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Preface    

During the three years of my PhD, the exceptional possibilities provided by 

Chemometrics to effectively extract information from multivariate and 

aspecific (non-selective) data obtained with advanced analytical instruments 

such as spectrofluorimeter, near infrared (NIR) spectrometer and liquid 

chromatography coupled with high-resolution mass spectrometry (LC-

HRMS), have been investigated. 

The aim of the present thesis was to find simple answers to different real 

problems, in particular in the food, environmental and industrial fields, 

using chemometric tools and strategies in order to elaborate multivariate 

data, also in integrated way.  

The achievements of these projects were five published papers in 

international scientific journals, two oral presentations and ten posters at 

international scientific conferences. 

The First Chapter comprehends three studies in the food field (“Food 

Projects”). The research activity of “Project I” was performed at the 

University of Burgos, Spain under the supervision of Prof. M. Cruz Ortiz 

Fernandez; the aim was to optimise, by a D-Optimal design coupled with 

Parallel Factor Analysis (PARAFAC), signals from molecular fluorescence 

spectroscopy in order to obtain the best experimental conditions for the 

achievement of the best fluorescence signal of green tea samples. 

The parameters optimized thanks to this investigation were utilised in a 

second study, “Project II”, for obtaining information on the geographical 

origin of green tea, in particular for the characterisation of Chinese and 

Japanese samples, using excitation–emission matrix (EEM) fluorescence 
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spectroscopy and PARAFAC. Moreover, in this study, a cyclodextrin-

modified micellar electrokinetic chromatography method was employed to 

quantify the most represented catechins and methylxanthines in the green 

tea samples and Partial Least Squares Class-Modelling (PLS-CM), as a 

multivariate classification tool, was performed on these electrokinetic 

chromatography data in order to discriminate tea samples according to their 

geographical origins. The achievements of this project were outlined in an 

article and two posters. 

In “Project III”, the analytical performances of quartz cuvettes and 

disposable glass vials for the analysis of olive oil by near infrared 

spectroscopy (NIRS) were considered and compared. This project was 

supported by AGER Foundation, Project Code: 2016-0169. For this 

purpose, a set of extra virgin olive oil samples from different Italian olive-

growing areas have been collected and analysed using both quartz cuvette 

and mono-use glass vials. From spectral data, multivariate calibration 

models were developed to estimate quality parameters of extra virgin olive 

oil: methyl esters of fatty acids and triacylglycerols determined by a fast-GC 

approach and an UHPLC system, respectively. Before computing the 

regression models, an optimisation procedure of spectra pre-treatment was 

performed in order to individuate the pre-treatment able to properly enhance 

the information embodies in the data. The predictive ability of each PLS 

model was evaluated by an external validation procedure with an 

independent test set. The Passing- Bablok linear regression was lastly used 

to statistically compare the performances of the two different types of 

cuvettes. In light of the outcomes of the present study, analytical 

performance of quartz cuvettes and disposable glass vials were considered 

not significantly different in predicting the olive oil quality parameters taken 

into account. 



10 

The Second Chapter deals with the scientific activities that I carried out in 

the environmental field during my PhD. My work on this field began with a 

biomonitoring study (“Project IV”); this study aimed at testing the use of 

different analytical spectroscopic approaches, coupled with chemometrics, 

as rapid and simple tools for assessing effects of air pollutants on lichen 

thalli. For achieving this goal, thalli of the fruticose lichen Pseudevernia 

furfuracea (L.) Zopf v. furfuracea, collected from a pristine area, have been 

transplanted for three months to 15 sites in the Liguria region (NW-Italy), 

characterized by contrasting levels and type of atmospheric pollution, as 

measured by the regional Environmental Protection Agency (ARPAL). 

Lichen samples have been analyzed by FFFS (Front-Face Fluorescence 

Spectroscopy), NIRS and PEA (Plant Efficiency Analyzer) and data 

elaborated by multivariate data analysis, in order to compare the 

performances of these spectroscopic techniques and to highlight possible 

synergic or complementary information. 

The outcome of “Project V” as a published article was based on my 

activities performed in NIVA institute, Oslo (Norway), under the 

supervision of Dr. Saer Samanipour. In this project, the ability of three 

different extraction methods (liquid-liquid extraction recommended by 

Norwegian Oil and Gas for extraction produced water, solid phase 

extraction using Hydrophilic-Lipophilic-Balanced cartridges, and the 

combination of ENV+ and C8 cartridges) for separation of naphthenic acids 

(NAs) in oilfield produced water, was evaluated by analysing the data 

acquired by liquid chromatography coupled to high resolution mass 

spectrometry (LC-HRMS). The importance of this project is due to the high 

toxicity of NAs on most kind of organisms and to the corrosively 

determined by the structure of the naphthenic acid. For each extraction 

method, one sample divided in three aliquots was tested. In order to evaluate 
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the performance of the three extraction methods, we performed both uni-

variate and multi-variate statistical analysis and our results suggested that 

different extraction methods have different ability to extract toxins from the 

same sample. 

In Third Chapter, details of my studies in the industry field are provided. 

“Project VI” investigates the possibility of determining the base oil type in 

engine oils by combining excitation-emission fluorescence spectroscopy 

(EEM), NIR spectroscopy and Chemometrics. The purpose of this project is 

to significantly reduce the cost and time of engine oil formulators (in 

particular additive package formulators) and standardizers. To this end, I 

have collaborated with three petrochemical companies to collect samples 

with specific information, including fifty-three base stocks and forty-three 

engine oils with various base oil compositions and different performance 

levels. The performances of both spectroscopies were compared using 

chemometrics tools such as: PCA for the visualization of pure base stocks 

and engine oils and PLS-DA as a classification technique in order to 

distinguish base stocks according to their API (American Petroleum 

Institute) category. Considering the 3-ways nature of the EEM data, 

PARAFAC was also applied on fluorescence data as a 3-ways 

decomposition method. 
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1.1 Project I 
 

D-Optimal Design and PARAFAC as Useful Tools 

for the Optimisation of Signals from Fluorescence 

Spectroscopy Prior to the Characterisation of 

Green Tea Sample 

  
Summary 
A procedure based on a D-optimal design coupled with PARAFAC was 

proposed to optimise signals from molecular fluorescence spectroscopy to 

obtain the best experimental conditions for the achievement of the best 

fluorescence signal of green tea samples. Excitation-emission signals 

(EEMs) were used to analyse the liquid samples (tea infusions), whereas 

front-face fluorescence excitation-emission matrices (FFEEMs) were 

recorded for the solid samples (raw or powder tea leaves). The experimental 

effort was reduced considerably in both cases thanks to the D-optimal 

design. Once the optimal conditions have been found, the characterisation of 

green tea was carried out and the sensitivity and specificity were evaluated. 

The projection of the principal component analysis (PCA) scores enabled to 

differentiate among the types of liquid green tea (Chinese tea, Chinese tea 

with lemon and Indian tea with and without theine). The discrimination of 

solid green tea according to its geographical origin (Chinese, Indian and 

Japanese) was also carried out through PCA. In addition, the discrimination 

between the most expensive Japanese tea and the cheapest one was possible. 

The sensitivity of the models built with SIMCA was 100% and the 

specificity of the models for the Chinese tea with respect to the Japanese tea 

was also high. 

1.1.1 Introduction 
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Tea is a beverage made from the leaves of the Camellia sinensis plant which 

is successfully cultivated and consumed by a wide range of age groups in 

many different countries [1]. The Asian region has a good reputation in the 

international market due to the high quality of teas produced [2]. A recent 

study carried out by the Food and Agriculture Organization of the United 

Nations (FAO) [3] shows that tea production in the world was 5,063,900 

tonnes in 2013, China and India being the main producers. Japanese tea is 

one of the most valued. The most widely drunk grade of green tea in Japan 

is called Sencha, whereas the highest quality Japanese green tea is Gyokuro 

whose price is high [1;4-5]. 

The intake of green tea has been shown to reduce the risk of cardiovascular 

disease and certain types of cancer [6]. These health benefits are attributed 

to the high content of catechins (polyphenolic compounds) which have 

potent antioxidant functionality [7] and native fluorescence [8]. Tea leaves 

also contain other chemical constituents such as caffeine, theanine, 

polyphenols, vitamins, minerals, carbohydrates and pigments [1; 9]. 

The potential health benefits of green tea, especially its antioxidant 

properties, have increased its consumption. These characteristics vary 

according to the region in which tea has been cultivated [10] so the price 

depends on the geographical origin. Consumers would be willing to pay 

more for a tea produced in a specific geographical region in which tea is 

considered of higher quality. Therefore, the recognition of the origin is 

crucial to protect the interests of consumers and sellers [11]. Several 

analytical methods have been proposed to characterise the geographical 

origins and/or varieties of teas [11-15]. 

Fluorescence spectroscopy is a fast, non-destructive, sensitive and low-cost 

technique which can be used in food authentication without the use of time-
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consuming sample preparation. Front-face fluorescence spectroscopy 

measures the fluorescence emitted from the sample surface and avoids some 

problems such as inner-filter effect, scattering light that are present, for 

example, on turbid samples [16-17]. Nitin Seetohul et al. [18] discriminated 

Sri Lankan black teas using fluorescence spectroscopy and linear 

discriminant analysis. Dong et al. [19] used a fast light-emitting diode 

(LED)-based 2D fluorescence correlation spectroscopy technique to predict 

the quality (price) of tea. EEM fluorescence spectroscopy coupled with the 

NPLS- DA technique was used to discriminate the variety and grade of 

liquid green tea after derivatization to obtain a series of amino acid 

derivatives [20]. A recent study applied partial least squares class modelling 

(PLS-CM) to the content of catechins and methylxanthines of green tea 

samples by cyclodextrin-modified micellar electrokinetic chromatography 

[21]. 

The interpretation of fluorescence spectral data is complex due to 

overlapping signals. However, the use of fluorescence spectroscopy coupled 

with chemometric tools such as PARAFAC enables the estimation of the 

spectra of the underlying fluorescent phenomena [22]. PARAFAC will be 

considered as a datadriven deconvolution in this work. Many factors are 

involved in an analytical procedure which may need to be optimised. In this 

context, the methodology based on the design of experiments can be used to 

find the best experimental conditions in an effective way. 

In this work, front-face fluorescence spectroscopy was used in the analysis 

of solid green tea samples, whereas the analysis of liquid samples was 

carried out using conventional fluorescence spectroscopy. Once the optimal 

conditions have been found, the characterisation of different varieties of 

green tea infusions and green tea samples in solid form was performed 
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through principal component analysis (PCA) unfolding the same data into 

matrices. Different SIMCA models have been built with these scores that 

enable the evaluation of their sensitivity and specificity. As far as the 

authors are aware, this is the first time that the characterisation of solid 

green tea leaves using front-face fluorescence spectroscopy was performed 

evaluating the sensitivity and specificity of the models built. 

1.1.2 Material and Methods 

1.1.2.1 Samples and Reagents 

Commercial samples of green tea from China, India and Japan were 

analysed. In particular, two varieties of green tea of the same geographical 

origin were purchased: Chinese tea, Chinese tea with lemon, Indian tea with 

theine, Indian tea without theine, Japanese tea (Gyokuro) and Japanese tea 

(Sencha). A green tea sample of unknown origin was also analysed. 

Methanol (CAS no. 67-56-1) (gradient grade for liquid chromatography 

LiChrosolv®) was obtained from Merck KGaA (Darmstadt, Germany) and 

used to clean the faces of the window of the powder holder when necessary. 

All the tea infusions were prepared using deionised water obtained with the 

Milli-Q gradient A10 water purification system from Millipore (Bedford, 

MA, USA). 

1.1.2.2 Experimental Procedure 

The samples analysed came from a single green tea bag or from a mixture of 

three bags according to the experimental plans contained in Tables 1.1.2 and 

1.1.4 (“Optimisation of the Procedure by Means of a D-Optimal Design”), 

whereas three tea bags were used in “Classification of Green Tea”. 
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The raw solid samples were crushed with a manual mortar until obtaining a 

powder. The sample had to be powdered as finely and as homogeneously as 

possible to avoid surface structure effects. Then, the cell was filled with the 

sample ensuring a uniform distribution of the sample and the powder holder 

was finally placed into the front surface accessory. 

The liquid samples (tea infusions) were prepared by putting 0.2 g of tea into 

contact with 10 mL of water at 85 °C for 5 min in a beaker. Then, the beaker 

was placed into an ice bath for 30 s and the content was filtered before its 

measurement. A filter paper (Albet® LabScience, 73 g/m2) was used to 

prepare the tea infusions. 

1.1.2.3 Instrumental 

The excitation-emission fluorescence measurements were performed at 

room temperature on a PerkinElmer LS 50B Luminescence spectrometer 

(Waltham, MA, USA) equipped with a front surface accessory and a powder 

holder for the measurement of the solid tea. In the case of the liquid tea, the 

excitation-emission matrices were recorded using the standard cell holder 

and a 10-mm quartz SUPRASIL® cell with a cell volume of 3.5 mL by 

PerkinElmer (Waltham, MA, USA). The excitation spectra were recorded 

between 200 and 290 nm (each 5 nm), whereas the emission wavelengths 

ranged from 295 to 550 nm (each 1 nm). The excitation monochromator slit 

width was set to 10 nm. The emission monochromator slit width was set to 5 

or 10 nm and the scan speed was 200, 500 or 1000 nm min−1 depending on 

the experimental plan. 

1.1.2.4 Multivariate Data Analysis 

1.1.2.4.1 PARAFAC Decomposition 
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PARAFAC resembles PCA, but while PCA works on a twodimensional 

matrix, PARAFAC is able to model n-way data. In the case of three-way 

data, PARAFAC decomposes a data tensor X with dimension I × J × K into 

three loading matrices A, B and C. The columns of these loadings matrices 

are af, bf and cf respectively [28]. The trilinear PARAFAC model is: 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓
𝐹

𝑓=1
+  𝑒𝑖𝑗𝑘,   i = 1, 2, ..., I; j = 1, 2, ..., J; k = 1, 2, ..., K (1) 

where xijk is the element in the position i, j, k of the three-way tensor X; F is 

the number of factors; and eijk is the residual tensor. 

The excitation-emission fluorescence matrices obtained for several samples 

can be arranged into a three-way tensor and the PARAFAC decomposition 

can be applied to the analysis of fluorescent data. Therefore, the vectors af, 

bf and cf are named as the excitation, emission and sample profiles of the f-

th fluorophore, respectively. The excitation and emission profiles refer to 

the excitation and emission spectra of each fluorophore, whereas the sample 

profile corresponds to the amount of each fluorophore found in each sample. 

Data are trilinear when the experimental data tensor is compatible with the 

structure in Eq. (1). The core consistency diagnostic (CORCONDIA) [28] is 

an index that measures the degree of trilinearity of the experimental data 

tensor which should be close to 100%. 

If the fluorescence data are trilinear, the PARAFAC decomposition provides 

unique profile estimations when the appropriate number of factors has been 

chosen to fit the model. PARAFAC has been widely used due to this highly 

attractive uniqueness property [29], which could be used for the unequivocal 

identification of compounds. 

1.1.2.4.2 D-Optimal Experimental Design 
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A D-optimal design [11] can be used to reduce the number of observations 

substantially without losing efficiency. Furthermore, it is possible that the 

effect of one or more factors on the response is not linear, so three levels 

should be considered. 

Briefly, the steps followed in the selection of the D-optimal design were: 

i) Define the factors to study and their levels establishing all the possible 

candidate experiments, NC. 

ii) Propose a model and establish the number of its coefficients (p). The 

mathematical reference-state models considered in this work were the ones 

in Eqs. (2) and (4), respectively. The minimum number of experiments 

necessary to fit the model that must be extracted from the complete factorial 

design is p. 

iii) Verify the coherence between the model and the information obtained in 

the candidate points through the variance inflation factors (VIFs). 

iv) Construct several experimental matrices with information of enough 

quality for different values of the number of experiments, N. N varies 

between the minimum value possible (p) and a value smaller or equal to NC. 

v) The final number of experiments of the D-optimal design is chosen 

through an exchange algorithm [11] with a value of VIFs that guarantees 

precise estimations for the coefficients of the model. 

1.1.2.5 Software 

The FLWinLab software (PerkinElmer) was used to register the fluorescent 

signals. The Rayleigh signals were removed using INCA software [23]. 

PARAFAC and PCA models were performed with the PLS_Toolbox [24] 
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for use with MATLAB [25]. The D-optimal designs were built with 

NemrodW [26]. SIMCA models were performed with V-PARVUS [27]. 

1.1.3 Results and Discussion 

1.1.3.1 Optimization of the Procedure by Means of a D-Optimal 

Design 

1.1.3.1.1 Solid Green Tea Samples 

The optimisation of the procedure for the analysis of the green tea samples 

in solid form was carried out in two experimental sessions. Therefore, a 

blocked experimental design was considered in order to study the effect of 

the experimental session (block) on the response. Table 1.1.1 shows the 

factors under consideration together with their corresponding levels.  The 

block (factor 1, x1) was studied at two levels: first day (level A) and second 

day (level B). The aim of the sampling (factor 2, x2) is to obtain a 

representative part of the material under study. In this work, each tea bag 

contained a different amount and length of branches and leaves. So, the 

samples analysed came from a single tea bag (level A) and from a mixture 

of three bags (level B). The sample preparation (factor 3, x3) was also 

considered. The solid samples were measured in raw form (level A) and in 

powder form (level B). The emission slit width (factor 4, x4) is the spectral 

band width of the emission monochromator. In general, higher fluorescence 

signals are obtained with a wider slit setting. However, the best spectral 

resolution is obtained when a narrow slit width is selected. The two levels 

were: 5 nm (level A) and 10 nm (level B). The time of data acquisition is 

directly related to the scan speed. An optimal signal-to-noise ratio would be 

achieved by selecting a slow scanning speed but the analysis will take more 

time to finish and it would also cause the degradation of photochemically 
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sensitive samples. Therefore, the scan speed (factor 5, x5) was studied at 

three levels: 200 nm min−1 (level A), 500 nm min−1 (level B) and 1000 nm 

min−1 (level C). 

Table 1.1.1: Experimental domain for the optimization of the procedure for the 

solid tea samples 

Factor (units) Codified Variable Level A Level B Level C 

Block (day) x1 1 2 - 

Sampling (number of bags mixed) x2 1 3 - 

Sample preparation x3 Raw  Powder - 

Emission slit width (nm) x4 5 10 - 

Scan speed (nm min-1) x5 200 500 1000 

The full factorial design necessary to handle four factors at two levels and 

another one at three levels would have 24 × 31 = 48 experiments. The 

mathematical reference-state model that relates the levels of the factors to 

the response variable is expressed in Eq. (2). 

𝑦 = 𝛽0 + 𝛽1𝐴𝑥1𝐴 + 𝛽2𝐴𝑥2𝐴 + 𝛽3𝐴𝑥3𝐴 + 𝛽4𝐴𝑥4𝐴 + 𝛽5𝐴𝑥5𝐴 + 𝛽5𝐵𝑥5𝐵 + 𝜀 (2) 

The discrete variables xij (i = 1, 2, 3, 4, 5 and j=A,B) of the model of Eq. (2) 

codify the factor and level according to the values previously mentioned. 

The model of Eq. (2) had 7 coefficients, so at least 7 out from the 48 

experiments of the full factorial design were necessary to fit the model. In 

this case, a D-optimal design with 16 experiments was chosen (see Table 

1.1.2). The values of the VIFs ranged from 1 to 1.22 which indicate high 

precision in the coefficients of the fitted models. 

Chinese green tea samples were prepared and measured according to the 

experimental plan (Table 1.1.2). The whole experimental procedure is 

detailed in “Experimental Procedure”. The FFEEMs recorded for the 8 

experiments of the first block were arranged in a data tensor, whereas 

another tensor was built with the FFEEM data of the experiments of the 

second block. 
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Table 1.1.2: Experimental plan and response (PARAFAC sample loadings) of the D-

optimal design selected for the optimization of the procedure for the solid tea 

samples. 

Experiment 
Block 

(day) 

Sampling 

(number of 

bags mixed) 

Sample 

preparation 

Emission 

slit width 

(nm) 

Scan speed 

(nm min-1) 

Response 

(PARAFAC 

sample loadings) 

1 1 1 Raw 5 200 0.05 

2 1 1 Powder 5 200 0.05 

3 1 3 Raw 10 200 0.63 

4 1 3 Powder 10 200 0.76 

5 1 3 Powder 5 500 0.01 

6 1 1 Raw 10 500 0.07 

7 1 3 Raw 5 1000 0.02 

8 1 1 Powder 10 1000 0.08 

9 2 1 Raw 5 200 0.04 

10 2 1 Powder 5 200 0.04 

11 2 3 Raw 10 200 0.33 

12 2 3 Powder 10 200 0.87 

13 2 3 Powder 5 500 0.03 

14 2 1 Raw 10 500 0.33 

15 2 3 Raw 5 1000 0.04 

16 2 1 Powder 10 1000 0.17 

The dimension of both tensors was 19 × 256 × 8, where the first and second 

dimensions corresponded to the number of excitation and emission 

wavelengths recorded, respectively, and the third dimension was the number 

of samples. 

A two-factor PARAFAC model was estimated in both cases after a non-

negativity constraint had been laid down on the spectral modes. Both factors 

might correspond to two different groups of fluorophores contained in the 

Chinese tea analysed. These PARAFAC models had CORCONDIA indexes 

equal to 100% and 99%, respectively. Fig. 1.1.1 shows the loadings of the 

excitation, emission and sample profiles of both models. The explained 

variance of these models was 97.4 and 96.8%, respectively. 



24 

  

  

  
Figure 1.1.1: Two-factor PARAFAC models obtained for the D-optimal design for the solid 

tea samples. Loadings of the: excitation profile (a) and (d), emission profile (b) and (e), and 

sample profile (c) and (f). Factor 1: blue, factor 2: red. 

As can be seen in Fig.1.1.1 c and f, the sample loadings for the first factor 

were similar to the ones for the second factor so the experimental conditions 

had the same influence on both factors increasing or decreasing the 

200 210 220 230 240 250 260 270 280 290
0

2000

4000

6000

8000

10000

12000

14000

16000

Excitation wavelength (nm)

L
o
a
d
in

g
s

(a)

200 210 220 230 240 250 260 270 280 290
0

1000

2000

3000

4000

5000

6000

Excitation wavelength (nm)

L
o
a
d
in

g
s

(d)

300 350 400 450 500 550
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Emission wavelength (nm)

L
o
a
d
in

g
s

(b)

300 350 400 450 500 550
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Emission wavelength (nm)

L
o
a
d
in

g
s

(e)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sample

L
o
a
d
in

g
s

(c)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sample

L
o
a
d
in

g
s

(f)



25 

fluorescence signal. The sample loadings of the first factor for each 

experiment (see the last column of Table 1.1.2) were the response 

considered in the D-optimal design since the explained variance with this 

factor was higher. 

The model for the D-optimal design of Eq. (2) was significant at a 95% 

confidence level (p value was lower than 0.05) since the null hypothesis is 

that the model is not significant. The explained variance of the response was 

85.1%. 

The interpretation of the effect of the experimental factors will be easier if 

the model of Eq. (2) is converted into the equivalent presence-absence 

model of Eq. (3) [11]: 

 𝑦 = 𝛽′0 + 𝛽′1𝐴𝑥1𝐴 + 𝛽′1𝐵𝑥1𝐵 + 𝛽′2𝐴𝑥2𝐴 + 𝛽′2𝐵𝑥2𝐵 + 𝛽′3𝐴𝑥3𝐴 + 𝛽′3𝐵𝑥3𝐵 +

𝛽′4𝐴𝑥4𝐴 + 𝛽′4𝐵𝑥4𝐵 + 𝛽′5𝐴𝑥5𝐴 + 𝛽′5𝐵𝑥5𝐵 + 𝛽′5𝐶 𝑥5𝐶 + 𝜀   (3) 

where each indicator variable xij is equal to 1 if the factor i-th is at level j-th 

and zero in any other case. As a consequence, each coefficient β’ij of Eq. (3) 

is the effect of factor i, at the corresponding level j, on the response. β’ij is a 

quantity that is added to the response when the factor i is at level j. The 

estimated coefficients of the presence absence model and their significance 

are shown graphically in Fig. 1.1.2a. The boundaries of the critical region of 

the test for the significance of every coefficient at a 95% confidence level 

are represented in Fig. 1.1.2a as dash-dotted lines. The coefficients placed 

on the right are positive. 

As can be seen in Fig. 1.1.2a, factor 1 (block) was not significant so there 

was no problem in measuring the tea samples in different days. On the other 

hand, although factor 3 was not significant, visible differences were 

observed between the raw and powder samples. The positive coefficient that 
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increased the response was chosen, so the sample will be prepared in 

powder form for future analyses. 

The rest of the factors were significant and, considering that a maximum 

was wanted for the response, the optimal conditions were a mixture of three 

tea bags (level B), emission slit width at 10 nm (level B) and speed equal to 

200 nm min−1 (level A). 

1.1.3.1.2 Green Tea Infusions 

Three experimental factors were considered in the optimisation of the 

procedure for the liquid tea samples: (i) sampling (factor 1, x1), (ii) emission 

slit width (factor 2, x2) and (iii) scan speed (factor 3, x3). The first two 

factors were at two levels, whereas the third one was at three levels as in 

“Solid Green Tea Samples”. Therefore, the full factorial design would have 

22 × 31 = 12 experiments. The block was not considered as a factor in this 

optimisation since it is known from previous experience that the recording 

β’
1A

 

β’
1B

 

β’
2A

 

β’
2B

 

β’
3A

 

β’
3B

 

β’
4A

 

β’
4B

 

β’
5A

 

β’
5B

 

β’
5C

 

β’
1A

 

β’
1B

 

β’
2A

 

β’
2B

 

β’
3A

 

β’
3B

 

β’
3C

 

Figure 1.1.2:  Effect of the factors on 

the response of the D optimal design 

for the (a) solid samples and (b) 

liquid samples according to the 

presence-absence model of Eqs. (3) 

and (5), respectively. Dash-dotted 

lines: critical values at a 95% 

confidence level 

(a) (b) 



27 

of EEM on different days does not have an effect on the results. Table 1.1.3 

shows the levels of the studied factors. In this case, the reference-state 

model fitted was: 

𝑦 = 𝛽0 + 𝛽1𝐴𝑥1𝐴 + 𝛽2𝐴𝑥2𝐴 + 𝛽3𝐴𝑥3𝐴 + 𝛽3𝐵𝑥3𝐵 + 𝜀    (4) 

Table 1.1.3: Experimental domain for the optimization of the procedure for the 

green tea infusions. 

