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Abstract 

 
We present a comparative analysis of the forecasting performance of two dynamic factor 

models, the Stock and Watson (2002a, b) model and the Forni, Hallin, Lippi and  Reichlin 

(2005) model, based on vintage data. Our dataset that contains 107 monthly US “first 

release” macroeconomic and financial vintage time series, spanning the 1996:12 to 2017:6 

period with monthly periodicity, extracted from the Bloomberg database†. We compute 

real-time one-month-ahead forecasts with both models for four key macroeconomic 

variables: the month-on-month change in industrial production, the unemployment rate, the 

core consumer price index and the ISM Purchasing Managers’ Index. First, we find that 

both the Stock and Watson and the Forni, Hallin, Lippi and Reichlin models outperform 

simple autoregressions for industrial production, unemployment rate and consumer prices, 

but that only the first model does so for the PMI. Second, we find that neither models 

always outperform the other. While Forni, Hallin, Lippi and Reichlin’s beats Stock and 

Watson’s in forecasting industrial production and consumer prices, the opposite happens 

for the unemployment rate and the PMI.  

Keywords: Dynamic factor models, Forecasting, Forecasting Performance, Vintage data, 

First release data 
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Introduction 

 

Dynamic factor models represent each element of a multiple set of time series as the sum 

of two orthogonal terms: the common component and the idiosyncratic component. The 

common component represents the part of each series which determines its co-movements 

with the other series, while the idiosyncratic component represents the residual part of its 

variability over time. The common component is driven by relatively few factors, as 

compared to the many series of interest. 

Among the many versions of dynamic factor models, we compare the forecasting 

performance of two well-known models: the model proposed by Stock and Watson (2002a, 

b) SW hereafter, and that proposed by Forni, Hallin, Lippi and Reichlin (2005) FHLR 

hereafter. 

The SW model requires two main steps to forecast a target variable. First, common 

factors are estimated using a static (time domain) principal components estimator. Then, 

the estimated factors are used as inputs (i.e. regressors) in an Autoregressive Distributed 

Lag (ADL) model.  

Like the SW model, FHLR builds forecasts of the target variable in two steps. In 

the first step, the frequency-domain technique proposed by Forni and co-authors (2000) is 

used to estimate the covariance matrices of the common and idiosyncratic components. 

Then, the second step relies on these estimates to get a consistent estimator of the space 

spanned by the static factors. This is achieved by solving the generalized principal 

components problem, and produces a set of dynamic principal components that, in turn, 

deliver a predictor of the future values of the series which is a linear projection of the future 

values of the common component on the factor space. Optionally, an independent forecast 

of the idiosyncratic component may be added. 

Since the FLHR model was presented, many researchers have tackled the issue of 

comparing its forecasting performance against the SW model. The existing literature shows 

mixed results so far. Using a dataset of 147 US macroeconomic and financial series 

spanning the 1959:1 to 1998:12 period, Boivin and Ng (2005) forecast eight variables and 

found that generally SW outperforms FHLR. On the contrary, Den Reijen (2005) found 

that FHLR outperforms SW in forecasting the Dutch GDP on a quarterly dataset of 370 

series running from 1980:Q1 to 2002:Q4. The same conclusion is drawn by Schumacher 
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(2007) for the German GDP, who also found that the model proposed by Kapetanios and 

Marcellino (2009) is similar to FHLR. Schumacher’s work is based on inputs from 124 

quarterly series over the period 1978:Q1 – 2004:Q1. D’Agostino and Giannone (2012) 

compare the two models on dataset of 147 US monthly observations on macroeconomic 

and financial variables. They found that SW and FHLR have similar forecasting 

performance and produce highly collinear forecasts. More recently, Forni, Giovannelli, 

Lippi and Soccorsi (2016) performed a comparison on a dataset of 115 monthly US 

macroeconomic and financial variables observed from 1959:1 to 2014:8, extending it to a 

further dynamic factor model recently proposed by Forni, Hallin, Lippi and Zaffaroni 

(2015, 2016). They found that FHLR wins over SW in forecasting industrial production 

but not consumer prices, where the Forni, Hallin, Lippi and Zaffaroni model performs best. 

Similar results are found by Della Marra (2016) on a dataset of 176 EU monthly 

macroeconomic and financial variables spanning the period 1986:2 – 2015:11 

The forecasting performance comparison of the present work is different from those 

traditionally employed in the literature, because of the type of data used. Instead of using 

commonly available series, that undergo revision procedures after their first release, we use 

genuine first release data (i.e. not furtherly adjusted) data, also known as “vintage data”. 

Vintage data allow to perform ex-post a real-time out-of-sample forecasting exercise, 

because these are the data that were actually available in the past if the model was to be 

applied then. The fact that real-time datasets contain missing values at the end of the in-

sample period (the so called “ragged-edge” problem) is solved as in Altissimo and co-

authors (2010) shifting forward the series when last observations are missing. To our 

knowledge, there is not any other research on dynamic factor models that exploits first-

release data as we do. 

We compare the forecasting performances of SW and FHLR on a dataset that 

contains 107 monthly US first-release macroeconomic and financial time series spanning 

1996:12 to 2017:6 extracted from the Bloomberg database. The real-time one month ahead 

forecasts are made for four key macroeconomic variables, namely industrial production 

month-on-month change (IP), the unemployment rate (UN), the core consumer price index 

(CPI) and the ISM Purchasing Managers’ Index (PMI). We use three different methods to 

determine the number of factors: the Information Criterion developed by Bai and Ng 

(2002), the Edge Distribution proposed by Onatski (2010) and the Eigenvalues Ratio of 

Ahn and Horenstein (2013). Moreover, all the forecasts are made using either the whole 
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dataset or excluding – in turn – various blocks of variables or dropping some variables 

according to two rules: the first rule is that proposed in Boivin and Ng (2006), the second 

rule was devised by us and is explained further. 

The rest of the paper is structured as follows. Section 1 gives a brief overview of 

factor models; paragraphs 1.1 and 1.2 describe the Stock and Watson (2002a, b) and the 

Forni, Hallin, Lippi and Reichlin (2005) models; section 1.3 and 1.4 present state-of-the-

art methods for estimating the number of static and dynamic factors, respectively; section 

1.5 concludes with an overview of different rules to par-down the number of input series 

in a dataset before the estimation. In Section 2 we shortly describe our dataset and presents 

our results. Section 3 concludes. The details of our data set are reported in the Appendix.
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1. Factor Models for Time Series 

 

Let 𝑿 be a 𝑁x𝑇 matrix that represents the panel of observed time series, where	𝑁 is the 

cross-sectional dimension (𝑖 = 1,… , 𝑁) and 𝑇 is the time dimension (𝑡 = 1,… , 𝑇): 

𝑿 = -
𝑥// ⋯ 𝑥/1
⋮ ⋱ ⋮
𝑥4/ ⋯ 𝑥41

5	 

Let’s also assume that each time series in the panel is covariance stationary, with zero mean 

and unit variance. 

In dynamic factor models, the vector of 𝑁 time series is represented at each point 

in time 𝑡 as the sum of two mutually orthogonal unobservable vectors, the common 

components 𝝌7	and the idiosyncratic components	𝝃7. While the common components 

represent the part of the series which co-move, the idiosyncratic components represent the 

residual part of the observed series. The vector of common components is driven by a 

vector of factors whose size is much smaller than the number of series, which creates the 

co-movements between the time series. In vector notation: 

𝒙7 = 𝝌7	 + 𝝃7	,			∀𝑡 ∈ {1, … , 𝑇};						    with 𝝌7	 ⊥ 𝝃7 

where: 

(i) 𝒙7 = [𝑥/7, … , 𝑥47]D	is the 𝑁x1 column vector that contains the 𝑁 observed time 

series at time t; 

(ii) 𝝌7	 = [𝜒/7, … , 𝜒47]D	is the 𝑁x1 column vector of common components at time 

t; 

(iii) 𝝃7 = [𝜉/7, … , 𝜉47]D is the 𝑁x1 column vector of idiosyncratic components at 

time t . 

Different classes of factor models can be specified, according to the assumptions made 

for the common and the idiosyncratic components. A first distinction can be made 

according to the functional form assumed for the common components 𝝌7	. With respect to 

this feature, two different classes of factor models are specified: static and dynamic factor 

models. In static factor models, the common components 𝝌7	do not take into account the 

lags of the factors:  

𝝌7	 = 𝚲𝑭7 
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where: 

(i) 𝑭7 ∈ ℝJ  is the 𝑟x1 column vector whose elements are the 𝑟 (unobservable) 

static factors at time t, with 𝑟 ≪ 𝑁;	 

(ii) 𝚲 ∈ ℝ4	M	J	is the factor loadings matrix (with 𝑁 rows and 𝑟 columns). 

 

In dynamic factor models, the common components 𝝌7	also take into account the lags of 

the factors: 

𝝌7	 = 𝚲(L)𝒇7 = 𝚲P𝒇7 + 𝚲/𝒇7Q/ + 𝚲R𝒇7QR … 

where: 

(i) 𝒇7 ∈ ℝS is the 𝑞x1 column vector whose elements are the 𝑞 (unobservable) 

dynamic factors at time t, with 𝑞 ≪ 𝑁;	 

(ii) 𝚲(L) = ∑ 𝚲V𝐿VX
VYP  is the lag polynomial matrix in non-negative powers of L, 

where the lag operator L is such that 𝐿V𝒇7 = 𝒇7QV; and each 𝚲V is a 𝑁x𝑞	matrix 

of factor loadings. 

Assuming that the maximum number of lags of the lag polynomial matrix	𝚲(L) is fixed at 

𝑠 < ∞, then the dynamic factor model can be rewritten in an equivalent static form: 

𝒙7 = 𝚲𝑭7 + 𝝃7 

where: 

(i) 𝒙7 = [𝑥/7, … , 𝑥47]D	is the 𝑁x1 column vector that contains the 𝑁 observed time 

series at time t; 

(ii) 𝑭7 = [𝒇7D , 𝒇7Q/D , … , 𝒇7Q]D ]D ∈ ℝJ is the 𝑟x1 column vector whose elements are 

the 𝑟 (unobservable) static factors at time t, with 𝑟 = 𝑞(𝑠 + 1). 

(iii) 𝚲 = [𝚲P, 𝚲/, … ,𝚲]]is the factor loadings matrix (with 𝑁 rows and 𝑟 columns). 

(iv) 𝝃7 = [𝜉/7, … , 𝜉47]D is the 𝑁x1 column vector of idiosyncratic components at 

time t . 

