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Abstract

Unitary braiding operators can be used as robust entangling quantum gates. We intro-

duce a solution-generating technique to solve the (d,m, l)-generalized Yang-Baxter equa-

tion, for m
2 ≤ l ≤ m, which allows to systematically construct such braiding operators.

This is achieved by using partition algebras, a generalization of the Temperley-Lieb alge-

bra encountered in statistical mechanics. We obtain families of unitary and non-unitary

braiding operators that generate the full braid group. Explicit examples are given for a

2-, 3-, and 4-qubit system, including the classification of the entangled states generated

by these operators based on Stochastic Local Operations and Classical Communication.

? On leave of absence from the Institute of Physics at the University of São Paulo, São Paulo, Brazil.
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1 Introduction

The fragile nature of quantum entanglement is a central issue in quantum computing, which

can in principle be alleviated by the use of topology. Drawing inspiration from the Aravind

hypothesis [1–3], it has been proposed that braiding operators – operators that obey braiding

relations and create knots from unlinked strands – could be thought of as quantum entanglers,

i.e. gates that create entanglement from product states [4–8]. These initial studies about the

relation between entangling gates and knots were then pushed forward in [9–13], paving the way

to the proposal of topological quantum circuits with gates given by braiding operators [14,15].

It is expected that a physical realization of these braiding operators/entangling gates could

be obtained using anyons.
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One way to get braiding operators is by solving the parameter-independent Yang-Baxter

equation (YBE), which we briefly review.1 The YBE is an operator equation for an invertible

matrix, R : V ⊗ V → V ⊗ V , given by

(R⊗ I) (I ⊗R) (R⊗ I) = (I ⊗R) (R⊗ I) (I ⊗R) , (1.1)

where V is a d-dimensional complex vector space and I is the identity operator on V . We use

the terms Yang-Baxter operator and R-matrix interchangeably for the operator R. Solutions

to (1.1) for some cases are presented in [17–19].

The R-matrix can be seen as a generalization of the permutation operator that swaps two

vector spaces. This point of view is useful if one notices that the R-matrices can be used

to construct representations of the Artin braid group Bn on n-strands, with generators σi

satisfying

σiσi+1σi = σi+1σiσi+1, (1.2)

σiσj = σjσi, |i− j| > 1, (1.3)

for i = 1, . . . , n − 1. The first relation above is called the braid relation, whereas the second

relation is the far-commutativity condition. Representations for σi can be constructed out of

the R-matrices that solve (1.1) as follows

ρ(σi) = I⊗i−1 ⊗Ri,i+1 ⊗ I⊗n−i−1. (1.4)

Notice that this representation satisfies far-commutativity trivially. This implies that every R-

matrix that solves (1.1) can be used to construct a representation of the braid group, denoted

a braiding operator.

The distinction between R-matrices and braiding operators become essential when intro-

ducing a natural generalization of the YBE [10,11] which involves two extra parameters, m and

l. The linear invertible operator R : V ⊗m → V ⊗m now acts on m copies of the d-dimensional

vector space V with l identity operators, and obeys(
R⊗ I⊗l

) (
I⊗l ⊗R

) (
R⊗ I⊗l

)
=
(
I⊗l ⊗R

) (
R⊗ I⊗l

) (
I⊗l ⊗R

)
, (1.5)

prompting the notation (d,m, l)-gYBE, as used in [21]. We dub this generalized R-operator as

either the generalized Yang-Baxter operator or the generalized R-matrix. This generalization

is important for quantum information processes that involve more than two qubits.

1For details about the case in which the YBE depends on a so-called spectral parameter, see e.g. [16] and

references therein.
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Unlike the R-matrix that solves the YBE in (1.1), not all generalized R-matrices that

solve the (d,m, l)-gYBE in (1.5) provide a representation of the braid group, as they do not

always satisfy the far-commutativity condition in (1.3). However, for the cases when 2l ≥ m

(assuming l < m) far-commutativity is trivially satisfied, just as in the case of the Yang-Baxter

operators. This is seen through the representations of the braid group given in terms of the

generalized R-matrices by

ρ(σi) =
(
I⊗l
)⊗i−1 ⊗Ri,··· ,i+m−1 ⊗

(
I⊗l
)⊗n−i−m+1

. (1.6)

We will then be interested in finding the generalized Yang-Baxter operators that satisfies

the (d,m, l)-gYBE when 2l ≥ m, thus automatically leading to representations of the braid

group.2

The (d,m, l)-gYBE in (1.5) involves d2m+2l cubic polynomial relations for d2m unknowns

(the entries of the generalized R-matrix) and is in general hard to solve. In this work we

use algebraic methods to solve for the R-matrices and generalized R-matrices using partition

algebras [23–28]. We obtain families of both unitary and non-unitary operators, with the

former finding use as quantum gates in quantum computing and the latter being useful to

investigate topological aspects of the gYBE that include the study of knot invariants. We

focus on the quantum entangling aspects of these operators.

The paper is structured as follows. Set partitions and partition algebras are reviewed

in Sec. 2, along with representations (the Qubit and the Temperley-Lieb representations)

of their modified versions. In Sec. 3 we recall the equivalence classes of the Yang-Baxter

operators and discuss how they relate to the notion of Stochastic Local Operations and Classical

Communication (SLOCC) classes of entangled quantum states in quantum information theory.

Our main results are in Sec. 4, where we obtain and discuss in detail R-matrices for the 2-,

3-, and 4-qubit cases. We also study the SLOCC classes of entangled states generated by

these matrices. The structure of these generalized R-matrices allows to find an algorithm to

systematically generate solutions of the (d,m, l)-gYBE. There are three kinds of generalized

R-matrices known in the 3-qubit case [10,21,12]. In Sec. 5 we show that the 3-qubit solutions

obtained in this paper are inequivalent to the known solutions. We conclude with some open

questions and an outlook in Sec. 6.

2A different approach to representations to the braid group is discussed in [22].
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2 Set partitions and partition algebras

We review the notion of set partitions and partition algebras following [29]. We present just the

bare minimum needed in this work, pointing the reader to that reference for more details. The

elements of set partition, denoted Ak, are the partitions of two copies of a set: {1, 2, · · · , k} and

{1′, 2′, · · · , k′}. As an example consider the following diagram showing the partition of a set

with k = 7, this represents the set partition {{1, 3, 5, 4′, 5′} , {2, 3′} , {4, 6, 7, 6′} , {1′, 2′} , {7′}} .
In the diagram, vertices i and j are connected by a path if i and j belong to the same block

b b b b b b b

b b b b b b b

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

Figure 1: A diagram representing {{1, 3, 5, 4′, 5′} , {2, 3′} , {4, 6, 7, 6′} , {1′, 2′} , {7′}} ∈ A7.

of the partition. Note that the diagram for a given element of Ak is not unique. For example

the diagram in Fig. 2 also represents the same element represented in the diagram Fig. 1.

bb b b b b b b

b b b b b b b

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

Figure 2: Another diagram representing the same element of A7 shown in Fig. 1.

To compose two diagrams, d1 ◦ d2, place d1 above d2 and then trace the lines to obtain the

new partition. An example of such a composition is given for the case of k = 6 in Fig. 3.

The elements of Ak are generated by successive compositions of

pi, for i ∈ {1, · · · , k}, (2.1)

pi+ 1
2
, for i ∈ {1, · · · , k − 1}, (2.2)

si, for i ∈ {1, · · · , k − 1}, (2.3)

whose action can be represented diagrammatically, see Fig. 4. An example of composition
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b b b b b b

b b b b b b

b b b b b b

b b b b b b

d1 = d2 =

b b b b b b

b b b b b b

b b b b b b

d1 ◦ d2 =

b b b b b b

b b b b b b

=

Figure 3: Composition of elements of A6.

i i

i

i − 1 i − 1

i − 1

i + 1 i + 1

i + 1

i + 2

i + 2

1 1

1

k k

k

· · · · · · · · · · · ·

· · · · · ·

pi pi+ 1
2

≡ pi,i+1

si

=

=

=

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b b

b

b

b

b

b

b

b

b

b b

b b

b

b

b

b

Figure 4: Generators of Ak.

of these generators is shown in Fig. 5. Using these diagrams one can easily verify that the

pipi+ 1
2
pi+1si+1 = =

b b b

bbb

b b b

bbb

b b b

b b

b b

b

b

i

i

i + 1

i + 1

i + 2

i + 2

Figure 5: Example of composition in Ak. The nodes 1, · · · i − 1, i + 3, · · · , k on which the

generators act trivially are suppressed.
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generators satisfy the following relations

p2
i = pi, p2

i+ 1
2

= pi+ 1
2
, (2.4)

pipi± 1
2
pi = pi, pi± 1

2
pipi± 1

2
= pi± 1

2
, (2.5)

pipj = pjpi, for |i− j| > 1

2
, (2.6)

s2
i = 1, sisi+1si = si+1sisi+1, sisj = sjsi, for |i− j| > 1. (2.7)

Here and below, we simply write d1 ◦ d2 as d1d2 for notational simplicity.

