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a b s t r a c t 

Background and objectives: Malignant lymphomas are cancers of the immune system and are character- 

ized by enlarged lymph nodes that typically spread across many different sites. Many different histo- 

logical subtypes exist, whose diagnosis is typically based on sampling (biopsy) of a single tumor site, 

whereas total body examinations with computed tomography and positron emission tomography, though 

not diagnostic, are able to provide a comprehensive picture of the patient. In this work, we exploit a data- 

driven approach based on multiple-instance learning algorithms and texture analysis features extracted 

from positron emission tomography, to predict differential diagnosis of the main malignant lymphomas 

subtypes. 

Methods: We exploit a multiple-instance learning setting where support vector machines and random 

forests are used as classifiers both at the level of single VOIs (instances) and at the level of patients 

(bags). We present results on two datasets comprising patients that suffer from four different types of 

malignant lymphomas, namely diffuse large B cell lymphoma, follicular lymphoma, Hodgkin’s lymphoma, 

and mantle cell lymphoma. 

Results: Despite the complexity of the task, experimental results show that, with sufficient data samples, 

some cancer subtypes, such as the Hodgkin’s lymphoma, can be identified from texture information: in 

particular, we achieve a 97.0% of sensitivity (recall) and a 94.1% of predictive positive value (precision) on 

a dataset that consists in 60 patients. 

Conclusions: The presented study indicates that texture analysis features extracted from positron emission 

tomography, combined with multiple-instance machine learning algorithms, can be discriminating for 

different malignant lymphomas subtypes. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the last decade, machine learning and artificial intelligence

have produced stunning results in many domains [1] . Health-care

systems have also been strongly affected by this process, as clinical

data are now produced and stored at an unprecedented rate: this

has enabled the rapid development of a novel research field named

radiomics [2] , where data analytics is applied to medical data, and

in particular to imaging data. 

In this paper, we exploit this kind of approach in the diagnostic

phase of malignant lymphomas (ML), heterogenous cancers orig-

inating from the immune system. ML are classified into several

subtypes based on their pathologic and immunologic features. Het-

erogeneity of ML is not only seen between ML subtypes but also

within each subtype [3] . This is the case, for example, of grading

and transformed areas in follicular lymphomas (FL) and other in-

dolent lymphomas, cell of origin for diffuse large B cell lymphomas

(DLBCL), and blastoid features in mantle cell lymphomas (MCL). Of

note lymphoma subtype and intrapatient heterogeneity are major

drivers of patients’ outcome [3] . ML diagnosis and subtype defi-

nition are usually based on the sampling (biopsy) of a single tu-

mor site, typically the easiest to biopsy lymph node, that however

does not necessarily provide a full characterization of the ML fea-

tures. Conversely, total body examinations such as computer to-

mography (CT) and fluorodeoxyglucose positron emission tomog-

raphy (FDG-PET) scans, though not diagnostic, provide a compre-

hensive picture of the patient, characterizing multiple sites with a

single exam. 

So far, however, no study has been conducted to understand

how imaging features may support histologic diagnosis, and bet-

ter report on the heterogeneity of ML in a single patient. This pa-

per aims to employ texture analysis techniques to extract relevant

features from the volumes of interest (VOIs) contained in diagnos-

tic PET-scans, so that machine learning algorithms can be subse-

quently used to identify ML subtype. In this framework, machine

learning approaches are capable of automatically inferring which

are the most significant data samples and features for the cat-

egories to be discriminated. In addition, from the point of view

of machine learning, the problem is particularly challenging, as it

can be naturally framed into the so-called multiple-instance learn-

ing framework, where each entity to be classified (the patient) typ-

ically consists of a collection of instances (the VOIs) that concur to

the determination of the category of the main entity. In this paper,

we exploit two different instantiations of multiple-instance learn-

ing: (i) a first one where predictions are first made at the level

of VOIs, and further aggregated into an outcome at the level of

patients, and (ii) a second one where classification is performed

directly on patients. 

