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Abstract

As emphasized by the introduction of Basel II, the macroe-
conomic factors strongly affect credit risk variables. In order to
account for the business cycle in a forward-looking way, a macroe-
conomic forecast can be introduced in the estimation of credit risk
variables. This work proposes to model the distribution of the
default rate as a mixture distribution which accounts for a binary
representation of the business cycle: the distribution changes ac-
cording to the estimated probability of recession over the credit
horizon considered.

1 Introduction

The measurement and management of credit risk cannot avoid to deal with
the state of the business cycle: it is in fact well recognized that credit risk com-
ponents correlate with macroeconomic conditions (e.g. [12], [2], [10] among
many others). If the dependence on the economy is accounted for in credit
risk measurement and therefore it is included in the definition of the economic
capital, it is likely that the latter fluctuates over business cycle.

Relatively to the introduction of Basel II, the phenomenon of procyclical-
ity has been widely discussed: since a risk-sensitive capital requirement may
be high in recessions and low in expansions, it may exacerbate the business
cycle through the lending channel. As a consequence, the capital requirement
based on measures of credit risk may be high in recessions and low in expan-
sions, possibly exacerbating the business cycle through the lending channel.
In order to avoid this dangerous side-effect, Basel II implicitly requires ratings
being assigned in a ”through the cycle logic” (see [3], par 415) and the prob-
abilities of default (PDs) being estimated as long-run averages. This solution
is somewhat in contrast with the purpose of making the capital requirements



risk-sensitive in that the time dimension of risk is neglected. This solution is
also criticized (e.g. [8]) because it causes a loss of transparency.

It is instead important that credit risk measures reflect the economic con-
ditions prevailing over the credit horizon considered: procyclicality is partic-
ularly exacerbated if credit risk measures reflect the current economic con-
ditions, but the phenomenon can be dampen by introducing some economic
forecast. Specifically, a risk measure which increase in anticipation of a re-
cession over the credit horizon and viceversa decreases in anticipation of an
expansion, should determine a reduction of the risky exposures before the
recession and an increase in lending at the bottom of the cycle, helping the
economy out of the recession.

This purpouse could be achieved with a model including a business cycle
forecast, such as the model proposed in [13]. In [13] business cycle dependent
PDs are estimated and included in the computation of the capital requirement
as defined in Basel II.

In this work the same modelisation of the business cycle dependence is
introduced in a framework such as the one of the proprietary model Cred-
itRisk+ (CreditSuisse). Section 2 recalls the modelisation of the PDs and
the business cycle proposed in [13]. Section 3 introduces this modelisation in
the CreditRisk+ framework and the modified model is applied to US data in
Section 4 in order to provide an example. The last Section concludes.

2 Business cycle dependent PDs

In this section the modelisation of the PDs in relation to the business cycle
presented in [13] is recalled since it will be applied to the CreditRisk+ frame-
work in the next Section. The modelisation rests on the empirical evidence,
presented in [2] for US data, that the transition matrix and especially the
PDs reflect the expansion and recession regimes of the business cycle.

The business cycle state is modelled as a dicotomic variable X:

R PR
X:{E PEE; (1)

where R and E represent the recession and expansion state respectively
and P(R) and P(F) =1 — P(R) the relative probabilities.

Therefore the default rate DR is assumed to follow a state-dependent
distribution with probability density function:

jom)-{BPR X0

The business cycle states probabilities are quantified by means of a probit
model using financial variables as predictors. At time ¢ the probability of a
recession over the period [t,t + k] is defined as:

2



Pt<R) = P(Xt+k: R) = (ﬁYt) (3)

where Y; are the chosen explanatory variables and ® is the standard nor-
mal distribution function.

Therefore the unconditional distribution of the default rate at time ¢ is
a mixture of the two conditional distribution, weighted by the business cycle
states probabilities. The probability function is:

f(DR,) = P,(R) x fg(DR) + P,(E) x f5z(DR) (4)
3 Poisson distribution and the business cycle

When introducing the modelisation defined in Section 2 into the CreditRisk+
(CR+ in the following) framework, the generic conditional distributions of
the default rate (or more precisely of the number of defaults) are modelled as
Poisson distributions and the unconditional distribution is a mixture of two
Poissons. It is worthwhile at this point to recall the main features of the CR+
model in order to present the modification to the original model proposed in
this work.

3.1 The CreditRisk+ framework

CR+ provides the probability distribution of the default losses on a portfo-
lio: by grouping the obligors in the portfolio by exposure size and modelling
the number of default within each group as a Poisson, a recurrence relation
defining the portfolio loss distribution is obtained.

Specifically, at a first stage CR+ models the number of default in a group
as a stochastic variable distributed as a Poisson with the parameter, repre-
senting the expected number of defaults, defined as the sum of the PDs of
the obligors belonging to the group. Since CR+ treats each group separately
and aggregates them when computing the portfolio loss distribution, in the
following we will generically refer to the obligors without distinction between
groups and portfolio. The probability function of the number of defaults D
is:

e hu”

P(D =n) (5)

where p = > PD; © = 1,2,....m and m is the number of obligors
considered.

n!

