N=7 mice. 

 

Next, I focused on the PSTH following an incorrect behavioral outcome (incorrect poke), and I found that the 

average latency between the cue delivery and the incorrect poke was 5.98±0.83s. 

I obtained a PSTH onset of -11s and an offset of +5s to the incorrect poke. Before the onset and after the offset, 

I considered 3 seconds of baseline activity (total studied period: from -14s to 8s). 

When I compared the z-score of the firing activity during each individual trial with incorrect poke,  I found 

that the cue delivery is delivered at a similar timescale than for the correct poke. As for the previous reversal 

stages CDRe, IDSRe, IDS2Re (Figure 26, 32, 38), what I found is that in all the other different periods of the 

PST, no significantly increased activity was observed compared to the baseline, except for the post house light 

period (Figure 45).  

The mPFC in case of correct choice in EDSRe, being the reversal rule familiar, behaved like IDS stages and 

IDS2Re, increasing the activity in the pre-responses periods. 
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Figure 45. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT mice, for the incorrect choice of EDSRe stage. 

It represents the variation of the mPFC activity around an incorrect poke. X-axis: time, expressed in seconds. EDSRe: 

Extra-Dimensional Shift Reversal. The axis is centered in the instant of the incorrect poke. Y-axis: z-score of the IFR. 

Gray square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct poke. Red square: represent the duration of the house-light 

on. Data are expressed as Mean±SEM. N=7 mice. 

 

4) D2L +/- mice show cognitive deficits in serial reversal learning 

compared to WT mice 

The in vivo characterization of behavioral and electrophysiological readouts related to PFC-related executive 

functions in wild-type mice set up the ground for exploring how clinically-relevant genetic variants could 

impact PFC encoding of these cognitive processes. I started assessing D2L heterozygous mice with a variation 

altering the ration between the short and long-form of dopamine D2 receptors. As for WT mice, I used a linear 

multi-site extracellular electrode, with a design containing 4 shanks of 4 recording sites for a total of 16 sites, 

that was sufficient to cover the entire PFC (see Material&Methods). I trained 7 D2L+/- mice in the first 

habituation phases of the task. After two days from this initial pre-screening (Figure 4), mice were implanted 

in the prelimbic/ infralimbic region, and after a week of recovery, they were habituated to the cable and tested 

through the entire test. 

 I found that all D2L+/- tested mice (7/7, 100%) were completing the test within a short period of time (13.14 

± 1.55 days), Following behavioral testing, posthoc analyses of the electrode placement were done using 

immunohistochemistry (Figure 46) (see Material&Methods).  
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Figure 46. Stereotaxic positioning of the silicon probes electrodes implanted in the mPFC of  D2L+/- mice. The graphical 

representation is based on the dorsoventral coordinates on the Mice brain Atlas. N=7 mice. 

 

Next, I analyzed the behavioral performance. 

The main behavioral difference I found for D2L +/- was related to their serial reversal learning. In particular, 

no difference were evident compared to WT mice in the CDRe and IDSRe, while they needed more trial to 

solve the IDS2Re compared to WT mice (two-sample t-test, Bonferroni correction, t(13)= 3.10348, p=0.00839, 

trials; two-sample t-test, Bonferroni correction, t(13)=2.59085,  p=0.02239, time) (Figure 47, 48).  

 

 

 



P a g e  | 78 

 

 

Figure 47. The number of trials to reach the criterion in the reversal stages of the task, obtained from WT and D2L+/- 

mice. CDRe: Compound Discrimination Reversal; IDSRe: Intra-Dimensional Shift Reversal; IDS2Re: Intra-Dimensional 

Shift 2 Reversal; EDSRe: Extra-Dimensional Shift Reversal. White bars: trials to criterion of WT mice. Dark gray bars: 

trials to criterion of D2L+/- mice. Statistics: § p<0.01, IDS2Re D2L+/- vs IDS2Re wt. Data are expressed as Mean±SEM. 

N WT=8 mice. N D2L+/- = 7 mice. 

 

 

Figure 48. Time spent to reach the criterion in the reversal stages of the task, obtained from WT and  D2L+/- mice. CDRe: 

Compound Discrimination Reversal; IDSRe: Intra-Dimensional Shift Reversal; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDSRe: Extra-Dimensional Shift Reversal. White bars: time to criterion of WT mice. Dark gray bars: times to 

criterion of D2L+/- mice. Statistics: # p<0.05,  IDS2Re D2L+/- vs IDS2Re wt. Data are expressed as Mean±SEM. N 

WT=8 mice. N D2L+/- =7 mice. 

 

Latency to respond decreases for D2L+/- groups during the progression of the task as for wt. In SD the latency 

is statistically different from those of IDS2Re, EDS, and EDSRe (ONE WAY repeated measure ANOVA, 

F(8,64)= 4.58485, P= 1.881E-4, posthoc HSD TUKEY: PSDvIDS2Re= 0.02854; PSDvEDS 000247; PSDvEDSRe= 

0.0148); in CD with those of EDS (ONE WAY repeated measure ANOVA, F(8,64)= 4.58485, P= 1.881E-4, 
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posthoc HSD TUKEY: PCDvEDS= 0.02239); in CDRe with those in EDS, and EDSRe (ONE WAY repeated 

measure ANOVA, F(8,64)= 4.58485, P= 1.881E-4, posthoc HSD TUKEY: PCDRevEDS= 0.00769; PCDRevEDSRe= 

0.04022).  For what concern the EDS mice didn’t increase the latency (Figure 49). 

 

 

Figure 49. Latency to respond of D2L+/- mice. It represents the time, in seconds, between the delivery of the cues and 

the responses. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; 

IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-

Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Red line: the 

exponential trend of the values across the different stages. Statistics: *p<0.05, SD vs IDSRe ,EDSRe. Statistics: *p<0.05, 

SD vs IDS2Re,EDS,EDSRe; CD vs EDS; CDRe vs EDS,EDSRe. Data are expressed as Mean±SEM. N=7 mice. 

 

I then compare the latency to correct with the latency to incorrect responses. 

For what concern D2L+/- mice, what I found is a decrease of this latency across stages in both cases. In 

particular, in the case of correct choice, I found that the latency is statistically greater in SD compared to those 

in EDS and EDSRE (ONE WAY repeated measure ANOVA, F(8,32)= 3.47583, P= 0.00541, posthoc HSD 

TUKEY: PSDvEDS =0.021; PSDvEDSRE= 0.03971). In case of incorrect choice, the latency is statistically higher in 

SD compared to those in EDS (paired t-test, Bonferroni correction, P=0.03901).  I found no significant effect 

across different stages between latency to correct and latency to incorrect responses (Figure 50). This suggests 

that the mice might present some difficulties to discriminate between the different cues. 
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Figure 50. Latency to correct and incorrect responses of D2L+/- mice. They are the time, in seconds, between the delivery 

of the cues and the correct and incorrect responses, obtained from 7 D2L+/- mice. SD: Simple Discrimination; CD: 

Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-

Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-

Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Light gray bar: latency to correct responses. Dark gray 

bar: latency to incorrect responses. Green line: the exponential trend of the latency to correct responses across the different 

stages. Red line: the exponential trend of the latency to incorrect responses across the different stages. Statistics: *p<0.05, 

SD correct vs EDS correct, EDSRe correct. # p<0.01, SD incorrect vs EDS incorrect. Data are expressed as Mean±SEM. 