We will present an experimental evaluation conducted on two

datasets collected from the Arcispedale Santa Maria Nuova in Reg-

gio Emilia. A first dataset contained examples regarding four dif-

ferent ML subtypes, while the second dataset contained Hodgkin’s

lymphoma (HL) patients only. Our results will show that HL is

indeed the category that is best recognized by the proposed ap-

proach, achieving over 90% of precision (or positive predicted

value) and recall (or sensitivity). We believe the implementation of

this approach to be a first step towards the creation of a diagnosis

support system, that, in the future, could avoid to perform biopsy

in several cases. All the datasets and the source code needed to

reproduce our results have been made publicly available. 

The main contributions of the paper can be summarized as fol-

lows: (1) we present the first study that exploits machine learn-

ing and texture analysis to classify ML subtype; (2) we propose a

natural formalization of the problem as a multiple-instance learn-

ing task; (3) we conduct a thorough experimental evaluation of the

approach on two datasets; (4) we illustrate how interpretable mod-
ls can be used to assess which are the most relevant texture fea-

ures. 

The paper is structured as follows. Section 2 discusses related

orks, highlighting the novelty of our approach. Section 3 de-

cribes our methodology, introducing the problem of multiple-

nstance learning in more detail, and illustrating the radiomics

ipeline exploited in our approach. Then, in Section 4 we

resent the datasets used in our evaluation process, whereas in

ection 5 we describe experimental results across different set-

ings. Finally, Section 6 concludes the paper by presenting future

esearch directions. 

. Related works 

The research field of radiomics attempts to combine techniques

or texture feature extraction from medical images with machine

earning approaches, for the construction of systems capable to

upport diagnosis, prognosis, and response to treatment. 

Building a diagnosis support system for the classification of ML

ubtype is a highly challenging task, due to the inherent hetero-

eneicity of the disease across different patients, as well as within

 single patient. Availability of total body digitalized images assess-

ng morphology and metabolism of the disease provide unique op-

ortunity to dissect complexity of ML (and other cancers). Most

f the existing approaches rely on the manual segmentation of

OIs, and on the extraction of texture-based features, that have

een widely studied in the literature. This research field has re-

ently received a growing attention, but only a few studies have

nvestigated the potential of expoiting machine learning algorithms

n combination with texture analysis. Moreover, none of these ap-

roaches have addressed the problem as a multiple instance clas-

ification task. 

As for the categorization of ML subtypes, promising results have

een obtained for the problem of differentiating DLBCL and FL in

agnetic resonance images [4] with a study conducted on 41 pa-

ients, exploiting statistical analysis to measure correlations be-

ween texture features and ML category. The study reports both

pecificity and sensitivity around 76%. 

Another problem that has received considerable attention is the

ask of FL grading. In [5] , texture analysis and Bayesian classifiers

re used to differentiate across three different levels of aggressiv-

ty, whereas Otzan et al. [6] use machine learning classifiers such

s support vector machines and k -nearest neighbors in combina-

ion with multi-scale feature analysis. In both study, an accuracy

f around 80% is reported. 

Recently, convolutional neural networks have been employed

n [7] to classify hematoxylin and eosin stained histopathology

lides belonging to three different ML subtypes (FL, MCL, chronic

ymphocytic leukemia). A study on the characterization of stages

f malignant lymphomas from whole-body diffusion-weighted MRI

as proposed in [8] , exploiting statistical analysis over texture fea-

ures. Texture analysis conducted on a set of 41 patients affected

y ML has also been employed to provide prognostic information,

howing how computer tomography can complement FDG-PET [9] .

Looking at slightly different tasks, in [10] discriminant analy-

is is used to discriminate centroblast from non-centroblast cells

n FL images. Support vector machines and texture analysis were

xploited in [11] for the task of differentiating primary central ner-

ous system lymphoma and enhancing glioma. 

With respect to the aforementioned research works, our ap-

roach is, to the best of our knowledge, the first to exploit machine

earning algorithms, and in particular a multiple-instance learning

ramework, to discriminate across four different ML subtypes, us-

ng texture features extracted from FDG-PET images. 
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Fig. 1. Pipeline stages in our system, highlighting training (bottom) and test (top) phases. 
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. Methods 

.1. Exploiting the radiomics pipeline 

The system we implemented for the categorization of the ML

ubtype exploits a pipeline of stages that is typical of many appli-

ations in radiomics. As depicted in Fig. 1 , the pipeline starts from

aw images and the first stage consists in performing a segmenta-

ion of the VOIs, which in our case has been carried out manually

y a nuclear medicine physician (more details in Section 4 ). Sub-

equently, texture analysis is performed on the extracted VOIs, so

hat features characterizing the tumors can be collected. Finally, a

achine learning classifier is trained to learn a function that is ca-

able to predict a desired outcome (in our case, the ML subtype)

rom the input features. 

