

CEFIN – Centro Studi di Banca e Finanza
Dipartimento di Economia Aziendale – Università di Modena e Reggio Emilia

Viale Jacopo Berengario 51, 41100 MODENA (Italy)
tel. 39-059.2056711 (Centralino) fax 059 205 6927

CEFIN Working Papers
No 15

Optimization Heuristics for Determining Internal Rating
Grading Scales

by M. Lyra, J. Paha, S. Paterlini, P. Winker

March 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/287850888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimization Heuristics for Determining
Internal Rating Grading Scales

Marianna Lyra∗ Johannes Paha† Sandra Paterlini†

Peter Winker†

June 4, 2009

Abstract

Basel II imposes regulatory capital on banks related to the de-
fault risk of their credit portfolio. Banks using an internal rating
approach compute the regulatory capital from pooled probabilities of
default. These pooled probabilities can be calculated by clustering
credit borrowers into different buckets and computing the mean PD
for each bucket. The clustering problem can become very complex
when Basel II regulations and real-world constraints are taken into
account. Search heuristics have already proven remarkable perfor-
mance in tackling this problem. A Threshold Accepting algorithm
is proposed, which exploits the inherent discrete nature of the clus-
tering problem. This algorithm is found to outperform alternative
methodologies already proposed in the literature, such as standard
k-means and Differential Evolution. Besides considering several clus-
tering objectives for a given number of buckets, we extend the analysis
further by introducing new methods to determine the optimal number
of buckets in which to cluster banks’ clients.

Keywords: credit risk, probability of default, clustering, Threshold Accept-
ing, Differential Evolution.

∗Department of Economics, University of Giessen, Germany.
†Dept. of Economics, CEFIN and RECent, University of Modena and Reggio R., Italy.

1

Sandra
Casella di testo

1 Introduzione Non Tecnica

Il secondo Accordo di Basilea richiede alle banche di accantonare capitale
regolamentare quale forma di copertura verso possibili perdite derivanti da
un inaspettato elevato numero di default (insolvenza). L’approccio interno
per la determinazione del capitale regolamentare richiede in primis di quan-
tificare quale sia la probabilitá di default di ogni singolo cliente ovvero la
probabilitá che il singolo cliente sia insolvente nei successivi 12 mesi. Quindi,
i singoli clienti devono essere accorpati in “buckets” o classi e ad essi viene
assegnati la medesima probabilitá di default “pooled”. La determinazione del
raggruppamento dei clienti in differenti classi puó essere interpretato statisti-
camente come un problema di clustering: i clienti sono raggruppati in modo
tale da cercare di avere classi omogenee al loro interno ed eterogenee fra loro.
In questo lavoro, estendiamo due lavori precedenti di Krink, Paterlini e Resti
(2007,2008) raffinando la metodologia utilizzata per la determinazione delle
classi e introducendo due nuovi metodi per la determinazione del numero
ottimale di clusters o buckets in cui partizionare i clienti.
Interpretando il problema di raggruppamento dei clienti in classi omogenee
quale problema di ottimizzazione, emerge l’esigenza di determinare quale
metodo utilizzare per la determinazione della soluzione ottima. In questo
contesto, il problema di ottimizzazione e’ complicato anche dalla presenza
di vincoli istituzionali (e.g. la necessitad́i avere una probabilitá di default
“pooled” di almeno tre punti base) e di vincoli imposti al fine di ottenere ra-
gionevali raggruppamenti (e.g. avere un numero sufficiente di clienti in ogni
classe al fine di validazione del modello). Le euristiche di ricerca costituiscono
un possibile metodo per la risoluzione di tale problema di ottimizzazione. Tali
euristiche si fondano sull’idea di iniziare la ricerca da una possibile soluzione
o piú soluzioni all’interno dello spazio di ricerca e di raffinare in modo itera-
tivo tale soluzione fintanto che un dato criterio di convergenza sia soddisfatto.
Numerose euristiche di ricerca sono state proposte nella letteratura scientifica
e data la recente disponibilitad́i sempre piú efficienti risorse computazionali il
campo di ricerca é in continua evoluzione. In questo lavoro, mostriamo come
l’utilizzo dell’algoritmo di Threshold Accepting sia particolarmente indicato
per questo tipo di problema di ottimizzazione di natura discreta e possa es-
sere una alternativa piú rapida e robusta a precedenti metodi proposti in
letteratura.

2

2 Introduction

The second Basel Accord on Banking Supervision requires banks to hold a
minimum level of shareholders’ capital in excess of provisions. This regula-
tory capital (RC) may be regarded as some form of self-insurance (in excess
of provisions) against the consequences of an unexpectedly high number of
defaults. This amount of capital depends on the exposure to risk of the
bank. Financial intermediaries have to assess the clients’ riskiness by evalu-
ating their probability of default (PD), i.e., the probability that a borrower
will default over the subsequent 12 months. Afterwards, clients are pooled
together in buckets (PD-buckets) and are assigned the same “pooled” PD.
While many studies have been devoted to the phases of rating assignment,
quantification, and validation, the problem of determining the width and the
number of PD buckets has received much less attention. We propose to fill
this gap in the literature by proposing an error-based statistical methodol-
ogy to determine the optimal structure of PD-buckets. Thereby, we consider
the problem of determining the PD-buckets as a clustering problem, where
the aim is to find the cluster structure that allows to minimize a given error
measure under the relevant real-world constraints. Previous related work
can be found, e.g., in Foglia et al. (2001), Paterlini and Krink (2006), Krink
et al. (2007) and Krink et al. (2008). We extend the analysis mainly in two
directions.

First, we propose a methodology not only to tackle the problem of de-
termining the PD buckets width, but also to determine the optimal number
of buckets in which to partition the banks’ clients. This problem is complex
to tackle since there is a trade-off between having a small number of large
buckets and a high number of small buckets. In fact, clients belonging to the
same buckets are assigned the same pooled PD. Hence, we would like to have
a large number of buckets in order to minimize the loss of precision. However,
in such a case it would be difficult to validate the consistency of the rating
scheme ex post, since the number of defaults in each bucket would probably
be too low for statistical validation. On the contrary, if the number in which
to partition the clients is small, buckets tend to be too wide which might
lead to an overstatement of the capital charge, given the concave shape of
the capital function (Kiefer and Larson, 2004), and to opportunistic behavior
and adverse selection of clients.

Second, we introduce the Threshold Accepting (TA) algorithm (Dueck
and Scheuer, 1990; Winker, 2001; Gilli and Winker, 2004) in order to de-

3

termine the optimal PD buckets structure. Compared to the Differential
Evolution (DE) heuristic, which has been shown in a previous study to have
superior performance with respect to k-means, Genetic Algorithms, Particle
Swarm Optimization and Random Search (Krink et al., 2007), TA is partic-
ularly suited for discrete search spaces. By exploiting the discreteness of the
search space of the PD bucketing problem, it avoids to search on plateaus of
the objective function, but can still deal with local minima. Our extensive
investigation on a real-world dataset shows that TA can be a faster and more
robust alternative to DE.

