

CEFIN – Centro Studi di Banca e Finanza
Dipartimento di Economia Aziendale – Università di Modena e Reggio Emilia

Viale Jacopo Berengario 51, 41100 MODENA (Italy)
tel. 39-059.2056711 (Centralino) fax 059 205 6927

CEFIN Working Papers
No 16

Differential Evolution and Combinatorial Search for
Constrained Index Traking

by T. Krink, S. Mittnik, S.Paterlini

March 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/287850889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Differential Evolution and Combinatorial Search for

Constrained Index Tracking

Thiemo Krinka, Stefan Mittnikb,c, Sandra Paterlini d,b

aGroup Investments, Allianz Investment Management SE (AIM), Königinstraße 28, 80802
Munich,GER
bCenter for Quantitative Risk Analysis, Dept. of Statistics, Ludwig-Maximilians-University
Munich, Akademiestr. 1/I, 80799 Munich, Germany
cCenter for Financial Studies, Goethe University, Grüneburg Platz 1, 60323 Frankfurt,
Germany
dDept. of Economics, CEFIN & RECent, University of Modena and Reggio E., Viale J.
Berengario, 51,41100 Modena, Italy

Abstract

Index tracking is a valuable low-cost alternative to active portfolio management. The implementation of a

quantitative approach, however, is a major challenge from an optimization perspective. The optimal selection

of a group of assets that can replicate the index of a much larger portfolio requires both to find the optimal

subset of assets and to fine-tune their weights. The former is a combinatorial, the latter a continuous

numerical problem. Both problems need to be addressed simultaneously, because whether or not a selection of

assets is promising depends on the allocation weights and vice versa. Moreover, the problem is usually of

high dimension. Typically, an optimal subset of 30-150 positions out of 100-600 need to be selected and their

weights determined. Search heuristics can be a viable and valuable alternative to traditional methods, which

often cannot deal with the problem. In this paper, we propose a new optimization method, which is partly

based on Differential Evolution (DE) and on combinatorial search. The main advantage of our method is that

it can tackle index tracking problem as complex as it is, generating accurate and robust results.

Key-words: Index Tracking, Passive Asset Management, Differential Evolution,

Combinatorial Search

 2

1 Introduction

Portfolio construction is a key issue in asset management. In recent years, benchmark replication by

index tracking has become a popular and valuable low-cost alternative to active portfolio

management. The implementation of a quantitative approach to tackle the problem of optimal

benchmark replication, however, is far from trivial, both, from an econometric and an optimization

perspective. From an econometric viewpoint, the main problems consist in modeling the objectives

such that they reflect the index tracking problem properly and in estimating/forecasting returns and

covariance matrices, such that the tracking portfolio can replicate the index not only in sample but

also out of sample. The reader is referred to Beasley et al. (2003) for a literature survey on different

approaches to index tracking.

Apart from the econometric issues, index tracking poses a challenging optimization problem. The

optimal selection of a small set of assets that can replicate the index of a much larger portfolio

requires both to find the optimal asset positions and to fine-tune their asset allocation weights. The

former is a combinatorial problem, whereas the latter is a continuous numerical problem. Both

optimization problems need to be tackled simultaneously, because whether a selection of asset

positions is promising or not depends on the actual allocations and vice versa. Moreover, the

problem is high dimensional. Typically an optimal subset of 30-150 positions out of 100-600 need

to be selected and their asset allocation weights need to be determined.

If we choose the tracking error volatility as measure of goodness in index tracking and we know the

index composition, this problem seems to be quadratic and it is tempting to assume that it can be

solved with quadratic programming (QP). However, this is not even possible in combination with

branch and bound for realistic problem instances, since it would require evaluating an enormous

number of possible asset position combinations. Furthermore, it often happens that there are non-

linear constraints that need to be satisfied in a realistic context (e.g., the concentration limits of the

UCITS rules1, which are binding for most portfolios in the EU, requires that the sum of all asset

weights exceeding 5% must be smaller than 40%).

An alternative is to use optimization heuristics (also known as search heuristics), which iteratively

refine candidate solutions to the problem. They have the advantage that they are by far more general

in their scope of application, i.e., they can handle the problem as it is, whereas conventional

techniques require rigid assumptions such as linearity of constraints and a linear or quadratic

objective function. Optimization heuristics can even be applied when the optimization problem

1 European Union Directive, UCITS 3 (Undertaking For Collective Investments in Transferable Securities).

 3

cannot be stated formally by a set of equations. The only prerequisite is that there is some way of

comparing the quality of solutions, here the quality of asset weight vectors with respect to the

tracking error. A drawback, however, is that there is no guarantee that the final result is optimal

within finite computation time. Moreover, the accuracy and speed of convergence towards the

optimum depends on the characteristics of the optimization problem and the choice of the

algorithmic parameters.

Perhaps the most popular search heuristics are genetic algorithms (GA) (Fogel et al. 1966, Holland

1975) and Simulated Annealing (SA) (Kirkpatrick et al. 1983). These heuristics have already been

successfully applied to the index tracking problem (see Beasley et al. 2003 and references therein).

Recent studies, however, show that GAs and SA are poor choices when tackling non-trivial

continuous numerical problems. Instead, Differential Evolution (DE) (Storn and Price 1997) and

evolution strategies (ES) (Rechenberg 1973) should be preferred. DE has shown a remarkable

performance in continuous numerical problems, compared to other heuristics, such as particle

swarm optimization (Kennedy and Eberhart 1995) and genetic algorithms (Vesterstrøm and

Thomsen 2004, Paterlini and Krink 2006; Krink et al. 2007). Research on index tracking (and on

non-continuous numerical problems) using DE is still at an early stage, but recent results seem to

support its usefulness in such applications, though further analysis is still required (Maringer and

Oyewumi 2007). In fact, even though DE specializes on continuous, numerical optimization, we

believe that it could be easily adapted to successfully tackle combinatorial problems, such as the

index tracking.

 In this work, we propose a hybrid algorithm – henceforth, Differential Evolution and

Combinatorial Search for Index Tracking DECS-IT – that extends DE with an additional

combinatorial search operator to determine the optimal choice of asset positions. We show that DE

can also deal successfully with non-continuous numerical problem. Furthermore, since we want to

the tackle the index tracking problem in a realistic setting, we consider common real-world

constraints portfolio managers face and implement a constraint handling routine using a

combination of techniques, which are specifically tailored to the index tracking problem. Our

empirical results show that the proposed method can tackle complex index tracking problems while

generating very accurate and robust results.

The remainder of this paper is organized as follows. In Section 2, we formally define the index

tracking problem as an error minimization problem. Section 3 outlines the new optimization

algorithm; and in Section 4 we present results on seed initialization and on a comparative study with

quadratic programming regarding using a real-world dataset. Section 5 describes a realistic financial

application. Finally, we summarize and discuss our results in Section 6.