N=7 mice. 

 

Paying attention to the latency to reward, in D2L +/- mice, I found a higher latency to collect the reward at the 

beginning of the task, in SD, CD, and CDRe, meaning that probably they are low motivated.  Then, there is a 

decrease through the different stages, meaning that mice, when developed the attentional set, become more 

and more motivated. The increase of the latency to reward when the relevant dimension change is not present, 

meaning that although the rule change, the attentional set that they developed before is too strong to create 

another one (Figure 51). 



P a g e  | 81 

 

 

Figure 51. Latency to reward of D2L+/- mice. It is the time, in seconds, between a correct poke and the time of the first 

head entry to the food pellet magazine, obtained from 7 D2L+/- mice. SD: Simple Discrimination; CD: Compound 

Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional 

Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional 

Shift; EDSRe: Extra-Dimensional Shift Reversal. Red line: the exponential trend of the latency to reward across the 

different stages. Data are expressed as Mean±SEM. N=7 mice. 

 

5) Electrophysiology of D2L+/- mice 

During the entire performance of the task, the neural activity of the mPFC of dys+/- mice was recorded through 

single-unit multielectrode.  

As for WT mice, I used the same behavioral events as stimuli for electrophysiology: CUE EVENT, CORRECT 

EVENT, REWARD EVENT, INCORRECT EVENT, HOUSE LIGHT EVENT (Figure 16). 

During the spikes sorting, I had to discard two animals from the analysis for a large amount of noise in the 

traces, and therefore for the impossibility of obtaining a clean neuronal signal. 

From all animals recorded (n=5), a total of 110 single units were recorded across the entire task. 

Because there are different types of neurons in the mPFC, based on the previous reports using optogenetic 

identification or large scale recording, I decided to clusters my recorded unit based on their average firing rate 

and their CV: SLOW&REGULAR, SLOW&BURSTY, FAST&REGULAR, FAST&BURSTY. 

As expected, in all the stages of the task, the great majority of the neurons that I recorded belong to the group 

of SLOW&REGULAR and SLOW&BURSTY neurons, considered as putative pyramidal neurons (Figure 

52). 
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Figure 52. Type of single-unit recorded in D2L+/- mice. Each color represents a different stage of the task. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. X-axis: average firing rate of the 

single units, expressed in the number of spikes per second. Y-axis: Coefficient of Variation: STANDARD DEVIATION 

(FIRING)/MEAN(FIRING). Red lines: delimitations for characterized the 4 different groups of single-units. N=5 mice. 

 

For the same reason as for WT mice, I discarded all units with an average firing activity <0.1Hz. 

I first focused on the variation of the firing activity in the vicinity of specific events, and in particular the time 

of correct poke and the time of incorrect poke, using peristimulus time analyses and normalized using z-score 

analyses. Due to the great number of neurons, and to previous reports in the PFC, I consider the firing rate 

variation as binomial, that allows me to consider a significant change to the baseline as presenting an increase 

of the z-score of <or> of 1.96. 

In order to carefully analyses the behavior, I decided to divide the PSTH (peristimulus time histogram) into 

different periods, the same consideration for wt. 

 In case of correct choice: PRE-CUE DELIVERY, CUE DELIVERY, DECISION MAKING, POST-

DECISION, REWARD, POST-REWARD. 

In case of incorrect choice: PRE-CUE DELIVERY, CUE DELIVERY, DECISION MAKING, HOUSE-

LIGHT, POST-HOUSE LIGHT. 

I focused my attention on the IDS2Re stage, in which D2L+/- showed deficits in the performance of the stage. 

During the intertrial interval, the firing rate was 0.25±0.12 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.413), so I pooled together the average activity. For all the epochs 

in correct and incorrect trials, no significant differences in the average firing rate were observed (paired t-test, 
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p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test in correct and incorrect show 

any significant differences (p>0.05) (Figure 53B). 

I compared the results with those of WT mice, to see if there are possible alterations in mPFC which lead to 

performance deficits in IDS2Re. 

 

Figure 53. Firing rate of mPFC cells, recorded in WT and D2L+/- mice, during IDS2Re stage. The firing rate is 

averaged for different periods around correct and incorrect choices. IDSRe: Intra Dimensional Shift 2. A) WT mice. B) 

D2L+/- mice. Statistics: $ WT vs D2L+/-; $ p<0.05, cue WT vs cue D2L+/-, decision-making WT vs decision-making 

D2L+/-. Data are expressed as Mean±SEM. N WT=7 mice. N D2L+/- =7 mice. 

 

Looking at the firing rate of mPFC, I found that D2L+/- mice increased the firing activity during the cue 

(paired t-test, p=0.012) and decision-making period of an incorrect choice (paired t-test, p=0.0051), 

compared to WT mice (Figure 53). 

What I found, comparing the IFR of mPFC cells, is that for D2L +/-  the mPFC didn’t increase the firing rate 

in the  decision-making period of a correct choice, like for WT. Moreover, although for incorrect choice the 

mPFC of WT didn’t increase in any period, in D2L +/- it increased in the decision-making period (Figure 54). 

This suggests that in D2L+/- mice in the IDS2Re the mPFC encodes the decision making of incorrect choices, 

instead of correct choices like wt, causing probably the worst performance of mice in this stage. 
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Figure 54. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT and D2L+/- mice, for the correct and incorrect 

choices of IDS2Re stage. It represents the variation of the mPFC activity around a correct (top) or incorrect (bottom) 

poke. X-axis: time, expressed in seconds. IDS2Re: Intra-Dimensional Shift 2 Reversal. The axis is centered in the instant 

of the correct poke. Y-axis: z-score of the IFR. Gray square: represents the interval in which the firing is not significantly 

different from the baseline of 3 seconds in the beginning. Yellow arrow: it represents the average time of the cue delivery. 

Yellow square: represent the ±SEM of the average time of cue delivery. Red line: the instant of correct/incorrect poke. 

Green arrow: it represents the average time of the first entry in the food magazine. Green square: represent the ±SEM of 

the average time of first entry in the food magazine. Red square: represent the duration of the house-light on. Data are 

expressed as Mean±SEM. N WT=7 mice. N D2L+/- =5 mice. 

 

6) Dys +/- mice show deficits in the EDS, compared to WT mice 

As for WT and D2L+/-mice, I used a linear multi-site extracellular electrode, with a design containing 4 shanks 

of 4 recording sites for a total of 16 sites, that was sufficient to cover the entire PFC (see Material&Methods). 

I trained 7 dys+/- mice in the first habituation phases of the task. After two days from this initial pre-screening 

(Figure 4), mice were implanted in the prelimbic/ infralimbic region, and after a week of recovery, they were 

habituated to the cable and tested through the entire test.  