Note that pi and pi+ 1
2

generate planar diagrams. Non-planarity is introduced by the per-

mutation group generators si. The mixed relations are

sipipi+1 = pipi+1si = pipi+1, sipisi = pi+1, sipi+j = pi+jsi, for j 6= 0, 1, (2.8)

and

sipi+ 1
2

= pi+ 1
2
si = pi+ 1

2
, sisi+1pi+ 1

2
si+1si = pi+ 3

2
, sipi+j = pi+jsi, for j 6= −1

2
,
3

2
. (2.9)

To emphasize that si swaps the elements on the vector spaces at sites i and i+1, one could also

write it as si,i+1, but we will stick to the notation si to avoid cluttering. The second relations

in (2.8)-(2.9) can be understood as the fundamental property of the permutation operator:

sipisi = pi+1, si+1pi+ 1
2
si+1 = sipi+ 3

2
si, (2.10)

The index swapping is obvious in the first relation and it becomes obvious also in the second

one, when one notices that pi+ 1
2

has non-trivial support on sites i and i+ 1 whereas pi+ 3
2

has

non-trivial support on sites i + 1 and i + 2. To make this more transparent, one can change

notation by identifying pi+ 1
2

with pi,i+1 and pi+ 3
2

with pi+1,i+2, prompting the definition

si+1pi,i+1si+1 = sipi+1,i+2si ≡ pi,i+2, (2.11)

whose diagrammatic representation is shown in Fig. 6 and can be worked out using the

composition laws in Fig. 5. The figure suggests one can generalize the pi+ 1
2
≡ pi,i+1 operators

to the cases with support on two arbitrary sites, i and i+ j, as

pi,i+j = si+j−1si+j−2 · · · si+1pi,i+1si+1 · · · si+j−2si+j−1, (2.12)

6



i i + 1 i + 2 i + 3i − 11 k

· · · · · ·pi,i+2 =

Figure 6: The element pi,i+2.

satisfying the relations

p2
i,i+j = pi,i+j, (2.13)

pi,i+j1pi,i+j2 = pi,i+j1pi+j1,i+j2 , j1 < j2, (2.14)

pi+l,i+jpi,i+j = pi,i+jpi+l,i+j = pi,i+lpi+l,i+j, l < j, (2.15)

which can be verified diagrammatically. Henceforth, we shall use pi,i+1 instead of pi+ 1
2
.

Linear combinations of elements of Ak with coefficients being complex numbers form the

partition algebra CAk(1).

2.1 Representations

We use a slightly modified form of the relations in (2.4) where we either scale one or both of

the relations by a factor, d. We denote them asymmetric or symmetric scaling respectively. To

this end we employ hermitian representations for the generators, which come in two kinds: the

generators of the planar diagrams can be rescaled either asymmetrically (Qubit representation)

or symmetrically (Temperley-Lieb representation). Strictly speaking, these representations

do not give the representations of the relations (2.4)-(2.9), but the representations of their

deformed versions.

Qubit representation In this representation one of the relations satisfied by pi,i+1 is mod-

ified to

p2
i,i+1 = d pi,i+1, (2.16)

with the other relations in (2.4), (2.5) and (2.6) unchanged. Here d is the dimension of the

local Hilbert space on the site i acted upon by the generators of Ak.

The relations in the non-planar part of Ak involving pi,i+1 and si, see (2.9), and the relations

in (2.14) and (2.15) are unchanged. The relation in (2.13) is modified to

p2
i,i+j = d pi,i+j, (2.17)

7



corresponding to the scaling of pi,i+1.

In this paper we deal with qubits and hence the case of d = 2. The qudit realizations can

be similarly obtained through an appropriate generalization. Qubit representations are given

by

pi =
1 + Zi

2
, pi,j = 1 +XiXj, si =

1 +XiXi+1 + YiYi+1 + ZiZi+1

2
, (2.18)

where 1 is the identity operator acting on the relevant Hilbert space and Xi, Yi, Zi are the

usual Pauli matrices acting on the qubit space on site i,

X =

(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
, (2.19)

written in the basis {|0〉, |1〉} where Z is diagonal. Another representation which is unitarily

equivalent to the above is given by

pi =
1 +Xi

2
, pi,j = 1 + ZiZj, si =

1 +XiXi+1 + YiYi+1 + ZiZi+1

2
. (2.20)

The qubit representation gives the representation of the relations (2.4)-(2.9) with the nor-

malization of pi,i+1 ≡ pi+ 1
2

changed to (2.16) with d = 2.

Temperley-Lieb representation Now both generators of the planar diagrams are rescaled

by the same factor,

p2
i,i+1 = (Q+Q−1)pi,i+1, p2

i = (Q+Q−1)pi, Q ∈ R− {0} (2.21)

with the rest of the relations of the planar part of the partition algebra unchanged. The planar

part of Ak can be realized using the generators of the Temperley-Lieb algebra with doubled

dimensions, e1, · · · , e2k−1 ∈ TL2k,

pi = e2i−1, pi,i+1 = e2i, (2.22)

which satisfy the relations in (2.5)-(2.6), see [29]. Notice the doubling of the number of sites

in this realization, as shown in Fig. 7.

In this representation the introduction of non-planarity through the permutation generators

si affects some of the mixed relations (2.8) and (2.9). Let us consider the case that si is realized

as an appropriate permutation operator given by

si = s2i−1,2i+1 s2i,2i+2, (2.23)

8



b b

b b

bc bc bc bc

bc bc bc bc

b b

b b

bc bc bc bc

bc bc bc bc
pi ≡ e2i−1 pi+1 ≡ e2i+1= =

2i − 1 2i + 1

Figure 7: Temperley-Lieb representation of pi and pi+1. The white dots, obtained by doubling

the original sites for Ak (the black dots), are sites on which the Temperley-Lieb generators

(e2i−1, e2i+1) act.

or by the unitarily equivalent

si = s2i−1,2i+2 s2i,2i+1, (2.24)

with si,j being the operator that swaps the indices i and j. This realization lives on the

doubled lattice as shown in Fig. 8. Using this diagram the partition algebra in (2.8) can be

b b

b b

bc bc bc bc

bc bc bc bc
si =

2i − 1 2i

Figure 8: Temperley-Lieb representation of si in (2.23).

easily verified, whereas (2.9) does not hold. Thus the Temperley-Lieb representation gives the

representation of the relations (2.21) and (2.5)-(2.8).

The doubling of the sites in this representation implies that one shall obtain R-matrices

and generalized R-matrices on twice the number of sites, i.e. if one obtains the generalized

R-matrix that solves the (d,m, l)-gYBE, then this representation will yield another solution

that solves the (d, 2m, 2l)-gYBE.

In section 4, generalized R-matrices are constructed as linear combinations of the above

representations of deformed set partitions that are analogous to elements of the partition

algebras.
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3 Equivalence classes of R-matrices and SLOCC classes

In quantum information theory the idea of SLOCC was introduced to classify entangled states.

It states that two quantum states are equivalent when there exists an Invertible Local Operator

(ILO) that maps one state into the other:

|ψ1〉 = (A1 ⊗ · · · ⊗ An) |ψ2〉, (3.1)

where the states |ψ1〉 and |ψ2〉 live in the Hilbert space ⊗ni=1 Hi [31]. Ai is an ILO acting only

at the site i. This equivalence relation appeals to the intuition of entangled states, as one

expects local operations to not disturb the non-local entanglement property of the state.

One can also define an equivalence class of the R-matrices satisfying the parameter-

independent YBE. To identify this class, one observes that if R is a solution to the (d,m, l)-

gYBE, then so are αR (with α a constant), R−1, and (A1 ⊗ · · · ⊗ Am)R
(
A−1

1 ⊗ · · · ⊗ A−1
m

)
,

where A1, · · · , Am is an ILO that also appears in the definition of the SLOCC classes of

quantum states. We can now prove the following theorem:

Theorem Two entangling R-matrices R1 and R2, which are equivalent under ILO, produce

entangled states of the same SLOCC class.

Proof R1 produces an entangled state |E〉 acting on the product state |P 〉,

R1 |P 〉 = |E〉. (3.2)

By assumption, one can express R1 = AR2A
−1, where A is an ILO, so that

AR2A
−1 |P 〉 = |E〉. (3.3)

This means R2A
−1 |P 〉 = A−1 |E〉, by definition, both A−1 |P 〉 and A−1 |E〉 are in the same

SLOCC classes as |P 〉 and |E〉, respectively, hence proving the assertion. �

This theorem naturally implies that if two R-matrices produce states of two different

SLOCC classes, then they cannot be related by an ILO. However, the converse of the theorem

is not always true: if two entangled states |E1〉 and |E2〉 belonging to the same SLOCC class

are generated by two entangling R-matrices R1 and R2, respectively, then they need not be

related by an ILO. One has in fact

R1 |P1〉 = |E1〉, R2 |P2〉 = |E2〉. (3.4)

10



As |E2〉 = A|E1〉 and |P2〉 = L|P1〉, where A and L are two ILOs, one obtains

A−1R2L |P1〉 = |E1〉.

Note that the ILOs A and L need not be the same. For unitary R-matrices, this relation holds

on all the product states that span the Hilbert space, so that one can identify

R1 = A−1R2L.

We shall use the definitions and this result to determine the classes of R-matrices.

2-qubit SLOCC classes There are two SLOCC classes in the 2-qubit case, the Bell state

class and the product state class.

3-qubit SLOCC classes There are six SLOCC classes in the 3-qubit case [31]. Two tri-

partite entangled classes, GHZ state class and W state class, also denoted as ABC to symbolize

the three parties of the state. Three partially entangled state classes, A−BC,AC−B,AB−C
and finally the product state class, A−B − C.

