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the ‘review tracking feature’ of Word.
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4)In "Concluding remarks" the Authors say: "…only one molecule (Tolvaptan) has
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….
limited to the Italian territory Octreotide-LAR can be reimbursed by the Italian National
Health System in adult ADPKD patients with stage 4 CKD and increased risk of rapid
progression after the authorization of the Technical Scientific Advisory Board of the
AIFA-CTS on the basis of the case-by-case assessment
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Abstract 
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth diagnosis for both the incidence and 

prevalence of renal diseases that require replacement therapy. In Italy, there are at least 32,000 patients 

affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian 

National Health Service can be conservatively estimated at 87 million euros per year. Even a modest 

slowdown in the evolution of the disease would obtain an important result in terms of reduction of health 

expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for 

ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have 

grouped these studies according to the molecular pathway addressed by the experimental drug or the 

therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first 

drug active in slowing disease progression is finally available. It cannot be considered a goal but only the 

beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant 

basic research activity in the field, together with the large number of ongoing protocols, keep doctors’ and 

their patients positive with regard to the discovery of new and better therapies in a not-too-distant future. 
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Introduction 
 

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth diagnosis for both the incidence and 

prevalence of renal diseases that require replacement therapy (1) and 1 in 10 patients needing renal 

replacement therapy has ADPKD (2). The predominant phenotype of ADPKD is the accumulation of cysts in 

renal parenchyma. The condition is genetically heterogeneous and is caused by the mutation of two 

polycystin genes, PKD1 and PKD2, and much more rarely, by other recently identified genes: GANAB (3), 

DNAJB11(4). The genetic defect of ADPKD subverts the normal differentiated phenotype of renal tubular 

epithelium. The final event of these alterations is end-stage renal disease requiring renal replacement 

therapy (dialysis or transplantation).  

In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis and 

approximately as many are carriers of a renal transplant (5). Without considering the social cost of dialysis, 

which strongly reduces the quality of life of the patients and greatly increases their risk of death, the pure 

costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 

million euros per year. In light of the clinical and economic considerations, the importance of interventions 

to reduce the progression to end-stage renal disease is clear. Even a modest slowdown in the evolution of 

the disease would obtain an important result in terms of reduction of health expenditure. In recent years, 

many new or repurposed drugs have been evaluated in clinical trials for ADPKD. Despite the extraordinary 

advances in therapeutic possibilities that are now available for ADPKD patients, to date, the therapeutic 

options for ADPKD cannot be considered satisfactory as they lack definitively curative therapies and consist 

of treatments aimed at controlling complications and of therapies aimed at slowing the progression of the 

disease.  

In this review, we will not report the trials that considered the management of complications related to 

ADPKD, but rather, we will focus our discussion on therapies aimed at slowing down renal disease. 

Regarding the already-published clinical trials with results, we will mainly focus our discussion on clinical 

trials that have had a positive or at least suggestive outcome for therapeutic potential in the near future. 

With regard to clinical trials in progress without published data, we will mainly limit the discussion to 

molecules in advanced phase 3 clinical trials. The main features of the trials discussed in this review have 

been summarized in Table 1 

 

VAPTANS AND INHIBITION OF VASOPRESSIN 
 

Rationale for the use of Vaptans in ADPKD 

The Vaptan drug family comprises agents that act by directly blocking the action of vasopressin at its 
receptors (V1AR, V1BR, and V2R). Before clinical validation in ADPKD, the V2R antagonist Tolvaptan has 
been developed for the treatment of hyponatremia in patients with congestive heart failure, liver cirrhosis, 
or syndrome of inappropriate antidiuretic hormone secretion (SIADH(6)). Studies on animal models have 
suggested that arginine vasopressin, through its second cAMP messenger, promotes cyst growth both 

through a proliferative stimulus and a secretion of fluids into the cyst lumen mediated by the cystic fibrosis 
transmembrane conductance regulator (CFTR) chlorine channel. In fact, the cells of the collecting duct 
present the receptors of the arginine vasopressin of the V2R type. These receptors are coupled to 
adenylate cyclase 6, which, when activated, produces an increase in the cytosolic levels of cAMP. cAMP 
finally activates phosphokinase A (PKA), which is the central effector of this pathway. PKA activates the 
transcription of genes involved in cell proliferation. In parallel, CFTR is responsible for the chloride and 
bicarbonate permeability on the apical membrane of tubular epithelia. Its activity is modulated by the 
intracellular concentration of cAMP that is increased in cystic cells; the activation of the CFTR promotes the 
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secretion of chloride in the cystic lumen, leading to intra-cystic fluid accumulation (7-9). Preclinical studies 
of selective blocking of the V2R receptor through an AVP receptor antagonist in ADPKD rodent models (8) 
have demonstrated a protective effect of this strategy, thus paving the way for clinical research of Vaptans 
in ADPKD. 
 

Trials of Vaptans with published data 

Tolvaptan 

TEMPO 3:4 (10) is a large randomized double-blind controlled study that compared the efficacy of 

Tolvaptan compared to a placebo in two parallel arms of ADPKD patients. Patients were randomized into 

the two arms at a ratio of 2:1, respectively, Tolvaptan (961 patients) and placebo (484 patients). The 

inclusion criteria of the patients were defined with the aim of enrolling relatively young patients (aged 18-

50 years) with a sufficiently preserved renal function (glomerular filtration calculated according to Cockroft 

and Gault higher than 60 ml / min) and with a rapidly progressive disease. The selection of progressive 

patients made use of the consolidated evidence that had defined the correlation between renal volume 

and evolution of the disease (11). Therefore, the authors defined a minimum cutoff of renal volume equal 

to 750 ml. Tolvaptan was administered orally in two daily administrations. The dose of Tolvaptan (or 

placebo) was titrated at the start of the study in the individual patient at weekly intervals for a period of 3 

weeks, initially administered at a dose of 45 mg and 15 mg, in the morning and afternoon respectively, and 

titrated to 60 mg and 30 mg, and then at 90 mg and 30 mg, according to the tolerability reported by the 

patient. Throughout the study, the protocol favored the attempt to keep the drug at the maximum 

tolerated dosage. The study had a follow-up of 36 months with the main outcome being the evaluation of 

the effect of reducing the increase in kidney volume through MRI. At the beginning of the study, 

randomization on a large population obtained a balanced distribution of patients in terms of the clinical 

characteristics of the subjects enrolled between the two treatment arms. Subsequently, however, the 

balance between the two arms was reduced due to an increased drop-out of patients in the experimental 

arm due to the adverse effect of aquaresis, which reduced the compliance of the patients exposed to 

Tolvaptan. 

Regarding the outcome of renal volume, the study demonstrates a significant reduction of approximately 
4950 % in growth in patients treated with tolvaptan compared to placebo: over a 3-year period, the 
increase in total kidney volume in the tolvaptan group was 2.8% per year (95% confidence interval [CI], 2.5 
to 3.1), versus 5.5% per year in the placebo group (95% CI, 5.1 to 6.0; P<0.001). The study also evaluated 
other secondary outcomes, among which, the outcome that generated the most clinical interest is certainly 
represented by the degree of preservation of renal function in patients under treatment: tolvaptan has 
shown a protective effect equal to a 2631.4 % reduction of functional loss compared to placebo (Tolvaptan 
was associated with a slower decline in kidney function (reciprocal of the serum creatinine level, −2.61 [mg 
per milliliter]−1 per year vs. −3.81 [mg per milliliter]−1 per year; P<0.001). 
A subsequent post-hoc analysis (12) of the Tempo 3:4 study described the results as a function of the 

classes of renal failure (CKD) defined according to the KDIGO guidelines. This analysis suggested that 

Tolvaptan expresses its potential to reduce the volume increase in kidneys in all stages of renal failure in 

the Tempo 3:4 study (Tolvaptan reduced annualized TKV growth by 1.99%, 3.12%, and 2.61% per year 

across CKD1, CKD2 and CKD3, all P<0.001, CKD1-2-3) and that this volume reduction is particularly 

pronounced in the first year of treatment but is also maintained in the remaining follow-up.  

The same study showed that the advantage on renal function is evident in the CKD 2 stage (1.13 ml / min / 

year) and CKD 3 (1.66 ml / min / year). A statistically significant advantage is not, however, recordable in 

the CKD 1 stage (eGFR decline by 0.40 in CKD1 (P=0.23), 1.13 in CKD2 (P<0.001) and 1.66ml/min per 1.73m2 

per year inCKD3 (P<0.001)). This could be justified by the substantial stability in terms of renal function of 

the patients of this group for whom the recording of a glomerular filtration flexion would probably have 

required a longer follow-up than the 36 months foreseen in this study. 

Formatted: Space After:  0 pt, Line spacing:  single,

Don't adjust space between Latin and Asian text, Don't

adjust space between Asian text and numbers

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Font: (Default) +Body (Calibri), 11 pt

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Font: (Default) +Body (Calibri), 11 pt

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Font: (Default) +Body (Calibri), 11 pt,

English (United States)

Formatted: Superscript



Finally, another significant aspect to be taken into consideration in the clinical adoption of tolvaptan in 

ADPKD is the effect of rapid and reversible loss of renal function observed in the first weeks of treatment. 

This initial functional loss is limited (about 5% of the baseline value (10)) and reversible at the time of 

tolvaptan suspension. The cause of this phenomenon is not well understood:  hemodynamic causes are 

invoked, and more recently, effects correlated to glomerular tubular feedback have been called into 

question(13, 14). However, the continuous and prolonged use of the drug produces a preservation of renal 

function, which amply compensates for the initial glomerular filtration flexion. For obvious reasons, this 

advantage appears more evident at the suspension of the treatment, as demonstrated in the TEMPO 3:4 

study and confirmed by the extension study Tempo 4:4 (15). 

The TEMPO 3:4 study, showed several additional clinical elements related to the phenomena of 

compensatory hyperfiltration and proteinuria. Albuminuria was a parameter measured during the trial and 

its analysis was the subject of a detailed post-hoc analysis report (16); albuminuria levels were normal in 

47.9% of patients at the time of enrollment, moderately increased in 48.7% of cases, and severely 

increased in 3.4% of cases; in the study, albuminuria represented a predictive parameter of the future loss 

of eGFR, regardless of the remaining clinical features of the patient, except the TKV to which it is strongly 

correlated. The tolvaptan-treated arm achieved a decrease in albuminuria compared to placebo, 

independent of blood pressure. The efficacy of tolvaptan treatment against slowing TKV growth and eGFR 

loss was more easily detected in patients with high albuminuria values.  

During the TEMPO 3:4 study and its extension study, TEMPO 4:4, a signal of liver toxicity risk emerged (17). 
A concentration of Alanine aminotransferase (ALT) that was three times the upper limit of normal was 
observed more frequently for subjects receiving Tolvaptan (4.4 %) compared to placebo (1.0 %). Two 
subjects (0.2%) during the trial TEMPO 3:4 and a further one during the TEMPO 4:4 study met the definition 
of the cases stated in Hy’s Law (ALT greater than three times the upper limit of normality and total bilirubin 
greater than nine times the upper limit of normality); this is a condition of high risk for developing acute 
liver failure. The hepatic toxicity is dose independent and it was not possible to identify any possible risk 
factors related to the chance of developing this severe adverse effect. However, the condition was always 
reversible and it occured within the first 18 months of treatment. Since closer monitoring of transaminases 
has been included during the TEMPO 3:4 study by a protocol amendment and in subsequent studies, 
including the REPRISE study, no further cases have been recorded that comply with Hy's law. In the post-
registration phase, the drug is only distributed by highly qualified centers that are required to carry out 
close monitoring of liver toxicity. At the moment, this strategy has been effective and there have been no 
reported cases of liver failure. 
 

REPRISE (Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and 

Efficacy in ADPKD) (18) is a clinical study of Tolvaptan that tested the drug's efficacy in a more advanced 

stage of renal failure compared to the TEMPO 3:4 study. Inclusion criteria included the recruitment of 

patients aged 18-55 years old with eGFR between 65 and 25 ml / min / 1.73m2 (regardless of renal volume). 

In addition, patients aged 56-65 years with eGFR between 45 and 25 ml / min / 1.73m2 were recruited, 

which thus showed a significant historical decline in renal function (loss greater than 2.0 ml / min / 1.73m2 

in the last year). This one-year study recruited 1370 patients who were randomized 1: 1 placebo: Tolvaptan. 

The study had a run-in period in which all patients were exposed to increasing doses of Tolvaptan before 

randomization. In this way, patients who were not compliant with Tolvaptan therapy were excluded from 

the study before randomization, avoiding the unbalance problems of the two arms of treatment that 

occurred in the TEMPO 3:4 study (10). Tolvaptan resulted in a slower decline than placebo in the estimated 

GFR over a one-year period: the change from baseline in the estimated GFR was −2.34 ml per minute per 

1.73 m2 (95% confidence interval [CI], −2.81 to −1.87) in the tolvaptan group, as compared 

with −3.61 ml per minute per 1.73 m2 (95% CI, −4.08 to −3.14) in the placebo group (difference, 1.27 ml per 

minute per 1.73 m2; 95% CI, 0.86 to 1.68; P<0.001). 
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The analysis of the sub-populations enrolled in the study showed a very positive result in the subjects of 

class 2 and 3a of renal failure, with deflection of therapeutic efficacy in the subjects of the upper classes (3b 

and 4), though still within the range of clinically relevant estimates. The study did not show any therapeutic 

efficacy in subjects older than 55 years (the change from baseline in the estimated GFR was −2.54 ml per 

minute per 1.73 m2 in the tolvaptan group, as compared with −2.34 ml per minute per 1.73 m2  in the 

placebo group;difference, -0.20 ml per minute per 1.73 m2, P=0.65). It is difficult to explain this reduced 

efficacy of the drug in the older age group: this may be due to a mix of causes, among which, one of the 

most relevant may be enrichment in the population over 55 years of patients suffering from mild forms of 

ADPKD. In this sense, the criterion of historical decline larger than 2 ml / min / 1.73m2 was probably not 

sufficiently selective to exclude slowly progressive patients. 