I found that the great majority of dys+/- tested mice (6/7, 85.71%) were completing the test within a short 

period of time (10.50 ± 1.57 days), while the remaining dys +/- tested mice (1/7, 14.29%) were not able to 

complete the test (criterion <8/10 for 6 consecutive days). Following behavioral testing, posthoc analyses of 

the electrode placement were done using immunohistochemistry (Figure 55) (see Material&Methods). 
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Figure 55. Stereotaxic positioning of the silicon probes electrodes implanted in the mPFC of  dys+/- mice. The graphical 

representation is based on the dorsoventral coordinates on the Mice brain Atlas. N=6 mice. 

 

I found that dys+/- mice increased the number of trials and the time to reach the criterion in EDS compared to 

the previous stages (Figure 55, 56). In particular, trials in EDS were significantly higher compared to those in 

IDS2Re (paired t-test, Bonferroni correction, t(5)=3,57091;  P=0,01603). 

Compared them with WT mice, I found that dys +/- had a deficit in EDS, in which the number of trials 

significantly increased (Figure 56, 57) ( two-sample t-test, p=0.04145). this was in agreement with evidence 

from probe-naïve mice (Scheggia et al., 2018).   
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Figure 56. The number of trials to reach the criterion in all the stages of the task, obtained from WT and dys+/- mice. SD: 

Simple Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-

Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-

Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. White bars: 

trials to criterion of WT mice. Light gray bars: trials to criterion of dys+/- mice. Statistics: *p<0.05, EDS dys+/- vs 

IDS2Re dys+/-. # p<0.05, EDS dys+/- vs EDS wt. Data are expressed as Mean±SEM. N WT=8 mice. N dys+/- =6 mice. 

 

 

Figure 57. Time spent to reach the criterion in all the stages of the task, obtained from WT and dys+/- mice. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. White bars: time to criterion of WT 

mice. Light gray bars: time to the criterion of dys+/- mice. Data are expressed as Mean±SEM. N WT=8 mice. N dys+/ = 

6 mice. 
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Looking at the latency to respond, the time between the presentation of the cues and the response that represents 

an index of the decisional processing, I found that across the entire stage there was a trend to decrease the time 

to respond to the cue (Figure 58). Indeed I found that the time to respond in  SD was higher than the time to 

respond in IDS2Re and EDS2Re (ONE WAY repeated measure ANOVA, F(8,72)= 2.47487, P=0.0198, 

posthoc HSD TUKEY: PSDvIDSRe= 0.03654; PSDvEDSRe= 0.02968). 

 

 

Figure 58. Latency to respond of dys+/- mice. It represents the time, in seconds, between the delivery of the cues and the 

responses, obtained from 5 dys+/- mice. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: Compound 

Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-

Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-

Dimensional Shift Reversal. Red line: the exponential trend of the values across the different stages. Statistics: *p<0.05, 

SD vs IDSRe ,EDSRe. Data are expressed as Mean±SEM. N=6 mice. 

 

I then compared the latency to correct with the latency to incorrect responses. 

What I found for dys+/- mice was a decrease of this latency across stages in both cases. I found no significant 

effect across different stages between latency to correct and latency to incorrect responses (Figure 59).  
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Figure 59. Latency to correct and incorrect responses of dys+/- mice. They are the time, in seconds, between the delivery 

of the cues and the correct and incorrect responses, obtained from 5 dys+/- mice. SD: Simple Discrimination; CD: 

Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-

Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-

Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Light gray bar: latency to correct responses. Dark gray 

bar: latency to incorrect responses. Green line: the exponential trend of the latency to correct responses across the different 

stages. Red line: the exponential trend of the latency to incorrect responses across the different stages. Statistics: *p<0.05, 

SD correct vs IDS2RE correct, EDS correct. ## p<0.01, SD incorrect vs CD incorrect, CDRe incorrect, IDS incorrect, 

IDSRe incorrect, IDS2 incorrect, IDS2Re incorrect, EDS incorrect, EDSRe incorrect. Data are expressed as Mean±SEM. 

N=6 mice. 

 

Paying attention to the latency to reward, in dys +/- mice it didn’t change through the days. There was a 

decrease in IDS2Re, probably due to the fact that they developed the attentional set. When changing the 

relevant dimension, it increased a little bit, because mice had to develop a new attentional set, and probably 

when they made a correct choice, they couldn’t understand to have done it, and they couldn’t expect the reward. 

After EDS, it started to decrease, because they started to develop the attentional set for the new dimension 

(Figure 60). 
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Figure 60.  Latency to reward of dys+/- mice. It is the time, in seconds, between a correct poke and the time of the first 

head entry to the food pellet magazine, obtained from 5 dys+/- mice. SD: Simple Discrimination; CD: Compound 

Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional 

Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional 

Shift; EDSRe: Extra-Dimensional Shift Reversal. Red line: the exponential trend of the latency to reward across the 

different stages. Data are expressed as Mean±SEM. N=6 mice. 

 

This suggests that there wasn’t a difference between all the genotypes in the motivation during the task. 

 

7) Electrophysiology of  dys+/- mice 

During the entire performance of the task, the neural activity of the mPFC of dys+/- mice was recorded through 

single-unit multielectrode.  

As for WT mice, I used the same behavioral events as stimuli for electrophysiology: CUE EVENT, CORRECT 

EVENT, REWARD EVENT, INCORRECT EVENT, HOUSE LIGHT EVENT (Figure 16). 

During the spikes sorting, I had to discard two animals from the analysis for a large amount of noise in the 

traces, and therefore for the impossibility of obtaining a clean neuronal signal. 

From all animals recorded (n=4), a total of 111 single units were recorded across the entire task. 

Because there are different types of neurons in the mPFC, based on the previous reports using optogenetic 

identification or large scale recording, I decided to clusters my recorded unit based on their average firing rate 

and their CV: SLOW&REGULAR, SLOW&BURSTY, FAST&REGULAR, FAST&BURSTY. 

As expected, in all the stages of the task, the great majority of the neurons that I recorded belong to the group 

of SLOW&REGULAR and SLOW&BURSTY neurons, considered as putative pyramidal neurons (Figure 

61). 
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Figure 61. Type of single-unit recorded in dys+/- mice. Each color represents a different stage of the task. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. X-axis: average firing rate of the 

single units, expressed in the number of spikes per second. Y-axis: Coefficient of Variation: STANDARD DEVIATION 

(FIRING)/MEAN(FIRING). Red lines: delimitations for characterized the 4 different groups of single-units. N=4 mice. 

 

For the same reason as for WT mice, discarded all units with an average firing activity <0.1Hz. 

I first focused on the variation of the firing activity in the vicinity of specific events, and in particular the time 

of correct poke and the time of incorrect poke, using peristimulus time analyses and normalized using z-score 

analyses. Due to the great number of neurons, and to previous reports in the PFC, I consider the firing rate 

variation as binomial, that allows me to consider a significant change to the baseline as presenting an increase 

of the z-score of <or> of 1.96. 

