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Abstract: Synaptic plasticity is the cellular and molecular counterpart of learning and memory and,
since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic
strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was
considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown
to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here,
we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and
characterized in different brain areas. In particular, we focus our attention on the molecular pathways
involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we
discuss, from the computational perspective, how IP can contribute to the emergence of functional
properties of brain circuits.
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1. Introduction

The emergence of brain functions, from motion control to cognition and abstract thinking, is
tightly bound to the ability of brain circuits to adjust synaptic connections [1]. For a long time,
this capability was hypothesized to rely exclusively on the adaptability of excitatory synapses,
assuming the substantial invariance of inhibitory connections. Only recently, a wide number of
molecular and cellular mechanisms residing at inhibitory synapses and responsible for the emergence
of complex brain states are beginning to be unraveled [2]. It is, in fact, evident that inhibitory synapses
throughout the brain exhibit activity-dependent changes of their connectivity weights both in the
form of long-term potentiation (LTP) and long-term depression (LTD). Nevertheless, the investigation
of activity-dependent changes of inhibitory synapses has been traditionally prevented, or strongly
limited by the wide number of GABAergic cell types and the consequent difficulty of isolating specific
neuronal pathways [3]. The extraordinary variety of inhibitory interneurons and related connections
expands the number of plasticity subtypes, which can be expressed. Importantly, the impact of IP on
neuronal circuits, by acting on the overall neuronal excitability and on the possibility to further induce
persistent forms of plasticity, can have important consequences on the brain functionality [4]. There is
indeed increasing attention on the various forms of IP since circuit refinement induced by changes
of the Excitatory/Inhibitory (E/I) balance can strongly influence learning and memory. In particular,
the advent of sophisticated techniques either in the form of molecular, genetic, or electrophysiological
and imaging approaches has started to allow precise dissection of microcircuits and of single synaptic
types [5]. Moreover, long-term changes in inhibitory activity can induce pathological alterations of
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brain functions, while several neuropsychiatric disorders have been shown to be related to permanent
GABAergic dysregulations [6,7].

In this article, we discuss how the various forms of IP shape brain circuits architectures and
functions with particular attention on neuronal computation. We begin with a panoramic view on
the variety of GABAergic cell types and circuits to continue with an analysis of the induction and
expression mechanisms of inhibitory LTP and LTD. We then proceed with discussing the functional
consequences of the aforementioned mechanisms, including computational models proposed to predict
the effects of IP. Finally, we analyze the potential involvement of inhibitory plasticity in the emergence
of pathological disorders to end with a few suggestions regarding the implementation of synaptic
learning rules into artificial circuits.

2. Variety of Inhibitory Circuits in the Central Nervous System

Although it is widely accepted that inhibitory neurons are actively engaged in network computation
by providing global stability to network dynamics, by controlling the degree of circuit synchronization
and by controlling the timing of neuronal firing [8], it is still under debate the way fine-tuning
of inhibitory connections participate into regulatory mechanisms of circuit dynamics. Certainly,
information processing is strictly dependent on how excitation and inhibition are in balance with each
other, engaging directional and recurrent wired networks, implementing computational functions
like the expansion of the dynamic range of neuronal responses [8], the input separation through
winner-take-all schemes [9], or spatial pattern separation through combinatorial operators [10].
Nevertheless, even the lack of a precise definition of the concept of balance strongly limits the
possibility to fully understand the interplay between excitatory and inhibitory signaling. For instance,
the temporal and spatial scales over which neuronal activity is tuned by the interplay between
glutamatergic and GABAergic synapses affect the timing of spike generation [11–13] rather than the
average firing rate [14] or the synchronization of local [15] and global networks [16].

One of the major obstacles in identifying the way inhibitory plasticity tunes the activity of brain
circuits comes from the diversity of inhibitory interneurons in the CNS, which still leaves these cells
the capacity to provide inhibition to a large variety of excitatory input classes [3]. Among neuronal
categories, almost 20% is GABAergic [17] and show a wide variety of functional and molecular
subtypes with variable locations and, interestingly, capacities for plasticity [2,18–20]. In some cases,
even the classification of interneurons as exclusively inhibitory is technically difficult because, in early
development, GABA can act as depolarizer [21], and into adulthood, some axo-axonic contacts may
continue with this behavior [22].