 

Ongoing Trial on Vaptans 

Lixivaptan 

Lixivaptan is a newer, nonpeptide, oral V2-receptor-specific antagonist. Like other vaptans, the molecule 

was previously tested for its possible use for hyponatremic conditions (SIADH, heart failure, liver failure) 

without being approved for marketing by the FDA. The molecule was then acquired by a new company that 

started testing it for the treatment of ADPKD. “ELISA (Evaluation of Lixivaptan in Subjects With Autosomal 

Dominant Polycystic Kidney Disease)” is a Phase 2 clinical trial that will evaluate the safety, 

pharmacokinetics, and pharmacodynamics of multiple doses of lixivaptan in patients with ADPKD with 

relatively preserved kidney function (chronic kidney disease stages 1 and 2) and moderately impaired renal 

function ( stage 3). The study is currently enrolling and is expected to include up to 32 patients at 

approximately 15 sites in the United States. Although the primary objectives of the trial consist of the study 

of toxicity and pharmacokinetics of the molecule, some pharmacodynamic data will also be collected as 

secondary objectives, including total kidney volume and serum creatinine. The study should be completed 

by September 2019. (Source www.clinicaltrials.gov : NCT03487913). 

 

Water as a therapeutic prescription in ADPKD 

The administration of Tolvaptan has a therapeutic action in patients with ADPKD, which is mediated by the 

arginine vasopressin block (AVP) and by the related cAMP dependent water reabsorption, which gives rise 

to the important aquaretic side effect of the drug. We can assume that the intake of a significant amount of 

water can mimic the AVP antagonistic effect produced by Tolvaptan by reducing the circulating levels of 

AVP. An experiment carried out on rats with a recessive form of polycystic kidney (PCK rats) confirmed this. 

In that experiment, the hypothesis was that an addition of 5% glucose in the drinking water increased fluid 

intake approximately 3.5-fold compared with rats that received tap water. High water intake reduced the 

kidney/body weight ratio by 28.0% and improved renal function (19). On the basis of these preclinical data, 

a human pilot study (20) was developed to obtain a target urinary osmolality in the recruited patients. In 

eight patients, the amount of water needed to obtain urine with a target osmolality of 285 mOsm was 

calculated based on the urinary osmolar excretion. The pilot study conducted on only eight patients did not 

allow for any clinically appreciable results, however, it did have the role of elaborating a water dosing 

strategy to be administered to patients and of concluding that this strategy is potentially prosecutable. 

Another pilot study evaluated the effect of water prescription (about 3 liters of water per day) on urine 

osmolarity and cAMP urinary excretion, either in acute or chronic condition (21). This small study suggested 

that acute water load obtained a reduction of cAMP excretion, however, this effect was not replicated 

during chronic water prescription. Paradoxically, another small, non-randomized study reported that high 

water intake worsened renal function compared to the control group (22). Other feasibility studies (23, 24) 

were published or are planned to be concluded in the months following the publication of this paper (25) 
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(Source www.clinicaltrials.gov : NCT00759369 trial). At the Rogosin Institute in New York, a clinical trial 

based on the prescription of water in 32 polycystic patients began in 2017. This non-randomized sequential 

study involves 32 participants with a follow-up of 18 months. The primary outcome will be renal volume. 

The kidney volumes recorded at the end of a period of six months with a usual water intake will be 

compared with the renal volumes recorded at the end of the following 12-month period in which an 

increased water intake, as prescribed by the investigator, will be implemented on the basis of an urine test 

of the participant. This study is ongoing and should be concluded in December 2019 (source 

www.clinicaltrials.gov, NCT03102632). An even larger randomized study (180 patients) has been 

announced by the Australasian Kidney Trials Network with the acronym of “PREVENT-ADPKD”(26)  

 

 

ANALOGS OF SOMATOSTATIN 

Rationale for the use of analogs of somatostatin in ADPKD 

The authors of the first clinical report (27) on the potential use of somatostatin analogs in ADPKD report 

the origin of this idea to a clinical case concerning a patient with ADPKD being treated with Octreotide due 

to an adenoma of the secreting growth pituitary hormone. Assessment by abdominal CT series had 

indicated a stability of renal volumes; likewise, the patient's renal function had not deteriorated in a two-

year follow-up. Details deriving from the experiences on elasmobranches fish, and in particular, on the 

rectal gland of sharks (28), suggested the possible role of somatostatin in inhibiting the chlorine channel 

encoded by the CFTR gene by stimulation of the somatostatin receptors present in renal tubular cells (29, 

30). 

 

Completed Clinical Trials: Octreotide and Lanreotide 

The first experiences with somatostatin analogs have involved small cohorts of pilot studies that have 

suggested promising preliminary results concerning the reduction of the progression of renal (27) and 

hepatic volumetric increase (31). Subsequently, in larger studies, researchers have evaluated the effect of 

the treatment on renal function. The most significant studies are the ALADIN studies (which involved early 

disease phase in ALADIN 1 (32) and late stage of disease in the ALADIN 2 study (33)) and the DIPAK-1 study 

(34). 

Overall, these studies have recruited populations that are much lower than the experience gained with 

Tolvaptan. The most numerically representative trial is the DIPAK-1 study, which recruited 309 patients, 

while the ALADIN studies reported more limited experiences (79 patients in ALADIN 1 and 100 patients in 

ALADIN 2). The DIPAK 1 study involved patients aged between 18 and 60 years and stage 3a and 3b of 

chronic renal failure, and the follow up had a duration of 2.5 years. Although the study confirmed the 

ability of Lanreotide to determine a reduction in the progression of increase in renal size, the primary 

outcome of the study, the slowing of the worsening of renal function, was not successful: there were no 

significant differences for incidence of worsening kidney function (hazard ratio, 0.87 [95%CI, 0.49 to 1.52]; 

P = .87) and change in eGFR (−3.58 vs −3.45; difference, −0.13 mL/min/1.73m2 per year [95%CI, −1.76 to 

1.50]; P = .88). For this reason, the authors concluded that Lanreotide was not indicated in the treatment of 

advanced stages of ADPKD. 

The ALADIN studies focused on the analog of somatostatin Octreotide. ALADIN 1 recruited 79 patients at a 

relatively early stage of disease (GFR greater than 40 ml / min / 1.73m2 -MDRD formula- and age above 18 

years). The primary outcome was the evaluation of the effect on the renal volume, which was positive at 

the end of the first year of follow-up but statistically not significant by the third year. The most clinically 

significant outcomes of glomerular filtration variation were was assessed as secondary outcomes and 
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showed discordant resulted not significant trends in measured GFR (based on iohexol) and calculated GFR 

(based on plasma creatinine) assessments, thus making a definitive evaluation at least problematic(annual 

slope of GFR in Octreotide-LAR group –3·85 mL/min per 1·73m2 per year (–6·20 to –1·92) vs  –4·95 mL/min 

per 1·73m2 per year (–7·49 to –1·97) in placebo group; p=0.13). The ALADIN 2 study recruited patients in a 

more advanced disease phase (estimated GFR between 15 and 40 ml / min / 1.73m2). The study showed a 

reduction effect on renal volume growth in the first and third years. However, the authors were not able to 

demonstrate efficacy based on the co-primary outcome of the reduction of renal function (GFR was 

measured GFR by the iohexol method, reduction in the median (95% CI) rate of GFR decline (0.56 [−0.63 to 

1.75] ml/min/1.73 m2 per year) was not significant (p = 0.295)). In this study, an exploratory analysis based 

on a composite clinical outcome (initiation of replacement treatment and/or doubling of creatinine) would 

have suggested a protective effect of lanreotide as compared to placebo. However, in the study the two 

groups do not appear perfectly balanced as the treatment group with Octreotide shows lower renal 

volumes and more preserved renal function than the placebo group. Furthermore, as in Aladin 1, also in 

Aladin 2 do the outcomes of renal function appear to be discrepant between what is recorded with the 

iohexol method and what was observed on creatinine (and the outcomes are the opposite in the Aladin 2 

study compared to Aladin 1. Iin the Aladin 2 study, the mGFR is not significant while the composite clinical 

outcome based on the doubling of plasma creatinine is significant thus making a definitive evaluation at 

least problematic). 

 

Ongoing Trial 

The “Lanreotide In Polycystic kidney disease Study” (LIPS) is an ongoing trial that was recorded for the first 

time in ClinicalTrials.gov in April 2014. It will recruit 156 patients that will be randomized to either placebo 

or to the experimental arm. Patients of both sexes older than 18 years of CKD class 2 and 3 will be recruited 

for a 36-month follow-up period. The main outcome consists of evaluating the variations of GFR between 

the two groups. The study should be completed in September 2019. (source www.clinicaltrials.gov, 

NCT02127437) 

 

SUBSTRATE REDUCTION THERAPY AGAINST SPHINGOLIPIDS  

Rationale for the use of Venglustat in ADPKD 

Sphingolipids, despite constituting a very modest proportion of all cell lipids, play a central role in the 

control of mechanisms that regulate critical cellular functions, including proliferation and apoptosis. 

Historically, attention to these molecules has originated from lysosomal storage diseases, such as Fabry's 

disease. More recently, attention to this class of molecules has involved research fields in of diseases that 

are even more common, such as diabetic nephropathy and polycystic kidney disease (35). Sphingolipid 

synthesis is closely coupled with the availability of glucose metabolites from aerobic glycolysis (see the 

following paragraph "METABOLIC AND DIETETIC APPROACH") which is activated in conditions of stimulation 

of cell proliferation and growth. Polycystic kidney animal models have shown a significant increase in two 

central sphingolipids: glucosylceramide (GL-1) and ganglioside GM3 plasma levels (36, 37). In the treatment 

of animal models with glucosylceramide synthase (GCS) inhibitors, a key enzyme in the synthesis of 

sphingolipids of the globosid class, there have been important reductions in the progression of cystic 

disease (36, 37). Venglustat is a potent oral inhibitor of GCS, the enzyme that transforms ceramide into 

glucosylceramide (GL-1). GL-1 is the precursor of many important pathogenetic sphingolipids in a wide 

range of diseases (Gaucher disease Type 3, Parkinson's disease, acid β-glucosidase mutation, polycystic 

kidney diseases). The treatment with Venglustat is based on the strategy of ‘substrate reduction therapy’, 

which reduces the availability of an intermediate necessary for the biochemical synthesis of subsequent 

molecules directly involved in the disease of interest. According to the preclinical data of efficacy of 
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Venglustat, the pharmaceutical pipeline of the molecule has been extended to several conditions, with 

ADPKD among them. 

 

Ongoing Trial: Venglustat 

“A Medical Research Study Designed to Determine if Venglustat Can be a Future Treatment for ADPKD 

Patients (STAGED-PKD)” is a worldwide Phase 3 clinical trial that will recruit 560 patients. The subjects will 

be randomized to the experimental product (at two different dosages) or to placebo and will have a follow-

up of 24 months. Patients will be adults aged between 18 and 50 years of both sexes. Patients will be 

selected to have a CKD stage 2 and 3a. Patients will also be selected for having a rapidly progressive 

condition based on the Mayo Imaging Classification of ADPKD (38) (Class 1C, 1D, or 1E). The primary 

outcomes of the study concern the rate of kidney growth and the rate of glomerular filtration change. The 

study is currently recruiting and should be completed by January 2023 (source www.clinicaltrials.gov: 

NCT03523728). 

METABOLIC AND DIETETIC APPROACH 

Rationale of the interventions oriented to the correction of the metabolic derangement of ADPKD 
Although many cellular pathways that are dysregulated in ADPKD have been identified, new pathways are 
still emerging. In recent years, convincing data have accumulated regarding the presence of profound 
alterations of cellular metabolism in ADPKD. In particular, these data suggest that cystic cells shift their 
energy metabolism from oxidative phosphorylation to aerobic glycolysis (39), an alteration of the energy 
metabolism previously described in neoplastic cells (Warburg effect) (40, 41). The role of aerobic glycolysis 
and its therapeutic potential in ADPKD has been extensively studied in pre-clinical models. In particular, at 
least three independent research groups have replicated the positive effect of the metabolic interference 
produced by the administration of 2-deoxy glucose in orthologous and non-orthologous rodent and rat 
models of ADPKD (42-45). The hypothesis is that, in ADPKD, the energetic metabolic derangement is related 
to the alteration of the activity of the metabolic sensors, such as the mTOR complex (46), AMPK (39, 43, 
47), and Sirtuins (47-51). All these pathways are theoretically amenable for pharmacologic modulation: 
mTOR complex can be inhibited by the class of the mTOR inhibitors (everolimus and sirolimus); metformin, 
a common hypoglycemic drug, is an activator of AMPK; and finally, several natural polyphenols, including 
resveratrol, can modulate the sirtuin family. In addition to potential pharmacological interventions, recent 
preclinical experiences have suggested the possible role of dietary manipulations targeting the same 
metabolic sensors. Warner et al. applied a caloric restriction of 40% compared to an ad libitum feeding in a 
mouse model of ADPKD, and obtained an extraordinary reduction of the cystic growth (52). Kipp et al.,  in 
their preclinical mouse model, showed that a substantial benefit can be maintained, even with a small 
reduction of food intake (23% reduction of food intake) (53). Furthermore, the same group tested the 
hypothesis that the beneficial effects obtained by the diet are due to ketosis caused by intermittent 
starvation rather than caloric restriction per se (54).  