.2. Texture analysis for ML feature extraction 

Texture analysis has the goal to extract relevant characteristics

rom digital images, or from specific regions or volumes of inter-

st within such images. The features that are extracted from medi-

al images can be defined as shape-based, first-order, second-order,

r higher-order [12] . Examples of shape-based features are volume

nd surface area. First-order features are typically obtained from

he histogram of grey-level values obtained from the considered

OIs: these can be descriptive statistics such as mean or median

alue, minimum and maximum, skewness, kurtosis, etc. Second-

rder features are those that are usually referred to as texture fea-

ures , since they take into account the spatial relationship between

eighboring VOIs in an image, and thus they are capable to capture

etails regarding the heterogeneity of the lesions. These descrip-

ors are typically computed through parent matrices such as the

ray Level Co-occurrence Matrix (GLCM) or the Gray Level Neigh-

orhood Intensity-Difference Matrix (GLNIDM) [13] . An additional

roup of features that are specific of medical images is computed

rom the Standardized Uptake Value (SUV), that is a measure for

he accumultion of radiopharmaceutical in the tissue. Examples of

hese features are its mean or maximum value within the consid-

red VOI, or its peak within a region containing the maximum.

n this work, we will use the texture features extracted with the

GITA software v1.4 [13] , that has already been successfully used

n other radiomics applications [14] . 

.3. Multiple-instance learning (MIL) 

From the point of view of machine learning, the classification of

he ML subtype can be formulated as a multiple-instance learning

MIL) problem, which is a generalization of the supervised learning

etting [15,16] . In such a framework, the examples to be classified
onsist of a collection (bag) of instances, and the label is typically

ttached to the bag rather than to each single instance. In our case,

ags correspond to patients and single instances to VOIs. 

More precisely, in a supervised MIL problem we are given a su-

ervised dataset of n examples D = { (X i , y i ) } n i =1 
, where each ex-

mple X i ∈ X is a bag of k i instances: X i = { x i 
1 
, . . . , x i 

k i 
} . Although

here are no restrictions on the nature of x i 
j 

instances, to simplify

he notation we hereby treat them as p -dimensional vectors, thus

 

i 
j 
∈ R 

p . The goal is to learn a classification function to predict the

arget y i given the bag X i . The classification can be produced ei-

her as the aggregation of the categorizations of single instances

instance-space, or IS), directly at the level of bags by embedding

he set of instances into a single vector (embedded-space, or ES),

r finally by exploiting a distance between bags (bag-space MIL).

oth IS and ES approaches will be used in our experiments, thus

e will describe them in more detail in the following subsections. 

It is worth remarking a peculiarity of the problem of the diag-

osis of malignant lymphomas: from the medical point of view, it

s very often the case that all the instances in a single bag share

he same lymphoma subtype. It is also possible – although very

are – that two different lymphoma subtypes co-exist in the same

atient [17] . More generally, we also remark that the choice of the

IL paradigm is also supported by the large heterogeneity that is

bserved even within the same lymphoma subtype. 

.3.1. Instance-space MIL 

In the instance-space paradigm, a classification function f :

 

p → Y is learned at the level of instances. In this case, the un-

erlying assumption is that the class of the bag is transferred to

ach instance within that bag, even though this fine-grained label-

ng could be potentially noisy. Given the classification of all the

nstances { x i 
1 
, . . . , x i 

k i 
} in a bag X i , an aggregation function is used

n order to assign a label to the bag. The discrimination function F

or a bag is thus computed as: 

 (X i ) = 

f (x i 1 ) ◦ . . . ◦ f (x i 
k i 
) 