A second distinction between factor models can be made according to the assumptions 

made with respect to the idiosyncratic components 𝝃7. With respect to this feature, two 

different classes are specified: exact and approximate (or generalized) factor models. In 

exact factor models, the idiosyncratic components have no cross sectional and time 

dependence, i.e. both the covariance matrix and the cross- autocovariance matrices of 𝝃7 
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are diagonal: 𝐶𝑜𝑣a𝜉V7, 𝜉bcd = 0,			∀𝑡, 𝜏, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗. In approximate factor models the 

idiosyncratic components 𝝃7 are allowed to have mild cross-sectional dependence and also 

time dependence.  

Among the different versions of factor models, we only consider two different 

approximate dynamic factor models which are commonly used for forecasting 

macroeconomic variables, namely the model of Stock and Watson (2002a, b) and the model 

of Forni, Hallin, Lippi and Reichlin (2005).  

 

1.1 The Stock and Watson model 

Stock and Watson (2002a, b) assumed an approximate dynamic factors structure 

with finite lags (i.e. a static representation) for the covariance stationary standardized panel 

𝑿,	and proposed a procedure based on two main steps to forecast a time series 𝑥V, the 𝑖7i-

variable of 𝑿. First, they estimate the factors 𝑭7 using the static (time domain) principal 

components estimator. Then, they use the estimated static factors 𝑭j7 as inputs (i.e. 

regressors) in an Autoregressive Distributed Lag (ADL) model. Stock and Watson (2002a) 

showed that the principal components estimator 𝑭j7 is a consistent estimator of the space 

spanned by the unobservable factors 𝑭7 as both 𝑁, 𝑇	 ⟶ ∞, and Bai and Ng (2006) showed 

that using the principal components factors estimates as regressors does not affect the 

consistency properties of the OLS coefficient estimators, as long as √𝑇/𝑁	 ⟶ 0 as 

	𝑁, 𝑇	 ⟶ ∞. In detail, the SW forecasting model requires the following steps: 

1. Compute the sample covariance matrix 𝚪o𝒙(0) = 𝑇Q/ ∑ 𝒙7𝒙7D1
7Y/  . 

2. Compute the 𝑁 eigenvalues of 𝚪o𝒙(0), �̂�/, … , �̂�4 . 

3. Estimate the factors 𝑭7 through the static principal components estimator: 𝑭j7 =

	a√𝑁d
Q/
𝑷jD𝒙7,  where 𝑷j = [	𝒑t/, … , 	𝒑tJ] is the 𝑁	x 𝑟 matrix that contains the 

normalized (i.e. with unit norm) eigenvectors corresponding to the first 𝑟 largest 

eigenvalues of the sample covariance matrix. 

4. Estimate OLS (using data up to 𝑇 − ℎ) the constant 𝛼, the	𝑟 x 𝑚 coefficients of the 

matrix 𝑩 = [𝜷/, … ,𝜷{] and the 𝑝 coefficients 𝛾/,… , 𝛾~ of the ADL(𝑚, 𝑝)	model 

in which the estimated factors	𝑭j 7 are used as predictors together with the variable 

to be forecast: 
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𝑥V,7�ii = 	𝛼i +�𝜷ibD
{

bY/

𝑭j7Qb�/ +�𝛾i�

~

�Y/

𝑥V,7Qb�/ + 𝜖7�ii  

where 𝑥V,7�ii  is the h-step ahead variable to be forecast, 𝜖7�ii  is the linear regression 

error and the subscripts denote the dependence of the estimates on the forecasting 

horizon h. The SW forecasting equation is then given by: 

𝑥�V,1�i|	1i = 	𝛼�i + ∑ 𝜷jibD{
bY/ 𝑭j1Qb�/ + ∑ 𝛾�i�

~
�Y/ 𝑥V,1Qb�/  

where 𝛼�i, 𝜷jib and 𝛾�i� are the OLS estimates obtained using data up to time 𝑇, and 

𝑥�V,1�i|	1i  is the h-step ahead forecast of 𝑥V,1�i based on {𝑥V,1, 

𝑥V,1Q/, …	, 𝑭j1, 𝑭j1Q/, … }.  

Stock and Watson named the above forecasting equation “DI-AR Lag” (Diffusion Index – 

Autoregressive, with Lags). They also proposed two alternative restricted versions of the 

DI-AR Lag forecasting equation: the “DI-AR” (Diffusion Index – Autoregressive) 

forecasts, in which the lags of the factors are dropped (	i.e. 𝑥�V,1�i|	1i = 	𝛼�i +	𝜷jiD 𝑭j1 +

∑ 𝛾�i�
~
�Y/ 𝑥V,1Qb�/); and the “DI” (Diffusion Index) forecasts, in which both the 

autoregressive part and the lags of the factors are dropped (	i.e. 𝑥�V,1�i|	1i = 	𝛼�i +	𝜷jiD 𝑭j1). 

Which of the three forecasting equations performs better is an empirical question that I will 

try to answer in the forecasting exercise of the next chapter. 

The calibration of three parameters is required in order to make SW operational in 

its more general version (DI-AR Lag): 

(i) The number of static factors (𝑟). 

(ii) The maximum number of lags (𝑚) for the factors. 

(iii) The maximum number of lags (𝑝) for the response variable. 

In the forecasting exercise of the next chapter we set the maximum number of lags (𝑚 and 

𝑝) using the well-known BIC information criteria, while number of static factors (𝑟) is 

estimated using three different methods explained in section 1.3. 

 

1.2 The Forni, Hallin, Lippi and Reichlin model 

Forni, Hallin, Lippi and Reichlin (2005) assumed an approximate dynamic factors 

structure with finite lags (i.e. static representation) for the covariance stationary 

standardized panel 𝑿,	and proposed a procedure based on two main steps to forecast 𝑥V. In 
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the first step, they use the frequency-domain technique (i.e. dynamic PCA) of Forni and 

co-authors (2000) to estimate covariance matrices of the common and idiosyncratic 

components. In the second step, they use these estimates to obtain a consistent estimator of 

the space spanned by the static factors 𝑭7 solving the generalized principal components 

problem, and propose a predictor obtained as the linear projection of future values of the 

common component on the factor space. In detail, the FHLR model requires the following 

steps: 

1. Compute 	(2𝑀 + 1)  k-lag sample covariance matrices 𝚪o�(𝑘) = 𝑇Q/ ∑ 𝒙7𝒙7Q�D1
7Y/  , 

where 𝑘 ∈ {−𝑀,… ,𝑀} and 𝑀 is the truncation parameter used in the next step to 

estimate the spectral density matrix of 𝒙7.  

2. Use the estimates above to compute the sample spectral density matrix 𝚺j�(𝜃i) for 

each frequency 𝜃i =
R�i
R�

, where ℎ ∈ {0, … ,2𝐻} : 

𝚺j�(𝜃i) = � 𝑤(𝑀Q/𝑘)
�

�YQ�

𝚪o�(𝑘)𝑒QV���  

where 𝑤(𝑀Q/𝑘) is a positive even weight function and 𝑖 = √−1 is the imaginary 

unit. The above estimator is consistent as long as the following two conditions are 

meet: 1)	𝑀 > 0, 𝑀 ⟶∞ and 𝑀 𝑇⁄ ⟶ 0 as 𝑇 ⟶ ∞; 2)	𝑤(0) = 1, |𝑤(𝛼)| ≤

1		∀𝛼, and 𝑤(𝛼) = 0			∀|𝛼| > 1. The above estimator is called “lag window 

estimator” of 𝚺�(𝜃). 

3. Compute the dynamic eigenvalues of the sample spectral density matrix 𝚺j�(𝜃i) for 

each frequency 𝜃i; i.e. compute 𝜆�/(𝜃i),… , 𝜆��(𝜃i). Since the spectral density is a 

Hermitian matrix, its eigenvalues are real. 

4. For each frequency 𝜃i, use the q-largest dynamic eigenvalues of 𝚺j�(𝜃i) and the 

corresponding eigenvectors to estimate the spectral density matrix of the common 

component 𝝌7: 

𝚺j�(𝜃i) = 𝑷j(𝜃i)𝚲j(𝜃i)𝑷jD(𝜃i)  

where 𝚲j(𝜃i) is the 𝑞	x 𝑞 diagonal matrix of the dynamic eigenvalues (arranged in 

decreasing order) of 𝚺j𝒙(𝜃i) at frequency 𝜃i, 𝑷j(𝜃i) = �𝒑t/(𝜃i),… , 𝒑tS(𝜃i)� is the 

𝑁	x 𝑞 unitary matrix that contains the normalized complex eigenvectors 

corresponding to the q-largest dynamic eigenvalues of 𝚺j𝒙(𝜃i) at frequency 𝜃i, i.e. 
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𝑷j(𝜃i)𝑷j∗(𝜃i) = 𝑷j∗(𝜃i)𝑷j(𝜃i) = 𝑰, where 𝑷j∗(𝜃i) is the complex conjugate of 

𝑷j(𝜃i). 

5. Estimate the spectral density of the idiosyncratic component 𝝃7 by 𝚺j�(𝜃i) =

𝚺j�(𝜃i) − 𝚺j�(𝜃i), ∀	𝜃i. Note that the above estimator exploits the fact that the 

spectral density of 𝒙7 can be decomposed at each frequency as 𝚺j�(𝜃i) = 𝚺j�(𝜃i) +

𝚺j�(𝜃i), since the common and the idiosyncratic components are assumed to be 

orthogonal. 

6. Estimate the k-lag sample covariance matrices of the common and idiosyncratic 

components through the following Inverse (Discrete) Fourier Transforms: 

𝚪o�(𝑘) = (2𝐻 + 1)Q/� 𝚺j�(𝜃i)𝑒QV���
�

iYQ�
, 𝑘 ∈ {−𝑀,… ,𝑀}		 

𝚪o�(𝑘) = (2𝐻 + 1)Q/� 𝚺j�(𝜃i)𝑒QV���
�

iYQ�
, 𝑘 ∈ {−𝑀,… ,𝑀}		 

7. Obtain the 𝑁 complex numbers 𝑣�b	solving det ¢𝜞j𝝌(0) −	𝑣�b𝜞¤j𝝃(0)¥ = 0, where 

𝜞j�(0) is the 𝑁	x	𝑁 estimated covariance matrix of the common component and 

𝜞¤j�(0) is the 𝑁	x	𝑁 diagonal matrix obtained setting equal to 0 all the off-diagonal 

entries of the estimated covariance matrix of the idiosyncratic component 𝚪o𝝃(0). 

The 𝑁 complex numbers 𝑣�/,… , 𝑣�4 are then called generalized eigenvalues. 