In order to carefully analyses the behavior, I decided to divide the PSTH (peristimulus time histogram) into 

different periods, the same consideration for wt. 

 In case of correct choice: PRE-CUE DELIVERY, CUE DELIVERY, DECISION MAKING, POST-

DECISION, REWARD, POST-REWARD. 

In case of incorrect choice: PRE-CUE DELIVERY, CUE DELIVERY, DECISION MAKING, HOUSE-

LIGHT, POST-HOUSE LIGHT. 

During the intertrial interval, the firing rate was 0.19±0.07 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.812), so I pooled together the average activity. The activity 

increased during the incorrect decision-making period (0.39±0.10 Hz; paired t-test, p=0.049) and during the 

house light period (0.51±0.15 Hz; paired t-test, p=0.013). For all other epochs in incorrect trials, and for all 

the epochs in correct trials no significant differences of the average firing rate were observed (paired t-test, 

p>0.05). Pairwise comparison of the variation of the firing rate using paired t-test in correct and incorrect show 

that the firing was significantly higher during the post-decision period associated with incorrect trials (house-
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light period) compared to correct (p=0.013). All other comparisons were not showing any significant 

differences (p>0.05) (Figure 62B). 

 

Figure 62. Firing rate of mPFC cells, recorded in WT and dys+/- mice, during EDS stage. The firing rate is averaged for 

different periods around correct and incorrect choices. EDS: Extra Dimensional Shift. A) WT mice. B) dys +/- mice. 

Statistics: * AVG BSL vs all periods; # correct vs incorrect; $ WT vs dys+/-; *p<0.05, WT, dys+/-: AVB BSL vs 

decision-making incorrect, house light. # p<0.05, dys+/-: decision-making correct vs decision-making incorrect, post-

decision correct vs post-decision incorrect (house light). $ p<0.05, post-decision correct WT vs post-decision correct 

dys+/-, house light WT vs house light dys+/-. Data are expressed as Mean±SEM. N WT=7 mice. N dys+/- =4 mice. 

 

I compared the results with those of WT mice, to see if there are possible alterations in mPFC which lead to 

performance deficits in EDS. 

Looking at the firing rate of mPFC, I found that dys+/- mice decreased the firing activity during the post-

decision period related to a correct choice (paired t-test, p=0.008), and increased the firing after a correct 

choice (paired t-test, p=0.049), during the house light period, compared to WT mice (Figure 62). 

What I found, comparing the IFRs of mPFC cells, for dys+/- is that the mPFC anticipated the increase of 

activity in the decision-making period of a correct choice, unlike WT where the increase was in the post-

decision period. Moreover, although for incorrect choice the mPFC of WT didn’t increase in any period, in 

dys +/- it increased in the decision-making and post-decision period (Figure 63). 
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Figure 63. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT and dys+/- mice, for the correct and incorrect 

choices of EDS stage. It represents the variation of the mPFC activity around a correct (top) or incorrect (bottom) poke. 

X-axis: time, expressed in seconds. EDS: Extra-Dimensional Shift. The axis is centered in the instant of the correct poke. 

Y-axis: z-score of the IFR. Gray square: represents the interval in which the firing is not significantly different from the 

baseline of 3 seconds in the beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: 

represent the ±SEM of the average time of cue delivery. Red line: the instant of correct/incorrect poke. Green arrow: it 

represents the average time of the first entry in the food magazine. Green square: represent the ±SEM of the average time 

of first entry in the food magazine. Red square: represent the duration of the house-light on. Data are expressed as 

Mean±SEM. N WT=7 mice. N dys+/-=4 mice. 

 

This suggests that in dys+/- mice seems that mPFC, instead codified the post-decision of a correct choice, 

encodes the post-decision of an incorrect choice, and moreover the decision-making period of a correct choice, 

like all the IDS stages, causing probably the worst performance of mice in this stage. 

 

8) Dys+/-D2L+/- mice show a restored behavioral performance 

In a recent work of my group (Scheggia et al., 2018), it has been discovered that a shift in the ratio between 

the short and long-form of dopamine D2 receptors in the context of dysbindin-1 reduced expression might be 

associated with better executive functions abilities measured in the EDS stage of the ASST or the Wisconsin 

Card Sorting Task (WCST) (Figure 1A). Thus I investigate the extracellular activity of mPFC of DYS-D2L 

double-heterozygous mice by in vivo electrophysiology as performed in wt, D2L, and dys mutants.  

8 dys+/-D2L+/- mice performed the three habituation of the task. After two days from this initial pre-screening 

(Figure 4), mice were implanted in the prelimbic/ infralimbic region, and after a week of recovery, they were 

habituated to the cable and tested through the entire test.  
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I found that the majority of tested mice (7/8, 87.5%) were completing the test within a short period of time 

(10.88+/-1.25 days) while one single mouse (1/8, 12.5%) did not complete the test (criterion <8/10 for 6 

consecutive days). Following behavioral testing, posthoc analyses of the electrode placement were done using 

immunohistochemistry (Figure 64) (see Material&Methods). 

 

 

 

Figure 64. Stereotaxic positioning of the silicon probes electrodes implanted in the mPFC of dys+/- D2L+/- mice. The 

graphical representation is based on the dorsoventral coordinates on the Mice brain Atlas. N=7 mice. 

 

Next, I analyzed the behavioral performance of the remaining mice (7/8 dys+/-D2L+/-). 

Dys+/-D2L+/- mice restored the performance of EDS, in which dys+/- had an impairment, and restored also 

the performance of IDS2Re, where there was the impairment of D2L+/- mice.  (Figure 65)  
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Figure 65. The number of trials to reach the criterion in IDS2Re and EDS, obtained from WT, dys+/-, D2L+/- and  dys+/-

D2L+/- mice. IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift. White bars: trials to criterion 

of WT mice. Light gray bars: trials to criterion of dys+/- mice. Dark gray bars: trials to criterion of D2L+/- mice. Black 

bars: trials to criterion of dys+/-D2L+/- mice. Statistics: # p<0.05, EDS dys+/- vs EDS wt. §§ p<0.01, IDS2Re D2L+/- vs 

IDS2Re dys+/-, IDS2Re wt. Data are expressed as Mean±SEM. N WT =8 mice. N dys+/- =6 mice. N D2L+/- =7 mice. 

N dys+/-D2L+/- =7 mice. 

 

Dys+/-D2L+/- mice decreased the time in EDS, compared to dys+/- mice, and decreased also the time in SD, 

CD, and IDS2Re, compared to D2L+/- mice (Figure 66). 
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Figure 66. Time spent to reach the criterion in IDS2Re and EDS stages of the task, obtained from WT, dys+/-, D2L+/- 

and dys+/-D2L+/- mice. IDS2Re: Intra-Dimensional shift 2 Reversal; EDS: Extra-Dimensional Shift. White bars: time to 

criterion of WT mice. Light gray bars: time to criterion of dys+/- mice. Dark gray bars: time to criterion of D2L+/- mice. 