 4

2 The Index Tracking Problem

We state the optimization goal of the index tracking problem as a search for the portfolio that

minimizes the tracking error volatility with respect to a given benchmark (index). Formally, we

write:

T

t

B
t

P
t RR

T
)(f minimize

1

2)(
1

w
w

 (1)

subject to

1

i

1

:

(c1)

(c2)

(c3)

(c4)

(c5)

(c6) and

 1

 0 1

1 if 0
 () (), ()

0 otherwise

 ()

i

n

i
i

i

i
i i i i i

n

i
i

i
i w Lb

eq eq

w

w

w
w w w w

L w K

w Ub

Aw b A w b

where

t=1,…,T time period

n number of available assets (composing the index)

B

B
R

t

tB
t)ln(

1

 index (benchmark) log-return at time t

Bt index value at time t

 P
t tR r w portfolio return at time t

rTxn=[rt] Txn matrix of asset log-returns (t=1,…,T)

rt 1xn vector of asset log-returns at time t

S

S
r

it

it
it)ln(

,1

,
,

 i-th asset return at time t

St,i stock price of the i-th asset at time t (i=1,...,n)

 5

wi portfolio weight 10 iw of the ith asset

wnx1=[w1 ,….,wn]
T tracking portfolio weights vector

wb nx1=[wb1,…, wbn]
 T benchmark(index) portfolio weights vector

i , i lower and upper bounds for individual weight of the ith asset

L, K lower and upper bounds for the number of asset positions in the replication

Lb lower threshold for characterizing asset weights as "very large"

Ub maximal percentage of the sum of "very large" asset weights

A n.ineq.constraints x n coefficient matrix for inequality constraints (e.g., sector weight stability,

group limit, avoid negative bias toward small cap stock)

b n.ineq.constraints x 1 vector of inequality constraints

Aeq n.eq.constraints x n coefficient matrix for equality constraints

beq n.eq.constraints x 1 vector of equality constraints

If the benchmark composition, wb=[wb1,…, wbn]
 T, is known and constant over the time period, we

could re-state the index replication goal as to obtain an optimal portfolio, w=[w1,…, wn]
 T, with

respect to minimization of tracking error volatility of a benchmark (wb), i.e.,

)()()(wbwΣwbww
w

 Tf minimize (2)

where Σ is the covariance matrix of the asset returns.

This specification allows to further disentangle the econometric and optimization problem and to

better test for different covariance matrix estimators. We also use objective function (2) to compare

the DECS-IT algorithm to QP in some test cases.

Furthermore, the DECS-IT algorithm can easily deal with other objective functions, (cf. Beasley et

al. 2003, Gilli and Kellezi 2002):

TT RE)(f minimize)1(w
w

 (3)

 where
1

0 0

1 1
 and

T T
P I P I

T t t T t t
t t

E r r R r r
T T

 6

Formulation (3) allows us to incorporate the fact that fund managers happily accept positive

deviations from the benchmark. The problem could also be re-formulated as a multi-objective

optimization problem and still be successfully tackled with DE (Krink and Paterlini 2007).

From an optimization viewpoint, the main challenge in index tracking does not usually arise from

the objective function, which often is quadratic, but rather from asset selection (constraint c4) and

other non-linear constraints, such as (c5) the UCITS concentration limits, for example specify

Lb=5% and Ub=40% as binding for most portfolios in the EU (German Investment Law §60). Asset

selection means that only a certain number of assets of the benchmark are used for replication, as

formulated as constraint (c4). This means that the number of non-zero weights is bounded, which is

an integer constraint and hence non-linear2.

Note, that this problem is neither a quadratic programming problem, because of the non-linear

constraints, nor a mixed integer problem, because the domain of all variables (wi) is continuous.

Mixed integer problems consist of some variables that are continuous and others that are integer.

The problem is hard because of the presence of constraints (c4) and (c5), in particular the issue of

(discrete) asset selection while searching for (continuous) asset allocation weights, and because of

the high dimensionality.

In principle, integer constraints, like (c4), can be tackled by applying QP and branch and bound

search (BB) to a reformulated version of the problem. Here, the idea is to divide the original

problem into a set of quadratic programming sub-problems and then to search efficiently for the

best obtainable sub-solution via BB. For each sub-problem (c4) is replaced by constraints that

define one (fixed) choice for asset selection. I.e., the search for the optimal solution of the sub

problem is only concerned in finding the optimal weights for one particular choice of asset

selection. The search space for BB, however, would be extremely large for realistic problems. For

instance, for a maximum of 50 asset positions out of 225 in the benchmark, one needs to search

among all possible combinations of 50 positions in 225, which amounts to 6.4443e+52 QP sub-

problems. Even more problematic is constraint (c5). Even theoretically it cannot be tackled with

BB, because it cannot be divided into a discrete number of sub-problems.

In view of this, the combination of BB and QP procedures is not applicable. Less restrictive search

heuristics, such as the one we propose here, are required for the problem at hand.

2 Integer constraints cause non-convexity of the problem (discrete jumps) and, therefore, also non-linearity.

 7

3 The DECS-IT optimization heuristic

The optimization heuristic that we describe in this paper, DECS-IT, consists of four main

algorithmic aspects that we describe in the following subsections.

3.1 Differential Evolution and Index Tracking

Evolutionary algorithms have already shown to be a valuable tool when applied to index tracking

problems (see Beasley et al. 2003 and references therein). Their main advantage is that they do not

require restrictive properties, such as continuity, linearity or convexity of the objective functions

and the constraints. Hence, evolutionary algorithms can easily deal with cardinality constraints,

non-linear constraints and other real-world restrictions when implementing a quantitative index

tracking.

Differential Evolution (Storn and Price 1995, Price 1999) is a fairly novel population-based search

heuristic which is simple to implement and requires little parameter tuning compared to most other

search heuristics. Differential Evolution has shown superior performance in comparison to other

heuristics, such as Genetic Algorithms and Particle Swarm Optimization, when dealing with single-

objective and multi-objective, noise free, numerical optimization problems (e.g., Ursem and

Vadstrup 2003, Krink et al. 2004, Vesterstrøm and Thomsen 2004, Paterlini and Krink, 2006).

Some recent studies suggest that DE could effectively tackle multiobjective portfolio optimization

(Krink and Paterlini 2007) and index tracking problems (Dietmar and Oyewumi 2007). We aim to

contribute to the research in this direction and show how DE combined with other operators can

provide reliable and robust results in index tracking.

Differential Evolution is a population based search heuristic. After generating and evaluating an

initial population, P, of candidate solutions, the candidate solutions are iteratively refined as

follows:

1. for each candidate solution, P(j), choose three other indexes, k, l, and m, randomly between 1 and

the size of the population (with j k l m). Create a new candidate solution, c, by multiplying the

difference between P(k) and P(l) with a scaling factor, f, and add the result to P(m), i.e.,

 c = f (P(k) - P(l)) + P(m)

 8

2. substitute c by the result of a recombination, called crossover, between c and P(j), such that for

each component, o, of the candidate solution c(o) =P(j, o) with a probability of 1-cf, where cf is the

so-called crossover factor.

3. evaluate the new candidate solution with the fitness function and apply selection by substituting c

for P(j) (and updating the fitness of P(j)) if c has a better fitness.

This procedure closely resembles the so-called Rand/1/Exp DE operator. The process is repeated for

a fixed number of iterations and the optimization result is the best recorded candidate solution and

fitness at the end of the run.

3.2 Position Swapping

The main challenge of the index tracking problem is to simultaneously tackle the continuous

numerical and combinatorial aspects for a very large number of parameters. The combinatorial

problem consists of finding the optimal subset of asset positions to minimize the tracking error. In

principle, DE could handle the problem, because the search space is a subspace of the n-

dimensional space [0,1]n and therefore all solution components are continuous numbers. However,

despite DE being a very effective algorithm for continuous numerical problems, our preliminary

experimentation showed us that it may fail in index tracking when used without modifications.