8. Use the generalized eigenvalues computed above to obtain the corresponding 𝑁 

generalized eigenvectors 𝒁j/, … , 𝒁j4, i.e. the 𝑁 column vectors satisfying  

𝒁jb𝜞j�(0) = 𝑣�b𝒁jb𝜞¤j�(0) , s.t. 𝒁jbD𝜞¤j�(0)𝒁jV = 1 for 𝑖 = 𝑗, and 0 otherwise. 

9. Estimate the static factors 𝑭7 through the generalized principal components (GPC) 

estimator: 𝑭j7 = 	𝒁jD𝒙7,  where 𝒁j = �	𝒁j/,… , 	𝒁jJ� is the 𝑁	x 𝑟 matrix that contains the 

normalized (i.e. with norm 1) generalized eigenvectors corresponding to the first 𝑟 

largest generalized eigenvalues of the pair of matrices ¢𝜞j�(0), 𝜞¤j�(0)¥. 

10. Finally, the FHLR h-step ahead forecasting equation is then obtained projecting 

future values of the common component on the factor space: 

𝑥�V,1�i|	1i = �̂�V,1�i|	1i = 	𝚪o�,V.(ℎ)𝒁ja𝒁jD𝜞j�(0)𝒁jd𝑭j7 
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where h is the forecasting horizon, 𝚪o�,V.(ℎ) is the i-th row of the k-lag sample 

covariance matrices of the common components,	𝒁j is the 𝑁	x 𝑟 matrix that contains 

the generalized eigenvectors,	𝜞j�(0) is the sample covariance matrix, i.e. 𝚪o𝒙(0) =

𝑇Q/ ∑ 𝒙7𝒙7D1
7Y/  and 𝑭j7 are the estimated static factors. 

We name the above forecasting equation FHLR_1. Another forecasting equation could be 

obtained forecasting also the idiosyncratic component. This could be done separately since 

it is assumed that 𝝃7 is orthogonal to	𝝌7. In this case, the FHLR h-step ahead forecasting 

equation is obtained adding the projection of future values of the idiosyncratic component 

on the present and past values of the response variable	𝑥V to the projection of future values 

of the common component on the factor space:  𝑥�V,1�i|	1i = �̂�V,1�i|	1i + 𝜉�V,1�i|	1i , where: 

	�̂�V,1�i|	1i = 	𝚪o�,V.(ℎ)𝒁ja𝒁jD𝜞j�(0)𝒁jd𝑭j7 

and 

𝜉�V,1�i|	1i = �Γo�,VV(ℎ),… , Γo�,VV(ℎ + 𝑝 − 1)�𝑾V
Q/(𝑝)�𝑥V1, … , 𝑥V1Q~�/�

D
 

where the idiosyncratic component forecasting equation is taken following D’Agostino and 

Giannone (2012),  Γo�,VV(ℎ) denotes the entry of the i-th row and the i-th column of the matrix 

𝚪o�(ℎ), p is the maximum number of lag for the idiosyncratic component and  

𝑾V(𝑝) = ª
Γo�,VV(0) ⋯	 Γo�,VVa−(𝑝 − 1)d
⋯ ⋯	 ⋯

Γo�,VV(𝑝 − 1) ⋯	 Γo�,VV(0)
	« 

where Γo�,VV(𝑝) denotes the entry of the i-th row and the i-th column of the matrix 𝚪o�(𝑝). 

We call this forecasting equation FHLR_2.  

The calibration of five parameters is required in order to use FHLR_1: 

(i) The number of static factors (𝑟). 

(ii) The number of dynamic factors	(𝑞). 

(iii) The size of the truncation parameter M for the spectral density estimation. 

(iv) The weight function 𝑤(𝑀Q/𝑘) for the spectral density estimation. 

(v) The number of frequencies (2𝐻) for the computation of the spectral density. 

In the forecasting exercise of the next chapter, we set 𝑀 = 𝑓𝑙𝑜𝑜𝑟a√𝑇d and 

𝑤(𝑀Q/𝑘) = 1 − |�|
��/

 (i.e. triangular window), as suggested by Forni and co-authors. With 
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respect to the selection of the number of static factors (𝑟), we use three different methods 

explained in section 2.4. Finally, the number of dynamic factors (𝑞) is estimated using the 

well know Hallin and Liska (2007) method, which is explained in the next section. 

 

1.3 Determining the number of static factors 

In order to use the approximate static factor models presented in the previous 

section, the unknown true number of static factors (𝑟)	has to be estimated. Among the 

several techniques proposed in the literature for addressing this issue, we consider three 

different well-known methods: the Information Criterion developed by Bai and Ng (2002), 

the Edge Distribution proposed by Onatski (2010) and the Eigenvalues Ratio of Ahn and 

Horenstein (2013). 

The pioneering method developed by Bai and Ng (2002) consistently estimate the 

true number of static factors by minimizing one of two alternative information criterion, 

called 𝐼𝐶~ and 𝑃𝐶~. These two model selection functions are modifications of the well-

known AIC and BIC criterion that take into account both the cross-section and the time 

dimension of the dataset in the overfitting penalty term. Both the  𝐼𝐶~ and the 𝑃𝐶~ criteria 

can be specified in three different forms, according to the function chosen for the penalty 

term. The authors also specified the conditions that the penalty function 𝑝(𝑁, 𝑇) should 

satisfy to consistently estimate the true number of static factors, i.e. 𝑝(𝑁, 𝑇) ⟶ 0 and 

amin³√𝑁,√𝑇´d
R
𝑝(𝑁, 𝑇) ⟶ ∞ as 	𝑁, 𝑇	 ⟶ ∞. 

In our analysis we consider only one of the six different information criteria 

proposed by Bai and Ng (2002) for setting the number of static factors (𝑟). Specifically, 

we use the function that the authors have called 𝐼𝐶~R, which performed well in their Monte 

Carlo simulations: 

𝐼𝐶~R = ln ¶𝑉a𝑘, 𝜦j, 𝑭j7d¹ + 𝑘𝑝(𝑁, 𝑇) 

where 

𝑉a𝑘, 𝜦j, 𝑭j7d = (𝑁𝑇)Q/�¶𝒙7 − 𝜦j(𝑘)𝑭j7(𝑘)¹
D

1

7Y/

¶𝒙7 − 𝜦j(𝑘)𝑭j7(𝑘)¹ = (𝑁𝑇)Q/�𝝃o7D
1

7Y/

𝝃o7		 
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is the cross-sectional average variance of the idiosyncratic component when the model is 

specified using 𝑘 static factors, 

𝜦j(𝑘) = 	√𝑁𝑷j7		and 𝑭j7(𝑘) = a√𝑁	d
Q/
𝑷j7D𝒙7 

are, respectively, the factor loadings and factors static principal components estimators 

using the largest 𝑘 eigenvectors of the sample covariance matrix 𝚪o𝒙(0), and 

𝑝(𝑁, 𝑇) = 	
𝑁 + 𝑇
𝑁𝑇 ln(min{𝑁, 𝑇})	 

is the penalty term. 

The number of static factors (𝑟)	is obtained as the value of 𝑘 that minimize the 

function 𝐼𝐶~R	, for 𝑘 ∈ {0, 1, … , 𝑘{º�}, where the upper bound 𝑘{º� represents the 

maximum number of static factor assumed plausible a priori by the researcher: 

�̂� 	= argmin
P¾�¾�¿ÀÁ

𝐼𝐶~R(𝑘) . 

The authors suggested to consider 𝑘{º� = 8	int Ã¶ÄÅÆ{4,1}
/PP

¹
P.RÇ

È	as a possible heuristic 

choice of the maximum number of factors to be tested.  

Bai and Ng (2002) estimators are often been criticized because of two main reasons. 

First, these estimators are quite sensitive on the choice of the parameter	𝑘{º�1. Second, as 

long as the choice of the penalty function meets the consistency conditions presented above, 

multiplying the penalty term by any positive scalar allows to estimate consistently the true 

number of static factors. Therefore, finite sample performances of the estimator critically 

depend on the choice made. As a result, it is well known in the literature that Bai and Ng 

(2002) criteria is non-robust, in the sense that it often overestimates or underestimates the 

true number of factors in finite samples2.  Alessi, Barigozzi and Capasso (2010) tackled this 

problem proposing a data-driven technique (based on the influential work of Hallin and 

Liska (2007) presented in Section 2.5) to tune the choice of the penalty term. The resulting 

criteria maintains the same consistency properties as those of the Bai and Ng (2002) 

criterion, but it has better finite sample performance.  

                                                
1 See the Monte Carlo results in Ahn Horenstein (2013) on this issue. 
2 About this, see the empirical application results in Forni and co-aouthors (2009) or the Monte Carlo results 
in Alessi, Barigozzi and Capasso (2010), Onatski (2010) and Ahn and Horenstein (2013)) 
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Onatski (2010) developed an alternative estimator of the number of static factors 

(𝑟) based on the empirical distribution of the eigenvalues of the sample covariance matrix 

𝚪o𝒙(0).  The proposed estimator, named “Edge Distribution” is based on the fact that, for 

any 𝑘 > 𝑟, the difference between two adjacent eigenvalues (of the sample covariance 

matrix 𝚪o𝒙(0))  �̂�� − �̂���/ converges to 0, and �̂�J − �̂�J�/ diverge to ∞ as both 𝑁, 𝑇	 ⟶ ∞. 

The Onatski (2010) method requires the calibration of a threshold 𝛿 that separates the 

diverging differenced eigenvalues from the bounded ones. This threshold 𝛿 is sharp, in the 

sense that is cannot be arbitrarily scaled without compromise the consistency results. 

The number of static factors (𝑟)	is obtained through the following algorithm: 

0. Set the maximum number of iteration and the maximum number of static factors to 

be tested (𝑘{º�); 

1. Set 𝑗 = 𝑘{º� + 1	and obtain the 𝑁 eigenvalues  	�̂�/, … , �̂�4 of the sample covariance 

matrix	𝚪o𝒙(0); 

2. Run a simple linear regression in which  ³�̂�b, … , �̂�b�Ê´ is regressed on 

³(𝑗 − 1)R Ë⁄ ,… , (𝑗 + 3)R Ë⁄ ´ and the constant. Then, retrieve the OLS slope estimate 

𝛽� . Set 𝛿 = 2Î𝛽�Î; 

3. If �̂�� − �̂���/ < 𝛿		∀	𝑘 ≤ 𝑘{º�, then �̂�(𝛿) = 0; otherwise �̂�(𝛿) = max{𝑘 ≤

	𝑘{º�:	�̂�� − �̂���/ ≥ 𝛿} ; 

4. Set 𝑗 = �̂�(𝛿) + 1 and repeat steps 2 and 3 until convergence, i.e. until you get the 

same �̂�(𝛿) in two consecutive iterations. 