 

Clinical trials with strategy active against the metabolic derangement of ADPKD 

mTOR inhibitors 

Despite a number of promising preclinical studies, the results of clinical trials on mTOR inhibitors in ADPKD 
have been extremely frustrating. Both the everolimus study (51) on a cohort of 433 patients characterized 
by a relatively advanced phase of the disease, as well as the study on sirolimus (50) of a lower number (100 
subjects) of patients at an earlier stage had negative results. This discrepancy between the excellent 
preclinical results and the demoralizing clinical failure is probably due to a number of contributing factors 
that are not easy to identify. One of the hypotheses put forward regarding the Everolimus study concerns 
the possibility that the recruited population was in an advanced stage of disease, whereby the fibrotic 
processes were relatively irreversible. This hypothesis appears weaker in light of subsequent studies on 
Tolvaptan, and in particular, the REPRISE study (16), which showed therapeutic potential, even in the 
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advanced stage of the disease. Another hypothesis is that, in the study by Walz et al., Everolimus-inhibited 
phenomena of compensatory hypertrophy and glomerular hyperfiltration would lead to a worsening of 
renal function. This hypothesis would leave room for hope that, in the long term, the therapy could have 
shown beneficial effects, precisely as a function of the long-term protective potential of the inhibition of 
glomerular hyperfiltration, but this remains completely speculative. However, despite these considerations, 
the long-term tolerability profile of Everolimus appears low. In fact, in the study, the dropout of the 
experimental group was about 25%.  

The evaluation of the Sirolimus study is more problematic, although, in fact, the study by Serra et al. had a 
smaller numerosity, this work was not even able to demonstrate an effect on renal volume reduction. It 
was hypothesized that the exposure concentrations of Sirolimus in mice in preclinical studies (55) were 
extremely superior to what was tolerable, and therefore, applied in clinical studies. Furthermore, it is 
possible that the Sirolimus blood dosages used for the inhibition of circulating leukocytes are not effective 
at the level of the renal tubule, as suggested by a case report (56) in which the researchers reported the 
outcome of the accidental renal transplantation in two recipients of the kidneys of a donor with a mild form 
of ADPKD. One recipient was treated with Sirolimus, while the other was treated with immunosuppressive 
therapy without Sirolimus: both subjects developed a similar progressive cystic disease despite the 
presence or absence of Sirolimus in the immunosuppressive regimen. 

An important fact that emerged from the experience on Everolimus was the decoupling between the renal 
and kidney function data. In fact, until the study on Everolimus, renal volume and renal function were 
considered closely linked based on the seminal work of the CRISP group (57). Violation of this principle with 
uncoupling between renal volume and renal function has been clearly replicated in other subsequent 
experiences, and in particular, in the studies on somatostatin analogs (32-34, 58). Consequently, according 
to these data, the renal volumetric assessment alone is no longer accepted as the primary outcome by the 
drug regulatory agencies in the ADPKD registration studies.  

 

 

METFORMIN 

As described in the previous section, Metformin is a molecule capable of stimulating the 5' AMP-activated 

protein kinase (AMPK), a metabolic sensor that appears to be inhibited in ADPKD. AMPK, in turn, inhibits 

the CFTR channel, which is involved in intracystic fluid flows, and mTOR, another metabolic sensor 

implicated in the activation of cell proliferation. Preclinical studies based on metformin have shown a 

decrease in the cystic index in two mouse models of ADPKD (47). There are currently three clinical trials in 

progress to evaluate the role of metformin in ADPKD. 

“Metformin as a Novel Therapy for Autosomal Dominant Polycystic Kidney Disease (TAME)” is a phase 2 

controlled against placebo randomized study that will recruit 97 participants. In the study, the experimental 

drug (and the placebo in the control arm) will be uptitrated from 1 g to 2 g per day according to the 

patient’s tolerability. The inclusion criteria will select subjects of age 18-60 years, non-diabetic, of both 

sexes, with a GFR larger than 50 ml/min/1.73m2. Because of the phase of the study, the primary outcomes 

regard compliance, tolerability, and toxicity of the drug; as secondary outcomes, renal volume and variation 

of GFR will be compared between the two arms. The study is expected to end in December 2020 (source 

ClinicalTrials.gov NCT02656017). 

“Feasibility Study of Metformin Therapy in ADPKD” is a phase 2 controlled against placebo randomized 

study that will recruit 50 participants. The titration of the drug is closely related to the TAME study, starting 

from 1 g to a maximum of 2 g per day according to patient tolerance. The inclusion criteria are slightly 

different as they recruit an older population (30-60 years old non-diabetic patients) of both sexes and 

restricting the GFR between 50 and 80 ml/min/1.73m2. The study is expected to end in March 2020. 

(Source ClinicalTrials.gov , NCT02903511) 



Finally, the “Metformin vs Tolvaptan for Treatment of Autosomal Dominant Polycystic Kidney Disease 

(METROPOLIS)” is an Italian study that, in contrast with the other metformin trials, will compare metformin 

against an active comparator: Tolvaptan. This is a phase 3 controlled study that will recruit 150 subjects. 

The inclusion criteria are also different from those of the previous studies as a principle of genetic selection 

will be adopted in this work. The study will recruit non-diabetic patients with truncating mutations of the 

PKD1 gene, aged between 18 and 50 years and a GFR equal or larger than 45 ml/min/1.73m2. The study is 

expected to end in September 2021. (Source ClinicalTrials.gov , NCT03764605).  

 

2 DEOXY GLUCOSE 

2-deoxy glucose(2DG) is a glucose analog that can be internalized into the cells by the same plasma 

membrane carrier of the glucose. Inside the cell, like glucose, it is phosphorylated, but it cannot be further 

metabolized. It accumulates in the cell, causing the energetic metabolic paralysis of the glycolytic pathway. 

The use of 2-deoxy glucose in ADPKD is based on the strategy of directly targeting the energy demand of 

the cystic epithelia. This strategy takes advantage of the evidence that cystic cells are completely 

dependent on glucose metabolism for their energy needs because they do not have the possibility of 

switching to other metabolic fuels (amino acids or lipids) due to mitochondrial inhibition (39, 43). The 

dependence of cystic tubular cells from glucose and the inability to metabolize other energetic sources as 

fatty acids or amino acids makes them highly sensitive to the toxicity of 2DG. In this regard, not-cystic cells 

are protected from 2DG toxicity by their ability of switching to mitochondrial oxidative phosphorylation. 

This glycidic dependency is in accordance to the neoplastic paradigm of the aerobic glycolysis or Warburg 

Effect (40, 59-61). This approach effectively slowed down the disease progression in several distinct 

orthologous models of the disease (42, 43) and obtained similar results in the Han:SPRD rat model (44). The 

2DG is not currently registered for any therapeutic indication, although it has been tested in oncology 

clinical trials (62-66). A phase 1 clinical trial coordinated by an Italian collaborative group has the aim of 

assessing the drug's toxicity, tolerability, and pharmacokinetics in an ADPKD cohort (67). The study will 

recruit 18 patients with a 3-month follow-up, with the study scheduled to end in July 2020 (Source: 

personal communication). 

 

PIOGLITAZONE 

As already anticipated, fatty acid oxidation (FAO) is inhibited in ADPKD in the process of the metabolic 

rewiring of cystic cells that preserve molecules, such as lipids from energy consumption, because useful in 

anabolic processes (68). The peroxisome proliferator-activated receptor family (PPARα and PPARγ) are 

nuclear hormone receptors that are activated by fatty acids or their prostaglandin derivatives. At the 

nuclear level, they promote the gene expression of several factors involved in metabolism, including 

elements of activation of lipid peroxidation. PPARα is mainly expressed in the organs in which FAO is most 

active and its downregulation has been identified in cystic tubular cells (69). The fibrates, a known class of 

molecules with lipid-lowering activity, have a PPARα-activating capacity and have shown a protective role in 

animal models of ADPKD (69). Also, altered levels of PPARγ have been identified in ADPKD and in analogy to 

what has been shown for PPARα, stimulation of PPARγ has demonstrated a protective effect in animal 

models (70-73). Thiazolidinediones are a family of molecules that have the ability to activate PPARγ. Some 

molecules of this family are in clinical use as hypoglycemic agents, such as Pioglitazone and Rosiglitazone 

(Rosiglitazone’s authorization has been suspended in Europe because of cardiovascular safety concerns). 

Pioglitazone is the subject of the PIOPKD clinical trial (Use of Low Dose Pioglitazone to Treat Autosomal 

Dominant Polycystic KidneyDisease). PIOPKD is a phase 2 clinical trial that will evaluate the safety of 18 

participants during one year of treatment. The study will be followed up for 2 years. The non-diabetic 

patients of 18-55 years of age and with a GFR above ≥ 50 ml/min/1.73 m2 will be enrolled. The patients will 



be randomized to PIOGLITAZONE at a 15 mg per day regimen or placebo. The primary outcome of the study 

is to evaluate the safety of this treatment, while secondary outcomes comprise the evaluation of renal 

volume by MRI and bone marrow fat content through the use of MRI spectrometry. The study should be 

completed by October 2019. (Source: ClinicalTrials.gov: NCT02697617) 

 

Caloric Restriction and Ketogenic Diet 

In consideration of the important metabolic imprint highlighted in this disease, a dietary approach has been 

purposed (52, 54). In theory, although clinical efficacy is demonstrated, this approach has some 

indisputable advantages: a diet therapy has low toxicity and low costs. On the other hand, diet therapy 

clashes with a problematic compliance that is particularly exacerbated in the case of diets that implement 

important caloric restrictions. Finally, since these approaches go beyond specific industrial interests, it is 

difficult to obtain substantial funding in the development of these programs. 

Our group recently published a small pilot trial (the GREASE 1 trial) to explore the feasibility of a ketogenic 

diet in ADPKD (74). The central idea of any ketogenic diet essentially consists of a high fat and restricted 

carbohydrate content; this dietetic regimen produces a metabolic response that mimics starvation, 

whereby ketone bodies become the main fuel for the energetic need of cellular metabolism. According to 

the glucose dependency of cystic cells, ketogenic promises to be another non-toxic approach for disease 

management. The pilot study involved three patients for three months. The patients showed a positive 

compliance to the dietetic regimen and glycemia was significantly reduced during the follow up. The largest 

side effect was the increase in cholesterol levels. A larger randomized trial will be organized in the months 

following the publication of this paper (GREASE 2 trial). 

A Caloric Restriction strategy has been adopted in the study “Daily Caloric Restriction and Intermittent 
Fasting in Overweight and Obese Adults With Autosomal Dominant Polycystic Kidney Disease” which is 
currently in the active recruitment phase. This is a randomized trial that will be conducted on 40 
overweight or obese patients (BMI 25-45 kg/m2) suffering from ADPKD, 18-65 years old, and with a GFR 
equal or larger than 30 ml/min/1.73m2. Patients will be randomized to intermittent or continuous energy 
intake reduction (in both cases by a 34% weekly energy deficit). The primary outcomes of the study mainly 
regard weight loss, tolerability, and compliance. Renal volumes by MRI will be analyzed in a secondary 
outcome. The study should be concluded by September 2020  (Source ClinicalTrials.gov: NCT03342742) 

 

TYROSIN KINASE INHIBITION 

Rationale for the use of Tyrosin Kinase Inhibitors 
Tyrosin kinases are enzymes capable of transferring a phosphate unit derived from a donor, often an ATP 
molecule, to an acceptor protein whose activity is modified by this covalent modification. Many cellular 
pathways are controlled through these enzymatic cascades, and in ADPKD, the role of tyrosin kinases is also 
central; for example, in the EGFR pathway that constitutes one of the central stimuli of cystic cell 
proliferation (75). C-src is a tyrosin kinase closely implicated in the EGFR cascade, although the molecular 
details have not yet been fully elucidated (76). Pre-clinical studies have supported the role of tyrosin kinase 
inhibitors in cystic diseases (75, 77, 78). 
 

Trials of Tyrosin Kinase Inhbitors with results 
Bosutinib (SKI-606) is an oral dual Src/Bcr-Abl tyrosine kinase inhibitor (TKI) approved for the treatment of 

Philadelphia chromosome–positive chronic myeloid leukemia. A phase two trial that enrolled 172 patients 

has been published (79). The treatment obtained a 66% reduction of renal volume for Bosutinib versus 

placebo. However, the eGFR decline was not statistically significant in the comparison of the placebo group 

versus the treatment groups in the two groups during the 3 years follow up of the trial (however, the 



decline was numerically higher in the treatment group). Furthermore, the treatment showed the known 

adverse effects for this class of oncologic drugs (diarrhea and nausea) in a large proportion of patients, 

thereby raising doubts about the real potential of chronic treatment prolonged for many years, as needed 

in ADPKD. 