The paper is structured as follows. Section 3 introduces the formal frame-
work for the error-based approach to PD bucketing by considering the reg-
ulations put forward by the Basel II accord and some other real-world con-
straints. Several objective functions and constraints for the optimization
problem are presented. Section 4 describes Threshold Accepting. Empirical
results and performance comparison are then reported in Section 5. Section 6
extends our formal framework by introducing the endogenous choice of the
optimum number of buckets and discusses some results. Finally, Section 7
concludes and suggests further research perspectives.

3 Basel II and Clustering of Credit Risk

The framework of the second Basel Capital Accord (Basel II) puts a strong
emphasis on the adequacy of banks’ equity for a given risk profile. Accord-
ing to Basel II (Basel Committee on Banking Supervision, 2005) a bank’s
potential loss if all borrowers default is the sum of these borrowers’ exposure
at default (EAD) times the fraction (loss given default - LGD) of EAD
that may not be recovered. Basel II requires banks to hold sufficient capital
in order to cope with losses of a certain size such that a bank’s probability
of going insolvent is driven below some confidence level.The bank’s value
at risk (VaR) is defined as its potential loss, excluding values above the c-
th percentile, where c is the confidence level. A bank may account for the
expected loss (i.e., EAD × LGD × PD) by provisioning. However, under
sufficiently negative economic conditions the conditional (also called stressed
or downturn) probability of default (PDc) is likely to exceed PD and thus
may cause losses in excess of provisions. In order to ensure the stability of
the banking system, banks are required by Basel II to hold regulatory cap-
ital (RC) that is related to these unexpected losses. For determining RC

4

borrowers have to be assigned to at least seven internal borrower grades b
(also called groups or buckets) for non-defaulted borrowers based on their
creditworthiness. Then, RC can be computed by, e.g., treating the mean
PD (PDb) of all borrowers in bucket b as a proxy of an individual borrower’s
PD. We assume that a bank employs a statistical default prediction model
so that an estimate for each borrower’s individual PD is available. Then,
RC for an individual borrower RC(PDi), when no maturity adjustment is
considered, is given by equation (1) where the stressed PD (PDc,i) is given
by equation (2). Φ and Φ−1 denote the cumulative standard normal density
function and its inverse, respectively. The asset correlation R reflects how
the individual PDs are linked together by the general state of the economy,
the firm’s size (as measured by sales) and the size of their EAD.

RC(PDi) = 1.06 · EADi · LGD · (PDc,i − PDi) , (1)

PDc,i = Φ

(
Φ−1 (PDi)−

√
Ri · Φ−1(0.001)√

1−Ri

)
. (2)

If a borrower i is assigned to bucket b her conditional PD (PDc,i,b) can be
determined by replacing PDi with PDb in equation (2). The sum of RC for
all borrowers i over all buckets b may be computed as (3):

RC =
∑

b

∑
i

1.06 · EADi · LGD · (PDc,i,b − PDb

)
. (3)

In our implementation we compute the asset correlation according to
paragraph 273 of the Basel II framework by normalizing debtors’ sales to
EUR 5 million if they are below that threshold and to EUR 50 million if
they are above this threshold. Consequently, we do not treat small firms’
exposures as retail exposures as stated in paragraph 232. 1.06 is an empir-
ically derived scaling factor that prevents RC calculated under Basel II to
drop below RC under the Basel I framework. Computing RC from pooled
PDs as shown above results in an approximation error. Therefore, Basel
II requires banks to perform credit risk rating, i.e., assigning borrowers to
buckets meaningfully. On the one hand, this means to maximize the homo-
geneity of borrowers within a given bucket. This may be done by grouping
borrowers in minimizing some objective function using an optimization tech-
nique as described in Section 4. On the other hand, adjacent buckets must
be clearly distinguishable, i.e., heterogeneous. There is a trade-off between

5

homogeneity and heterogeneity since increasing the number of buckets is
likely to decrease heterogeneity within buckets but raise homogeneity be-
tween buckets. This trade-off as well as the necessity to ex post validate the
meaningfulness of the credit risk rating system leads us to the question which
number of buckets to choose. We will address this issue in Section 6.

The goal of maximizing within-buckets homogeneity may be operational-
ized by different objective functions. First, one may minimize the squared
error that arises from substituting a borrower’s individual PD by the mean
of its bucket. This may be done using unconditional PDs (point-in-time
approach) resulting in the following objective function:

min
∑

b

∑

i∈b

(
PDi − PDb

)2
. (4)

However, if a bank’s portfolio is strongly affected by overall business condi-
tions the use of conditional PDs may be more appropriate:

min
∑

b

∑

i∈b

(
PDc,i − PDc,b

)2
. (5)

It may be supposed that banks grant higher loans to good borrowers than
to borrowers with a relatively high PD. Thus, VaR that arises from a good
borrower may be comparatively high, as well. Consequently, it might be more
reasonable to use weighted versions of the objective functions (4) and (5)
using the EADs as weights, e.g., for the conditional PDs (5):

min
∑

b

∑

i∈b

EADi ·
(
PDc,i − PDc,b

)2
. (6)

Moreover, banks may want to minimize the total absolute error between
the regulatory capital computed with the true individual PDis and the one
computed in correspondence to the pooled PDs.

min
∑

b

∑

i∈b

∣∣RC (PDi)−RC
(
PDb

)∣∣ . (7)

Apart from the selection of an appropriate objective function, several
constraints imposed by the Basel II framework have to be taken into account
when rating credit risk. First, according to paragraph 285 of the framework
the pooled PD for corporate and bank exposures must be no smaller than

6

0.03%. Second, paragraphs 403 and 406 of the framework require banks to
have a meaningful distribution of exposures without excessive concentrations.
Thus, following Krink et al. (2007), we assume that no bucket may contain
more than 35% of a bank’s total exposure:

∑
i∈b EADb,i∑

b

∑
i∈b EADb,i

≤ 35% . (8)

Third, in order to avoid buckets that are too small, the number of bor-
rowers in a bucket (Nb) should be larger than some percentage x of the entire
number of borrowers N :

Nb ≥ x ·N . (9)

Again following Krink et al. (2007), we will assume x = 1% for our application
in Section 5. However, we will define x based on statistical criteria when
endogenizing the number of buckets in Section 6.

Fourth, the clustering algorithm must be set up such that buckets do
not overlap and the union of buckets is the set of all borrowers. Further-
more, paragraph 404 of the framework requires banks to have at least seven
borrower grades for non-defaulted borrowers.

4 An Optimization Heuristic for Credit Risk

Bucketing

We tackle the PD bucketing problem as a clustering one, i.e., we want to
determine the optimal partition of N bank clients in B buckets with respect
to a given objective function and subject to some constraints (see Section 3).
Since clustering problems are NP-hard when the number of clusters exceeds
three (Brucker, 1978), stochastic search heuristics, such as Differential Evolu-
tion and Threshold Acceptance, can be a valid tool to tackle such problems.
Furthermore, the presence of constraints narrows and segments further the
search space. DE and TA allow to explore the whole search space, not focus-
ing on the borders resulting from the constraints as conventional approaches
often do. Following Krink et al. (2007), we build candidate solutions in TA
or DE to encode the thresholds of buckets. Hence, when considering the
problem in a continuous domain, the fitness landscape has large plateaus
given that a change in the threshold of one bucket modifies the categoriza-
tion only if there are some clients in the PD interval between the old and the

7

new thresholds, e.g, if a threshold varies from 0.2 to 0.21, the PD-bucketing
partition would vary only if there are clients with PD in the interval [0.2,
0.21]. Then, the fitness value of each individual will vary across generation
only when the new bucketing thresholds correspond to a new categorization.
Given this inherent discrete nature of the problem, we expect TA to be a
better alternative than DE. The reader is referred to Krink et al. (2007)
for a description of Differential Evolution in general and for the credit risk
bucketing problem in specific, while Threshold Acceptance is described in
the following subsection.