This procedure consistently estimates 𝑟 under the assumption of normality for the 

idiosyncratic component. Without this assumption, the consistency is reached if the 

residuals are either serially or cross-sectionally correlated, but not both. However, in his 

Monte Carlo exercise the author showed that the ED estimator has good finite sample 

performance even in the case in which the residuals are both cross-sectionally and auto-

correlated. 

Ahn and Horenstein (2013) proposed two alternative consistent estimators of the 

number of static factors, named “Eigenvalue Ratio” and “Growth Ratio” estimators. These 

estimators are based on the approximate factor model assumption that the 𝑟 largest 

eigenvalues of the sample covariance matrix 𝚪o𝒙(0) diverge to infinity as the number of 

series (𝑁) increases whereas the remaining (𝑁 − 𝑟) eigenvalues do not – they are  bounded. 
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With respect to the Onastki (2010) estimator, Ahn and Horenstein (2013) have the 

comparative advantage of not requiring the use of a pre-specified threshold; moreover, they 

have shown by Monte Carlo simulations that their estimators are robust with respect to the 

choice of the upper bound 𝑘{º� .  

In this work we consider only the Eigenvalue Ratio estimator, in which the number of static 

factors (𝑟)	is obtained as the value of 𝑘 that maximize the ratio of two adjacent eigenvalues 

(arranged in decreasing order) of the sample covariance matrix 𝚪o𝒙(0), for 𝑘 ∈

{0, 1,… , 𝑘{º�}: 

�̂� 	= argmax
P¾�¾�¿ÀÁ

		 ÑtÒ
ÑtÒÓÔ

 , 

where �̂��	is the 𝑘-th largest eigenvalue of 𝚪o𝒙(0) and �̂�P = (min{𝑁, 𝑇})Q/ ∑ �̂��	
ÄÅÆ{4,1}
�Y/ / 

ln	(min	{𝑁, 𝑇}) is the authors’ suggested choice for the “mock eigenvalue”. Different 

choices of  �̂�P	could be made, as long as they satisfy the consistency conditions �̂�P ⟶ 0 

and min{𝑁, 𝑇} �̂�P 	⟶ ∞ as 	𝑁, 𝑇	 ⟶ ∞ . 

 

1.4 Determining the number of dynamic factors 

The FHLR forecasting model requires to estimate the unknown number of dynamic 

factors (𝑞) to be made operational. Here we consider the popular approach proposed by 

Hallin and Liska (2007). This method is based on the generalized dynamic factor model 

assumption that the 𝑞 largest dynamic eigenvalues of the sample spectral matrix of the 

observations  𝚺j�(𝜃i) diverge to infinity as the number of series 𝑁 increases, whereas the 

remaining 𝑁 − 𝑞 eigenvalues are bounded. 

 Hallin and Liska (2007) consistently estimate the true number of dynamic factors 

by minimizing one of two alternative information criterion, called 𝐼𝐶/ and 𝐼𝐶R. Each of 

these criteria requires to consistently estimate the spectral density matrix of 𝑿. This could 

be done either using the lag window estimator presented in Section 1.3 or the periodogram-

smoothing estimator. Therefore, both the	𝐼𝐶/ and the 𝐼𝐶R criteria could be specified in two 

different forms, according to the spectral density estimator chosen. As recommended by 

the authors, we use only the criterion based on the lag window estimator. Then, the 

information criteria to be minimized takes one of the two the following forms: 
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𝐼𝐶/(𝑘) = (𝑁)Q/� (2𝑀 + 1)Q/
4

VY��/
� 𝜆�V(𝜃i)
�

iYQ�

+ 𝑘𝑐𝑝(𝑁, 𝑇) 

or 

𝐼𝐶R(𝑘) = ln -(𝑁)Q/� (2𝑀 + 1)Q/
4

VY��/
� 𝜆�V(𝜃i)
�

iYQ�

5 + 𝑘𝑐𝑝(𝑁, 𝑇) 

where 𝑀 is a truncation parameter used to estimate the spectral density matrix of the 

observations, 𝜃i =
�i

��P.Ç
 with ℎ ∈ {−𝑀,… ,𝑀} are the 2𝑀 + 1 grid points at which the 

spectral density is estimated, 𝑝(𝑁, 𝑇) is an appropriate penalty function such that  

𝑝(𝑁, 𝑇) ⟶ 0 and 𝑚𝑖𝑛	 ×𝑁,𝑀R,Ø𝑇 𝑀⁄ Ù𝑝(𝑁, 𝑇) ⟶ ∞ as 	𝑁, 𝑇	 ⟶ ∞ and 𝑐	is an arbitrary 

positive real number present in the equation because, as for the Bai and Ng (2002) 

information criteria, if the penalty 𝑝(𝑁, 𝑇) satisfies the consistency conditions above, then 

also any penalty 𝑐𝑝(𝑁, 𝑇) does. 

We use 𝐼𝐶R, which performed better in their Monte Carlo simulations. Based on their 

results, we also set 

𝑀 = 𝑓𝑙𝑜𝑜𝑟�0.75√𝑇� 

and 

𝑝(𝑁, 𝑇) = ¶𝑀QR + Ø𝑀 𝑇⁄ + 𝑁Q/¹ ln ¶𝑚𝑖𝑛	 ×𝑁,𝑀R, Ø𝑇 𝑀⁄ Ù¹ . 

The number of dynamic factor is set to the value of k that minimize the chosen 

information criteria 𝐼𝐶R(𝑘)		for 𝑘 ∈ {0, 1,… , 𝑘{º�}, where the upper bound 𝑘{º� 

represents the maximum number of dynamic factor assumed plausible a priori: 

𝑞� 	= argmin
P¾�¾�¿ÀÁ

𝐼𝐶R(𝑘) . 

Notice that in this procedure the positive constant 𝑐	is considered to be known. 

However, in practical applications the value of 𝑐 is not known and has to be calibrated. 

This is a delicate step because the estimated number of factors is a function of 𝑐: if the 

value of the constant is set too small, then there is underpenalization – and therefore 

overestimation –  of 𝑞, while if the value of the constant is set too large, then there is 

overpenalization – and therefore underestimation – of 𝑞. To solve this problem, the authors 
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also propose a data-driven methodology to calibrate the positive constant 𝑐 and therefore 

estimate 𝑞. In detail, their algorithm requires the following steps: 

0. Choose the penalty term 𝑝(𝑁, 𝑇) and set the values of 𝑀, 𝑘{º�, 𝑐{V�, 𝑐{º� and the 

size of the sub-blocks. 

1. Define 𝑝Ü(𝑐, 𝑁, 𝑇) = 𝑐𝑝(𝑁, 𝑇) , with 𝑐 ∈ 𝒞 ⊂ [𝑐{V�, 𝑐{º�] ⊂ ℝ�	. 

2. Perform a random permutation of the positions of the 𝑁 series available (optional) 

and choose 𝐽 sub-blocks of the series of size a𝑛b, 𝜏bd with 𝑗 ∈ {1,… , 𝐽} such that 

0 < 	𝑛/ < ⋯ < 𝑛à = 𝑁 and 0 ≤ 𝜏/ ≤ ⋯ ≤ 𝜏à = 𝑇. 

3. Repeat the following step for every 𝑐 ∈ 𝒞: 

Compute the 𝐽 minimizers 

𝑞��á,cá(𝑐) = argmin
P¾�¾�¿ÀÁ

ln�(𝑁)Q/ ∑ (2𝑀 + 1)Q/4
VY��/ ∑ 𝜆�V(𝜃i)�

iYQ� � + 	𝑘𝑐𝑝(𝑁, 𝑇), 

that is one  𝑞��á,cá(𝑐) for each of the sub-blocks a𝑛b, 𝜏bd, with 𝑗 ∈ {1,… , 𝐽}. Notice 

that the dependence of the number of dynamic factors on 𝑐 is now explicit. Then, 

compute the empirical variance of the 𝐽 minimizers 𝑞��á,cá(𝑐):		 

		𝑆R(𝑐) = 𝐽Q/�ã𝑞��á,cá(𝑐) − 	𝐽
Q/� 𝑞��á,cá(𝑐)

à

bY/
ä
Rà

bY/

 

4. Obtain 𝑐̂ as the smallest value of 𝑐 ∈ 𝒞 such that 𝑞��á,cá(𝑐) is a constant function of 

𝑗 (i.e. the empirical variance 𝑆R(𝑐) = 0	) and such that 𝑞��á,cá(𝑐) < 𝑘{º� (i.e. do not 

consider the so called “first stability interval”). 

We set 𝑘{º� = 12, 𝑛b = 𝑓𝑙𝑜𝑜𝑟 ¶4
Ê
¹ + 𝑗 − 1 and I keep fixed the time dimension of the 

sub-blocks, i.e. 𝜏b = 𝑇	∀𝑗. 

 

1.5 Estimating the factors using a subset of the data available  

In approximate (static or dynamic) factor models, all the consistency results require the 

divergence of both the panel cross-sectional dimension 𝑁 and time dimension 𝑇. Therefore, 

in empirical applications researchers have always used as much series as were available to 

estimate the (space spanned by the) factors. 



 
 

 17 

However, Boivin and Ng (2006) found that more data is not always better for 

estimating the factors and for forecasting using factors estimates. In details, they found that 

using only a subset of the available series might enhance the precision of the factor 

estimates and the forecasts accuracy when: 

(i) The series to be forecasted depends on “dominated” factors, i.e. factors which 

have a relatively small importance in the available dataset. 

(ii) The idiosyncratic components of the available series are strongly cross-

correlated. 

(iii) Some available variables are too noisy, i.e. they have a relatively large 

idiosyncratic component. 

Bai and Ng (2008) exploited the case (i) proposing to estimate the factors using only 

the subset of the available dataset that contains series which have been tested to have 

predictive power for the variable to be forecasted. They call these selected series “targeted 

predictors”3.  

Boivin and Ng (2006) focused mainly on the case (ii) and proposed two rules to 

select the series to be dropped, based on the correlation between the idiosyncratic 

components of the available series: 

Rule 1: For each of the 𝑁 available series, compute the sample correlation coefficient 

between the idiosyncratic component of the variable 𝑖 and 𝑗; i.e. compute 𝜌�Vb  ∀𝑖, 𝑗	with	𝑖 ≠

𝑗. Then, retrieve 𝜌�/∗(𝑖) = max
b
Î𝜌�VbÎ	∀𝑖	; i.e. the highest absolute sample correlation 

coefficient between the idiosyncratic component of the variable 𝑖 and 𝑗. Identify as 𝑗V/ the 

variable whose idiosyncratic component is the most correlated with those of series 𝑖. Then, 

obtain the set of the series whose idiosyncratic component is most correlated with the 

idiosyncratic component of some other series: 𝑗/ = {𝑗V/} = {𝑗//,… , 𝑗4/ } and drop all these 

variables. If two series are most correlated with each other, do not  drop both, but only the 

one that has the smallest common component’s relative importance, where:  

𝑅VR =� 𝜒V7R
1

7Y/
� 𝑥V7R

1

7Y/
ç  

is the relative importance of the common component in the 𝑖-th variable. 