Therefore, we implemented an additional operator, that we call "position swapping", which swaps

positions by exchanging the asset weights between two assets with a zero and a non-zero allocation

with a certain probability. With introduction of this operator the quality of the results and the

required runtime could be substantially improved. This does not surprise considering that selecting

asset j or k implies that wj is zero and wk is redistributed to other weights or vice versa.

3.3 Constraint Handling

As stated in Section 2, the index tracking problem is a minimization problem subject to constraints.

In contrast to linear and quadratic programming, which can take advantage of information about

constraints to find the optimal solutions,3 constraint handling is not part of search heuristics and

need to be implemented separately.

Many approaches with different pros and cons have been suggested in the literature, such as penalty

techniques, feasibility conserving operators, and repair methods (see Michalewicz and Fogel 2000

3 The global optimum of a linear and quadratic programming problem is always at a constraint border.

 9

for an overview). The main idea of penalty techniques is to re-state the problem by adding a penalty

term, P(x) ≥ 0, which accounts for constraint violations, to the objective function, i.e., f '(x) = f(x) +

P(x) for minimization problems. For a feasible solution, P(x) is zero.

The penalty term can be defined in various ways. It could depend on the number of constraint

violations, the violation sizes or on runtime. The drawback of the penalty approach is its parameter

sensitivity, such as the chosen size of a penalty (Deb et al. 2002).

In case of index tracking, some constraints, such as (c1) and (c3), can be handled by "constructing"

solutions that are guaranteed to be feasible (feasibility conserving operators) and by "repairing"

infeasible solutions, i.e., by finding the nearest feasible solution. The remaining constraints can be

handled by a simple but effective technique related to the penalty approach without parameters,

which is inspired by the constraint handling used in the NSGA-II and DEMPO algorithms (Deb et

al. 2002, Krink and Paterlini 2007) for multiobjective optimization. The following pseudo-code

illustrates the process of selecting the better among two solutions with the NSGA-II inspired

approach:

Figure 1: Pseudo-code of the penalty approach related constraint handling in DECS-IT

 if both solutions are feasible

select the one with better fitness

 end

 if one solution is feasible and the other infeasible

select the feasible solution

 end

 if both solutions are infeasible

if one solution violates fewer constraints than the other

 select the solution that violates fewer

 else

 if one solution violates constraints less severely than the other

select the solution that violates less severely

 else

select the one with better fitness

 end

 end

 end

3.4 Initialization

An issue that is often neglected in designing optimization heuristics is the initialization of the

process. A common strategy is to use random initialization, which generates a population of

candidate solutions that have uniformly distributed random values for each of their vector

 10

components. However, when additional information about the problem at hand is available, a

knowledge-based initialization can speed-up the search and improve the accuracy of the results. Our

algorithm for benchmark replication is no exception. Here, the main focus is on starting the search

from a meaningful initial selection of assets.

Perhaps the most obvious consideration is to avoid positions that are highly correlated, because they

can be virtually expressed by one another. Instead, one should rather choose a set of least correlated

asset selections to have the maximum flexibility for replicating all aspects of the assets that are

included in the benchmark. To do so, one could first cluster the assets based on their correlations

and then pick representatives of each cluster. Focardi and Fabozzi (2004), for instance, suggest that

positions should be strictly chosen in accordance with this approach. However, there are many

factors to set that can influence the quality of the results, such as the choice of the clustering

method, the distance measure, the number of groups, and which assets to choose from each group.

Below, we will cluster the log-returns time series with hierarchical clustering using 'Ward' linkage

and setting the upper bound for the number of asset positions to be selected, K, as the number of

groups to obtain the final data partition. From each group we select the asset with the largest index

weight within the group. Another alternative to random initialization is to select the initial positions

according to their weight in the benchmark, i.e., to choose the K positions that have the top-K

largest weights in the index. The idea is that the best way of replicating an important asset is to use

the asset itself. This is easily implemented if the index composition is known at the beginning of the

period. If not, market values or other values could be used as proxies, depending on whether the

index is value-weighted or not. The idea there is sort the index components by their weights and to

select the first K asset positions. In particular assets with very large weights should be included in

the replication, whereas it makes less sense to include positions that are at the end of the top-K

largest weights, where consecutive positions typically have very similar weights. For instance,

replicating the Nikkei 225 index with 30 assets, the index weights computed from market values on

12/01/2005 are, w30 = 0.00743, for the asset that ranks 30 in the top-n largest weight ranking, and

w31 = 0.00737, for the asset with rank 31. Hence, the preference for the former position is almost

arbitrary.

We compare the three initialization methods for our algorithms, calling them random, top-K least-

correlated and top-K largest weights. Empirical results are reported in Section 4.3.3.

 11

4 Experiments and Results

In the following, we describe our experiments, discuss runtime performance and compare the

algorithm with QP on test cases. Finally, we also discuss results for different seed initialization

schemes. The reader is referred to Appendix A for a description of our preliminary experiments on

parameter tuning. Table 1 reports the DE parameter setting we used.

Table 1: Parameters of Differential Evolution (DE) and Quadratic Programming (QP). "Param." refers to the

parameters, "Pop. size" to the population size and "Num.It." to the number of iterations. For DE, CF:

crossover factor; f: scaling factor. For QP, H : Hessian matrix, i.e., second derivative search direction; F : first

derivative vector, here, zero vector because no linear components were defined in this problem specification

DE DE (weight fine-tuning
and QP comparison)

QP

Parameter Value Parameter Value Parameter Value

Pop.size 50 Pop.size 200 H cov. matrix Σ

Num.It. 20.000 Num.It. 5.000 F zero vector

CR 0.7 CR 0.8

f 0.3 f 0.3

In the experimentation phase, we consider the Nikkei 225 price index and its 225 constituents for

the sample period 17/11/2005-10/01/2007. We also build an artificial index, by using as index

weights the market values (MV) observed on 01/12/2005, such that

n

i
iii MVMVwb

1

/ (see

Figure 2) and normalize asset prices to 100 in order to compare DECS-IT with quadratic

programming (QP).

 12

Figure 2: Nikkei 225 index (blue solid line) and artificiaL Nikkei 225l benchmark (red dashdot line), scaled

to 100 on 17/11/2005

17-Nov-2005 14-Jul-2006 10-Mar-2007 04-Nov-2007
95

100

105

110

115

120

125

130

Time

P
ric

e
In

de
x

(r
eb

as
ed

 1
00

)

Nikkei225

Index

Artificial Index

4.1 Runtime Performance

The DE search heuristic for index tracking has been implemented in MatLab 7.0. All experiments

were done on a SONY VAIO PC laptop with 2.0 GHz Mobile Intel Pentium M processor, 798MHz,

1.00GB of RAM with Windows XP. Reasonable results, when tackling the index tracking problem

without any simplifications, can be obtained in about 10 minutes (after 10.000 iterations) and results

with high precision within 20 minutes (after 20.000 iterations).

4.2 Preliminary Experimentation and Test Cases

We tested the functionality of our algorithm for a realistic index tracking problem, in which the

benchmark portfolio consisted of 225 asset positions. We ran preliminary experiments to investigate

three issues:

(i) the ability of DECS-IT to fine tune asset weights,

(ii) the performance of DECS-IT compared to QP, and

(iii) the effect of different seed initializations on the optimization performance.