Factor (units) Codified Variable Level A Level B Level C 

Sampling (number of bags mixed) x1 1 3 - 

Emission slit width (nm) x2 5 10 - 

Scan speed (nm min-1) x3 200 500 1000 

The experimental plan followed in this case for the 8 experiments selected is 

included in Table 1.1.4. This D-optimal design had values of the VIFs 

between 1 and 1.22, which guaranteed high precision in the estimation of 

the coefficients. 

The tea infusions were prepared (see “Experimental Procedure”) using 

Chinese green tea and the samples were measured according to the 

experimental plan of the D-optimal design (see Table 1.1.4). The Rayleigh 

signals were not deleted in these data because INCA software (Andersson 

1998) deleted these signals together with a significant part of the 

fluorescence signals of the fluorophores. A three-way data tensor containing 

the EEM recorded for the 8 experiments was built. However, the EEM 

corresponding to experiment number 4 of the D-optimal design was 

considered as an outlier. In addition, some excitation and emission 

wavelengths were deleted due to high noise. The dimension of the resultant 

tensor was 12 × 200 × 7. A two-factor PARAFAC model was estimated 

(CORCONDIA of 93%, explained variance of 71%) after a non-negativity 

constraint on both spectral ways was imposed. As in “Solid Green Tea 

Samples”, the sample loadings of the first factor were the response used in 
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the D-optimal design since they were nearly the same as the ones of the 

second factor. These values are collected in the last column of Table 1.1.4. 

Table 1.1.4: Experimental plan and response (PARAFAC sample loadings) of 

the D-optimal design selected for the optimization of the procedure for the 

liquid tea samples. 

Experiment 

Sampling 

(number of 

bags mixed) 

Emission slit 

width (nm) 

Scan speed 

(nm min-1) 

Response 

(PARAFAC 

sample loadings) 

1 1 5 200 0.14 

2 3 10 200 0.51 

3 1 5 500 0.11 

4 i 3 5 500 -  

5 1 10 500 0.47 

6 3 10 500  0.49 

7 3 5 1000 0.14 

8 1 10 1000 0.47 
i Outlier 

The model of Eq. (4) had five coefficients and 7 experimental results were 

available so there were enough degrees of freedom to evaluate the 

significance of the model and the coefficients. The model was significant at 

a 95% confidence level and the explained variance of the response was 

100%. 

The reference-state model of Eq. (4) was converted into the presence-

absence model of Eq. (5): 

𝑦 = 𝛽0 + 𝛽1𝐴𝑥1𝐴 + 𝛽1𝐵𝑥1𝐵 + 𝛽2𝐴𝑥2𝐴 + 𝛽2𝐵𝑥2𝐵 + 𝛽3𝐴𝑥3𝐴 + 𝛽3𝐵𝑥3𝐵 + 𝛽3𝐶𝑥3𝐶 + 𝜀

         (5) 

Figure 1.1.2b shows the graphic study of the effect of the experimental 

factors on the response considered in this D-optimal design. In this case, all 

the factors were significant, but the emission slit width was the most 

important one. A maximum response was wanted, so the optimal conditions 

were those in which the significant factors had a positive coefficient, that is 

a mixture of three tea bags, emission slit width at 10 nm and speed equal to 
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200 nm min−1. These conditions were the same as the optimal conditions 

found in “Solid Green Tea Samples” for the solid tea samples. 

1.1.3.2 Classification of Green Tea 

1.1.3.2.1 PCA Model for Liquid Green Tea (Chinese and Indian) 

  

  

 

Figure 1.1.3: Contour plots of the EEM 

recorded of a liquid green tea sample: a 

Chinese, b Chinese with lemon, c 

unknown origin, d Indian without theine 

and e Indian with theine 
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Several tea infusions were prepared using different types of green tea from 

China and India and measured under the optimal conditions selected in 

“Green Tea Infusions”. These liquid samples were specifically: 3 Chinese 

tea infusions, 2 Chinese tea infusions with lemon, 3 Indian tea infusions 

without theine, 3 Indian tea infusions with theine and 2 infusions prepared 

with green tea from an unknown origin. As in “Green Tea Infusions”, the 

Rayleigh signals were not deleted in these data. Figure 1.1.3 shows the 

contour plots obtained with the EEM recorded of a liquid sample prepared 

with each one of the different teas considered. 

The EEMs recorded for the 13 samples analysed were arranged into a data 

matrix of dimension 13 × 3288 since some of the variables had a lot of 

missing values. PCA was applied on this matrix after the data had been 

mean-centred. The cross-validation step was carried out by means of the 

“leave-one-out” technique where the minimum of the cross-validation 

variance was obtained with two principal components (PCs). The first and 

second PCs explained 81.4% and 12.0% of the variance, respectively. The 

Figure 1.1.4: Score plot of the liquid green tea samples 

from China and India on the first and second principal 

components. Samples 12 and 13 correspond to green tea 

from an unknown origin 
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representation of the scores for each liquid sample on the first and second 

PCs is shown in Fig. 1.1.4. 

As can be seen in this figure, PCA enabled to differentiate the infusions of 

green tea according to the four different varieties. The green tea of unknown 

origin (samples 12 and 13 in Fig. 1.1.4) might be from China due to the 

closeness to this group in that figure. The shape of the contour plots 

obtained for the samples analysed was quite similar as can be seen in Fig. 

1.1.3, so it is clear the difficulty of the analysis. However, the PCA 

decomposition has succeeded in the characterisation of these tea samples 

since the scores are in non-overlapped regions. 

1.1.3.2.2 PCA Model for Solid Green Tea (Chinese, Japanese and 

Indian) 

Different varieties of green tea from three different origins were used to 

prepare solid tea samples in powder form (“Experimental Procedure”). 

These samples were measured under the optimal conditions of “Solid Green 

Tea Samples”. The number of these solid samples was: 3 Chinese green tea, 

3 Chinese green tea with lemon, 2 Indian green tea without theine, 2 Indian 

green tea with theine, 7 Japanese green tea (Sencha) and 6 Japanese green 

tea (Gyokuro). An example of the contour plots of the FFEEM obtained in 

each case is shown in Fig. 1.1.5. These plots are clearly different from the 

ones obtained for the tea infusions (see Fig. 1.1.3). 

In a first step, a data matrix of dimension 23 × 3288 was considered and 

decomposed by PCA as in “PCA Model for Liquid Green Tea (Chinese and 

Indian)”. Three PCs were considered which explained a 94.3% of the 

variance. The score for each solid sample on the first and third PCs is 

represented in Fig. 1.1.6. 
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Figure 1.1.5: Contour plots of the FFEEM recorded of a solid green tea sample of: a 

Chinese, b Chinese with lemon, c Indian without theine, d Indian with theine, e Japanese 

(Sencha) and f Japanese (Gyokuro) 
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was possible to discriminate the samples according to their geographical 

origin despite their spectra being quite similar as can be seen in Fig. 1.1.5. 

Figure 1.1.7: Score plot of the solid green tea samples on 

the first and second principal components. Chinese tea 

(samples 1 to 6): blue, Japanese tea (Sencha, samples 7 to 

11): grey and Japanese tea (Gyokuro, samples 12 to 16): 

pink. Outlier: sample 7 

Figure 1.1.6: Score plot of the solid green tea samples on 

the first and third principal components. Chinese tea 

(samples 1 to 6): blue, Japanese tea (samples 7 to 16 and 21 

to 23): pink and Indian tea (samples 17 to 20): green. 

Samples number 6 and 7 are outliers. 
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In a second step, only the Chinese and Japanese solid samples were 

considered in the study. In the case of the Japanese samples, 5 samples were 

only considered for each variety (Sencha and Gyokuro). A data matrix with 

these 16 samples was built as explained above. This matrix (16 × 3288) was 

mean-centred and decomposed by PCA. The “leave-one-out” technique was 

used to perform the cross-validation step. Two PCs were necessary in this 

PCA model (explained variance of 95.9%). The scores of the samples on the 

first and second PC are displayed in Fig. 1.1.7. Only one of the Japanese 

samples (sample number 7) that corresponded to the Sencha variety was an 

outlier. The first component enabled the distinction of the samples by their 

geographical origin (China and Japan), whereas the most expensive 

Japanese tea (Gyokuro) and the cheapest one (Sencha) could be 

distinguished with the second PC. The price of Gyokuro doubles the one of 

Sencha (80 and 40 euros/Kg, respectively in our market). 

The differences between the two varieties of Japanese tea are lower than the 

differences among the tea samples from other origins. Therefore, the 

Japanese tea could not be discriminated according to the variety in the first 

analysis. However, when only Chinese and Japanese samples were 

considered, the discrimination between the two varieties of Japanese tea was 

possible with a PCA model. This is due to the way PCs are found. 

The decision rule to discriminate a new tea sample would be: first, project 

the signal into the previous PCA analysis, and if the scores correspond to 

Japanese tea, then the signals would be projected into the second PCA 

analysis to discriminate the Japanese tea by their price (this procedure is a 

highlevel data fusion [30]). 

1.1.3.2.3 SIMCA Model for Solid Green Tea 
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A class modelling using SIMCA has been carried out to evaluate the 

sensitivity and specificity of the model. The sensitivity is the ability of the 

class models to recognise its own objects whereas the specificitymeasures 

the capacity of the model to reject objects that do not belong to the class. 

It is not possible to perform a class modelling using SIMCA by cross-

validation for the four categories of liquid green tea (“PCA Model for 

Liquid Green Tea (Chinese and Indian)”) because each category only 

contains two or three objects. However, the categories of Chinese, Japanese 

and Indian tea have been modelled with the data of “PCA Model for Solid 

Green Tea (Chinese, Japanese and Indian)”. 

Table 1.1.5: Sensitivity (%) and specificity (%), in fitting and in cross-validation, 

for the three categories of solid tea 
Category 

(Number of samples) 

Number of PC of 

SIMCA model 

Sensitivity 

(%) 

Sensitivity 

CVa (%) 
Specificity (%) 

Specificity  

CVa (%) 

Cat1 - Chinese 
(6) 

2 100  83.3 
cat1-cat2 = 90.9 
cat1-cat3 = 75.0 

cat1-cat2 = 82 
cat1-cat3 = 75 

Cat2 - Japanese 

(11) 
2 100 90.9 

cat2-cat1 = 100 

cat2-cat3 = 100 

cat2-cat1 = 92 

cat2-cat3 = 100 

Cat3 - Indian 
(4) 

1 100 100 
cat3-cat1 = 50.0 
cat3-cat2 = 63.0 

cat3-cat1 = 46 
cat3-cat2 = 58 

Four PCs were needed to explain at least a 95% of the variance of the 

categories. These PCs have been obtained with the unfolded data matrices of 

“PCA Model for Solid Green Tea (Chinese, Japanese and Indian)”. The 

SIMCA models were built with the scores of the samples in those 

components using normal range and unweighted augmented SIMCA 

distance [27]. The objects 7 and 8 were considered as outliers and were not 

included in this class modelling. The “leave-one-out” technique was used to 

perform the cross-validation step. 
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Table 1.1.5 shows the sensitivity and specificity of the models built for the 

three categories (Chinese, Japanese and Indian) whereas Table 1.1.6 shows 

the results for the two categories of Japanese tea (Sencha and Gyokuro) of 

different price. 

Table 1.1.6: Sensitivity (%) and specificity (%), in fitting and in cross-validation, for the two 

varieties of Japanese tea 

Category 
Number of PC of 

SIMCA model 

Sensibility 

(%) 

Sensitivity 

CVa (%) 
Specificity (%) 

Specificity  

CVa (%) 

Cat1 – japanese 

(Sencha)  
1 100  80 cat1- cat2 = 100 cat1- cat2 = 90 

Cat2 – japanese 

(Gyokuro) 
1 100  80 cat2- cat1 = 60 cat2- cat1 = 62 

The similar percentages in fitting and in cross-validation indicate that all the 

models are stable with a sensitivity of 100% in all of them. The specificity 

was good except for category 3 (Indian tea) and for the category of Gyokuro 

(Japanese tea). 

PCA analysis is just descriptive. On the other hand, the SIMCA model 

defines a region for each category which is evaluated through sensitivity and 

specificity. The procedure to classify a new sample is similar to the one 

explained in “PCA Model for Solid Green Tea (Chinese, Japanese and 

Indian)” for the PCA analysis. First, the SIMCA model is applied to that 

new sample for the three categories. If that sample is assigned to the 

Japanese category, then the second model is applied. 

1.1.4 Conclusions 

A fast method based on PCA together with the use of fluorescence 

spectroscopy has enabled the discrimination of different varieties of green 

tea. The use of a D-optimal design together with PARAFAC has reduced the 
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experimental effort in the optimization prior to the characterisation of the 

tea samples. 

The procedure followed could be considered a fast and promising method 

for discriminating green tea by its geographical origin as the current market 

situation and the increment in the tea trade require. In addition, two different 

varieties of Japanese tea have been distinguished by their price. 

The SIMCA models built show a sensitivity of 100% and high specificity. 

In addition, they are stable when the cross-validation is performed except 

for the specificity for category 3 (Indian tea) with the other two categories 

(Chinese and Japanese tea). 
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1.2 Project II 

 

Combining Excitation-Emission Matrix 

Fluorescence Spectroscopy, Parallel Factor 

Analysis, Cyclodextrin-Modified Micellar 

Electrokinetic Chromatography and Partial Least 

Squares Class-Modelling for Green Tea 

Characterization 

 

Summary 

In this study, an alternative analytical approach for analysing and 

characterizing green tea (GT) samples is proposed, based on the 

combination of excitation–emission matrix (EEM) fluorescence 

spectroscopy and multivariate chemometric techniques. The three-

dimensional spectra of 63 GT samples were recorded using a Perkin–Elmer 

LS55 luminescence spectrometer; emission spectra were recorded between 

295and 800 nm at excitation wavelength ranging from 200 to 290 nm, with 

excitation and emission slits both set at 10 nm. The excitation and emission 

profiles of two factors were obtained using Parallel Factor Analysis 

(PARAFAC) as a 3-way decomposition method. In this way, for the first 

time, the spectra of two main fluorophores in green teas have been found. 

Moreover, a cyclodextrin-modified micellar electrokinetic chromatography 

method was employed to quantify the most represented catechins and 

methylxanthines in a subset of 24 GT samples in order to obtain 

complementary information on the geographical origin of tea. The 

discrimination ability between the two types of tea has been shown by a 

Partial Least Squares Class-Modelling performed on the electrokinetic 
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chromatography data, being the sensitivity and specificity of the class model 

built for the Japanese GT samples 98.70% and 98.68%, respectively. This 

comprehensive work demonstrates the capability of the combination of 

EEM fluorescence spectroscopy and PARAFAC model for characterizing, 

differentiating and analysing GT samples. 

1.2.1 Introduction 

Tea is an aromatic beverage made from the leaves of Camellia sinensis, a 

plant native to Southeast Asia, cultivated and consumed by humans for 

thousands of years. Due to its attractive aroma and taste and its effect on 

reducing lifestyle-related diseases, tea is the most consumed beverage in the 

world. Green tea (GT) is made from unfermented leaves of Camellia 

sinensis and contains a high con-centration of polyphenols, which are 

powerful antioxidants. The potential health benefits of GT, especially 

related to its antioxidant properties, have led to an increase of its 

consumption in the last decades. The principal compounds of GT having 

biological effects have been identified as catechins and xanthines [1]. 

Catechins show a strong antioxidant activity and exert 

antiinflammatory,antiarhtritic, antiangiogenic, neuroprotective, anticancer, 

antiobesity, antiatherosclerotic, anti-diabetic, antibacterial, antiviral and 

antidental caries effects. Xanthines are responsible for the stimulating 

effects; caffeine (CF) is a central nervous system and cardiac stimulant and 

has a diuretic effect, while theobromine (TB), which is present in lower 

amounts, has also a diuretic effect [1–7]. Among the most abundant 

catechins in GT there are (+)-catechin, ((+)C), (-)-epicatechin (EC), (-)-

epigallocatechin (EGC), (-)-epicatechingallate(ECG), (-)-epigallocatechin 

gallate (EGCG) [8]. 
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The composition of GT can be influenced by several parameters associated 

with growth conditions, such as genetic strain, season, climatic conditions, 

soil profile, growth altitude, horticultural practices, plucking season, shade 

growth, and with the region in which tea has been cultivated. The other 

factors that can influence the pro-file of bioactive compounds are 

manufacturing process (withering, steaming/pan-firing, rolling, 

oxidation/fermentation and drying) and storage [8–9]. Besides this huge 

variability, the price of tea greatly varies according to its geographical 

origin. Hence, the recognition of the origin of GT is crucial to protect the 

interests of both consumers and sellers [10–11]. Several analytical methods 

have been proposed together with chemometric techniques in order to 

characterize the geographical origins and/or varieties of teas [12–15]. 

However, most of these methods require expensive equipment and involve 

tedious sample preparation in order to discriminate GT samples from 

different geographical origins; as an example, Ye et al. [14] extracted the 

volatile organic components from the dried tea leaves by headspace solid-

phase microextraction procedure, followed by GC–MS analysis. In a 

previous paper coauthored by some of us [10], cyclodextrin-modified 

micellar electrokinetic chromatography (CyD-MEKC) was employed to 

simultaneously analyse the most represented catechins and methylxanthines 

in 92 GT samples of different geographical origin, and the comparison of 

the obtained data showed that Japanese commercial GT products contained 

a general lower level of catechins than Chinese GTs. The contents of 

catechins and methylxanthines were thus used as chemical descriptors and 

potential indicators of the geographical origin. Considering this previous 

work as a starting point for further investigations, in the present study an 

alternative analytical approach was applied for identifying the differences in 

terms of active compounds content in GT samples from different 
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geographical origin. In order to reach this aim, 63 GT samples were 

analysed by fluorescence spectroscopy: 29 samples from Japan and 34 from 

China. The main reason of the choice of these two countries was the interest 

of the consumers in the comparison of Japanese and Chinese GTs in terms 

of active compounds content. As a matter of facts, Chinese GT tends to cost 

consumers much less than Japanese GT, for the massive prevalence of 

Chinese GT and thus the necessity of maintaining low prices by Chinese 

producers, and for the lack of space for the production of GT in Japan. 

Moreover, one of the main differences in GT processing between Chinese 

and Japanese producers is the way deactivation of enzymes is performed. 

Chinese GT is usually dry heated in order to deactivate oxidases, whereas in 

the case of Japanese GT steaming is employed. Besides, Japanese GT is 

usually shade grown [9]. Hence, we deemed it worthwhile to compare the 

GTs from these two countries in order to understand if the higher price of 

Japanese teas can be supported or not by the fact that it is a more prized tea 

for its higher antioxidant capacity. In more detail, the innovative analytical 

approach presented is based on the combination of excitation–emission 

matrix (EEM) fluorescence spectroscopy and chemometric tools to extract 

useful information from a huge amount of data. The chemometric approach 

is a fundamental part of the interpretation of fluorescence spectral data of 

agro-food products due to the presence of many fluorophores, since the 

fluorescence of a sample consists of a number of overlapping signals not 

easily understandable without a proper data processing. Accordingly to 

these principles, three-dimensional fluorescence spectra were elaborated 

through PCA[16] after unfolding the data into matrices and through Parallel 

Factor Analysis (PARAFAC) [17] on three-way data as display methods. 

Moreover, SELECT [18] technique was applied for variable selection, in 

order to individuate the variables with the highest classification power, i.e. 
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the most informative emission bands in discriminating between Japanese 

and Chinese GTs. Finally, the content of catechins and methylxanthines was 

determined in a subset of 24 GT samples by the previously developed chiral 

CyD-MEKC method in order to obtain complementary information on the 

geographical origin of GT samples and to confirm what observed in our 

previous work [10], i.e. that the amount of all the considered compounds 

was higher for Chinese GTs, with the exception of ECG. A Partial Least 

Squares Class-Modelling (PLS-CM) was carried out on this subset of 

samples to develop a predictive model able to classify new GT samples 

according to the geographical origin using the CyD-MEKC data. 

1.2.2 Material and Methods 

1.2.2.1 Samples and Reagents 

The reference standards of (+)C, EC, EGC, ECG, EGCG, CF, TB, as well as 

boric acid, 86.1% phosphoric acid, sodium dodecyl sulphate(SDS), (2-

hydroxypropyl)-β-cyclodextrin (HPβCyD, degree of substitution 0.6), were 

purchased from Sigma-Aldrich (St. Louis, MO,USA). The standard stock 

solutions (1 mg mL−1) of (+) C, EC, EGC,ECG, EGCG, CF, TB and of the 

internal standard syringic acid were prepared in a mixture of methanol/water 

in 15:85 ratio %v/v. Working standard solutions were obtained by dilution 

with water in a vial to 500 μL for achieving the desired final concentration 

values of the compounds. 

A set of 63 GT samples of different varieties and from different 

geographical origins (29 from Japan and 34 from China) was selected for 

the study and analysis. In order to assure a good degree of representativity 

of the samples, the main sources of variability for GTs were considered, i.e. 

for Japanese GTs the different varieties, including Bancha, Gyokuro, 
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Matcha, Sencha, Matcha, Tsuru types, while for Chinese GTs the different 

zones (the ten provinces of Hunan, Fujian, Zhejiang, Anhui, Yunnan, 

Guandong, Jiangsu, Hubei, Shandong, Guanxi). Moreover, each 

geographical group included samples stored in different conditions and 

coming from different manufacturing processes. Appendix 1 shows the 

description of the samples and the corresponding assigned code. 

Table 1.2.1: GT samples analysed by the CyD-MEKC method: content of 

catechins and methylxanthinesi. 

Sample Codeii Categoryiii EC ECG EGC CF ECGC (+)C TB 

J1 1 8.64 16.07 6.03 13.08 12.08 0.14 0.05 

J2 1 6.82 16.24 4.35 15.13 11.6 0.25 0.09 

J3 1 7.02 13.81 7.96 16.79 14.71 0.27 0.23 

J6 1 8.94 14.44 7.71 9.95 11.46 0.33 0.93 

J8 1 6.93 15.33 8.23 14.64 16.21 0.15 0.21 

J9 1 0.76 1.22 0.89 6.1 2.2 0.22 0.24 

J12 1 0.79 1.23 0.99 5.9 2.08 0.16 0.29 

J13 1 0.38 1.21 1.35 8.13 3.09 0.23 0.22 

J17 1 1.92 5.01 2.09 5.39 4.08 0.08 0.04 

J23 1 7.1 14.13 5.64 16.95 12.11 0.17 0.15 

J24 1 6.97 16.4 4.32 14.98 11.51 0.25 0.12 

J29 1 7.05 14.67 5.28 14.36 12.02 0.22 0.13 

C1 2 6.09 10.46 14.66 11.72 14.32 1.39 3.17 

C2 2 5.77 4.29 23.12 23.38 18.38 1.53 1.46 

C4 2 4.71 6.65 21.37 15.49 12.42 0.24 1.68 

C6 2 15.86 10.61 38.93 35.95 27 3.24 2.42 

C7 2 7.66 6.29 8.44 21.82 12.68 0.00 0.92 

C8 2 6.47 14.88 32.69 20.84 19.93 0.63 2.28 

C10 2 7.03 6.65 23.57 32.26 30.89 1.55 3.07 

C12 2 5.8 8.05 6.32 19.69 12.15 0.00 0.64 

C13 2 5.03 7.12 7.49 19.37 13.3 0.39 1.16 

C14 2 4.52 5.39 7.64 18.54 14.77 0.44 1.59 

C16 2 10.19 8 23.28 27.24 20.88 1.84 2.01 

C22 2 4.87 3.45 14.44 16.27 11.34 0.3 0.32 
i The data are expressed as the average content in mg g−1, dry basis (mean of 

twodeterminations). 
ii Sample code refers to the assigned code as described in Appendix 1. 
iii Category 1: Japanese GT samples; category 2: Chinese GT samples. 

The commercial GT samples were collected locally in specialized stores 

located in the cities of Florence and Genoa (Italy). A subset of 24 samples 

randomly selected including different types of Japanese GT and different 
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zones of Chinese GT has been analysed using the CyD-MEKC method for 

the quantitation of catechins and methylxanthines (Table 1.2.1). 

1.2.2.2 Experimental Procedure 

In order to simulate the content of active compounds in a cup of tea, GT 

samples were prepared by infusion of tea leaves. The samples were prepared 

immersing 0.2 g of finely powdered tea leaves in 10 mL of water at 85°C 

for 5 min in a beaker. Then, the beaker containing tea leaves and water was 

transferred into an ice bath for 30 s to stop the infusion at the same moment 

for each sample. In order to remove the leaves before performing the 

analysis, the infusion was filtered using a filter paper (Albet®LabScience) 

with a porosity equal to 73 g/m2. 

1.2.2.3 Instrumental 

1.2.2.3.1 Capillary Electrophoresis 

The CyD-MEKC method used for the determination of the com-pounds was 

derived from a previous study coauthored by one of us [15]. The analyses 

were carried out using a 3DCE instrumentfrom Agilent Technologies 

(Waldbronn, Germany) controlled by the software 3DCE ChemStation 

(Agilent Technologies) for both acquisition and data management. Fused-

silica capillaries (Unifibre, Settimo Milanese, Italy) of 33.0 total length, 8.5 

cm effective length and 50 μm inner diameter were used. The detection was 

carried out by using the on-line DAD detector and the detection wavelength 

was 200 nm. Voltage and temperature were set at 15 kV and 25°C, 

respectively. The background electrolyte was made by 25 mM borate-

phosphate buffer pH 2.50 with the addition of 90 mM sodium dodecyl 

sulphate and 25 mM HPβCyD. Total analysis time was about 8 min. 