4.1 Threshold Accepting

The idea of TA is to iteratively compare the objective function values of two
candidate solutions that belong to the same neighborhood and to select one
of them for further refinement. Thereby, the current candidate solution is
replaced by a new one

• if this results in an improvement of the objective function value, or

• if a deterioration of the objective function value does not exceed a
threshold as defined by a threshold sequence.

Due to the second feature, TA may overcome local optima.
TA requires to set an initial candidate solution and a criterion that ter-

minates the search process. It turns out to be best to determine an initial
candidate solution completely at random. Moreover, the search is stopped
after a predetermined number of iterations. A nice feature of this stopping
criterion is that the computation time can be controlled quite effectively.

In TA the current candidate solution is compared with a neighboring
solution. Thus, the implementation requires to define a neighborhood struc-
ture. It is reasonable to define neighborhoods quite large at the beginning of
the search but small towards its end. The idea underlying this procedure is
to put more emphasis on exploring wide areas of the search space first but
emphasizing a narrow search and refinement of a supposedly good candidate
solution towards the end of the search.

Suppose the TA algorithm has generated for 7 buckets the starting solu-
tion gc = (3%, 6%, 10%, 12%, 17%, 21%) and PDs in our dataset are bound
by the interval [0.2%; 24%]. Suppose further that the second bucket thresh-
old is randomly selected for modification. The new candidate solution will be

8

a neighbor to the old one if the second bucket threshold is determined ran-
domly from all PDs in the interval [3%; 10%[. The intervals for the remaining
bucket thresholds can be found accordingly. The procedure is illustrated in
Figure 1.

Figure 1: Bucket intervals.

As the search proceeds, these intervals shrink linearly in the current num-
ber of iterations relative to the total number of iterations. I.e., the contrac-
tion factor takes the form [(I + 1)− i]/I. Consequently, after performing for
example 20% of the iterations the second bucket threshold would be deter-
mined from the interval [6%− 0.8 · (6%− 3%); 6% + 0.8 · (10%− 6%)[.

New candidate solutions are generated from old ones by first determining
randomly a bucket threshold of the current candidate solution and then re-
placing it with a random element from the above interval. This procedure is
advantageous in at least two aspects. First, the objective function value of
the new candidate solution gn differs from the objective function value of the
current candidate solution gc only in the contribution of the two buckets that
are affected by the alteration. Thus, fast updating of the objective function
is feasible. Moreover, computation time becomes vastly independent of the
number of buckets. This is due to the fact that for any number of buckets
TA only has to compute the fitness of two buckets per iteration. On the
contrary, in DE, as implemented in Krink et al. (2007), the fitness for all
buckets is computed in every iteration. This results in a higher computation
time. This disadvantage of DE becomes more pronounced for higher numbers
of buckets, even if we are aware that different updating rules for DE similar
to the ones employed for TA in the present application could speed up the
runs. Second, since in TA new bucket thresholds are chosen from the PDs
in the dataset, each new candidate solution constitutes a different partition
and, consequently, a different value of the objective function which is not the
case for our DE implementation on a continuous search space.

9

A final crucial element of any TA implementation is its threshold sequence
since it determines TA’s ability to overcome local optima. Basically, the idea
is to accept gn if its objective function value is better or if it is not much
worse than that of gc where not much worse means the deterioration may
not exceed some threshold T defined by the threshold sequence.

We propose a threshold sequence that is based on the differences in the
fitness of candidate solutions that are found in a certain area of the search
space. Instead of using an ex ante simulation of local differences of the
fitness function as proposed by Winker and Fang (1997), the local differences
actually calculated during the optimization run are considered. By using
a moving average, a smooth threshold sequence is obtained. Algorithm 1
provides the pseudocode for the TA implementation with the data driven
generation of the threshold sequence.

Algorithm 1 Pseudocode for TA with data driven generation of threshold
sequence.
1: Initialize I, Ls = (0, . . . , 0) of length 100
2: Generate at random an initial solution gc, set T = f(gc)
3: for i = 1 to I do
4: Generate at random gn ∈ N (gc)
5: Delete first element of Ls
6: if f(gn)− f(gc) < 0 then
7: add |f(gn)− f(gc)| · (i/I) as last element to Ls
8: else
9: add |f(gn)− f(gc)| · (1− i/I) as last element to Ls

10: end if
11: T = Ls · (1− i/I)
12: if f(gn) + T ≤ f(gc) then
13: gc = gn

14: end if
15: end for

The threshold sequence is calculated during the runtime of the algorithm
and exhibits the following properties. First, it adapts to the region of the
search space to which the current solution belongs. Second, it takes into
account the current definition of the neighborhood. Third, and most impor-
tantly, it adapts to the objective function used. As a result, this data driven
threshold sequence is readily available for use with any objective function,
constraint handling technique or neighborhood structure and does not require
any fine-tuning.

10

The current value of the threshold T is defined as the weighted mean Ls
over the last 100 fitness differences (11:). A general requirement in TA is
that thresholds should be larger at the beginning of the search in order to
overcome local optima and decrease to zero at the end in order to reach at
least a local, if not the global optimum. In order to satisfy this requirement,
the weighted mean Ls is multiplied with a scaling factor decreasing linearly
from one to zero with the number of iterations (11:).

Apart from this global weights, each fitness difference entering the vector
Ls obtains a particular weight. At the beginning of the search process, one
might expect many fitness improvements. For not being too generous in ac-
cepting deteriorations of the objective function, objective fitness differences
corresponding to improvements are downweighted by the factor i/I, i.e., the
share of iterations already done (7:). In contrast, towards the end of the
search procedure, one has to expect that most trials result in a deterioration
of the objective function. To avoid too generous thresholds, the correspond-
ing elements of Ls are downweighted by the factor (1−i/I) decreasing to zero
with the number of iterations (9:). It is obvious that this threshold sequence
adapts to the local structure of the search space. If the algorithm moves
candidate solutions towards an optimum, fitness improvements are likely to
become smaller the closer the algorithm approaches this optimum. Then, T
declines and forces the algorithm not to deviate from its track towards the
optimum. Once a (local) optimum is found only fitness deteriorations will
be observed which increases T and eventually allows the algorithm to depart
from that optimum and examine another part of the search space. By using
a moving average, a smooth threshold sequence is obtained (11:).

4.2 Constraint Handling

When running the optimization heuristics TA and DE, the constraints de-
scribed in Section 3 have to be taken into account. To this end, two alter-
native methods can be considered: rewriting the definition of domination,
such that it includes the constraint handling (Deb et al., 2002) or imposing
a penalty on infeasible solutions.