4-qubit SLOCC classes In the 4-qubit case, it was discussed in [31] that there are infinitely

many SLOCC classes. Later, it was shown in [32] that there are nine families in the sense of

nine different ways of entangling 4-qubits. On the other hand, it was reported in [33,34] that

the number of the families is eight instead of nine for genuinely entangled states.3 Furthermore,

it was discovered in [35] that the nine families in [32] further split into 49 SLOCC entanglement

classes by looking at SLOCC invariant quantities.

4 Generalized R-matrices

The generators of the permutation group si solve the (d, 2, 1)-gYBE. In fact, the transposition

operators si,i+l solve the (d,m, l)-gYBE, assuming l ≤ m, with non-trivial support on the sites

i and i + l. The ansatze with non-trivial support on all the m sites used in this paper are

modifications of these transposition operators, with generators given by the planar part of

3The classification in [32] contains no genuinely entangled state with canonical state |0000〉+ |0111〉. Due

to this difference, [33,34] does not contradict [32].
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the partition algebra. In the language of quantum gates, these ansatze are generalized SWAP

gates.

In the following we discuss the 2-qubit and 3-qubit cases in detail before writing down the

answers for the 4-qubit case and outlining an algorithm for an arbitrary multi-qubit generalized

R-matrix.

4.1 2-qubits

On two sites i and i + 1, there are various choices of the generators pi, pi+1, pi,i+1 and si to

construct the R-matrices. We consider the different possibilities separately.

Using si, pi and pi+1 Consider the following ansatz for the Yang-Baxter operator with

support on sites i and i+ 1,

Ri = si (1 + α pi + β pi+1 + γ pipi+1) , (4.1)

with constants α, β, γ ∈ C. This operator satisfies the (d, 2, 1)-gYBE for all α, β, γ, as seen by

evaluating the two sides of the YBE

RiRi+1Ri = (1 + α pi+1 + β pi + γ pipi+1) (1 + α pi+2 + β pi + γ pipi+2)

× (1 + α pi+2 + β pi+1 + γ pi+1pi+2) (sisi+1si) , (4.2)

where repeated use of the permutation operator given in (2.10) has been applied. In a similar

manner one can compute the right hand side Ri+1RiRi+1, which turns out to be equal to (4.2).

Using p2
i = pi, pipi+1 = pi+1pi and s2

i = 1, we can show that the inverse is given by

R−1
i =

(
1− α

1 + α
pi −

β

1 + β
pi+1 +

αβ(2 + α + β + γ)− γ
(1 + α)(1 + β)(1 + α + β + γ)

pipi+1

)
si. (4.3)

This expression is needed to check for which values of the parameters the R-matrix is unitary.

It is also easy to check that the operators in (4.1) satisfy far-commutativity for braid

operators, σiσj = σjσi (|i− j| > 1), by noting that

Ri+j = si+j (1 + α pi+j + β pi+j+1 + γ pi+jpi+j+1) (4.4)

has trivial common support with the operator in (4.1) for all j > 1.

12



In general, these solutions are non-unitary and generate the infinite-dimensional braid

group, i.e. the image of braid group representations built using these R-matrices is infinite.

This is seen by computing the powers of Ri,

Rn
i = sni (1 + αn pi + βn pi+1 + γn pipi+1) , (4.5)

where the parameters are defined recursively as

αn = α1 + βn−1 + α1βn−1, βn = αn−1 + β1 + αn−1β1,

γn = α1αn−1 + β1βn−1 + γ1γn−1 + γ1 (1 + αn−1 + βn−1) + γn−1 (1 + α1 + β1) , (4.6)

after identifying α1, β1 and γ1 with α, β and γ in (4.1).

By equating (4.5) and R†i , the conditions

α∗ = − α

1 + α
, β∗ = − β

1 + β
, γ∗ =

αβ(2 + α + β + γ)− γ
(1 + α)(1 + β)(1 + α + β + γ)

. (4.7)

give a family of unitary solutions that generate the infinite-dimensional braid group just as

the non-unitary case. (4.7) are explicitly solved by

α = eiθ − 1, β = eiϕ − 1, γ = eiφ − eiθ − eiϕ + 1 (4.8)

with θ, ϕ and φ angles between 0 and 2π. The recursive definitions of the parameters of Rn
i

(4.6) show that Rn
i 6= 1 for any finite n when θ, ϕ and φ are generic. This can also be seen in

the eigenvalues {1,±e i
2

(θ+ϕ), eiφ} at the unitary solutions.

There are eight real unitary solutions, four of which are shown in Table 1 in the qubit

representations of (2.18). (The remaining four generate the same SLOCC classes as these

four.)
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(α, β, γ) Ri Eigenvalues n|Rn = 1

1. (0, 0, 0)

(
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

)
(−1(1), 1(3)) 2

2. (0, 0,−2)

(
−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

)
(−1(2), 1(2)) 2

3. (0,−2, 0)

(
−1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1

)
(−1, i,−i, 1) 4

4. (0,−2, 2)

(
1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1

)
(i,−i, 1(2)) 4

Table 1: Unitary solutions in the 2-qubit case using operators si, pi and pi+1. The k in a(k)

denotes the multiplicity of the eigenvalue a. In the last column, n|Rn = 1 means the lowest

positive integer n satisfying Rn = 1.

In the qubit representation, the (2, 2, 1)-Yang-Baxter operator takes the explicit form

Ri =


1 + α + β + γ 0 0 0

0 0 1 + β 0

0 1 + α 0 0

0 0 0 1

 . (4.9)

The unitary operators can act as quantum gates, however not all may lead to a universal

set of gates. According to a theorem by Brylinski [30] for a 2-qubit space, a gate helps building

a universal set if and only if it is entangling. We can use this criterion to check which of the

operators in Table 1 are entangling and can potentially lead to a universal set.

A quantum gate is entangling if there is a vector |v1〉⊗|v2〉 ∈ C2⊗C2 that gets mapped to an

entangled state by the quantum gate. With this definition the gates corresponding to (0, 0,−2)

and (0,−2, 2) are entangling. This assertion can be checked by seeing that these gates map

the most general product state in C2⊗C2, given by a1a2|00〉+a1b2|01〉+b1a2|10〉+b1b2|11〉, to

an entangled state. For example, the operator corresponding to (0, 0,−2) maps this product

state to −a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉, which is entangled.

Using si and pi,i+1 The operator

Ri = si (1 + α pi,i+1) (4.10)

14



satisfies the (d, 2, 1)-gYBE for all values of α ∈ C, as can be checked by computing RiRi+1Ri

and Ri+1RiRi+1. The inverse, when d = 2, is given by

R−1
i = si

(
1− α

1 + 2α
pi,i+1

)
. (4.11)

The image of the braid group representation built using the (d, 2, 1)-R-matrix in (4.10) is

infinite, as seen through its powers:

Rn
i = sni (1 + αn pi,i+1) , (4.12)

with the parameters, when d = 2, defined recursively as αn = α1 + αn−1 + 2α1αn−1, after

identifying α1 with α in (4.10).

This is unitary for α∗ = − α
1+2α

, i.e. α = 1
2
(eiθ − 1) for arbitrary angle θ, which gives

real solutions α = 0,−1. From the above recursion formula, unitary solutions with generic θ

generate the infinite-dimensional braid group (Rn
i 6= 1 for any finite n). For the representation

of the partition algebra generators in (2.18) one obtains

Ri =


1 + α 0 0 α

0 α 1 + α 0

0 1 + α α 0

α 0 0 1 + α

 . (4.13)

The case α = 0 is just the permutation operator si, which is not an entangler by previous

considerations. That leaves us with α = −1, which is not an entangler either.

Comparison of the unitary solutions to known cases in [19,20] There are five families

of unitary 2-qubit solutions to the Yang-Baxter equation as found in [19] and analyzed in [20].

The solutions in (4.1) is mapped to one of the five families whose representative is given by
1 0 0 0

0 0 ψ1 0

0 ψ2 0 0

0 0 0 ψ3

 with |ψ1| = |ψ2| = |ψ3| = 1. (4.14)

Actually, the solution of the form (4.9) with (4.8) becomes


1 0 0 0

0 0 ei(ϕ−φ) 0

0 ei(θ−φ) 0 0

0 0 0 e−iφ

 after

scaling with e−iφ, which implies that the solution belongs to the family (4.14) with ψ1 = ei(ϕ−φ),
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ψ2 = ei(θ−φ) and ψ3 = e−iφ. In particular, the four real unitary solutions listed in Table 1 belong

to the same family with ψ1 = ψ2 = ψ3 = 1, ψ1 = ψ2 = ψ3 = −1 (after scaling with −1),

ψ1 = 1, ψ2 = ψ3 = −1 (after scaling with −1) and ψ1 = −1, ψ2 = ψ3 = 1, respectively.

In addition, the unitary solution in (4.10), more explicitly (4.13) with α = 1
2
(eiθ − 1), can

also be mapped to (4.14) up to the overall phase factor eiθ, where ψ1 = ψ2 = e−iθ, ψ3 = 1, and

the mapping is done by the ILO Q⊗Q with Q =

(
1 1

1 −1

)
.