Z 
(1) 

here ◦ is the aggregation function and Z some (optional) nor-

alization function. Typical choices assume that a bag is assigned

o class C if the number of instances in the bag assigned to C is

reater than a pre-determined threshold τ . The threshold can be

bsolute (a given number of instances) or relative (a given percent-

ge of instances). According to the domain, different choices need

ust one positive instance to assign the positive label to the bag, or

he majority of the instances. In general, several different solutions

xist, and we refer the reader to the existing surveys on the topic

or more details [15,16] . 
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1 We used IntelliSpace Portal, Philips, Eindhoven, the Netherlands. 
2 Texture Feature Coding (TFC) homogeneity. 
3.3.2. Embedded-space MIL 

In the embedded-space MIL, a classification function f : ˆ X → Y
is learned from an embedded space ˆ X onto which the original bags

X i are projected. This setting is more suitable in those cases where

global information about the whole bag is useful in order to per-

form the classification, and local classifiers are not enough accu-

rate. In general, the embedded space ˆ X can be any space onto

which a discriminant classifier can be applied. A typical choice

is that of aggregating into such embedded space all the statistics

of the single instances, such as the mean, minimum, maximum of

each feature [15,16] . 

3.4. Support vector machines 

In the MIL setting, any machine learning classifier can be used

to learn the classification function. In our approach, we use linear

support vector machines (SVMs), one of the mostly used machine

learning approaches for its simplicity and efficiency. An SVM learns

a function f : X → Y where X is the input space, such as a vecto-

rial space where each dimension represents a feature, and Y is the

output space, that is the set of classes, or outcomes. In the context

of SVMs, such function f is learnt by minimizing a loss function

over a set of N given observations D = { (x i , y i ) } N i =1 
. 

When dealing with a binary classification task, i.e., when there

are just two possible outcomes, a positive class and a negative

class, in the linear formulation function f is computed as: 

f (x ) = 

N ∑ 

i =1 

αi 〈 x i , x 〉 + b (2)

where N is the number of training examples, αi are the parame-

ters to be learned, and 〈 · , · 〉 is the dot product between the input

vectors, and it thus can be seen as a similarity measure between

examples. Therefore, the resulting decision function is a linear hy-

perplane in the input space. Those examples for which the αi co-

efficients are not equal to zero are called support vectors , since the

discriminant function f only depends on them. 

3.5. Random forests 

As a further element of our experimental evaluation, we will

employ also another machine learning classifier, named random

forests (RFs) [18] , that can be exploited to assess the importance

of the features used in the classification process. RFs are an en-

semble classifier, that is a collection of individual classifiers that

are combined to obtain a global prediction. 

In particular, an RF consists in multiple decision trees

(DTs) [19] , that are trees where a path from the root to the leaf

is a specific classification rule, which can be seen as a conjunction

of conditions over sets of features. For example, a path in the tree

could specify that, if feature f 7 > 0.7 and feature f 12 < 2.3 then the

predicted class is positive. DTs are thus highly interpretable. 

In a RF, a total of m different DTs are built, and grown to the

largest extent possible. For the construction of each DT, a sample

of n examples is selected at random, with replacement, where n

is the size of the training set. When selecting the attribute to be

inserted at a certain node in the tree, only a subset of all the fea-

tures is tested. Given the result of the classification of each DT, a

ranking is created, based on the number of votes obtained by each

class, and the category that obtains the most votes is selected. 

While DTs are highly sensitive to small changes in the training

set, RFs are much more robust, as they leverage the contribution

of many trees. Yet, differently from individual DTs, RFs do not pro-

duce interpretable classification rules. However, RFs allow to com-

pute what is called feature importance , which is a score that takes

into account the occurrence of each feature within the ensemble
lassifier. Importance is usually computed as the average reduction

n weighted impurity of a feature across the collection of trees [18] .

. Data collection 

In this section we describe the two datasets used in our exper-

mental study, conducted at the Arcispedale Santa Maria Nuova, in

eggio Emilia. For all the patients, the histological diagnosis has

een confirmed by an expert pathologist. 

All the PET/CT scans collected in this study were performed on

he same dedicated whole-body PET/CT scanner (Discovery STE16,

E Medical System) in three-dimensional mode (3D VUE Point HD

lgorithm with two iterations, 28 subsets, post-filter 5.5mm) cor-

ected for attenuation. All patients fasted for at least 6 h before in-

ection of the 18F-FDG tracers. The serum glucose level measured

t the time of the injection was below 160 mg/dl in all patients.

he examination was performed 60 min after intravenous admin-

stration of 3.7 MBq/kg of 18F-FDG using a standardized protocol.

he image voxel size was 2.73 × 2.73 × 3.27 mm with a slice

hickness of 3.27 mm without gap between slices. Matrix size was

56 × 256. In the assessment of PET-CT we used the Deauville

ve-point scale [20] that was defined for each case by one blinded

uclear medicine physician. 