Calibration was performed by the internal standard method, using syringic 
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acid as internal standard. The method had been previously validated in terms 

of selectivity, linearity, repeatability, accuracy and sensitivity, showing 

adequate performances for the analysis of catechins and methylxanthines in 

GT, with LOQ values ranging from 0.05 to 0.7 μg mL−1[15]. Further 

information on the CE method and procedure may be found in mentioned 

Ref. [15]. 

1.2.2.3.2 Fluorescence Spectroscopy 

The EEM fluorescence measurements were performed directly on GT 

extracts at room temperature on a Perkin-Elmer LS55B luminescence 

spectrometer (Waltham, MA, USA). The excitation-emission matrices of the 

GT infusions were recorded using the standard cell holder and a 10 mm 

quartz SUPRASIL® cell with cell volume of 3.5 mL by PerkinElmer. The 

excitation spectra were recorded between 200 nm and 290 nm each 5 nm 

(19 recorded points), whereas the emission wavelengths ranged from 295 

nm to 800 nm each 0.5 nm (1011 recorded points). The excitation and the 

emission monochromator slits were set to 10 nm. The FL WinLab software 

(PerkinElmer) was used to register the fluorescent signals. 

1.2.2.4 Software 

Data analysis was performed in the MATLAB environment [24], thanks to 

tailor made algorithms developed and implemented by the Authors. For the 

data processing, PCA, PARAFAC and PLS-CM algorithms were applied, in 

order to extract the significant information embodied within data. For 

performing variable selection, the SELECT method was applied thanks to 

its implementation in the software V-Parvus [22]. 

1.2.2.5 Data Analysis 
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1.2.2.5.1 Data Exploration 

PCA [16] is the most used tool in exploratory data analysis and it uses an 

orthogonal transformation to convert a set of correlated variables into a set 

of uncorrelated variables called principal components. This approach makes 

it possible to visualize in a comprehensive way the dataset starting from a 

two-dimensional data matrix. According to the specific nature of EEM data, 

organized in a three-dimensional data array, for performing PCA a step of 

unfolding of the matrix is requested, while with the PARAFAC algorithm it 

is possible to directly model n-way data. In the case of three-way data, like 

the EEM data, PARAFAC decomposes a data array X with dimension I × J 

× K into three loading matrices A, B and C, being their columns ai, bj and ck 

respectively. The trilinear PARAFAC model is expressed as follows: 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑏𝑗𝑐𝑘   i = 1, 2, … , I; J = 1, 2, … , J
𝐹

𝑓=1
; 𝑘 = 1, 2, … , 𝐾  (1) 

Where xijk is the element in the position i, j, k of the three-way array X; F is 

the number of factors; aif, bjf and ckf are the elements of the matrices A (I × 

F), B (J × F) and C (K × F), respectively; eijk represents the generic element 

of the residual array E (I × J × K). The PARAFAC model is found by 

minimizing the sum of squares of the residuals. The excitation-emission 

fluorescence matrices obtained for several samples can be arranged into a 

three-way array and the PARAFAC decomposition can be applied for the 

analysis of fluorescent data. In this case, X contains the fluorescence 

intensity at the k-th excitation wavelength and j-th emission wavelength 

recorded for the i-th sample. Therefore, the vectors ai, bj and ck are the 

sample, emission and excitation profiles of the f-th fluorophore, 

respectively. The similarity between the trilinear PARAFAC model and the 

physical model for fluorescence can be found in Ref. [19]. Data are trilinear 

when the experimental data array is compatible with the structure in Eq. (1). 
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The core consistency diagnostic (CORCONDIA) developed by Bro and 

Kiers [20] is an index that measures the degree of trilinearity of the 

experimental data array. A trilinear model has a value of CORCONDIA 

index close to 100%.If the fluorescence data are trilinear and the appropriate 

number of factors has been chosen to fit the model, the PARAFAC 

decomposition provides unique profile estimations, and the achievement of 

the true underlying excitation and emission spectra for every fluorophore is 

ensured [17]. PARAFAC has been widely used due to this highly attractive 

uniqueness property [21], which could be used for the unequivocal 

identification of compounds. 

1.2.2.4.2 Variable Selection 

The selection of the informative variables was performed by means of 

SELECT [18], a feature selection technique based on the stepwise 

decorrelation of the variables, which is implemented in the V-Parvus 

software [22]. This technique generates a set of decor-related variables 

ordered according to their Fisher weights. At each step, SELECT searches 

for the variable with the largest classification weight. This variable is 

selected and decorrelated from the other variables; then the algorithm is 

repeated until a fixed number of variables are selected or the Fisher weight 

is lower than a specific cut-off value. SELECT presents an interesting 

characteristic: the fraction of the residual variance of the predictors after the 

orthogonalization can be used to select intervals of predictors with better 

classification performance. 

1.2.2.4.3 Class Modelling 

PLS-CM [23] is a supervised method of classification between two 

categories (or classes), in our case Japanese or Chinese GT. Itis a version of 
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Partial Least Squares (PLS) algorithm with a binary response that makes it 

possible to model the probability distribution of the samples for each class 

and then performs a hypothesis test evaluating the α probability of type I 

error and the β probability of type II error. Class-model sensitivity 

(proportion of the samples of the class that are correctly assigned) and 

specificity (proportion of samples correctly rejected) are (1-α)·100 and (1-

β)·100, respectively. The risk curve is the plot of β error versus α error 

probabilities.  

1.2.3 Results and Discussion 

1.2.3.1 Catechins and Methylxanthines Content 

  
Figure 1.2.1: PCA (a) loading plot and (b) score plot of catechins and 

methylxanthines data. 

The CyD-MEKC method previously described [15] was applied to the 

analysis of a subset of 24 GT samples in order to confirm our previous 

observations [10] and to lay the basis for the EEM data processing. By 

applying the CyD-MEKC method, the samples were characterized by means 

of n=7 variables, namely (+)C, EC, EGC, ECG,EGCG, CF and TB (mg g−1, 

dry basis), obtaining a data matrix having 24 rows (samples) and 7 columns 

(variables), shown in Table 1.2.1. This data set was submitted to 

b a 
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chemometric modelling starting from PCA as a display method and then 

applying the PLS-CM algorithm for class modelling purposes. 

Firstly, PCA was performed on the data matrix to enhance the presence of 

structures inside the samples and to understand the correlation between the 

variables. 

 Fig. 1.2.1 shows the loading (a) and the score (b) plots of the catechins 

((+)C, EC, EGC, ECG, EGCG), CF and TB autoscaled data in the plane of 

the 2 first Principal Components, that explain the 86% of the total variance. 

From the loading plot it was possible to point out that the variable EGCG is 

the most important factor in PC1, followed by CF and EGC. All loadings 

are positive so that the samples with highest scores on PC1 have greater 

value in all the variables. On the contrary, loadings of PC2 have different 

sign: ECG has the highest positive loading and TB has the highest negative. 

Along PC1, the scores of the 

Japanese GT samples in relation 

to the scores of the Chinese GT 

samples are lower, indicating 

that in general Chinese GT 

samples were characterized by a 

higher content in the active 

compounds. This observation is 

in full agreement with what 

reported in our previous study 

[10]. 

In order to build the PLS-CM model, it is necessary to build a dummy 

vector containing the information about class membership; for this reason, a 

binary response was constructed considering the values 1 and 2 for the 

Figure 1.2.2: Normal distribution fitted for 

Japanese GT samples (on the left) and 

ChineseGT samples (on the right). 
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Japanese and Chinese GT, respectively (Table 1.2.1). The number of PLS 

latent variables that minimized the root mean square error in cross-

validation (RMSECV) obtained by leave one out procedure was 3, and they 

explained the 81.68% of response with 90.05% of predictors variance. Fig. 

1.2.2 shows the distribution of PLS fitted values for the Japanese and 

Chinese GT samples. Both classes have normal distribution with mean 

values 1.09 and1.91 and SD values 0.09 and 0.27, respectively. 

In order to decide if an unknown sample belongs to one or another class, a 

threshold value, tv, between 1 (GT from Japan) and 2 (GT from China) must 

be established. If the value estimated by PLS is higher than tv the sample is 

classified to belong to class 2 (China), while for estimated values lower than 

tv the sample is classified to belong to class 1 (Japan). A model for one class 

(e.g. “GT Japanese”), is in fact the acceptation region for the null hypothesis 

H0: the sample belongs to “Japanese GT” class. Therefore, the evaluation of 

the quality of a class model is given by 

its sensitivity and specificity. Both 

parameters have been evaluated in 

cross-validation, being 98.70% 

and98.68%, respectively. The risk 

curve, reported in Fig. 1.2.3, is the plot 

of β versus α probabilities, where itis 

clear that both probabilities change in 

opposite directions, that is, α decreases 

when β increases and vice versa. 

1.2.3.2 Fluorescence Spectra 

Fig. 1.2.4 shows two typical excitation-emission spectra of one Japanese 

(J1) and one Chinese GT sample (C1). 

Figure 1.2.3: Risk curve for the 

PLS-CM. 
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 1.2.3.2.1 Repeatability Studies 

In order to assess the experimental 

variability and the repeatability in 

preparing the tea infusions, the 

analysis of two GT samples of 

different geographical origin (one 

from Japan and one from China) 

were replicated 3 times at a distance 

of time (one week). Supplementary 

Fig. 1.2.5 displays the score plot obtained by PCA of the spectral data after 

unfolding. PC1, which explains 97.8% of the total variance, clearly 

separates the 2 GT samples; on the contrary, the difference among the 3 

replicates of the same sample is along PC2, which explains only 1.4% of the 

variance. 

1.2.3.3.2 PCA 

Two bands of the emission spectra were removed, namely from 295 to 350 

nm and from 700 to 800 nm, due to the lack of information typical of these 

two areas (Fig. 1.2.4). The range between 350–700 nm was retained and 

Figure 1.2.5: Score plot obtained 

by PCA of the spectral data of 3 

replicates of 2 GT samples, one 

Chinese (C5) and one Japanese (J5). 

Figure 1.2.4: A typical excitation-emission spectra of (a) a Japanese (J1) and (b) a 

Chinese (C1) GT sample. 
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used for data elaboration. A data matrix of dimension 63 × 13,300 was built, 

where each row corresponded to the emission spectrum (700 wavelengths) 

obtained at each of the 19 excitation wavelengths for all the 63 GT samples 

measured. PCA was performed as unsupervised pattern recognition 

technique on this ‘unfolded’ matrix after the data had been mean-centred. 

Fig. 1.2.6 shows the score plot on 

the plane PC1-PC4. It is possible 

to notice a discrimination between 

Japanese and Chinese GT samples 

along PC1, the direction explaining 

the 74.3% of the total variance, 

even if a certain overlap is present 

and the complete separation 

between the classes is not 

obtained. In the PC1-PC4 plot it 

can be also clearly noticed that 

Matcha GT samples, considered 

one of the Japan’s rarest and most precious GT variety, are grouped in a 

cluster in the orthogonal space at negative scores on PC1. 

Looking at the loading profile on 

PC1 (Fig. 1.2.7), it is possible to 

notice the bands more informative 

along PC1 and thus useful for 

discriminating between Japanese 

and Chinese GTs, namely 410–450 

nm and 500–600 nm. The first 

band (410–450 nm) shows positive 

Figure 1.2.6: PCA score plot on the PC1-

PC4 plane for the fluorescence data. Matcha 

samples are indicated in green in the plot (for 

colours, see the web version of the 

manuscript). 

Figure 1.2.7: Loading profile on PC1 
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loadings on PC1 and this suggests that it is related to active compounds 

content in GT from China; on the contrary the broad band (500–600 nm) has 

negative loadings, therefore it seems 

linked to chemical compounds 

characterizing the Japanese GTs. 

1.2.3.3.2 PARAFAC 

The EEM data recorded for the 63 

samples analysed were arranged into 

a data array where the excitation 

wavelengths between 200 nm and 

290 nm and the emission 

wavelengths between 295 nm and 

800 nm were considered. Therefore, 

the dimension of this array was 63 × 

1011 × 19 (where 63 are the 

samples, 1011 the emission 

wavelengths and 19 the excitation 

wavelengths). The PARAFAC 

decomposition of this array, without 

any constrain, required two factors 

(CORCONDIA of 100%, explained 

variance of 98.6%). 

The plot of the loadings of the mode 

of the samples (first mode, Fig. 

1.2.8a) is similar to the PCA score 

plot (Fig. 1.2.6) and it shows a 

Figure 1.2.8: PARAFAC results: (a) 

loading plot of the mode of the samples 

(first mode); explained variance 98.6% 

(F1 = 96.0% and F2 = 2.6%); (b) loading 

plot of the emission mode (second 

mode); (c) loading plot of the excitation 

mode (third mode). 

(b) 

(c) 
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rather clear discrimination between Chinese and Japanese GTs. The plot of 

the loadings of the mode of the emission (second mode, Fig. 1.2.8b) shows 

the emission spectra for two fluorophores, one with maximum around 420 

nm and the other one with maxima at 500–550 nm. The plot of the loadings 

of the third mode (Fig. 1.2.8c) shows the excitation profiles. As can be seen 

in these plots, PARAFAC enabled to differentiate the infusions of GT 

according to the geographical origin (Chinese and Japanese). Moreover, due 

to the trilinearity of the data, it can be concluded that the two groups of 

fluorophores found with the PARAFAC model are the same in all the GT 

samples. 

1.2.3.3.3 Variable Selection 

SELECT was applied as a variable selection technique in order to 

individuate the variables with the highest classification power, i.e. the most 

informative emission bands in discriminating between Japanese and Chinese 

GT samples. SELECT was applied on the unfolded data matrix of 

dimension 63 × 13,300 where each row corresponded to the emission 

spectrum obtained for each 

excitation wavelength of each 

GT sample measured; the 

frequency histogram of the 

selections showed as the most 

selected variables the two 

bands 415–450 nm and 495–

550 nm (Supplementary Fig. 

1.2.9). 

It is worthwhile to notice that the variables chosen by SELECT 

corresponded to the two bands highlighted by PARAFAC in the second 

Figure 1.2.9: Variables selected by 

SELECT: frequency histogram. 
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mode, namely the emission spectra of two fluorophores. These outcomes are 

also in agreement with the profile of the loading on PC1, that highlights the 

presence of two important bands, the first positive at 410–450 nm and the 

second negative over 500 nm. Combining this information, it was possible 

to assume that the first emission band (410–450 nm) is due to a fluorophore 

characterizing the Chinese GT samples and that the broad band at 500–550 

nm is related to the presence of compounds most abundant in the Japanese 

GT samples. The band at 410–450 nm probably corresponds to fluorescence 

emission of catechins, which are more abundant in Chinese samples. The 

band at 500–550 nm is probably attributable to carotenoids, that are 

recognized to be in particularly high quantities in Japanese tea, especially in 

Matcha, which contains 4 times more carotene than carrots and nine times 

more than spinach [25]. The infuses of GT prepared for the analysis were 

noticed to be slight yellow-green colour due to pigments as chlorophylls and 

carotenoids; the quantities of pigment extracted in hot water are related to 

the concentrations of the pigments in teas [26]. These observations were in 

agreement with the findings of Ref. [27], where the emission spectra of 

various organic compounds which are known to be endogenous component 

of plant leaves were measured, evidencing that catechins possess a 

fluorescence maximum near 440 nm and that β-carotene exhibits 

fluorescence emission with a maximum near 530 nm. 

1.2.4 Conclusions 

The aim of the present study was to evaluate the possibility of using EEM 

fluorescence spectroscopy as a rapid analytical method for analysing and 

characterizing GT samples, distinguishing between different geographical 

origins (China or Japan). The experimental data, given their complex and 

multivariate nature, were elaborated with chemometric techniques with the 
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aim of extracting the useful information contained therein. PCA was 

applied, as a display technique, on the “unfolded data” and PARAFAC was 

performed on three-dimensional arrays. The PCA results were visualized by 

means of the score plot related to PC1and PC4, which explained 76.8% of 

the total variance making it possible to distinguish Chinese and Japanese 

samples. The separation between the two geographical origins was mainly 

along PC1.Using PARAFAC, it was possible to perform the decomposition 

of the three-dimensional emission-excitation matrix: the information on the 

first mode was similar to that observed by applying PCA to the matrix after 

unfolding and it demonstrated that fluorescence spectroscopy is a promising 

and fast analytical method to characterize GT samples on the basis of their 

geographical origin. PARAFAC on the second mode also highlighted the 

emission spectra of two fluorophores, one with a maximum around 420 nm 

and the other with a maximum at 500–550 nm. These bands correspond to 

the variables with the highest loadings on PC1 and also correspond to the 

variables selected by the SELECT algorithm, that are those with the highest 

discriminating power between Japanese and Chinese GT samples. The band 

around 420 nm was assumed to correspond to the fluorescence emission of 

catechins, which are more abundant in the Chinese samples, and the band 

around 500–550 nm was attributed to carotenoids. Moreover, the CyD-

MEKC method wasapplied for the analysis of a subset of 24 GT samples 

confirming that catechins are more abundant in Chinese samples. In 

addition, the PLS-CM built with these data made it possible to distinguish 

Japanese from Chinese GT samples with a sensitivity and specificity of 

98.70% and 98.68%, respectively. 
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1.3 Project III 

 

PLS Regression Models for the Determination of 

EVOO Quality Parameters by NIR Spectroscopy: a 

Comparative Study 

 
Summary 

In the present study, the analytical performances of quartz cuvettes and 

disposable glass vials for the analysis of olive oil by near infrared 

spectroscopy (NIRS) were considered and compared. Nowadays, 

laboratories that perform routine analysis on extra virgin olive oil by NIRS 

employ quartz cuvettes with time-consuming measurements, especially in 

the washing phase, and an increasing cost to buy and dispose of reagents 

and to replace eventually damaged cuvettes. The use of mono-use glass vials 

may reduce times and costs significantly, but their analytical performances 

in EVOO analysis, have not yet been investigated. In order to reach this 

goal, a set of 106 EVOO samples from different Italian olive-growing areas 

have been collected and analysed using both quartz cuvette and mono-use 

glass vials. From spectral data multivariate calibration models were 

developed to estimate quality parameters of extra virgin olive oil: methyl 

esters of fatty acids (FAMEs) and triacylglycerols (TAGs) determined by a 

fast-GC approach and an UHPLC system, respectively.  Before computing 

the regression models, an optimisation procedure of spectra pre-treatment 

was performed in order to individuate the pre-treatment able to properly 

enhance the information embodies in the data. The predictive ability of each 

PLS model was evaluated by an external validation procedure with an 

independent test set. The Passing- Bablok linear regression was lastly used 
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to statistically compare the performances of the two different types of 

cuvettes. In light of the outcomes of the present study, analytical 

performance of quartz cuvettes and disposable glass vials were considered 

not significantly different in predicting the olive oil quality parameters taken 

into account. 

1.3.1 Introduction 

The International Olive Oil Council (IOOC) fixed purity and quality criteria 

in order to recognize four commercial olive oil categories (or grades): the 

“extra-virgin” olive oil, the “virgin” olive oil, the “refined olive oil” and the 

“pomace” [1]. Extra virgin olive oil (EVOO) is considered the highest 

quality grade and the adulteration with edible oil of inferior quality it’s 

becoming a type of commercial fraud more and more frequent. The quality 

criteria established by the IOOC for EVOO include: measurements related 

to organoleptic characteristics (odour, taste and colour), free acidity, 

peroxide value, absorbency in ultra-violet at 232 and 270 nm (K 232, K 270, 

ΔK) and moisture and volatile matter In addition to these main 

physicochemical parameters, the content of methyl esters of fatty acids 

(FAMEs) and triacylglycerols (TAGs) represent important parameters for 

determining olive oils quality [2].  These compounds are considered 

particularly interesting for their physiological effects [3] and suitable for 

authenticity assessment of EVOO [4]. In this context, in order to ensure the 

highest quality of the Italian EVOO and to counter fraudulent trade, the 

Violin project (Valorisation of Italian Olive Products Through Innovative 

Analytical Tools), promoted by Ager foundation, has foreseen the employ of 

innovative analytical protocols, including approaches based on near infrared 

spectroscopy (NIRS) and multivariate data analysis. 
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It is well known, in fact, that NIRS nowadays represent a valid and 

recognise alternative method, compared to traditional techniques, to 

determine qualitative and quantitative parameters of several food matrices, 

including olive oil, in a non-destructive way and in few seconds, not 

requiring sample preparation with a reduction in term of costs and time 

saving [5]. In literature, in fact, there are several studies that proved the 

potential of NIRS technology for determining the quality of olive oil both in 

term of chemical composition [6] and product authentication [7]. Regarding 

chemical composition, NIRS have been demonstrated to be useful for 

quantifying important trade standards including peroxide value, free fatty 

acid content, specific extinction coefficients (e.g. K232 and K270) [7]. 

Regarding food fraud, NIRS has proven to be an effective analytical method 

to detect and estimate adulteration of virgin olive oils with vegetable oils of 

inferior quality [8]. Moreover, in the last decade, NIR spectroscopy has been 

recognised as an excellent tool for the verification of authenticity of EVOO 

samples based on their geographical origins [9] or olive cultivar.  

The main advantage of NIR technique, is that it is a quick and low-cost 

method for analysing a large number of samples, but the speed of spectra 

acquisition can be limited by the employment of quartz cuvettes especially 

in the washing phase that can include the use of organic solvent, as acetone, 

with the drawbacks linked to the buying and disposal of these chemicals. In 

addition, an improper use of these substances also can leave residues in 

cuvettes with possible signal alterations.  

The introduction on the market of disposable optical glass vials (DGV) may 

reduce acquisition time and costs both in industry and in research 

laboratories. However, due to differences between optical glass vials and 

quartz cuvettes (QC) in term of transmission range, thermal properties and 
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chemical compatibility, a critical comparison between these two types of 

cuvettes is required and it has not yet been investigated, in particular for the 

analysis of olive oil. 

In order to fill this gap of knowledge, a comparative study was performed 

with the aim of understanding if the use of DGV for the NIRS routine 

analysis could significantly affect the prediction of quality parameters in 

EVOO samples. To reach this goal, a total of 106 EVOO samples were 

acquired with the same NIRS device using both QC and DGV. On the 

obtained spectra, an optimization step of data pre-processing was carried out 

and then Partial Least Squares (PLS) algorithm [10] was applied on a 

training set of the NIRS data to estimate the content of FAMEs and TAGs. 

The prediction ability of these models on a test set of unknown samples was 

used to compare, for the first time, the analytical performances of the two 

types of cuvettes. To do this, the Passing-Bablok regression method was 

applied for performing a joint test on slopes and intercepts of each pairs of 

models, one using GC and the other one using DGV. 

1.3.2 Materials and Methods 

1.3.2.1 Samples and Reagents 

The sampling of EVOOs was performed in the context of the Violin Project 

(project code: 2016-0169 founded by the Ager Foundation); all the collected 

EVOOs are produced with olives harvested in the season 2017-2018. The 

sampling was planned with the aim of collecting EVOO samples 

representative of the whole Italian production; in fact, the 106 samples 

analysed came from ten different Italian regions that represent the most 

productive areas in the country: Apulia, Tuscany, Sicily, Trentino-South 

Tyrol, Umbria, Veneto, Calabria, Latium, Sardinia and Liguria. The number 
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of samples analyzed for each region is proportional with the importance of 

their production (in term of quantity). This set included 28 PDO (Protected 

Designation of Origin) and 10 PGI (Protected Geographical Indication) 

EVOO samples; the different olive oil samples were labelled as reported in 

Appendix 2, where further details about origins, cultivar and designation are 

given. Thanks to this rational sampling, the national variability of EVOO 

was taken into account allowing performing a reliable study. 

In order to avoid any sample degradation, fresh olive oil samples were 

stored at 4 °C in in dark conditions (in amber bottles) till to analysis. 

1.3.2.2 Experimental Procedure 

For determining the quality parameters of the EVOO samples, destructive 

analyses were performed on the whole set of EVOOs . In more detail, 

FAMEs were quantified using a fast-GC approach while TAGs were 

obtained thanks to an UHPLC system.  

For FAMEs determination, samples were prepared as follows: in a 5 mL 

screw-top test tube, 25 mg of EVOO sample were weighted. The lipid 

fraction was transesterified adding 100 µL of the methanolic potassium 

hydroxide solution (KOH/MeOH, 2M). Thereafter FAMEs were extracted 

using 1 mL of n-heptane; the reaction mixture was shanked vigorously for 

30 seconds. After 5 minutes, the upper FAMEs layer became clear and 

ready to be injected into GC system. After sample preparation, FAMEs 

quantification was carried out on a GC-2010 (Shimadzu, Milan, Italy) 

equipped with a split-splitless injector (280°C), an AOC-20i+s autosampler, 

and a FID detector. SLB-IL60, [1,12-di(tripropilfosfonio)dodecano 

bis(trifluorometilsulfonil) imide], 15 m × 0.10 μm × df, 0.08 mm ID (Merck 

Life Science, Darmstadt, Germany) was operated under programmed 
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temperature: 180°C to 230°C at 15.0°C/min. The injector was held at a 

temperature of 280°C; injection volume: 0.2 µL; injection mode: split 1:250. 

The FID temperature was set at 280°C (sampling rate 40 ms) and gas flows 

were 40 mL/min for hydrogen, 40 mL/min for make up (nitrogen) and 400 

mL/min for air, respectively. Carrier gas was hydrogen, at a constant linear 

velocity of 90.0 cm/s and a pressure of 606.4 KPa. 