In this setting it is implicitly assumed that the obligors are independent:
this hypothesis is inconsistent with the empirical evidence. The Poisson dis-
tribution is characterised by the parameter p that represents both the mean
and the variance: empirically the variance of the default is higher than the



mean. To account for this empirical observation and to deal with the correla-
tion among obligors, CR+ modifies the Poisson distribution to be a Gamma
mixture of Poissons. The parameter p is no more fixed but it is a stochastic
variable itself and it follows a Gamma distribution. Let’s call X the stochastic
variable representing the expected number of defaults' and o its standard de-
viation. The varaible X has a Gamma distribution?. By making the expected
number of default stochastic the correlation among obligors is implicitly intro-
duced. The obligors are independent conditionally on a particular value of X.
Therefore the conditional distribution of D is still a Poisson with parameter
X =z, but the unconditional distribution is a mixture:

o0 T

g9x(z)dz
(6)

It is a standard result in statistics that the probability function of a

P(D =n) :/()+°°P(D =n|X =12)gy(v)dx :/

0 n!

Gamma mixture of Poisson distributions can be expressed in a closed form as
a Negative Binomial probability function?.

The distribution deriving from the introduction of the stochastic variable
X is more dispersed compared to the Poisson distribution: in particular, the
left tail is fatter, accounting for more extreme events of losses. Figure 3.1
shows the comparison between the two distributions.

3.2 Business cycle regimes in the default distribu-
tion

In this Section we will show the model proposed to define the default distri-
bution. The idea is of exploiting the CR+ structure and introduce a business
cycle forecast into the credit risk measurement framework. According to the
modelisation presented in Section 2, the number of default D is characterised
by two conditional distributions:

"We are neglecting the distinction by sectors which characterises CR+ in
order to simplify the exposition and the notation.

2The GamI{la distribution is defines as follows:
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where:
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3The Negative Binomial is defined as follows:
n+a—-1Y) . o
P(D—n)—< >Q(1—Q)

n
with ¢ = 25



P(D =n|X = R) = “— /& ™
P(D=n|X =E) ="

n!
where pup and pg are the parameters of the two conditional distributions,
representing the expected number of defaults in state of recession and expan-
sion respectively. The unconditional distribution is a mixture of two Poisson
distributions, and the mixing variable X represents the business cycle state:

P(D =n) = P(R)%JrP(E)W;# (8)

Let’s call the distribution in 8 E-R Poisson mixture. Based on the dis-
tribution chosen for D, CR+ derives the loss distribution as a recurrence
relation. We refer to [5] for the derivation of the loss distribution in both
cases of fixed or stochastic parameter. A similar recurrence relation can be
derived for the E-R Poisson mixture default distribution (see Appendix).

3.3 The E-R Poisson mixture compared to alter-
natives

The E-R mixture distribution is more dispersed compered to the simple Pois-
son. In the following a graphical and numerical comparison is presented,
where the conditional PDs have been taken from a Standard&Poor’s default
data set used in [2]. We used the expansion and recession PD for rating B
estimated as averages over the period 1981-1998 according to the NBER busi-
ness cycle chronology. Figure 2 represents the default distribution when the
recession probability is assumed to be equal to the proportion of recessions
over the sample considered (i.e. about 0,1): in this case the two distributions
are very close. If the recession probability were higher the difference in the
left tail would be more pronounced, as it is evident in Figure 3. Beyond the
static comparison, we can think about a situation where the default distri-
bution is estimated based on the information available at a certain point in
time. Suppose that default series are available from 1981 to 1998 and we want
to estimate the default distribution for 1999. The data set allows to estimate
conditional and unconditional PDs: the Poisson distribution is defined just by
the unconditional PD, which depends on the proportion of recessions in the
sample considered. On the other hand, the E-R Poisson mixture depends on
the recession probability estimated for the credit horizon considered: higher
losses are more likely when the recession probability is higher. The recession
probability affects both the mean and the variance of the default distribution
and the Value at Risk (VaR)*. Table 1 shows some numerical examples.

4The concept of VaR refers to the loss distribution: however, if we simplify
the portfolio to a unique type of obligors with unit exposure, the VaR of the



For any value of the recession probability:

E(D) = P(E) x pg + P(R) x pg V(D) = E(D?) — [E(D) —
P(E)X pip+P(R) X pig+ (11 — pi)* X P(E) x P(R); VaR is approximated
by the entire number corresponding to the 95" percentile; relative VaR is the
excess VaR over the expected number of defaults

While E(D) obviuosly increases with the recession probability, the variance
V(D) is higher when is higher the uncertainty about the business cycle state
prevailing over the credit horizon considered. The absolute VaR increases
with the recession probability, due both to the shift of the distribution (i.e.
increase in the mean) and to an increase in the dispersion.Compared to the
Poisson distribution, the E-R Poisson mixture accounts for the higher capital
needed to face losses during a recession.