The first possibility has been described for the current application in
Krink et al. (2007). The intuitive idea of this constraint handling technique
is to leave the infeasible area of the search space as quickly as possible and
never return. For minimization problems, the procedure can be described as
follows within Algorithm 1:

11

1. If the new candidate solution gn and the current candidate solution gc

satisfy the constraints, gn replaces gc if its fitness f(gn) satisfies the
condition f(gn) + T ≤ f(gc). In TA T represents the threshold as
defined by the threshold sequence. In DE, we set T = 0.

2. If only one candidate solution is feasible, select the feasible one.

3. If both solutions violate constraints, . . .

(a) . . . select the one that violates fewer constraints.

(b) . . . if both solutions violate the same number of constraints, gn

replaces gc if its fitness f(gn) satisfies the condition f(gn) + T ≤
f(gc). Again, T either takes a value as defined by the threshold
sequence or, in DE, we set T = 0.

In contrast, the penalty technique allows infeasible candidate solutions
while running the algorithm as a stepping stone to get closer to promising
regions of the search space. In this case, the objective function is multiplied
by a penalty term. Solutions should be penalized the stronger the more they
violate the constraints. Moreover, in order to guarantee a feasible solution
at the end, the penalty should increase over the runtime of the algorithm.
Equation (10) states that the objective function value fu of a candidate
solution is increased by some penalty factor A ∈ [1; 2] that puts more weight
on penalties the more the current iteration i approaches the overall number
of iterations I. The exponent a may take values in the interval [0; 1]. No
penalty is placed on fu if no constraint is violated so that a = 0. However, if
the constraints are violated most strongly, i.e., all borrowers are concentrated
in one bucket leaving the remaining buckets empty, the exponent takes the
value a = 1. A more formal description of this penalty technique is given in
the appendix.

fc(g) = fu(g) · A = fu(g) ·
(

1 +

√
i

I

)a

. (10)

For the current application, DE is only implemented with the constraint-
dominated handling technique, while for TA both methods are implemented.
Generally, the constraint-dominated handling technique performs well while
taking comparatively little computation time. However, depending on the
kind of objective function used the penalty technique may improve the reli-
ability of TA, i.e., reduce the variance of the results obtained.

12

5 Results and Relative Performance

For our empirical application we consider the dataset comprising 11995 de-
faulted and non-defaulted borrowers of a major Italian bank already analyzed
by Krink et al. (2007). The PDs are point in time and range between 0.21%
and 23.94%. Moreover, the conditional probability of default (PDc) was
computed using equation (2). The PDcs range between 4.52% and 64.88%.

All algorithms are implemented from scratch in Matlab 7.6 and run on
a PC with Intel Duo Core processor operating at 2.40 GHz and running
Windows XP. Please notice that the reported empirical results are slightly
different from the ones reported by Krink et al. (2007) due to the fact that
we use our own implementation of Differential Evolution.

5.1 Results for Fixed Number of Buckets

Tables 1 to 3 report the empirical results of the two heuristic algorithms
for 7, 10, and 15 buckets, the two different constraint handling techniques
and the three objective functions described above. Both algorithms were
restarted 30 times on each problem instance to control for the stochasticity
of heuristic optimization techniques. For the comparison of the two methods,
we report the best value, the median, the worst value, the variance, the 80%
percentile, the 90% percentile, and the frequency the best value occurs in all
30 repetitions.

The tuning parameters of the DE implementation are the scaling factor
F and the crossover probability CR. These settings might affect the quality
of results depending on the properties of the problem. To determine the
parameter values that result in the best objective function values, we run
the algorithm 30 times for different combinations of F and CR, both ranging
between 0.5 and 0.9. Thereby, the objective function (6) was used. The
distribution of the results indicates that, for the specific problem instance,
tuning the technical parameters does not affect the solution quality for values
of CR larger than 0.6, while the choice of F within the given interval appears
to be irrelevant. Results are available upon request.

Then, since extensive parameter tuning on DE suggests that DE is rather
insensitive to the choice of F and CR, we fix the initial parameter settings
such that the population size is np = 100 and the number of generations
is nG = 1 000, while the scaling factor F and the crossover rate CR were
kept constant at 0.5 and 0.8, respectively. In the case of TA, the algorithm

13

Table 1: Objective function (5)

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 5.9184 5.9184 5.9184 0.0000 5.9184 5.9184 20/30
TAb 5.9184 5.9184 5.9184 0.0000 5.9184 5.9184 30/30
DE 5.9184 5.9211 5.9223 0.0018 5.9223 5.9223 9/30

B = 10
TAa 3.9155 3.9226 3.9369 0.0101 3.9366 3.9366 18/30
TAb 3.9155 3.9190 3.9366 0.0080 3.9155 3.9366 19/30
DE 3.9155 9.9319 4.1663 0.0496 3.9195 3.9527 2/30

B = 15
TAa 2.8842 2.8848 2.8929 0.0016 2.8855 2.8855 6/30
TAb 2.8842 2.8874 2.9064 0.0053 2.8929 2.8933 7/30
DE 2.8964 2.9761 3.0199 0.0428 3.0083 3.0140 1/30

aRejection based constraint handling technique
bPenalty technique

Table 2: Objective function (6) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 4,582.86 4,582.86 4,582.86 0.0000 4,582.86 4,582.86 30/30
TAb 4,582.86 4,582.86 4,582.86 0.0000 4,582.86 4,582.86 30/30
DE 4,582.86 4,587.35 4.671.38 16.5569 4,583.52 4,585.09 2/30

B = 10
TAa 3,471.68 3,479.97 3,483.92 1.8592 3,480.01 3,480.21 1/30
TAb 3,471.68 3,480.33 3,483.92 2.8705 3,483.66 3,483.92 2/30
DE 3,471.51 3,475.47 3,498.96 5.4891 3,479.96 3,480.18 4/30

B = 15
TAa 2,821.00 2,833.55 2,865.98 14.1177 2,844.24 2,856.92 8/30
TAb 2,821.00 2,830.55 2,860.02 11.5971 2,840.99 2,844.24 3/30
DE 2,866.23 2,943.09 3,122.39 57.9240 2,958.48 3,005.19 1/30

aRejection based constraint handling technique
bPenalty technique

14

was run for I = 100 000 iterations, in order to attain analogy with DE’s
population size and number of generations. It should be noted that due
to the local updating method in TA, the 100 000 iterations of TA require
less computing time than the corresponding run of DE. The relative merits
of both methods in terms of computational load and quality of results are
reported in Section 5.2.

Table 1 presents a statistical summary of the results using objective func-
tion (5). The TA algorithm was run using both the rejection based constraint
handling technique and the penalty technique. The results are affected by the
choice of the constraint handling technique, as the best value is obtained with
an equal or higher frequency when using the penalty technique. However,
these results cannot be generalized for the alternative objective functions (6)
and (7) (see Tables 2 and 3), especially for a larger number of buckets, i.e.,
B = 10, 15. In general, the performance of the TA implementation is excel-
lent for the case of seven buckets and still gives good results with low variance
for the larger problem instances.