Regarding TAGs, samples were analyzed using a Nexera X2 system 

(Shimadzu, Kyoto, Japan), consisting of a CBM-20A controller, two LC-

30AD dual-plunger parallel-flow pumps (120.0 MPa maximum pressure), a 

DGU-20A5R degasser, a CTO-20AC column oven, a SIL-30AC 

autosampler, and a SPD-M30A PDA detector (1.8 µL detector flow cell 

volume). The UHPLC system was coupled to an ELSD (Evaporative Light 

Scattering Detector) detector (Shimadzu). Separations were carried out on 

two serially coupled Titan C18 100 × 2.1 mm (L × ID), 1.9 µm dp columns 

(MilliporeSigma, Bellefonte, PA, USA). Mobile phases were (A) 

acetonitrile and (B) 2- propanol under gradient conditions: 0-105 min, 0-

50% B (held for 20 min). The flow rate was set at 400 µL/min with oven 

temperature of 35 °C; injection volume was 5 µL. The following ELSD 

parameters were applied: evaporative temperature 60° C, nebulizing gas 

(N2) pressure 270 kPa, detector gain < 1 mV; sampling frequency: 10 Hz.   

1.3.2.3 Instrumental 

NIR spectra were acquired in trasmittance mode with an FT-NIR 

spectrophotometer (Buchi NIRFlex N-500, Flawil, Switzerland) in a liquid 

module equipped with six positions for sample vials. The spectral profiles 

were acquired in the whole NIR region, from 4000 cm-1 to 10,000 cm-1, with 

a resolution of 4 cm-1 and 8 scans for each sample.  All measurements were 

performed at controlled temperature (35 ± 0.5 °C) 
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Samples were acquired in duplicate and the average spectrum for each 

sample was used for data analysis in order to minimized unwanted spectral 

variability. 

In more detail, EVOO samples were put into a 5 mm pathlength QC directly 

from the bottle, without any chemical treatment. After the analysis, to 

prepare the cuvette for further acquisitions, each QC was washed with 

detergent in warm water, rinsed with acetone and then dried.  

Another aliquot of the same samples was placed in the DGV and the NIR 

spectra were directly recorded using the same method as for GC. 

1.3.2.4 Data Analysis 

The whole data analysis was performed in the Matlab environment (The 

MathWorks, Inc., Natick, MA, USA, Version 2016b) using both the 

PLSToolbox software (Eigenvector Research, Inc. Manson, Washington) 

and in-house developed functions.  

First, NIR transmittance spectra were converted into the absorbance scale 

(Log (1/T)) for a direct interpretability of outcomes [11]. Then, a noisy 

region at the end of the signal and without significant absorption was 

removed and the spectral range reduced from 10000 to 4528 cm-1. 

Subsequently, spectra were organised in two matrices containing 106 rows 

and 1369 columns, samples and variables, respectively. The first matrix was 

related to the acquisitions performed with QC while the second one 

contained the signals obtained with DGV.  

For model development, the two data matrices obtained with QC and DGV 

were divided in a training set (including 80% of samples) and a test set 
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(including 20% of samples) thanks to the application of the Kennard and 

Stone algorithm [12] 

Before model computation, a comparison between eight different 

combinations of data pre-treatments was performed in order to optimize the 

selection of the most suitable pre-processing strategy and to improve 

subsequent calibration model. The application of 4 data transformations 

(two column and two row pre-processing algorithms) was evaluated taking 

into account not only the application of one transformation at a time but also 

their combination:  

• Mean centring,  

• Autoscaling,  

• Standard Normal Variate (SNV) + mean centring,  

• Orthogonal Signal Correction (OSC) + mean centring,  

• SNV + OSC + mean centring,  

• SNV + autoscaling,  

• OSC + autoscaling,   

• SNV + OSC + autoscaling.  

SNV was tested, as it allowed to correct baseline vertical shifts and global 

intensity effects, typically arising from light scattering phenomena in 

vibrational spectroscopy [11] OSC was evaluated in order to remove some 

of the information embodied in spectral data that is unrelated (orthogonal) to 

the qualitative variable to be modelled (Y-vector); in this way just the useful 

information related to the response is maintained in the X-block [13]. Both 

the strategies for data normalization (mean centring and autoscaling) were 

taken into account. 

The best pre-processing combination was chosen, for each model, 

evaluating the root mean square error in cross-validation (RMSECV), within 
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a cross-validation cycle with 5 deletion groups, using the venetian blind 

scheme. 

After performing the pre-treatments optimisation, principal component 

analysis (PCA) was applied as an exploratory tool useful to identify the 

presence of possible outliers in the dataset.  

To reach the final aim of statistically comparing the prediction ability of the 

models built using QC or DGV, the Passing-Bablok regression method [14] 

was applied on the pairs of Y values predicted by the models developed for 

each quality parameter separately. The estimation of a linear regression line 

between two pairs of data column, obtained with two different methods or 

devices both measured with error, allows to statistically understand the 

similarity/diversity between the two-independent estimation.  To do this, 

slope and intercept of the fitted line are calculated with their 95% 

confidence interval. The null hypothesis (H0) is verified when the slope is 

not significantly different from 1 and that the intercept is not significantly 

different from 0. 

1.3.3 Result and Discussion 

Among the variables describing EVOO quality measured with the reference 

methods within the Violin project (see previous paragraph 1.3.2.2 ), six of 

them, whose range of variability was less restricted than for the other quality 

parameters, were considered for the comparison between QC and DGV . In 

more detail, three TAGs and three FAMEs were selected. The TAGs were: 

dioleoyllinoleoyl-glycerol (OOL), oleoyl-linoleoyl-palmitoylglycerol (OLP) 

and triolein (OOO), while the FAMEs were:  palmitic (C16:0), oleic 

(C18:1n9) and linoleic (C18:2) acids, that were the most present in the extra 

virgin olive oil. 
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Firstly, a subset of 80 EVOO samples was chosen by the Kennard and Stone 

algorithm (REF) for constituting the calibration set, and the remaining 26 

samples were used for the test set, to validate the quality of the regression 

model in predicting.  

In order to select the most suitable strategy to pre-process the NIR spectral 

profiles, for both QC and DGV data, an optimisation procedure was 

performed. It is important to underline that independent pre-processing 

optimizations were performed for QC and DGV data; for each variable 

considered (three FAMEs and three TAGs) a PLS regression model was 

computed. Moreover, PLS models were calculated retaining an increasing 

number of LVs, from 1 until 10, and applying different spectra pre-

treatments, according to the list presented in section 2.4.  Figures 1 and 2 

show the RMSECV for each of the 96 calculated models (48 on QC data 

and 48 on DGV data) as a function of the number of LVs; different colours 

are used to identify the spectral pre-processing applied. This straightforward 

representation allows to easily individuate the type of pre-processing and the 

number of LVs that, in combination, minimises the error of each PLS model 

in cross-validation. In more detail, Figure 1.3.1 resume the model 

computation on the spectral data acquired using the traditional QC, while 

Figure 2 refers to the model developed for spectra coming from the DGV 

data. 

For all the quality parameters modelled using the QC spectra, SNV + OSC + 

mean centering (represented in green in Figure 1.3.1) turned out to be the 

best combination, as it allowed to reduce RMSECV with as few LVs as 

possible. From a global evaluation of the QC models, from 4 to 6 LVs were 

considered the best compromise between model complexity and associated 

error (data not shown). 
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The same considerations can be made when comparing the results obtained 

by the modelling of DGV spectra:  for these models, the combination of 

SNV + OSC + mean centring (represented in green in figure 1.3.2) has 

proved to be the most suitable strategy for minimizing RMSECV. To better 

highlight the effect of the selected combination of pre-processing on the 

data acquired, in Figure 1.3.3, original spectral profiles and spectra after 

Figure 1.3.1: PLS regression models of NIR spectra acquiring with quartz cuvettes 

for evaluating eight combinations of data pre-processing 

Figure 1.3.2: PLS regression models of NIR spectra acquiring with DGV for 

evaluating eight combinations of data pre-processing. 
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pre-treatment, are shown: Figure 1.3.3a shows the raw signals acquired 

using QC, while Fig. 1.3.3b represents the QC spectral profiles transformed 

by SNV + OSC for variable C18:1n9. Similarly, Fig. 1.3.3c shows the 

original signals acquired using GDV and Fig. 1.3.3d the data transformed 

for the same variable using SNV+OSC. Using two different row pre-

treatments as SNV and OSC, it was possible not only to remove the effect 

caused by interferences of scatter, but also to emphasise the information 

embodied within the spectra according to the feature that must be modelled. 

This approach allowed decreasing the number of LVs to retain and therefore 

the complexity of the models. For a better comparison of raw and 

transformed profiles, mean centring was not included in this representation.  

Table 1.3.1: Calibration and prediction models for quartz cuvettes and disposable 

glass vials 

Quality 

parameter 

Type of 

cuvettes 
Mean 

Range 

(min-max) 

Number 

of LV 
RMSECV 

RMSECV 

% 
RMSEP 

RMSEP 

% 

OOL 
QC 

13.04 4.29-1.53 
4 0.99 7.59 0.75 5.75 

DGV 4 0.96 7.36 0.91 6.98 

OLP 
QC 

6.99 12.92-4.20 
4 0.69 9.87 0.68 9.73 

DGV 6 0.76 10.87 1.09 15.56 

OOO 
QC 

38.36 50.22- 23.13 
4 2 5.21 1.62 4.22 

DGV 6 2.46 6.41 2.10 5.47 

C16:0 
QC 

12.86 16.40-9.53 
4 0.61 4.74 0.58 4.51 

DGV 6 0.71 5.56 0.77 5.97 

C18:1n9 
QC 

72.48 79.32-58.55 
5 1.17 1.61 1.2 1.66 

DGV 5 1.19 1.64 1.29 1.79 

C18:2n6 
QC 

7.49 16.38-4.78 
5 0.28 3.74 0.28 3.74 

DGV 6 0.44 5.87 0.48 6.41 

After choosing the proper data pre-treatment, PLS models were validate on 

samples belonging to the test set. The model parameters, calculated on pre-

processed spectra, are presented in Table 1.3.1 for both QC and DGV data. 

For each quality parameter a direct comparison between QC and DGV 

model can be performed in term of number of LVs selected, error in cross-

validation and in prediction. In more detail, RMSE are reported in the 

corresponding variable unit and also as percentage calculated in respect to 
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the mean. The percentage value allows a direct understanding of model 

goodness. 

For some of the models presented the results obtained, in term of predictive 

capability, cannot be considered completely satisfactory. This is due to the 

fact that the reduced variability in the EVOO samples for the content of 

FAMEs and TAGs, did not allow obtaining PLS regression models with 

good predictive performances. Looking at the results,  it was possible to 

notice that they seem slightly better for models calculated using QC, but a 

numerical comparison between RMSECV% and RMSEP% of the PLS 

models is not meaningful to understand if the analytical performances of the 

two types of cuvettes are effectively comparable. Therefore, to verify if the 

differences among the QC and DGV were statistically significant, Passing-

Bablok regression method was performed on the test set data. The null 

hypothesis (H0) was that the slope is not significantly different from 1 and 

that the intercept was not significantly different from 0 at a 95% confidence 

level; the results of the Passing-Bablok regression are presented in Table 

1.3.2. For sake of completeness, for both slope and intercept, limit of 

acceptability (LL =lower limit and UL= upper limit) and calculated value 

(CAL) are reported. 

Table 1.3.2: Passing-Bablok regression results related to a joint test on 

slope and intercept values of the regression lines, at a 95% confidence 

level. 
Quality 

parameters 

Slope 

LB 

Slope 

UB  

Slope 

CAL 

Intercept 

LB  

Intercept 

UB 

Intercept 

CAL 
H0 

OOL 1.09 2.26 1.58 -16.39 -1.22 -7.52 Accepted 
OLP 1.08 1.82 1.40 -5.30 -0.41 -2.53 Accepted 
OOO 1.17 1.80 1.48 -30.60 -5.92 -17.83 Accepted 
C16:0 0.72 1.17 0.89 -2.18 3.41 1.38 Accepted 
C18:1n9 0.81 1.32 0.99 -23.06 14.57 1.42 Accepted 
C18:2n6 1.02 2.55 1.55 -11.09 -0.28 -3.97 Accepted 

Although QC models seem to better predict EVOO quality parameters, 

Passing-Bablok test highlighted that there were not statistical differences 
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between models calculated with QC and those obtained with DGV; the null 

hypothesis (H0) was in fact accepted for all six parameters (OOL, OLP, 

OOO, C16:0, C18:1n9, C18:2n6) considered. Considering these results, it 

was possible to state that comparable results were obtained for FAMEs and 

TAGs prediction with both quartz cuvettes and disposable glass vials. 

1.3.4 Conclusions  

In order to optimize the timing of NIR acquisition for olive oil routine 

analysis, a critical comparison between analytical performances of QC and 

DGV, based on the determination of parameters which affect olive oils 

quality (FAMEs and TAGs), was performed.   

In more details, a large set of EVOO samples was analysed by NIRS using 

both QC and DGV, and spectra used to build PLS calibration models for 

predicting some EVOO quality parameters.  

Thanks to a Passing-Bablok test it was possible to highlight that there are  

not statistical differences between models calculated with QC and those 

obtained with DGV; this statement was demonstrate for all six the 

parameters (OOL, OLP, OOO, C16:0, C18:1n9, C18:2n6) considered. 

Considering these results, the employment of DGV for recording NIR 

spectra would bring greater benefits for screening analysis of olive oil 

samples rather than to quantify low concentrations of analyte.  In order to 

understand if DGV can replace QC also for different analysis, this study will 

be extended, measuring other quality parameters commonly used for routine 

analysis of extra virgin olive oil such as free acidity or peroxide value. 
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2.1 Project IV 
 

Different analytical approaches for the 

biomonitoring of air pollution in Liguria region 

(northwest Italy) by lichens 

 
Summary 
Fast, simple and ‘green’ analytical approaches, based on spectroscopic 

techniques coupled with chemometrics for the biomonitoring of air pollution 

in Liguria region (northwest Italy) are presented. 

For 2 consecutive years, Lichen thalli of Pseudevernia furfuracea, collected 

far from local sources of air pollution, have been exposed to the air for three 

months in different areas in the Liguria region. The transplanted thalli, 

retrieved at the end of the exposure period, have been analyzed by Front-

Face Fluorescence Spectroscopy (FFFS), Near Infrared Spectroscopy (FT-

NIRS) and moreover measurements of fast chlorophyll fluorescence 

induction kinetics have been performed. A comparison with the values of 

environmental pollutants recorded during the exposure period by the 

Regional Agency for Environmental Protection was made, with the final 

objective of relating pollutants values in lichens with their atmospheric 

concentrations. 

Chemometric evaluation of the spectra included principal component 

analysis and quadratic discriminant analysis; the prediction rate of the 

discriminant models calculated on the emission spectra ranged from 71-80% 

on external test sets indicting front-face fluorescence spectroscopy as a 

promising technique for the determination of level and type of pollutants in 

lichen thalli. 
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2.1.1 Introduction 

Lichens are symbiotic associations between a fungal partner, the mycobiont, 

and one or more photosynthetic partners, the photobiont, which can be 

either a green alga or a cyanobacterium [1]. Lacking organs for active water 

uptake, structures for regulating gas exchanges and permeability barrier for 

water, lichens are susceptible to absorb water, nutritive substances and gases 

directly from the atmosphere. Thus, they are extremely sensitive to the 

presence of substances that alter the atmospheric composition (e.g. SO2 and 

NOx) and are among the most widely used biomonitors of air pollution [2]. 

For biomonitoring studies, lichens may be used as bioaccumulators, to 

estimate the accumulation of trace elements within the lichen thalli over 

space and time [2], or a bioindicators, to assess any alteration of the 

community diversity and composition [3] and to estimate changes of 

physiological biomarkers in response to atmospheric pollutants 

[4-5]. From a physiological perspective, it has been widely demonstrated 

that the exposure of lichens to many gaseous pollutants (i.e. SO2 and NO2) 

may causes membrane injury, ultrastructural alterations, pigment 

degradation and/or impairment of photosynthetic function [6-

8]Conventionally, these biomarkers may be evaluated by means of 

spectrophotometric or fluorimetric techniques. Recently, the assessment of 

the efficiency of the photosynthetic process in the algal population is one of 

the most common biomarkers used [8-10]. The use of direct light 

fluorimeter (Plant Efficiency Analyser, PEA) allows obtaining information 

on the efficiency of the photosynthetic processes on the tylacoid membranes 

of the algal chloroplasts, from the connectivity between PSII reaction 

centers to the electron flow to PSI. Particularly, PEA records the maximum 
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quantum yield of primary photochemistry of the photobiont (measured by 

the ratio FV/FM) and other fluorescence parameters, which can be consider 

as highly sensitive and reliable tools for studying changes in photosynthetic 

apparatus and in its working efficiency caused by the negative effects of 

atmospheric pollution. Differently, when consider lichen as a 

bioaccumulator, we can obtain information on their trace elements content, 

thus on the atmospheric contaminants. 

The main conventional analytical techniques used to determine element 

concentration consist of atomic absorption spectrophotometry techniques 

such as ICP-AES and ICP-MS [11]. Although these techniques are accurate 

and reliable in giving a quantitative result, they require long laboratory 

procedures and they are not able to establish unambiguously a relation 

between any change in the lichen physical and chemical properties and the 

individuals pollutants in the atmosphere [12]. 

In this paper, we tested an alternative approach, which combining 

information from different analytical sources, could potentially provide a 

comprehensive evaluation of the complex chemical phenomena that occur in 

complex matrices. For this reason, spectroscopic techniques (e.g. visible 

(VIS), near infrared (NIR) and mid infrared (MIR) spectroscopy) were 

considered in order to integrate the assessment of atmospheric pollution by 

means of lichens. Spectroscopic analysis exploits the interaction of 

electromagnetic radiation with atoms and molecules to provide qualitative 

and quantitative chemical and physical (structural) information that is 

contained within the wavelength or frequency spectrum of energy that is 

either absorbed or emitted. Spectroscopy in the visible, near and mid-

infrared ranges is an increasingly growing technique due to its cost, rapidity, 

simplicity, and safety, as well as its ability to measure multiple attributes 
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simultaneously without monotonous sample preparation, making it suitable 

to be implemented on a routine basis. Near infrared spectroscopy (NIRS), 

Front-Face Fluorescence Spectroscopy (FFFS) and Plant Efficiency 

Analyser (PEA) are not expensive and ‘green’ because no reagents are 

required and thus no waste is produced. 

By using the application of mathematical and statistical techniques, 

chemometrics allows to extract chemical and physical information from 

complex multidimensional data [13], which are currently observed in 

spectroscopy techniques. Chemometrics often relies on visualization to help 

the chemist to obtain the required information, and the most used method in 

this respect is principal component analysis (PCA). PCA extracts 

information from data tables by transforming them into plots [14]. 

In our previous work [15], we showed that NIR spectroscopy coupled with 

chemometrics was able to generate a lichen ‘fingerprint’ capable of 

discriminating between samples exposed in a polluted or non-polluted area. 

Differently, FFFS is usually applied on food samples for classification 

purposes [16-17], whereas, according to our knowledge, this technique was 

not investigated for lichen biomonitoring. 

The present study aimed at testing the use of different analytical 

spectroscopic approaches, coupled with chemometrics, as rapid and simple 

tools for assessing effects of air pollutants on lichen thalli. For achieving 

this goal, thalli of the fruticose lichen Pseudevernia furfuracea (L.) Zopf v. 

furfuracea, collected from a pristine area, have been transplanted for three 

months to 15 sites in the Liguria region (NW-Italy), characterized by 

contrasting levels and type of atmospheric pollution, as measured by the 

regional Environmental Protection Agency (ARPAL). Lichen samples have 
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been analyzed by FFFS, NIRS and PEA and data elaborated by multivariate 

data analysis (chemometrics), in order to compare the performances of these 

spectroscopic techniques and to highlight possible synergic or 

complementary information. 

2.1.2 Material and Methods 

2.1.2.1. Sample and Reagents 

The fruticose epiphytic lichen Pseudevernia furfuracea (L.) Zopf v. 

furfuracea was selected because it is widely used in biomonitoring studies 

with transplants [18-23]. 

Lichen thalli were collected from northerly exposed barks of Picea abies 

(L.) H. Karst in a forest area of Valtournenche (Valle d’Aosta, Italy) at 1900 

m a.s.l., far from local sources of air pollution [24]. Collecting lichens from 

the north side of tree allows work with material adapted to homogeneous 

regime of diffuse light [25]. Samples were picked up, at 1.5 - 2.0 m above 

the ground, together with a piece of the supporting branch, using garden 

shears. The material was taken to the laboratory in paper bags and left to dry 

out at room temperature and low light overnight (≈5 μmol m-2 sec-1), to 

minimize a rise in the FV/FM caused by recovery from natural 

photoinhibition [26]. Samples were divided into two groups: one, including 

samples that were never exposed in the experimental sites, were kept in 

freezer until the end of the experiments (control), whereas the second group 

included one hundred and fifty thalli which were randomly selected and 

prepared to be exposed in the 15 exposure sites. In the laboratory, lichen 

thalli were fixed by means of plastic bands on plastic nets (of ca. 25 × 15 

cm) and put into paper bags. 
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2.1.2.2. Study Area and Sampling Sites 

Fifteen sites (A - Q) 

distributed in an area of ca. 

200 Km2 in Liguria region 

(NW Italy) (Fig. 2.1.1) were 

selected for exposure. 

Particularly, lichen samples 

were exposed in the urban e 

industrial area of Genoa (D - 

H) and Savona (M - Q) and 

in their hinterland (A - C, 

and I - L, respectively) 

(Table 2.1.1). Site A and B, characterized by high levels of air pollution, 

were located in two hinterland districts of the province of Genoa nearby the 

highway and an oil refinery. Like the two previous ones, site C was located 

in the hinterland of Genoa but it differs from the previous one because it is 

mainly an urban area characterized by a lower level of air pollution. Site D 

and E were located in the city center of Genoa near the principal traffic 

congested roads, whereas site F and H were located in the city of Genoa 

near the industrial harbours and close to the shipyards. Site G was in a little 

green area in the center of Genoa surrounded by a small traffic road. Site I 

and L were in the hinterland of Savona (NW Liguria), the first in a small 

village with low traffic and the other near a big industrial settlement. 

Finally, site L - Q were in the urbanized area of Savona subjected to 

different traffic density. 

2.1.2.3 Sample Exposure 

Figure 2.1.1: map of the 15 exposure sites in 

the Liguria region. 
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In each experimental site, 10 lichen thalli (fixed on three plastic nets as 

described above) were attached on the trunk of adjacent three trees, at 

approximately 2.5m above the ground, protected by the canopy from direct 

sunlight. 

The sampling was performed for 2 consecutive years, 2015 and 2016, in 

order to take into account the temporal variability. Fig. 2.1.1 shows the map 

of the 15 exposure sites in the Liguria region (NW Italy). 

In 2015, the lichen deployment was carried out in two consecutive days in 

July. Lichen samples were transplanted to 15 sites, close to (<50 m) the 

monitoring stations of the Liguria Regional Environmental Protection 

Agency (ARPAL, http://www.arpal.gov.it), in the province of Genoa and 

Savona, according to expected contrasting levels of atmospheric pollution. 

Thirteen thalli were not exposed and thus considered as control samples. In 

the second year, the experimental effort was reduced on the basis of the 

information provided by the results obtained in the first year. Accordingly, 

in July 2016 only 5 of the 15 stations monitored during 2015 were selected 

as a representative set, in terms of level and type of atmospheric pollution 

and geographical location. Only 6 thalli were reserved for controls. 

In both years, the sampling lasted three months. Hereafter, samples were 

retrieved packed in paper bags, protected from sunlight, and transported 

back to the laboratory, where they were detached from branches, carefully 

cleaned from debris and dead or senescent parts, and kept in dark conditions 

at ambient temperature until analysis. Unfortunately, in both sampling years 

not all thalli were found at the end of the exposure period of three months. 

Table 2.1.1 shows the list of the remaining samples that were analyzed. For 

some stations, the number of samples analyzed by FFFS, NIRS and PEA 

can be different. 
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2.1.2.4 Air Monitoring Pollution Data 

Data on concentrations of the main air pollutants (Benzene, NO2, SO2 and 

PM10) were continuously (hourly) recorded in each experimental site and 

over the entire exposure periods (2015 and 2016 campaigns) by the devices 

of the Liguria Regional Environmental Protection Agency (ARPAL), 

located close to the transplanted thalli. In Table 2.1.1, for each site, we 

reported the hourly average concentrations of the main air pollutants 

(Benzene, NO2, SO2 and PM10 expressed in mg/m3) recorded by the 

ARPAL during the 3 months of exposure. These data were used to 

categorize the sampling sites on the basis of their level and type of pollution. 

2.1.2.5 Instrumental 

All the instrumental measurements described in this section were performed 

on control (i.e., not exposed) and on transplanted thalli, (i.e., at the end of 

exposure periods). For the FFFS and NIR analyses, each lichen sample was 

firstly pulverized with a ball mill, and then the powder was divided in two 

portions: 0.5 g were used for FFFS analysis and 1.0 g for NIR 

measurements. Differently, PEA analyses were performed directly on the 

top of the lacinia of lichen thalli. 

2.1.2.5.1 Front-Face Fluorescence Spectroscopy (FFFS) 

Emission spectra were recorded using a PerkineElmer LS55 (Perkin-Elmer 

Ltd., Beaconsfield, U.K.) luminescence spectrometer equipped with a 

Xenon lamp and a variable angle front-surface accessory. The incidence 

angle of the excitation radiation was set at 56° to ensure that reflected light 
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and scattered radiation were minimized. The incidence angle of the 

excitation radiation was set at 56° to ensure that reflected light and scattered 

radiation were minimized. Samples were placed in cuvettes with a circular 

surface of diameter 15 mm. Excitation and emission slits were both set at 10 

nm. Emission spectra were recorded between 300 and 500 nm (with 0.5 nm 

resolution) at excitation wavelength of 270 nm. Intensities were plotted as a 

function of the emissionwavelength. For each sample, measurements were 

done in triplicate to minimize remaining scattering effects and the average 

signals were used in the multivariate data analysis. The BL Development 

software (PerkinElmer) was used to register the fluorescent signals. 