                                                
3 WeI have not implemented this promising approach which we leave as a future research topic. 
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Rule 2: Drop the series following Rule 1. Then, drop also all the series whose idiosyncratic 

component is second most correlated with the idiosyncratic component of some other 

series. Similarly, to Rule 1, if two series are secondly most correlated with each other, do 

not drop both, but only the one that has the smallest common component’s relative 

importance. 

We have tried both Rule 1 and Rule 2 to test if the forecast accuracy could be 

improved dropping series based on the correlation between their idiosyncratic components. 

Furthermore, we devised another rule to select the series to be dropped, based on relative 

importance of the common component of the available series. Our proposed “Rule 3” tries 

to exploit Bai and Ng (2006) result that it might be possible to improve both the factor 

estimates’ precision and forecasts accuracy dropping series that have a relatively large 

idiosyncratic component; i.e. case (iii). The implementation details of Rule 3 are: 

Rule 3: For each of the	𝑁 available series, compute the relative importance of the common 

component statistic, i.e. compute 𝑅VR = ∑ 𝜒V7R1
7Y/ ∑ 𝑥V7R1

7Y/⁄  , ∀	𝑖 ∈ {1, … , 𝑁}. Then, sort 

them in increasing order and compute the p-th percentile. Drop all the series below the p-

th percentile. We set 𝑝 = 25. 

          Finally, we also test a fourth rule in which the series to be dropped have both large 

and strongly correlated idiosyncratic components, i.e. case (ii) and (iii). Specifically, this 

combines Rule 1 with Rule 3: first, drop the series according to Rule 1; then, apply Rule 3 

on the remaining series and drop the variables accordingly. We call this “Rule 4”. 
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2. Comparisons of Forecasting Performances 

 
In order to run a real-time out-of-sample forecasting exercise, it is necessary to use data 

actually available at each point in time in which the forecasts are made. Therefore, we 

create a vintage dataset of “first-release” macroeconomic data, which are the first 

preliminary data released by official statistical agencies. This is in contrast with what 

typically happens in the dynamic factor models forecasting literature, where it is common 

to perform a pseudo real-time forecasting exercise using the last revised data available at 

when the dataset is built. These data are almost always different from those that are first 

published and actually known in real time.   

Our dataset contains 107 monthly US first-release macroeconomic and financial 

monthly time series, spanning the 1996:12 to 2017:6 period. All series come from the 

Bloomberg database. We classify these series into seven broad groups: 

1. Output (series 1-15), 

2. Labor Market (series 16-28), 

3. Housing (series 29-38), 

4. Consumption, Orders and Inventories (series 39-47), 

5. Money&Credit (series 48-55), 

6. Financials (series 56-86), 

7. Prices (series 87-107).  

All series are transformed to achieve stationarity and no treatment for outliers is applied. A 

complete description of the dataset and further information on how the variables are made 

stationary can be found in the Appendix. 

A further issue in real-time macroeconomic forecasting is how to deal with the so-

called “ragged-edge” problem: real-time datasets contain missing values at the end of the 

in-sample period. This happens because macroeconomic data are not released at the same 

time, and therefore new observations on some series are released later than those on other 

series. As in Altissimo and co-authors (2010), we deal with this problem through the 

“forward realignment” method: we shift forward the series whose last observations are 

missing. As a result, we lose some observations at the beginning of the sample period, 

which is then cut in order to have a balanced dataset. After this realignment, our actual 

dataset begins in 1998:2, fourteen months later than the beginning of the original raw series. 
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The forecasting exercise simulates real-time forecasts of four key macroeconomic 

variables, namely: the industrial production month-on-month change (IP), the 

unemployment rate, the Core Consumer Price Index (i.e. all CPI items less food and 

energy) and the ISM Purchasing Managers’ Index (PMI). It is important to notice that, even 

if the four series of interest belong to a single dataset, the forward realignment procedure 

requires peculiar shifting depending on which variable is forecasted. This is because the 

target variables are not released at the same time. Therefore, in making forecasts the day 

before of the first release, four different realignments are made depending on which is the 

target variable. 

  The SW and FHLR models are first estimated over the seven-years period 

beginning on 1998:2 and ending on 2005:1. Then both models are used to compute the out-

of-sample one-step-ahead forecast, that is the forecast for the period 2005:2. Then the 

window is rolled on by one month (i.e. an additional period of data is added and the first 

period of the first sample is deleted) and the models are re-estimated. Therefore, the next 

forecast is based on models estimated on a new sample that differs from the former by one 

data point. This exercise is repeated until the models are estimated in the last sample, which 

spans the period 2010:6 -2017:5, and the last forecast is made for 2017:6. Overall, 149 

forecasts are computed for each target variable. 

All variables are normalized to have zero sample mean and unit sample variance, 

so that the forecasting exercise is run on covariance-stationary and standardized series. The 

standardized forecasts are then inverted to their original scales, and the transformations 

made to achieve stationarity are reverse engineered. This process is carried out for:  

1. a univariate AR model of order four, 

2. three specifications of SW (DI-AR Lag, DI-AR and DI), 

3. two specifications of FHLR (FHLR_1 and FHLR_2. 

The forecasting performance of each model is measured by the relative mean squared 

forecasting error (RMSFE): 

𝑅𝑀𝑆𝐹𝐸(𝑚𝑜𝑑𝑒𝑙) =
∑ a𝑦c�i − 𝑦�c�i|c{ìíîïdR/(𝑇 − ℎ − 𝜏P)1Qi
cYcð

∑ a𝑦c�i − 𝑦�c�i|cñî�òidR/(𝑇 − ℎ − 𝜏P)1Qi
cYcð
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where 𝑇 is the last date of the sample, corresponding to 2017:6; ℎ = 1 is the forecasting 

horizon; 𝜏P is the last date of the first rolling window, corresponding to 2005:1; 𝑚𝑜𝑑𝑒𝑙 is 

the forecasting model considered and ranges over DI-AR Lag, DI-AR, DI, FHLR_1 and 

FHLR_2; 𝑏𝑒𝑛𝑐ℎ is the benchmark model, which is the AR model of order 4; 𝑦c�i is  the 

value of the variable to be predicted at time 𝜏 + ℎ and 𝑦�c�i|c is the corresponding ℎ-step 

ahead forecast. A value of the RMSFE below one indicates that the forecasting model 

considered has had, on average, lower squared forecasting errors than those of the 

benchmark AR model. 

 
Table 1 

Description of the datasets of predictors 

Data Sets Series Series Numbers 

D1 All time series 1 – 107 
D2 All time series except those in the 

Output group 
16 – 107 

D3 All time series except those in the 
Labor Market group 

1 – 15 and 29 – 107 

D4 All time series except those in the 
Housing group 

1 – 28 and 39 – 107 

D5 All time series except those in the 
Consumption, Orders and Inventories 
group 

1 – 38 and 48 – 107 

D6 All time series except those in the 
Money&Credit” group 

1 – 47 and 56 – 107 

D7 All time series except those in the 
Financials group 

1 – 55 and 87 – 107 

D8 All time series except those in the 
Prices group 

1 – 86 

D9 All time series except those deleted 
according to Rule 1 

Variable 

D10 All time series except those deleted 
according to Rule 2 

Variable 

D11 All time series except those deleted 
according to Rule 3 

Variable 

D12 All time series except those deleted 
according to Rule 4 

Variable 

 

For each of the four key target variables, the forecasting models are estimated considering 

twelve different datasets, as detailed in Table 1. Notice that the series deleted according to 

Rules 1 to 4 can be different at each time window.  
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2.1 Forecasting Performance Results  

The RMSFE results for Industrial Production are shown in Table 2. The best forecasting 

results of each model are obtained estimating the number of static factors through the Bai 

and Ng (2002) method. In general, FHLR outperforms SW. Moreover, FHLR outperforms 

the benchmark almost always, while for SW this outcome depends on both the datasets 

used to estimate the factors and on the methods applied to determine the number of factors. 

Comparing the different specifications of the two dynamic factor models, it can be 

seen that the three SW specifications provide very similar results and most of the times the 

simple DI model has a slightly better forecasting performance. Also, the two FHLR 

specifications yield almost the same results, so forecasting only the common component 

provides results that are comparable – and many times slightly better – than those obtained 

forecasting also the idiosyncratic component. 

With respect to the dataset used, an interesting result that holds for all models’ 

specifications and for all the methods used to estimate the number of factors is that 

excluding the Financial or the Prices blocks of variables (i.e. using dataset D7 or D8) 

improves the forecasting performance. On the contrary, excluding the Labor Market block 

(i.e. using dataset D3) deteriorates the forecasting performance. Results on other blocks of 

variables are not easily interpretable, because they depend either on the forecasting model 

used or on the method chosen to determine the number of factors. Nevertheless, it is always 

possible to improve the forecasting accuracy of the five models' specifications by dropping 

some block of variables, and sometimes these improvements are substantial. These results 

provide evidence that supports the finding of Boivin and Ng (2006), who stated that using 

more data to estimate the factors may worsen forecasting performance. 
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Table 2 
Comparisons of Forecasting Performances on Industrial Production 

Data 
Sets 

Models 

SW DI-AR 
Lag SW DI-AR SW DI FHLR_1 FHLR_2 

Information Criteria (Bai and Ng, 2002) 
D1 1.05 1.06 1.06 0.90 0.90 
D2 1.04 1.05 1.04 0.87 0.88 
D3 1.14 1.15 1.14 0.94 0.94 
D4 1.08 1.08 1.08 0.91 0.91 
D5 1.05 1.07 1.05 0.93 0.93 
D6 0.99 1.00 1.00 0.89 0.89 
D7 0.88 0.95 0.92 0.86 0.85 
D8 0.97 0.99 0.94 0.80 0.79* 
D9 0.93 0.99 0.97 0.90 0.91 

D10 1.12 1.14 1.12 1.04 1.05 
D11 0.96 0.96 0.89 0.85 0.84 
D12 0.97 0.88 0.90 0.88 0.87 

  Edge Distribution (Onatski, 2010) 
D1 1.06 0.99 0.99 0.97 0.98 
D2 1.03 1.06 0.99 0.99 1.00 
D3 1.07 1.02 1.00 0.98 0.98 
D4 0.97 1.02 1.01 0.89 0.90 
D5 1.04 1.02 1.00 0.99 0.99 
D6 1.03 1.00 0.97 0.97 0.97 
D7 1.00 0.99 0.96 0.97 0.98 
D8 1.00 0.93 0.92 0.91 0.91 
D9 1.06 1.05 1.03 0.97 0.97 

D10 0.95 0.96 0.93 0.94 0.94 
D11 1.04 1.00 0.98 0.97 0.98 
D12 1.07 1.05 1.03 0.97 0.99 

Eigenvalue Ratio (Ahn & Horenstein, 2013) 
D1 1.00 0.93 0.93 0.92 0.93 
D2 0.96 0.99 0.93 0.92 0.93 
D3 1.00 0.99 0.97 0.94 0.96 
D4 0.95 0.99 0.96 0.86 0.87 
D5 0.99 0.96 0.96 0.94 0.95 
D6 0.98 0.92 0.92 0.91 0.92 
D7 0.89 0.91 0.89 0.90 0.90 
D8 0.99 0.93 0.92 0.91 0.91 
D9 0.99 1.00 0.97 0.92 0.92 

D10 1.04 1.03 0.99 0.90 0.91 
D11 0.98 0.93 0.93 0.92 0.93 
D12 1.01 0.99 0.98 0.91 0.92 

Note: Relative Root Mean Squared Error against the AR benchmark. The best forecasting 
performance of each model marked in boldface. Among these five top forecasting 
performances, the best one is starred. 
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The performance comparisons on the unemployment rate are shown in Table 3. 