Black bars: time to criterion of dys+/-D2L+/- mice. Statistics: # p<0.05,  IDS2Re D2L+/- vs IDS2Re dys+/-, IDS2Re wt. 

Data are expressed as Mean±SEM. N WT=8 mice. N dys+/- =6 mice. N D2L+/- =7 mice. N dys+/-D2L+/- =7 mice. 

 

Looking at the latency to respond, that is the time between the presentation of the cues and the response that 

represents an index of the decisional processing, I found that dys+/-D2L+/- mice decreased the latency to 

respond stage by stage. The latency was higher in SD and CD; then it decreased stage by stage, significantly 

in IDS, IDSRe, IDS2, IDS2Re, compared to those in CD (Figure 67)  (ONE WAY repeated measure ANOVA, 

F(8,88)= 3.28906, P= 0.00249, posthoc HSD TUKEY: PCDvIDS = 0.03688; PCDvIDSRe = 0.00585; PCDvIDS2 = 

0.00544; PCDvIDS2Re = 0.04676).  
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Figure 67. Latency to respond of dys+/-D2L+/- mice. It represents the time, in seconds, between the delivery of the cues 

and the responses, obtained from 7 dys+/-D2L+/- mice. SD: Simple Discrimination; CD: Compound Discrimination; 

CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; 

IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: 

Extra-Dimensional Shift Reversal. Red line: the exponential trend of the values across the different stages. Statistics: 

*p<0.05, CD vs IDS,IDSRe ,IDS2,IDS2Re. Data are expressed as Mean±SEM. N=7 mice. 

 

I considered then latency to correct and incorrect responses separately.  

What I found for dys+/- D2L+/- mice was a decrease in the latency to correct across stages in both cases. I 

found no significant effect across different stages between latency to correct and latency to incorrect responses 

(Figure 68). 
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Figure 68. Latency to correct and incorrect responses of dys+/-D2L+/- mice. They are the time, in seconds, between the 

delivery of the cues and the correct and incorrect responses, obtained from 7 dys+/-D2L+/- mice. SD: Simple 

Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional 

Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 

Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Light gray bar: latency to correct 

responses. Dark gray bar: latency to incorrect responses. Green line: the exponential trend of the latency to correct 

responses across the different stages. Red line: the exponential trend of the latency to incorrect responses across the 

different stages. Data are expressed as Mean±SEM. N=7 mice. 

 

Finally, I analyzed the latency to collect the reward, defined as the time between a correct poke and the time 

of the first head entry to the food pellet magazine. What I found is a significant decrease in the latency to 

reward from CD to IDSRe (ONE WAY repeated measure ANOVA, F(8,40)= 2.16254, P= 0.05178, posthoc 

HSD TUKEY: PCDvIDS = 0.04584; PCDvIDSRe = 0.04147), meaning that mice seem to develop the attentional set, 

becoming more and more motivated in receiving the reward. From IDS2 the latency increases. This could 

mean that once developed the attentional set, probably mice lose a little bit the motivation in eating the reward, 

but they continue to perform the task because they are habituated to do it.  When changing the relevant 

dimension, the latency is stabilized, and doesn’t increase, and seems to decrease during the first reversal with 

the new relevant dimension, probably due to the fact that they have to develop a new attentional set and are 

motivated in learning the new rule (Figure 69). 
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Figure 69. Latency to reward of dys+/-D2L+/- mice. It is the time, in seconds, between a correct poke and the time of the 

first head entry to the food pellet magazine, obtained from 7 dys+/-D2L+/- mice. SD: Simple Discrimination; CD: 

Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-

Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-

Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. Red line: the exponential trend of the latency to reward 

across the different stages. Statistics: * p<0.05, CD vs IDS, IDSRe. Data are expressed as Mean±SEM. N=7 mice. 

 

This means that dys+/-D2L+/- mice develop faster the attentional set and start to lose the motivation in 

collecting the reward, until the changing of relevant dimensions. 

 

9) Electrophysiology of dys+/-D2L+/- mice 

During the entire performance of the task, the neural activity of the mPFC of dys+/- mice was recorded through 

single-unit multielectrode.  

As for WT mice, I used the same behavioral events as stimuli for electrophysiology: CUE EVENT, CORRECT 

EVENT, REWARD EVENT, INCORRECT EVENT, HOUSE LIGHT EVENT (Figure 16). 

During the spikes sorting, I had to discard three animals from the analysis for a large amount of noise in the 

traces, and therefore for the impossibility of obtaining a clean neuronal signal. 

From all animals recorded (n=4), a total of 132 single units were recorded across the entire task. 

Because there are different types of neurons in the mPFC, based on the previous reports using optogenetic 

identification or large scale recording, I decided to clusters my recorded unit based on their average firing rate 

and their CV: SLOW&REGULAR, SLOW&BURSTY, FAST&REGULAR, FAST&BURSTY. 

As expected, in all the stages of the task, the great majority of the neurons that I recorded belong to the group 

of SLOW&REGULAR and SLOW&BURSTY neurons, considered as putative pyramidal neurons (Figure 

70). 
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Figure 70. Type of single-unit recorded in dys+/-D2L+/- mice. Each color represents a different stage of the task. SD: 

Simple Discrimination; CD: Compound Discrimination; CDRe: Compound Discrimination Reversal; IDS: Intra-

Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: Intra-Dimensional Shift 2; IDS2Re: Intra-

Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-Dimensional Shift Reversal. X-axis: 

average firing rate of the single units, expressed in the number of spikes per second. Y-axis: Coefficient of Variation: 

STANDARD DEVIATION (FIRING)/MEAN(FIRING). Red lines: delimitations for characterized the 4 different 

groups of single-units. N=4 mice. 

 

For the same reason as for WT  mice, discarded all units with an average firing activity <0.1Hz. 

I first focused on the variation of the firing activity in the vicinity of specific events, and in particular the time 

of correct poke and the time of incorrect poke, using peristimulus time analyses and normalized using z-score 

analyses. Due to the great number of neurons, and to previous reports in the PFC, I consider the firing rate 

variation as binomial, that allows me to consider a significant change to the baseline as presenting an increase 

of the z-score of <or> of 1.96. 

In order to carefully analyses the behavior, I decided to divide the PSTH (peristimulus time instogram) into 

different periods, the same consideration for wt. 

 In case of correct choice: PRE-CUE DELIVERY, CUE DELIVERY, DECISION MAKING, POST-

DECISION, REWARD, POST-REWARD. 

In case of incorrect choice: PRE-CUE DELIVERY, CUE DELIVERY, DECISION MAKING, HOUSE-

LIGHT, POST-HOUSE LIGHT. 

I focused first on the EDS stage, the introduction of D2L+/- in dys+/- mice led to the restoration of the 

performance of the stage. 
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During the intertrial interval, the firing rate was 0.32±0.09 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.188), so I pooled together the average activity. The activity 

increased during the post-house light period related to an incorrect choice (0.54±0.10 Hz; paired t-test, p= 

0.046). For all other epochs in incorrect trials, and for all the epochs in correct trials no significant differences 

of the average firing rate were observed (paired t-test, p>0.05). Pairwise comparison of the variation of the 

firing rate using paired t-test in correct and incorrect show that the firing was significantly higher during the 

pre-cue period associated with correct trials compared to incorrect (p=0.036). All other comparisons were not 

showing any significant differences (p>0.05) (Figure 71C). 