2.1.2.5.2 Near Infrared Spectroscopy (NIRS) 

NIR measurements were carried out using an FT-Near-Infrared 

Spectrometer, based on a Polarization Interferometer (Buchi NIRFlex N-

500), in the 4000-10,000 cm-1 range with 4 cm-1 resolution. NIR Operator 

software (Buchi) was used to register the NIR spectra. 

For each sample, approximatively 1 g of powder was placed in an optical 

glass Petri dish and analyzed in reflectance mode. An average of 64 scans 

was taken for each spectrum. The optical glass dish was washed in warm 

water, accurately rinsed and dried before carrying out the three replicates of 

each sample. The average signals were used in the multivariate data 

analysis. 

2.1.2.5.3 Plant Efficiency Analyser (PEA) 

Chlorophyll a fluorescence (Chl a) measurements were performedusing 

Handy-PEA chlorophyll fluorometer (Plant Efficiency Analyser, Hansatech 

instruments Ltd, Norfolk, England). Prior to taking the measurements, 

samples were sprayed with deionized water until wet and adapted to 
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darkness for 15 min. Three Chl a measurements were performed on each 

thallus. The Chl a fluorescence transients were induced by a red light (peak 

at 650 nm) provided by an array of three high-intensity LEDs. Data were 

recorded after a saturating light pulse (3500 μmolnm-2 sec-1) of 1 s. The gain 

of the PEA was 0.8. The fluorescence transient rises from F0 (when all PSII 

reaction centers are open, i.e. when the primary acceptor quinone is full 

oxidized) to FM (when all the PSII reaction centers are closed, i.e. the full 

reduction of the primary acceptor quinone). The potential quantum yield of 

primary photochemistry (FV/FM) was calculated as (FM-F0)/FM.  

Table 2.1.2: Definitions of the OJIP parameters based on Stirbet and Govindjee 

(2011). 
OJIP Parameters Description 

F0 
First reliable fluorescence value after the onset of actinic 

illumination; used as initial value of the fluorescence 

FM Maximal fluorescence 

FV Maximum variable Chl fluorescence 

FV/FM = TR/ABS Maximum quantum yield of primary PSII photochemistry 

Tfm Time to reach the maximum fluorescence value FM 

Area Area between OJIP curve and the line F = FM 

ABS/RC 
Average absorbed photon flux per PSII reaction center (or also, 

apparent antenna size of an active PSII) 

TR/RC Maximum trapped exciton flux per PSII 

DI/RC Energy flux which is dissipated chiefly as heat 

ET/RC Electron transport flux from QA to QB per PSII 

RC/ABS Number of QA reducing RCs per PSII antenna Chl 

ABS/CS 
Absorbed photon flux per cross section (or also, apparent PSII 

antenna size) 

RC/CS Number of active PSII RCs per cross section 

TR/CS Maximum trapped exciton flux per cross section 

ET/CS Electron transport flux from QA to QB per cross section 

DI/CS Heat dissipation per cross section 

ET/TR 
Efficiency/probability with which a PSII trapped electron is 

transferred from QA to QB 

RE/ET 
Efficiency/probability with which an electron from QB is transferred 

until PSI acceptors 

PI Global indicator used to express the overall vitality of the samples 

We also considered other parameters to describe the ability of the 

photobiont in transferring trapped photons along the tilacoid membrane 
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from PSII to PSI [27-29]. For a detailed description of the parameters and 

formulae, see Table 2.1.2. 

2.1.2.6 Data Analysis  

2.1.2.6.1. Data Matrices Organization 

Two data matrices were elaborated for each analytical techniques (FFFS, 

NIRS and PEA): F1, N1 and P1 containing the data relative to year 2015 

and F2, N2 and P2 the data of year 2016, respectively. 

Regarding FFFS, F1 had 108 rows (samples) and 397 columns (variables 

acquired between 300 and 500 nm, with 0.5 nm resolution). F2 had the same 

number of variables as F1 but only 48 rows (samples). F1 and F2 were pre-

processed using standard normal variate (SNV) for correcting for shift. 

As far as the NIR data are concerned, the part of the spectra from 8000 to 

10,000 cm-1 was removed since it was not informative, thus N1 had 91 rows 

(samples) and 1001 columns (variables acquired between 8000 and 4000 

cm-1, with 4 cm-1 resolution); N2 data matrix had 37 rows (samples) and 

1001 columns (variables,between 8000 and 4000 cm-1). NIR spectra were 

pre-processed using Standard Normal Variate (SNV) to eliminate the 

unwanted variation due to light scattering. With regards to PEA, three 

replicates for each thallus were acquired, so that P1 had 315 rows (105 *3) 

and 21 columns (parameters of efficiency) and P2 had 90 rows (30 *3) and 

21 columns. 

2.1.2.6.2. Chemometrics Analysis 

Principal Component Analysis (PCA) was applied as a data display method 

on the six spectroscopic data matrices (F1, N1, P1, F2, N2 and P2) and on 

the pollution data matrix. Quadratic Discriminant Analysis (QDA) was 
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performed as a classification technique on the six spectroscopic data 

matrices. 

PCA is the most used tool in exploratory data analysis and uses an 

orthogonal transformation to convert a set of correlated variables into a set 

of uncorrelated variables called principal components [30]. QDA is a 

probabilistic parametric classification technique, which represents an 

evolution of Linear Discriminant Analysis (LDA) [31] for nonlinear class 

separations. Also QDA, like LDA, is based on the hypothesis that the 

probability density distributions are multivariate normal but, in this case, the 

dispersion is not the same for all of the categories. It follows that the 

categories differ not only for the position of their centroid but also for the 

variance-covariance matrix (different location and dispersion). 

For the year 2015, the QDA discrimination rules were validated using both a 

cross-validation procedure with five cancellation groups (5CV) and an 

external test set. The test set samples were selected randomly assigning 25% 

of the samples to the external test and 75% to the training set. For the year 

2016, the QDA discrimination rules were validated only in cross validation 

(5CV) considering the low number of samples. QDA results were expressed 

as the total prediction rates, that is the ratio of correct predictions to the total 

number of predictions and it measures the predictive ability. 

2.1.3 Results and Discussion 

2.1.3.1 Principal Component Analysis 

2.1.3.1.1 Air Monitoring Pollution Data 

Data collected by ARPAL in the 15 monitoring stations in the province of 

Genoa and Savona, in the period July-September 2015 are reported in Table 
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2.1.1. In the study area, the largest sources of SO2 in the atmosphere include 

industrial processes, ships and other vehicles emissions and heavy 

equipment that burn fuel with a high sulfur content [32-33]. Benzene, 

particles less than 10 mm in diameter (PM10) and nitrogen oxides (NOx) are 

the main urban air pollutants due to traffic. Fig. 2.1.2 shows respectively the 

PCA loading (Fig. 2.1.2a) and score (Fig. 2.1.2b) plots of these pollution 

data. SO2 was the only variable showing negative loadings on PC1; NO2, 

Benzene and PM10, had positive loadings on PC1. Therefore, PC1 was 

associated with the type of pollution, ‘industrial pollution’ at negative values 

of PC1 and ‘pollution from traffic’ at positive values. Stations A, B and C, 

located in the northern hinterland of Genoa, were characterized by a high 

content of SO2 and this is potentially due to a soap factory (C) and an oil-

refinery producing 700 t/year of SO2 (A and B). Station H also showed a 

very high content of SO2 and this can be explained because this station was 

in front of the Genoa harbor where many ships dock. Stations E and D are in 

the most traffic congested streets in the center of Genoa and station P is a 

touristic area close to the sea and therefore very popular during summer. 

  

Figure 2.1.2: Loadings (a) and score plot (b) of pollution data collected by ARPAL 

in the 15 monitoring stations in the province of Genoa and Savona, in the year 

2015. 

a b 



93 

Fig. 2.1.3 (a and b) shows the PCA loading (S2a) and score (S2b) plots of 

pollution data collected by ARPAL in the period July-September 2016. The 

information provided was very similar to that extracted from the 2015 data. 

According to the information obtained from the pollution data, samples 

were divided into 4 classes, in terms of type and level of pollution, which 

characterized the sites of exposure: 

1. Not exposed: Control samples (CTR). 

2. Exposed in stations characterized by industrial pollution: A, B, F, H, L 

3. Exposed in stations characterized by high-congested traffic: D, E, P 

4. Exposed in stations characterized by low traffic: C, G, I, M, N, O, Q. 

  
Fig. 2.1.3: Loadings (a) and score plot (b) of pollution data collected by ARPAL in 

the 15 monitoring stations in the province of Genoa and Savona, in the year 2016. 

Based on the results of the previous survey, for the year 2016 the category 

“low traffic” was excluded from the analysis. 

2.1.3.1.2 FFFS 

Fig. 2.1.4 shows the score plot of the data set F1 (year 2015), in the space of 

the 2 first PCs. The control samples were at higher positive scores on PC1 

that explains the 48% of the total variance and they were all clustered, 

highlighting a good homogeneity of the starting samples. On the contrary, 

a b 
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samples exposed in 4 industrial sites (A, B, F and L) were associated with 

negative scores of PC1. Samples from traffic sites (both high-congested and 

low traffic) showed a less uniform pattern with respect to samples exposed 

in industrial sites, however half of the samples from traffic sites (E, M, N, O 

and P) were associated with negative scores of PC2. 

Fig. 2.1.5 shows the score plot of the data set F2 (year 2016), in the space of 

the 2 first PCs. Control samples were associated with negative scores of 

PC2 and form a defined cluster with respect to samples transplanted in the 

exposed sites. The separation of the pollution classes was evident along 

PC1: industrial sites were associated to negative scores whereas traffic sites 

with positive ones. 

2.1.3.1.3 NIRS 

Figure 2.1.4: Score plot of the FFFS emission spectra 

acquired on the lichens thalli exposed during 2015. 

Samples are indicated by their pollution classes: red 

control; blue industrial pollution; green high congested 

traffic; light blue low traffic. 
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Fig. 2.1.6 shows the score plot of the data set N1 (year 2015), in the space of 

PC1-PC4. Control samples formed a well-defined cluster, associated with 

Figure 2.1.5: Score plot of the FFFS emission spectra 

acquired on the lichens thalli exposed during 2016. 

Samples are indicated by their pollution classes: red 

control; blue industrial pollution; green high congested 

traffic. 

Figure 2.1.6: Score plot of the NIR spectra acquired 

on the lichens thalli exposed in the year 2015. 

Samples are indicated by their pollution classes: red 

control; blue industrial pollution; green high 

congested traffic; light blue low traffic. 
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negative scores of PC1 and positive of PC4. Differently, the separation of 

the pollution classes was less evident. Overall, samples from industrial sites 

were associated with positive scores of PC1, whereas samples from traffic 

sites (high congested traffic D, E and P; low traffic C, G, M, N and O) 

occurred for negative values of PC1. 

Fig. 2.1.7 shows the score plot of the data set N2 (year 2016), in the space of 

PC1-PC2. Control samples were associated with positive scores of PC2. 

With regard to samples transplanted in the exposed sites we can observe that 

samples from traffic sites occurred for positive scores of PC1 whereas 

samples from industrial sites to negative ones. 

2.1.3.1.4. PEA 

The first 2 PCs of P1 data set explained the 75.1% of the variance (Fig. 

2.1.8b). Control samples were associated with negative scores of PC1, 

corresponding to high photosynthetic efficiency. Samples exposed in 4 low 

Figure 2.1.7: Score plot of the NIR spectra acquired on the 

lichens thalli exposed in the year 2016. Samples are 

indicated by their pollution classes: red control; blue 

industrial pollution; green high congested traffic. 
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traffic sites (M, N, O, Q) and in 2 high traffic sites (P, E) were found for 

positive scores of PC1, associated to low photosynthetic efficiency (Fig. 

2.1.8a). The separation of pollution categories along PC2 was much less 

evident; this component was associated to higher heat dissipation (DI/RC), 

as a response of lichens to high level of stress [8]. 

  
 Figure 2.1.8:  loadings (a) and score plot (b) of the PEA values measured 

on the lichens thalli exposed in the year 2015. Samples are indicated by their 

pollution classes: red control; blue industrial pollution; green high congested traffic; 

light blue low traffic. 

Figs. 2.1.9 a and b show respectively the loading and score plots for P2 data 

set. Overall, the results obtained in 2016 were comparable to those of the 

previous year. PC1 (54.7% of total variation) was associated with an 

increasing gradient of pollution, ranging from control samples to those 

transplanted in industrial and high congested traffic sites. These latter 

samples showed a low photosynthetic efficiency and high heat dissipation, 

as a response to stressing conditions. 

2.1.3.2. Classification 

QDA was applied as a classification method on the FFFS, NIR and PEA 

data of the year 2015 and 2016 (Table 2.1.2), in order to evaluate the 

possibility to discriminate the lichen thalli categorized on the basis of the 

level and type of air pollutants (see 2.1.3.1.1). For year 2015, the mean 

a b 
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prediction rate of the discriminant rule calculated on the FFFS emission 

spectra was 70% on the external test set, supporting FFFS as a promising 

technique for discriminating the effects of different levels and type of 

pollutants on lichen thalli; in fact, considering the biological variability of 

the lichen thalli, the QDA results can be considered more than satisfactory. 

  
Figure 2.1.9: loadings (a) and score plot (b) of the PEA values measured on the 

lichens thalli exposed in the year 2016. Samples are indicated by their pollution 

classes: red control; blue industrial pollution; green high congested traffic. 

On the contrary, the results obtained with the NIR spectra were not so 

satisfactory. In particular, high prediction rates were obtained only in the 

discrimination between controls and other classes. This indicates NIR 

spectroscopy as an analytical method able to differentiate between samples 

exposed or not in polluted areas [15], but not as sensitive to discriminate 

between areas with different types of atmospheric pollution. 

Table 2.1.2: QDA results on the FFFS (F1 for 2015 and F2 for 2016), FT-NIR 

(N1 for 2015 and F2 for 2016) and PEA (P1 for 2015 and P2 for 2016) data of 

the year 2015 and 2016. Results are the mean correct prediction rate expressed 

as percentages (%). 
Data set Control Industrial High-congested traffic Low traffic Weighted mean 

F1 100.0 80.0 100.0 25.0 70.0 

F2 100.0 75.0 71.4 // 75.0 

N1 90.0 64.7 66.7 25.0 51.3 

N2 83.3 62.5 66.6 // 67.6 

P1 100.0 26.1 33.3 45.4 40.0 

P2 100.0 66.7 80.0 // 77.8 



99 

PEA showed contrasting results, with a low mean prediction rate in 2015 

(P1) and a higher performance in 2016 (P2). In both years, PEA successfully 

discriminated control vs. exposed samples, but it was less efficient in 

distinguishing between categories of pollution. 

As a general result, FFFS showed the highest mean prediction rate and it 

was able to correctly discriminate sites characterized by different type of 

pollution (namely, industrial vs. traffic). All techniques showed very high 

prediction rates for control samples. Moreover, FFFS results were 

sufficiently reproducible in both years, whereas the other techniques showed 

discordant results in the two consecutive campaigns. Particularly, PEA was 

not able to distinguish between polluted categories, even though its 

performance improved in 2016, when the low traffic category was not taken 

into account. These outcomes might be due to differences of climatic 

conditions during the exposure periods, which may have affected the 

photosynthetic efficiency of transplanted lichens, independently from the 

atmospheric pollution to which they were subjected. In fact, a synergic 

effect of climate and pollution may cause a deep alteration of the 

photosynthetic process. This is in accordance with what was observed by 

Malaspina et al. [7] who showed that transplanted lichens were highly 

sensitive to the interaction of atmospheric pollution and proximity to the 

sea. 

Although both FFFS and PEA data are based on fluorescence values 

recorded on the same samples, they provide different information: PEA data 

are collected from the intact living organism, while FFFS fluorescence data 

are based on the chemical properties of the fluorescent compounds in its 

composition. The results obtained by FFFS and NIRS derive both from 

myco- and photobiont. From one side, this response is much less specific if 
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compared with the one of PEA, but on the other hand it seems to be less 

influenced by short-term environmental variations. In lichens, many organic 

compounds can produce NIR and FFFS absorptions, including e.g., 

polycyclic aromatic hydrocarbons and organic acids that come from 

environmental pollution or endogenous organic acids that may increase as a 

response to stresses such as [15]. 

2.1.4. Conclusion 

Lichen biomonitoring is widely used for detecting air pollution patterns and 

can be especially useful in remote areas where the use of instrumental 

recording is hindered by difficult access to sites and difficult management of 

mechanical and electrical devices. 

In this study, the combined use of several rapid analytical approaches, 

coupled with chemometrics, as rapid and simply tools for assessing the 

effects of air pollutants on lichen thalli was investigated. Lichen samples 

were analyzed by FFFS, NIRS and PEA, in order to compare the 

performances of these analytical spectroscopic techniques, and to highlight 

possible synergic or complementary information. 

Despite the fact that it seems hard to discriminate between similar levels of 

atmospheric pollution, the explored techniques and in particular FFFS were 

able to highlight different type of pollution (namely, industrial vs. traffic). 

Considering the biological variability of the lichen thalli, the classification 

performances achieved by QDA can be considered more than satisfactory. 

This could pose the basis for promising development of spectroscopic 

techniques for exploring possible range of impact of different sources of 

emissions in a complex context. 
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2.2 Project V:    
 

The Effect of Extraction Methodology on the 

Recovery and Distribution of Naphthenic Acids of 

Oilfield Produced Water 

 
Summary 

Comprehensive chemical characterization of naphthenic acids (NAs) in 

oilfield produced water is a challenging task due to sample complexity. The 

recovery of NAs from produced water, and the corresponding distribution of 

detectable NAs are strongly influenced by sample extraction methodologies. 

In this study, we evaluated the effect of the extraction method on chemical 

space (i.e. the total number of chemicals present in a sample), relative 

recovery, and the distribution of NAs in a produced water sample. Three 

generic and pre-established extraction methods (i.e. liquid-liquid extraction 

(Lq), and solid phase extraction using HLB cartridges (HLB), and the 

combination of ENV+ and C8 (ENV) cartridges) were employed for our 

evaluation. The ENV method produced the largest number of detected NAs 

(134 out of 181) whereas the HLB and Lq methods produced 108 and 91 

positive detections, respectively, in the tested produced water sample. For 

the relative recoveries, the ENV performed better than the other two 

methods. The uni-variate and multi-variate statistical analysis of our results 

indicated that the ENV and Lq methods explained most of the variance 

observed in our data. When looking at the distribution of NAs in our sample 

the ENV method appeared to provide a more complete picture of the 

chemical diversity of NAs in that sample. Finally, the results are further 

discussed. 
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2.2.1 Introduction 

Naphthenic acids (NAs) are naturally occurring compounds in petroleum, 

with a highly variable composition depending on the source of the oil [1]. 

The concentration of NAs in petroleum can range from non-detectable to 

3% by weight.2 NAs constitute a complex mixture of chemicals, due to the 

multiple possible chemical structures (i.e. structural isomers) for the same 

chemical formula. For example for an NA with the formula of C10H18O2, 

assuming 6 component rings, there are more than 37 isomers. Many of these 

isomers have a similar structure and thus similar chemical and physical 

properties. Therefore, a mixture of NAs becomes an extremely challenging 

matrix to resolve and characterize [2]. As a consequence, the composition of 

NAs in a complex matrix such as oilfield produced water (PW) is unknown.  

Oil production PW is one of the largest streams of industrial treated 

wastewater in the world [3]. PW is an unresolved complex mixture and 

consists of a wide variety of chemicals from metals to organic pollutants, 

including NAs [3–7]. Moreover, multiple studies have reported that the NAs 

are one of the toxic components of the oilfield PW to a variety of organisms 

[2,3,8–10]. For example, NAs have been shown to be weak estrogen 

receptor agonists and androgen receptor antagonists [3,10–12]. Little is, 

however, known about the chemical composition NAs as well as their 

environmental fate and behaviour. Consequently, an effective assessment of 

the risk they pose to the environments receiving oilfield PW difficult. An 

understanding of the chemical composition of the NAs in the oilfield PW is 

therefore warranted. The chemical characterization of NAs in PWs is 

typically performed on the acidic fraction of the total extract of PW [2–4,9]. 

Typically, liquid-liquid extraction, solid phase extraction, or a combination 

of both is used in order to tackle the sample complexity provided by both 
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the NAs and PW [2,13-14]. The extraction method used to produce these 

extracts are compared/ validated either via total extractable material 

measurement or through the use of a limited number of surrogates as 

reviewed by Kovalchik et al [13,15–17]. Both mentioned methods have 

shown to be unable to comprehensively assess the extraction efficiency of 

one method compared to another [2, 13]. For example, in our previous study 

we demonstrated that the choice of the extraction procedure changes the 

explored chemical space of the sample [18]. In that study even though two 

out of three extraction methods showed similar performance for the 

surrogate chemicals, more detailed chemical characterization revealed 

substantial differences among tested extraction methods. However, that 

study was focused on the volatile and semi-volatile fraction of PW. With 

regards to NAs, to our knowledge there has not been a detailed extraction 

recovery assessment based on individual NAs. 

To answer that question, we employed three generic and well established 

extraction methods a liquid-liquid extraction method and two solid phase 

extraction (SPE) approaches to assess the relative recoveries each NA. We 

evaluated the effect of each extraction method on both the distribution and 

the relative recoveries of NAs in PW. The extracts were analysed as such 

(i.e. no fractionation) via liquid chromatography coupled to high resolution 

mass spectrometry (LC-HRMS), which was essential to accurate 

identification of NAs in the PW samples [19]. 

2.2.2 Material and Methods 

2.2.2.1 Sample and the Reagents 

A sample of PW (total volume of 5 L) was obtained from an oil platform in 

the Halten bank off coast of mid-Norway in February 2017 [20]. The sample 



107 

was divided into 9 aliquots, each of 400 mL. These samples were extracted 

using three generic extraction methods: liquid-liquid extraction (Lq); 

Hydrophilic-Lipophilic-Balanced cartridges, here referred to as HLB; and 

the combination of C8 and ENV+ cartridges, which we refer to as ENV. The 

HLB cartridges were a combination of two monomers, the hydrophilic N-

vinylpyrrolidone and the lipophilic divinylbenzene whereas the ENV 

cartridges consisted of hydroxylated polystyrene-divinyl benzene 

copolymer. Both of these methods are considered wide range extraction 

methods for a combination of polar and non-polar chemicals. The details of 

the extraction procedure for all three methods are provided elsewhere [18]. 

In short, the Lq method was the dichloromethane (DCM) extract of the 

acidified PW, repeated three times, with a final volume of 2 mL. A solution 

of 1N hydrochloric acid was used for acidification of the PW samples. For 

the solid phase extraction methods (SPE), both cartridges were conditioned 

with a combination of methanol and water as recommended by the vendors. 

The preconditioned cartridges then were loaded with 400 mL of PW using a 

vacuum pump. These, then, were eluted with two times the volume of the 

cartridges employing a mixture of hexane, DCM, and 2-propanol. This 

mixture was selected based on the fact that it appeared inert towards the 

extracted NAs. The final extracts of 2 mL were stored in the freezer until the 

analysis. This combination of eluents was previously shown to be effective 

for extraction of analytes with a wide range of chemical and physical 

properties in complex samples [18]. 

Three procedural blanks were generated for each extraction method. For Lq 

method, these blanks were the extract of the glassware using a mixture of 

DCM and a 1N solution of HCl. Regarding the SPE methods, the blanks 

were the extracts of the preconditioned cartridges with the same solvent 

mixture used for extraction of the samples. 
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The final extracts, including the blanks, were spiked with 100 ng of 

diazepam-D5 as the injection standard for monitoring the instrument 

performance during the analysis.  

ACS grade methanol, 2-propanol, hexane, dichloromethane, NH4OH, and 

diazepam-D5 were obtained from Sigma-Aldrich, Norway. HPLC grade 

water was purchased from Waters (Mil- ford, MA, USA). 

We obtained the Oasis HLB 6 mL Cartridges, with 200 mg of sorbent from 

Waters, Norway whereas the ENV+ cartridges, having 100 mg of the 

sorbent and a total volume of 6 mL, were purchased from Biotage, Sweden. 

Finally, the C8 sorbent came from Sigma- Aldrich, Norway. 

2.2.2.2 Instrumental 

Seven μL of each extract was injected into a Waters Acquity UPLC system 

(Waters Milford, MA, USA) equipped with UPLC HSS C18 column 

(2.1150 mm, particle size 1.8 mm) (Waters, Milford, MA, USA). The 

extracts were separated using the following chromatographic gradient. 

Staring with 87% solvent A, consisting of 0.1% solution of NH4OH in 

water, and 13% solvent B (acetonitrile). The percentage of solvent B 

increased to 50% in the first 10 minutes of the separation and it is kept as 

such for 1 minute. In the next stage the solvent B was ramped up to 95% in 

two minutes and kept the same for 0.5 minutes. In the final minute of the 

chromatogram the gradient was brought back to the initial conditions. A 

flow rate of 0.4 mL/min was employed during the 13.50 minutes 

chromatograms. 

The UPLC system was coupled to an Xevo G2-S Q-TOF-MS (Waters 

Milford, MA, US) time of flight high resolution mass spectrometer. The 
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Mass spectrometer was operated with a nominal mass resolution of 35,000 

and a sampling frequency of 2.3 Hz. This system was equipped with 

electron spray ionization source (ESI) operated in negative mode. During 

each cycle the mass spectrometer acquired a full-scan spectrum between 60 

Da and 600 Da employing a collision energy of 6 eV. 