Only lymph nodes lesions (VOIs) were considered in this analy-

is. The VOIs were extracted by an experienced (5 years) nuclear

edicine physician using a 40%-threshold of SUV max (maximum

UV in the lesion) within a manually drawn volume. 1 The VOIs

ere independently checked by another nuclear medicine physi-

ian (10 years of experience). The texture features were extracted

sing Matlab CGITA software v. 1.4 [13] . SUV values were resam-

led in 64 discrete values using an absolute method (SUV range:

–25) in order to reduce the impact of noise and size of matrices.

he stability of features was studied in a previous work [21] . 

The 108 features computed by CGITA have then been reduced

o 98, after removing nine features presenting a Kendall correlation

oefficient larger than 0.999 with some other feature, and another

eature 2 whose value was equal to zero in over 75% of the cases.

ll the datasets, the complete list of features, and the source code

f our system are available in our repository at the following url:

ttps://github.com/marcolippi83/MIL-lymphomas . 

.1. Dataset A: multiple lymphoma subtypes 

In a first dataset, 36 patients were retrospectively included: 9

atients for each type of considered lymphomas (DLBCL, FL, HL and

CL). The number of VOIs per each patient varied from 1 to 37,

eing dependent on the lymphoma type. In the whole dataset, 349

OIs were studied: 66 for DLBCL patients, 86 for FL patients, 53

or HL and 144 for MCL. The distribution of the number of VOIs

cross the four lymphoma subtypes is represented in Fig. 2 (left).

s well known, the MCL subtype typically exhibits many lesions,

hereas the HL subtype shows on average the minimum number

f VOIs per patient. Fig. 2 (right) instead shows how VOI regions

re distributed across the different ML subtypes: even in this case,

e can notice how regions in HL are much more homogeneous,

ostly appearing in the mediastinum, latero-cortical region, col-

arbone and collarbone pit. Although clearly the limited size of the

ataset could lead to overfitting, and the information about regions

nd number of VOIs per patient is thus not discriminant per se,

evertheless it can be an important additional feature for the clas-

ification of the ML subtype. 

https://github.com/marcolippi83/MIL-lymphomas
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Fig. 2. Boxplot representing the distribution of the number of VOIs per patient (left) and barplot depicting the percentage of VOIs per region (right) across the four lymphoma 

subtypes in Dataset A. In the barplot on the right, the region abbreviations are: axillary (AX), abdominal vascular axis (AVA), abdominal (ABD), collarbone and collarbone pit 

(COL), inguinal (ING), latero-cortical (LC), mediastinum (MED), pelvic (PEL). 
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3 The features computed for small VOIs are much more sensible to changes in 

the segmentation process. For this work, we consider a VOI to be small if its SUV 

statistics tumor volume is less than threshold value 2.6. 
.2. Dataset B: Hodgkin’s lymphoma 

In a second dataset, 24 patients affected by HL were retrospec-

ively included. The number of VOIs per each patient ranged from

 to 6 for a total of 78 VOIs. This second population of patients

as chosen as an internal validation set for our model. 

. Results 

.1. Experimental setup 

We now describe the experimental results conducted on the

wo datasets described in Section 4 . In all our experiments, we

sed an SVM with linear kernel as the machine learning classi-

er, both in the instance-based and in the embedding-based set-

ing. In a final, additional experiment, we also used RFs in order

o assess the relevance of the texture features. To evaluate our ap-

roach, we employed a standard leave-one-out (LOO) procedure,

here each patient was used, in turn, as the test set, and all the

ther patients constituted the training set. Clearly, in the instance-

ased setting, all the instances of a patient were assigned either

o the training or to the test set. In order to perform model selec-

ion on the regularization hyper-parameter of SVM, for each fold

f the LOO evaluation, an inner LOO procedure was applied on the

raining data only. This is a standard cross-validation procedure in

achine learning, that is strongly encouraged in order to assess

he robustness of the approaches in PET/CT image characterization

ith texture analysis [22] . 