For the first and the second set of experiments we used simplified versions of the original index

tracking problem by adopting objective function (2) and excluding constraints (c4)-(c6). For

experiment (i), we investigate the weight fine-tuning ability of our algorithm independently of the

 13

asset selection. For comparison with QP, we simplify the original problem to a quadratic

programming problem.

The parameter settings for the optimization algorithms are as shown in Table 1.

4.2.1 Weight Fine-tuning Ability

In the first set of experiments, we test our algorithm for its general ability to numerically fine-tune

the asset weights. For this task, we simplify the problem, such that there are no constraints on the

number of asset selected. Clearly, the optimal solution is w = wb4. However, for a search heuristic

starting with a population of random candidate solutions, the algorithm has to fine-tune all 225

weights precisely to match the correct result, i.e., the true index weights.5

Table 2 shows the results for 30 runs, starting from random seed initialization (see Section 3.4). It is

evident that DECS-IT is capable of approximating the correct result with high precision.

Table 2: Minimum, Mean, Maximum, Standard Deviation and 90% Percentile of best values for fitness

function (2) for 30 runs.

 Min Mean Max Std 90%

Fitness (2) 2.23357E-19 2.23357E-19 2.23357E-19 9.8001E-35 2.23357E-19

Figure 3 shows a comparison between the actual index weights and those of the tracking portfolio

(top) and the absolute value of the difference in the asset weights between the index weights and the

tracking portfolio (bottom). The difference in asset position weights is negligible with order of

magnitude 10-8.

4 Index weights have been computed from market values keeping all the available decimals digits. In realistic

instances, index weights would have a much smaller number of decimals.
5 Note that in a realistic application, one would always use the benchmark itself (or a modified version if the

benchmark violates any constraints) as one of the starting points for the search so that the algorithm would not

need to search at all.

 14

Figure 3: Results of the weight fine-tuning experiment starting from random weights at initialization. Top:

Benchmark weights (red dots) and the optimized replication (black candle sticks) for the final result. Bottom:

Absolute difference between index weights and replicated weights.

0 50 100 150 200
0

0.02

0.04

0.06

0.08

Asset

W
e

ig
h

ts

replication

benchmark

0 50 100 150 200
0

0.5

1

1.5
x 10

-8

Asset

A
b

s
.W

e
ig

h
t

D
if

fe
re

n
c

e

4.2.2 Comparison of DECS-IT and QP

In the second test case, we compare the performance of the new algorithm to conventional

optimization techniques, specifically to QP. If the index weights are known, the objective function

is quadratic, as in (2), and four out of six constraints are linear. As mentioned in Section 1, QP

cannot be used to tackle the type of index tracking problem under consideration. To make the

comparison, we simplify the original problem to a quadratic programming problem. For this, we

omit the task of finding the optimal subset selection of assets (constraint c4) and do not consider

constraint (c5). We run two set of experiments:

i) We fixed a priori the selection of K=50 positions (not optimized) and dif not consider

any lower/upper bound on the tracking portfolio weights (i.e., ε =0, ξ=1).

ii) We fixed a priori the selection of K=100 positions (not optimized) and set ε=0 and

ξ=min(1,wb+0.01).

Table 3: QP and DECS-IT comparison on test cases. QP result and Minimum, Mean, Maximum, Standard

Deviation and 90% Percentile of best fitness values from 30 runs of DECS-IT algorithm.

 15

 QP DECS-IT

 Fitness Min Mean Max Std 90%

Test case i 2.983E-06 2.983E-06 2.983E-06 2.983E-06 1.362E-21 2.983E-06

Test case ii 2.144E-06 2.144E-06 2.145E-06 2.149E-06 1.376E-09 2.148E-06

Table 3 shows that DECS-IT can obtain results comparable to QP. In the first set of experiments,

DECS-IT obtains the exact same results of QP in all runs, while in the second set of experiments it

obtains the exact same results of QP in 10 out of 30 cases (see Figure 4). In all the other cases,

differences in asset weights are negligible and would not have any measurable effect in a real-world

application. In fact, assets weights are not truncated to a given number of decimal places and

differences have, at most, an order of magnitude of 10-4, which would hardly determine any

difference in the number of shares per asset bought.

Figure 4: Histogram of DECS-IT best fitness values for 30 runs for test case (ii).

2.143 2.144 2.145 2.146 2.147 2.148 2.149 2.15 2.151

x 10
-6

0

1

2

3

4

5

6

7

8

9

10

Best Fitness Values

Test case (ii): Histogram of Best Fitness Values in 30 runs

4.2.3 DECS-IT Performance for Different Initializations

Next, we investigate the effect of different seed initialization. We set the constraints such that the

225 asset of the benchmark have to be replicated with a maximum of 50 positions. Specifically, we

set ε=0.00, ξ=0.1, Pop.size=50, Num.It=10000, CR=0.3, f=0.7. Again, we use the NIKKEI 225

price index and its 225 constituents, considering the period 17/11/2005-01/11/2007. The market

values used for computing the proxies for the index weights are observed on 01/12/2005.

 16

In our experiments, we compared the performance of the three seed initialization schemes

introduced in Section 3.4, considering:

(a) top-K largest weights - asset positions with the 50 largest weights,

(b) top-K least-correlated - asset positions of the 50 least-correlated asset clusters,

(c) random - one random selection of 50 assets.

Figures 5(a), 5(b) and 5(c) show the results from single runs of DECS-IT for the three initialization

schemes. The left plots show the tracking portfolio weights (blue candle sticks) compared to the

corresponding index weights (red dots). The right plots show the logarithm of the best fitness value

with respect to the number of iterations and the logarithm of the diversity across the DECS-IT

population. Ursem (2002) defines diversity as the sum of the variance of the population divided by

the size of the population and the diagonal of the search space.6

As expected, DECS-IT obtains the best result with f(w) = 5.6898e-7, for the top-K largest weights

initialization. The rights plots show that the top-K largest weights converges faster to better fitness

values than the other methods. However, premature convergence is avoided by using the position

swapping operator that explores new candidate solutions, which are quite different, as the green

spikes show, from the ones in the current population. The top K-least correlated initialization

scheme shows a similar behavior as the top-K largest weights: the population diversity decreases

fast at the beginning of the run, but the position swapping allows to explore new areas in the search

space and, again, to increase sharply the population diversity. The random scheme does not exhibits

such high spikes in the diversity of the population: the population diversity decreases slow at the

beginning of the run since the initial population is widely scattered in the search space and

promising solutions tend to compete with each other to attract the other individuals. Overall, the

differences are rather small, although significant.

Finally, Figure 6 shows the boxplots of the best fitness values in 30 runs reached for objective

function (1) (left plot) and objective function (2) (right plot) for K=50, ε=0.00, ξ=0.1, Pop.size=50,

Num.It=10000, CR=0.3, f=0.7. The top-K largest weights initialization seed scheme is to be

preferred for both objective functions. The K-least correlated method is generally worse than

random initialization for objective function (1). To consider the K largest market values as starting

point for the tracking portfolio weights can be valuable even if wb is not explicitly considered in

computing the value for function (1)), while combining such information with a selection

mechanism based on clustering and choosing the K-least correlated positions (based on Σ

estimates) does not seem to be advantageous for DE initialization.

7 I.e.: div = sum(Variance(pop)) / (Pop.Size * L); L = sqrt(sum((ξ-ε).*(ξ-ε))).

 17

Figure 5: Results of the DECS-IT experiments for real index tracking problem using, respectively, (a) top-K

largest weights, (b) top-K least-correlated and (c) random initializations schemes. Left: Solution analysis plot

showing the correspondence between the benchmark weights (red dots) and the replicated solution (blue

candle sticks) illustrated for the final result. Right: log best fitness (blue) and log population diversity (green)

over number of iterations.