Thus, all the unitary 2-qubit solutions we obtained belong to the single family (4.14) among

the five described in [19,20].

4.2 3-qubits

The number of possible operators on three sites i, i + 1 and i + 2 are pi, pi+1, pi+2, pi,i+1,

pi+1,i+2 and pi,i+2, along with the permutation generators si and si+1. In order to obtain valid

representations of the braid group we obtain solutions to the (d, 3, 2)-gYBE.

Using si, pi, pi+1 and pi+2 As ansatz we propose the natural generalization of (4.1) from

the 2-qubit case:

Ri = si,i+2 (1 + α1 pi + α2 pi+1 + α3 pi+2 + β1 pipi+1 + β2 pi+1pi+2 + β3 pipi+2 + γ pipi+1pi+2) ,

(4.15)

where si,i+2 = sisi+1si and the parameters are complex. This operator does not satisfy the

(d, 3, 2)-gYBE for all values of the parameters. One can however use the identities in (2.8) to

check that RiRi+2Ri = Ri+2RiRi+2 when

α2 = 0, β2 = − β1 (1 + α3)

1 + α1 + β1

, γ =
β1 (α3 − α1 − β1)

1 + α1 + β1

. (4.16)

The inverse is given by

R−1
i = (1 + α′1 pi + α′3 pi+2 + β′1 pipi+1 + β′2 pi+1pi+2 + β′3 pipi+2 + γ′ pipi+1pi+2) si,i+2,

(4.17)
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where

α′1 = − α1

1 + α1

, α′3 = − α3

1 + α3

,

β′1 = − β1

(1 + α1)(1 + α1 + β1)
, β′2 = − β2

(1 + α3)(1 + α3 + β2)
,

β′3 =
α1α3(2 + α1 + α3)− β3(1− α1α3)

(1 + α1)(1 + α3)(1 + α1 + α3 + β3)
,

γ′ = − β1(α1 − α3 + β1)

(1 + α1)(1 + α3)(1 + α1 + β1)
. (4.18)

The image of the braid group representation constructed out of (4.15) with parameters

satisfying (4.16) is infinite, as seen by computing the powers of the generalized R-matrix

Rn
i = sni,i+2

(
1 + α

(n)
1 pi + α

(n)
3 pi+2 + β

(n)
1 pipi+1 + β

(n)
2 pi+1pi+2 + β

(n)
3 pipi+2 + γ(n) pipi+1pi+2

)
,

(4.19)

with the parameters defined recursively as

α
(n)
1 = α

(1)
1 + α

(n−1)
3 + α

(1)
1 α

(n−1)
3 , α

(n)
3 = α

(n−1)
1 + α

(1)
3 + α

(n−1)
1 α

(1)
3 , (4.20)

and

β
(n)
1 = β

(1)
1 + β

(n−1)
2 + β

(1)
1 β

(n−1)
2 + α

(1)
1 β

(n−1)
2 + α

(n−1)
3 β

(1)
1 ,

β
(n)
2 = β

(n−1)
1 + β

(1)
2 + β

(n−1)
1 β

(1)
2 + α

(1)
3 β

(n−1)
1 + α

(n−1)
1 β

(1)
2 ,

β
(n)
3 = β

(1)
3 + β

(n−1)
3 + β

(1)
3 β

(n−1)
3 + β

(1)
3

(
α

(n−1)
1 + α

(n−1)
3

)
+ β

(n−1)
3

(
α

(1)
1 + α

(1)
3

)
,

γ(n) = γ(1) + γ(n−1) + γ(1)γ(n−1) + γ(1)
(
α

(n−1)
1 + α

(n−1)
3 + β

(n−1)
1 + β

(n−1)
2 + β

(n−1)
3

)
+γ(n−1)

(
α

(1)
1 + α

(1)
3 + β

(1)
1 + β

(1)
2 + β

(1)
3

)
+β

(n−1)
1

(
β

(1)
1 + β

(1)
3

)
+ β

(n−1)
2

(
β

(1)
2 + β

(1)
3

)
+ β

(n−1)
3

(
β

(1)
1 + β

(1)
2

)
+α

(n−1)
1 β

(1)
1 + α

(n−1)
3 β

(1)
2 + α

(1)
1 β

(n−1)
1 + α

(1)
3 β

(n−1)
2 , (4.21)

after identifying α
(1)
1 , α

(1)
3 , β

(1)
1 , β

(1)
2 , β

(1)
3 and γ(1) with α1, α3, β1, β2, β3 and γ in (4.15).

Unitary solutions occur when α′1 = α∗1, α′3 = α∗3, β′1 = β∗1 , β′2 = β∗2 , β′3 = β∗3 , and γ′ = γ∗

with α′1, · · · , γ′ given by (4.18). Their explicit form is given by

α1 = eiθ1 − 1, α3 = eiθ3 − 1, β1 = eiϕ1 − eiθ1 , β3 = eiϕ3 − eiθ1 − eiθ3 + 1, (4.22)

where θ1, θ3, ϕ1 and ϕ3 are arbitrary angles, and β2 and γ are obtained from (4.16). These

operators with generic angles generate the infinite-dimensional braid group just as the non-

unitary operators. This is further seen from the eigenvalues at these unitary solutions given

by {e−iϕ
(2) ,±e

− i
2

(θ1+θ3)

(2) , 1(2)}, with the n in a(n) denoting the multiplicity of the eigenvalue a.
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There are 16 real unitary points for the parameters in (4.16), of which we discuss eight.

(The remaining eight fall into the same SLOCC classes as the chosen eight.) These eight

unitary solutions are not equivalent to each other and generate the GHZ, AC−B and product

state SLOCC classes as shown in Tables 2, 3 and 4, respectively.

(α1, α3, β1, β3) R Eigenvalues n|Rn = 1

1. (−2,−2, 2, 2) 1
2


0 −1 1 0 −1 0 0 −1

−1 0 0 −1 0 −1 1 0

1 0 0 −1 0 −1 −1 0

0 −1 −1 0 1 0 0 −1

−1 0 0 1 0 −1 −1 0

0 −1 −1 0 −1 0 0 1

0 1 −1 0 −1 0 0 −1

−1 0 0 −1 0 1 −1 0

 (−1(4), 1(4)) 2

2. (−2,−2, 2, 4) 1
2


1 0 1 0 0 1 0 −1

0 1 0 −1 1 0 1 0

1 0 1 0 0 −1 0 1

0 −1 0 1 1 0 1 0

0 1 0 1 1 0 −1 0

1 0 −1 0 0 1 0 1

0 1 0 1 −1 0 1 0

−1 0 1 0 0 1 0 1

 (−1(2), 1(6)) 2

3. (−2, 0, 2, 0) 1
2


0 −1 0 −1 −1 0 1 0

−1 0 1 0 0 −1 0 −1

0 −1 0 −1 1 0 −1 0

1 0 −1 0 0 −1 0 −1

−1 0 −1 0 0 −1 0 1

0 −1 0 1 −1 0 −1 0

−1 0 −1 0 0 1 0 −1

0 1 0 −1 −1 0 −1 0

 (−1(2), 1(2), i(2),−i(2)) 4

4. (−2, 0, 2, 2) 1
2


1 0 0 −1 0 1 1 0

0 1 1 0 1 0 0 −1

0 −1 1 0 1 0 0 1

1 0 0 1 0 −1 1 0

0 1 −1 0 1 0 0 1

1 0 0 1 0 1 −1 0

−1 0 0 1 0 1 1 0

0 1 1 0 −1 0 0 1

 (i(2),−i(2), 1(4)) 4

Table 2: 3-qubit unitary generalized R-matrices generating the GHZ SLOCC class.

The generalized R-matrices in Table 2 generate the following entangled states in the GHZ

SLOCC class

1

2
[−|001〉+ |010〉 − |100〉 − |111〉] , 1

2
[|000〉+ |010〉+ |101〉 − |111〉] ,

1

2
[−|001〉+ |011〉 − |100〉 − |110〉] , 1

2
[|000〉+ |011〉+ |101〉 − |110〉] , (4.23)

which are equivalent to the standard GHZ state, |000〉+|111〉, by the application of appropriate

ILOs, such as, for example,(
a1 b1

ia1 −ib1

)
⊗
(

a2 b2

−ia2 ib2

)
⊗
(

i
4a1a2

− i
4b1b2

− 1
4a1a2

− 1
4b1b2

)
.
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The generalized R-matrices in Table 3 generate the partially entangled states AC − B

given by

1

2
[−|000〉 − |001〉 − |100〉+ |101〉] , 1

2
[|000〉 − |001〉+ |100〉+ |101〉] , (4.24)

respectively. The product state SLOCC class is reported instead on Table 4.

(α1, α3, β1, β3) R Eigenvalues n|Rn = 1

1. (−2,−2, 0, 2) 1
2


−1 −1 0 0 −1 1 0 0

−1 1 0 0 −1 −1 0 0

0 0 −1 −1 0 0 −1 1

0 0 −1 1 0 0 −1 −1

−1 −1 0 0 1 −1 0 0

1 −1 0 0 −1 −1 0 0

0 0 −1 −1 0 0 1 −1

0 0 1 −1 0 0 −1 −1

 (−1(4), 1(4)) 2

2. (−2, 0, 0, 2) 1
2


1 1 0 0 −1 1 0 0

−1 1 0 0 1 1 0 0

0 0 1 1 0 0 −1 1

0 0 −1 1 0 0 1 1

1 1 0 0 1 −1 0 0

1 −1 0 0 1 1 0 0

0 0 1 1 0 0 1 −1

0 0 1 −1 0 0 1 1

 (i(2),−i(2), 1(4)) 4

Table 3: 3-qubit unitary generalized R-matrices generating the AC −B SLOCC class.