Several attempts have been indeed made to classify cortical interneurons, for instance, the so-called
“Petilla terminology” [23], by collecting features describing interneurons, classifies GABAergic cells
following (i) morphological and (ii) molecular properties. A major effort has been made indeed
to generate clusters of inhibitory neurons based on their gene expression. Although an attempt in
classifying interneurons has been made by considering single properties independently, the amount of
subtypes emerging from considering all the possible combinations increases dramatically. More in
detail, recent works have identified at least 10 distinct classes of inhibitory neurons in the hippocampal
circuits [24] with more than 30 subclasses. Although most of them show overlapping functional
and computational properties, the analysis of the contribution of inhibitory neurons and plasticity in
circuit computation has to deal with this heterogeneity. When focusing the attention only on cortical
networks, the variety of GABAergic neurons has been investigated under the molecular, morphological,
and functional points of view, as well as on the ability to undergo synaptic plasticity [3]. Furthermore,
a critical issue regards the computational capacity of interneurons deriving from the organization
of synaptic connectivity. For instance, chandelier cells, interneuron with the anatomical property of
embracing the hillock of target neurons, can implement a simple modulation of the action potential
generation in principal neurons (PNs) by exploiting synaptic contacts on the initial tract of axonal
segments [25]. Conversely, basket cells provide inhibition to cell bodies and proximal dendrites of PNs.
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The strategic location of efferents and the confined segregation of synapses allow controlling spike
timing, oscillations, and integrative functions such as orientation selectivity or refinement of sensory
maps [26] by exploiting peri-somatic innervation. Back to the molecular distinction, the neuronal
subtypes identified in GABAergic interneuron classes can be, however, resumed into four main
groups resulting from the non-overlapping neuronal clustering correlated to the expression of different
markers: a) ParValbumin (PV), b) cholecystokinin (CCK) c) the co-transmitter SOMatostatin (SOM) and
d) serotonin receptor 5-HT3A (5-HT). The main electrophysiological feature of PV cells is a fast-spiking
firing enabling a powerful control of timing and rate of spike output from postsynaptic neurons [27].
Furthermore, PVs interneurons are the main actors in driving oscillations in cortical circuits [28,29].
The CCK interneurons, particular inhibitory subtypes with characteristics similar to PVs cells in terms of
the anatomical organization of efferents, show regular firing providing fine control of the postsynaptic
activity of PNs of both neocortical and hippocampal regions [30]. Even though CCK and PV neurons
show differences, they share similar peri-somatic inhibitory properties, hence allowing the clustering
in the same functional group. This aspect is particularly important in terms of the computational
effects of IP because the morphological differences between neurons belonging to the same molecular
class are responsible for the heterogeneity in the firing patterns. The peculiar electrophysiological
characteristics such as membrane time constant, membrane capacity, and resistance, as well as leakage
or conductance are critically involved in synaptic integration. Differently from PVs and CCKs, SOM
neurons preferentially contact dendrites either on spines or shafts [31]. The main characteristic of SOM
inhibitory interneurons are their action against the spatio-temporal diffusion of signals in dendrites [32].
By exerting their activity at dendritic level, SOM neurons regulate i) dendritic calcium fluxes, which
are in turn involved into the induction mechanisms of LTP and LTD [33], ii) the insurgence of dendritic
spikes driving neurons to somatic bursting activity and iii) other forms of stereotyped network
activity [34]. The last class of inhibitory neurons (5-HT3A) can be subdivided into neuroglia form,
inhibiting dendrites of excitatory neurons and thus massively suppressing circuit activity [35] and cells
expressing vasoactive intestinal peptide (VIP) which exert their actions mainly versus other inhibitory
circuits with paradoxical excitatory consequences on the overall network activity [36]. It appears
evident that, despite the wide spectrum of molecular and morphological subtypes, inhibition is mainly
exploited by the anatomical organization of afferent contacts, which can be alternatively perisomatic or
dendritic. This distinction, in turn, leads to the determination of functional properties that can result in
the emerge of the mechanisms leading to long-term plasticity induction and expression.

When considering the functional differences between GABAergic classes, it is evident that the
shown diversity can be one of the main causes of the inhibitory capability to stabilize and finely regulate
circuits activity [37]. Furthermore, since inhibitory neurons create a wide network of electrically and
synaptically coupled cells with an exceptional variety of physiological and anatomical properties, it is
widely accepted that inhibition cannot be merely considered as a regulator of circuit excitability [38,39].
Additionally, the reciprocal and recurrent broad connections between inhibitory and excitatory neurons
are ideal to condition large circuits areas [40]. Several GABAergic neurons, in fact, widely connect
excitatory cells while locally contact inhibitory neurons exploiting an interplay between excitation and
inhibition in broad neural circuits [41], which is essential to maintain the circuit balance that favors
neural computation [42].