All the samples including the blanks and quality control/assurance were 

analysed using the above instrumental conditions. 

2.2.2.3 Quality Control/Assurance (QC) 

For the purpose of QC, all the glassware used in this study were baked at 

450 C overnight. The samples were divided into sets of three extracts, which 

were followed by a solvent injection to avoid the carryover from previous 

injections. Additionally, the signal of the injection standard (i.e. diazepam-

D5) was monitored in order to assess the stability of the instrument during 

the analyses. We observed less than 20% variability in the signal of the 

injection standard. This suggested that all the samples showed similar levels 

of ion suppression for the injection standard. Therefore, we interpreted that 

the chromatograms were adequate for our data processing workflow without 

any correction for the ion suppression. 

2.2.2.4 Data Analysis 

All the chromatograms, including the samples and blanks, went through the 

following data processing steps sequentially. The acquired chromatograms 

were converted to an open MS format (i.e. netCDF) employing DataBridge 

provided via MassLynx (Waters, Milford, the US). The converted data were 

imported into the Matlab [21] environment (Matlab R2015b) for further 

processing. The imported data were mass calibrated prior to evaluation for 
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the NAs. The details of the mass calibration are reported elsewhere [22–25]. 

In short, for the mass calibration, the measured mass of the calibrant 

injected into the source in 20 S intervals were compared to the exact mass of 

the same compound. The observed mass errors were used to calculate the 

needed mass shift over the whole chromatogram using a third order 

polynomial. The estimated mass shift then was applied to the data in order 

to produce the calibrated chromatograms. The mass calibrated data were 

used for the identification and signal extraction of NAs. 

2.2.2.5 Identification and Signal Extraction 

Each NA in a PW sample is representative of the mixture of all the 

structural isomers with the same molecular formula. An increase in the size 

of the NAs (i.e. the number of carbons) is exponentially correlated with the 

number of potential structural isomers of NAs [1-2]. Consequently, in the 

literature, NAs are typically considered as a group of isomers rather than 

individual compounds [2]. Similarly to the previous reports, we employed 

the mixture of isomers approach rather than individual compound ones. 

In order to identify the NAs in our samples, a list of NAs using their general 

formula (i.e. CnH2n-zO2) was generated. In this list the number of carbons 

(i.e. n) ranged between 8 to 35 while the number of rings ranged from zero 

to 6 (i.e. z= 0 : -2 : -20). This range was selected based on the previously 

reported analyzable range of NAs via LC-HRMS [2]. In addition to these 

conventional NAs, we added several sulfur containing NAs based on the 

literature reports [26], which enabled us to produce a comprehensive list of 

detectable NAs in PW. This resulted in a total of 181 NAs to be screened for 

in the samples (Appendix 3). For the identification of NAs, we generated the 

extracted ion chromatogram (XIC) of each NA in the list, employing a mass 
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accuracy of ± 3 mDa. This mass window was selected based on the 

observed mass resolution measured using the signal of the calibrant. The 

generated XICs were integrated over the whole chromatogram to produce 

the signal specific to each NA in the list. This procedure was carried out for 

all the calibrated chromatograms including the blanks. The signal of each 

NA after the blank subtraction was used for the comparison of the 

performance of the three extraction methods employed in this study. During 

the identification, we performed a noise removal step which consisted of 

elimination of the NAs that produced a signal smaller than 500 counts and 

the NAs that were detected only in one out of three replicates. These 

eliminated NAs were considered non-detects for that method. This approach 

enabled us to accurately detect the tested NAs and compare the three 

extraction methods investigated in this study. 

2.2.2.6 Relative Recovery Calculations 

We calculated the relative recovery of each NA using the approach 

proposed by Samanipour et al. [18]. This approach was selected due to the 

large number of NAs analysed and the lack of analytical standards for 

individual NAs in the sample [1-2,13,16]. As an example, for an NA with 

formula of C10H18O there is need for more than 37 individual analytical 

standards in order to define the absolute recovery of that NA. Therefore, we 

used the cumulative signal approach where the signal of all possible isomers 

of one NA is summed up to define the produced signal for that NA via an 

extraction method. Each NA, in this study, resulted in 9 cumulative signal 

values (i.e. the integrated XIC for each extract 3 methods × 3 replicates) 

generated via three different extraction methods. The largest method 

averaged cumulative signal was considered the total extractable material for 

that NA. Therefore, the recovery of each NA was calculated based on its 
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signal from each extract divided by the total extractable material for that 

NA. Using this approach we were able to evaluate the performance of 

different extraction methods for each NA. 

2.7 Statistical Analysis 

In order to further evaluate the performance of the three extraction methods, 

we performed both uni-variate and multi-variate statistical analysis. For the 

uni-variate test, we employed the non-parametric test Kruskal-Wallis [27]. 

A ρ < 0.05 was selected as the threshold for the rejection of null-hypothesis 

with 95% confidence interval. With regards to multi-variate test, principal 

component analysis (PCA) was used in this investigation [28]. Prior to our 

PCA analysis our data was scaled utilizing Pareto scaling [29]. This 

approach has shown to be effective in keeping the data structure intact while 

reducing the importance of large signals. For the PCA, the singular value 

decomposition (SVD) was employed in order to isolate the statistically 

relevant components [30]. This algorithm (i.e. SVD) is effective in dealing 

with datasets where the number of variables is larger than the number of 

observations. This procedure was previously shown to be effective in 

separating different extraction methods from each other while isolating the 

variables that were causing the separation [25].  

2.2.3 Results and Discussions 

2.2.3.1 Detection of NAs 

The ENV method with 134 positive detections out of 181 total tested NAs, 

performed the best, when looking at the number of positively detected NAs 

in the samples via different extraction methods. The HLB and Lq methods 

resulted in positive detection of 108 and 81 NAs, respectively (Fig. 2.2.1). 
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We further examined the effect of the number of rings and the number of 

carbons on the detection frequency of NAs produced via each extraction 

method. 

The ENV method systematically produced larger detection frequencies for 

all 7 z values when compared to the other two methods, Fig. 2.2.1. The 

largest detection frequency for both ENV and HLB was observed for NAs 

with a z value of -4 (i.e. 2 rings) with positive detection of 23 and 19 NAs, 

respectively. On the other hand, the Lq method showed to be unaffected by 

the number of rings in terms of the detection frequency resulting in an 

average of 11 NAs detected for all seven cases. The non-parametric 

Kruskal-Wallis test [27] results (i.e. ρ < 0.05) indicated that the differences 

observed in the detection frequencies versus the ring number were 

statistically significant. Further examination of these results suggested that 

the two SPE methods performed in a similar way whereas the Lq method 

appeared to be different from those two. Overall, all three methods covered 

Figure 2.2.1: showing the detection frequency of NAs versus (a) the z value (i.e. 

the number of aliphatic rings) and (b) the n number (i.e. the number of carbons). 
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a range of NAs from aliphatic chains (i.e. z=0) up to 6 rings (i.e. z=-12) 

while all three methods were unable to detect NAs with larger number of 

rings, thus z values between -14 and -20. Furthermore, none of the methods 

detected the sulphur containing NAs, which may suggest their absence 

and/or lower than instrumental limit of detection concentrations in the 

analysed sample. 

For the effect of the number of carbons on the detection frequency of NAs, 

the ENV method covered all n values ranging from 8 to 35, Fig. 2.2.1. The 

HLB method produced zero positive detection for n values of 8 and 25 

while the Lq method was limited in an n value range of 9-29. The ENV 

method resulted in the largest detection frequency of NAs for 20 out of 27 n 

values across the tested range. For cases where Lq method was the best 

performing approach with n values of 11, 12, 15, and 17, the mentioned 

NAs appeared to be aliphatic NAs. Moreover, they all were removed during 

the noise removal (i.e. their signal was smaller than 500 counts). For the 

remaining three cases with n values of 28, 29, and 34, HLB method 

performed better than ENV extraction method. For these cases, the missing 

NAs were: a one ring NA for the n value of 28, a two ring NA for the n 

value of 29, and finally, a five ring NA for the n of 34. Also for these cases, 

the noise removal step caused the elimination of these NAs from the 

detection list of ENV. Based on the fact that all these discrepancy cases 

where generated during the noise removal step, we interpreted that the 

sample complexity/matrix effect was the main cause of these observations. 

Finally, we preformed the non-parametric Kruskal-Wallis test to evaluate 

the trend observed in the detection frequency versus the n values. The ρ < 

0.05 of this test suggested a statistically significant difference between the 

methods. Further investigation in the outcome of this statistical test showed 

the similarity of the SPE methods when compared to the Lq method. 
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Overall, the ENV method appeared to perform the best by extracting the 

largest number of NAs across all the z values and n values. Additionally, 

this method showed a consistent performance when looking at the z and n 

values compared to the other two methods (i.e. HLB and Lq). 

2.2.3.2 Extraction 

Recoveries  

The ENV method resulted 

in an average relative 

recovery of 49.6 % across 

all the tested NAs whereas 

HLB and Lq produced 

average relative recoveries 

of 44.7% and 42.1%, 

respectively. We also 

evaluated the recoveries 

of the NAs for each 

method based on the 

number of carbons and the 

number of rings. 

For the aliphatic NAs (i.e. 

z=0), the Lq method 

performed better than the 

other two methods 

resulting in 100% relative 

recoveries for 12 out of 27 

NAs, Fig. 2.2.2. The other 

Figure 2.2.2: showing the relative recoveries of NAs 

versus the n value for (a) the z=0 (i.e. no ring), (b) the 

z=-4 (i.e. two rings), and (c) the z=-12 (i.e. six rings). 
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two methods (i.e. HLB and ENV) produced a larger level of variability in 

the relative extraction recoveries across the analyzed NAs, ranging from 

non-detect for n=12 and 17 to 100% for n larger than 29. However, the ENV 

method was the only method that extracted the largest number of NAs 

compared to the other two methods. Additionally, this method showed to be 

successful in capturing the smallest and the largest NAs in this group. 

For small NAs with n ranging from 8 to 10 both HLB and Lq resulted in 

zero recoveries, which was attributed to the low affinity of these NAs for 

HLB resin and DCM. However, further structural elucidation is necessary to 

confirm this hypothesis. On the other hand, for NAs having n values larger 

than 22, the two SPE methods were able to isolate those NAs while the Lq 

failed in this task. This trend was associated with the lower solubility of 

larger NAs in DCM. However, in this case also further structural elucidation 

is necessary to confirm this hypothesis. For NAs with z values between -2 

and -10 (i.e. 1 to 5 rings), the ENV method systematically produced higher 

relative recoveries compared to the other two methods, Fig.s 2.2.2 and 2.2.3. 

Among these cases, for z values of -2, -4, and -6 both ENV and Lq 

performed better than HLB in extracting smaller NAs. However, for NAs 

with n values larger than 22 the two SPE methods perform better both in 

terms of number of detected NAs and the relative recovery of individual 

NAs. Finally, for NAs with a z value of -12, thus 6 rings, the Lq performs 

better than the other two methods producing 100% relative extraction 

recoveries for 13 out of 17 NAs, Fig. 2.2.2. This method however was 

unable to isolate the NAs with number of carbons larger than 31. Overall, 

none of the methods were able to extract all the tested NAs. However, the 

ENV method appeared to perform better than the other two methods when 

looking at the relative recoveries and the number of detected of NAs. 
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Figure 2.2.3: showing the relative recoveries of NAs with 

(a) the z=-2, (b) the z=-6 , (c) the z=-8  and (d) the z=-10 for 

all three extraction methods. The error bars show the 

variance observed in the data for each NA via each 

extraction method. 
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The PCA of the scaled and mean cantered relative recoveries was able to 

clearly distinguish the three extraction methods from each other, Fig. 2.2.4. 

The first two PCs successfully described 62% of variability in our dataset. 

When looking at the loading plot, also in this case three different clusters of 

variables were observed. These clusters indicated the variables that were 

causing the separation of the methods from each other. When looking at the 

loadings plot, we focused on the variables that had a weight value of larger 

than 30%, which reduced the number of relevant variables to 79 rather than 

172. From those 79, 41 were associated with the NAs where the ENV 

method performed better than the other two whereas 34 belonged to the 

method HLB. For the Lq method, there were only four statistically relevant 

variables (i.e. NAs with masses of 326.3218, 338.3376, 348.3534, and 

426.4482), which indicated the worse performance of this method compared 

to the other two extraction approaches. The results of PCA suggested that 

the ENV method performed the best when compared to the other two 

methods. This was in agreement with our assessment of the recoveries based 

on individual NAs explained in details above. 

Figure 2.2.4: depicting the principal component analysis (PCA) of the scaled and 

mean centered 
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The ENV method also produced the largest total signal of NAs compared to 

the other two methods, Fig. 2.2.5. We also evaluated the blank subtracted 

and injection standard normalized total signal of all detected NAs using 

each extraction method in order to evaluate the overall recovery of each 

method. Based on the absolute signal, the Lq and HLB methods extracted 

~80% of total extractable material, assuming the ENV method extracting 

100%. The outcome of the total signal was comparable to the previous 

reports for Lq and SPE methods [13]. 

2.2.3.3 NA Distribution in Produced Water 

We further evaluated the effect of the extraction method on the overall 

distribution of tested NAs in the analyzed produced water. The noise 

removed extracted signal of the NAs for each extraction method was 

utilized for these evaluations. 

When looking at the distribution of NAs in the analyzed produced water via 

SPE methods, the NAs with z values ranging from -4 to -12 appeared to be 

the most abundant ones. On the other hand, via Lq method the NAs with z 

Figure 2.2.5: showing the blank subtracted and injection 

standard normalized total signal of all detected NAs using 

each extraction method. 
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value of -12 were the most abundant group while for other z values, this 

method produced relatively similar abundances, Fig. 2.2.6. 

 

 

 

Figure 2.2.6: depicting the relative abundance of the analyzed NAs 

using (a) Lq, (b) HLB, and (c) ENV extraction methods. The relative 

abundances (i.e.”Z” axis) are multiplied to 1000 and are shown in log 

scale for ease of visual comparison among the three extraction methods. 
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All three extraction methods produced the smallest relative abundances for 

the aliphatic NAs. All the methods, for z values between -2 and -10, resulted 

in higher relative abundances for n values between 13 and 18, which was in 

agreement with previous reports regarding the distribution of NAs in 

produced water or similar matrices [9,31,32]. For a z value of -12, the most 

abundant NAs were those with n values between 16 and 20 for all three 

tested extraction methods. 

The ENV method appeared to cover the largest NA chemical space 

compared to the other two methods, where the chemical space is defined as 

the total number of tested NAs, Fig. 2.2.6. The performance of the other 

SPE method, thus HLB, appeared to be more similar to the ENV rather than 

the Lq method. For Lq method the distribution of the NAs appeared to be 

affected mainly by their solubility in DCM. As a consequence, the 

boundaries of the explored chemical space via Lq method were dominated 

by the molecular size. In other words, the non-extracted NAs via the Lq 

were either too small or too large, therefore non soluble in DCM. For the 

two SPE methods, the explored chemical space appeared to be less concise 

when compared to the Lq method. We interpret that this observed trend was 

mainly caused by the interactions of individual compounds with the resin, 

sample complexity, and the matrix effects. We observed that the HLB 

method, in particular, showed less affinity for the smaller NAs (i.e. n value 

of 8) compared to the ENV method. To further test this, we explored our 

chromatograms for NAs with z value of 0 and n values of 7 and 6, which 

were not included in our initial list of NAs. None of the three tested 

extraction methods detected the NA with z=0 and n=7. However, for NA 

with z=0 and n=6, the ENV method was the only one producing a positive 

detection for that particular NA, Fig. S6. This further indicated the 

difficulties that the Lq and HLB methods have in extracting smaller NAs. 
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The ENV method was able to explore the largest chemical space of NAs 

compared to HLB and Lq methods. Additionally, this method was the only 

method that produced a positive signal for hexanoic acid, which is 

considered the marker for the presence of NAs in produced water according 

to Norwegian Oil and Gas.33 Even though this method (i.e. ENV) did not 

produce the highest recoveries for all the tested NAs, it resulted in 100% 

relative recoveries for the largest number of NAs explored in this study. Our 

results in overall suggested that among the tested extraction procedures the 

ENV method is the most effective one for analysis of NAs in produced 

water. However, testing the other extraction procedures is necessary and 

will be subject of our future study. 

2.2.4 Environmental Implications 

Our results suggested that the choice of sample preparation approach may 

have a substantial effect on the explored chemical space of NAs. In other 

words, using different extraction methods may produce different toxicity 

profiles for the same sample. This is highly relevant for a complex mixture 

such as produced water and NAs with a wide variety of toxicity profiles. 

Consequently the risk assessment of such mixtures without a comprehensive 

understanding of the explored chemical space becomes impossible. Our 

results indicated that, when dealing with such complex mixture, the 

conventional methods may fall short and thus the uses of more 

comprehensive methods are warranted. Additionally, our results indicated 

that when assessing the extraction recoveries, this should be done at higher 

detailed levels rather than the total NAs or using only a few surrogates. For 

example for an NA with n=24 and z=-2, this NA was detected using only 

one extraction method ENV, which implied that using the other two 

methods would not have produced an accurate toxicity profile. This is 
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extremely important when performing the risk assessment of such complex 

mixtures such as NAs and PW. 
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3.1 Project VI 
 

Identification of Base Stock in Engine Oils by Near 

Infrared and Fluorescence Spectroscopies coupled 

with Chemometrics 

 
Summary 

Engine oils (also called motor oils or engine lubricants) are produced by 

blending almost 80% (w/w) base oils (a mixture of one or more base stock 

types) and 20% (w/w) of different additives. The American Petroleum 

Institute (API) has categorized base stocks into five categories; to date, it is 

possible to identify the base stock type by looking at the combination of 

physical properties (viscosity index, density, colour, flash point, pour point, 

aniline point, thermal stability) but the measurement of these parameters is 

expensive and time consuming. The aim of the present study was to 

investigate, for the first time, the capabilities of near infrared (NIR) and 

excitation-emission (EEM) fluorescence spectroscopies coupled with 

chemometrics as low-cost, green and non-destructive methods in order to 

identify the type of base stock into engine oil. In order to reach this goal, 53 

pure base stocks belonging to different API groups and 43 engine oils were 

analysed without any pre-treatments.  PCA performed on the NIR and EEM 

unfolded spectra showed that samples form clusters according to their API 

groups and to their chemical composition. Considering the 3-ways nature of 

the EEM data, PARAFAC was also applied on fluorescence data and 

outcomes were in agreement with PCA results. PLS-DA, as a multivariate 

classification tool, was applied in order to distinguish among different API 

base stock groups and satisfactory results were achieved: the prediction 

abilities in the external test set were 87% and 85% using NIR and 
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fluorescence spectroscopy, respectively. Moreover, in the present study, the 

performance level of gasoline engine oils, as a recognition aspect of 

lubricants quality, was also investigated. Both spectroscopic techniques 

appeared to be rapid and non-destructive analytical methods for the 

characterization of base stock and for the determination of the performance 

level, therefore, they represent a promising tool for engine oil analysis. 

3.1.1 Introduction 

Engine oil, also called motor oil has the largest consumer market among 

lubricants and is facing a new challenge every day to meet the new demands 

of the automotive industry such as environmental constraints and the need to 

save energy. Manufacturers of lubricants, package producer and standard 

institutes are dealing with the costly and time-consuming processes of 

producing, standardizing and modifying based on new vehicle 

developments. On the other hand, the huge turnovers of this field have 

fuelled scams, counterfeits, frauds, tax evasion up to low quality oils that 

cause irreversible damage to engines.[1] 

Engine oil is produced by blending almost 80% (w/w) base oils (a mixture 

of one or more base stock types) and 20% (w/w) of different additives to 

meet the performance level requirements. Since base oil is the major part of 

the lubricant formula, and additives are only added to improve the base oil 

performances, the identification of the base stock type can, provide a 

reasonable estimation of engine oil quality.  

The American Petroleum Institute (API) is the largest U.S. trade association 

for the oil and natural gas industry. API has categorized base stocks into five 

categories. The first three groups are mineral stocks, refined from crude oil 

with different severity processes on lub-cut (middle cut of vacuum 
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distillation tower in crude oil refinery). Group IV base stocks are full 

synthetic (polyalphaolefin). Group V is for all other base stocks not included 

in Groups I through IV. (See Table 3.1) [2] 

Table 3.1: API Base Stock Categories 

Base Stock Category Sulfur (%) Saturation (%) VI 

Group I >0.03 and/or <90 80 to 120 

Group II <0.03 and >90 80 to 120 

Group III >0.03 and >90 > 120 

Group IV Poly Alpha Olefin (PAO) Synthetic Base Stocks 

Group V All other base stocks not included in Group I, II, III, IV 

The properties of the three mineral base stocks are not similar due to 

different refining processes. Moreover, since their source is natural, their 

molecules have different size and structures containing various elements 

such as Oxygen, Phosphorous, Nitrogen and Sulphur along with Carbon and 

Hydrogen backbone. Producing processes only remove some undesired 

structures or break down some detrimental bands. On the contrary, synthetic 

base stocks molecules have same shape and size tailored for specific 

demands. 

In laboratory, it is possible to distinguish base stock types by looking at the 

combination of physical properties such as viscosity index, density, colour, 

flash point, pour point, aniline point, thermal stability. Nevertheless, 

identification of a mixture of base stocks, especially in lubricants, represents 

a major analytical challenge, due to the variable composition of base stock 

and additives. 

In the present study, the performance level of engine oils, as a recognition 

aspect of lubricants quality, was also investigated. API’s Certification Mark 

and Service Symbol identify quality motor oils for gasoline and diesel 
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powered vehicles. Oils displaying these marks meet performance 

requirements set by U.S. and international vehicle and engine manufacturers 

and the lubricant industry. [3] 

The API "Donut" in Figure 3.1 identifies oils that meet current API engine 

oil standards. It includes the Performance level classification (see part 1 of 

Figure1). Regarding Performance level, the letter "S" refers to oil suitable 

for gasoline engines, and the letter "C" refers to oil suitable for diesel 

engines. “S” refers to Service/Spark Ignition (petrol) and “C” to 

Commercial/Compression Ignition (diesel). Letter ‘S’ is followed by 

another letter from “A” (first class for production cars up to 1930) to “N” 

(highest performance level); Letter ‘C’ is followed by another letter from 

“A” (first performance level) to “I” (latest level). "4" in CI-4 refers to the 

combustion cycle of the engine. [3] 

Therefore, the latest API service category is API SN Plus for gasoline 

automobile engines. As an instance, the SN standard refers to a group of 

laboratory and engine tests, including the latest series for control of high-

temperature deposits. Current API service categories include SN, SM, SL 

and SJ for gasoline engines. All earlier service categories are obsolete, 

although they are still produced and used in some parts of the world. [4] 

Figure 3.1: API "Donut”: 1) This part displays the motor oil's API performance 

standard; 2) The centre of the "Donut" shows the motor oil's SAE viscosity grade; 3) 

The bottom tells whether the motor oil has resource-conserving properties when 

compared with a reference oil in an engine test. 
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In order to achieve the API mark and certificates, specialized laboratories 

around the world perform some expensive tests to cover all standard 

requirements for each performance level. [1] 

A rapid solution in order to identify the type of base stock in engine oils 

could help the formulators when developing a new or tailored lubricant, 

targeting a given performance level. Since spectroscopic techniques are low-

cost, green, non-destructive and fast, in order to reach this goal, in the 

present study the capabilities of Fourier Transform Near Infrared (FT-NIR) 

spectroscopy and EEM fluorescence spectroscopy coupled with 

chemometrics have been investigated in the analysis of motor oils, for the 

first time. 

The spectrophotometers illustrate the effect of electromagnetic radiation on 

matter, which appears as absorption or emission intensity of electron 

transfer between the bending, stretching, bonding, or etc. atomic or 

molecular quantum layers. Therefore, since each intensity is sensitive to 

position and type of elements in a molecule, it is powerful way to find 

particular bond, group of agent or interaction in the matter. 

Base stocks and engine oils are mixtures of different chemical compounds. 

Thus their NIR spectra are very complex and Chemometrics, as a statistical 

tool, is necessary to analyse this large amount of data containing a lot of 

information [5]. The same is for fluorescence data. Chemometrics in 

analysing complex chemical mixtures is a cutting edge method to look at a 

large amount of data containing all of its information [6]. 

To the best of our knowledge, few analytical methods have been proposed 

coupled with chemometrical techniques in order to analyse engine oils in 

general and to characterize base stocks according to their API group, in 
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particular. As an instance, Poppi et al. [7] applied Fourier transform infrared 

(FTIR) spectroscopy in combination with multivariate statistics, based on 

PCA, to develop a quality control strategy for classification of lubricant type 

(mineral, synthetic and semi-synthetic) and usage conditions. 

Amat et al. [8] presents a method to evaluate the lubricant oil oxidation 

using NIR coupled with chemometrics. In another study of Hirri et al. [9], 

FTIR spectroscopy coupled to chemometric techniques, like PLS2-DA and 

PCA, was reported as an adequate method for the quality control of 

lubricating oils SAE 30 of gear and machines in industries. 

3.1.2 Material and Methods 

3.1.2.1 Sample and Reagents 

The sampling was possible thanks to the collaboration with three different 

petrochemical companies in fact, for the present study, guaranteed samples 

with known composition were required. Fifty-three base stock and forty-

three engine oil samples were provided by the petrochemical companies in 

different times and analysed in two different working sessions. The 

complete lists of samples are reported in Appendix 4 a and 5. The base 

stocks belonged to the API categories from I to IV, there were not samples 

for categories V and VI that are the least used categories for the formulation 

of engine oils.  

As far as engine oils are concerned, it can be seen from Appendix 5 that 

some oils contain only one type of base stock, others are mixtures of several 

base stocks. 

All oils have been tested two or three times. 

3.1.2.2 Instrumental and Methods 
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In this study, excitation-emission (EEM) fluorescence and near infrared 

(NIR) spectroscopies were applied as inexpensive and rapid analytical 

techniques in order to analyse both base stock and engine oil samples. 