Ongoing Trials of Tyrosin Kinase Inhbitors 

Tesevatinib is a multi-kinase inhibitor that promotes the inhibition of c-Src, thereby decreasing the activity 

of the EGFR axis (80). The Trial “A Safety, Pharmacokinetic and Dose-Escalation Study of KD019 

(Tesevatinib) in Subjects With ADPKD” is active but not yet recruiting. This is a non-randomized Phase 1/2 

trial that will enroll 74 participants, with the age range between 22 and 62 years, a GFR higher or equal to 

35 ml/min/1.73m2, and a htTKV ≥ 1000 mL (Total Kidney Volume corrected for height). The primary 

outcomes of the study will be evaluation of safety, pharmacokinetics, maximum tolerated dose, and 

Glomerular Filtration Rate (Source: ClinicalTrials.gov: NCT01559363). 

Concluding remarks 
In recent years, a high number of molecules have been experimentally evaluated in ADPKD, with a number 

of these strategies promoted to advanced phase clinical trials. Figure 1 shows the temporal projection of 

the concluded trials and those that are on-going or in activation. Also documented in other fields, the 

attrition rate of these molecules is generally high, and to date, only one molecule (Tolvaptan) has obtained 

authorization for treatment in ADPKD (limited to the Italian territory Octreotide-LAR can be reimbursed by 

the Italian National Health System in adult ADPKD patients with stage 4 CKD and increased risk of rapid 

progression after the authorization of the Technical Scientific Advisory Board of the AIFA-CTS on the basis 

of the case-by-case assessment). The high failure rate in the clinical development of pharmaceutical 

molecules is well known and has been discussed in many previous reviews (81, 82), with ADPKD no 

exception. Many very promising approaches in preclinical models were not successful at the time of clinical 

validation. The reasons for these failures are heterogeneous and complex and should be taken into account 

in each individual case. Overall, we can draw a hypothesis that, in some cases, clinical studies have been 

undertaken after an excessively hasty preclinical evaluation. Further, pharmacokinetic and toxicity 

assessments have not been analyzed with sufficient depth in the preclinical phase and have, therefore, 

failed in the translational phase from animal to human. In this sense, the failure of Everolimus and 

Sirolimus in particular could be paradigmatic (83). A large number of clinical validation failures have 

predominantly matured in academic studies, with these studies only marginally supported by the 

pharmaceutical industry. Although academic research has the great advantage of complete intellectual 

freedom, on the other hand, it often does not have the sufficient resources to completely carry out 

expensive clinical protocols. This limitation of funds often results in studies with reduced sample sizes 

and/or reduced follow up, and ultimately, with low statistical power. Figure 2 shows the relationship 

between the length of the follow-up and the sample size of the phase III clinical trials in ADPKD in the 

concluded trials and in the on-going or in activation trials. The graph concerning the completed studies 

clearly shows how the studies on Tolvaptan are distinguished from the studies conducted on other 

molecules. Considering the trials conducted until now, the graph suggests that academic studies (all except 

those of Tolvaptan) have, most likely, been able to develop less statistical power due to a reduced sample 

size, among other factors. Studies on Tolvaptan have enrolled more than 2500 patients (points 6,7 and 8 of 

Fig.2). Even when considering the family of molecules most studied after Tolvaptan (i.e., the somatostatin 

analogs), the sample size did not exceed 600 patients (points 1,2 and 4 of Fig.2): one-fourth compared to 

what was expressed by Tolvaptan. It is possible that this reduced recruitment capacity has partly 

contributed to determining some of the failures in clinical trials in ADPKD. This trend does not seem to be 

different in either on-going or in-activation studies. Indeed, even an industrial study such as that on 

Venglustat does not express a sample size comparable to that of the Tolvaptan studies, a hint that suggests 
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the expectation for a high efficacy compared to the previous experiences, an expectation that only the 

outcome of this trial can decree if well placed. 

More than 10 years after the start of the first Phase III clinical trials in ADPKD, a drug active in slowing 

disease progression is finally available. It cannot be considered a goal but only the beginning of a journey: 

the significant side effects, especially those of the aquaretic type, as well as the high cost of the drug, make 

this therapeutic option applicable only in a modest fraction of the affected patients. Even in patients 

undergoing treatment, it is not possible to obtain a cure but only a slowing of the progression of the 

disease. All the other molecules considered in this review had a negative clinical outcome or at best they 

require the confirmation of new or ongoing clinical studies before a possible clinical adoption. An 

exuberant basic research activity in the field, together with the large number of ongoing protocols, keep 

doctors’ and their patients positive with regard to the discovery of new and better therapies in a not-too-

distant future. 

  



Agent/ Type of Trial / status  Inclusion Criteria Results/ Outcomes 

Vaptans:  
 
 Tolvaptan  
 
 
 

 

 

  

 
 

 

 
 

 

 
 

  

 

 Lixivaptan 
 
 
 
 
 

 
 
TEMPO 3: 4  
phase 3, double blinded   
placebo-controlled RCT    
1445 patients , 36 months   
Published (10) 
 
TEMPO 4:4 
phase 4, extension trials of 
TEMPO 3:4  
871 patients, 24 months 
Published (15) 
 
REPRISE 
phase 3, double blinded 
placebo-controlled 
randomized withdrawal trial 
1370 patients, 12 months 
Published (18) 
 
 
ELISA 
phase 2, open-label 
32 patients, 12 months  
Recruiting NCT03487913 

 
 
Age 18-50years 
eCrCL≥60ml/min 
TKV≥750ml (MRI) 
 
 
 
Patients from TEMPO 3:4  
 
 
 
 
 
Age 18-55 years with eGFR 
25-65 ml/min/1.73m2  
Or 
Age 56-65 years with eGFR 
25-45ml/min/1.73m2 and 
progressive disease 
 
 
Age 18-65 years and eGFR > 
30 mL/min/1.73 m2 

 
 
TKV growth reduction by 49% 
eGFR loss protected by 26% 
 
 
 
 
sustained 
disease-modifying effect of 
tolvaptan on eGFR 
 
 
 
eGFR loss significantly  
reduced , but not in patients 
>55y 
 
 
 
 
 
Primary : toxicity and 
pharmacokinetic studies of 
the molecule,  
Secondary: TKV and 
creatinine  

mTOR inhibitors:    
  
 Everolimus 
 
 
 
 
 Sirolimus 
 
 

 
 
Phase 3, double blinded  
placebo-controlled RCT 
431 patients, 24 months 
Published (51) 
 
Phase 3, open-label placebo 
controlled RCT 
100 patients, 24 months 
Published (50) 

 
 
eGFR≥ 30 ml/min1.73 m2 and 
TKV>1000ml 
 
 
 
Age 18-40years and eCrCl≥ 70 
ml/min/1.73 m2  

 
 
Significant reduction in TKV 
growth, no effect on eGFR  
 
 
 
No effect on TKV and eGFR  

Somatostatin analogues :  
 
 Octreotide 
 
 
 
 
 
 Octreotide     
 
 
 
 
 
 Lanreotide 
 
 
 
 
 Lanreotide 
 
  
 
 

 
 
ALADIN 1 
Phase 3, single-blind placebo-
controlled RCT, 79 patients, 
36 months 
Published (32) 
 
ALADIN 2  
Phase  3, double-blind 
placebo-controlled RCT, 100 
patients, 36 months 
Published (33) 
 
DIPAK 1  
phase 3, open-label RCT, 309 
patients , 30 months 
Published (34) 
 
LIPS 
Phase 3, double-blind RCT, 
156 patients 
Active, not recruiting 
NCT02127437 

 
 
Age >18 years and mGFR ≥ 
40ml/min/1.73m2  
 
 
 
 
Age >18years and mGFR 15-
40ml/min/1.73 m2  

 

 

 

 

Age 18-60 years and eGFR 30-
60ml/min/1.73m2  

 

 

 

Age > 18 years and eGFR 30-
89ml/min/1.73m2  

 
 
Positive effect on TKV at the 
end of the 1° year, not 
significant at the 3° year 
 
 
 
Positive effect on TKV at 1° 
and 3° year, not significant on 
mGFR  
 
 
 
No positive effect on eGFR, 
significant reduction in TKV 
growth 
 
 
Variations of GFR between 
the two groups 



Substrate reduction therapy 
against Sphingolipids: 

 
 Venglustat  
 

 
 

 
Phase 3, double-blind 
placebo-controlled RCT 
560 patients, 24 months, 
Recruiting NCT03523728 

 
 

 
Age 18-50 years and eGFR 45-
90ml/Min/1.73 m2  
TKV Mayo 1C-1E 
 

 
 

 
Variation of kidney growth 
and change of glomerular 
filtration  

Metabolic and Dietetic 
approach: 
 
 Metformin 
 
 
 
 
 
 
 Metformin  
 
 
  
 
 Metformin 
 
 
 
 
 
  
 2-Deoxy Glucose 
 (2DG) 
 
 
  
 Pioglitazone 
 
 
 
 
 
 
 

 Caloric Restriction 
 Diet 
 

 
 
 
TAME 
Phase 2, double-blind 
placebo-controlled RCT, 97 
patients, 26 months  
Active, not recruiting 
NCT02656017  
 
phase 2,  double-blind 
placebo-controlled RCT, 50 
patients ,12 months  
Recruiting NCT02903511 
 
METROPOLIS  
Phase 3, RCT Tolvaptan -
controlled, 150 patients, 25 
months 
Not yet recruiting 
NCT03764605 
 
Phase 1, 18 patients, 3 
months  
 
 
 
PIOPKD 
Phase 2, double-blind 
placebo-controlled RCT, 18 
patients, 24 months 
Active, not recruiting 
NCT02697617 
 
 
Randomized to intermittent 
or continuous energy intake 
reduction , 40 patients , 18 
months, recruting 
NCT03342742 

 
 
 
Age 18 -60 years, non-
diabetic and eGFR > 50 
ml/min/1.73m2  

 

 

 

 
Age 30- 60 years, non-
diabetic with eGFR between 
50 and 80 ml/min/1.73m2 

 

 

Age 18-50 with  eGFR ≥45 
ml/min/1.73m2 
non-diabetic with truncating 
mutations of the PKD1 gene.  
 
 
 
Age 18-55 with eGFR > 45- 
ml/min/1.73m2, TKV Mayo 
1C-1E 
 
 
Age 18-55 years with eGFR ≥ 
50 ml/min/1.73 m2 
non-diabetic 
 
 
 
 
 
18-65 years, BMI 25-45 kg/m2 
with eGFR≥ 30 
ml/min/1.73m2 
 

 
 
 
Compliance, tolerability and 
toxicity of the drug; 
secondary outcomes TKV and 
changes in eGFR  
 
 
 
changes  of TKV and  eGFR  
 
 
 
 
changes  of TKV and  eGFR  
 
 
 
 
 
 
tolerability and toxicity  
 
 
 
 
safety; secondary: TKV by 
MRI and bone marrow fat 
content by MRI spectrometry 
 
 
 
 
 
Primary: weight loss, 
tolerability and compliance.  
Secondary: TKV by MRI  
 

Tyrosin Kinase Inhibition: 
 
 
  Bosutinib (SKI-606) 
 
 
 
 
  Tesevatinib 
 

 
 
 
Phase 2, RCT, 172 patients, 
36 months  
Published (79) 
 
 
Non-randomized Phase 1/2 
trial, 74 patients, 24months 
Active , not yet recruiting 
NCT01559363 

 
 
 
Age 18-50 with eGFR ≥ 60 
ml/min/1.73 m2 
TKV  ≥ 750mL 
 
 
Age 22-62 years with eGFR 
≥35 ml/min/1.73m2 and a 
htTKV ≥ 1000 mL 

 
 
 
66% reduction of TKV  for 
bosutinib versus placebo 
the eGFR decline was not 
statistically significant 
 
safety, pharmacokinetics, 
maximum tolerated dose and 
eGFR 

Table 1: summary data of the main clinical trials completed, ongoing or activated in ADPKD. RCT = 

Randomized Clinical Trial, eGFR = estimated glomerular filtration rate, TKV = Total Kidney Volume, BMI = 

Body Mass Index 



 

Fig. 1: representation of the temporal distribution of completed, on-going or in activation clinical trials 



 

Fig. 2: graph representing the ratio between sample size and duration of the FUP of the main phase 3 

clinical trials. The left panel shows thecompleted studies, while the right panel shows on-going and in 

activation clinical trials. 1 = Aladin 1 (32); 2 = Aladin 2 (33); 3 = Sirolimus (50); 4 = DIPAK 1 (34); 5 = 

Everolimus (51); 6 = Tempo 4:4 (15); 7 = REPRISE (18); 8 TEMPO 3:4 (10); 9 = METROPOLIS (NCT03764605); 

10 = LIPS (NCT02127437); 11 = VENGLUSTAT (NCT03523728) 
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Abstract 
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth diagnosis for both the incidence and 

prevalence of renal diseases that require replacement therapy. In Italy, there are at least 32,000 patients 

affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian 

National Health Service can be conservatively estimated at 87 million euros per year. Even a modest 

slowdown in the evolution of the disease would obtain an important result in terms of reduction of health 

expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for 

ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have 

grouped these studies according to the molecular pathway addressed by the experimental drug or the 

therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first 

drug active in slowing disease progression is finally available. It cannot be considered a goal but only the 

beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant 

basic research activity in the field, together with the large number of ongoing protocols, keep doctors’ and 

their patients positive with regard to the discovery of new and better therapies in a not-too-distant future. 
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Introduction 
 

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth diagnosis for both the incidence and 

prevalence of renal diseases that require replacement therapy (1) and 1 in 10 patients needing renal 

replacement therapy has ADPKD (2). The predominant phenotype of ADPKD is the accumulation of cysts in 

renal parenchyma. The condition is genetically heterogeneous and is caused by the mutation of two 

polycystin genes, PKD1 and PKD2, and much more rarely, by other recently identified genes: GANAB (3), 

DNAJB11(4). The genetic defect of ADPKD subverts the normal differentiated phenotype of renal tubular 

epithelium. The final event of these alterations is end-stage renal disease requiring renal replacement 

therapy (dialysis or transplantation).  