In the embedded-space (ES) setting, for the embedded vector

e exploited the minimum, maximum, and mean value of each

eature, then the number of VOIs, and finally, where explicitly

tated, also the histogram of frequencies of the VOI regions. For the

nstance-space (IS) setting, we simply used the texture features,

nd a one-hot encoding of the region, whereas the class of each

OI was inherited from the patient. 

In order to measure the performance of our systems, we

dopted standard classification metrics. For a given positive class

i.e., ML subtype) we define the True Positives (TP) as the number

f correctly classified examples for that class, whereas the False

ositives (FP) represent the number of examples predicted as pos-

tive, which are actually negative, and the False Negatives (FN) are

he missed examples of positive class. Given these figures, we can

efine precision (or positive predictive value) P = 

T P 
T P+ F P as the false

ositive ratio, the recall (or sensitivity) R = 

T P 
T P+ F N as the false neg-
tive ratio, and the F 1 = 

2 PR 
P+ R as the harmonic mean between pre-

ision and recall. For completeness, we also report accuracy A as

he total number of correctly classified examples, including nega-

ive cases. We remark that, in imbalanced datasets, it can be easy

o achieve a high accuracy if only correctly detecting the most fre-

uent class (which, in our case, would be the negative one). For

his reason, we will mainly consider the other metrics in our eval-

ation. 

.2. Dataset A: multiple lymphoma subtypes 

We first run experiments on dataset A, thus considering four

ymphoma subtypes: DLBCL, FL, HL, MCL (see Section 4.1 ). For each

ubtype, we defined a binary classification task, where the goal is

o discriminate that subtype (positive class) from the others (neg-

tive class). We chose to exploit four binary classification tasks in-

tead of a single multi-class problem because these four subtypes

re not the only existing lymphoma subtypes, thus a multi-class

ormulation would have implicitly made the (strong) assumption

f knowing that the patient necessarily belongs to one of the four

ubtypes. 

Table 1 presents the results obtained on this dataset, whereas

able 2 reports the confusion matrices for the best method for

ach ML subtype. We compare the results of the ES and IS set-

ings, with or without the region information (R rows in Table 1 )

nd, finally, we report also the performance when small VOIs are

iscarded 

3 ( � rows in Table 1 ). First of all, the results confirm that

he proposed approach is very effective in identifying the HL class,

or which both precision and recall for patients are larger than 90%

hen region information is used, and only large VOIs are consid-

red. For DLBCL and MCL performance are much lower, although

ar above a random baseline, as it can be observed from the confu-

ion matrices shown in Table 2 , achieving in both cases an F 1 score

arger than 60%. The FL class is instead the most difficult to detect,

lthough the ES approach is capable to identify few positive cases,

ithout any false positive. As a further confirmation, by analyz-

ng in more detail the errors of each classifier, indeed we observed

hat the large majority of the wrongly classified patients (over 50%

f the cases) belong to the FL class. Conversely, again considering

he ES case, no MCL patient is wrongly classified as affected by one



6 M. Lippi, S. Gianotti and A. Fama et al. / Computer Methods and Programs in Biomedicine 185 (2020) 105153 

Table 1 

We compare the performance on VOIs and patients (accuracy A , precision P , recall R , and F 1 ) for the embedded-space (ES) 

and instance-space (IS) classifiers, on each of the four binary classification problems, defined by the lymphoma subtype. 

Besides texture analysis rows with R also exploit information about region. Subscript � indicates that large VOIs only are 

considered. Best results for each metric are highlighted in bold. 