Table 3: Objective function (7) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 45,791.49 45,793.18 45,825.62 6.4870 45,791.49 45,791.72 26/30
TAb 45,791.49 45,794.11 45,826.57 7.7787 45,791.49 45,801.65 25/30
DE 45,791.49 45,810.09 46,004.19 39.4151 45,828.39 45,828.39 4/30

B = 10
TAa 31,942.19 31,951.30 31,996.89 19.9770 31,946.42 31,994.72 21/30
TAb 31,942.19 31,951.25 31,994.73 18.8050 31,946.42 31,992.74 18/30
DE 31,995.28 32.166.86 32.299.00 119.9837 32.299.00 32,299.00 1/30

B = 15
TAa 20,711.93 20,729.26 20,973.53 62.6797 20,713.36 20,714.88 10/30
TAb 20,711.93 20,725.99 20,951.01 49.5889 20,714.88 20,715.61 1/30
DE 20,970.37 24,916.30 35,003.82 4875.7503 31,215.84 33,676.88 1/30

arejection based constraint handling technique
bpenalty technique

Considering the performance of the DE implementation, we observe that
the best value is obtained for B = 7 at a frequency of 9 out of 30 restarts.

15

While, for a higher number of buckets, the best value does not deviate much
from the optimum, the efficiency worsens. The same pattern is observed for
all three objective functions.

We conclude that the TA implementation is superior for most problem
instances in terms of mean solution quality and variance for all objective
functions considered. The clustering of credit risk is a problem on a discrete
search space. In contrast to the DE algorithm, the TA implementation takes
this discrete feature of the search space into account. This might explain its
superior performance.

5.2 Relative Performance of DE and TA

Section 5.1 provides evidence of the good performance of both algorithms for
the credit risk bucketing problem. Given that TA exploits the discrete struc-
ture of the search space and uses a local updating procedure, it is significantly
faster than DE for a given number of function evaluations.

Therefore, in order to obtain a fair comparison of both algorithms, we
consider two settings. First, we analyze the distribution of results obtained
from both algorithms when running them for the same time. Second, we
fix a quality goal, e.g., not to deviate by more than 1% from the best so-
lution documented above. Then, both algorithms are run using increasing
computational time until at least 50% of the restarts meet the quality goal.

For the first approach, the following setup is used. We run the DE algo-
rithm with the same parameters as above, i.e., population size np = 100 and
number of generations nG = 1000, and – to have a comparison for a small
amount of computational resources – with np = 40 and nG = 50. Then, we
estimate the number of iterations I which can be performed by our TA algo-
rithm using the same computational time. In fact, this number of iterations
will depend on the objective function used and on the number of buckets B,
as the advantage of updating becomes more pronounced for larger B.

Table 4 summarizes the findings. The first four columns report respec-
tively the objective function, the number of buckets B, the population size
np and the number of generations nG of DE. Column (5) displays the com-
puting time for a single restart of our implementations. Column (6) reports
the number of iterations I in TA that equalizes computation time for DE and
TA. Columns (7) and (8) display the difference in the mean and standard
deviation between TA and DE. Thereby, negative values indicate an advan-
tage of the TA implementation. Finally, column (9) reports the number of

16

times, TA outperforms DE.

Table 4: Relative performance of DE and TA for given computing time

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CPU I ∆ ∆ better result

Obj. B nP nG time for TA mean Std. for TA for DE
(7) 7 100 1000 32.4m 786 600 -18.4 -38.3 25/30 0/30

10 100 1000 36.0m 1 050 000 -220.7 -108.0 21/30 0/30
15 100 1000 192.7m 6 760 511 -4202.8 -4873.9 5/30 0/30

(7) 7 40 50 42.3s 17 000 -13 145 -10 210 6/30 0/30
10 40 50 51.7s 25 000 -16 355 -8 630 6/30 0/30
15 40 50 66.7s 38 000 -23 441 -64 880 1/30 0/30

Table 4 reports results for objective function (7) and B = 7, 10, 15 buck-
ets. When considering the original setting for DE with nP = 100 and
nG = 1000, the number of iterations for TA can be increased above the
value of 100 000 given the same computation time. This further increase in
the number of iterations does not affect the quality of results. However, when
considering a smaller amount of available computational time, e.g., nP = 40
and nG = 50, it becomes obvious that TA still outperforms DE when us-
ing the same computational time. Furthermore, the standard deviation is
drastically reduced for TA.

For the second approach mentioned above, we consider three quality lev-
els, i.e., 10%, 5% and 1% departure from the optimum values reported. Tak-
ing into account computation time, we only report findings for objective
function (6) and B = 7 and B = 15 buckets, respectively. For DE we fix
np = 100 and increase the number of generations nG, while for TA the num-
ber of iterations I varies. For both algorithms the parameter (nG or I) is
increased stepwise until the algorithm finds a solution meeting the quality
level in at least 50% out of 30 replications. The results are summarized in
Table 5 providing both the parameters actually used for the two algorithms
and the corresponding CPU times for a single restart.

It is evident that a given quality of the solutions can be obtained much
faster with TA. The relative advantage becomes even more pronounced for
the larger problem instance (B = 15). This effect is due to the local updating
used with the TA algorithm. In fact, for B = 15, the quality goal of 1% from

17

Table 5: Timing of DE and TA for given solution quality

DE TA
Precision B nP nG time I time

10% 7 100 30 44.44s 200 0.62s
5% 40 58.45s 300 0.72s
1% 70 104.24s 800 1.27s
10% 15 100 100 5.19m 2 000 0.03m
5% 1000 45.75m 3 000 0.05m
1% ∗ ∗ 15 000 0.21m

∗: No solution obtained for nG ≤ 5000 generations.

the best value could not be satisfied in at least 50% of the cases by DE even
when using nG = 5000 generations. For this parameter setting, a single run
of the DE algorithm takes more than 4 hours of CPU time. By contrast,
the same quality goal can be obtained by the TA algorithm in less than a
minute.

6 Endogenous Determination of Number of

Buckets

The Basel II framework requires banks to have a meaningful credit risk rating
system. This does not only refer to the clustering of clients into a given num-
ber of PD-buckets, but also to the choice of the number of buckets. Thereby,
a trade-off has to be faced. On the one hand, the clusters of borrowers should
be rather homogenous. Increasing the number of buckets will reduce the loss
in precision that comes from replacing individual PDs with pooled PDs. This
effect causes objective function values to decline as the number of buckets is
raised, resulting in a larger optimum number of PD-buckets.

On the other hand, both banks and regulators will be interested in an
ex post validation of the classification system. For example, one may want
to evaluate ex post if the observed number of defaults matches the ones
predicted by the credit risk rating system. In this context, looking at the
number of defaults may be seen as a proxy for evaluating whether the credit
risk rating system will predict unexpected losses correctly, which in turn,

18

results in a statement about the adequacy of banks’ regulatory capital. Al-
ternatively, one might consider directly the precision of the estimates of unex-
pected losses. A crucial factor driving the precision of any ex post evaluation
is the number of borrowers per bucket. Thus, imposing a requirement on the
minimum number of borrowers in a bucket based on ideas of ex post valida-
tion will result in an optimum (maximum) number of buckets still satisfying
this constraint.

6.1 Validating Unexpected Losses

Ex post validation may be based on the correct statement of unexpected
losses (UL), respectively regulatory capital since RC = 1.06·UL. Supervisory
authorities’ objective is to motivate banks to set aside equity capital equaling
at least 8% of their risk-weighted assets in order to ensure the stability of
the banking system. On the contrary, the objective of profit maximization
requires banks’ to back up their risk-weighted assets with no more than the
supervisory authority’s minimum requirements. These objectives can be op-
erationalized by stating that in no bucket b actual unexpected losses in a
stress-situation (ULb,a) shall be smaller or larger than predicted unexpected
losses (ULb) plus or minus some fraction ε of bucket b’s stake in total un-
expected losses as measured by the percentage of its borrowers (Nb) in the
number of all borrowers (N) (see equation (11)). Total unexpected losses,
unexpected losses of bucket b and pooled conditional probabilities of default
are given by equations (12), (13), and (14), respectively.