In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis and 

approximately as many are carriers of a renal transplant (5). Without considering the social cost of dialysis, 

which strongly reduces the quality of life of the patients and greatly increases their risk of death, the pure 

costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 

million euros per year. In light of the clinical and economic considerations, the importance of interventions 

to reduce the progression to end-stage renal disease is clear. Even a modest slowdown in the evolution of 

the disease would obtain an important result in terms of reduction of health expenditure. In recent years, 

many new or repurposed drugs have been evaluated in clinical trials for ADPKD. Despite the extraordinary 

advances in therapeutic possibilities that are now available for ADPKD patients, to date, the therapeutic 

options for ADPKD cannot be considered satisfactory as they lack definitively curative therapies and consist 

of treatments aimed at controlling complications and of therapies aimed at slowing the progression of the 

disease.  

In this review, we will not report the trials that considered the management of complications related to 

ADPKD, but rather, we will focus our discussion on therapies aimed at slowing down renal disease. 

Regarding the already-published clinical trials with results, we will mainly focus our discussion on clinical 

trials that have had a positive or at least suggestive outcome for therapeutic potential in the near future. 

With regard to clinical trials in progress without published data, we will mainly limit the discussion to 

molecules in advanced phase 3 clinical trials. The main features of the trials discussed in this review have 

been summarized in Table 1 

 

VAPTANS AND INHIBITION OF VASOPRESSIN 
 

Rationale for the use of Vaptans in ADPKD 
The Vaptan drug family comprises agents that act by directly blocking the action of vasopressin at its 
receptors (V1AR, V1BR, and V2R). Before clinical validation in ADPKD, the V2R antagonist Tolvaptan has 
been developed for the treatment of hyponatremia in patients with congestive heart failure, liver cirrhosis, 
or syndrome of inappropriate antidiuretic hormone secretion (SIADH(6)). Studies on animal models have 
suggested that arginine vasopressin, through its second cAMP messenger, promotes cyst growth both 

through a proliferative stimulus and a secretion of fluids into the cyst lumen mediated by the cystic fibrosis 
transmembrane conductance regulator (CFTR) chlorine channel. In fact, the cells of the collecting duct 
present the receptors of the arginine vasopressin of the V2R type. These receptors are coupled to 
adenylate cyclase 6, which, when activated, produces an increase in the cytosolic levels of cAMP. cAMP 
finally activates phosphokinase A (PKA), which is the central effector of this pathway. PKA activates the 
transcription of genes involved in cell proliferation. In parallel, CFTR is responsible for the chloride and 
bicarbonate permeability on the apical membrane of tubular epithelia. Its activity is modulated by the 
intracellular concentration of cAMP that is increased in cystic cells; the activation of the CFTR promotes the 

https://en.wikipedia.org/wiki/Receptor_(biochemistry)


secretion of chloride in the cystic lumen, leading to intra-cystic fluid accumulation (7-9). Preclinical studies 
of selective blocking of the V2R receptor through an AVP receptor antagonist in ADPKD rodent models (8) 
have demonstrated a protective effect of this strategy, thus paving the way for clinical research of Vaptans 
in ADPKD. 
 

Trials of Vaptans with published data 

Tolvaptan 

TEMPO 3:4 (10) is a large randomized double-blind controlled study that compared the efficacy of 

Tolvaptan compared to a placebo in two parallel arms of ADPKD patients. Patients were randomized into 

the two arms at a ratio of 2:1, respectively, Tolvaptan (961 patients) and placebo (484 patients). The 

inclusion criteria of the patients were defined with the aim of enrolling relatively young patients (aged 18-

50 years) with a sufficiently preserved renal function (glomerular filtration calculated according to Cockroft 

and Gault higher than 60 ml / min) and with a rapidly progressive disease. The selection of progressive 

patients made use of the consolidated evidence that had defined the correlation between renal volume 

and evolution of the disease (11). Therefore, the authors defined a minimum cutoff of renal volume equal 

to 750 ml. Tolvaptan was administered orally in two daily administrations. The dose of Tolvaptan (or 

placebo) was titrated at the start of the study in the individual patient at weekly intervals for a period of 3 

weeks, initially administered at a dose of 45 mg and 15 mg, in the morning and afternoon respectively, and 

titrated to 60 mg and 30 mg, and then at 90 mg and 30 mg, according to the tolerability reported by the 

patient. Throughout the study, the protocol favored the attempt to keep the drug at the maximum 

tolerated dosage. The study had a follow-up of 36 months with the main outcome being the evaluation of 

the effect of reducing the increase in kidney volume through MRI. At the beginning of the study, 

randomization on a large population obtained a balanced distribution of patients in terms of the clinical 

characteristics of the subjects enrolled between the two treatment arms. Subsequently, however, the 

balance between the two arms was reduced due to an increased drop-out of patients in the experimental 

arm due to the adverse effect of aquaresis, which reduced the compliance of the patients exposed to 

Tolvaptan. 

Regarding the outcome of renal volume, the study demonstrates a significant reduction of approximately 
50 % in growth in patients treated with tolvaptan compared to placebo: over a 3-year period, the increase 
in total kidney volume in the tolvaptan group was 2.8% per year (95% confidence interval [CI], 2.5 to 3.1), 
versus 5.5% per year in the placebo group (95% CI, 5.1 to 6.0; P<0.001). The study also evaluated other 
secondary outcomes, among which, the outcome that generated the most clinical interest is certainly 
represented by the degree of preservation of renal function in patients under treatment: tolvaptan has 
shown a protective effect equal to a 31.4 % reduction of functional loss compared to placebo (Tolvaptan 
was associated with a slower decline in kidney function (reciprocal of the serum creatinine level, −2.61 [mg 
per milliliter]−1 per year vs. −3.81 [mg per milliliter]−1 per year; P<0.001). 
A subsequent post-hoc analysis (12) of the Tempo 3:4 study described the results as a function of the 

classes of renal failure (CKD) defined according to the KDIGO guidelines. This analysis suggested that 

Tolvaptan expresses its potential to reduce the volume increase in kidneys in all stages of renal failure in 

the Tempo 3:4 study (Tolvaptan reduced annualized TKV growth by 1.99%, 3.12%, and 2.61% per year 

across CKD1, CKD2 and CKD3, all P<0.001, ) and that this volume reduction is particularly pronounced in the 

first year of treatment but is also maintained in the remaining follow-up.  

The same study showed that the advantage on renal function is evident in the CKD 2 stage  and CKD 3. A 

statistically significant advantage is not, however, recordable in the CKD 1 stage (eGFR decline by 0.40 in 

CKD1 (P=0.23), 1.13 in CKD2 (P<0.001) and 1.66ml/min per 1.73m2 per year inCKD3 (P<0.001)). This could 

be justified by the substantial stability in terms of renal function of the patients of this group for whom the 

recording of a glomerular filtration flexion would probably have required a longer follow-up than the 36 

months foreseen in this study. 



Finally, another significant aspect to be taken into consideration in the clinical adoption of tolvaptan in 

ADPKD is the effect of rapid and reversible loss of renal function observed in the first weeks of treatment. 

This initial functional loss is limited (about 5% of the baseline value (10)) and reversible at the time of 

tolvaptan suspension. The cause of this phenomenon is not well understood:  hemodynamic causes are 

invoked, and more recently, effects correlated to glomerular tubular feedback have been called into 

question(13, 14). However, the continuous and prolonged use of the drug produces a preservation of renal 

function, which amply compensates for the initial glomerular filtration flexion. For obvious reasons, this 

advantage appears more evident at the suspension of the treatment, as demonstrated in the TEMPO 3:4 

study and confirmed by the extension study Tempo 4:4 (15). 

The TEMPO 3:4 study, showed several additional clinical elements related to the phenomena of 

compensatory hyperfiltration and proteinuria. Albuminuria was a parameter measured during the trial and 

its analysis was the subject of a detailed post-hoc analysis report (16); albuminuria levels were normal in 

47.9% of patients at the time of enrollment, moderately increased in 48.7% of cases, and severely 

increased in 3.4% of cases; in the study, albuminuria represented a predictive parameter of the future loss 

of eGFR, regardless of the remaining clinical features of the patient, except the TKV to which it is strongly 

correlated. The tolvaptan-treated arm achieved a decrease in albuminuria compared to placebo, 

independent of blood pressure. The efficacy of tolvaptan treatment against slowing TKV growth and eGFR 

loss was more easily detected in patients with high albuminuria values.  

During the TEMPO 3:4 study and its extension study, TEMPO 4:4, a signal of liver toxicity risk emerged (17). 
A concentration of Alanine aminotransferase (ALT) that was three times the upper limit of normal was 
observed more frequently for subjects receiving Tolvaptan (4.4 %) compared to placebo (1.0 %). Two 
subjects (0.2%) during the trial TEMPO 3:4 and a further one during the TEMPO 4:4 study met the definition 
of the cases stated in Hy’s Law (ALT greater than three times the upper limit of normality and total bilirubin 
greater than nine times the upper limit of normality); this is a condition of high risk for developing acute 
liver failure. The hepatic toxicity is dose independent and it was not possible to identify any possible risk 
factors related to the chance of developing this severe adverse effect. However, the condition was always 
reversible and it occured within the first 18 months of treatment. Since closer monitoring of transaminases 
has been included during the TEMPO 3:4 study by a protocol amendment and in subsequent studies, 
including the REPRISE study, no further cases have been recorded that comply with Hy's law. In the post-
registration phase, the drug is only distributed by highly qualified centers that are required to carry out 
close monitoring of liver toxicity. At the moment, this strategy has been effective and there have been no 
reported cases of liver failure. 
 

REPRISE (Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and 

Efficacy in ADPKD) (18) is a clinical study of Tolvaptan that tested the drug's efficacy in a more advanced 

stage of renal failure compared to the TEMPO 3:4 study. Inclusion criteria included the recruitment of 

patients aged 18-55 years old with eGFR between 65 and 25 ml / min / 1.73m2 (regardless of renal volume). 

In addition, patients aged 56-65 years with eGFR between 45 and 25 ml / min / 1.73m2 were recruited, 

which thus showed a significant historical decline in renal function (loss greater than 2.0 ml / min / 1.73m2 

in the last year). This one-year study recruited 1370 patients who were randomized 1: 1 placebo: Tolvaptan. 

The study had a run-in period in which all patients were exposed to increasing doses of Tolvaptan before 

randomization. In this way, patients who were not compliant with Tolvaptan therapy were excluded from 

the study before randomization, avoiding the unbalance problems of the two arms of treatment that 

occurred in the TEMPO 3:4 study (10). Tolvaptan resulted in a slower decline than placebo in the estimated 

GFR over a one-year period: the change from baseline in the estimated GFR was −2.34 ml per minute per 

1.73 m2 (95% confidence interval [CI], −2.81 to −1.87) in the tolvaptan group, as compared 

with −3.61 ml per minute per 1.73 m2 (95% CI, −4.08 to −3.14) in the placebo group (difference, 1.27 ml per 

minute per 1.73 m2; 95% CI, 0.86 to 1.68; P<0.001). 



The analysis of the sub-populations enrolled in the study showed a very positive result in the subjects of 

class 2 and 3a of renal failure, with deflection of therapeutic efficacy in the subjects of the upper classes (3b 

and 4), though still within the range of clinically relevant estimates. The study did not show any therapeutic 

efficacy in subjects older than 55 years (the change from baseline in the estimated GFR was −2.54 ml per 

minute per 1.73 m2 in the tolvaptan group, as compared with −2.34 ml per minute per 1.73 m2  in the 

placebo group;difference, -0.20 ml per minute per 1.73 m2, P=0.65). It is difficult to explain this reduced 

efficacy of the drug in the older age group: this may be due to a mix of causes, among which, one of the 

most relevant may be enrichment in the population over 55 years of patients suffering from mild forms of 

ADPKD. In this sense, the criterion of historical decline larger than 2 ml / min / 1.73m2 was probably not 

sufficiently selective to exclude slowly progressive patients. 

 

Ongoing Trial on Vaptans 

Lixivaptan 

Lixivaptan is a newer, nonpeptide, oral V2-receptor-specific antagonist. Like other vaptans, the molecule 

was previously tested for its possible use for hyponatremic conditions (SIADH, heart failure, liver failure) 

without being approved for marketing by the FDA. The molecule was then acquired by a new company that 

started testing it for the treatment of ADPKD. “ELISA (Evaluation of Lixivaptan in Subjects With Autosomal 

Dominant Polycystic Kidney Disease)” is a Phase 2 clinical trial that will evaluate the safety, 

pharmacokinetics, and pharmacodynamics of multiple doses of lixivaptan in patients with ADPKD with 

relatively preserved kidney function (chronic kidney disease stages 1 and 2) and moderately impaired renal 

function ( stage 3). The study is currently enrolling and is expected to include up to 32 patients at 

approximately 15 sites in the United States. Although the primary objectives of the trial consist of the study 

of toxicity and pharmacokinetics of the molecule, some pharmacodynamic data will also be collected as 

secondary objectives, including total kidney volume and serum creatinine. The study should be completed 

by September 2019. (Source www.clinicaltrials.gov : NCT03487913). 