3. Induction and Expression Mechanisms

Given the diversity of inhibitory classes, it can be envisaged that inhibitory plasticity presents
heterogeneous molecular and functional characteristics accordingly. Interestingly, as observed for
excitatory synapses, IP was shown to occur as changes in the presynaptic release, in postsynaptic
GABAA receptors (GABAARs) activity or in mixed forms [43]. Modifies at the presynaptic side
require retrograde signaling that can persistently modulate GABA release [44], whereas purely
postsynaptic mechanisms involve alterations of GABA receptors machinery [45]. The modulation
of neurotransmitter vesicles release from presynaptic boutons is mainly triggered by heterosynaptic
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mechanisms, thus requiring non-GABAergic stimuli [44,46] from nearby synapses, and actually, the
activation of inhibitory fibers is indeed not required. In order for this to happen, signals must be
communicated to the presynaptic terminals following the postsynaptic induction, which can involve a
wide series of mechanisms. The easiest and the most used strategy is via diffusible molecules acting
as retrograde messengers [47]. Alternatively, the glutamate released during the induction process
can be directly spread toward GABAergic terminals to induce changes in vesicles release through the
activation of presynaptic receptors [48]. In the majority of the reported cases, heterosynaptic inhibitory
plasticity was induced by high-frequency or theta-burst stimulation of excitatory axonal terminals [49].
The first forms of potentiation presynaptically expressed through the glutamatergic action of excitatory
fibers were reported in the primary visual cortex and in the cerebellum. The high-frequency stimulation
of layer 4 induced LTP of GABAergic inhibitory postsynaptic potentials (IPSPs) in layer 5 pyramidal
neurons [50], through a not well-identified mechanism involving N-methyl-D-aspartate (NMDA)
receptors in both the pre- and postsynaptic components. Interestingly, this form of IP remains one of
the most investigated forms of plasticity given its importance in the determination of the E/I balance in
the developing visual cortex [51]. Similarly, the stimulation of cerebellar glutamatergic climbing fibers,
bringing the teaching error for motor learning to occur, induces a calcium-dependent long-lasting
potentiation of inhibitory postsynaptic currents (IPSCs) in Purkinje cells mediated by molecular layer
interneuron [52]. In the subsequent years, heterosynaptic LTP at the inhibitory connections has been
discovered in several other brain areas, including the Ventral Tegmental Area [44], lamina I of the spinal
cord [53], neonatal hippocampus [54] and basolateral amygdala [55]. Interestingly, heterosynaptic
inhibitory potentiation shows strong similarities with the classical form of LTP discovered in the
hippocampus in the early 70s: synapse specificity, associativity, calcium signaling, and dependence on
NMDA receptors activation [56]. As in the case of presynaptic excitatory LTP [57], the potentiation
of inhibitory synapses reported so far requires signals to be conveyed to presynaptic terminals
following postsynaptic induction (Figure 1). The retrograde messengers, a class of molecules produced
in the postsynaptic cell in an activity-dependent manner and traveling backward, are essential to
modulate neurotransmitter release, therefore, allowing the expression of LTP. Various pathways
involving retrograde messengers and participating in the triggering of inhibitory plasticity have been
identified; however, two main molecules modulating heterosynaptic LTP are more recurrently found
in different brain regions: i) the diffusible nitric oxide (NO) [44,46] and the brain-derived neurotrophic
factor (BDNF) [58,59]. The NO originates in the postsynaptic compartment following calcium entry
(Figure 1B). The activation of the Nitric Oxide Synthase (NOS) following postsynaptic calcium rise
catalyzes NO, which can freely diffuse in the extracellular matrix by virtue of its gaseous nature.
The NO then triggers cGMP, and eventually, other molecular targets in the presynaptic boutons [60].
The BDNF is involved in the regulation of neurogenesis, activity-dependent synaptic plasticity, and in
other non-neuronal mechanisms [61]. It binds to its high affinity tyrosine kinase B (TrkB) receptor to
activate transduction cascades crucial for early gene expression [62]. The BDNF signal cascade can be
triggered by several mechanisms (Figure 1C), including calcium influx through voltage-dependent
channels [63] and GABAB receptors activation [64]. In an alternative way to the retrograde diffusion
of postsynaptically synthesized molecules, IP could be triggered, as in cerebellar stellate cells, by the
direct activation of NMDA receptors (Figure 1D) on presynaptic GABAergic terminals in response
to the glutamate released from parallel fibers [65]. Similarly, in the frontal cortex of developing rats,
the calcium influx through NMDA-Rs opening caused by glutamate diffusion from nearby synapses
is sufficient to trigger the increase of GABA release [48]. It should also be noted that a particular
mechanism observed for inhibitory LTP has been characterized in the dorsomedial hypothalamus.
The activation of CKK receptors by the exposure to neuromodulators combined with the concomitant
activation of metabotropic glutamate receptors (mGluRs) induces the release of Adenosine triphosphate
(ATP) by surrounding astrocytes acting on presynaptic receptors and in turn triggering a prolonged
increase in GABA release [66].
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Figure 1. Schematic diagram collecting mechanisms underlying presynaptic LTP. A. Excitatory and 
inhibitory fibers contact, by releasing glutamate (glu) and GABA (GABA), a postsynaptic neuron 
expressing both ionotropic (mglu) and metabotropic receptors (GABA-B). B The repetitive release of 
glutamate triggers calcium entry through NMDA receptors in the postsynaptic terminals. The 
activation of Nitric Oxide (NO) synthase (NOS) induces the retrograde diffusion of NO which, in turn, 
activates cyclic-GMP potentiating vesicles release. C. Similarly to B, the repetitive glutamate release 
causes postsynaptic intracellular calcium rise in response to i) Voltage-dependent Calcium Channels 
(VDCaCh) opening, ii) NMDA receptors opening, or iii) mGlu receptors activation causing release 
from intracellular stores. Calcium increase triggers the retrograde diffusion of the Brain-Derived 
Neurotrophic Factor (BDNF) potentiating GABA release via Tyrosine Kinase-1 (TRK) receptors 
activation. D. The diffusion of glutamate in the extrasynaptic space can directly activate presynaptic 
NMDA-Rs favoring the potentiation of GABA release. 

As in the case of i-LTP, the identified forms of i-LTD presynaptically expressed depend either 
on the direct NMDA-Rs activation in the GABAergic terminals [67] (Figure. 2) or through the 
retrograde diffusion of endocannabinoid (eCB) [49] (Figure 2D). These molecules, in response to 
afferent fibers stimulation, move from the post- to the presynaptic terminal triggering LTD induction. 
The eCB-dependent i-LTD, which is widely expressed throughout the brain [68–71], often requires 
the spread of glutamate from nearby excitatory synapses to activate metabotropic receptors (mGluR) 
as a trigger (Figure 2D). Interestingly, this form of plasticity does not necessarily involve calcium 
influx in the postsynaptic terminals, as demonstrated for the mGluR-dependent inhibitory LTD (i-
LTD) in the amygdala [72]. Conversely, hippocampal i-LTD mediated by eCB is triggered by 
interneuron activity likely bringing calcium increase through voltage-dependent calcium channels, 
which in turn induces the simultaneous enhancement of calcineurin activity and the consequent 
reduction of the adenylyl cyclase-protein kinase A (PKA) transduction cascade leading to a long-term 
decrease of GABA release [73]. Additionally, other factors may actually contribute to modulate the 
retrograde diffusion of eCB. For instance, the dopamine receptors type 2 (D2R) were shown to 
suppress GABA release in the prefrontal cortex [74] and in the Ventral Tegmental Area [75] through 
a coactivation of the D2R and Cannabinoid Receptors by an increase of endogenous dopamine levels. 
As in the case of inhibitory presynaptic LTP, also the depression of GABA release can be induced by 
the direct activation of presynaptic NMDA-Rs by glutamate released from excitatory synapses in the 
next proximity [46,76]. Interestingly, our recent results show that the cerebellar inhibitory synapse 