(a) Results using top-K largest weights initialization

20 40 60 80 100 120 140 160 180 200 220
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Nikkei 225 - Seed Method: Top-K largest weights

Asset

A
llo

ca
tio

n

replication

benchmark

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-13

-12

-11

-10

-9

-8

-7

-6

-5

Number of iterations

lo
g
(F

itn
e
ss

),
 lo

g
(D

iv
e
rs

ity
)

CurIt:10000 of.10000, Fit:5.6898e-007, Div:1.5117e-013

log(diversity)

log(fitness)

(b) Results using top-K least-correlated initialization

20 40 60 80 100 120 140 160 180 200 220
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Nikkei 225 - Seed Method: Top-K least correlated

Asset

A
llo

ca
tio

n

replication

benchmark

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

Number of iterations

lo
g
(F

itn
e
ss

),
 lo

g
(D

iv
e
rs

ity
)

CurIt:10000 of.10000, Fit:5.7231e-007, Div:4.36e-016

log(diversity)

log(fitness)

(c) Results using random initialization with one random selection of asset positions

20 40 60 80 100 120 140 160 180 200 220
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Nikkei 225 - Seed Method: Random

Asset

A
llo

ca
tio

n

replication

benchmark

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

Number of iterations

lo
g
(F

itn
e
ss

),
 lo

g
(D

iv
e
rs

ity
)

CurIt:10000 of.10000, Fit:5.8492e-007, Div:1.193e-016

log(diversity)

log(fitness)

 18

Figure 6: Boxplots of best fitness values for 30 runs for (a) top-k largest weights, (b) top-K least-correlated

and (c) random initializations schemes. Left: Boxplots of the best fitness values for objective function (1),

Right: Boxplots of the best fitness values for objective function (2)

 top-K largest weights top-K least-correlated random

4.75

4.8

4.85

4.9

4.95

5

5.05

x 10
-5

F
itn

es
s

V
al

ue
s

Different Initialization Methods

 top-K largest weights top-K least-correlated random

5.4

5.6

5.8

6

6.2

6.4

6.6

x 10
-7

F
itn

es
s

V
al

ue
s

Different Initialization Methods

5 Empirical Analysis

We now discuss empirical results from optimization over different time horizon. We investigate the

in-sample and out-of-sample performance of optimal tracking portfolios for the Dow Jones 65

(Period: 13/04/02- 20/12/03) and the Nikkei 225 (Period: 18/11/05-27/07/07) indexes. Table 4

provides descriptive statistics and Figure 7 shows the behavior of the two indexes. We determine

the optimal index tracking portfolios by periodic rebalancing of the assets weights. We use a

rolling-window scheme: For each index, we determine the optimal tracking portfolio considering

daily log-returns for window [T, T+200-1] and evaluate its out-of-sample performance over

window [T+200, T+200+20] for T from 1 to 221 with step size 20. Hence, we altogether rebalance

the portfolios twelve times.

We optimize with respect to objective function (1), considering constraints (c1)-(c5) and set the

optimization parameters to i =0.01, i =0.1 (i=1,…,n), Lb=0.05, Ub=0.4 and L=0. We investigate

the effect of varying the maximum number of assets, K, that can be included in the index tracking

portfolios.

So far we did not consider transaction cost. We now introduce the constraint w
n

i
i

1

1.0 . That

is, the total change in asset weights from the allocation at the previous time-step must not exceed

0.1. This constraint allows controlling for transaction costs when updating the tracking portfolio

from one period to the next. The DECS-IT algorithm can easily deal with such a constraint, even if

 19

is non-linear. Without such a constraint, the changes in asset weights over two consecutive periods

can be extremely large,7 making index tracking too expensive. Transaction costs could be explicitly

incorporated in the optimization task. This will be investigated in the future.

We set DECS-IT parameters to: Pop.size=100, Num.It.=10.000, CR=0.7 and f =0.3. We employ the

top-K largest weight seed initialization scheme, using proxies from market values for the index

weights.

Table 4: Descriptive Statistics of Dow Jones 65 and Nikkei 225

Sample

Size Mean

Std.

Dev. Skewness Kurtosis Min Max

Dow Jones 65 440 0.0000 0.0134 0.1917 4.3976 -0.0461 0.0535

Nikkei 225 440 0.0005 0.0112 -0.2633 3.8453 -0.0423 0.0352

Figure 7: Dow Jones 65 and Nikkei 225 indexes (rebased 100)

Tables 5 and 6 show the empirical results for the Dow Jones 65 and the Nikkei 225 indexes. In the

first three columns, we report respectively the minimum, the average and the maximum number of

7 Empirical results are available upon request.

12-Apr-2002 04-Nov-2002 29-May-2003 21-Dec-2003
60

70

80

90

100

110

P
ri

ce
 I

n
d

ex
 (

re
b

as
ed

 1
0

0)

Dow Jones 65

17-Nov-2005 14-Jul-2006 10-Mar-2007 04-Nov-2007
0.9

1

1.1

1.2

1.3

P
ri

c
e

In
d

e
x

(r
e

b
a

s
ed

 1
0

0)

Nikkei 225

 20

assets included in the tracking portfolios. We consider K={20,25,30,35,40,45,50,55} for the Dow

Jones 65 and K={20,30,40,50,60,70,80,90} for the Nikkei 225.

For each index, we compute the following statistics:

 In-Sample8 and Out-of-Sample Annualized Tracking Error Volatility (Columns 4-5)

 In-Sample and Out-of-Sample Annualized Excess Return (Columns 6-7)

 Out-of-Sample Information Ratio (Column 8)

 Average Turnover, computed as wrAv.Turnove
n

i
i

1

2/ (Column 9)

 Out-of-Sample Correlation w.r.t. the Index (Column 10)

 Out-of-Sample Beta w.r.t. the Index (Column 11)

As expected, increasing the maximum number of assets that can be included in the tracking

portfolio tends to lower the in-sample annualized tracking error volatility. However, for K=55 for

the Dow Jones 65, the in-sample tracking error volatility is larger than for K=50. This is not due to

the convergence of a suboptimal solution by the DECST-IT algorithm, but due to the presence of

constraints. In fact, the in-sample tracking error volatility is smaller for the first 200 observations

window, but the constraints on the turnover and the asset weights minimum and maximum bound

lead to suboptimal portfolios in the other windows, compared K=50. In case of the Nikkei 225, we

notice that even when fixing K=90 (last row), the optimal portfolio includes at most 85 assets.

Furthermore, it seems that the relationship between the maximum number of assets, K, and the out-

of-sample tracking error volatility also decreases monotonically (see Column 5). However, further

investigation on that need to be conducted. A strategy for choosing K could be to stop the algorithm

when the average in-sample tracking error volatility stops decreasing. However, this may lead to a

high K which is often suboptimal when transaction and monitoring costs and other statistics are

considered. In fact, we notice that there is no monotonically increasing relationship between the

maximum number of assets and the in-sample and out-of-sample annualized excess returns: The

maximum in-sample and out-of-sample excess returns are for K=30 and K=25 for Dow Jones 65

and for K=20 for Nikkei 225, respectively. The out-of-sample information ratio, the ratio between

the out-of-sample excess return and the tracking error volatility, measures the excess return of a

portfolio divided by the portfolio’s risk relative to an index. The ratio jointly captures risk and

return of the tracking portfolio. Columns 8 indicates that the information ration achieves maximum

8 The in-sample annualized tracking error volatility corresponds to the average of the annualized in-sample

tracking error volatilities for 12 time periods.