 

Water as a therapeutic prescription in ADPKD 

The administration of Tolvaptan has a therapeutic action in patients with ADPKD, which is mediated by the 

arginine vasopressin block (AVP) and by the related cAMP dependent water reabsorption, which gives rise 

to the important aquaretic side effect of the drug. We can assume that the intake of a significant amount of 

water can mimic the AVP antagonistic effect produced by Tolvaptan by reducing the circulating levels of 

AVP. An experiment carried out on rats with a recessive form of polycystic kidney (PCK rats) confirmed this. 

In that experiment, the hypothesis was that an addition of 5% glucose in the drinking water increased fluid 

intake approximately 3.5-fold compared with rats that received tap water. High water intake reduced the 

kidney/body weight ratio by 28.0% and improved renal function (19). On the basis of these preclinical data, 

a human pilot study (20) was developed to obtain a target urinary osmolality in the recruited patients. In 

eight patients, the amount of water needed to obtain urine with a target osmolality of 285 mOsm was 

calculated based on the urinary osmolar excretion. The pilot study conducted on only eight patients did not 

allow for any clinically appreciable results, however, it did have the role of elaborating a water dosing 

strategy to be administered to patients and of concluding that this strategy is potentially prosecutable. 

Another pilot study evaluated the effect of water prescription (about 3 liters of water per day) on urine 

osmolarity and cAMP urinary excretion, either in acute or chronic condition (21). This small study suggested 

that acute water load obtained a reduction of cAMP excretion, however, this effect was not replicated 

during chronic water prescription. Paradoxically, another small, non-randomized study reported that high 

water intake worsened renal function compared to the control group (22). Other feasibility studies (23, 24) 

were published or are planned to be concluded in the months following the publication of this paper (25) 

http://www.clinicaltrials.gov/


(Source www.clinicaltrials.gov : NCT00759369 trial). At the Rogosin Institute in New York, a clinical trial 

based on the prescription of water in 32 polycystic patients began in 2017. This non-randomized sequential 

study involves 32 participants with a follow-up of 18 months. The primary outcome will be renal volume. 

The kidney volumes recorded at the end of a period of six months with a usual water intake will be 

compared with the renal volumes recorded at the end of the following 12-month period in which an 

increased water intake, as prescribed by the investigator, will be implemented on the basis of an urine test 

of the participant. This study is ongoing and should be concluded in December 2019 (source 

www.clinicaltrials.gov, NCT03102632). An even larger randomized study (180 patients) has been 

announced by the Australasian Kidney Trials Network with the acronym of “PREVENT-ADPKD”(26)  

 

 

ANALOGS OF SOMATOSTATIN 

Rationale for the use of analogs of somatostatin in ADPKD 
The authors of the first clinical report (27) on the potential use of somatostatin analogs in ADPKD report 

the origin of this idea to a clinical case concerning a patient with ADPKD being treated with Octreotide due 

to an adenoma of the secreting growth pituitary hormone. Assessment by abdominal CT series had 

indicated a stability of renal volumes; likewise, the patient's renal function had not deteriorated in a two-

year follow-up. Details deriving from the experiences on elasmobranches fish, and in particular, on the 

rectal gland of sharks (28), suggested the possible role of somatostatin in inhibiting the chlorine channel 

encoded by the CFTR gene by stimulation of the somatostatin receptors present in renal tubular cells (29, 

30). 

 

Completed Clinical Trials: Octreotide and Lanreotide 
The first experiences with somatostatin analogs have involved small cohorts of pilot studies that have 

suggested promising preliminary results concerning the reduction of the progression of renal (27) and 

hepatic volumetric increase (31). Subsequently, in larger studies, researchers have evaluated the effect of 

the treatment on renal function. The most significant studies are the ALADIN studies (which involved early 

disease phase in ALADIN 1 (32) and late stage of disease in the ALADIN 2 study (33)) and the DIPAK-1 study 

(34). 

Overall, these studies have recruited populations that are much lower than the experience gained with 

Tolvaptan. The most numerically representative trial is the DIPAK-1 study, which recruited 309 patients, 

while the ALADIN studies reported more limited experiences (79 patients in ALADIN 1 and 100 patients in 

ALADIN 2). The DIPAK 1 study involved patients aged between 18 and 60 years and stage 3a and 3b of 

chronic renal failure, and the follow up had a duration of 2.5 years. Although the study confirmed the 

ability of Lanreotide to determine a reduction in the progression of increase in renal size, the primary 

outcome of the study, the slowing of the worsening of renal function, was not successful: there were no 

significant differences for incidence of worsening kidney function (hazard ratio, 0.87 [95%CI, 0.49 to 1.52]; 

P = .87) and change in eGFR (−3.58 vs −3.45; difference, −0.13 mL/min/1.73m2 per year [95%CI, −1.76 to 

1.50]; P = .88). For this reason, the authors concluded that Lanreotide was not indicated in the treatment of 

advanced stages of ADPKD. 

The ALADIN studies focused on the analog of somatostatin Octreotide. ALADIN 1 recruited 79 patients at a 

relatively early stage of disease (GFR greater than 40 ml / min / 1.73m2 -MDRD formula- and age above 18 

years). The primary outcome was the evaluation of the effect on the renal volume, which was positive at 

the end of the first year of follow-up but statistically not significant by the third year. The most clinically 

significant outcome of glomerular filtration variation was assessed as secondary outcome and resulted not 
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significant  in measured GFR (based on iohexol)(annual slope of GFR in Octreotide-LAR group –3·85 mL/min 

per 1·73m2 per year (–6·20 to –1·92) vs  –4·95 mL/min per 1·73m2 per year (–7·49 to –1·97) in placebo 

group; p=0.13). The ALADIN 2 study recruited patients in a more advanced disease phase (estimated GFR 

between 15 and 40 ml / min / 1.73m2). The study showed a reduction effect on renal volume growth in the 

first and third years. However, the authors were not able to demonstrate efficacy based on the co-primary 

outcome of the reduction of renal function (GFR was measured by the iohexol method, reduction in the 

median (95% CI) rate of GFR decline (0.56 [−0.63 to 1.75] ml/min/1.73 m2 per year) was not significant (p = 

0.295)). In this study, an exploratory analysis based on a composite clinical outcome (initiation of 

replacement treatment and/or doubling of creatinine) would have suggested a protective effect of 

lanreotide as compared to placebo. However, in the study the two groups do not appear perfectly balanced 

as the treatment group with Octreotide shows lower renal volumes and more preserved renal function 

than the placebo group. Furthermore, as in Aladin 1, also in Aladin 2 do the outcomes of renal function 

appear to be discrepant between what is recorded with the iohexol method and what was observed on 

creatinine (in the Aladin 2 study, the mGFR is not significant while the composite clinical outcome based on 

the doubling of plasma creatinine is significant thus making a definitive evaluation at least problematic). 

 

Ongoing Trial 
The “Lanreotide In Polycystic kidney disease Study” (LIPS) is an ongoing trial that was recorded for the first 

time in ClinicalTrials.gov in April 2014. It will recruit 156 patients that will be randomized to either placebo 

or to the experimental arm. Patients of both sexes older than 18 years of CKD class 2 and 3 will be recruited 

for a 36-month follow-up period. The main outcome consists of evaluating the variations of GFR between 

the two groups. The study should be completed in September 2019. (source www.clinicaltrials.gov, 

NCT02127437) 

 

SUBSTRATE REDUCTION THERAPY AGAINST SPHINGOLIPIDS  

Rationale for the use of Venglustat in ADPKD 
Sphingolipids, despite constituting a very modest proportion of all cell lipids, play a central role in the 

control of mechanisms that regulate critical cellular functions, including proliferation and apoptosis. 

Historically, attention to these molecules has originated from lysosomal storage diseases, such as Fabry's 

disease. More recently, attention to this class of molecules has involved research fields of diseases that are 

even more common, such as diabetic nephropathy and polycystic kidney disease (35). Sphingolipid 

synthesis is closely coupled with the availability of glucose metabolites from aerobic glycolysis (see the 

following paragraph "METABOLIC AND DIETETIC APPROACH") which is activated in conditions of stimulation 

of cell proliferation and growth. Polycystic kidney animal models have shown a significant increase in two 

central sphingolipids: glucosylceramide (GL-1) and ganglioside GM3 plasma levels (36, 37). In the treatment 

of animal models with glucosylceramide synthase (GCS) inhibitors, a key enzyme in the synthesis of 

sphingolipids of the globosid class, there have been important reductions in the progression of cystic 

disease (36, 37). Venglustat is a potent oral inhibitor of GCS, the enzyme that transforms ceramide into 

glucosylceramide (GL-1). GL-1 is the precursor of many important pathogenetic sphingolipids in a wide 

range of diseases (Gaucher disease Type 3, Parkinson's disease, acid β-glucosidase mutation, polycystic 

kidney diseases). The treatment with Venglustat is based on the strategy of ‘substrate reduction therapy’, 

which reduces the availability of an intermediate necessary for the biochemical synthesis of subsequent 

molecules directly involved in the disease of interest. According to the preclinical data of efficacy of 

Venglustat, the pharmaceutical pipeline of the molecule has been extended to several conditions, with 

ADPKD among them. 
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Ongoing Trial: Venglustat 
“A Medical Research Study Designed to Determine if Venglustat Can be a Future Treatment for ADPKD 

Patients (STAGED-PKD)” is a worldwide Phase 3 clinical trial that will recruit 560 patients. The subjects will 

be randomized to the experimental product (at two different dosages) or to placebo and will have a follow-

up of 24 months. Patients will be adults aged between 18 and 50 years of both sexes. Patients will be 

selected to have a CKD stage 2 and 3a. Patients will also be selected for having a rapidly progressive 

condition based on the Mayo Imaging Classification of ADPKD (38) (Class 1C, 1D, or 1E). The primary 

outcomes of the study concern the rate of kidney growth and the rate of glomerular filtration change. The 

study is currently recruiting and should be completed by January 2023 (source www.clinicaltrials.gov: 

NCT03523728). 

METABOLIC AND DIETETIC APPROACH 

Rationale of the interventions oriented to the correction of the metabolic derangement of ADPKD 
Although many cellular pathways that are dysregulated in ADPKD have been identified, new pathways are 
still emerging. In recent years, convincing data have accumulated regarding the presence of profound 
alterations of cellular metabolism in ADPKD. In particular, these data suggest that cystic cells shift their 
energy metabolism from oxidative phosphorylation to aerobic glycolysis (39), an alteration of the energy 
metabolism previously described in neoplastic cells (Warburg effect) (40, 41). The role of aerobic glycolysis 
and its therapeutic potential in ADPKD has been extensively studied in pre-clinical models. In particular, at 
least three independent research groups have replicated the positive effect of the metabolic interference 
produced by the administration of 2-deoxy glucose in orthologous and non-orthologous rodent and rat 
models of ADPKD (42-45). The hypothesis is that, in ADPKD, the energetic metabolic derangement is related 
to the alteration of the activity of the metabolic sensors, such as the mTOR complex (46), AMPK (39, 43, 
47), and Sirtuins (47-51). All these pathways are theoretically amenable for pharmacologic modulation: 
mTOR complex can be inhibited by the class of the mTOR inhibitors (everolimus and sirolimus); metformin, 
a common hypoglycemic drug, is an activator of AMPK; and finally, several natural polyphenols, including 
resveratrol, can modulate the sirtuin family. In addition to potential pharmacological interventions, recent 
preclinical experiences have suggested the possible role of dietary manipulations targeting the same 
metabolic sensors. Warner et al. applied a caloric restriction of 40% compared to an ad libitum feeding in a 
mouse model of ADPKD, and obtained an extraordinary reduction of the cystic growth (52). Kipp et al.,  in 
their preclinical mouse model, showed that a substantial benefit can be maintained, even with a small 
reduction of food intake (23% reduction of food intake) (53). Furthermore, the same group tested the 
hypothesis that the beneficial effects obtained by the diet are due to ketosis caused by intermittent 
starvation rather than caloric restriction per se (54).  

 

Clinical trials with strategy active against the metabolic derangement of ADPKD 

mTOR inhibitors 

Despite a number of promising preclinical studies, the results of clinical trials on mTOR inhibitors in ADPKD 
have been extremely frustrating. Both the everolimus study (51) on a cohort of 433 patients characterized 
by a relatively advanced phase of the disease, as well as the study on sirolimus (50) of a lower number (100 
subjects) of patients at an earlier stage had negative results. This discrepancy between the excellent 
preclinical results and the demoralizing clinical failure is probably due to a number of contributing factors 
that are not easy to identify. One of the hypotheses put forward regarding the Everolimus study concerns 
the possibility that the recruited population was in an advanced stage of disease, whereby the fibrotic 
processes were relatively irreversible. This hypothesis appears weaker in light of subsequent studies on 
Tolvaptan, and in particular, the REPRISE study (16), which showed therapeutic potential, even in the 
advanced stage of the disease. Another hypothesis is that, in the study by Walz et al., Everolimus-inhibited 
phenomena of compensatory hypertrophy and glomerular hyperfiltration would lead to a worsening of 
renal function. This hypothesis would leave room for hope that, in the long term, the therapy could have 
shown beneficial effects, precisely as a function of the long-term protective potential of the inhibition of 
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glomerular hyperfiltration, but this remains completely speculative. However, despite these considerations, 
the long-term tolerability profile of Everolimus appears low. In fact, in the study, the dropout of the 
experimental group was about 25%.  