Subtype Method
VOIs Patients

A P R F1 A P R F1

DLBCL

ES – – – – 0.778 0.545 0.667 0.600

ES + R – – – – 0.806 0.600 0.667 0.632

ES� + R – – – – 0.778 0.571 0.444 0.500

IS 0.725 0.317 0.394 0.351 0.667 0.364 0.444 0.400

IS + R 0.765 0.407 0.530 0.461 0.806 0.583 0.778 0.667

IS� + R 0.800 0.379 0.512 0.436 0.833 0.714 0.556 0.625

FL

ES – – – – 0.833 1.000 0.333 0.500

ES + R – – – – 0.778 1.000 0.111 0.200

ES� + R – – – – 0.750 0.000 0.000 0.000

IS 0.504 0.182 0.291 0.224 0.457 0.143 0.222 0.174

IS + R 0.553 0.292 0.570 0.386 0.528 0.250 0.444 0.320

IS� + R 0.565 0.316 0.560 0.404 0.639 0.357 0.556 0.435

HL

ES – – – – 0.917 0.875 0.778 0.824

ES + R – – – – 0.917 0.875 0.778 0.824

ES� + R – – – – 0.944 0.889 0.889 0.889

IS 0.728 0.294 0.566 0.387 0.722 0.462 0.667 0.545

IS + R 0.791 0.384 0.623 0.475 0.861 0.750 0.667 0.706

IS� + R 0.818 0.419 0.619 0.500 0.833 0.714 0.556 0.625

MCL

ES – – – – 0.556 0.360 1.000 0.529

ES + R – – – – 0.556 0.360 1.000 0.529

ES� + R – – – – 0.611 0.391 1.000 0.563

IS 0.662 0.610 0.500 0.550 0.806 0.600 0.667 0.632

IS + R 0.625 0.550 0.500 0.524 0.722 0.455 0.556 0.500

IS� + R 0.593 0.540 0.488 0.513 0.694 0.429 0.667 0.522

Table 2 

Confusion matrices on patients for each binary classification problem on the 36-patients dataset. Results are ob- 

tained with a leave-one-patient-out cross validation. For each subtype, we show the results obtained with the best 

configuration in terms of F 1 in Table 1 . 

DLBCL 0 1

0 22 5

1 2 7

FL 0 1

0 27 0

1 6 3

HL 0 1

0 26 1

1 1 8

MCL 0 1

0 23 4

1 3 6
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of the other lymphoma subtypes, being always correctly detected

as a negative case (when the positive class is DLBCL, FL, or HL).

Another general observation is that the information about region

typically improves the performance, except for the MCL category,

which is in fact the one for which region distribution is the most

heterogeneous, and the largest number of VOIs per patient is typi-

cally observed. 

It is worth highlighting that the performance at the level of

single VOIs are quite low for the IS approach, but they are sub-

stantially better when predictions are aggregated at the level of

patients. This is not surprising, since predicting the class of indi-

vidual instances is a much harder task than predicting the class of

the patient. This is also the reason why the ES approach, which
ddresses the problem directly at the level of patients, typically

erforms better than the IS approach. 

We hereby remark that the presented results are obtained on a

elatively small set of patients, which makes the task very chal-

enging but at the same time also prone to overfitting. For this

eason, we avoided using information regarding patients, such as

ex, age, weight, or height: the considered sample would have not

een large enough to be significant for the whole population. Nev-

rtheless, even with such a small amount of data, results are far

eyond a random prediction for all the four considered subtypes.

or HL, in particular, both precision and recall larger than 90% are

chieved with a dataset of just 60 patients. All these figures con-

rm the great potential behind this research direction. 
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Table 3 

Performance achieved on the 60-patients dataset for HL prediction task, with the embedding-space approach (ES) 

and the instance-space approach (IS), respectively. Results compare accuracy A , precision P , recall R and F 1 . Besides 

texture analysis rows with R also exploit information about region. Best results for each metric are highlighted in 

bold. Subscript � indicates that large VOIs only are considered: in this case, the ( ∗) superscript indicates that one 

patient is not included (having just one small VOI). 

Subtype Method
VOIs Patients

A P R F1 A P R F1

HL

ES – – – – 0.883 0.906 0.879 0.892

ES + R – – – – 0.883 0.842 0.970 0.901

ES
(∗)
� + R – – – – 0.881 0.857 0.938 0.896

IS 0.799 0.645 0.763 0.699 0.850 0.875 0.848 0.862

IS + R 0.843 0.703 0.847 0.768 0.950 0.941 0.970 0.955

IS
(∗)
� + R 0.851 0.704 0.888 0.785 0.915 0.909 0.938 0.923
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Table 4 

Confusion matrix on single VOIs (left) and on patients (right) for the binary 

classification of HL, on the 60-patients dataset, using the instance-based ap- 

proach, exploiting both texture features and region information. 
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1 20 111
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.3. Dataset B: Hodgkin’s lymphoma 

As a second testbed for our approach, we considered Dataset

 too, thus only focusing on HL. As a first experiment, we trained

ur model on Dataset A (36 patient) and used Dataset B as a test

et only. The ES model using all the VOIs, and exploiting region

nformation too, wrongly classified 5 patients out of 24 whereas a

odel trained without small VOIs – which corresponds to ES � + R

ow in Table 1 , that is the best performing model for HL – instead

orrectly predicted 22 patients out of 23 as positives (one patient

ould not be classified, as it had only one small VOI 4 ). 