 21

value for K=25 for Dow Jones and K=20 for Nikkei 225, suggesting that a portfolio with a limited

number of assets should be preferred. Column 9 shows that the constraint on the total turnover is

always satisfied and that the transaction costs are proportional to the portfolio turnover. Finally,

Columns 10 and 11 report the out-of-sample correlations with respect to the index and the betas

with respect to the index. A correlation or beta equal one is highly appealing. Increasing K does not

necessarily lead to out-of-sample correlations or betas closer to one. We have the best performance

with respect to correlation and beta for K=45 for Dow Jones 65 and K=70 and K=30 for Nikkei 225,

respectively.

Summing up, choosing the maximum number of assets to be included in the tracking portfolio is a

difficult task. A large number of assets, apart from being potentially more expensive in term of

transaction and monitoring, could lead to tracking portfolios with lower tracking error volatility (but

smaller excess return), information ratios, correlations, and betas. On the other hand, a more

parsimonious choice of K, could restrict diversification and result in tracking portfolios with risk-

profile different from the index. This issue is currently under investigation.

Table 5: In-sample and Out-of Sample results for Dow Jones 65

Dow Jones 65

Number of Assets

included in the

Tracking Portfolio

Annualized

Tracking Error

Volatility

Annualized

Excess Return

Information

Ratio

Average

Turnover
Correlation Beta

Min Mean Max
In-Sample

(average)

Out-of-

Sample

In-

Sample

Out-of-

Sample

Out-of-

Sample

Out-of-

Sample

Out-of-

Sample

Out-of-

Sample

20 20.00 20 0.214% 3.64% 0.23% -6.80% -1.87 3.67% 99.17% 0.72

25 25.00 25 0.1748% 2.97% 1.94% 3.87% 1.30 4.11% 99.81% 1.10

30 30.00 30 0.1441% 2.52% 2.21% -0.39% -0.15 4.57% 99.80% 0.94

35 35.00 35 0.1319% 2.38% 1.50% -0.78% -0.33 4.38% 99.82% 0.94

40 40.00 40 0.1181% 2.18% 1.79% -0.23% -0.10 4.58% 99.86% 0.95

45 45.00 45 0.1027% 1.89% 1.83% 0.08% 0.04 4.52% 99.94% 0.98

49 49.92 50 0.0928% 1.70% 2.08% 1.20% 0.70 4.29% 99.94% 1.04

52 53.58 55 0.0932% 1.64% 2.09% 1.49% 0.91 4.24% 99.93% 1.04

 22

Table 6: In-sample and Out-of Sample results for Nikkei 225

Nikkei 225

Number of Assets

included in the

Tracking Portfolio

Annualized

Tracking Error

Volatility

Annualized

Excess Return

Information

Ratio

Average

Turnover
Correlation Beta

Min Mean Max
In-Sample

(average)

Out-of-

Sample

In-

Sample

Out-of-

Sample

Out-of-

Sample

Out-of-

Sample

Out-of-

Sample

Out-of-

Sample

20 20.00 20 0.210% 3.53% 2.19% 1.48% 0.42 4.11% 99.27% 1.10

30 30.00 30 0.155% 2.81% 0.71% -0.74% -0.26 4.53% 98.75% 0.97

40 40.00 40 0.127% 2.06% 0.14% -2.43% -1.18 4.30% 99.57% 0.86

50 50.00 50 0.115% 1.80% -0.38% -2.01% -1.12 4.57% 99.14% 0.87

60 60.00 60 0.105% 1.68% 0.16% -2.52% -1.50 4.58% 98.29% 0.79

69 69.50 70 0.100% 1.40% 0.77% -2.40% -1.72 4.56% 99.40% 0.89

75 77.75 80 0.098% 1.46% 0.27% -4.55% -3.11 4.48% 97.46% 0.70

74 78.42 85 0.097% 1.43% -0.14% -2.40% -1.68 4.39% 98.56% 0.80

6 Discussion and Conclusions

A quantitative approach to index tracking is a challenging econometric and optimization problem.

In this study, we focus on the optimization problem, proposing a new heuristic that succeeds tackle

in reasonable runtime. The optimization requires selecting an optimal subset of asset positions from

the benchmark and finding the optimal asset weights while satisfying additional linear and non-

linear constraints. A further complication arises we deal with high-dimensional problems. Although

the objective function for the index tracking problem could often be stated as a quadratic function

(2) it is not a quadratic programming problem, due to the presence of non-linear constraints.

Therefore, quadratic programming cannot be employed. Our solution has been to develop a search

heuristic (DECS-IT) that combines the excellent performance of Differential Evolution (DE) for

continuous, numerical optimization with a combinatorial search operator, seed initialization and a

particular selection of constraint handling techniques. Our initial implementation of DECS-IT

without an additional operator to search for the optimal asset positions failed solving this problem

sufficiently well. However, we could show that an extension of Differential Evolution works

remarkably well.

 23

Our final experiments show that a good starting point for the search is simply to select the asset

positions that have the largest weights in the benchmark, though random initialization can also

generate meaningful results. This makes particular sense for the largest weights, but less so for

smaller weights, especially around the cut-off between asset positions, that should and should not be

included. The latter typically have very similar weights and thus, may lead to arbitrary selections.

This simple approach turned out to be slightly better than using asset positions that are least

correlated and the random selection of positions. Regarding the use of least correlated positions, it

should be pointed out that we only investigated one out of many possible settings. A combination of

selecting the largest and the least correlated positions may also work if assets with similar weights

are selected according to their correlation. We did not investigate this further, since the results from

largest weight initialization were already fully satisfying, even when using market values as proxies

for the index weights.

Another interesting outcome is that the DECS-IT algorithm can obtain the same quality of results as

QP for simplified, QP-type formulations of the original index tracking problem. As expected, the

computation time for DECS-IT is much longer than for QP (6-7 minutes compared to 7 seconds on

PC laptop with 2.0 GHz Intel Pentium M), but this is a small price to pay considering the advantage

of being able to tackle an index tracking problem in full generality.

In this study, we tested DECS-IT with two different objective functions. DECS-IT could easily deal

with more complex objective functions and other non-linear constraints (for example on total

turnover, as discusses in Section 5).

Finally, we tested DECS-IT considering the index tracking problem over different time periods for

two equity indexes, the Dow-Jones 65 and Nikkei 225. We found that increasing the maximum

number of assets to be included in the tracking portfolios decreases the in- and out-of sample

tracking error volatility up to a certain limit (K=50 out of 65 for Dow Jones, and K=85 out of 225

for Nikkei 225). This strongly depends on the index composition.9 However, increasing K, a part

from being often more expensive in term of transaction and monitoring costs, does not necessarily

lead to tracking portfolios with better annualized excess returns, information ratios, correlations or

betas.

Further research on different indexes and with different portfolio optimization settings are under

investigation. As is the question of how different covariance estimators can affect index tracking.