(α1, α3, β1, β3) R Eigenvalues n|Rn = 1

1. (−2,−2, 0, 4)


0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

 (−1(2), 1(6)) 2

2. (−2, 0, 0, 0)


0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 −1 0 0 0 0

 (i(2),−i(2),−1(2), 1(2)) 4

Table 4: 3-qubit unitary generalized R-matrices generating the product state SLOCC class.

Using si, pi,i+1 and pi+1,i+2 The ansatz

Ri = si,i+2 (1 + α pi,i+1 + β pi+1,i+2 + γ pi,i+1pi+1,i+2 + δ pi,i+2) , (4.25)
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with si,i+2 = sisi+1si, satisfies the (d, 3, 2)-gYBE when γ = −α+β
2

. This is seen after simplifying

the expressions in the (d, 3, 2)-gYBE using the swapping property of the permutation operator

in (2.10), as done before.

The inverse, when d = 2 and γ = −α+β
2

is given by

R−1
i = (1 + α′ pi,i+1 + β′ pi+1,i+2 + γ′ pi,i+1pi+1,i+2 + δ′ pi,i+2) si,i+2, (4.26)

with

α′ = − α

1 + 2α
, β′ = − β

1 + 2β
, δ′ = − δ

1 + 2δ
, γ′ =

α + β + 4αβ

2 + 4(α + β + 2αβ)
, (4.27)

which results in a unitary family when α′ = α∗, β′ = β∗, γ′ = γ∗, and δ′ = δ∗ that are solved

by

α =
1

2
(eiθ − 1), β =

1

2
(eiϕ − 1), δ =

1

2
(eiφ − 1) (4.28)

with γ = −α+β
2

for θ, ϕ and φ arbitrary angles. The eigenvalues of this operator at the unitary

family are given by {eiφ
(4),±e

i
2

(θ+ϕ)

(2) }.

There are eight real unitary solutions, out of which four inequivalent unitary solutions are

shown in Table 5.
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(α, β, δ) Ri Eigenvalues n|Rn = 1

1. (−1,−1,−1) 1
2


−1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1

 (−1(6), 1(2)) 2

2. (−1,−1, 0)


0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

 (−1(2), 1(6)) 2

3. (−1, 0,−1) 1
2


−1 0 0 1 0 −1 −1 0

0 −1 −1 0 −1 0 0 1

0 1 −1 0 −1 0 0 −1

−1 0 0 −1 0 1 −1 0

0 −1 1 0 −1 0 0 −1

−1 0 0 −1 0 −1 1 0

1 0 0 −1 0 −1 −1 0

0 −1 −1 0 1 0 0 −1

 (−1(4), i(2),−i(2)) 4

4. (−1, 0, 0) 1
2


1 0 0 1 0 1 −1 0

0 1 −1 0 1 0 0 1

0 1 1 0 −1 0 0 1

−1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 −1

1 0 0 −1 0 1 1 0

1 0 0 1 0 −1 1 0

0 −1 1 0 1 0 0 1

 (i(2),−i(2), 1(4)) 4

Table 5: Unitary solutions in the 3-qubit case for the generalized Yang–Baxter operator in

(4.25) with γ = −α+β
2

.

The image of the braid group representations constructed out of the generalized R-matrix

in (4.25) for d = 2 and γ = −α+β
2

, for both the unitary and non-unitary cases, is once again

infinite as in the previous cases, as seen by computing the powers of the generalized R-matrix,

Rn
i = sni,i+2 (1 + αn pi,i+1 + βn pi+1,i+2 + γn pi,i+1pi+1,i+2 + δn pi,i+2) , (4.29)

with the parameters defined recursively as

αn = α1 + βn−1 + 2α1βn−1, βn = αn−1 + β1 + 2αn−1β1,

γn = γ1 + γn−1 + 4γ1γn−1 + 2δ1γn−1 + 2γ1δn−1 + δn−1 (α1 + β1) + δ1 (αn−1 + βn−1)

+2γn−1 (α1 + β1) + 2γ1 (αn−1 + βn−1) + α1αn−1 + β1βn−1,

δn = δ1 + δn−1 + 2δ1δn−1, (4.30)

after identifying α1, β1, γ1 and δ1 with α, β, γ and δ in (4.25).
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The generalized R-matrices in the first two rows of Table 5 are not entanglers, as they

generate just the product state SLOCC class. The generalized R-matrices of the second two

rows, on the other hand, are both entanglers generating the GHZ SLOCC class. In particular

the states they generate by acting on |000〉 are

1

2
[−|000〉 − |011〉 − |101〉+ |110〉] , 1

2
[|000〉 − |011〉+ |101〉+ |110〉] , (4.31)

which are equivalent to the standard GHZ state |000〉 + |111〉 by appropriate ILOs, such as,

for example, (
a1 b1

ia1 −ib1

)
⊗
(
a2 b2

ia2 −ib2

)
⊗
(
− 1

4a1a2
− 1

4b1b2
i

4a1a2
− i

4b1b2

)
.

4.3 4-qubits

As one increases the number of qubits, the analytic computation for the generalized R-matrices

gets more tedious. To illustrate the feasibility of the method, we write down the answers for

the 4-qubit case as well. We use the operators si, pi, pi+1, pi+2 and pi+3 to build the generalized

R-matrices. The generalized R-matrices that satisfy the (d, 4, 2)-gYBE and the (d, 4, 3)-gYBE

also satisfy far-commutativity yielding braid group representations. These are the cases we

focus on.

The (d, 4, 2)-generalized R-matrix

The generalized R-matrix

Ri = si,i+2 (1 + α1 pi + α3 pi+2 + β1 pipi+1 + β2 pipi+2

+β3 pipi+3 + β4 pi+1pi+2 + β6 pi+2pi+3 + γ1 pipi+1pi+2 +

+ γ2 pipi+1pi+3 + γ3 pipi+2pi+3 + γ4 pi+1pi+2pi+3 + δ pipi+1pi+2pi+3) , (4.32)

with si,i+2 = sisi+1si, satisfies the (d, 4, 2)-gYBE for

β4 = − β1 (1 + α3)

1 + α1 + β1

, β6 = − β3 (1 + α3)

1 + α1 + β3

,

γ1 = −β1 (α1 + β1 − α3)

1 + α1 + β1

, γ3 = −β3 (α1 + β3 − α3)

1 + α1 + β3

,

γ4 = (1 + α3)

[
β1

1 + α1 + β1

− (1 + α1) (β1 + γ2)

(1 + α1 + β3) (1 + α1 + β1 + β3 + γ2)

]
,

δ = −γ2 +
(1 + α3)

[
−β1β3 (2α1 + β1 + β3 + 2) + γ2

(
(1 + α1)2 − β1β3

)]
(1 + α1 + β1) (1 + α1 + β3) (1 + α1 + β1 + β3 + γ2)

. (4.33)
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The solutions become unitary when

α∗1 = − α1

1 + α1

, α∗3 = − α3

1 + α3

,

β∗1 = − β1

(1 + α1)(1 + α1 + β1)
, β∗3 = − β3

(1 + α1)(1 + α1 + β3)
,

β∗2 =
α1

1 + α1

− 1

1 + α3

+
1

1 + α1 + α3 + β2

,

γ∗2 =
β1

(1 + α1)(1 + α1 + β1)
− 1

1 + α1 + β3

+
1

1 + α1 + β1 + β3 + γ2

, (4.34)

which is solved by

α1 = eiθ1 − 1, α3 = eiθ3 − 1,

β1 = eiφ1 − eiθ1 , β3 = eiφ3 − eiθ1 ,

β2 = eiφ2 − eiθ1 − eiθ3 + 1, γ2 = eiϕ2 − eiφ1 − eiφ3 + eiθ1 , (4.35)

for arbitrary angles θ1, θ3, φ1, φ3 and ϕ2. The eigenvalues at these unitary solutions are given

by {1(4),±e
i
2

(θ1+θ3)

(4) , eiφ2
(4)}.

There are 64 real unitary generalized R-matrices in this case. They encompass four sets

of eigenvalues, with 16 unitary generalized R-matrices in each of these sets. The unitary

generalized R-matrices are inequivalent when they belong to different eigenvalue sets, however

when they belong to the same eigenvalue set they may or may not be equivalent. We write

down one unitary solution from each set of eigenvalues.