 

Figure 71. Firing rate of mPFC cells, recorded in WT, dys+/-, and dys+/-D2L+/- mice, during EDS stage. The firing 

rate is averaged for different periods around correct and incorrect choices. EDS: Extra Dimensional Shift. A) WT mice. 

B) dys +/- mice. C) dys+/-D2L+/- mice. Statistics: * AVG BSL vs all periods; # correct vs incorrect; $ WT vs dys+/-; 

@ dys+/- vs dys+/-D2L+/-; *p<0.05, WT, dys+/-: AVB BSL vs decision-making incorrect, house light; dys+/-D2L+/-: 

AVG BSL vs post-house light. # p<0.05, dys+/-: decision-making correct vs decision-making incorrect, post-decision 

correct vs post-decision incorrect (house light). $ p<0.05, WT vs dys+/-: post-decision correct, house light. WT vs 

dys+/-D2L+/-: pre-cue correct, decision-making correct, decision-making incorrect, house light, post-house light. @ 

p<0.05, pre-cue correct dys+/- VS pre-cue correct dys+/-D2L+/-, decision-making correct dys+/- vs decision-making 

correct dys+/-D2L+/-. Data are expressed as Mean±SEM. N WT=7 mice. N dys+/- =4 mice. N dys+/-D2L+/- =4 mice. 

 

I compared the results with those of WT and dys +/-mice, to see which are the differences in the mPFC activity 

that lead to the restoration of the performance in EDS. 

Looking at the firing rate of mPFC, I found that dys+/-D2L+/- mice increased the firing activity during the 

pre-cue period related to a correct choice (paired t-test, p=0.006), decision-making period of both correct 

(paired t-test, p=0.012) and incorrect (paired t-test, p=0.003) choices, house light period (paired t-test, 

p=0.004), and post-house light (paired t-test, p=0.014), compared to WT mice (Figure 71A,C). 

Comparing with dys+/- mice, I found that dys+/-D2L+/- increased the firing during the pre-cue period (paired 

t-test, p=0.011), and decision making period (paired t-test, p=0.012) of a correct choice (Figure 71B,C). 
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What I found, comparing the IFRs of mPFC cells, for dys+/-D2L +/- is that the mPFC continued to increase 

the firing rate through the three periods of an incorrect choice like dys+/-, but with a stronger frequency. The 

important thing is that, although the mPFC in dys+/-D2L+/- mice presented an increase in the decision-making 

period of a correct choice like dys+/-, its activity increased also in the post-decision period, like the mPFC 

activity of WT mice, and it didn’t increase during the reward period, present in dys +/- (Figure 72). 

 

 

Figure 72. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT, dys+/-, and dys+/-D2L+/- mice, for the correct  

and incorrect choices of EDS stage. It represents the variation of the mPFC activity around a correct (left) or incorrect 

(right) poke. Top: WT mice. Middle: dys+/- mice. Bottom: dys+/-D2L+/- mice. X-axis: time, expressed in seconds. EDS: 

Extra-Dimensional Shift The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. Gray square: 

represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the beginning. 

Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the average time 

of cue delivery. Red line: the instant of correct/incorrect poke. Green arrow: it represents the average time of the first 

entry in the food magazine. Green square: represent the ±SEM of the average time of first entry in the food magazine. 

Red square: represent the duration of the house-light on. Data are expressed as Mean±SEM. N WT=7 mice. N dys+/- =4 

mice. N dys+/-D2L+/- =4 mice. 

 



P a g e  | 102 

 

Then I focalized my attention on the IDS2Re stage. 

During the intertrial interval, the firing rate was 0.38±0.16 Hz, and no significant difference was found for 

correct and incorrect trials (paired t-test, p=0.219), so I pooled together the average activity. The activity 

increased during the decision-making related to a correct choice (0.65±0.11 Hz; paired t-test, p= 0.017), and 

decreased during post-reward period (0.27±0.09 Hz; paired t-test, p= 0.037). But for the decision making 

related to an incorrect choice, no effect was found (paired t-test, p=0,607). The activity also decreased during 

the cue period related to an incorrect choice (0.24±0.09 Hz; paired t-test, p= 0.032), but for the same period, 

no effect was found during correct trials (paired t-test, p=0.127). For all other epochs in correct and incorrect 

trials, no significant differences in the average firing rate were observed (paired t-test, p>0.05). Pairwise 

comparison of the variation of the firing rate using paired t-test in correct and incorrect show that the firing 

was significantly higher during the cue period associated with correct trials compared to incorrect (p=0.014). 

All other comparisons were not showing any significant differences (p>0.05) (Figure 73C). 

 

 

Figure 73. Firing rate of mPFC cells, recorded in WT, D2L+/-, and dys+/-D2L+/- mice, during IDS2Re stage. The 

firing rate is averaged for different periods around correct and incorrect choices. IDS2Re: Intra Dimensional Shift 2. A) 

WT mice. B) D2L +/- mice. C) dys+/-D2L+/- mice. Statistics: * AVG BSL vs all periods; # correct vs incorrect; $ WT 

vs dys+/-; *p<0.05, dys+/-D2L+/-: AVG BSL vs decision-making correct, post-reward, cue incorrect. # p<0.05, dys+/-

D2L+/-: cue correct vs cue incorrect. $ p<0.05, WT vs D2L+/-: cue incorrect, decision-making incorrect; WT vs dys+/-

D2L+/- : decision-making correct. Data are expressed as Mean±SEM. N WT=7 mice. N D2L+/- =7 mice. N dys+/-

D2L+/- =4 mice. 

 

I also compared the results with those of WT and D2L +/-mice, to see which are the differences in the mPFC 

activity that lead to the restoration of the performance in IDS2Re. 

Looking at the firing rate of mPFC, I found that dys+/-D2L+/- mice increased the firing activity during the 

decision-making related to a correct choice (paired t-test, p=0.047), compared to WT mice (Figure 73A,C). 
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Comparing with D2L+/- mice, I found that dys+/-D2L+/- presented no differences in the firing activity (paired-

test, p>0.05) (Figure 73B,C). 

What I found is that mPFC of dys+/-D2L+/- mice increases the firing in the decision-making period of a correct 

choice, like wt. Moreover, it doesn’t increase the firing in the decision-making period of incorrect choices, 

unlike D2L+/- (Figure 74). 

 

 

Figure 74. Instantaneous Firing Rate (IFR) of mPFC cells, recorded in WT, D2L+/-, and dys+/-D2L+/- mice, for the 

correct and incorrect choices of IDS2Re stage. It represents the variation of the mPFC activity around a correct (left) or 

incorrect (right) poke. Top: WT. Middle: D2L+/-. Bottom: dys+/-D2L+/-. X-axis: time, expressed in seconds. IDS2Re: 

Intra-Dimensional Shift 2 Reversal. The axis is centered in the instant of the correct poke. Y-axis: z-score of the IFR. 