Furthermore, we also performed a LOO validation by merging

atasets A and B, thus obtaining a total of 60 patients. Results

re reported in Table 3 , showing that, by increasing the number

f examples, performance greatly improves, achieving F 1 > 0.85 in

ll the settings, with a maximum of 0.955 for IS with region in-

ormation. Performance on single VOIs improves as well, reaching

 1 = 0 . 785 . These results confirm that the HL subtype can be iden-

ified with remarkable accuracy. 

.4. Feature importance 

As a further experiment, we also tested an RF classifier, so

s to measure the importance of the considered features. While

n Dataset A the performance of RFs resulted to be significantly

ower than that of SVMs, for the binary task of HL identification

n the union of Datasets A and B, performance were satisfactory,

lthough not as good as those achieved by SVMs. In particular, the

F achieved F 1 = 0 . 845 , resulting from P = 0 . 789 and R = 0 . 909 . 5 

Therefore, we could use the RF to compute the importance of

eatures (as explained in Section 3.5 ). When ranking all the fea-

ures by their importance score, we found the five most impor-

ant features to be the entropy, number nonuniformity and small-

umber emphasis from the neighborhood gray-level dependence

atrix, and the complexity and strength from the neighborhood

ntensity difference matrix [13] . When training a linear SVM on the

nion of Datasets A and B to detect HL with the ES setting, using

nly these five features, we achieved a remarkable 0.773 value for

 1 , which could be improved up to 0.901 when including also in-

ormation about regions. We believe this to be a very important

tep towards creating an interpretable system, since from a de-

ailed analysis of the features, and from the results obtained with

mall feature sets, it could be possible to derive classification rules

e.g., single decision trees) that are understandable for humans.
4 This is the reason for which we indicate the results with a ( ∗) symbol in Table 3 . 
5 We observed negligible differences across multiple runs of the RF classifier. 

f  

w  

d  

o  
e aim to address this issue in our future research, since a larger

ataset would be necessary to assess the generalization capabilities

f such rules, and to prevent overfitting ( Table 4 ). 

. Discussion 

In this work, we addressed the task of predicting the subtype

f ML from texture features, using multiple-instance learning with

upport vector machines. Experimental results show the great po-

ential of the approach, in particular for what concerns the detec-

ion of the Hodgkin’s lymphoma, where precision and recall larger

han 90% are achieved on a dataset of just 60 patients. An anal-

sis of the importance of features conducted with random forests

llows to identify the most relevant texture features for the con-

idered task. To summarize, the proposed approach indicates that

exture features extracted from FDG-PET, coupled with machine

earning algorithms, are highly discriminative of the ML subtype.

his is the first study of this kind, conducted to discriminate across

our different ML subtypes, exploiting multiple-instance learning.

lthough no direct comparison can be made in terms of results

chieved with respect to related works – as no previous method

ddressed the same task – the performance achieved in our exper-

mental study are in line with those achieved in the literature for

imilar tasks. 

The proposed system undergoes a pipeline of steps, which cur-

ently includes a manual segmentation of the volumes of interest.

his is a time-consuming procedure, requiring experts to manually

can each image, and contour the relevant regions. As a future re-

earch direction, we aim to employ deep learning approaches such

s convolutional neural networks, that have recently achieved sig-

ificant results in many medical imaging applications, to directly

xtract features from the whole images, without the need to per-

orm manual segmentation. Another interesting research direction

ould be that of building a machine learning system capable of

ifferentiating healthy patients from those affected by any category

f ML. Finally, further studies involving relational learning could
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also be exploited to include also clinical and imaging-related data,

with background knowledge given by experts. 
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