NIR spectra were acquired with a FT-NIR spectrophotometer (Buchi 

NIRFlex N-500), in the 4000-10000 cm-1 range at 4 cm-1 resolution, in 

transmittance mode. All the experiments were performed at controlled 

temperature (35 ̊C). 

EEM spectra were measured using a luminescence spectrometry (LS-55, 

Perkin-Elmer Co., USA). EEM spectra are a collection of a series of 

emission spectra over a range of excitation wavelengths, and they can be 

used to identify fluorescent compounds present in complex mixtures. In this 

study, EEM spectra were collected with subsequent scanning emission 

spectra from 300 to 900 nm at 0.5 nm increments by varying the excitation 

wavelength from 200 to 500 nm at 10 nm increments. The excitation and 

emission monochromator slits were set to 4.5 and 11.0 nm, respectively, and 

the scanning speed was set at 200 nm/min for all the measurements.  

The EEM spectra were measured after optimisation of the operating 

parameters. In order to optimise the factors of the fluorescence 

spectrometer, changing one variable at a time is a most popular way, but 

design of experiments (DoE) [10] as a multivariate approach, represents a 

powerful way to reduce time and cost without losing significant 

information. In the present study, a D-optimal design [11] as a method of 

multivariate DoE, was applied. According to our recent study [12] the 

sample loadings on the first principal component for each experiment were 

the response considered in the D-optimal design. 
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Principal component analysis (PCA) [13] was performed as a multivariate 

display method in order to visualize the NIR and unfolded EEM data 

structure. 

In order to remove the effect due to the different period of analysis, NIR 

spectra were block-scaled; in particular NIR spectra were pre-processed by 

Standard Normal Variate (SNV) to correct for light scatter and autoscaling 

for each block of analysis. EEM spectra were block-autoscaled before data 

analysis. 

According to the specific nature of EEM data, organized in a 3D data array 

(sample × excitation × emission), for performing PCA a step of unfolding of 

the matrix is request while with the PARAFAC algorithm [14] is possible to 

model directly n-way data [15]. In the case of three-way data, PARAFAC 

decomposes a data tensor X with dimension I × J × K into three loading 

matrices A, B and C, being their columns af, bf and cf are their column 

respectively. The trilinear PARAFAC model is expressed as follows: 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓

𝐹

𝑓=1
+  𝑒𝑖𝑗𝑘,   i = 1,2, ..., I; j = 1,2, ..., J; k = 1,2, ..., K 

where xijk is the array of X tensor in the position i, j, k. eijk is the residual 

array in the position i, j, k of residual tensor (a tensor with same dimensions 

of X tensor). F is the number of PARAFAC components (factors). In the 

case of fluorescence data, af, bf and cf are f-th fluorophore (component) 

excitation, emission and sample profile. Sample profile refers to quantity of 

f-th fluorophore in each sample. [16] 

Lastly, Partial least squares discriminant analysis (PLS-DA) [17], as a 

multivariate classification chemometric method, was applied in order to 

discriminate mineral base stocks according to the base stock API group. The 
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PLS-DA classification rules were validated both in cross validation and 

using on external test set. 

PLS-DA is based on the partial least squares (PLS) [18] regression 

algorithm. PLS-DA is a bilinear regression method that finds the 

relationship between predictor variables (X) and dependent categorical 

variable (Y). This classification method has been used separately in NIR and 

fluorescence data. 

The FL WinLab software (PerkinElmer) was used to register the fluorescent 

signals and the NIRWare 1.5 software (Buchi) was used to register the NIR 

spectra.  

The data were imported to MATLAB [19] and PARAFAC, PCA and PLS-

DA models were performed using PLS Toolbox [20]. 

3.1.3 Results and Discussions 

3.1.3.1 NIR Spectroscopy 

3.1.3.1.1 Repeatability Study 

The multivariate repeatability for 

NIR analysis was assessed. It was 

made by replicating three times 

the analysis of three base stock 

samples of different API category. 

Figure 3.2 displays the score plot 

obtained by PCA of these base 

stock NIR data: there was not 
Figure 3.2: Score plot of Three Base Stock 

NIR Replicate 
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evident effect on repeatability, so the rest of data processing was performed 

using the average spectra. 

3.1.3.1.2 Data Exploration (PCA) 

Despite the calibration of the 

instrument, it is possible to notice a 

clear difference between the 

baselines of the NIR spectra 

acquired in the two different 

working sessions (WS) (Fig. 3.3). 

Figure 3.4 shows the score plot 

obtained on these NIR spectra after 

SNV and mean centering. As 

expected, PC1, the direction 

explaining the maximum variation 

of the data (96% of the total 

variace), perfectly discriminates 

the samples according to the two 

WS of analysis. 

Scaling block-wise of the NIR 

spectral matrix was performed in 

order to eliminate the effect of the 

‘block’, in this case the difference 

due to the different WS of analysis, 

and PCA was performed again on 

this pre-treated matrix.  

Figure 3.5: Score Plot of 53 Base Stock 

NIR spectra (Pre-processing: Block SNV + 

Auto Scaling) 

Figure 3.4: Score Plot of 53 Base 

Stock NIR Spectra (Pre-processing: 

SNV + Mean Centering) 

 

Figure 3.3: Raw NIR Spectra of Base 

Stocks. Each colour is related to one WS. 

 
First WS  
Second WS 
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In the score plot of Figure 3.5, 

samples form clusters according to 

their API group. It is difficult to 

recognize if each PC describes 

specific chemical or physical 

properties of the samples, but, it 

appears that along PC1, base stocks 

have been apart because of 

heteroatoms existence and the 

saturation degree seems the reason of sample distribution along PC2. 

The score plot shows high agreement with the chemical structure of the oils 

and it appears that heteroatoms (along PC1) have stronger effects than the 

saturation degree (along PC2) on varying the intensity of the NIR spectra.  

Subsequently, the NIR spectra of the 43 engine oil samples were projected 

into the plane of the first 2 PCs calculated using the NIR spectra of the base 

stocks, in order to compare the position of each engine oil with respect to its 

base oil composition and to evaluate the pattern's similarity. It was 

interesting to notice that the position of the engine oil samples in this score 

plot was in agreement with their chemical composition (see Fig. 3.6). 

Among the 43 engine oil samples provided by the petrochemical companies, 

only 33 gasoline engine oil samples had declared performance levels, 

therefore these samples were used in this second part of the study where the 

link between base oil composition and performance level of engine oil has 

been investigated. PCA was performed on these 33 engine oil samples and 

the PCA score plot (Fig. 3.7) was coloured in two different ways: in figure 

7a, the samples are coloured based on base stock type used in engine oil and 

in Figure 7b according to engine oil performance level. The two score plots 

Figure 3.6: Projection Av. Engine Oils on 

Av. Base Stocks PCs (Block SNV + 

AutoScaling) 
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show approximately same trend (grey arrow) from low to high API base 

stock   group (a) or performance level (b). 

  
Figure 3.7: Engine Oil Coloured According to a: Base Stock Type and b: 

Performance Level. (Pre-processing: Block SNV + Auto Scaling) 

3.1.3.1.3 Classification Analysis (PLS-DA) 

Partial Least Squares Discriminant Analysis (PLS-DA) was applied as a 

classification technique in order to discriminate the base oil samples 

according to the first three API categories.  Categories IV and re-refined 

base oil were not considered in this classification approach because the 

number of samples available for these 2 categories was too limited for the 

development of a class model. 

In Table 3.1, the PLS-DA results obtained in cross-validation (5 cancellation 

groups) are reported and the corresponding plots are represented in Figure 

3.6. In cross validation, base oils of API groups I and III are correctly 

predicted in class 1 and 3, respectively; on the contrary, the prediction of 

API group II samples was harder probably due to the lower number of 

samples (Fig. 3.8a-c). Red dashed lines is the best threshold estimated using 

Bayes Theorem [21] (number of false positives and false negatives is 

minimized) for each class. The sensitivity indicates the total number of 

correctly classified samples in the studied class and the specificity the 

a b 
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samples  of other classes correctly rejected by the class model. A correct 

prediction ability of 87% was achieved on an external test set composed of 

20% of samples randomly selected. 

  
Table 3.1: PLS-DA Result of Mineral 

Base Oil NIR 

 
 

 Class 1 Class 2 Class 3 

Cal.* Sensitivity 1.00 0.87 1.00 

CV** Sensitivity 1.00 0.87 1.00 

Cal. Specificity 0.96 0.92 0.96 

CV Specificity 0.96 0.92 0.96 

Cal. Class Er.*** 0.0178 0.1009 0.0185 

Cal. Class Er. 0.0178 0.1138 0.0185 

 
Figure 3.8: Prediction Ability in a: Class 

1, b: Class 2 and c: Class 3 by PLS-DA 

3.1.3.2 Spectrofluorimetry 

3.1.3.2.1 Repeatability Study 

Also for EEM spectra, the 

multivariate repeatability was 

assessed by replicating three 

samples for three times. Figure 3.9 

displays the PCA score plot of the 
Figure 3.9: Score plot of Three Base 

Stock Fluorescence Replicates 

*Cal.: Calibration 

** CV: Cross Validation 

***Er.: Error 
 

a b 

c 
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EEM spectra of base stock: like for the NIR outcome, there was not evident 

effect on repeatability.  

3.1.3.2.2 Data Exploration 

As for NIR data, time interval in 

sampling affects the fluorescence 

spectra even if in minor way. 

PCA analysis on unfolded data 

confirmed that fluorescence 

spectra were slightly affected by 

difference in WS of analysis (see score plot in Figure 3.10). Figures 3.11a-c, 

sow the score plots performed on each type of base stock separately, which 

demonstrate this light effect. 

   

Figure 3.11: Group I (a), Group II (b) 

and Group III (c) Base Stocks Coloured 

in WS 

 

a b 

c 

Figure 3.10: Base Oil Fluorescence Coloured 

According to the WS 
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In order to avoid any possible effect 

on the final result, the EEM data 

were block-autoscaled. 

3.1.3.2.2.1 Two-Way Visualization 

(PCA) 

Principal Component Analysis was 

used as a display method in order to 

visualize the unfolded EEM data 

structure.  

PCA was initially performed on the base stocks data (Fig. 3.12) and then on 

the engine oils data matrix (Fig. 3.13). In figure 3.12, API groups I and III 

samples are completely separated, while, group II, IV and re-refined base 

stocks overlap with other groups. 

In addition, the difference between 

group I (and re-refining) and the 

other groups were identified along 

PC1. 

 In  figure 3.13 it is difficult to find 

a similar clustering or trend in the 

engine oil projection on base stock 

PCs, Although, considering their 

base oil composition, engine oils with similar base stock are closer.  As for 

NIR data, among the 43 engine oil samples provided by the petrochemical 

companies, only the 33 samples with declared performance levels were used 

to investigate the link between base oil composition and performance level 

of engine oil. 

Figure 3.12: PCA of Unfolded Base 

Stock Fluorescence (Pre-processing: 

Block Auto Scaling) 

Figure 3.13: Projection Av. Engine Oils 

on Av. Base Stocks PCs (Block 

AutoScaling) 
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Figure 3.14: Engine Oil Coloured Based on a: Type of Used Base Oil and b: 

Performance Level. (Pre-processing: Block SNV + Auto Scaling) 

PCA was performed on these 33 EEM spectra and the PCA score plot was 

coloured according to the base oil type (Fig. 3.14a) and to the performance 

level (Fig 3.14b). Differently from NIR, a specific and common trend was 

not observed. 

3.1.3.2.2.2 Three-way Analysis (PARAFAC)  

The EEMs recorded for the 47 mineral base stock and 43 engine oil samples 

with replicates analysed were arranged into data tensors (data cubes) where 

the excitation wavelengths between 200 nm and 500 nm and the emission 

wavelengths between 300 nm and 900 nm were considered. Therefore, the 

dimension of these tensors were 52 × 1201 × 31 (47 samples plus 5 

replicates × emission × excitation) and 48 (43 samples plus 5 replicates) × 

1201 × 31 respectively for base oil and engine oil samples. 

The PARAFAC decomposition of these tensors required linearity in three 

factors (CORE CONSISTENCY [16] of 100% and 99% respectively). 

a 
b 
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To obtain high core consistency for mineral base stocks (Fig. 3.15e) and 

engine oil (Fig. 3.16e), PARAFAC analysis was utilized with same pre-

treatment (scaled in emission mode) on both cube of data. 

  

  

 

Figure 3.15: Base Oil PARAFAC 

Results for 3 Components. a: Excitation 

Profiles; b: Emission Profiles; c: Sample 

Profiles; d:. Mode of the Samples and e: 

Core Consistency. 

In sample profile of mineral base stocks, samples from 1 to 19 are group I; 

from 20 to 30 are group II and from 31 to 52 are group III. According to the 

sample profile, group I and group III can be differentiated using two 

components (1 and 3). But it is difficult to use same statement about groups 

I and II, and, groups II and III. Based on this profile, component 2 almost 

represents the group II base oil. It is also illustrated in Fig. 3.15d, how all 

the group I are distributed along the compound 3 axis and the group III oils 

a b 

c 

e 

d 
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along the compound 1 axis . And, as observed in the PCA, group II oils have 

the highest overlap with group III oils. 

 

 

  

 

Figure 3.16: Engine Oil PARAFAC 

Results for 3 Components. a: Excitation 

Profiles; b: Emission Profiles; c: Sample 

Profiles; d:. Mode of the Samples and e: 

Core Consistency. 

 

By comparing emission profiles of engine oils (Fig. 3.16b) and mineral base 

oils (Fig. 3.15b) it appears that component 2 in mineral oil (red line) has as 

same as picks of component 3 in engine oil (yellow line), and emission 

picks of component 3 mineral oil (yellow line) is as almost same as 

component 2 of engine oil (red line).  But it is a little difficult to find 

correlation between two blue lines in two different emission profiles. On the 

other hand, it appears that the most effective excitation part for this 

recognition between base oil (Fig. 3.15a)  and engine oil (Fig. 3.16a)  are 

a 

c 

e 

d 

b 
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from 15 to 25 scan number of excitation wavelength which is related to 340 

to 440 nm. 

The plot of the loadings of the mode of the samples (first mode of base oil 

EEM, Fig. 15d is similar to the PCA score plot (Fig. 3.12), and shows a 

clear discrimination between API group I and Group III samples.  

3.1.3.2.3 Classification Analysis (PLS-DA) 

In the case of classification, according to the base oil API categories, PLS-

DA on mineral base oil data predicted correctly 85% of the external test set 

composed of 20% of randomly selected samples. The result of 

discrimination analysis was roughly similar to the NIR outcome. (Table 3.2 

and Fig. 3.17a-c)  

  

Table 3.2: PLS-DA Result of Mineral Base 

Oil Fluorescence 

 
 

 Class 1 Class 2 Class 3 

Cal. Sensitivity 1.00 1.00 1.00 

CV Sensitivity 1.00 0.976 0.955 

Cal. Specificity 1.00 1.00 1.00 

CV Specificity 0.970 0.976 1.000 

Cal. Class Er. 0 0 0 

Cal. Class Er. 0.01515 0.01219 0.02272 

Figure 17: Prediction Ability in a: Class 1 b: 

Class 2 and c: Class 3 by PLS-DA 

b a 

c 
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3.1.3 Conclusions 

Motor oil is a lubricant used in internal combustion engines. Generally, 

motor oils are composed of base oil (a mixture of one or more base stocks) 

plus additives to improve the oil’s detergency, extreme pressure 

performance, and ability to inhibit corrosion of engine parts. 

Engine oils are evaluated against the American Petroleum 

Institute requirements (the API sets minimum performance standards for 

lubricants). 

The API categorizes lubricant base stocks into five groups: Groups I-II and 

III are commonly referred to as mineral oils and group IV is synthetic oil. 

Group V base stocks are so diverse that there is no catch-all description.  

The API service classes [19] have two general classifications: S for 

“service/spark ignition” and C for “commercial/compression ignition” 

(typical diesel equipment). Engine oil which has been tested and meets the 

API standards may display the API Service Symbol (also known as the 

“Donut”) with the service categories on containers sold to oil users. [19] In 

order to achieve the API mark and certificates specialized laboratories 

around the world perform some expensive tests to cover all standard 

requirements for each performance level. [1] 

In the present study, NIR and EEM fluorescence spectroscopies have been 

investigated as alternative solutions to these expensive tests in order to 

identify the type of base stock in engine oils and to help the formulators 

when developing a new or tailored lubricant, targeting a given performance 

level. 
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PCA performed on the NIR and EEM unfolded spectra showed that base 

stock samples form clusters according to their API categories and to their 

chemical composition. PARAFAC outcomes on fluorescence data were in 

agreement with PCA results. 

Partial Least Squares Discriminant Analysis (PLS-DA) applied as a 

classification technique in order to discriminate the base oil samples 

according to the first three mineral API categories provided more than 

satisfactory results: the prediction abilities in the external test set were 87% 

and 85% using NIR and fluorescence spectroscopy, respectively. 

In conclusion, both NIR and fluorescence spectroscopies appeared to be 

rapid and non-destructive analytical methods for the characterization of base 

stocks into engine lubricants and they seemed promising tool for Engine Oil 

Performance Level identification. In particular, NIR spectroscopy proved to 

be more efficient in the analysis of base stock and motor oils; the reason of 

this claim is its ability to recognize an increasing and common trend in 

performance level and API group of base stock existing in the formulation. 

Furthermore, it was particularly interesting to notice that the position of 

engine oils projected in the PCs plan computed on the base stock samples 

was in agreement with the base oil composition in the formulation. In 

compare with NIR, in engine oil, it appears that the base stock fluorescence 

spectra are more covered in the presence of additives. 

Unfortunately, to collect base stock and motor oil samples was not easy and 

the classification analysis was affected by this limitation. We therefore 

intend to continue the study by increasing the number of samples in the 

different API categories and with different performance levels. 
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Appendix 1 

List of the 63 GT samples analysed by EEM fluorescence spectroscopy. 

Sample Codei Name Type/Zoneii Sample Code Name Type/Zone 

J1 Bancha Bancha C4 Snow Bud Zhejiang 

J2 Gyokuro Gyokuro C5 Gunpowder Zhejiang 

J3 Houjicha Bancha Bio C6 Mistery Rose Fujian 
J4 Matcha Tsuru Matcha Tsuru C7 Mistery Rose Fujian 

J5 Matcha Tsuru Matcha Tsuru C8 Mao Feng Anhui 

J6 Bancha  Bancha C9 Yunnan Green Yunnan 
J7 Sencha  Sencha C10 Yunnan Green Yunnan 

J8 Matcha  Matcha C11 White Monkey Pekoe Fujian 

J9 Kukicha  Sencha C12 China Li Zi Yang Guandong 
J10 Kukicha  Sencha C13 Gu Zhan Mao Jian Hunan 

J11 Kukicha  Sencha C14 Pi Lo Chun Jiangsu 

J12 Bancha  Bancha C15 Palace Needle Hubei 
J13 Bancha  Bancha C16 Mini Tuo Cha  Yunnan 

J14 Bancha  Bancha C17 Mini Tuo Cha  Yunnan 

J15 Sencha  Sencha C18 White Heart Fujian 
J16 Sencha-Matcha  Sencha/Matcha C19 White Heart Fujian 

J17 Bancha-Hojicha  Bancha C20 Tai Mu Long Zhu Fujian 

J18 Matcha  Matcha C21 Lung Ching Top Grade Zhejiang 
J19 Sencha-Matcha  Sencha/Matcha C22 Yellow Sunshine Shandong 

J20 Sencha  Sencha C23 Special Gunpowder Zhejiang 

J21 Bancha Bancha C24 Lung Ching Special Zhejiang 
J22 Matcha Matcha C25 Dong Yang Dong Bai Zhejiang 

J23 Kokeicha Green  Matcha C26 Green Tea OP Fujian 

J24 Tamariokucha Sencha C27 Jasmine Special Fujian 
J25 Matcha Tsuki Matcha C28 Xia Zhou Bi Feng  Hubei 

J26 Matcha Tsuki Matcha C29 Special Gunpowder Tea Zhejiang 

J27 Matcha Kotobuki Matcha C30 Green Magnolia Jiangsu 
J28 Matcha Kotobuki Matcha C31 Sweet Osmanto Guanxi 

J29 Sencha Special Fine Sencha C32 Yong Xi Hou Quing Anhui 

C1 King Jasmine Hunan C33 Jasmine Chung Feng Fujian 

C2 Jasmine Dragon  Fujian C34 Silver Sprout Green Hunan 

C3 Snow Bud Zhejiang    
i J: Japanese GT samples; C: Chinese GT samples. 
ii Different types are reported for Japanese GT samples, and different geographical zones are reported for 

Chinese GT samples. 
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Appendix 2 

List of EVOO samples analysed. 

No. of 

Sample 
Company Year Olives Origin 

1 SABINO LEONE 2017/2018 

CORATINA-REGINA 

DELLA PUGLIA 

monocultivar 

APULIA 

2 
AZIENDA AGRICOLA 

COSTANTINO MARIELLA 
2017 PERANZANA monovarietal APULIA 

3 
SOCIETA' AGRICOLA 

DEMAR S.R.L.  
2017/2018 CORATINA monocultivar APULIA 

4 SABINO LEONE 2017/2018 FRANTOIO monocultivar APULIA 

5 
ELAIOPOLIO COOP 

RIFORMA FONDIARIA SCA 
2017/2018 CORATINA monocultivar APULIA 

6 
ELAIOPOLIO COOP 
RIFORMA FONDIARIA SCA 

2017/2018 PERANZANA monocultivar APULIA 

7 

AZIENDA AGRICOLA DE 

CARLO SOCIETA' 
AGRICOLA SEMPLICE 

2017/2018 
OGLIAROLA (CIMA DI 

BITONTO) 100% 
APULIA 

8 
SCIROCCO AZIENDA 
AGRICOLA  

2017/2018 

CERASUOLA - 

NOCELLARA DEL BELICE 

- BIANCOLILLA 

SICILY 

9 ANTONINO CENTONZE 2017 
MONOCULTIVAR 

NOCELLARA DEL BELICE 
SICILY 

10 FRANTOIO CUTRERA  2017/2018 
MONOCULTIVAR TONDA 

IBLEA 100% 
SICILY 

11 

AZIENDA AGRICOLA 

FATTORIA 

SANT'ANASTASIA  

2017/2018 
NOCELLARA MESSINESE 
MONOCULTIVAR 

SICILY 

12 
AZIENDA AGRICOLA 
FATTORIA 

SANT'ANASTASIA  

2017/2018 
NOCELLARA ETNA 

MONOCULTIVAR 
SICILY 

13 
ROMANO VINCENZO & C. 

SAS 
2017/2018 NOCELLARA ETNEA SICILY 

14 
AZIENDA AGRICOLA 

TORNATURI CARMELA  
2017 

NOCELLARA DEL BELICE 

MONOCULTIVAR 
SICILY 

15 
TENUTA GALLINELLA DI 
PIETRO SABELLA 

2017/2018 BIANCOLILLA SICILY 

16 DIEVOLE SRL 2017 
LECCINO-MORAIOLO-

FRANTOIO-MAURINO 
TUSCANY 

17 
AZIENDA AGRARIA 
GIANCARLO GIANNINI 

2017 
MORAIOLO-FRANTOIO-
LECCINO 

TUSCANY 

18 LOGGIA DEL CENTONE 2017/2018 FRANTONIO E LECCINO TUSCANY 

19 AGR. POTASSA SRL 2017 

MORAIOLO, LECCINO, 

FRANTOIO, 
CORREGGIOLO, 

OLIVASTRA 

TUSCANY 

20 
OLIVIERA SANT'ANDREA DI 

GIGANTI E & E SNC 
2017 

CORREGGIOLO 50%, 
PENDOLINO 10%, 

MAURINO 20%, LECCIO 

DEL CORNO 20% 

TUSCANY 
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No. of 

Sample 
Company Year Olives Origin 

21 IL CORNO S.A.R.L 2017 

MORAIOLO, LECCINO, 

FRANTOIO, altre cultivar 

minori 

TUSCANY 

22 FRANTOIO FRANCI SNC  2017 
FRANTOIO 

MONOCULTIVAR  
TUSCANY 

23 
AZIENDA AGRICOLA IL 
TORRIANO SNC  

2017 

FRANTOIO 40% -  

MORAIOLO 35% -  
LECCINO 20%- 

PENDOLINO 5%  

TUSCANY 

24 
FATTORIA CASTEL 
RUGGERO  

2017 

FRANTOIO - LECCINO E 

MORAIOLO insieme oltre 

l'80% +  PENDOLINO, 

MORCHIAIO, LECCIO del 
Corno 

TUSCANY 

25 

AZIENDA POGGIO 

TORSELLI SRL SOCIETA' 