Gray square: represents the interval in which the firing is not significantly different from the baseline of 3 seconds in the 

beginning. Yellow arrow: it represents the average time of the cue delivery. Yellow square: represent the ±SEM of the 

average time of cue delivery. Red line: the instant of correct/incorrect poke. Green arrow: it represents the average time 

of the first entry in the food magazine. Green square: represent the ±SEM of the average time of first entry in the food 

magazine. Red square: represent the duration of the house-light on. Data are expressed as Mean±SEM. N WT=7 mice. N 

D2L+/- = 7 mice. N dys+/-D2L+/- =4 mice. 
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Conclusion 

The aim of my thesis was to characterize the functioning of PFC neurons in the acquisition and the maintenance 

of information, and the ability to adjust already-learned behavior in a different context. Because imaging data 

in humans suggest that the PFC is important for the switch from intra-dimensional shift to extra-dimensional 

shift, I used the ID/ED set-shifting task. Similarly, because reversal learning and behavioral flexibility are 

dependent on normal dopamine activity, I used clinically relevant genetically modified mice to study the 

importance of dopamine/D2 receptors in such behavior. One of the main findings of my thesis is that the PFC 

activity seems to variate during all the stages, and not only during the EDS stage. Moreover, I revealed that 

the PFC encode differently the epochs surrounding a correct or an incorrect poke.  

Looking at single-cell activity and oxygen consumption during the ID/ED set-shifting task, I found that the 

PFC is differently activated when a mouse performs the different cognitive exercise. This PFC activity is either 

lost or inverted when looking at the same epochs in the D2S and Dys mutant mice. In particular, my data from 

clinically-relevant genetically modified mice provide an initial investigation on how common genetic variants 

might impact different cognitive flexibility domains and the related mPFC neuronal activity. 

My thesis is the first report using in vivo electrophysiology combined with the automated ID/ED set-shifting 

task. Indeed, similar previous works in rodents were done using the digging version of the ID/ED set-shifting 

task (Cho et al., 2015; Kim et al., 2016). However, in the latter setting, different confounding factors could 

influence the activity of the mPFC including the constant human intervention and the combined presence of 

the food reward with the choice made.  

In contrast, the recent development of an automatic version of the attentional set-shifting task, allow to avoid 

all these technical confounding factors and have been proved to give directly predictable results in healthy 

human subjects as well as patients with schizophrenia tested in the WCST test (Scheggia et al., 2014, 2018). 

Moreover, in our mouse task as well as in the human CANTAB ID/ED task, the performance of the subjects 

is evaluated through different and sequential stages, which allow understanding of the abilities of the subject 

to perform a correct shift from a previously rewarded cue to the previously non-rewarded cue. This particular 

shift in the cognitive process involves the disengagement of a cognitive set to allow the acquisition of a newly 

generated one. 

In psychology are used such tasks allow us to study the relationship between the PFC and the executive 

functions.  

However, no study before has investigated the activity at the cellular level of this brain region while encoding 

for the different cognitive flexibility stages, and in particular for the extra-dimensional shift. While the cellular 

investigation was not possible in humans, I identified the recorded single units based on the average firing rate 

and the CV, finding that the great majority of them were slow-firing units, considered as putative pyramidal 

neurons. 
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Notably, in the case of the EDS stage, I found that the mPFC activity was higher during the post-decision 

period, but not the pre-decision making. This difference was evident when looking at the correct response 

trials. Interestingly, this pattern of activity during EDS greatly differed from intra-dimensional shifts (i.e. CD, 

IDS, IDS2 stages). Indeed, in all these other stages the mPFC was more active during the decision-making 

period for both the correct and incorrect responses.  

Furthermore, during all different within-dimension reversal stages, the mPFC was overall silent before and 

after the decision-making action. This latter finding might be related to previous lesion studies indicating that 

the reversal stages are not altered by mPFC disruption (Dias, Robbins and Roberts, 1996; Birrell and Brown, 

2000; Bissonette et al., 2008). However, in the last reversal of the consecutive series of stages with the same 

relevant dimension (IDS2Re), I observed an increase of activity during the decision-making of a correct choice, 

similar to the one observed during IDS stages. This might suggest that not only acquired the attentional set but 

also that the strength of the set is increasing with the repetition of the stages. This also suggests an adaptation 

of the PFC neurons to encode differently the attentional set, and its intensity. 

This highlights that initial reversal choices might follow different neuronal mechanisms compared to serial 

reversal learning actions. This latter hypothesis is in agreement with finding from our laboratory and from 

Trevor Robbins laboratory (Scheggia et al., 2014). Indeed, initial and serial reversal, although they have the 

same rule, that is the inversion of the reinforcement contingencies of two exemplars within a perceptual 

dimension (i.e.  previously correct is then incorrect and vice versa), have a different type of learning process. 

During an initial reversal, subjects have to inhibit a previously acquired learning in order to acquire new 

learning, never seen before. While during a serial reversal, the subjects have to apply in a new contest the 

information learned and acquired before. This can be assimilated into the goal-directed and habit formation. 

In a goal-directed acquisition, the animal will associate the action (poke) to the outcome (sugar pellet). In a 

habit learning, the animal will be less motivated by the outcome (reward). Several studies confirmed the 

involvement of the PFC in goal-directed, while the OFC trigger mostly habit acquisition (Gremel and Costa, 

2013). The comparison between study, allow us to suggest that the PFC neurons encode mostly goal-directed 

behavior (IDS2, IDS2Re) and need to be inhibited during the shift to EDS to “build” a new attentional set. 

Indeed, similarly to what I found in SD, following IDS and IDSRe, it is very likely that the animals are mostly 

processing the behavior under a habit learning processes. 

Overall, these findings are summarized in Table 2 and might underline a different and specific involvement of 

the mPFC in the extra-dimensional shift abilities, suggesting that the contribution of cortical neurons after 

correct choices and their absence during incorrect choices is important for understanding that a new attentional 

set has to be developed. 
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Table 2. mPFC activity changing of WT mice before and after responses, in the different stages of the task. Green: 

correct responses. Red: incorrect responses. SD: Simple Discrimination; CD: Compound Discrimination; CDRe: 

Compound Discrimination Reversal; IDS: Intra-Dimensional Shift; IDSRe: Intra-Dimensional Shift Reversal; IDS2: 

Intra-Dimensional Shift 2; IDS2Re: Intra-Dimensional Shift 2 Reversal; EDS: Extra-Dimensional Shift; EDSRe: Extra-

Dimensional Shift Reversal. Periods analyzed: decision (pre response) and post-decision (post response). 

 

After the initial analyses in WT mice, I wanted to understand how the PFC-coding of these executive functions 

might be modulated by genetic variants modifying the dopaminergic signaling and which might have an 

implication for psychiatric disorders and their treatments. I used genetically modified mice implicated in 

schizophrenia-cognitive alterations: dys+/- and D2L+/- mice. Unfortunately, it was not possible to reduced or 

abolished the D2-receptors specifically in the prefrontal cortex, and I had to use mutants with the mutation 

widely expressed. 