ULb − ε ·
(

UL · Nb

N

)
≤ ULb,a ≤ ULb + ε ·

(
UL · Nb

N

)
(11)

UL = 0.45 ·
∑

(EADi · (PDc,i − PDi)) (12)

ULb = 0.45 ·
∑

i∈b

(EADi · (PDc,b − PDb)) (13)

PDc,b =

∑
i∈b PDc,i

Nb

. (14)

Equation (11) is not operational since we do not know the distribution
of unexpected losses. Given that we know the distribution of defaults, we
can approximate ULb,a by Nb · ULb. Then, dividing equation (11) by ULb

and multiplying it with PDb, we obtain equation (15). This equation can be

19

interpreted meaningfully as well since it says that for condition (11) to hold
the actual number of defaults in bucket b (D̃b) must lie within an interval
[Db,min; Db,max]. The size of this interval is determined by several parameters.
Obviously, it increases with the expected probability of default and the num-
ber of borrowers in bucket b. Moreover, it rises with ε. Finally, the interval
becomes larger, and thus easier to satisfy, if the mean unexpected loss in
bucket b (ULb) is smaller than the mean of total unexpected loss (UL), i.e.,
the default of a borrower in this bucket is less likely to endanger the bank’s
stability than an average borrower’s default. On the other hand, the interval
shrinks and thus becomes harder to satisfy if borrowers are likely to cause
an above average unexpected loss.

Db,min ≤ D̃b ≤ Db,max

Nb · PDb ·
[
1− ε · UL

ULb

]
≤ D̃b ≤ Nb · PDb ·

[
1 + ε · UL

ULb

]
. (15)

The central idea of this approach is to have a sufficient number of bor-
rowers in each bucket so that we can ex ante state with a certain confi-
dence 1−α that the actual number of defaults should lie within the interval
[Db,min; Db,max]. Since the actual default for a loan is a binary variable, the
number of actual defaults within a bucket can be modeled by the binomial
distribution (see Hunt et al. (2009) for using the beta-binomial distribution).
Consequently, a 1− α confidence interval for D̃b is defined by:

Pint = Pb

(
Db,min ≤ D̃b ≤ Db,max

)

=

Db,max∑

k=Db,min

(
Nb

k

)
· PD

k

b ·
(
1− PDb

)Nb−k ≥ 1− α . (16)

For equation (16) to hold we assume that the default risks are indepen-
dent, which is unrealistic. Further research will be devoted to relax this
assumption and deepen our analysis.

Given a bucket b of size Nb, we just have to check whether the constraint
Pint ≥ 1 − α is satisfied. Thus, our requirement on the precision of ex post
validation imposes an additional constraint to the optimization problem. For
the consideration of this additional constraint in the penalty term, the reader
is referred to the details provided in the appendix.

20

Using this concept, we define a credit classification system as meaningful
if it allows for an ex post validation at a given level of precision as described
by the two parameters α and ε. The sample composition, in particular the
total sample size, and bank objectives will affect the choice of ε.

Constructing buckets as previously described allows to easily validate
the accuracy (as determined by the choice of ε) of a bank’s credit risk rating
system. If we find the actual number of defaults in any bucket b to lie outside
the interval [Db,min; Db,max] we can state with confidence 1−α that the credit
risk rating system is not suitable for predicting defaults in that bucket. This
may have at least two reasons. First, the objective function that is used for
partitioning the dataset may not be appropriate. One may easily check for
this problem by using different objective functions and then assessing which
ones yield results that do not cause actual defaults to lie outside the above
bounds. Second, the bank employs a statistical default prediction model that
does not forecast defaults correctly and thus needs to be improved.

6.2 Results for Endogenous Number of Buckets

In this section we evaluate the quality of the UL-constraint proposed in Sec-
tion 6.1. The results are obtained from running TA 30 times with 200 000
iterations. We evaluate objective functions (5) based on squared differences
of PDcs, (6) based on weighted squared differences of PDcs, and (7) based on
differences in RC in absolute terms. We fix LGDi equal to 0.45 for all bank
clients.

One should note that not all combinations of α and ε are feasible for a
given total number of loans and taking into account the other constraints
imposed by the Basel II framework. Searching over a grid of different values
for α and ε (see Appendix) we find α = 10% and ε = 30% to be a good
choice of parameters. This combination gives a sufficient level of confidence,
a reasonable maximum number of buckets and allows for a sensible interpre-
tation of the interval [Db,min; Db,max]. Please note that the higher the value
we choose for α the larger will be the risk of a β-error, i.e., accepting PDb as
an unbiased estimator of bucket b’s true default rate while it is not.

Thus, if we find ex post the actual number of defaults in all buckets to lie
in the interval defined by equation (15) we can state with 90% confidence that
actual unexpected losses do not deviate from unexpected losses predicted by
the credit risk rating system by more than ±30% of the buckets’ fraction (as
measured by the number of borrowers) in total unexpected loss. Taking into

21

account the small size of our sample (11 995 borrowers) we are confident that
these values can be improved drastically for larger samples.

Using the UL-constraint gives similar results for objective functions (5)
and (6) such that stylized facts on these functions can be presented together.
Please note that without using the UL-constraint objective functions (5)
and (6) produce quite dissimilar results, i.e., objective function (5) places a
sizeable amount of borrowers in the first bucket while objective function (6)
produces a more evenly distribution of borrowers across buckets.

1. The first results indicate that the best number of buckets is between
10 (for objective function (6) and 12 (for objective function (5)).

2. When increasing the number of buckets, the algorithm does not always
find a feasible solution. In fact, the UL-constraint makes the optimiza-
tion problem more complex by narrowing the search space even more.

3. For a seven bucket setting an idealized solution-vector of buckets’ mean
PDs looks like gs = (0.25%; 0.55%; 1.5%; 4%; 8%; 14%; 21%). The UL-
constraint shapes the solution in a way that we must not reject the va-
lidity of the credit risk rating system if we find ex post actual PDbs that
deviate from predicted PDbs by less than ± the allowed deviations (in
percentage points) given by d = (0.2%; 0.25%; 0.4%; 1%; 1.8%; 3.5%; 6.5%).

(a) We find that the UL-constraint imposes constraints on mean PDs
that are of a reasonable size.

(b) The constraint on the first bucket is quite generous since it con-
tains good borrowers that are unlikely to default.

(c) It is restrictive for mid-range borrowers allowing actual mean PDs
to only deviate from predicted mean PDs by roughly 1/4. This
is reasonable since it is highly uncertain whether these borrowers
will default and cause a high unexpected risk for the bank.

(d) The UL-constraint becomes more generous for the last bucket
again, allowing actual mean PDs to deviate from predicted mean
PDs by roughly 1/3. This is reasonable since these borrowers’
default is quite likely such that high provisions have already been
recognized. Hence, a smaller portion of their default risk must be
backed up with capital requirements.