Eigenvalues ∈ {−1(8), 1(8)} The solution with (α1, α3, β1, β2, β3, γ2) = (−2,−2, 0, 2, 0, 0)

reads explicitly

1

2



−1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0

−1 0 1 0 0 0 0 0 −1 0 −1 0 0 0 0 0

0 −1 0 1 0 0 0 0 0 −1 0 −1 0 0 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0 −1 0 1 0

0 0 0 0 0 −1 0 −1 0 0 0 0 0 −1 0 1

0 0 0 0 −1 0 1 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 −1 0 1 0 0 0 0 0 −1 0 −1

−1 0 −1 0 0 0 0 0 1 0 −1 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 1 0 −1 0 0 0 0

1 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 −1 0 −1 0 0 0 0 0 1 0 −1

0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 −1


. (4.36)

This generates 1
2

[−|0000〉 − |0010〉 − |1000〉+ |1010〉] from |0000〉.
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Eigenvalues ∈ {−1(4), 1(12)} The solution for (α1, α3, β1, β2, β3, γ2) = (−2,−2, 0, 4, 0, 2)

reads

1

4



1 1 0 0 1 1 0 0 0 0 3 −1 0 0 −1 −1

1 1 0 0 1 1 0 0 0 0 −1 3 0 0 −1 −1

0 0 3 −1 0 0 −1 −1 1 1 0 0 1 1 0 0

0 0 −1 3 0 0 −1 −1 1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0 0 0 −1 −1 0 0 3 −1

1 1 0 0 1 1 0 0 0 0 −1 −1 0 0 −1 3

0 0 −1 −1 0 0 3 −1 1 1 0 0 1 1 0 0

0 0 −1 −1 0 0 −1 3 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 3 −1 0 0 −1 −1 0 0

0 0 1 1 0 0 1 1 −1 3 0 0 −1 −1 0 0

3 −1 0 0 −1 −1 0 0 0 0 1 1 0 0 1 1

−1 3 0 0 −1 −1 0 0 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 −1 −1 0 0 3 −1 0 0

0 0 1 1 0 0 1 1 −1 −1 0 0 −1 3 0 0

−1 −1 0 0 3 −1 0 0 0 0 1 1 0 0 1 1

−1 −1 0 0 −1 3 0 0 0 0 1 1 0 0 1 1


. (4.37)

This generates 1
4

[|0000〉+ |0001〉+ |0100〉+ |0101〉+ 3|1010〉 − |1011〉 − |1110〉 − |1111〉] from

|0000〉.

Eigenvalues ∈ {−i(4), i(4), 1(8)} The solution with (α1, α3, β1, β2, β3, γ2) = (−2, 0, 0, 2, 2, 0)

reads

1

2



1 0 0 −1 0 0 0 0 0 1 1 0 0 0 0 0

0 1 −1 0 0 0 0 0 1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 1 0 0 −1 0 0 0 0

1 0 0 1 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 1 0 0 −1 0 0 0 0 0 1 1 0

0 0 0 0 0 1 −1 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 −1

0 0 0 0 1 0 0 1 0 0 0 0 0 1 −1 0

0 −1 1 0 0 0 0 0 1 0 0 1 0 0 0 0

−1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 −1 1 0 0 0 0 0

0 1 1 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 1 0 0 1

0 0 0 0 −1 0 0 1 0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 1 0 0 0 0 0 −1 1 0

0 0 0 0 0 1 1 0 0 0 0 0 −1 0 0 1


. (4.38)

This generates 1
2

[|0000〉+ |0011〉 − |1001〉+ |1010〉] from |0000〉.

Eigenvalues ∈ {−i(4), i(4),−1(4), 1(4)} The solution with (α1, α3, β1, β2, β3, γ2) = (−2, 0, 0, 0, 2, 0)

reads

1

2



0 0 −1 −1 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 −1 −1 0 0 0 0 1 −1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 1 −1 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 −1

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 −1

−1 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

−1 −1 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 −1 1 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 −1 1

0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 −1 1 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 1 −1 0 0 0 0 −1 −1 0 0


. (4.39)
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This generates 1
2

[−|0010〉+ |0011〉 − |1000〉 − |1001〉] from |0000〉.

The (d, 4, 3)-generalized R-matrix

The generalized R-matrix

Ri = si,i+3 (1 + α1 pi + α4 pi+3 + β1 pipi+1

+ β2 pipi+2 + β3 pipi+3 + β5 pi+1pi+3 + β6 pi+2pi+3

+ γ1 pipi+1pi+2 + γ2 pipi+1pi+3 + γ3 pipi+2pi+3 + γ4 pi+1pi+2pi+3

+ δ pipi+1pi+2pi+3) , (4.40)

with si,i+3 = si+2si+1sisi+1si+2, satisfies the (d, 4, 3)-gYBE for

β5 = − β1 (1 + α4)

1 + α1 + β1

, β6 = − β2 (1 + α4)

1 + α1 + β2

,

γ2 = −β1 (α1 + β1 − α4)

1 + α1 + β1

, γ3 = −β2 (α1 + β2 − α4)

1 + α1 + β2

,

γ4 = (1 + α4)

[
β1

1 + α1 + β1

− (1 + α1) (β1 + γ1)

(1 + α1 + β2) (1 + α1 + β1 + β2 + γ1)

]
,

δ = −γ1 +
(1 + α4)

[
−β1β2 (2α1 + β1 + β2 + 2) + γ1

(
(1 + α1)2 − β1β2

)]
(1 + α1 + β1) (1 + α1 + β2) (1 + α1 + β1 + β2 + γ1)

. (4.41)

The solutions become unitary when

α∗1 = − α1

1 + α1

, α∗4 = − α4

1 + α4

,

β∗1 = − β1

(1 + α1)(1 + α1 + β1)
, β∗2 = − β2

(1 + α1)(1 + α1 + β2)
,

β∗3 =
α1

1 + α1

− 1

1 + α4

+
1

1 + α1 + α4 + β3

,

γ∗1 =
β1

(1 + α1)(1 + α1 + β1)
− 1

1 + α1 + β2

+
1

1 + α1 + β1 + β2 + γ1

, (4.42)

which is solved by

α1 = eiθ1 − 1, α4 = eiθ4 − 1,

β1 = eiφ1 − eiθ1 , β2 = eiφ2 − eiθ1 ,

β3 = eiφ3 − eiθ1 − eiθ4 + 1, γ1 = eiϕ1 − eiφ1 − eiφ2 + eiθ1 , (4.43)

for arbitrary angles θ1, θ4, φ1, φ2 and ϕ1. The eigenvalues at these unitary solutions are given

by {1(4),±e
i
2

(θ1+θ4)

(4) , eiφ3
(4)}.
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As in the (2, 4, 2) case, there are 64 real unitary generalized R-matrices and we write down

one unitary solution from each set of eigenvalue. When the parameters are complex we obtain

a family of unitary solutions that generate the full braid group.

Eigenvalues ∈ {−1(4), 1(12)} When (α1, α4, β1, β2, β3, γ1) = (−2,−2, 0, 0, 4, 2), the matrix

reads

1

4



1 0 1 0 1 0 1 0 0 3 0 −1 0 −1 0 −1

0 3 0 −1 0 −1 0 −1 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 0 −1 0 3 0 −1 0 −1

0 −1 0 3 0 −1 0 −1 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 0 −1 0 −1 0 3 0 −1

0 −1 0 −1 0 3 0 −1 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 0 −1 0 −1 0 −1 0 3

0 −1 0 −1 0 −1 0 3 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 3 0 −1 0 −1 0 −1 0

3 0 −1 0 −1 0 −1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 −1 0 3 0 −1 0 −1 0

−1 0 3 0 −1 0 −1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 −1 0 −1 0 3 0 −1 0

−1 0 −1 0 3 0 −1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 −1 0 −1 0 −1 0 3 0

−1 0 −1 0 −1 0 3 0 0 1 0 1 0 1 0 1


. (4.44)

This generates 1
4

[|0000〉+ |0010〉+ |0100〉+ |0110〉+ 3|1001〉 − |1011〉 − |1101〉 − |1111〉] from

|0000〉.

Eigenvalues ∈ {−1(8), 1(8)} The solution for (α1, α4, β1, β2, β3, γ1) = (−2,−2, 0, 0, 2, 0) reads

1

2



−1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 −1 −1 0 0 0 0 0 0 −1 1 0 0 0 0

0 0 −1 1 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 0 −1 −1 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 −1 1

0 0 0 0 0 0 −1 1 0 0 0 0 0 0 −1 −1

−1 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 −1 −1 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 0 −1 −1 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 −1


. (4.45)

This generates 1
2

[−|0000〉 − |0001〉 − |1000〉+ |1001〉] from |0000〉.
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Eigenvalues ∈ {−i(4), i(4), 1(8)} The solution for (α1, α4, β1, β2, β3, γ1) = (−2, 0, 0, 0, 2, 2)

reads

1

4



2 1 0 −1 0 −1 0 −1 −1 2 1 0 1 0 1 0

−1 2 1 0 1 0 1 0 2 1 0 −1 0 −1 0 −1

0 −1 2 1 0 −1 0 −1 1 0 −1 2 1 0 1 0

1 0 −1 2 1 0 1 0 0 −1 2 1 0 −1 0 −1

0 −1 0 −1 2 1 0 −1 1 0 1 0 −1 2 1 0

1 0 1 0 −1 2 1 0 0 −1 0 −1 2 1 0 −1

0 −1 0 −1 0 −1 2 1 1 0 1 0 1 0 −1 2

1 0 1 0 1 0 −1 2 0 −1 0 −1 0 −1 2 1

1 2 −1 0 −1 0 −1 0 2 −1 0 1 0 1 0 1

2 −1 0 1 0 1 0 1 1 2 −1 0 −1 0 −1 0

−1 0 1 2 −1 0 −1 0 0 1 2 −1 0 1 0 1

0 1 2 −1 0 1 0 1 −1 0 1 2 −1 0 −1 0

−1 0 −1 0 1 2 −1 0 0 1 0 1 2 −1 0 1

0 1 0 1 2 −1 0 1 −1 0 −1 0 1 2 −1 0

−1 0 −1 0 −1 0 1 2 0 1 0 1 0 1 2 −1

0 1 0 1 0 1 2 −1 −1 0 −1 0 −1 0 1 2


. (4.46)

This generates

1

4
[2|0000〉 − |0001〉+ |0011〉+ |0101〉+ |0111〉+ |1000〉+ 2|1001〉 − |1010〉 − |1100〉 − |1110〉]

from |0000〉.