The evaluation of the Sirolimus study is more problematic, although, in fact, the study by Serra et al. had a 
smaller numerosity, this work was not even able to demonstrate an effect on renal volume reduction. It 
was hypothesized that the exposure concentrations of Sirolimus in mice in preclinical studies (55) were 
extremely superior to what was tolerable, and therefore, applied in clinical studies. Furthermore, it is 
possible that the Sirolimus blood dosages used for the inhibition of circulating leukocytes are not effective 
at the level of the renal tubule, as suggested by a case report (56) in which the researchers reported the 
outcome of the accidental renal transplantation in two recipients of the kidneys of a donor with a mild form 
of ADPKD. One recipient was treated with Sirolimus, while the other was treated with immunosuppressive 
therapy without Sirolimus: both subjects developed a similar progressive cystic disease despite the 
presence or absence of Sirolimus in the immunosuppressive regimen. 

An important fact that emerged from the experience on Everolimus was the decoupling between the renal 
and kidney function data. In fact, until the study on Everolimus, renal volume and renal function were 
considered closely linked based on the seminal work of the CRISP group (57). Violation of this principle with 
uncoupling between renal volume and renal function has been clearly replicated in other subsequent 
experiences, and in particular, in the studies on somatostatin analogs (32-34, 58). Consequently, according 
to these data, the renal volumetric assessment alone is no longer accepted as the primary outcome by the 
drug regulatory agencies in the ADPKD registration studies.  

 

 

METFORMIN 

As described in the previous section, Metformin is a molecule capable of stimulating the 5' AMP-activated 

protein kinase (AMPK), a metabolic sensor that appears to be inhibited in ADPKD. AMPK, in turn, inhibits 

the CFTR channel, which is involved in intracystic fluid flows, and mTOR, another metabolic sensor 

implicated in the activation of cell proliferation. Preclinical studies based on metformin have shown a 

decrease in the cystic index in two mouse models of ADPKD (47). There are currently three clinical trials in 

progress to evaluate the role of metformin in ADPKD. 

“Metformin as a Novel Therapy for Autosomal Dominant Polycystic Kidney Disease (TAME)” is a phase 2 

controlled against placebo randomized study that will recruit 97 participants. In the study, the experimental 

drug (and the placebo in the control arm) will be uptitrated from 1 g to 2 g per day according to the 

patient’s tolerability. The inclusion criteria will select subjects of age 18-60 years, non-diabetic, of both 

sexes, with a GFR larger than 50 ml/min/1.73m2. Because of the phase of the study, the primary outcomes 

regard compliance, tolerability, and toxicity of the drug; as secondary outcomes, renal volume and variation 

of GFR will be compared between the two arms. The study is expected to end in December 2020 (source 

ClinicalTrials.gov NCT02656017). 

“Feasibility Study of Metformin Therapy in ADPKD” is a phase 2 controlled against placebo randomized 

study that will recruit 50 participants. The titration of the drug is closely related to the TAME study, starting 

from 1 g to a maximum of 2 g per day according to patient tolerance. The inclusion criteria are slightly 

different as they recruit an older population (30-60 years old non-diabetic patients) of both sexes and 

restricting the GFR between 50 and 80 ml/min/1.73m2. The study is expected to end in March 2020. 

(Source ClinicalTrials.gov , NCT02903511) 

Finally, the “Metformin vs Tolvaptan for Treatment of Autosomal Dominant Polycystic Kidney Disease 

(METROPOLIS)” is an Italian study that, in contrast with the other metformin trials, will compare metformin 

against an active comparator: Tolvaptan. This is a phase 3 controlled study that will recruit 150 subjects. 



The inclusion criteria are also different from those of the previous studies as a principle of genetic selection 

will be adopted in this work. The study will recruit non-diabetic patients with truncating mutations of the 

PKD1 gene, aged between 18 and 50 years and a GFR equal or larger than 45 ml/min/1.73m2. The study is 

expected to end in September 2021. (Source ClinicalTrials.gov , NCT03764605).  

 

2 DEOXY GLUCOSE 

2-deoxy glucose(2DG) is a glucose analog that can be internalized into the cells by the same plasma 

membrane carrier of the glucose. Inside the cell, like glucose, it is phosphorylated, but it cannot be further 

metabolized. It accumulates in the cell, causing the energetic metabolic paralysis of the glycolytic pathway. 

The use of 2-deoxy glucose in ADPKD is based on the strategy of directly targeting the energy demand of 

the cystic epithelia. This strategy takes advantage of the evidence that cystic cells are completely 

dependent on glucose metabolism for their energy needs because they do not have the possibility of 

switching to other metabolic fuels (amino acids or lipids) due to mitochondrial inhibition (39, 43). The 

dependence of cystic tubular cells from glucose and the inability to metabolize other energetic sources as 

fatty acids or amino acids makes them highly sensitive to the toxicity of 2DG. In this regard, not-cystic cells 

are protected from 2DG toxicity by their ability of switching to mitochondrial oxidative phosphorylation. 

This glycidic dependency is in accordance to the neoplastic paradigm of the aerobic glycolysis or Warburg 

Effect (40, 59-61). This approach effectively slowed down the disease progression in several distinct 

orthologous models of the disease (42, 43) and obtained similar results in the Han:SPRD rat model (44). The 

2DG is not currently registered for any therapeutic indication, although it has been tested in oncology 

clinical trials (62-66). A phase 1 clinical trial coordinated by an Italian collaborative group has the aim of 

assessing the drug's toxicity, tolerability, and pharmacokinetics in an ADPKD cohort (67). The study will 

recruit 18 patients with a 3-month follow-up, with the study scheduled to end in July 2020 (Source: 

personal communication). 

 

PIOGLITAZONE 

As already anticipated, fatty acid oxidation (FAO) is inhibited in ADPKD in the process of the metabolic 

rewiring of cystic cells that preserve molecules, such as lipids from energy consumption, because useful in 

anabolic processes (68). The peroxisome proliferator-activated receptor family (PPARα and PPARγ) are 

nuclear hormone receptors that are activated by fatty acids or their prostaglandin derivatives. At the 

nuclear level, they promote the gene expression of several factors involved in metabolism, including 

elements of activation of lipid peroxidation. PPARα is mainly expressed in the organs in which FAO is most 

active and its downregulation has been identified in cystic tubular cells (69). The fibrates, a known class of 

molecules with lipid-lowering activity, have a PPARα-activating capacity and have shown a protective role in 

animal models of ADPKD (69). Also, altered levels of PPARγ have been identified in ADPKD and in analogy to 

what has been shown for PPARα, stimulation of PPARγ has demonstrated a protective effect in animal 

models (70-73). Thiazolidinediones are a family of molecules that have the ability to activate PPARγ. Some 

molecules of this family are in clinical use as hypoglycemic agents, such as Pioglitazone and Rosiglitazone 

(Rosiglitazone’s authorization has been suspended in Europe because of cardiovascular safety concerns). 

Pioglitazone is the subject of the PIOPKD clinical trial (Use of Low Dose Pioglitazone to Treat Autosomal 

Dominant Polycystic KidneyDisease). PIOPKD is a phase 2 clinical trial that will evaluate the safety of 18 

participants during one year of treatment. The study will be followed up for 2 years. The non-diabetic 

patients of 18-55 years of age and with a GFR above ≥ 50 ml/min/1.73 m2 will be enrolled. The patients will 

be randomized to PIOGLITAZONE at a 15 mg per day regimen or placebo. The primary outcome of the study 

is to evaluate the safety of this treatment, while secondary outcomes comprise the evaluation of renal 



volume by MRI and bone marrow fat content through the use of MRI spectrometry. The study should be 

completed by October 2019. (Source: ClinicalTrials.gov: NCT02697617) 

 

Caloric Restriction and Ketogenic Diet 

In consideration of the important metabolic imprint highlighted in this disease, a dietary approach has been 

purposed (52, 54). In theory, although clinical efficacy is demonstrated, this approach has some 

indisputable advantages: a diet therapy has low toxicity and low costs. On the other hand, diet therapy 

clashes with a problematic compliance that is particularly exacerbated in the case of diets that implement 

important caloric restrictions. Finally, since these approaches go beyond specific industrial interests, it is 

difficult to obtain substantial funding in the development of these programs. 

Our group recently published a small pilot trial (the GREASE 1 trial) to explore the feasibility of a ketogenic 

diet in ADPKD (74). The central idea of any ketogenic diet essentially consists of a high fat and restricted 

carbohydrate content; this dietetic regimen produces a metabolic response that mimics starvation, 

whereby ketone bodies become the main fuel for the energetic need of cellular metabolism. According to 

the glucose dependency of cystic cells, ketogenic promises to be another non-toxic approach for disease 

management. The pilot study involved three patients for three months. The patients showed a positive 

compliance to the dietetic regimen and glycemia was significantly reduced during the follow up. The largest 

side effect was the increase in cholesterol levels. A larger randomized trial will be organized in the months 

following the publication of this paper (GREASE 2 trial). 

A Caloric Restriction strategy has been adopted in the study “Daily Caloric Restriction and Intermittent 
Fasting in Overweight and Obese Adults With Autosomal Dominant Polycystic Kidney Disease” which is 
currently in the active recruitment phase. This is a randomized trial that will be conducted on 40 
overweight or obese patients (BMI 25-45 kg/m2) suffering from ADPKD, 18-65 years old, and with a GFR 
equal or larger than 30 ml/min/1.73m2. Patients will be randomized to intermittent or continuous energy 
intake reduction (in both cases by a 34% weekly energy deficit). The primary outcomes of the study mainly 
regard weight loss, tolerability, and compliance. Renal volumes by MRI will be analyzed in a secondary 
outcome. The study should be concluded by September 2020  (Source ClinicalTrials.gov: NCT03342742) 

 

TYROSIN KINASE INHIBITION 

Rationale for the use of Tyrosin Kinase Inhibitors 
Tyrosin kinases are enzymes capable of transferring a phosphate unit derived from a donor, often an ATP 
molecule, to an acceptor protein whose activity is modified by this covalent modification. Many cellular 
pathways are controlled through these enzymatic cascades, and in ADPKD, the role of tyrosin kinases is also 
central; for example, in the EGFR pathway that constitutes one of the central stimuli of cystic cell 
proliferation (75). C-src is a tyrosin kinase closely implicated in the EGFR cascade, although the molecular 
details have not yet been fully elucidated (76). Pre-clinical studies have supported the role of tyrosin kinase 
inhibitors in cystic diseases (75, 77, 78). 
 

Trials of Tyrosin Kinase Inhbitors with results 
Bosutinib (SKI-606) is an oral dual Src/Bcr-Abl tyrosine kinase inhibitor (TKI) approved for the treatment of 

Philadelphia chromosome–positive chronic myeloid leukemia. A phase two trial that enrolled 172 patients 

has been published (79). The treatment obtained a 66% reduction of renal volume for Bosutinib versus 

placebo. However, the eGFR decline was not statistically significant in the comparison of the placebo group 

versus the treatment groups in the two groups during the 3 years follow up of the trial (however, the 

decline was numerically higher in the treatment group). Furthermore, the treatment showed the known 

adverse effects for this class of oncologic drugs (diarrhea and nausea) in a large proportion of patients, 



thereby raising doubts about the real potential of chronic treatment prolonged for many years, as needed 

in ADPKD. 

Ongoing Trials of Tyrosin Kinase Inhbitors 
Tesevatinib is a multi-kinase inhibitor that promotes the inhibition of c-Src, thereby decreasing the activity 

of the EGFR axis (80). The Trial “A Safety, Pharmacokinetic and Dose-Escalation Study of KD019 

(Tesevatinib) in Subjects With ADPKD” is active but not yet recruiting. This is a non-randomized Phase 1/2 

trial that will enroll 74 participants, with the age range between 22 and 62 years, a GFR higher or equal to 

35 ml/min/1.73m2, and a htTKV ≥ 1000 mL (Total Kidney Volume corrected for height). The primary 

outcomes of the study will be evaluation of safety, pharmacokinetics, maximum tolerated dose, and 

Glomerular Filtration Rate (Source: ClinicalTrials.gov: NCT01559363). 