Figure 1. Schematic diagram collecting mechanisms underlying presynaptic LTP. A. Excitatory and
inhibitory fibers contact, by releasing glutamate (glu) and GABA (GABA), a postsynaptic neuron
expressing both ionotropic (mglu) and metabotropic receptors (GABA-B). B The repetitive release of
glutamate triggers calcium entry through NMDA receptors in the postsynaptic terminals. The activation
of Nitric Oxide (NO) synthase (NOS) induces the retrograde diffusion of NO which, in turn, activates
cyclic-GMP potentiating vesicles release. C. Similarly to B, the repetitive glutamate release causes
postsynaptic intracellular calcium rise in response to i) Voltage-dependent Calcium Channels (VDCaCh)
opening, ii) NMDA receptors opening, or iii) mGlu receptors activation causing release from intracellular
stores. Calcium increase triggers the retrograde diffusion of the Brain-Derived Neurotrophic Factor
(BDNF) potentiating GABA release via Tyrosine Kinase-1 (TRK) receptors activation. D. The diffusion
of glutamate in the extrasynaptic space can directly activate presynaptic NMDA-Rs favoring the
potentiation of GABA release.

As in the case of i-LTP, the identified forms of i-LTD presynaptically expressed depend either
on the direct NMDA-Rs activation in the GABAergic terminals [67] (Figure. 2) or through the
retrograde diffusion of endocannabinoid (eCB) [49] (Figure 2D). These molecules, in response to
afferent fibers stimulation, move from the post- to the presynaptic terminal triggering LTD induction.
The eCB-dependent i-LTD, which is widely expressed throughout the brain [68–71], often requires the
spread of glutamate from nearby excitatory synapses to activate metabotropic receptors (mGluR) as a
trigger (Figure 2D). Interestingly, this form of plasticity does not necessarily involve calcium influx
in the postsynaptic terminals, as demonstrated for the mGluR-dependent inhibitory LTD (i-LTD) in
the amygdala [72]. Conversely, hippocampal i-LTD mediated by eCB is triggered by interneuron
activity likely bringing calcium increase through voltage-dependent calcium channels, which in turn
induces the simultaneous enhancement of calcineurin activity and the consequent reduction of the
adenylyl cyclase-protein kinase A (PKA) transduction cascade leading to a long-term decrease of
GABA release [73]. Additionally, other factors may actually contribute to modulate the retrograde
diffusion of eCB. For instance, the dopamine receptors type 2 (D2R) were shown to suppress GABA
release in the prefrontal cortex [74] and in the Ventral Tegmental Area [75] through a coactivation of
the D2R and Cannabinoid Receptors by an increase of endogenous dopamine levels. As in the case of
inhibitory presynaptic LTP, also the depression of GABA release can be induced by the direct activation
of presynaptic NMDA-Rs by glutamate released from excitatory synapses in the next proximity [46,76].
Interestingly, our recent results show that the cerebellar inhibitory synapse between Golgi and Granule
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cells simultaneously exploits these mechanisms. The theta-burst protocol delivered to the excitatory
mossy fibers can bidirectionally modulate GABA release through glutamate diffusion inducing LTP
through the retrograde diffusion of nitric oxide toward GABAergic synapses or, alternative, LTD can
be triggered by presynaptic activation of NMDA receptors [46].
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Figure 2. Schematic diagram collecting mechanisms underlying presynaptic LTD. A. Excitatory and
inhibitory fibers contact, by releasing glutamate (glu) and GABA (GABA), a postsynaptic neuron
expressing both ionotropic (mglu) and metabotropic receptors (GABA-B). B The diffusion of glutamate
in the extrasynaptic space can directly activate presynaptic NMDA-Rs inducing the depression of GABA
release. C. The coactivation of glutamatergic and GABAergic ionotropic receptors by simultaneous
stimulation of excitatory and inhibitory fibers can lead to the depression of GABA release via a not
well-identified mechanism. D. The activation of metabotropic glutamate receptors following repetitive
excitatory stimulation triggers intracellular signal cascade, typically involving Phospholipase-C
(PLC), diacylglycerol (DAG), Diacylglycerol lipase (DGL) and the 2-Arachidonoylglycerol (2-AG)
endocannabinoid (eCB). This class of molecules can freely diffuse in the extracellular space acting as a
retrograde messenger to activate specific cannabinoid receptors (CB) onto the GABAergic terminal that
trigger the depression of vesicles release via different pathways.

Inhibitory plasticity can also be induced through mechanisms requiring the direct activity of
GABAergic afferents. One of these homosynaptic mechanisms has been described in the primary visual
cortex, where the firing of a presynaptic neuron paired with the activation of a postsynaptic pyramidal
neuron can induce inhibitory plasticity [77,78]. The mechanisms subtending homosynaptic plasticity
can depend on calcium changes, as in the case of star GABAergic connections between fast-spiking
and star pyramidal neurons in the visual cortex during visual deprivation [77]. Nevertheless, other
areas such as neocortex show inhibitory plasticity strongly correlated to calcium influx elicited by
paired action potential during induction protocols [78] (Figure 2C). Additionally, it has been shown
that a shift in the chloride transporter altering the driving force for GABAergic currents can occur in
hippocampal neurons in response to coincidence activation of pre and postsynaptic activity [79].