Both SW and FHLR outperform the benchmark, no matter what is the model specification 

and which dataset or which method to select the number of factors are used. Overall, SW 

tends to outperform FHLR. Comparing the different specifications, the simple FHLR_1 

performs better than the more complex FHLR_2, in which both the common and the 

idiosyncratic component are forecasted. 

Both SW and FHLR lead to similar conclusions about the informative contents of 

the different datasets. In detail, excluding the Output, Labor Market, Consumption, Orders 

and Inventories or the Financials blocks (i.e. using dataset D2, D3, D5 or D7 respectively) 

generally improves the forecasting performance. The same happens dropping variables 

according to Rule 2 or Rule 3 (i.e. using dataset D10 or D11), while excluding the Prices 

block (i.e. using dataset D8) improves the forecasting performance. Indeed, the best 

forecasting results of all the five models are obtained using dataset D8. While for all SW 

specifications these performances are achieved estimating the number of factors through 

the Onatski (2010) method, the best performances for the two FHLR specification are 

obtained using the Bai and Ng (2002) method. The RMSFE improvements excluding the 

price variables are considerable. For example, the mean squared forecasted errors of the DI 

models is 84% that of the autoregressive model when using the largest dataset (i.e. D1), 

while it is only 76% that of the benchmark model when excluding the prices block of 

variables. Therefore, the Boivin and Ng (2006) result that using more data to estimate the 

factors may provide worse forecasting performance is supported by our analysis on the 

unemployment rate forecasts. The simple DI specification of SW has better forecasting 

performance than the two alternative specifications, where lags on the response variable or 

on the factors are allowed. For FHLR a similar conclusion applies: the simple FHLR_1 

performs better than FHLR_2 – which includes an idiosyncratic component. 
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Table 3 
Comparisons of Forecasting Performances on Unemployment 

Data 
Sets 

Models 
SW DI-AR 

Lag SW DI-AR SW DI FHLR_1 FHLR_2 

Information Criteria (Bai and Ng, 2002) 
D1 0.88 0.88 0.87 0.88 0.9 
D2 0.9 0.88 0.87 0.9 0.92 
D3 0.92 0.92 0.91 0.94 0.96 
D4 0.86 0.85 0.84 0.85 0.9 
D5 0.92 0.9 0.9 0.9 0.92 
D6 0.9 0.9 0.88 0.86 0.89 
D7 0.88 0.88 0.84 0.86 0.9 
D8 0.8 0.8 0.77 0.81 0.83 
D9 0.85 0.87 0.85 0.86 0.88 

D10 0.9 0.9 0.9 0.96 0.98 
D11 0.91 0.92 0.9 0.91 0.92 
D12 0.83 0.88 0.89 0.93 0.95 

Edge Distribution (Onatski, 2010) 
D1 0.88 0.85 0.84 0.88 0.91 
D2 0.9 0.89 0.88 0.94 0.96 
D3 0.9 0.87 0.86 0.92 0.94 
D4 0.84 0.83 0.82 0.86 0.9 
D5 0.89 0.86 0.85 0.9 0.92 
D6 0.91 0.85 0.84 0.89 0.92 
D7 0.85 0.82 0.82 0.88 0.91 
D8 0.79 0.78 0.76* 0.82 0.84 
D9 0.87 0.84 0.84 0.89 0.9 

D10 0.91 0.91 0.9 0.93 0.95 
D11 0.87 0.85 0.84 0.89 0.91 
D12 0.87 0.82 0.82 0.88 0.9 

Eigenvalue Ratio (Ahn & Horenstein, 2013) 
D1 0.85 0.84 0.81 0.86 0.88 
D2 0.86 0.87 0.84 0.91 0.93 
D3 0.89 0.88 0.85 0.91 0.94 
D4 0.84 0.84 0.82 0.86 0.89 
D5 0.87 0.86 0.83 0.88 0.91 
D6 0.88 0.83 0.81 0.87 0.9 
D7 0.84 0.81 0.8 0.85 0.88 
D8 0.82 0.81 0.78 0.85 0.87 
D9 0.87 0.84 0.83 0.89 0.91 

D10 0.88 0.88 0.88 0.91 0.94 
D11 0.85 0.84 0.81 0.87 0.9 
D12 0.87 0.83 0.83 0.88 0.92 

Note: Relative Root Mean Squared Error against the AR benchmark. The best forecasting 
performances of each model are marked in boldface. Among the top forecasting 
performances, the best one is starred. 
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Table 4 shows our results for the CPI. The table shows that the best forecasting 

results of each model are obtained estimating the number of static factors through the 

Onatski (2010) method, and that in general FHLR model outperforms the SW model. 

However, the two dynamic factor models rarely beat the benchmark, and when they do the 

relative forecasting improvements are quite small. More precisely, SW beats the AR model 

only 10% of the time, while FHLR outperforms the benchmark approximately 30% of the 

time. The best performance is achieved by the FHLR_2 specification in which both the 

common and the idiosyncratic component are forecast on the dataset that exclude the 

Output block of variables. In this case, the mean squared forecast errors is 96% relative to 

the benchmark autoregressive model. Comparing the different specifications of the two 

dynamic factor models (SW and FHLR), it can be seen that the DI-AR Lag specification 

of SW never beats the autoregressive model, and in general the DI-AR specification has 

better forecast performance than the other two alternative specifications (DI and DI-AR 

Lag). For FHLR, the FHLR_2 specification performs better than FHLR_1 where only the 

common component is forecast. A further interesting result that holds for all the five 

forecasting models and for all the methods used to estimate the number of factors is that 

dropping the variables according to Rule 1 (i.e. using dataset D9) improves the forecasting 

performance for CPI. Results on other block of variables are not easily interpretable 

because depend either on the forecasting model used or on the method chosen to determine 

the number of factors. Nevertheless, Boivin and Ng (2006) result are still supported, even 

if the improvements here are marginal.  
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Table 4 
Comparisons of Forecasting Performances on Consumer Prices 

Data Sets 
Models 

SW DI-AR Lag SW DI-AR SW DI FHLR_1 FHLR_2 

Information Criteria (Bai and Ng, 2002) 
D1 1.15 1.12 1.16 1.03 1.01 
D2 1.14 1.10 1.15 1.03 0.98 
D3 1.12 1.09 1.13 1.05 1.04 
D4 1.11 1.08 1.12 1.01 0.98 
D5 1.14 1.10 1.15 1.05 1.03 
D6 1.14 1.11 1.13 1.04 1.01 
D7 1.07 1.02 1.06 1.02 1.00 
D8 1.17 1.15 1.21 1.11 1.04 
D9 1.09 1.06 1.09 1.03 0.99 

D10 1.07 1.02 1.07 1.08 1.02 
D11 1.18 1.14 1.18 1.05 1.01 
D12 1.17 1.11 1.15 1.02 0.98 

Edge Distribution (Onatski, 2010) 
D1 1.04 1.00 1.03 1.02 0.97 
D2 1.00 0.98 0.98 0.99 0.96* 
D3 1.01 0.97 1.00 0.99 0.98 
D4 1.01 0.99 1.03 1.01 0.98 
D5 1.03 0.99 1.00 1.00 0.98 
D6 1.05 1.00 1.04 1.03 1.00 
D7 1.04 1.00 1.02 1.01 1.01 
D8 1.00 0.99 1.01 1.01 0.97 
D9 1.00 0.97 1.00 1.00 0.97 

D10 1.02 1.00 1.00 1.03 0.99 
D11 1.04 1.00 1.03 1.02 0.97 
D12 1.03 0.99 1.02 1.03 0.98 

Eigenvalue Ratio (Ahn & Horenstein, 2013) 
D1 1.04 1.00 1.04 1.04 0.98 
D2 1.05 1.01 1.07 1.06 1.02 
D3 1.03 1.00 1.03 1.04 1.02 
D4 1.04 1.01 1.06 1.01 0.97 
D5 1.03 1.00 1.04 1.03 1.00 
D6 1.04 1.01 1.04 1.04 0.99 
D7 1.02 0.98 1.03 1.03 0.98 
D8 1.04 1.02 1.05 1.06 1.01 
D9 1.02 0.99 1.03 1.03 0.98 

D10 1.05 1.02 1.07 1.08 1.02 
D11 1.04 1.00 1.04 1.03 0.98 
D12 1.02 0.99 1.03 1.02 0.97 

Note: Relative Root Mean Squared Error against the AR benchmark. The best forecasting 
performances of each model are marked in boldface. Among the top forecasting 
performances, the best one is starred. 
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Table 5 shows results for the ISM-PMI index. SW outperforms FHLR which never 

beats the AR benchmark. Comparing the different specifications of SW, it can be seen that, 

in general, the DI-AR Lag specification has better forecasting performance than the 

alternative specifications (DI and DI-AR) and beats the benchmark almost always. The 

opposite happens for the simple DI specification, which never outperforms the 

autoregressive model.  With DI-AR Lag and DI-AR the best performances are achieved 

estimating the number of factors through the Eigenvalue Ratio method, while the best 

performances for the two FHLR specifications and for the SW DI specification are 

achieved using the Edge Distribution method. An interesting result that holds for all the 

five forecasting models and for all the methods used to estimate the number of factors is 

that excluding the Housing block of variables (i.e. using dataset D4) substantially improves 

the forecasting performance. For example, the mean squared forecasted errors of the DI-