Concluding remarks 
In recent years, a high number of molecules have been experimentally evaluated in ADPKD, with a number 

of these strategies promoted to advanced phase clinical trials. Figure 1 shows the temporal projection of 

the concluded trials and those that are on-going or in activation. Also documented in other fields, the 

attrition rate of these molecules is generally high, and to date, only one molecule (Tolvaptan) has obtained 

authorization for treatment in ADPKD (limited to the Italian territory Octreotide-LAR can be reimbursed by 

the Italian National Health System in adult ADPKD patients with stage 4 CKD and increased risk of rapid 

progression after the authorization of the Technical Scientific Advisory Board of the AIFA-CTS on the basis 

of the case-by-case assessment). The high failure rate in the clinical development of pharmaceutical 

molecules is well known and has been discussed in many previous reviews (81, 82), with ADPKD no 

exception. Many very promising approaches in preclinical models were not successful at the time of clinical 

validation. The reasons for these failures are heterogeneous and complex and should be taken into account 

in each individual case. Overall, we can draw a hypothesis that, in some cases, clinical studies have been 

undertaken after an excessively hasty preclinical evaluation. Further, pharmacokinetic and toxicity 

assessments have not been analyzed with sufficient depth in the preclinical phase and have, therefore, 

failed in the translational phase from animal to human. In this sense, the failure of Everolimus and 

Sirolimus in particular could be paradigmatic (83). A large number of clinical validation failures have 

predominantly matured in academic studies, with these studies only marginally supported by the 

pharmaceutical industry. Although academic research has the great advantage of complete intellectual 

freedom, on the other hand, it often does not have the sufficient resources to completely carry out 

expensive clinical protocols. This limitation of funds often results in studies with reduced sample sizes 

and/or reduced follow up, and ultimately, with low statistical power. Figure 2 shows the relationship 

between the length of the follow-up and the sample size of the phase III clinical trials in ADPKD in the 

concluded trials and in the on-going or in activation trials. The graph concerning the completed studies 

clearly shows how the studies on Tolvaptan are distinguished from the studies conducted on other 

molecules. Considering the trials conducted until now, the graph suggests that academic studies (all except 

those of Tolvaptan) have, most likely, been able to develop less statistical power due to a reduced sample 

size, among other factors. Studies on Tolvaptan have enrolled more than 2500 patients (points 6,7 and 8 of 

Fig.2). Even when considering the family of molecules most studied after Tolvaptan (i.e., the somatostatin 

analogs), the sample size did not exceed 600 patients (points 1,2 and 4 of Fig.2): one-fourth compared to 

what was expressed by Tolvaptan. It is possible that this reduced recruitment capacity has partly 

contributed to determining some of the failures in clinical trials in ADPKD. This trend does not seem to be 

different in either on-going or in-activation studies. Indeed, even an industrial study such as that on 

Venglustat does not express a sample size comparable to that of the Tolvaptan studies, a hint that suggests 

the expectation for a high efficacy compared to the previous experiences, an expectation that only the 

outcome of this trial can decree if well placed. 



More than 10 years after the start of the first Phase III clinical trials in ADPKD, a drug active in slowing 

disease progression is finally available. It cannot be considered a goal but only the beginning of a journey: 

the significant side effects, especially those of the aquaretic type, as well as the high cost of the drug, make 

this therapeutic option applicable only in a modest fraction of the affected patients. Even in patients 

undergoing treatment, it is not possible to obtain a cure but only a slowing of the progression of the 

disease. All the other molecules considered in this review had a negative clinical outcome or at best they 

require the confirmation of new or ongoing clinical studies before a possible clinical adoption. An 

exuberant basic research activity in the field, together with the large number of ongoing protocols, keep 

doctors’ and their patients positive with regard to the discovery of new and better therapies in a not-too-

distant future. 

  



Agent/ Type of Trial / status  Inclusion Criteria Results/ Outcomes 

Vaptans:  
 
 Tolvaptan  
 
 
 

 

 

  

 
 

 

 
 

 

 
 

  

 

 Lixivaptan 
 
 
 
 
 

 
 
TEMPO 3: 4  
phase 3, double blinded   
placebo-controlled RCT    
1445 patients , 36 months   
Published (10) 
 
TEMPO 4:4 
phase 4, extension trials of 
TEMPO 3:4  
871 patients, 24 months 
Published (15) 
 
REPRISE 
phase 3, double blinded 
placebo-controlled 
randomized withdrawal trial 
1370 patients, 12 months 
Published (18) 
 
 
ELISA 
phase 2, open-label 
32 patients, 12 months  
Recruiting NCT03487913 

 
 
Age 18-50years 
eCrCL≥60ml/min 
TKV≥750ml (MRI) 
 
 
 
Patients from TEMPO 3:4  
 
 
 
 
 
Age 18-55 years with eGFR 
25-65 ml/min/1.73m2  
Or 
Age 56-65 years with eGFR 
25-45ml/min/1.73m2 and 
progressive disease 
 
 
Age 18-65 years and eGFR > 
30 mL/min/1.73 m2 

 
 
TKV growth reduction by 49% 
eGFR loss protected by 26% 
 
 
 
 
sustained 
disease-modifying effect of 
tolvaptan on eGFR 
 
 
 
eGFR loss significantly  
reduced , but not in patients 
>55y 
 
 
 
 
 
Primary : toxicity and 
pharmacokinetic studies of 
the molecule,  
Secondary: TKV and 
creatinine  

mTOR inhibitors:    
  
 Everolimus 
 
 
 
 
 Sirolimus 
 
 

 
 
Phase 3, double blinded  
placebo-controlled RCT 
431 patients, 24 months 
Published (51) 
 
Phase 3, open-label placebo 
controlled RCT 
100 patients, 24 months 
Published (50) 

 
 
eGFR≥ 30 ml/min1.73 m2 and 
TKV>1000ml 
 
 
 
Age 18-40years and eCrCl≥ 70 
ml/min/1.73 m2  

 
 
Significant reduction in TKV 
growth, no effect on eGFR  
 
 
 
No effect on TKV and eGFR  

Somatostatin analogues :  
 
 Octreotide 
 
 
 
 
 
 Octreotide     
 
 
 
 
 
 Lanreotide 
 
 
 
 
 Lanreotide 
 
  
 
 

 
 
ALADIN 1 
Phase 3, single-blind placebo-
controlled RCT, 79 patients, 
36 months 
Published (32) 
 
ALADIN 2  
Phase  3, double-blind 
placebo-controlled RCT, 100 
patients, 36 months 
Published (33) 
 
DIPAK 1  
phase 3, open-label RCT, 309 
patients , 30 months 
Published (34) 
 
LIPS 
Phase 3, double-blind RCT, 
156 patients 
Active, not recruiting 
NCT02127437 

 
 
Age >18 years and mGFR ≥ 
40ml/min/1.73m2  
 
 
 
 
Age >18years and mGFR 15-
40ml/min/1.73 m2  

 

 

 

 

Age 18-60 years and eGFR 30-
60ml/min/1.73m2  

 

 

 

Age > 18 years and eGFR 30-
89ml/min/1.73m2  

 
 
Positive effect on TKV at the 
end of the 1° year, not 
significant at the 3° year 
 
 
 
Positive effect on TKV at 1° 
and 3° year, not significant on 
mGFR  
 
 
 
No positive effect on eGFR, 
significant reduction in TKV 
growth 
 
 
Variations of GFR between 
the two groups 



Substrate reduction therapy 
against Sphingolipids: 

 
 Venglustat  
 

 
 

 
Phase 3, double-blind 
placebo-controlled RCT 
560 patients, 24 months, 
Recruiting NCT03523728 

 
 

 
Age 18-50 years and eGFR 45-
90ml/Min/1.73 m2  
TKV Mayo 1C-1E 
 

 
 

 
Variation of kidney growth 
and change of glomerular 
filtration  

Metabolic and Dietetic 
approach: 
 
 Metformin 
 
 
 
 
 
 
 Metformin  
 
 
  
 
 Metformin 
 
 
 
 
 
  
 2-Deoxy Glucose 
 (2DG) 
 
 
  
 Pioglitazone 
 
 
 
 
 
 
 

 Caloric Restriction 
 Diet 
 

 
 
 
TAME 
Phase 2, double-blind 
placebo-controlled RCT, 97 
patients, 26 months  
Active, not recruiting 
NCT02656017  
 
phase 2,  double-blind 
placebo-controlled RCT, 50 
patients ,12 months  
Recruiting NCT02903511 
 
METROPOLIS  
Phase 3, RCT Tolvaptan -
controlled, 150 patients, 25 
months 
Not yet recruiting 
NCT03764605 
 
Phase 1, 18 patients, 3 
months  
 
 
 
PIOPKD 
Phase 2, double-blind 
placebo-controlled RCT, 18 
patients, 24 months 
Active, not recruiting 
NCT02697617 
 
 
Randomized to intermittent 
or continuous energy intake 
reduction , 40 patients , 18 
months, recruting 
NCT03342742 

 
 
 
Age 18 -60 years, non-
diabetic and eGFR > 50 
ml/min/1.73m2  

 

 

 

 
Age 30- 60 years, non-
diabetic with eGFR between 
50 and 80 ml/min/1.73m2 

 

 

Age 18-50 with  eGFR ≥45 
ml/min/1.73m2 
non-diabetic with truncating 
mutations of the PKD1 gene.  
 
 
 
Age 18-55 with eGFR > 45- 
ml/min/1.73m2, TKV Mayo 
1C-1E 
 
 
Age 18-55 years with eGFR ≥ 
50 ml/min/1.73 m2 
non-diabetic 
 
 
 
 
 
18-65 years, BMI 25-45 kg/m2 
with eGFR≥ 30 
ml/min/1.73m2 
 

 
 
 
Compliance, tolerability and 
toxicity of the drug; 
secondary outcomes TKV and 
changes in eGFR  
 
 
 
changes  of TKV and  eGFR  
 
 
 
 
changes  of TKV and  eGFR  
 
 
 
 
 
 
tolerability and toxicity  
 
 
 
 
safety; secondary: TKV by 
MRI and bone marrow fat 
content by MRI spectrometry 
 
 
 
 
 
Primary: weight loss, 
tolerability and compliance.  
Secondary: TKV by MRI  
 

Tyrosin Kinase Inhibition: 
 
 
  Bosutinib (SKI-606) 
 
 
 
 
  Tesevatinib 
 

 
 
 
Phase 2, RCT, 172 patients, 
36 months  
Published (79) 
 
 
Non-randomized Phase 1/2 
trial, 74 patients, 24months 
Active , not yet recruiting 
NCT01559363 

 
 
 
Age 18-50 with eGFR ≥ 60 
ml/min/1.73 m2 
TKV  ≥ 750mL 
 
 
Age 22-62 years with eGFR 
≥35 ml/min/1.73m2 and a 
htTKV ≥ 1000 mL 

 
 
 
66% reduction of TKV  for 
bosutinib versus placebo 
the eGFR decline was not 
statistically significant 
 
safety, pharmacokinetics, 
maximum tolerated dose and 
eGFR 

Table 1: summary data of the main clinical trials completed, ongoing or activated in ADPKD. RCT = 

Randomized Clinical Trial, eGFR = estimated glomerular filtration rate, TKV = Total Kidney Volume, BMI = 

Body Mass Index 



 

Fig. 1: representation of the temporal distribution of completed, on-going or in activation clinical trials 



 

Fig. 2: graph representing the ratio between sample size and duration of the FUP of the main phase 3 

clinical trials. The left panel shows thecompleted studies, while the right panel shows on-going and in 

activation clinical trials. 1 = Aladin 1 (32); 2 = Aladin 2 (33); 3 = Sirolimus (50); 4 = DIPAK 1 (34); 5 = 

Everolimus (51); 6 = Tempo 4:4 (15); 7 = REPRISE (18); 8 TEMPO 3:4 (10); 9 = METROPOLIS (NCT03764605); 

10 = LIPS (NCT02127437); 11 = VENGLUSTAT (NCT03523728) 
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Modena, 02/11/2019 

Dear Editor, 
we thank you for reviewing our work which has allowed us to improve the final quality of our paper. 
We have carefully read the comments of the reviewers to whom we replied promptly as indicated 
in the following lines.  
Major Criticisms 
 

1) The results from studies are reported without the support of numbers but only with a 

description and some comments. I believe this setting  should be amended. The Authors 

should report the results in detail, especially for more clinically significative studies ( 

Tolvaptan). Otherwise, the reader must look for the original manuscript to appreciate the 

data reported in the manuscript. The numeric details of the results are particularly crucial for 

Tolvapatan studies while it is comprehensible that in ongoing studies it is not worth 

summarising in details the results 

Support of numbers was added for the main clinical trials in particular for the Tolvaptan and 
Somatostatin trials. These modifications can be checked in the main document by the ‘review 
tracking feature’ of Word. 
 
 
Minor Criticisms 

1) The acronyms CFTR is used without an explanation. I suppose that it stands for fibrosis 

transmembrane conductance regulator 

The complete definition ‘cystic fibrosis transmembrane conductance regulator’ was reported at 
the first appearance of the CFTR acronym.  
2) The formula of eGFR is written not correctly; indeed the 2 has to in 

superscript  ml/min/1.73m2 

‘2 supercript’ was corrected for all the occurrences of the eGFR formula 
3) In the Venglustat paragraph is reported "…increase in two central sphingolipids: 

glucosylceramide (GL-1) and ganglioside GM3 levels (34, 35)…" I suppose that levels refer to 

plasma levels. Please specify 

We specified plasma levels 
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4) In "Concluding remarks" the Authors say: "…only one molecule (Tolvaptan) has obtained 

authorization for treatment in ADPKD…".  This point should be checked because I think that 

also the analogs of somatostatin have this authorization 

Octreotide-LAR is not EMA neither FDA authorized for ADPKD, but limited to the Italian Territory 
is reimbursed according to a special authorization of the Italian Agency of Drugs AIFA 
(‘DETERMINA 3 agosto 2018. Inserimento del medicinale octreotide a lunga durata d’azione 
nell’elenco dei medicinali erogabili a totale carico del Servizio sanitario nazionale,ai sensi della 
legge 23 dicembre 1996, n. 648’). 
This particular condition for the Italian patients and physician was reported in the ‘final remarks’ 
section with the following sentence : 
…. 
limited to the Italian territory Octreotide-LAR can be reimbursed by the Italian National Health 
System in adult ADPKD patients with stage 4 CKD and increased risk of rapid progression after 
the authorization of the Technical Scientific Advisory Board of the AIFA-CTS on the basis of the 
case-by-case assessment 
….. 
 
Best Regards 
Riccardo Magistroni and Francesca Testa 

 