Eigenvalues ∈ {−i(4), i(4),−1(4), 1(4)} The solution for (α1, α4, β1, β2, β3, γ1) = (−2, 0, 0, 2, 0, 0)

reads

1

2



0 −1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0

−1 0 1 0 0 0 0 0 −1 0 −1 0 0 0 0 0

0 −1 0 −1 0 0 0 0 1 0 −1 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 −1 0 −1 0 0 0 0

0 0 0 0 0 −1 0 −1 0 0 0 0 −1 0 1 0

0 0 0 0 −1 0 1 0 0 0 0 0 0 −1 0 −1

0 0 0 0 0 −1 0 −1 0 0 0 0 1 0 −1 0

0 0 0 0 1 0 −1 0 0 0 0 0 0 −1 0 −1

−1 0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0

0 −1 0 1 0 0 0 0 −1 0 −1 0 0 0 0 0

−1 0 −1 0 0 0 0 0 0 1 0 −1 0 0 0 0

0 1 0 −1 0 0 0 0 −1 0 −1 0 0 0 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0 0 −1 0 1

0 0 0 0 0 −1 0 1 0 0 0 0 −1 0 −1 0

0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 1 0 −1 0 0 0 0 −1 0 −1 0


. (4.47)

This generates 1
2

[−|0001〉+ |0011〉 − |1000〉 − |1010〉] from |0000〉.

4.4 4-qubits from 2-qubits via Temperley-Lieb generators

Up to this point we used the qubit representations of (2.20) in writing down the (d, 2, 1)-,

(d, 3, 2)-, (d, 4, 2)- and (d, 4, 3)-generalized Yang-Baxter operators. As noted in Sec. 2, if we

instead use the Temperley-Lieb representation we would obtain the generalized Yang-Baxter

operators that solve the (d, 4, 2)-, (d, 6, 4)-, (d, 8, 4)-, and (d, 8, 6)-gYBEs. In what follows we

discuss the (d, 4, 2)-generalized R-matrices in detail. Note that far-commutativity is satisfied

for each of these operators, thus leading to braid group representations.
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By applying the realization (2.22) and (2.23) to (4.1) for the 2-qubit case, we obtain the

generalized Yang-Baxter operator for 4-qubits at the sites 2i− 1, 2i, 2i+ 1, 2i+ 2:

Ri = s2i−1, 2i+1s2i, 2i+2 (1 + αe2i−1 + βe2i+1 + γe2i−1e2i+1) . (4.48)

It is clear that this solves RiRi+1Ri = Ri+1RiRi+1, but this should be recognized as the

(d, 4, 2)- gYBE instead of (d, 4, 1)-gYBE. Note that Ri has a nontrivial support on the sites

2i−1 to 2i+2, whereas Ri+1 has that on the sites 2i+1 to 2i+4. A shift of the index i of the

R-matrix by one corresponds to a shift of the sites by two. The far-commutativity relation is

satisfied in the sense of RiRj = RjRi for |i− j| > 1.

If the Temperley-Lieb generators are expressed by hermitian matrices, we can see that the

solution is unitary for

α =
1

∆
(eiθ − 1), β =

1

∆
(eiϕ − 1), γ =

1

∆2
(eiφ − eiθ − eiϕ + 1) (4.49)

with ∆ ≡ Q+Q−1, and θ, ϕ and φ angles taking any value. For real α, β and γ, there are 8

unitary points:

(α, β, γ) = {(0, 0, 0),

(
0, 0,− 2

∆2

)
,

(
0,− 2

∆
, 0

)
,

(
− 2

∆
, 0, 0

)
,(

0,− 2

∆
,

2

∆2

)
,

(
− 2

∆
, 0,

2

∆2

)
,

(
− 2

∆
,− 2

∆
,

2

∆2

)
,

(
− 2

∆
,− 2

∆
,

4

∆2

)
}. (4.50)

As a representation of the Temperley-Lieb generators for qubits at the sites i and i + 1,

we use the following matrix [36]

ei = (Q|01〉 − |10〉)
(
〈01| −Q−1〈10|

)
=


0 0 0 0

0 Q −1 0

0 −1 Q−1 0

0 0 0 0

 . (4.51)

Then, the eigenvalues of the R-matrix (4.48) with (4.49) are {1(6), −1, eiφ, ±e
i
2

(θ+ϕ)

(3) }, showing

that the R-matrix generates the infinite-dimensional braid group. Note that these are inde-

pendent of the parameter Q. In what follows, we discuss the corresponding entangled states

for the non-trivial cases of (4.50). We obtain the R-matrices which are not equivalent with

those in the (d, 4, 2)-cases in the previous subsection.
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Case I:
(
0, 0,− 2

∆2

)
The solution satisfies R2

i = 1, and generates entangled states as

Ri|0101〉 =

(
1− 2Q2

∆2

)
|0101〉 − 2

∆2
|1010〉+

2Q

∆2
(|0110〉+ |1001〉) ,

Ri|1010〉 =

(
1− 2Q−2

∆2

)
|1010〉 − 2

∆2
|0101〉+

2Q−1

∆2
(|0110〉+ |1001〉) ,

Ri|0110〉 =
Q2 +Q−2

∆2
|1001〉 − 2

∆2
|0110〉+

2Q

∆2
|0101〉+

2Q−1

∆2
|1010〉,

Ri|1001〉 =
Q2 +Q−2

∆2
|0110〉 − 2

∆2
|1001〉+

2Q

∆2
|0101〉+

2Q−1

∆2
|1010〉. (4.52)

For the other states, Ri does not generate entanglement. We can see that each of the four

states in (4.52) is SLOCC equivalent to

|0000〉+ |1111〉+ λ (|0011〉+ |1100〉) , (4.53)

with some coefficient λ. This falls into what is called Gabcd in [32] with a = 1 + λ, b = c =

0, d = 1− λ, or into what is called the class of span{0kΨ, 0kΨ} in [34]. For example, the first

state in (4.52) is mapped to (4.53) by successively operating the following two ILOs:

1⊗X ⊗ 1⊗X, diag

((
1− 2Q

∆2

)−1/4

,

(
− 2

∆2

)−1/4
)⊗4

. (4.54)

The matrix Ri has eigenvalues 1(9) and −1(7), which is inequivalent to any of (4.36)-(4.39).

Case II:
(
0,− 2

∆
, 0
)

The solution satisfies R4
i = 1 (but R2

i , R
3
i 6= 1), and generates entangled

states as the form of (the Bell state) ⊗ (separable 2-qubit state). The eigenvalues of Ri are

{−i(3), i(3),−1(4), 1(6)}, which is inequivalent to any of (4.36)-(4.39).

Case III:
(
− 2

∆
, 0, 0

)
This case provides essentially the same entanglement as the case II,

since the two R-matrices are connected by swapping sites as

Ri|case III = s2i−1,2i+1s2i,2i+1 (Ri|case II) s2i−1,2i+1s2i,2i+1. (4.55)
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Case IV:
(
0,− 2

∆
, 2

∆2

)
The solution satisfies R4

i = 1 (but R2
i , R

3
i 6= 1), and gives entangled

states as

Ri|0101〉 =

(
1− 2Q

∆
+

2Q2

∆2

)
|0101〉+

2

∆2
|1010〉 − 2Q

∆2
|0110〉+

2Q−1

∆2
|1001〉,

Ri|1010〉 =

(
1− 2Q−1

∆
+

2Q−2

∆2

)
|1010〉+

2

∆2
|0101〉+

2Q

∆2
|0110〉 − 2Q−1

∆2
|1001〉,

Ri|0110〉 =

(
1− 2Q−1

∆
+

2

∆2

)
|1001〉+

2

∆2
|0110〉+

2Q−1

∆2
(|0101〉 − |1010〉) ,

Ri|1001〉 =

(
1− 2Q

∆
+

2

∆2

)
|0110〉+

2

∆2
|1001〉+

2Q

∆2
(|1010〉 − |0101〉) . (4.56)

Operating Ri on any of the four states |0001〉, |0010〉, |1101〉, |1110〉 generates entangled states

like (the Bell state)⊗ (separable 2-qubit state). For the other states, Ri gives product states.

The four states in (4.56) are SLOCC equivalent to (4.53). For example, successive operations

of the three ILOs

1⊗X⊗1⊗X, 1⊗
(
iQ−1

1

)
⊗
(
−iQ

1

)
⊗1, diag

((
1− 2Q

∆
+

2Q2

∆2

)−1/4

,

(
2

∆2

)−1/4
)⊗4

(4.57)

map the first state in (4.56) to (4.53). The eigenvalues of Ri are {−i(3), i(3),−1(3), 1(7)}, which

is inequivalent to any of (4.36)-(4.39).