22

4. The rejection based constraint handling technique gives us better re-
sults (i.e., better objective function values and fewer runs converging
to an infeasible solution) than the penalty technique.

Objective function (7) gives slightly different results since it allocates
borrowers more evenly and especially puts less borrowers in the first bucket.
We find the idealized vectors gs = (0.23%; 0.3%; 0.6%; 0.9%; 3%; 7%; 18%)
and d = (0.2%; 0.2%; 0.25%; 0.25%; 1%; 2%; 5%) using the terminology intro-
duced before.

Summarizing, we find that the structure of results when using the UL-
constraint is quite reasonable. It puts more emphasis on critical, i.e., mid-
range borrowers and yields intervals around mean PDs that reflect the struc-
ture of borrowers. Moreover, imposing the UL-constraint somewhat in-
creases the computational burden by narrowing down the search space. As
a consequence, for 200 000 iterations the TA optimization heuristic con-
verges towards different solutions in repeated runs. A nice feature of the
UL-constraint, even for our small dataset, is to give us feasible solutions
for reasonable values of α and ε. This enables us to test our validation-
hypothesis. Thus, for a larger number of borrowers results may be expected
to improve massively.

7 Conclusion

The Basel II capital accord requires banks to group loans according to their
creditworthiness and set aside equity in order to self-insure against unex-
pected losses from borrowers’ defaults that occur under sufficiently negative
economic conditions. Previous work has shown that this task can be tackled
as a clustering problem, where the objective is to minimize the loss in preci-
sion, which inevitably occurs when borrowers in the same bucket are assigned
the same probability of default. Furthermore, real-world constraints can in-
crease the complexity of the optimization problem. Optimization heuristics
can then be a reliable and viable tool to use. In this work, we extend previous
research in two directions.

First, we suggest to use the Threshold Accepting algorithm and show that
this approach allows to minimize the loss in precision more effectively, more
reliably, and more efficiently than Differential Evolution. TA finds partitions
that have a smaller loss in precision than those found by DE. TA converges
to better grouping solutions in less computational time.

23

Second, we propose an approach for determining the optimal number
of buckets. To our knowledge, this topic has not been addressed in the
literature before, although it is of great importance for practitioners. We
aim to tackle the problem by designing a bank’s credit rating system such
that its quality may be validated ex-post. The loss in precision by grouping
borrowers together rather than treating them as individuals decreases as the
number of buckets increases. Moreover, banks and regulatory authorities are
concerned with stating regulatory capital (respectively unexpected losses)
correctly. Thus, we propose to cluster borrowers such that we may evaluate ex
post with a given confidence level whether actual unexpected losses fall within
a sufficiently narrow interval around predicted unexpected losses. Then, the
optimal number of buckets is the maximum number of buckets that allows
us to support our statement with a given confidence level. Our evaluations
of this constraint suggest that it influences the structure of clusters in a
reasonable way. Moreover, we find that even for small sample sizes it allows
us to use up to eleven buckets for reasonable confidence- and precision-levels.

We show that our approach can provide meaningful insights into the prob-
lem of determining the optimal structure of PD buckets. However, we are
aware that further research and empirical investigation on different loss func-
tions and larger real-world datasets is required. Moreover, it is of special in-
terest which confidence- and precision-levels may be used for different sample
sizes. In this context, also more realistic assumptions about the dependency
structure of unexpected losses in a credit portfolio might be considered. Fi-
nally, although the constraint imposed on unexpected losses has a strong
theoretical support, one might also consider alternative formulations or ap-
proximations resulting in a lower computational complexity for calculating
the constraints. Thereby, the efficiency of the algorithm could be improved
even further.

8 Acknowledgements

We are thankful to Andrea Resti, two anonymous referees and the Editor
for their helpful advices; we also thank Giovanni Butera (Moodys KMV)
for kindly providing the data. Sandra Paterlini conducted part of this re-
search while visiting the School of Mathematics, University of Minnesota.
Financial support from the EU Commission through MRTN-CT-2006-034270
COMISEF, from MIUR PRIN 20077P5AWA005 and from Fondazione Cassa

24

di Risparmio di Modena for ASBE Project is gratefully acknowledged.

Appendix

Penalty Term

The exponent a used in the penalty term (10) is defined as follows:

a =

(
0.5 ·

∑

b

DEAD,b ·
∑

i∈b EADb,i − 35% ·∑b

∑
i∈b EADb,i

65% ·∑b

∑
i∈b EADb,i

)

+

(
0.5 ·

∑
b DN,b · x·N−Nb

x·N∑
b DN,b

)
. (17)

The idea of the penalty technique is to allow infeasible candidate solutions
while running the algorithm as a stepping stone to get closer to promising
regions of the search space. In this case, a penalty is multiplied on the
objective function value that depends on the extent of constraint violations.
In order to guarantee a feasible solution at the end, this penalty should
increase over the runtime of the algorithm. The problem-specific penalty
weights used in our application are defined by equations (10) and (17). They
state that the objective function value fu of a candidate solution is increased
by some penalty factor A ∈ [1; 2] that puts more weight on penalties the
more the current iteration i approaches the overall number of iterations I.
No penalty is placed on fu if no constraint is violated so that a = 0. However,
the variable a may take values up to 1 if the violation of the constraints
reaches its maximum value. If the sum of EAD in some bucket b exceeds
35% of total EAD DEAD,D takes value 1 and 0 otherwise. DN,b takes value 1
if bucket b contains less than 1% of all borrowers. Both binding constraints
are equally weighted.

Confidence Interval

Let us define the dummy variable DN,b, which takes the value 1 if the con-
straint is violated and 0 otherwise. When constraints are considered based
on rejection of infeasible candidate solutions the algorithms described above
will not change. However, if the penalty technique is used it is necessary to

25

alter equation (17) by removing the second summand in (17) and adding a
term for the degree of violation of the additional constraint as exhibited by
the second term in (18):

a =

(
0.5 ·

∑

b

· · ·
)

+

(
0.5 ·

∑
b DN.b · 1−α−Pint

1−α∑
b DN,b

)
. (18)

Results with Ex Post Validation

In the following, the numerical results shall be presented that are discussed
and interpreted in Section 6. In this section we evaluate the quality of the UL-
constraint. The results were obtained from running TA 30 times with 200 000
iterations. We evaluate objective functions (5) based on squared differences
of PDcs, (6) based on weighted squared differences of PDcs, and (7) based
on differences in RC in absolute terms. We choose α = 10% and ε = 30%.
The last column gives the number of runs that converge towards the best
solution relative to all runs that produce a solution meeting all constraints.
For the problem instances, for which no feasible solution could be found in
30 runs, we report “n.a.” in the corresponding cells of the tables.

Grid Search

In order to find meaningful values for α and ε we run the TA algorithm 15
times with 200 000 iterations for α = (5%, 10%, 15%), ε=(20%, 25%, 30%,
35%, 40%) and 7 to 15 buckets. Evaluations are done using the rejection
based constraint handling technique which we find to give better results than
the penalty technique. Evaluations are done for objective function (5)). The
results are shown in table 9, which reports the maximum number of buckets b
where feasible solutions are found. Moreover, it gives the number of runs (out
of 15 runs) that converged to a feasible solution when using this maximum
number of buckets.