9 Nikkei 225 has a smaller number of asset weights larger than 5% and 1% than the Dow Jones 65.

 24

Acknowledgements

Sandra Paterlini conducted part of this research while visiting the Center for Quantitative Risk Analysis and

the School of Mathematics, University of Minnesota. Financial support from the MIUR PRIN

20077P5AWA005 and from Fondazione Cassa di Risparmio di Modena for ASBE Project is gratefully

acknowledged.

References

Beasley, J.E, Meade, N, Chang, T.J. (2003). An evolutionary heuristic for the index tracking problem.

European Journal of Operational Research, 148, 621–643.

Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M. (2000). Heuristics for Cardinality Constrained

Portfolio Optimization, Computers and Operations Research, 27, 1271-1302.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic

Algorithm, IEEE Transactions on Evolutionary Computation, 6, 2, 182-197.

Dueck, G., & Winker, P. (1992). New concepts and algorithms for portfolio choice, Applied Stochastic

Models and Data Analysis, 8, 159-178.

Focardi, S.M., & Fabozzi, F.J. (2004). A methodology for index tracking based on times-series clustering,

Quantitative Finance, 4, 417-425.

Fogel, L.J., Owens, A.J., Walsh, M.J. (1966). Artificial intelligence through simulated evolution, New

York, John Wiley.

Gilli, M. & Këllezi, E. (2002). The threshold accepting heuristic for index tracking. In Financial

Engineering, E-Commerce, and Supply Chain, Pardalos P, Tsitsiringos V (eds). Kluwer Academic Press:

Boston, MA.

Holland. J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Harbor.

Kennedy, J. & Eberhart, R.C.(1995). Particle swarm optimisation. In: Proc. of the 1995 IEEE International

Conference on Neural Networks, IEEE Press, Piscataway, NJ, 4, 1942-1948.

Kirkpatrick,S., Gelatt, C.D. & M.P. Vecchi (1983) Optimization by Simulated Annealing Science, 220,

671-680.

Kwiatowski, J.W. (1992). Algorithm for index tracking. Journal of Mathematics Applied in Business and

Industry, 4, 279–299.

Krink, T., Filipiˇc, B., Fogel, G., Thomsen, R. (2004). Noisy optimisation problems—a particular challenge

for differential evolution? In: Proceedings of the Sixth Congress on Evolutionary Computation (CEC-2004).

IEEE Press, Piscataway, NJ, USA, 332–339.

Krink T., Paterlini S., Resti A. (2007). Using Differential Evolution to improve the accuracy of bank rating

systems. Computational Statistics & Data Analysis, Elsevier, 52/1, 68-87.

 25

Krink T., Paterlini S., Resti A. (in press).The optimal structure of PD buckets, Journal of Banking and

Finance.

Krink T., Paterlini S. (2007). DEMPO- Differential Evolution for Multiobjective Portfolio Optimization,

(http://ideas.repec.org/p/mod/wcefin/08012.html)

Lampinen, J., A Bibliography of Differential Evolution Algorithm,

http://www2.lut.fi/~jlampine/debiblio.htm

Maringer, D., & Oyewumi, O. (2007). Index Tracking with Constrained Portfolios. Intelligent Systems in

Finance, Accounting and Management, 15, 57–71.

Maringer, D., & Parpas, P. (in press) Global Optimization of Higher Order Moments in Portfolio Selection,

Journal of Global Optimization.

Michalewicz, Z., & Fogel, D.B., (2004) How to solve it: modern heuristics, Springer.

Paterlini S., Krink T., (2006). Differential Evolution and Particle Swarm Optimisation in Partitional

Clustering. Computational Statistics & Data Analysis, Elsevier, 50/5, 1220-1247.

Pope, P. & Yadav, P.K., (1994). Discovering error in tracking error. Journal of Portfolio Management 20,

27–32.

Price, K., Storn, R., Lampinen, J., (2005). Differential Evolution: A Practical Approach to Global

Optimization. Springer.

Rechenberg, I., (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der

Biologischen Evolution, Frommann-Holzboog, Stuttgart.

Rudolf, M., Wolter, H., Zimmerman, H., (1999). A linear model for tracking error minimization. Journal of

Banking and Finance, 23, 85–103.

Storn, R., & Price, K., (1997). Differential evolution—a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization 11,4, 341–359.

Ursem, R. K., (2002). Diversity-guided evolutionary algorithms. In Proc. 7th Int. Conf. Parallel Problem

Solving From Nature, 2439, LNCS, J. J. M. Guervs et al., Eds., Granada, Spain.

Vesterstrøm J., & Thomsen R., (2004). A comparative study of Differential evolution, Particle Swarm

Optimisation and Evolutionary Algorithms on Numerical benchmark problems. In: Proc. of the Sixth

Congress on Evolutionary Computation (CEC-2004). IEE Press, Piscataway, NJ, USA, 1980-1987.

 26

Appendix A – Parameter Tuning

The performance of search heuristics, i.e., their accuracy and runtime, depends on the problem at

hand and the choice of the algorithmic parameters. The process of finding the optimal parameters of

a search heuristic is usually referred to as tuning. Compared to other heuristics, such as GA, DE

does not have many parameters and requires very little tuning, as it has been already shown in other

studies (Maringer and Parpas, forthcoming; Paterlini and Krink, 2006; Krink and Paterlini, 2007).

In our parameter tuning experimentation, we consider the problem of minimizing the tracking error

volatility as defined in (1) subject to constraints (c1) – (c4) with ε=0.01, ξ=0.1010, K=50. To test the

algorithm, we consider the NIKKEI 225 price index and the stock prices of the 225 constituents

from 17/11/2005-10/01/2007.

Using DE requires setting the values of only few parameters: the population size (Pop.size), the

number of iterations (Num.It), the crossover rate (CR) and the scaling factor (f). In our preliminary

experimentations we consider 30 runs for each combination of the following parameters setting:

Pop.size: {50, 100}, Num.It.:{2500, 5000, 10000}, CR:{0.7, 0.8, 0.9} and f:{0.2 0.3 0.4}. Hence,

empirical results on parameter tuning are based on 1620 runs of the DECS-IT algorithm. Figure

A.1- A.4 show the main results of our investigation.

In realistic applications, such as index tracking, the computational bottle-neck of search heuristics is

the evaluation of the objective function. The number of evaluations is equal to the population size

(number of candidate solutions that are refined in each iteration) times the number of iterations of

optimization heuristic plus the comparably small number of evaluations during the initialization.

Figure A.1 (a) shows that the larger the number of iterations the less dispersed the distribution of

the best fitness values and the more effective the convergence to smaller (better) fitness values.

Furthermore, Figure A.1 (b) suggests that larger population sizes yield better results if the number

of evaluations is large enough (e.g., 5000, 1000).

The scaling factor is usually chosen in the interval [0.2-0.4]. Figure A.2 (a) shows that there is no

great difference in the best recorded fitness-value distributions for a scaling factor equal to 0.3 and

0.4, while a scaling factor equal to 0.2 leads to slower convergence. Figure A.2 (b) reveals that the

choice of the scaling factor tends to affect convergence less as the number of iterations increases.

10 Note that setting ε=0.01 implies that at most 100 assets would be included in the tracking portfolio and setting ξ=0.10

implies that at least 10 assets must be included.

 27

This result is not surprising since the scaling factor decreases the vector difference between two DE

individuals before adding it to a third one. Hence, it affects the length of the step size in exploring

the search space. A small scaling factor does not allow fast exploration on the whole search space.

Therefore, a higher number of iterations is usually required for converging to better results.