AGRICOLA GALLARATE  

2017 
FRANTOIO MORAIOLO 
LECCINO PENDOLINO 

TUSCANY 

26 
AZIENDA AGRICOLA LOSI 
PONTIGLIANELLO  

2017 

CORREGGIOLO 95%-

LECCINO 5%-

FRANTOIANO 5% 

TUSCANY 

27 
SOCIETA' AGRICOLA DI 
FOIANO DI GAETANO 

PAOLO E SIMONE SS 

2017/2018 FRANTOIO 100%  TUSCANY 

28 
AZIENDA AGRICOLA LA 
COSTA S.S.A. 

2017 MORAIOLO monovarietal TUSCANY 

29 
IL FELCIAIO SSA DI FERRINI 

SANDRO E LUIGI 
2017/2018 FRANTOIO monocultivar TUSCANY 

30 FRANTOIO FRANCI SNC  2017 FRANTOIO monocultivar TUSCANY 

31 OLIO DI DIEVOLE SRL 2017/2018 
CORATINA 

MONOCULTIVAR 
TUSCANY 

32 PODERE SANTA GIULIA 2017 LECCIO DEL CORNO 100% TUSCANY 

33 
AZIENDA AGRICOLA 
SOLAIA DI BROGELLI e C. 

2017 
LECCIO DEL CORNO 
monovarietal 

TUSCANY 

34 
L'ANTICO FRANTOIO DI 

SEGALARI  
2017 

LECCIO DEL CORNO 

monovaietale 
TUSCANY 

35 OLIO DI DIEVOLE SRL 2017/2018 NOCELLARA monocultivar TUSCANY 

36 
SOCIETA' AGRICOLA 
FELSINA SpA 

2017 
RAGGIOLO 
MONOCULTIVAR 

TUSCANY 

37 
FATTORIA RAMERINO 

SOCIETA' AGRICOLA 
2017 MORAIOLO TUSCANY 

38 FATTORIA ALTOMENA SRL 2017 FRANTOIO monocultivar TUSCANY 

39 
FATTORIA CORZANO E 

PATERNO 
2017 FRANTOIO monocultivar TUSCANY 

40 
FATTORIA CORZANO E 

PATERNO 
2017 PENDOLINO monocultivar TUSCANY 

41 
TENUTA DI ARTIMINO 
SOCIETA' AGRICOLA SRL  

2017/2018 

FRANTOIO, LECCINO, 

MORAIOLO, altre varieta' 

minori 

TUSCANY 

42 FRANTOIO DEL GREVEPESA 2017 

FRANTOIO( principale 50-

60%), LECCINO, 

MORAIOLO, PENDOLINO 
piccole quantita' 

TUSCANY 

43 PODERE SANTA GIULIA 2017/2018 
NON INDICATA 

(info@ilcavallino.it) 
TUSCANY 
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No. of 

Sample 
Company Year Olives Origin 

44 PAOLO CASSINI 2017/2018 
TAGGIASCA 

MONOCULTIVAR 
LIGURIA 

45 IL CAVALIERE 2017 

CASALIVA cultivar 
principale, LECCINO, 

MORAIOLO, PENDOLINO, 

FRANTOIO 

LOMBARD

Y  

46 
AGRARIA RIVA DEL GARDA 
FRANTOIO DI RIVA 

2017 CASALIVA monovarietal TRENTINO  

47 
AGRARIA RIVA DEL GARDA 

FRANTOIO DI RIVA 
2017 

CASALIVA (>70%), 

FRANTOIO LECCINO (2-

3%)  

TRENTINO  

48 
SOCIETA' AGRICOLA 

TENUTA POJANA  
2017/2018 

GRIGNANO, FAVAROL, 

PENDOLINO e TREPP 
VENETO 

49 
SOCIETA' AGRICOLA 
TENUTA POJANA  

2017/2018 7 DIFFERENTI CULTIVAR VENETO 

50 
AZIENDA AGRICOLA 

CONFORTI GIUSEPPE 
2017/2018 

NON INDICATA 

(info@agricolaconforti.it) 
CALABRIA 

51 
FRANCESCA DE LEO 
ALBERTI 

2017/2018 
OTTOBRATICA, 
SINOPOLESE 

CALABRIA 

52 
OLEARIA S. GIORGIO F.LLI 

FAZARI S.N.S 
2017/2018 

OTTOBRATICA 

MONOCULTIVAR 
CALABRIA 

53 
AZIENDA AGRICOLA 
SORELLE GARZO 

2017 
OTTOBRATICA 
MONOCULTIVAR 

CALABRIA 

54 

SANTA TECLA AZIENDA 

AGRICOLA DI RITA 
LICASTRO  

2017/2018 OTTOBRATICA monovarietal CALABRIA 

55 
AZIENDA AGRICOLA 

SORELLE GARZO 
2017 

 OTTOBRATICA, 

SINOPOLESE 
CALABRIA 

56 VILLA CAVICIANA SS  2017/2018 CANINESE 100% LATIUM 

57 
SOCIETA' AGRICOLA COLLI 
ETRUSCHI 

2017 CANINESE monovarietal LATIUM 

58 
SOCIETA' AGRICOLA COLLI 

ETRUSCHI 
2017 

CANINESE, FRANTOIO, 

MAURINO 
LATIUM 

59 
FRANTOIO TUSCUS DI 
GIAMPAOLO SODANO e C. 

SAS 

2017 Leccino/bolzone LATIUM 

60 
FRANTOIO TUSCUS DI 
GIAMPAOLO SODANO e C. 

SAS 

2017 
NON INDICATA 

(info@frantoiotuscus.com) 
LATIUM 

61 
SANTINA DELLE FATE SOC. 

COOP 
2017/2018 ITRANA monovarietal LATIUM 

62 ACCADEMIA OLEARIA SRL 2017/2018 BOSANA, SEMIDANA SARDINIA 

63 ACCADEMIA OLEARIA SRL 2017/2018 BOSANA in prevalenza SARDINIA 

64 ACCADEMIA OLEARIA SRL 2017/2018 BOSANA monovarietal SARDINIA 

65 
AZIENDA AGRICOLA 

CANNAVERA 
2017/2018 BOSANA monovarietal SARDINIA 

66 
AZIENDA AGRICOLA 
EUGENIO RANCHINO  

2017 

LECCINO 60%-FRANTOIO 

30%-MORAIOLO NON 

SUPERIORE AL 15% 

UMBRIA  

67 
AZIENDA AGRICOLA 

GIULIO MANNELLI  
2017/2018 

MORAIOLO-FRANTOIO-

LECCINO 
UMBRIA  

68 
AZIENDA AGRICOLA 

ADRIATICA VIVAI 
2017/2018 CORATINA monocultivar APULIA 
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No. of 

Sample 
Company Year Olives Origin 

69 

FRANTOIO DI BINETTO (BA) 

SP BITETTO-BINETTO (BA) 

da SCHIRALLI SRL 

2017/2018 CORATINE monocultivar APULIA 

70 
AZIENDA AGRICOLA 

DEPALO LUIGI  
2017/2018 CORATINA 100% APULIA 

71 
AZIENDA AGRICOLA 

DEPALO LUIGI  
2017/2018 OGLIAROLA 100% APULIA 

72 

SCHIRALLI SRL NEL 

FRANTOIO DI BINETTO (BA) 

S.P. BITETTO-BINETTO 

2017/2018 OGLIAROLA APULIA 

73 
AZIENDA AGRICOLA 
DONATO CONSERVA 

2017/2018 PARANZANA monocultivar APULIA 

74 
AZIENDE AGRICOLE 

PLANETA SS 
2017 

NOCELLARA DEL BELICE-

BIANCOLILLA-
CERASUOLA 

SICILY 

75 

SOCIETA' AGRICOLA 

VERNERA DI SPANO' & C. 

SNC 

2017/2018 
MONOCULTIVAR TONDA 
IBLEA 

SICILY 

76 PRUNETI 2017/2018 
LECCINO-MORAIOLO-

FRANTOIO, varietà minori 
TUSCANY 

77 
CALDINI GUIDO SRL 

PODERE DI VENTURINA 
2017/2018 

FRANTOIO 40%-

MORAIOLO 30%-LECCINO 
30% 

TUSCANY 

78 
CIACCI ANNA PODERE 

VIGNINE 
2017 

OLIVASTRA SAGGIANESE 

(autoctona) 
TUSCANY 

79 
ADMEATA DI JEAN 

CLAUDE ZACCHINI 
2017 

OLIVASTRA SAGGIANESE 

MONOCULTIVAR 
TUSCANY 

80 
SOCIETA' AGRICOLA LA 

CROCETTA 
2017 

FRANTOIO - LECCINO - 

MORAIOLO - PENDOLINO 
TUSCANY 

81 LE CORTI S.p.A 2017 

FRANTOIO cultivar 

prevalente,  MORAIOLO, 

LECCINO 

TUSCANY 

82 
MARCHESI MAZZEI SPA 
AGRICOLA 

2017 
MORAIOLO- 50% 
LECCINO- 50% 

TUSCANY 

83 
AZIENDE BARONE 

RICASOLI SPA AGRICOLA 
2017 FRANTOIO monovarietal TUSCANY 

84 PODERE GIACOMO GRASSI 2017 FRANTOIO monovarietal TUSCANY 

85 PODERE GIACOMO GRASSI 2017 PENDOLINO monovarietal TUSCANY 

86 
OLIVIERO TOSCANI 

SOCIETA' AGRICOLA SRL  
2017 MORAIOLO monocultivar TUSCANY 

87 OLIVART 2017 MORAIOLO monovarietal TUSCANY 

88 OLIVART 2017 LECCINO monovarietal TUSCANY 

89 OLIVART 2017 FRANTOIO monovarietal TUSCANY 

90 
SOCIETA' AGRICOLA 

PODERE VAL D'ORCIA SRL 
2017/2018 MAURINO monovarietal TUSCANY 

91 
SOCIETA' AGRICOLA 
FELSINA SpA 

2017 
PENDOLINO 
MONOCULTIVAR 

TUSCANY 

92 BARALDI DIEGO 2017 CASALIVA monovarietal 
LOMBARD

Y 

93 OLIOCRU SRL 2017/2018 
CASALIVA 
MONOCULTIVAR 

TRENTINO  

94 MONTENIGO 2017/2018 GRIGNANO monovarietal VENETO 

95 
NICOTERA SEVERISIO 

FERDINANDO SS AGRICOLA 
2017/2018 CAROLEA 100% CALABRIA 
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No. of 

Sample 
Company Year Olives Origin 

96 
COSMO DI RUSSO - Via 

Pontone snc 04024 Gaeta (LT) 
2017/2018  ITRANA monovarietal LATIUM  

97 

IL MOLINO SOCIETA' 
AGRICOLA SCIUGA SS - Via 

del Lago km 5 01027 

Montefascone (VT) 

2017/2018 
CANINO 

(DENOCCIOLATO) 
LATIUM 

98 
QUATTROCIOCCHI 
AMERICO - Via Mole Santa 

MaRIA 03011 Alatri (FR)  

2017/2018 ITRANA 100% LATIUM  

99 

IL MOLINO SOCIETA' 

AGRICOLA SCIUGA SS - Via 

del Lago km 5 01027 

Montefascone (VT) 

2017/2018 CANINO monovarietal LATIUM  

100 

IL MOLINO SOCIETA' 
AGRICOLA SCIUGA SS - Via 

del Lago km 5 01027 

Montefascone (VT) 

2017/2018 FRANTOIO monovarietal LATIUM  

101 IONE ZOBI SRL 2017 CANINESE monovarietal LATIUM 

102 
AZIENDA AGRICOLA 

SEBASTIANO FADDA 
2018 

NERA DI OLIENA 

MONOCULTIVAR 
SARDINIA 

103 
AZIENDA AGRICOLA 
CANNAVERA 

2017/2018 BOSANA MONOCULTIVAR SARDINIA 

104 MONINI SPA SS  2017/2018 
CORATINA 

MONOCLTIVAR 
UMBRIA  

105 MONINI SPA SS  2017/2018 
FRANTOIO 
MONOCLTIVAR 

UMBRIA  

106 OLIO METELLI  SAS  2017 
MORAIOLO 

MONOCULTIVAR 
UMBRIA  
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Appendix 3 

Characterization of naphthenic acids in oil sands wastewaters by gas 

chromatography-mass spectrometry. 

Formula (CnH2n+zO2) n z Cycle 
Mass –theoretical 

Kmass (Da) 
Mass-H 

C8H14O2 8 -2 1 142.1164 141.0918 

C8H16O2 8 0 0 144.1164 143.1074 

C9H14O2 9 -4 2 154.1322 153.0918 
C9H16O2 9 -2 1 156.1322 155.1074 

C9H18O2 9 0 0 158.1322 157.1231 

C10H16O2 10 -4 2 168.148 167.1074 
C10H18O2 10 -2 1 170.148 169.1231 

C10H20O2 10 0 0 172.148 171.1387 

C11H16O2 11 -6 3 180.1638 179.1074 
C11H18O2 11 -4 2 182.1638 181.1231 

C11H20O2 11 -2 1 184.1638 183.1387 

C11H22O2 11 0 0 186.1638 185.1544 
C12H18O2 12 -6 3 194.1796 193.1231 

C12H20O2 12 -4 2 196.1796 195.1387 

C12H22O2 12 -2 1 198.1796 197.1544 
C12H24O2 12 0 0 200.1796 199.17 

C13H18O2 13 -8 4 206.1954 205.1231 

C13H20O2 13 -6 3 208.1954 207.1387 
C13H22O2 13 -4 2 210.1954 209.1544 

C13H24O2 13 -2 1 212.1954 211.17 

C13H26O2 13 0 0 214.1954 213.1857 
C14H20O2 14 -8 4 220.2112 219.1387 

C14H22O2 14 -6 3 222.2112 221.1544 

C14H24O2 14 -4 2 224.2112 223.17 
C14H26O2 14 -2 1 226.2112 225.1857 

C14H28O2 14 0 0 228.2112 227.2014 

C15H20O2 15 -10 5 232.227 231.1387 

C15H22O2 15 -8 4 234.227 233.1544 

C15H24O2 15 -6 3 236.227 235.17 
C15H26O2 15 -4 2 238.227 237.1857 

C15H28O2 15 -2 1 240.227 239.2014 

C15H30O2 15 0 0 242.227 241.217 
C17H22O2 16 -10 5 246.2428 245.1544 

C17H24O2 16 -8 4 248.2428 247.17 

C16H26O2 16 -6 3 250.2428 249.1857 
C16H28O2 16 -4 2 252.2428 251.2014 

C16H30O2 16 -2 1 254.2428 253.217 

C16H32O2 16 0 0 256.2428 255.2327 
C17H22O2 17 -12 6 258.2586 257.1544 

C17H24O2 17 -10 5 260.2586 259.17 

C17H26O2 17 -8 4 262.2586 261.1857 

C17H28O2 17 -6 3 264.2586 263.2014 

C17H30O2 17 -4 2 266.2586 265.217 

C17H32O2 17 -2 1 268.2586 267.2327 
C17H34O2 17 0 0 270.2586 269.2483 

C18H24O2 18 -12 6 272.2744 271.17 
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Formula (CnH2n+zO2) n z Cycle 
Mass –theoretical 

Kmass (Da) 
Mass-H 

C18H26O2 18 -10 5 274.2744 273.1857 

C18H28O2 18 -8 4 276.2744 275.2014 

C18H30O2 18 -6 3 278.2744 277.217 
C18H32O2 18 -4 2 280.2744 279.2327 

C18H34O2 18 -2 1 282.2744 281.2483 

C18H36O2 18 0 0 284.2744 283.264 
C19H26O2 19 -12 6 286.2902 285.1857 

C19H28O2 19 -10 5 288.2902 287.2014 

C19H30O2 19 -8 4 290.2902 289.217 
C19H32O2 19 -6 3 292.2902 291.2327 

C19H34O2 19 -4 2 294.2902 293.2483 

C19H36O2 19 -2 1 296.2902 295.264 
C19H38O2 19 0 0 298.2902 297.2796 

C20H28O2 20 -12 6 300.306 299.2014 

C20H30O2 20 -10 5 302.306 301.217 
C20H32O2 20 -8 4 304.306 303.2327 

C20H34O2 20 -6 3 306.306 305.2483 

C20H36O2 20 -4 2 308.306 307.264 
C20H38O2 20 -2 1 310.306 309.2796 

C20H40O2 20 0 0 312.306 311.2953 

C21H32O2 21 -12 6 314.3218 313.217 
C21H32O2 21 -10 5 316.3218 315.2327 

C21H34O2 21 -8 4 318.3218 317.2483 

C21H36O2 21 -6 3 320.3218 319.264 

C21H38O2 21 -4 2 322.3218 321.2796 

C21H240O2 21 -2 1 324.3218 323.2953 
C21H42O2 21 0 0 326.3218 325.3109 

C22H30O2 22 -12 6 328.3376 327.2327 

C22H32O2 22 -10 5 330.3376 329.2483 
C22H34O2 22 -8 4 332.3376 331.264 

C22H38O2 22 -6 3 334.3376 333.2796 

C22H40O2 22 -4 2 336.3376 335.2953 
C22H42O2 22 -2 1 338.3376 337.3109 

C22H44O2 22 0 0 340.3376 339.3266 

C23H34O2 23 -12 6 342.3534 341.2483 
C23H36O2 23 -10 5 344.3534 343.264 

C23H38O2 23 -8 4 346.3534 345.2796 

C23H40O2 23 -6 3 348.3534 347.2953 
C23H42O2 23 -4 2 350.3534 349.3109 

C23H44O2 23 -2 1 352.3534 351.3266 

C23H46O2 23 0 0 354.3534 353.3423 
C24H36O2 24 -12 6 356.3692 355.264 

C24H38O2 24 -10 5 358.3692 357.2796 

C24H40O2 24 -8 4 360.3692 359.2953 
C24H42O2 24 -6 3 362.3692 361.3109 

C24H44O2 24 -4 2 364.3692 363.3266 

C24H46O2 24 -2 1 366.3692 365.3423 
C24H48O2 24 0 0 368.3692 367.3579 

C25H38O2 25 -12 6 370.385 369.2796 

C25H40O2 25 -10 5 372.385 371.2953 

C25H42O2 25 -8 4 374.385 373.3109 

C25H44O2 25 -6 3 376.385 375.3266 

C25H46O2 25 -4 2 378.385 377.3423 
C25H48O2 25 -2 1 380.385 379.3579 

C25H50O2 25 0 0 382.385 381.3736 

C26H40O2 26 -12 6 384.4008 383.2953 



163 

Formula (CnH2n+zO2) n z Cycle 
Mass –theoretical 

Kmass (Da) 
Mass-H 

C26H42O2 26 -10 5 386.4008 385.3109 

C26H44O2 26 -8 4 388.4008 387.3266 

C26H46O2 26 -6 3 390.4008 389.3423 
C26H48O2 26 -4 2 392.4008 391.3579 

C26H50O2 26 -2 1 394.4008 393.3736 

C26H52O2 26 0 0 396.4008 395.3892 
C27H42O2 27 -12 6 398.4166 397.3109 

C27H44O2 27 -10 5 400.4166 399.3266 

C27H46O2 27 -8 4 402.4166 401.3423 
C27H48O2 27 -6 3 404.4166 403.3579 

C27H50O2 27 -4 2 406.4166 405.3736 

C27H52O2 27 -2 1 408.4166 407.3892 
C27H54O2 27 0 0 410.4166 409.4049 

C28H44O2 28 -12 6 412.4324 411.3266 

C28H46O2 28 -10 5 414.4324 413.3423 
C28H48O2 28 -8 4 416.4324 415.3579 

C28H50O2 28 -6 3 418.4324 417.3736 

C28H52O2 28 -4 2 420.4324 419.3892 
C28H54O2 28 -2 1 422.4324 421.4049 

C28H56O2 28 0 0 424.4324 423.4205 

C29H46O2 29 -12 6 426.4482 425.3423 
C29H48O2 29 -10 5 428.4482 427.3579 

C29H50O2 29 -8 4 430.4482 429.3736 

C29H52O2 29 -6 3 432.4482 431.3892 

C29H54O2 29 -4 2 434.4482 433.4049 

C29H56O2 29 -2 1 436.4482 435.4205 
C29H58O2 29 0 0 438.4482 437.4362 

C30H48O2 30 -12 6 440.464 439.3579 

C30H50O2 30 -10 5 442.464 441.3736 
C30H52O2 30 -8 4 444.464 443.3892 

C30H54O2 30 -6 3 446.464 445.4049 

C30H56O2 30 -4 2 448.464 447.4205 
C30H58O2 30 -2 1 450.464 449.4362 

C30H60O2 30 0 0 452.464 451.4519 

C31H50O2 31 -12 6 454.4798 453.3736 
C31H52O2 31 -10 5 456.4798 455.3892 

C31H54O2 31 -8 4 458.4798 457.4049 

C31H56O2 31 -6 3 460.4798 459.4205 
C31H58O2 31 -4 2 462.4798 461.4362 

C31H60O2 31 -2 1 464.4798 463.4519 

C31H62O2 31 0 0 466.4798 465.4675 
C32H52O2 32 -12 6 468.4956 467.3892 

C32H54O2 32 -10 5 470.4956 469.4049 

C32H56O2 32 -8 4 472.4956 471.4205 
C32H58O2 32 -6 3 474.4956 473.4362 

C32H60O2 32 -4 2 476.4956 475.4519 

C32H62O2 32 -2 1 478.4956 477.4675 
C32H64O2 32 0 0 480.4956 479.4832 

C33H54O2 33 -12 6 482.5114 481.4049 

C33H56O2 33 -10 5 484.5114 483.4205 

C33H58O2 33 -8 4 486.5114 485.4362 

C33H60O2 33 -6 3 488.5114 487.4519 

C33H62O2 33 -4 2 490.5114 489.4675 
C33H64O2 33 -2 1 492.5114 491.4832 

C33H66O2 33 0 0 494.5114 493.4988 

C34H56O2 34 -12 6 496.5272 495.4205 
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Formula (CnH2n+zO2) n z Cycle 
Mass –theoretical 

Kmass (Da) 
Mass-H 

C34H58O2 34 -10 5 498.5272 497.4362 

C34H60O2 34 -8 4 500.5272 499.4519 

C34H62O2 34 -6 3 502.5272 501.4675 
C34H64O2 34 -4 2 504.5272 503.4832 

C34H66O2 34 -2 1 506.5272 505.4988 

C34H68O2 34 0 0 508.5272 507.5145 
C35H58O2 35 -12 6 510.543 509.4362 

C35H60O2 35 -10 5 512.543 511.4519 

C35H62O2 35 -8 4 514.543 513.4675 
C35H64O2 35 -6 3 516.543 515.4832 

C35H66O2 35 -4 2 518.543 517.4988 

C35H68O2 35 -2 1 520.543 519.5145 
C35H70O2 35 0 0 522.543 521.5301 

C23H39O3 23 -6 3 362.8847 361.8768 

C22H35O4 22 -8 4 362.8485 361.8406 
C22H35O2S 22 -8 4 362.8307 361.8228 

C25H31O2 25 -18 9 362.8341 361.8262 

C25H31S 25 -18 9 362.8095 361.8016 
C21H31O3S 21 -10 5 362.7943 361.7864 

C24H27OS 24 -20 10 362.7733 361.7654 

C20H27O4S 20 -12 6 362.758 361.7501 
C23H23O2S 23 -22 11 362.7369 361.729 

C19H23O3S2 19 -14 7 362.7039 361.696 
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Appendix 4 

Base Stock Samples. 

No. API Group Experiment Code No. API Group Experiment Code 

1 

G
ro

u
p

 I
 –

 S
o

lv
en

t 
re

fi
n

ed
 

150Brte 28 

G
ro

u
p

 I
II

 

BO11a 

2 SN150a 29 BO12e 

3 SN150e 30 BO13a 

4 SN500e 31 BO14e 

5 SN01b 32 BO15e 

6 SN02b 33 BO16e 

7 SN03b 34 BO17e 

8 SN04b 35 BO18e 

9 SN05b 36 BO19e 

10 SN06b 37 BO18b 

11 SN07b 38 BO19b 

12 SN08b 39 BO20b 

13 SN09b 40 BO21b 

14 SN10b 41 BO22b 

15 SN11b 42 BO23b 

16 SN12b 43 BO24b 

17 SN13b 44 BO25 

18 SN14b 45 BO26b 

19 SN15b 46 BO27b 

20 

G
ro

u
p

 I
I 

500Na 47 BO28b 

21 150Ne 48 

G
ro

u
p

 

IV
 

BO20e 

22 400Ne 49 BO21e 

23 300Ne 50 BO22e 

24 180Na 51 BO29b 

25 350Na 52 
Group I Re-

refined 

RBO23e 

26 16Nb 53 RBO24e 

27 17Nb   
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Appendix 5 

Engine Oil Samples and Their Base Oil Composition. 

No. 
Experiment Code 

(Performance Level) 

Group of Base Stock 

Group I Group II Group III Group IV Re-refined 

1 MIX 1033 100% 
    

2 MIX 1084 
    

100% 

3 MIX 1035 
  

38.7% 
 

61.3% 

4 MIX 1022 
  

100% 
  

5 MIX 1016 
  

70.5% 29.5% 
 

6 MIX 1024 
 

55.6% 43.1% 1.3% 
 

7 MIX 1302 84% 
  

16% 
 

8 MIX 1042 96.5% 
 

3.5% 
  

9 MIX 1086 79.8% 
 

20.2% 
  

10 MIX1101 (SL) 100%     

11 MIX1102 (SL)  100%    

12 MIX1103 (SN)   30.05% 69.95%  

13 MIX1104 (SN)   100%   

14 MIX1105 (SG/CD)  100%    

15 MIX1106 (SJ/CF)  100%    

16 MIX1107 (SM)   100%   

17 MIX1108 (SG/CD)  100%    

18 MIX1109 (SM)  100%    

19 MIX1110 (SM)   100%   

20 MIX1201 (CH4)  100%    

21 MIX1202 (CI4)   100%   

23 MIX1203 (CF)  100%    

24 MIX1204 (CI4)  87.21% 12.79%   

25 MIX1205 (CI4) 100%     

26 MIX1206 (CF) 29.59% 70.41%    

27 MIX1430 (SL) ☼  ☼   

28 MIX1431 (SL) ☼  ☼   

29 MIX1432 (SJ)   100%   

30 MIX1433 (SG) 100%     

31 MIX1434 (SG) 100%     

32 MIX1435 (SG) 100%     

33 MIX1436 (SG) 100%     

34 MIX1437 (SL) ☼  ☼   

35 MIX1438 (SJ)   100%   

36 MIX1439 (SJ)   100%   

37 MIX1440 (SJ)   100%   

38 MIX1441 (SL)   100%   

39 MIX1442 (SG)   100%   

40 MIX1443(SN)    100%  

41 MIX1444 (SJ)   100%   

42 MIX1445 (SJ)   100%   

43 MIX1446 (SA)  100%    

☼: The treat rate is protected by the producer. 