Changes in inhibitory strength can also be associated with purely postsynaptic expression
through a large variety of mechanisms (Figure. 3) [80], as it happens for excitatory synapses [81].
GABAergic weights can be adjusted postsynaptically by bidirectional changes in channels functionality.
The ionotropic GABAA receptors, in response to specific patterns of induction requiring calcium influx
following postsynaptic firing activity, can be phosphorylated by different kinases (e.g., PKC, CaMKII,
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Src, and PKA) [82] (Figure 3B). The high-frequency firing in neocortical pyramidal neurons drives LTP
of perisomatic inhibition via calcium entry through R-type voltage-gated calcium channels [83], which
can be reverted to depression requiring calcium via L-type channels during hyperpolarization [84].
A similar form of postsynaptic plasticity was reported to occur in cerebellar Purkinje cells, where the
potentiation of GABA release is triggered by repetitive postsynaptic discharge [52]. Interestingly, the
increase of perisomatic inhibition by cerebellar basket cells through an increase of receptors trafficking
is reported to be also triggered by the sole excitatory activation of climbing fibers [52]. Another form of
postsynaptic plasticity was shown to occur in the hippocampal circuits and is expressed as an increase
in the expression level of the scaffold protein for GABAA receptors gephyrin [85]. The availability of this
molecule at GABAergic synapses is regulated by its state of phosphorylation [86] and is responsible for
the induction of postsynaptic LTP that alters GABAA-Rs dynamics. Moreover, the continuous cycling
of GABAA-Rs insertion and removal, together with movements of lateral diffusion at synaptic surface
regulates synaptic functionality [87]. In addition, the number of GABAA-Rs may change in response
to receptor trafficking regulation. Inhibitory responses can be, therefore, bidirectionally modulated
by alternatively acting on the exocytosis and endocytosis cycling [88]. Finally, also in the case of
postsynaptic mechanisms, postsynaptic changes of intracellular concentrations of membrane-permeable
ions can contribute to GABergic signaling [89].
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Figure 3. Schematic diagram collecting the mechanisms underlying postsynaptic plasticity. A. Excitatory
and inhibitory fibers contact, by releasing glutamate (glu) and GABA (GABA), a postsynaptic
neuron expressing both ionotropic (mglu) and metabotropic receptors (GABA-B). B. The activation of
glutamatergic synapses can lead to an increase of postsynaptic intracellular calcium concentration either
through NMDA-Rs or VDCaChs opening. Calcium increase can directly act on proteins phosphorylation
(phosp) or can mediate CamKII activation leading to phosphorylation as well. Postsynaptic GABA-A
receptors can thus increase their efficacy, can switch from silent to active state, or can move in
the postsynaptic membrane. C. The simultaneous activation of metabotropic glutamatergic and
metabotropic GABAergic receptors can lead to the phosphorylation required for the potentiation of
ionotropic receptors activity. D. Conversely, the reduction of GABA-A-Rs receptors activity, either in
the form of receptors silencing or in the sliding away from the postsynaptic density, can be induced
by NMDA receptors opening following glutamate released. The protein phosphatase calcineurin or
alternatively, the increase of intracellular calcium concentration in the postsynaptic neurons through
NMDA or VDCaChs are the mediators of postsynaptic i-LTD.
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The activity of extrasynaptic receptors mediates an alternative form of synaptic inhibition.
The impact of this form of tonic inhibition is critically related to its impact on membrane conductance
and membrane potential with time constants considerably lower than the one of receptors located
in the terminals [90]. The tonic inhibition has been shown to undergo several forms of plasticity
too; however, in most cases, glutamatergic signaling is essential to trigger persistent changes. In the
hippocampus, kainate receptors activation triggers LTP of tonic inhibition [91], whereas persistent
potentiation can be induced by block or genetic deletion of NMDA receptors [92] whilst depression is
triggered by the activation of NMDA receptors [93]. Furthermore, tonic inhibition can be regulated
by the direct activation of CB1 receptors [94] by retrograde diffusion of NO [95] or, alternatively by
the direct activation of muscarinic acetylcholine receptors [96]. The fast synaptic inhibition related
to the activity of GABAA-Rs has been well characterized and described. Conversely, the functional
alternative to the action of ionotropic GABAA-Rs is the slow inhibition mediated by the metabotropic
GABAB receptors. Although the biochemical signaling engaged by GABAB-Rs is characterized in
detail as well as their role in shaping neuronal activity, it is not much understood whether they can
undergo plastic changes. Nevertheless, reports of persistent changes in GABAB-Rs activity have been
shown to occur in the hippocampus [97] and in lateral habenula [98], albeit the cellular and molecular
mechanisms underlying this form of long-term plasticity need further investigation. It should also be
noted that, as in the case of glutamatergic synapses, where the activity of G protein-activated inwardly
rectifying K+ (GIRK) channels has been shown to induce LTP in cultured hippocampal neurons [99],
in a recent work, Sanchez-Rodriguez and colleagues showed that GIRK channels are implicated in the
expression of inhibitory LTP in the hippocampal circuit in vivo and, importantly, these mechanisms
are impaired by the presence of amyloid-β (Aβ), raising attention on the implication of inhibitory
plasticity in neurodegenerative diseases [100].