I focalized my attention also in mice with concomitant alterations of both these genes, as the interaction 

between these two genetic variants has been shown to have a strong implication for cognitive responses to 

antipsychotic drugs in both mice and human patients (Scheggia et al., 2018; Leggio et al., 2019). 

In the group of mice with the mutation of Dys (dys+/-) genes,  I found that they had an impairment in the EDS 

stage compared to WT mice, where they needed more trials and time to reach the criterion. At the level of the 

single-cell electrophysiology, during EDS the PFC of dys+/- mice seems to encode similarly correct and 

incorrect answers. The discrepancies observed in the EDS of WT mice between correct and incorrect are thus 

lost. Looking at the firing rate, differently from WT mice, the increase of the firing rate in the post-decision of 

a correct choice shifted in the post-decision period of an incorrect choice. 

It is clear that dys+/- mice have an impairment in mPFC coding of the extra-dimensional shift. 
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Inducing the mutation D2L+/- in the mice, the performance of EDS was restored, confirming our previous 

findings (Scheggia et al., 2018). Interestingly, what I found from my study, is that at the level of mPFC, 

although the activity was the same as for dys+/- mice, the encoding after a correct choice was restored (Table 

3). Moreover, the mPFC of double mutant mice increased the firing rate in the decision-making period of both 

choices, compared to WT mice. This suggests that when patients with reduced expression of gene dys are 

treated with D2-specific antipsychotics, the PFC activity is not fully restored, but it is introduced a new coding, 

the one after correct decisions, and is induced an increase of the firing rate in case of decision making, 

important for the restoring of the performance. This observation is important in healthy subjects, as D2L is 

important for the development of a new attentional set.In 

 

 

Table 3. mPFC activity changing of WT (top), dys+/- (middle), and dys+/-D2L+/- (bottom) mice before and after 

responses, in  EDS. Green: correct responses. Red: incorrect responses. EDS: Extra-Dimensional Shift. Periods 

analyzed: decision (pre response) and post-decision (post response). 

 

Considering now the D2L+/-mice, what I found is that they had an impairment in serial reversal learning, in 

particular in the IDS2Re stage, compared to WT mice, where they needed more trials and time to reach the 

criterion.  

Considering the firing rate of the mPFC cells, what I found is that D2L+/- mice increased the firing in the pre-

decision period of an incorrect choice compared to WT mice. D2L+/- seemed no to be able to distinguish a 

correct choice from an incorrect one, activating the cells in the same way in both cases. This is not like WT,  

where they seemed to have an increasing trend in the pre-decision period of a correct choice, which returned 

to the baseline in case of incorrect choice. 

Investigating the mPFC activity, what was possible to see is that, unlike WT mice where there was an increase 

of activity in the decision-making period of correct choices, the cortical neurons increased the firing in the 

decision-making and post-decision of incorrect choices. It is clear that D2L+/- mice have an impairment in 

mPFC coding of serial reversal learning. 

Introducing the mutation dys+/- in these mice, the performance of IDS2Re was restored. 
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Interestingly, what I found from my study is that at the level of mPFC, the increase in the decision of incorrect 

choices was suppressed, and the coding before correct choices was restored, with an increased of the firing 

rate in the decision making period of a correct choice (Table 4). 

This indicates that with an unbalanced ratio of the two isoforms of the receptor D2 and when the expression 

of the gene dys is reduced, the PFC activity is restored to the normality in case of correct choices, that in 

healthy subject is important for the correct consolidation of the attentional set and the correct performance of 

serial reversal learning. 

 

 

Table 4. mPFC activity changing of WT (top), D2L+/- (middle), and dys+/-D2L+/- (bottom) mice before and after 

responses, in IDS2Re. Green: correct responses. Red: incorrect responses. IDS2Re: Intra-Dimensional Shift 2 Reversal. 

Periods analyzed: decision (pre response) and post-decision (post response). 

 

Considering IDS2Re and EDS in case of dys+/-D2L+/-, I found a similar activation of mPFC comparing it 

with WT mice: an increase of the firing in the decision-making period of a correct choice. This suggests that 

double mutant mice are able to restore the performance of the stages thanks to this great involvement of the 

mPFC in the coding of a correct choice. 

Taken together, this finding illustrates how the neuronal coding of executive functions within the mPFC might 

be altered in the context of different genetic backgrounds leading to different cognitive performances in 

different cognitive domains. However, the presence of D2 receptors in multiple structures, including the dorsal 

striatum might affect the firing of PFC neurons throughout multiple synapses circuits. Repeating these 

experiments in other structures will be interesting and necessary. 
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Future perspective 

My study provides a detailed analysis of mPFC coding of different aspects of cognitive functions related to 

executive functions and flexible choices. This provides a solid base for future more mechanistic investigations 

trying to determine which type of neurons might be responsible for the signals I was able to record. In 

particular, our future perspective is to characterize the selective involvement of different types of neurons (e.g. 

principal neurons, SOM+ and PV+ interneurons) within the mPFC in cognitive flexibility, always through the 

use of the automatized OPERON ID/ED task. Based on the data gathered so far, for example, we might target 

each type of these subpopulations of neurons in specific epochs (e.g. before or after the decision in the operant 

task) with the optogenetic, which enables verification of physiology-based classification of neurons recorded 

in vivo (Kvitsiani et al., 2013; Roux et al., 2014). So, we can combine chronic in vivo recording with optical 

tagging, in order to follow the activity of each group of neurons. 

Moreover, my study is purely correlative and does not yet provide any direct causal link between the different 

patterns of neuronal activity and the different cognitive performances in different cognitive domains. However, 

it provides specific indications on what could be the critical time points in every single cognitive domain 

investigated that could be manipulated to provide this more direct causal link. For example, through 

optogenetic manipulations, we can design experiments to inhibit or excite the mPFC in the decision-making 

period of correct and incorrect choices to provide a causal link with behavioral performance, and with the 

development of an attentional set. In the case of  EDS, it could be interesting to understand if manipulating the 

mPFC activity in the post correct responses, this stage becomes impossible to be solved or becomes “simple ” 

like the immediately before stages, used to develop the attentional set. Moreover, this optogenetic manipulation 

can be further applied to understand the different types of neurons of the mPFC involved and try to understand 

the contribution of each one in cognitive flexibility.  

Here I focused on the PFC. However, the PFC works within a more complex network related to high-level 

cognitive performance. In particular, it is known that the dlPFC and Postero Parietal Cortex (PPC) are two 

parts of a broader brain network involved in the control of cognitive functions such as working memory, spatial 

attention, and decision-making (Katsuki and Constantinidis, 2012). These are two major hubs of the so-called 

default mode network. Moreover, the PPC receives direct prefrontal input  (Crowe et al., 2013). Thus it would 

be interesting to directly manipulate the PFC-PPC circuit to investigate its involvement in executive functions. 
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