The crossover rate usually varies in the interval [0.7-0.9]. Figure A.3 (a) shows that choosing a

crossover rate equal to 0.7, 0.8 or 0.9 does not influence convergence, as the three boxplots have

similar distributions for the best fitness values. Furthermore, Figure A.3 (b) points out, as expected,

that the number of iterations is the crucial parameter. In fact, increasing the number of evaluations

from 2500 to 10000 leads to a more steadily converge towards lower (best) fitness values and less

dispersion, no matter which crossover rate we choose.

Finally, as Figure A.4 shows, the choice of a scaling factor equal to 0.2 seems to slow down

convergence independently of the crossover rate chosen. Our results suggest that a scaling factor

equal to 0.2 could be too low, even for 10000 iterations, while all other parameters do hardly alter

the quality of the results. However, it should be noticed the order of magnitude of the difference in

the best fitness is very small. The reader is refereed to Krink and Paterlini (2007) and to Krink et al.

(2007) for further evidence on the robustness of DE with respect to parameter choices.

 28

Figure A.1: Boxplots of best recorded fitness values for number of evaluations {2500, 5000, 10000} for 30

runs for each combination of the following parameter settings: population size {50, 100}, crossover rate {0.7,

0.8, 0.9} and scaling factor {0.2, 0.3, 0.4}; (a) Boxplots of best fitness values for number of evaluations

{2500, 5000, 10000} and population size {50, 100} for 30 runs for each combination of the following

parameter settings: crossover rate {0.7, 0.8, 0.9} and scaling factor {0.2, 0.3, 0.4};

6.4 6.6 6.8 7 7.2 7.4

x 10
-5

It.2500

It.5000

It.10000

Fitness value
6.4 6.6 6.8 7 7.2 7.4

x 10
-5

Pop.50

Pop.100

Pop.50

Pop.100

Pop.50

Pop.100

Fitness value

N.of Iterations

(a) (b)

 29

Figure A.2: (a) Boxplots of best fitness values for scaling factor {0.2, 0.3, 0.4} for 30 runs for each

combination of the following parameter settings: number of iterations {2500, 5000, 10000},population size

{50, 100}, crossover rate {0.7, 0.8, 0.9}; (b) Boxplots of best fitness values for scaling factor {0.2, 0.3, 0.4}

and number of evaluations {2500, 5000, 10000} for 30 runs for each combination of the following parameter

settings: number of iterations {2500, 5000, 10000},population size {50, 100}, crossover rate {0.7, 0.8, 0.9}.

6.4 6.6 6.8 7 7.2

x 10
-5

f=0.2

f=0.3

f=0.4

Fitness value
6.4 6.6 6.8 7 7.2 7.4

x 10
-5

It.2500

It.5000

It.10000

It.2500

It.5000

It.10000

It.2500

It.5000

It.10000

Fitness value

Scaling Factor

 30

Figure A3: (a) Boxplots of best fitness values for crossover rate {0.7, 0.8, 0.9} for 30 runs for each

combination of the following parameter settings: number of iterations {2500, 5000, 10000},population size

{50, 100}, scaling factor {0.2, 0.3, 0.4}; (b) Boxplots of best fitness values for crossover rate {0.7, 0.8, 0.9}

and number of evaluations {2500, 5000, 10000} for 30 runs for each combination of the following parameter

settings: number of iterations {2500, 5000, 10000},population size {50, 100}, scaling factor {0.2, 0.3, 0.4}.

6.4 6.6 6.8 7 7.2 7.4

x 10
-5

c=0.7

c=0.8

c=0.9

Fitness value
6.4 6.6 6.8 7 7.2 7.4

x 10
-5

It.2500

It.5000

It.10000

It.2500

It.5000

It.10000

It.2500

It.5000

It.10000

Fitness value

Crossover Rate

 31

Figure A.4: (a) Boxplots of best fitness values in 5000 iterations for crossover rate {0.7, 0.8, 0.9} and scaling

factor {0.2, 0.3, 0.4} for 30 runs for each combination of the following parameter settings: population size

{50, 100}, crossover rate {0.7, 0.8, 0.9}, scaling factor {0.2, 0.3, 0.4}; (b) Boxplots of best fitness values in

10000 iterations for crossover rate {0.7, 0.8, 0.9} and scaling factor {0.2, 0.3, 0.4} for 30 runs for each

combination of the following parameter settings: population size {50, 100}, crossover rate {0.7, 0.8, 0.9},

scaling factor {0.2, 0.3, 0.4}.

6.4 6.6 6.8 7 7.2

x 10
-5

c=0.7,f=0.2

c=0.7,f=0.3

c=0.7,f=0.4

c=0.8,f=0.2

c=0.8,f=0.3

c=0.8,f=0.4

c=0.9,f=0.2

c=0.9,f=0.3

c=0.9,f=0.4

Fitness value

N.of Iterations: 5000

6.4 6.5 6.6 6.7 6.8 6.9 7

x 10
-5

c=0.7,f=0.2

c=0.7,f=0.3

c=0.7,f=0.4

c=0.8,f=0.2

c=0.8,f=0.3

c=0.8,f=0.4

c=0.9,f=0.2

c=0.9,f=0.3

c=0.9,f=0.4

Fitness value

N.of Iterations: 10000

Crossover rate vs Scaling Factor

 32

Appendix B – Pseudo-code

Figure B.1: Pseudo-code of Rand/1/Exp Differential Evolution.

function Differential_Evolution()

 initialize();
 evaluate();
 while curit<NumIt
 for i=1:popSize
 MutateandRecombine();
 Evaluate()
 if fitness(offspring)>fitness(parent),

choose offspring;
 else

choose parent;
 end
 end
 end
function MutateandRecombine(){

otherwise i.gene

cfU(0,1) if)l.gene(k.genefm.gene
.gene

j

jjj

jc

Figure B.2: Pseudo-code of DECS-IT algorithm

function DECS-IT()

% Initialize and evaluate the start population of candidate solutions
GenRandomPop(); % Initialize population
for i=1:popSize EvaluateFitnessFunction(); end

Record and save results
curIt=1;

% Iteratively improve the population of candidate solutions
while curIt<numIt
 for i=1:popSize

% Apply DE with operator "Rand\1\Exp"
%select three other candidates pop(i1), pop(i2), and pop(i3) randomly
cand = pop(i3,:) + f * (pop(i1,:)-pop(i2,:));
cr_numDimCopy = round(numParam*(1.0-cr));
for j=1:cr_numDimCopy
 nsel = ceil(numParam*rand());
 cand(nsel) = pop(i,nsel);
end

% Rescale (such that SUM(cand)=1.0) and repair candidate cand
cand = cand / sum(cand);
RepairBoundsFeasibility();

% Apply operator to explore the asset position selection
cand = SwapZeroPositions(cand);

% Evaluate the new candidate solution cand
EvaluateFitnessFunction(cand);

% Select the new candidate if it is better than pop(i)

 33

if(cand and pop(i) are feasible and cand_fitness<fitness(i))
 OR (cand is feasible and pop(i) is infeasible)
 OR (cand violates less many constraints than pop(i))
 OR (cand and pop(i) violate the same number of constraints,
 but cand with less amount)
 OR (cand and pop(i) violate the same number and with the same
 amount and cand_fitness<fitness(i))

 pop(i) = cand;
end
 end % for i=1:popSize

 Record and save results
 curIt = curIt + 1;

end % while curIt<numIt