AR Lag model is 92% of the AR model when using the largest dataset (i.e. D1), while it is 

only 85% that of the benchmark model when excluding the Prices block of variables – and 

estimating the number of factors through the Eigenvalue Ratio method. On the contrary, 

excluding the Labor Market block of variables (i.e. using dataset D3) deteriorates the 

forecasts. Results on other block of variables are not easily interpretable because depend 

either on the forecasting model used or on the method chosen to determine the number of 

factors. Nevertheless, it is always possible to improve the forecasting accuracy of the five 

models dropping some block of variables. Therefore, the Boivin and Ng (2006) result that 

using more data to estimate the factors may provide worse forecasting performance 

supported also for the ISM PMI forecasts.  
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Table 5 
Comparisons of Forecasting Performances on ISM-PMI 

Data 
Sets 

Models 
SW DI-AR 

Lag SW DI-AR SW DI FHLR_1 FHLR_2 

Information Criteria (Bai and Ng, 2002) 
D1 0.94 0.95 2.17 2.63 2.46 
D2 0.96 0.98 2.27 2.66 2.23 
D3 0.99 1.00 2.41 2.96 2.62 
D4 0.92 0.93 1.71 2.13 1.75 
D5 0.94 0.97 2.54 2.87 2.33 
D6 0.95 0.97 2.23 2.52 2.20 
D7 1.00 1.01 2.51 2.55 2.33 
D8 0.93 0.95 2.28 2.81 2.38 
D9 0.87 0.88 2.28 2.18 2.02 

D10 1.00 1.01 2.67 2.19 1.95 
D11 0.92 0.94 2.20 2.70 2.35 
D12 0.99 1.02 2.45 2.27 1.98 

Edge Distribution (Onatski, 2010) 
D1 0.95 0.99 2.49 3.15 2.92 
D2 0.94 1.00 2.97 3.72 3.44 
D3 0.99 1.01 2.79 3.39 3.12 
D4 0.87 0.87 1.90 1.90 1.71 
D5 0.96 0.98 2.66 3.28 2.98 
D6 0.96 0.99 2.48 3.13 2.98 
D7 0.99 0.98 2.31 3.23 3.00 
D8 0.97 0.95 2.87 3.59 3.35 
D9 0.90 0.94 1.57 2.45 2.34 

D10 1.04 1.02 2.22 1.88 1.72 
D11 0.89 0.96 2.32 2.66 2.48 
D12 0.95 0.99 2.52 3.18 2.94 

Eigenvalue Ratio (Ahn & Horenstein, 2013) 
D1 0.92 0.97 2.76 3.41 3.19 
D2 0.92 0.98 3.46 3.46 3.84 
D3 0.95 0.97 3.16 3.91 3.65 
D4 0.85* 0.86 2.10 2.04 1.81 
D5 0.94 0.97 3.07 3.70 3.33 
D6 0.94 0.98 2.79 3.39 3.15 
D7 0.96 0.97 2.61 3.41 3.21 
D8 0.99 0.98 3.00 3.71 3.44 
D9 0.86 0.92 2.59 2.77 2.55 

D10 0.96 1.00 3.47 2.56 2.24 
D11 0.87 0.94 2.63 2.99 2.76 
D12 0.92 0.97 2.77 3.49 3.22 

Note: Relative Root Mean Squared Error against the AR benchmark. The best forecasting 
performances of each model are marked in boldface. Among the top forecasting 
performances, the best one is starred. 
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3. Concluding Remarks 

 

In this paper we compare the forecasting performance of two popular dynamic factor 

models on vintage data: Stock and Watson (2002a,b) and Forni, Hallin, Lippi and  Reichlin 

(2005). Our first-release dataset has 107 US macroeconomic and financial monthly time 

series, spanning the 1996:12 – 2017:6 period. Data were collected from the Bloomberg 

database. Vintage data allow to perform a real-time out-of-sample forecasting exercise, 

because these data are those that were actually available at each point in time in which the 

forecasts could have been made. The fact that real-time datasets contain missing values at 

the end of the in-sample period (“ragged-edge” problem) is solved as in Altissimo co-

authors (2010) shifting forward the series whose last observations are missing.  

The real-time one-month ahead forecasts are made for four key macroeconomic 

variables: Industrial Production month-on-month change, unemployment rate, Core 

Consumer Price Index and the ISM Purchasing Managers’ Index. The comparison is run 

using three different methods to determine the number of static factors: the Information 

Criterion developed by Bai and Ng (2002), the Edge Distribution proposed by Onatski 

(2010) and the Eigenvalues Ratio of Ahn and Horenstein (2013). Moreover, all the 

forecasts are made using either the whole dataset, or excluding, in turn, various block of 

variables, or dropping from the whole dataset some variables according to the rule proposed 

by either Boivin and Ng (2006) or by us.  

Four main results emerge from our analysis. First, both the Stock&Watson and the 

Forni and co-authors models outperform a simple autoregressive model for industrial 

production, unemployment rate and consumer prices. For the ISM-PMI, only 

Stock&Watsons’ model outperforms the autoregression. Second, there is not a model that 

always outperform the other: while Forni and co-authors’ beats Stock&Watson’s for 

industrial production consumer prices, the opposite happens for the unemployment rate and 

ISM-PMI. Third, the best forecasting performance are obtained estimating the number of 

static factors with different methods: for the industrial production, the best is achieved 

using the Bai and Ng (2002) method; for both the unemployment rate and consumer prices 

the Onatski (2010) method is best; ISM-PMI the Ahn and Horenstein (2013) method is 

preferred. Finally, it is always possible to improve the forecasting accuracy of the 

predictive models dropping some block of variables, and sometimes these improvements 

are substantial. Therefore, as found also by Boivin and Ng (2006), using more data to 
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estimate the factors worsen forecasting performance. Overall, our results suggest that 

different model and specification choices, methods for pinning down the number of factors 

and choices of the set of predictors interplay significantly in determining out-of-sample 

forecasting performances. Our results are robust to the spurious effect that relying on 

revised data may induce, thanks to us using first-release vintage data. Contrary to what is 

commonly found in the existing literature on model comparisons, this fact makes our 

analysis realistic in the sense that it is grounded on the information that was actually 

available when the forecasts could have been produced. 
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Appendix 

 

In this appendix we give a description of the series that compose the balanced dataset used 

in our analysis. The dataset contains 107 monthly US “first-release” macroeconomic and 

financial time series spanning 1996:12 to 2017:6 belonging to seven broad groups: 

1. Output (series 1-15), 

2. Labor Market (series 16-28), 

3. Housing (series 29-38), 

4. Consumption, Orders and Inventories (series 39-47), 

5. Money&Credit (series 48-55), 

6. Financials (series 56-86), 

7. Prices (series 87-107).  

The structure of dataset is similar to the FRED-MD database, described in McCracken and 

Ng (2016), which is a publicly available dataset maintained and updated with monthly 

periodicity by the Federal Reserve Bank of St. Louis. FRED-MD contains an unbalanced 

panel of 134 US monthly revised macroeconomic and financial series, starting from 1959:1. 

Our dataset differs from FRED-MD because 18 series have been added and 43 have been 

excluded. 

The 18 added series are: (1) US Continuing Jobless Claims SA, (2) US 

Manufacturers New Orders Total MoM SA, (3) US Aggregate Reserves Depository 

Institutions plus Vault cash NSA, (4) US/ Russia Foreign exchange rate, (5) US/Euro 

Foreign exchange rate, (6) US/Mexico Foreign exchange rate, (7) US/ Chinese Renminbi 

exchange rate, (8) Dow Jones Industrial average Index, (9) Dow Jones Industrial average 

Price Earnings Ratio, (10) Russell 2000 Index, (11) VIX Index, (12) US Personal 

Consumption Expenditures less Food and Energy ("Core PCE") SA MoM, (13) US CPI: 

All items less Energy SA, (14) US  CPI: All Items Less Food and Energy ("Core CPI") SA, 

(15) US CPI: Fuels and Utilities SA, (16) US CPI: Food and beverages SA, (17) US CPI: 

Recreation SA, (18) Gold Price. 

We dropped the 43 excluded variables either because they are not in the Bloomberg 

database or because the first release economic dates are missing – these dates are necessary 

for the real-time forecasting exercise in order to shift the series according to the timeliness 

of the variables –  or because some data are missing. The dropped variables are: (1) US 
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Real Personal Income, (2) US Real personal income ex transfer receipts, (3) US Help-

Wanted Index for United States, (4) US Ratio of Help Wanted/No. Unemployed, (5) US 

Civilian Employment (6) US Civilians Unemployed for 15–26 Weeks (7) US Civilians 

Unemployed for 27 Weeks and Over, (8) US All Employees: Goods-Producing Industries 

(9) US All Employees: Mining and Logging: Mining (10) US All Employees: Construction, 

(11) US All Employees: Manufacturing, (12) US All Employees: Durable goods, (13) US 

All Employees: Nondurable goods, (14) US All Employees: Service-Providing Industries, 

(15) US All Employees: Trade, Transportation & Utilities, (16) US All Employees: 

Wholesale Trade, (17) US All Employees: Retail Trade, (18) US All Employees: Financial 

Activities, (19) US All Employees: Government, (20) US Average Weekly Hours: Goods-

Producing, (21) US Average Weekly Overtime Hours: Manufacturing, (22) US Average 

Weekly Hours: Manufacturing, (23) US Real personal consumption expenditures, (24) 

ISM: US PMI Composite Index, (25) US New Orders for Consumer Goods, (25) US New 

Orders for Nondefense Capital Goods, (26) US Total Business Inventories, (27) US Total 

Business: Inventories to Sales Ratio, (28) US Real M2 Money Stock, (29) St. Louis 

Adjusted US Monetary Base, (30) US Real Estate Loans at All Commercial Banks, (31) 

US Nonrevolving consumer credit to Personal Income, (32) US Consumer Motor Vehicle 

Loans Outstanding, (33) US Total Consumer Loans and Leases Outstanding, (34) US 

Securities in Bank Credit at All Commercial Banks, (35) Trade Weighted U.S. Dollar 

Index: Major Currencies, (36) US PPI: Finished Goods, (37) US PPI: Finished Consumer 

Goods, (38) US PPI: Intermediate Materials, (39) US PPI: Crude Materials, (40) US PPI: 

Metals and metal products, (41) US CPI: Apparel, (42) US CPI: Medical Care, (43) S&P’s 

Composite Common Stock: Dividend Yield. 

Our dataset starts is shorter than FRED-MD as it starts in December 1996 because 

first-release data for early periods are not available in the Bloomberg database for any 

series. 