4. Learning Rules and Computational Consequences of Inhibitory Plasticity

Unlike excitatory synapses, learning rules for inhibitory plasticity have not yet been extensively
investigated [101]. However, among the variety of rules, the spike-timing-dependent plasticity
(STDP) correlating the reciprocal timing of pre and postsynaptic firing [102] has been encoded for
some GABAergic synapses [4,103]. The first reported evidence dates back to 2001 when Holmgren
and Zilberter showed that in the neocortex, when action potentials in the presynaptic inhibiting
interneuron are timely proximal to postsynaptic pyramidal cell firing, GABAergic synapses undergo
LTD [78]. Conversely, if presynaptic spikes and postsynaptic firing are distant enough, synaptic
weights are potentiated in a calcium-dependent way. After a few works demonstrating in hippocampal
circuits the presence of a few variants of inhibitory STDP [104–106], in 2006, Haas and colleagues
showed that in stellate cells of rat entorhinal cortex presynaptic incoming before postsynaptic spikes
trigger strengthening of inhibitory synapses while the reserve leads to depression [107]. Surprisingly,
the maximal efficacy changes did not perfectly match the pre-post coincidence, instantiating a time-shift
with important consequences in the circuit computational rules. The authors, in fact, by using a
mathematical model, showed that STDP exploits the clustering of neurons within the circuit providing
flexible and dynamic organization of neuronal circuitry in a region where the uncontrolled spread
of excitation often leads to epileptic foci. Similarly, in pyramidal neurons of the mouse auditory
cortex, STDP is exploited by inhibitory conductance. The maximal effect was observed when pre
and postsynaptic spikes were temporally proximal, with a relatively large time window (≈ 10 ms),
and independently from their reciprocal order [108]. Given the tendency to show potentiation with
paired activity and the requirements of NMDA-Rs activation for the induction processes, this form of
plasticity seems to be finalized to silencing network activity in response to diffuse circuit activation [108].
Furthermore, the auditory cortex also shows STDP in the PNs mediated by GABAB-Rs with LTD
induced by presynaptic before postsynaptic spikes. The fact that the sign of plasticity can be reversed
during development makes this form of plasticity a suitable candidate for disinhibition during the
auditory critical period [109]. Differently, electrophysiological recordings in the somatosensory cortex
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revealed that the coupling between prolonged postsynaptic bursts with single presynaptic spikes
in temporal proximity leads to GABAergic depression, whereas potentiation was observed when
presynaptic spikes were presented well beyond the end of the burst [73]. This mechanism has been
suggested to participate in the sharpening of significant sensory patterns. In hippocampal neurons,
the sole presynaptic spikes lead to depression of synaptic conductance while the coupling of pre and
postsynaptic activity generated changes in local chloride reversal potential with the same sign [79].
At the circuit level, this effect appears to weaken the inhibitory strength leading the system toward a
critical large excitatory/inhibitory balance with substantial reverberations on network activity [110].
Nevertheless, the firing activity of other neurons in the circuit [111], as well as membrane potential
value during induction [48], could play a significant role in shaping synaptic changes by affecting the
amplitude and direction of plasticity.

The precise identification of the functional role of inhibitory plasticity is still an open issue.
Nonetheless, the recurrent leitmotif regarding GABAergic plasticity is the maintenance of a constant
E/I balance in a circuit that can compensate for changes in the excitatory driving force triggered by
plasticity at glutamatergic synapses. This homeostatic regulation can be obtained by reducing both
feed-forward inhibition and excitation [112]. Alternatively, increasing the excitability of inhibitory
interneurons following the potentiation of glutamatergic synapses can balance the circuit functioning,
as it was shown in hippocampal circuits [113]. In the somatosensory cortex, the recruitment of
inhibitory cells by the activity of pyramidal neurons can contribute to finely regulate cortical excitability
through the sensitivity and the dynamic range of recurrent inhibition [114]. Furthermore, the tight
correlation between fast inhibition and excitation allows the fine regulation and the balancing of
neuronal circuits, either in the form of spontaneous or evoked firing activity [115]. Nevertheless,
although the maintenance of the E/I balance seems essential for the correct circuit activity, changes in the
excitatory to inhibitory balance could play a key role in receptive field organization [116] and sensory
learning [117]. Importantly, since the exact value of E/I can be adjusted on different setpoints according
to the brain region, the circuit activation by input stimuli can alternatively lead to the suppression or to
the potentiation of excitatory output. It has recently been shown, in fact, that in neocortical circuits,
the persistent increase of GABAergic synapses can impact output firing through a decreased spike
probability and increased timing [118]. Furthermore, we have recently shown in cerebellar cortex
that bidirectional plasticity of inhibitory circuits [46] contributes to control the spatial and temporal
pattern activity of excitatory granule cells by sharpening center-surround structures [119] and by finely
regulating the timing of first spike output through subthreshold integration processes [120].

From a purely computational perspective, the power of the brain is traditionally linked to
the complex connectivity of neuronal networks, whereas single neurons are considered as linear
integrators and thresholding devices. It is indeed clear that a wide series of non-linear mechanisms
converting synaptic input into output firing is employed by single neurons to process information.
These mechanisms include synaptic noise, inhibitory conductance, and notably synaptic plasticity [121].
As a general rule, the analysis of the effects of plasticity on neuronal computation has been mainly
focused on excitatory circuits; nonetheless, recent discoveries on the involvement of IP require to
deepen the investigation of its effects on network computation. Regardless of molecular subtypes,
the prominent characteristic of inhibitory plasticity for its consequences on network computation
is the architectural organization of inhibitory afferents. In particular, single neuron computation is
strongly modulated by peri-somatic inhibition, which in turn exerts a critical additive or subtractive
effect on the input-output ratio (I/O) when potentiated or depressed [121]. The specific peri-somatic
targeting onto excitatory cortical neurons strongly influences the insurgence of network oscillations,
which can be traced back to cognitive and sensory functions [122]. It has been suggested that the
bidirectional modulation of peri-somatic inhibition by LTP and LTD could alternatively entrain single
neurons in synchronous activity or decoupling oscillatory events [123], thus favoring the coordination
of neurons sharing common functional properties. Conversely, despite dendritic inhibition is a crucial
determinant for synaptic integration and underlies lateral inhibition during sensory tasks, as shown
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by evidence in cortical circuits [124], the impact on network computation of the plasticity of these
synapses has been poorly investigated.