The results indicate that α = 5% is quite restrictive and requires relatively
large values of ε while α = 15% is larger than standard confidence levels (i.e.,
5% and 10%). Moreover, α = 15% appears to be overly generous so that
α = 10% is a good choice. Since for α = 10%, ε = 30% is the only value that
gives a maximum number of buckets within the reasonable bucket range (i.e.,
7 to 15 buckets) it is selected as parameter value for further evaluations.

26

Table 6: Objective function (5) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 5.9757 6.0164 6.0946 0.0273 6.0324 6.0606 1/30
TAb 6.0028 6.1336 6.2236 0.0568 6.1781 6.1985 1/30

B = 8
TAa 5.2325 5.5768 6.8232 0.2999 5.6743 5.7408 1/30
TAb 5.4304 5.7657 6.0490 0.1405 5.8737 5.9186 1/30

B = 9
TAa 5.0450 5.8765 7.1784 0.5355 6.4458 6.6844 1/30
TAb 5.3768 5.8476 6.2477 0.2487 6.0762 6.1363 1/30

B = 10
TAa 4.9733 5.7567 8.2735 0.708 6.0658 6.5098 1/25
TAb 5.4881 6.1514 7.0235 0.41826 6.4237 6.6459 1/25

B = 11
TAa 5.0589 5.6022 6.6355 0.5143 5.8587 6.3196 1/13
TAb 5.9513 8.7813 19.51 5.9981 6.1685 19.51 1/5

B = 12
TAa 4.6789 4.6789 4.6789 0.0000 4.6789 4.6789 1/1
TAb 7.7075 7.7075 7.7075 0.0000 7.7075 7.7075 1/1

B = 13
TAa 5.722 6.0172 6.3125 0.4176 6.3125 6.3125 1/2
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

aRejection based constraint handling technique
bPenalty technique

27

Table 7: Objective function (6) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 4,722.39 4,880.31 6,175.71 264.77 4,893.71 5,027.66 1/30
TAb 4,905.15 5,169.61 5,325.29 107.53 5,255.33 5,272.40 1/30

B = 8
TAa 4,582.44 4,957.22 6,299.73 390.81 5,036.84 5,431.29 1/30
TAb 4,859.07 5,112.88 5,477.91 161.00 5,237.02 5,327.58 1/30

B = 9
TAa 4,573.68 5,203.98 6,693.43 569.72 5,431.46 6,312.35 1/30
TAb 4,749.35 5,388.93 6,187.62 301.73 5,640.82 5,735.11 1/29

B = 10
TAa 4,426.02 4,770.40 5,116.55 190.36 4,904.38 5,025.04 1/11
TAb 5,330.69 6,211.82 8,367.79 1,022.38 7,015.54 7,431.06 1/11

B = 11
TAa 5,068.02 5,068.02 5,068.02 0.00 5,068.02 5,068.02 1/1
TAb 5,081.86 5,376.79 5,671.71 417.09 5,671.71 5,671.71 1/2

B = 12
TAa n.a. n.a. n.a. n.a. n.a. n.a. 0/0
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

B = 13
TAa 6,473.01 6,473.01 6,473.01 0.00 6,473.01 6,473.01 1/1
TAb 6,573.46 6,573.46 6,573.46 0.00 6,573.46 6,573.46 1/1

aRejection based constraint handling technique
bPenalty technique

28

Table 8: Objective function (7) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 52,188.31 55,366.40 57,103.79 809.19 55,779.96 55,897.19 1/30
TAb 55,334.48 59,123.42 63,163.35 2,144.92 60,799.91 61,600.04 1/30

B = 8
TAa 49,608.70 53,181.84 57,558.35 2,326.82 55,048.37 55,073.45 1/27
TAb 55,769.95 62,561.90 68,083.51 2965.40 64,448.67 65,081.21 1/18

B = 9
TAa 47,053.88 51,589.92 54,441.70 3,025.26 54,078.58 54,078.58 1/6
TAb 55,140.37 58,516.37 61,387.41 2,592.12 60,652.09 61,387.41 1/5

B = 10
TAa 48,106.88 50,195.77 52,284.67 2,954.15 52,284.67 52,284.67 1/2
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

B = 11
TAa n.a. n.a. n.a. n.a. n.a. n.a. 0/0
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

B = 12
TAa n.a. n.a. n.a. n.a. n.a. n.a. 0/0
TAb 94,083.11 94,083.11 94,083.11 0.00 94,083.11 94,083.11 1/1

aRejection based constraint handling technique
bPenalty technique

Table 9: Evaluation of objective (5) for combinations of α and ε

HHHHHHα
ε

20% 25% 30% 35% 40%

max feas. max feas. max feas. max feas. max feas.
b runs b runs b runs b runs b runs

5% <7 0/15 <7 0/15 <7 0/15 10 2/15 14 1/14
10% <7 0/15 7 4/15 14 1/14 15 1/15 15 15/15
15% <7 0/15 12 2/15 15 6/15 15 15/15 15 15/15

29

References

Basel Committee on Banking Supervision, 2005. An explanatory note on the
Basel II IRB Risk Weight Functions. Tech. rep., Bank for International
Settlements.

Brucker, P., 1978. On the complexity of clustering problems. In: Beckmenn,
M., Kunzi, H. (Eds.), Optimisation and Operations Research. Vol. 157 of
Lecture Notes in Economics and Mathematical Systems. Springer, Berlin,
pp. 45–54.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist mul-
tiobjective genetic algorithm. IEEE Transactions on Evolutionary Compu-
tation 6 (2), 182–197.

Dueck, G., Scheuer, T., 1990. Threshold Accepting: A general purpose al-
gorithm appearing superior to Simulated Annealing. Journal of Computa-
tional Physics 90, 161–175.

Foglia, S., Iannotti, P., Reedtz, P. M., 2001. The definition of the grading
scales in banks’ internal rating systems. Economic Notes 30 (3), 421–456.

Gilli, M., Winker, P., 2004. Applications of optimization heuristics to estima-
tion and modelling problems. Computational Statistics & Data Analysis
47, 211–223.

Hunt, D. L., Chenga, C., Poundsr, S., 2009. The beta-binomial distribution
for estimating the number of false rejections in microarray gene expression
studies. Computational Statistics & Data Analysis 53, 1688–1700.

Kiefer, N., Larson, C., 2004. Evaluating design choices in economic capi-
tal modeling: A loss function approach. Cornell University; Office of the
Controller of the Currency.

Krink, T., Paterlini, S., Resti, A., 2007. Using differential evolution to im-
prove the accuracy of bank rating systems. Computational Statistics &
Data Analysis 52 (1), 68–87.

Krink, T., Paterlini, S., Resti, A., 2008. The optimal structure of PD buckets.
Journal of Banking and Finance 32 (10), 421–456.

30

Paterlini, S., Krink, T., 2006. Differential evolution and particle swarm opti-
mization in partitional clustering. Computational Statistics & Data Anal-
ysis 50 (5), 1220–1247.

Winker, P., 2001. Optimization Heuristics in Econometrics: Applications of
Threshold Accepting. Wiley, Chichester.

Winker, P., Fang, K.-T., 1997. Application of Threshold Accepting to the
evaluation of the discrepancy of a set of points. SIAM Journal on Numerical
Analysis 34, 2028–2042.

31