Table A provides a description of our dataset, of the transformations applied to each 

variable to achieve stationarity and of the correspondence of each series with similar series 

in FRED-MD. The “In FRED-MD” column gives mnemonics used to name similar series 

in the FRED-MD database. The “Bloomberg Ticker” column gives the Bloomberg ticker 

used to download each series. Finally, the entries in column “TCode” refers the 

transformations applied to each raw time series in order to meet the stationarity condition: 

1. 𝑋7 no transformation, 
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2. (1 − 𝐿)𝑋7, 

3. (1 − 𝐿)(𝑋7 𝑋7Q/⁄ − 1), 

4. 	ln(𝑋7) 100, 

5. (1 − 𝐿) ln(𝑋7) 100, 

6. (1 − 𝐿R) ln(𝑋7)100, 

7. (1 − 𝐿)(1 − 𝐿/R)ln	(𝑋7)100. 

 

Table A    
Description of the Data Set 
Count TCode Bloomberg Ticker  Description   In FRED-MD 

Output Group 
1 1 IP CHNG Index IP Index MoM SA INDPRO 
2 5 IPTLTOTL Index IP: Final products (market group) SA IPFINAL 
3 1 IPTLNOCH Index IP: Final products Nonindustrial supplies MoM SA IPFPNSS 
4 5 IPTLCG Index IP: Consumer Goods SA IPCONGD 
5 5 ICGDDCGS Index IP: Durable Consumer Goods SA IPDCONGD 
6 5 IPNDTOTL Index IP: Nondurable Consumer Goods IPNCONGD 
7 5 IPEQBUS Index IP: Business Equipment SA IPBUSEQ 
8 5 IPTLMATS Index IP: Materials SA IPMAT 
9 5 IDGMTOT Index IP: Durable Materials SA IPDMAT 
10 5 INDMTOT Index IP: Nondurable Materials SA IPNMAT 
11 5 IPMG Index IP: Manufacturing SA IPMANSIC 
12 5 IPMUUTIL Index IP: Utilities SA IPB51222s 
13 5 IPTSENRG Index IP: Energy SA IPFUELS 
14 1 NAPMPMI Index ISM Manufacturing PI SA NAPMPI 
15 2 CPMFTOT Index US Capacity utilization: Manufacturing Total SIC SA CUMFNS 

Labor Market Group 
16 1 NAPMEMPL 

Index 
ISM Manufacturing: Employment Index SA NAPMEI 

17 2 USURTOT Index US Unemployment Rate SA UNRATE 
18 2 INJCJC Index US Initial Jobless Claims SA CLAIMSx 
19 2 INJCSP Index  US Continuing Jobless Claims SA   
20 5 USLFTOT Index US Labor force SA CLF16OV 
21 2 NFP TCH Index US Empl Nonfarm Payrolls Tot MoM Net Change SA PAYEMS 
22 2 USDUMEAN 

Index 
US Average Unemployment Duration (weeks) SA UEMPMEAN 

23 5 USDULSFV Index US Civilians Unempl: Less than 5 weeks (thous) SA UEMPLT5 
24 5 USDUFVFR Index US Civilians Unemployed: 5-14 weeks (thousands) SA UEMP5TO14 
25 5 USDUFIFT Index US Civilians Unemployed: over 15 weeks (thous) SA UEMP15OV 
26 5 USAPGOOD Index US avg weekly Payrolls: Goods-Producing SA CES0600000008 
27 5 USECTOT Index US avg weekly Payrolls: Construction SA CES2000000008 
28 5 USAWMANU 

Index 
US avg weekly Payrolls: Manufacturing SA CES3000000008 

Housing Group 
29 4 NHSPSTOT Index US New Privately Owned Housing Units Started: Total SA HOUST 
30 4 NHSPSNE Index US New Privately Owned Housing Units Start: Northeast SA HOUSTNE 
31 4 NHSPSSO Index US New Privately Owned Housing Units Started: South SA HOUSTMW 
32 4 NHSPSMW Index US New Privately Owned Housing Units Started: Midwest SA HOUSTS 
33 4 NHSPSWE Index US New Privately Owned Housing Units Started: West SA HOUSTW 
34 4 NHSPATOT Index US New Private Housing Permits (thousands): Total (SAAR) PERMIT 
35 4 NHSPANE Index US New Private Housing Permits (thous): Northeast (SAAR) PERMITNE 
36 4 NHSPAMW Index US New Private Housing Permits (thous): Midwest (SAAR) PERMITMW 
37 4 NHSPASO Index US New Private Housing Permits (thousands): South (SAAR) PERMITS 
38 4 NHSPAWE Index US New Private Housing Permits (thousands): West(SAAR) PERMITW 

Consumption, Orders and Inventories Group 
39 2 CONSSENT Index University of Michigan Consumer Sentiment Index NSA UMCSENTx 
40 1 NAPMNEWO 

Index 
ISM Manufacturing: New Orders Index SA NAPMNOI 

41 1 NAPMINV Index ISM Manufactoring: Inventories NSA  NAPMII 
42 1 NAPMSUPL Index ISM Manufactoring: Supplier Deliveries SA NAPMSDI 
43 1 DGNOCHNG 

Index 
US New Orders for Durable goods SA AMDMNOx 

44 1 TMNOCHNG 
Index 

US Manufacturers New Orders Total MoM SA   



 
 

 37 

45 1 DGUOTOT Index US Unfilled Orders for Durable Goods AMDMUOx 
46 1 MTIBCHNG Index US Real Manufactoring & Trade Sales (Millions) SA CMRMTSPLx 
47 1 RSTAMOM Index US Retail & Food Services sales SA Tot Monthly % change SA RETAILx 

Money&Credit Group 
48 6 M1 Index M1 Money stock SA M1SL 
49 6 M2 Index M2 Money stock SA M2SL 
50 6 ARDIRRNA Index US Aggr Reserves Depository Institutions Required NSA TOTRESNS 
51 6 ARDITOTN Index US Aggr Reserves Depository Instit plus Vault cash NSA   
52 2 ARDINBRN Index US Aggr Reserves Depository Instit Non Borrowed NSA NONBORRES 
53 6 MZM Index MZM Money supply SA    MZMSL 
54 6 ALCBC&IL 

INDEX 
US C&I Loans SA    BUSLOANS 

55 6 CCOSNREV Index US Total Nonrevolving Credit    NONREVSL 
Financials Group 

56 2 FED30D Index Effective Federal Funds Rate 30 Day FEDFUNDS 
57 2 CPDR9AFC Index FED 3 months AA Fin Commercial Paper Interest Rate CP3Mx 
58 2 H15T3M Index US 3-month Treasury Bill yield TB3MS 
59 2 H15T6M Index US 6-month Treasury Bill yield TB6MS 
60 2 H15T1Y Index US 1-year Treasury rate GS1 
61 2 H15T5Y Index US 5-year Treasury rate GS5 
62 2 H15T10Y Index US 10-year Treasury rate GS10 
63 2 MOODCAAA 

Index 
Moody's Seasoned AAA Corporate Bond Yield AAA 

64 2 MOODCBAA 
Index 

Moody's Seasoned BAA Corporate Bond Yield BAA 

65 5 USDJPY Curncy  US/Japan Foreign exchange rate EXJPUSx 
66 5 USDCAD Curncy US/Canada Foreign exchange rate EXCAUSx 
67 5 USDRUB Curncy US/ Russia Foreign exchange rate   
68 5 USDGBP Curncy US/UK Foreign exchange rate EXUSUKx 
69 5 USDCHF Curncy US/ Switzerland Foreign exchange rate EXSZUSx 
70 5 USDEUR Curncy US/Euro Foreign exchange rate   
71 5 USDMXN Curncy US/ Mexico Foreign exchange rate   
72 5 USDCNY Curncy US/ Chinese Reminbi exchange rate   
73 5 SPX Index SP500 Index S&P500 
74 5 SPX Index SP500 Price Earnings Ratio S&P500 PE ratio 
75 5 INDU Index Dow Jones Industrial average Index   
76 5 INDU Index Dow Jones Industrial average Price Earnings Ratio   
77 5 RTY Index Russell 2000 Index   
78 1   3-Month Commercial Paper Minus FEDFUNDS COMPAPFFx 
79 1   3-Month Treasury C Minus FEDFUNDS TB3SMFFM 
80 1   6-Month Treasury C Minus FEDFUNDS TB6SMFFM 
81 1   1-Year Treasury C Minus FEDFUNDS T1YFFM 
82 1   5-Year Treasury C Minus FEDFUNDS T5YFFM 
83 1   10-Year Treasury C Minus FEDFUNDS T10YFFM 
84 1   Moody's Aaa Corporate Bond Minus FEDFUNDS AAAFFM 
85 1   Moody's Baa Corporate Bond Minus FEDFUNDS BAAFFM 
86 1 VIX Index VIX Index   

Financials Group 
87 1 PCE DEFM Index US Pers Consump Expend: Chain Index MoM SA PCEPI 
88 1 PCE CMOM Index US PCE less Food and Energy ("Core PCE") SA MoM   
89 6 PCE DRBD Index US Pers Cons Expend: Durable Goods Price deflator SA DDURRG3M086SBEA 
90 6 PCE NDRD Index US PCE: Non Durable Goods Price deflator SA DNDGRG3M086SBEA 
91 6 PCE SRVD Index US Pers Consum Expend: Services Price deflator SA DSERRG3M086SBEA 
92 1 CPI CHNG Index US CPI: All items SA CPIAUCSL 
93 6 CPUPAXFD Index US CPI: All items less Food SA CPIULFSL 
94 6 CPUPAXSH Index US CPI: All items less Shelter SA CUUR0000SA0L2 
95 6 CPUPAXMC 

Index 
US CPI: All items less Medical Care SA CUSR0000SA0L5 

96 6 CPUPAXEN Index US CPI: All items less Energy SA   
97 6 CPUPAXFE Index US CPI: All items less Food and Energy ("Core CPI") SA   
98 6 CPCATOT Index US CPI: Commodities SA CUSR0000SAC 
99 6 CPSSTOT Index US CPI: Services SA CUSR0000SAS 
100 6 CPCADUR Index US CPI: Durables SA CUUR0000SAD 
101 6 CPSTPRV Index US CPI: Private transportation SA CPITRNSL 
102 6 CPSHFU Index US CPI: Fuels and Utilities SA   
103 6 CPSFTOT Index US CPI: Food and beverages SA   
104 6 CPSRTOT Index US CPI: Recreation SA   
105 1 NAPMPRIC Index ISM Manufacturing: Price Index SA NAPMPRI 
106 6 CL1 Comdty Crude Oil Price OILPRICEx 
107 6 GC1 Comdty Gold Price   
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