In order to analyze the impact of IP onto neuronal network computation, researchers tend to
employ circuits models with a limited number of parameters to control. The simplest network
is composed of basic computational units, for instance, integrate and fire neurons, endowed with
excitatory and inhibitory synapses randomly connected with a sparse architecture [125]. In such
a model, the balance between excitation and inhibition controls a wide range of circuit dynamics,
including average firing rate, and the way neurons respond collectively to inputs [125]. By assuming
these circuits constraints, Vogels and colleagues in 2011 demonstrated that the implementation of an
STDP rule at inhibitory synapses with strong potentiation in case of coincident pre- and postsynaptic
spikes, allows inhibition to approach output firing rates to a target value [126]. The final target value
strongly depends on the ratio between LTP and LTD, while deviations from setpoint are suppressed
by a contrary reaction. The resulting effect is, therefore, the stabilization of firing rates whenever the
incoming of repeated and persistent excitatory inputs tend to disrupt the E/I balance [127]. If network
connectivity is organized with clusters of excitatory units, the E/I ratio is extremely sensitive to the wiring
architecture. This, in turn, brings the network to a winner-takes-all behavior. The implementation
of inhibitory plasticity in such a context, by compensating changes in firing rates, prevents groups
of neurons from dominating the network [128]. Moreover, it has also been demonstrated that, in a
network where connections are implemented with realistic connectivity patterns, and single neuron
firing rates are sparse throughout the network, synaptic weights can be dynamically adjusted by
inhibitory plasticity to equalize E/I balance changes [129]. The increasing complexity encountered
in more organized circuits models like multiple layered feedforward networks strongly limits the
capacity of inhibitory plasticity to maintain the E/I ratio. Nevertheless, Haas and colleagues showed
that in the entorhinal cortex the strengthening of inhibitory connections can block the propagation of
excitatory waves, ensuring network stability [107]. Inhibitory plasticity has also been suggested to
favor the selection of specific feedforward pathways either by altering or by maintaining the balance
between excitatory inputs and inhibitory signals [130]. In 2019 Wilmes and Clopath published a work
where, by using a spiking model of layer 2/3 primary visual cortex, they showed that IPs play a major
role in adjusting stimulus representation by storing information about reward stimuli. This model
allowed to demonstrate that IP is essential to increase stimulus representation by triggering excitatory
plasticity [131]. Moreover, in a recent study Soloduchin and Shamir showed that in a network model
composed of two neuronal populations reciprocally inhibited, the implementation of a simple STDP
rule for inhibitory synapses can bring the network to rhythmic activity by itself [132], confirming the
hypothesis that, spontaneous oscillation can be entrained by modulation of peri-somatic inhibition
on principal excitatory neurons [122]. Finally, it has been proposed that the spatial tuning patterns
showing invariance and selectivity observed, for instance, in hippocampal place cells could be the
result of excitatory and inhibitory plasticity. The combination, in fact, of the two mechanisms leads to
localized activity invariant to different spatial dimensions [133].

Synaptic plasticity is also thought to be the cellular and molecular counterpart of learning and
memory. In particular, memories that can be recalled by contextual cues or commands must involve
plasticity mechanisms to be exploited [134]. In Hopfield networks, a circuit model assembled with
recurrent connectivity and particularly suitable to implement associative memory, groups of silent and
active neurons recruited by recalling inputs are used to describe memories [135]. Given the mixture of
excitatory and inhibitory connections in such a network, it can be envisaged that IP has a leading role
in creating and exploiting memories recall. In a different perspective, Maas and colleagues proposed
that memories are represented by networks through the pathway generated by the population activity
of the whole circuit, instead of activating a bunch of neurons [136]. In networks with strong and
random excitatory recurrence, inhibitory plasticity stabilizes circuit dynamics similar to what happens
in the motor cortex during the execution of limb movements. These networks, in fact, amplify the
activity states that can be used to execute movement patterns [137]. By using a supervised learning
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scheme for feedforward and recurrent connections, Gilra and Gestner showed that IPs could efficiently
accomplish linear, non-linear, or chaotic dynamics, as well as motor coordination dynamics [138].
Similarly, the implementation of STDP rules at different sites in a cerebellar like structure allowed
to implement an efficient adaptive scheme capable of motor learning performance [139]. Finally,
the specificity of inhibitory feedback sustaining grid cell organization has been suggested to require IP
for the generation of grid cell population (Table 1) [140].

Table 1. Mechanisms of inhibitory plasticity and functional consequences.

Sign of
Plasticity

Molecular
Mechanism

Brain
Region/Neuron

Site of
Expression

Computation/Functional
Significance Refs

LTP
GABAB receptor

dependent, BDNF
signaling

Visual
cortex/Neonatal
hippocampus

Presynaptic Critical period plasticity/
E/I balancing [54,104,105,141]

LTP Postsynaptic NMDA,
retrograde NO

VTA,
Basolateral
amygdala

Cerebellum,

Presynaptic

Reward modulation/
spatio temporal pattern

sharpening/ shaping
conditioned fear response

[44,46,142]

LTP Postsynaptic calcium,
retrograde BDNF Hippocampus Presynaptic Associative memory

formation [143]

LTP Presynaptic NMDA Cerebellum Presynaptic Motor learning regulation [65,144]

LTP Postsynaptic mGluR
and retrograde NO

Lamina I spinal
cord Presynaptic Signal to noise regulation [53]

LTP Postsynaptic
calcium/NMDA

Deep cerebellar
nuclei Presynaptic Regulation of spike firing

for motor coordination [145,146]