Case V:
(
− 2

∆
, 0, 2

∆2

)
This case is essentially the same as the case IV, because

Ri|case V = s2i−1,2i+1s2i,2i+1 (Ri|case IV) s2i−1,2i+1s2i,2i+1. (4.58)

Case VI:
(
− 2

∆
,− 2

∆
, 2

∆2

)
The solution satisfies R2

i = 1, and generates entangled states as

Ri|0101〉 =

(
1− 4Q

∆
+

2Q2

∆2

)
|0101〉+

2

∆2
|1010〉+

2Q−1

∆2
(|0110〉+ |1001〉) ,

Ri|1010〉 =

(
1− 4Q−1

∆
+

2Q−2

∆2

)
|1010〉+

2

∆2
|0101〉+

2Q

∆2
(|0110〉+ |1001〉) ,

Ri|0110〉 =

(
−1 +

2

∆2

)
|1001〉+

2

∆2
|0110〉+

2Q

∆2
|1010〉+

2Q−1

∆2
|0101〉,

Ri|1001〉 =

(
−1 +

2

∆2

)
|0110〉+

2

∆2
|1001〉+

2Q

∆2
|1010〉+

2Q−1

∆2
|0101〉, (4.59)

which are SLOCC equivalent to (4.53). The states |0001〉, |1110〉 and their permutations with

respect to the sites provide the direct product of the Bell state and a separable 2-qubit state

by acting with Ri. For the other states, Ri gives product states. The Ri has the eigenvalues

1(9) and −1(7), which is inequivalent to any of (4.36)-(4.39).
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Case VII:
(
− 2

∆
,− 2

∆
, 4

∆2

)
Since the solution in this case is factorized as

Ri = s2i−1, 2i+1

(
1− 2

∆
e2i−1

)
s2i 2i+2

(
1− 2

∆
e2i+1

)
, (4.60)

it is easy to see that R2
i = 1, and the entangled states obtained fall into a class of the direct

product of the two Bell states or the direct product of the Bell state and a separable 2-qubit

state. The eigenvalues of Ri are 1(10) and −1(6), which is inequivalent to any of (4.36)-(4.39).

Although various inequivalent solutions would be obtained by choosing other representa-

tions of the Temperley-Lieb algebra, we leave this issue as a future subject.

4.5 Algorithm for multi-qubit generalized R-matrices

The ansatze in (4.1), (4.15), (4.32), and (4.40) act as a guide for constructing the generalized

R-matrices in the multi-qubit case, while using the available operators: sj j = i, · · · , i+m−2

and pj j = i, · · · , i + m − 1. Throughout we assume that 2l ≥ m in order to ensure far-

commutativity in addition to obeying the (d,m, l)-gYBE.

The generalized R-matrix that satisfies the (d,m, l)-gYBE and is made up of products of

the pi operators is

Ri = si,i+l

[
1 +

m−1∑
r=1

( m−1∑
k1,··· ,kr−1=1

0<k1<···<kr−1<l

α
(r)
0,k1,··· ,kr−1

pi

r−1∏
j=1

pi+kj +
m−1∑

k1,··· ,kr−1=1
0<k1<···<kr−1<l

α
(r)
l,k1,··· ,kr−1

pi+l

r−1∏
j=1

pi+kj

+
m−1∑

k1,··· ,kr−2=1
0<k1<···<kr−2<l

α
(r)
0,k1,··· ,kr−2,l

pipi+l

r−2∏
j=1

pi+kj

)
+ α

(m)
0,1,··· ,m−1

m−1∏
j=0

pi+j

]
,

(4.61)

where si,i+l = si+l−1 · · · si+1sisi+1 · · · si+l−1 swaps the sites i and i + l. For r = 1,
∏r−1

j=1 pi+kj

and
∏r−2

j=1 pi+kj should be regarded as 1 and 0, respectively.

The coefficients can be determined by requiring this to satisfy RiRi+lRi = Ri+lRiRi+l.

This computation can be done analytically, but it is tedious. At the moment we do not have a

general analytic expression for the generalized R-matrix, but this algorithm works as studied in

the cases of three and four qubits. As seen in those cases, we expect to obtain a family of both

unitary and non-unitary generalized R-matrices. The image of the braid group representations

using the non-unitary matrices and the complex unitary matrices will be infinite, whereas the

image of the braid group representations of the real unitary matrices is expected to be finite.

31



Analogous generalized R-matrices solving the (d,m, l)-gYBE can be constructed using the

operators si,i+l and the powers of pk1,k2 where at least one of k1, k2 is either i or i+ l. We omit

the general expression for such an operator here as it is straightforward.

5 Comparison with known generalized R-matrices

The known unitary 3-qubit generalized R-matrices are the GHZ matrix obtained from the

extraspecial 2-group generators in [10], the generalization of the Rowell solutions in [21], and

the solutions obtained from ribbon fusion categories in [12, 13]. We now show that the four

unitary 3-qubit solutions in Table 2 are inequivalent to all of the solutions above.

Non-equivalence to the GHZ matrix The GHZ matrix that solves the (2, 3, 2)-gYBE is

given by

RGHZ =
1√
2



1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 −1 1 0 0 0

0 0 −1 0 0 1 0 0

0 −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1


(5.1)

and has eigenvalues e±iπ
4 , both with multiplicity 4. The eigenvalues of the complex unitary

3-qubit matrices of the form (4.15) have eigenvalues that cannot be mapped to the eigenvalues

of the GHZ matrix either by an inversion or by a scalar multiplication and thus we conclude

that at the unitary points these solutions are inequivalent to the GHZ matrix.

At the same time the eigenvalues of the four real unitary 3-qubit matrices in Table 2 cannot

be mapped to these eigenvalues by a scalar multiplication or an inversion, leading us to the

conclusion that those matrices cannot be possibly equivalent to the GHZ matrix.

Comparison with the generalized Rowell solutions In [21] the Rowell solutions of the

form

(
X 0

0 Y

)
= X⊕Y , are generalized to obtain three families of solutions. They have eigen-

values from the sets {e−i π
12 , e−i π

12 , ei 7π
12 , ei 7π

12 }, {e−iπ
4 ,−e−iπ

4 , eiπ
4 , eiπ

4 } and {e−iπ
4 , e−iπ

4 , eiπ
4 , eiπ

4 },
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respectively. However, these solve the (2, 3, 1)-gYBEs and hence cannot be compared to the

solutions in this paper, which solve instead the (2, 3, 2)-gYBE.

Comparison with the Kitaev-Wang solutions The Kitaev-Wang solutions in [12] and

their qubit realizations in [13] solve the (d, 3, 1)-gYBE, whereas the methods presented in this

paper generate the generalized Yang-Baxter operators that solve the (d, 3, 2)-gYBE. Thus we

cannot compare the two generalized R-matrices.

6 Outlook

In this paper we have used the notion of partition algebras to introduce a solution-generating

technique to obtain parameter-independent generalized R-matrices. This is quite remark-

able, since solving the gYBE is a notoriously difficult task. This is especially true for the

parameter-independent gYBE, for which very few solutions are known in the literature. In

some recent work [16], we have focused on the parameter-dependent case, using supersymme-

try algebras instead of partition algebras. In that case, the relation between R-matrices and

braid group representations was not very clear, so that the present work should be considered

as an improvement of our previous analysis.

Improved as it may be, we need however to remark that the method based on partition

algebras has certain limitations. The main issue is that not all SLOCC classes of entangled

states seem to be obtainable from the generalized R-matrices via partition algebras. In par-

ticular, we do not obtain the W-state SLOCC class of a 3-qubit system in the case that R is

a unitary braid operator. We suspect that this absence of the W-state class is not peculiar to

3-qubit systems, and it might extend to the multi-qubit case as well. It would be interesting

to check whether this is true, although it would represent a very laborious computation.

Understanding such a distinction of the W states, in particular from the GHZ states,

would be relevant to various applications in quantum information and quantum computing.

The GHZ states become unentangled bipartite mixed states after tracing out one qubit, while

the W states are still entangled. Thus, the GHZ states and their multipartite analogs are

fragile against particle loss and suitable for quantum secret sharing. On the other hand, the

W states and their multiqubit versions are robust against loss with possible application to

quantum memories, multiparty quantum network protocols and universal quantum cloning

machines.
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A new technique to construct solutions to generalized Yang-Baxter equation is presented

via interplay with k-graphs in [37]. It will also interesting to do similar analysis on the

entanglement generated through possible novel solutions obtained from the technique.

Of course, the physical realization of braiding operators is of the utmost interest. A natural

next step would then be to try to identify the anyons corresponding to these representations

and study their computational power. This could possibly help identifying the unitary modular

tensor categories that describe these anyons [38].

On a complementary direction, one could construct new integrable spin chains upon Bax-

terizing the 2-qubit R-matrices. In particular, using the Temperley-Lieb representations of

the 2-qubit R-matrices one could obtain new 4-site interaction spin chains that are integrable.

This is something on which we hope to report at some point in the future.

Note added After the conclusion of this work, we have found nonunitary braid operators

corresponding to W states [39], which were left out of the present analysis. We have managed

this by using partition algebras for W states in a 3-qubit space and extraspecial 2-groups for

the 4-qubit space case.
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