LTP Postsynaptic NMDA
and CamKII

Medial
prefrontal

cortex
Postsynaptic Local regulation of E/I at

cellular level [147]

LTP Postsynaptic Calcium/
CamKII

Cerebellum
Purkinje cell Postsynaptic Regulation of output firing

patterns [52,141,148]

LTP GABAB/ mGluR Hippocampal
CA1 Postsynaptic Reinforcement of rhythmic

activity [149]

LTP
Presynaptic firing
paired with mild

depolarization

Developing
visual cortex Postsynaptic Regulating critical period

for ocular dominance [76]

LTP
Calcium influx

receptor
phosphorilation

Neocortex postsynaptic E/I balancing [83–85]

LTP Postsynaptic NMDA
and calcium rise

Lateral
amygdala Postsynaptic Processing stimuli during

fear conditioning [150]

LTP Postsynaptic NMDA, L
type calcium channels

Auditory
cortex Postsynaptic Normalizing E/I and

remodeling auditory map [108]

LTD mGlur, retrograde eCB

Hippocampus,
amygdala,

Visual cortex,
prefrontal

cortex

Presynaptic

Changes of E/I / extinction
of aversive memories/

regulation of development
in critical period

[49,69,72,75]

LTD GABAA activation and
postsynaptic NMDA

Neonatal
hippocampus Presynaptic Regulation of synapse

formation and maturation [151]

LTD Presynaptic NMDA Cerebellum,
visual cortex Presynaptic

Spatio-temporal
sharpening sensory

information
[46,77]

LTD
Postsynaptic NMDA

and mediated by
calcineurin

hippocampus postsynaptic Disinhibit excitatory
circuits [152]

LTD
Postsynaptic calcium

and protein
phosphatase

Deep cerebellar
nuclei postsynaptic

Modulation of
spontaneous cerebellar

firing for motor
coordination

[153]

LTD Dopamine mediated
eCBN signaling

Ventral
tegmental area postsynaptic Regulation of addiction

mechanisms [75,154]
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5. Perspectives and Concluding Remarks

The analysis of inhibitory plasticity presented so far is limited to the molecular characterization
of the mechanisms underlying IPs together with the effects at the circuit level. However, a univocal
determination of the roles for the IPs in circuit functions is still lacking, and evidences have been
collected regarding the consequences of inhibitory plasticity at the integrative level. It is well known
in fact that alterations of inhibitory circuits can contribute to the induction of neurological disorders.
In particular, the regulation of the E/I balance, which is inherently bound to IP impacts the induction of
excitatory LTP and LTD and can indeed shift the threshold required to switch between the two plastic
conditions. It has recently been observed, in fact, that the inhibitory LTP, by modulating E/I balance,
can effectively restore the hippocampal excitatory LTD preventing memory impairment related to
Aβ protein accumulation [155]. Similarly, the disruption of the E/I balance in neocortical circuits is
one of the most accredited explanation for the insurgence of the autism spectrum disorder (ASD),
which can be therefore bound to inhibitory plasticity [156,157]. Again, schizophrenic patients often
show disturbances in the GABAergic neurotransmission of the dorsolateral prefrontal cortex [158].
In particular, alterations in the peri-somatic regulation of pyramidal neurons lead to a reduced
capacity of synchronizing gamma-band activity. Furthermore, one of the hypotheses on the etiology of
epileptogenesis regards the hyperactivity of GABAergic neurons masking hyperexcitability activated
by alterations of inhibitory strength triggered by insult of injury [159]. This cascade mechanism,
responsible for the occurrence of the temporal lobe epilepsy, could be activated by overexpression or
disruption of inhibitory plasticity. Finally, patients with Parkinson’s disease were shown to display
downregulation of GABAergic activity in the afferents to basal ganglia. The reduction of neurological
symptoms observed in response to deep brain stimulation, one of the most efficient therapeutic
treatments, can be attributed to the triggering of GABAergic LTP allowing the recovery from the
aforementioned GABA downregulation [160].

Besides the obvious interest in the biomedical and clinical fields, the analysis of brain functions
and particularly of synaptic connections also arouse great interest in computer science and, more
generally, in the field of neuromorphic electronic and artificial intelligence. The goal in fact to build
large artificial neural networks with vast amounts of computing elements has rendered the task of
creating low consuming artificial synapses a high priority. The visionary idea of electrical elements
behaving like synapses called memristors is now becoming true [161]. These physical devices can
effectively behave like synaptic elements because of their capacity to reproduce synaptic features and
plastic mechanisms such as STDP [162] or heterosynaptic plasticity [163]. Memristors can indeed be
assembled to mimic neural functions and reproduce neuronal behavior [164] or perform autonomous
complex learning tasks [165]. Nowadays, several physical elements have been proposed and adopted
to reproduce synaptic learning; however, none of them has been used to mimic plastic behaviors of
inhibitory synapses. There is therefore increasing attention on the role of the various forms of IP in
circuit computation and on the further possibility to introduce such behaviors into electronic circuits
performing complex tasks. It can be envisaged in fact that the implementation of unsupervised learning
rules in electronic synapses could entrain artificial circuits to perform autonomous behavior [165].
The growing expansion of the neuromorphic field and of the brain-inspired computation requires to
implement devices exploiting the properties of both excitatory and inhibitory synapses. The encoding
then of learning rules in artificial synapses and in electronic circuits, paving the way to the next
generation of neuromorphic devices, is opening promising perspectives for a series of applications
with clinical relevance such as neuroprosthesis or with a high social impact for daily lives driving
futuristic artificial intelligence machines.
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