We can now compare the E-R Poisson mixture and the Gamma mixture,
as both account for a higher dispersion (variance) compared to the Poisson
distribution with fixed parameters. The relative behaviour of these two distri-
butions depends on the values used for the relevant parameters. Specifically,
the shape of the E-R mixture depends on the estimated recession probability
over the considered horizon as discussed above. The shape of the Gamma
mixture depends on the volatility of the default rates: the higher the volatil-
ity the fatter is the left tail and eventually the higher is VaR. Figure 4 and
5 show the comparison between the two distributions for two couples of pa-
rameters. Figure 4 compares the E-R mixture with P(R)=0,1 to the Gamma
mixture with two different volatility values: while for low volatility the two
distributions approximatively overlap, for high volatility the Gamma mixture
left tail definitely dominates the E-R mixture. Figure 5 compares the Gamma
mixture to the E-R mixture with different values of the recession probability:
the higher is the estimated recession probability the more the left tail of the
E-R mixture tends to dominate the Gamma mixture. In terms of VaR, the
two distributions give different results depending on the recession probability
and the volatility of the default rates: therefore, in order to draw sensible
conclusions, the comparison of the two approaches needs to be developed on
real portfolio and default data over several periods characterized by different
economic conditions.

In particular, the E-R mixture approach can be appealing as long as the
estimation of the recession probability is satisfactory. The advantage of this
approach compared to the Gamma mixture approach lies in the feature that
VaR increases in anticipation of recessions only; therefore it is extremely
important the forecasting ability of model choosen to estimate the recession
probability. Standard probit model with financial variables as predictors have
quite satisfactory performances when applied to US business cycle data: [6]
obtain good results by using the interest rates term spread and an equity index

portfolio coincides with the VaR computed on the default distribution.



as explanatory variables. [7] review the literature on business cycle forecasting
and argue that binary choice model are more accurate and stable in predicting
the business cycle. [13] adopt a probit model to predict the US business cycle
using the NBER chronology to define the dependent variable and selecting
the interest rates term spread as the main predictor. While the results on
US data are generally satisfactory, the same does not hold for other countries
such as Italy: empirical works on Italian business cycle forecast are definitely
more limited, but the results are generally characterizad by scarce goodness
of fit (see e.g. [11]) . The problems lie in the choice of both the business cycle
chronology and the predictors. As for the business cycle chronology, there
is not a well accepted one as the NBER for US, and different chronologies
lead to very different results both in terms of prediction and of representation
of the default series. As for the predictors, for small economy international
variables are generally usefull in predicion.

4 Conclusions

Given the relevance of macroeconomic factors in credit risk and the impor-
tance of taking into account these factors in a forward-looking approach, this
work presents a possible distribution to model the default event, which ac-
counts for a prediction of the business cycle over the considered horizon. The
distribution proposed is a mixture of two Poisson distribution conditioned
to two possible states of the business cycle: expansion and recession.This is
compared to the Gamma mixture adopted in the CreditRisk+ framework: the
comparison depends on the parameters used and therefore the comparison is
performed for different values of the default rates volatility and the recession
probability. Since the appeal of the E-R mixture lies in the increases of VaR
in anticipation of recessions and viceversa, the advantage of adopting this
approach is strictly related to the performances of the model choosen to pre-
dict recessions. If a binary choice model is adopted, as in [7], it is extremely
important to use a reliable chronology of the business cycle and explanatory
variables with high predictive power.

This works compares two possible distribution for the default rates from
a theoretical point of view and the numerical comparison performed has just
exemplifying purpose. The next step would consist in applying the proposed
E-R mixture distribution to real portfolio and business cycle data and compare
it with the CreditRisk+ Gamma mixture distribution.



Appendix: The loss distribution

Assuming that the obligors are independent conditionally on x, the prob-
ability generating function (pgf) for the E-R mixture distribution, based on
the properties of the pgf (see [9]), is defined as in 9.

F(z)= j F(z1 %) f(x)dx=F(z| EYP(E)+ F(z| R)P(R) =

=

~u(E) 1y FY =y HR) R
:p(E)Z;—e :f( )z"+P(R)ZO—e HR)

n!

o0 —u(E) n —1(R)
=Z{P(E>e OUEY | popy B
= n! n! 9)

In order to account for the size of the portfolio losses, CreditRisk+ divides
the portfolio adjusted exposures in bands of exposures of similar size: more
precisely, after specifying a unit amount of exposure L, each exposure is di-
vided by L and these obligor exposures expressed in terms of unit are rounded
to the nearest integer. The portfolio divided in m bands can be represented
by:

- band exposure vj, j = 1,...,m;

- band expected number of defaults p;, j = 1,...,m (sum of the PDs of
the obligors belonging to each band, or sum of the rating PDs multiplied by
the number of obligors associated to each rating and belonging to each band)

The total expected number of default is the sum of the expected number
of default for each band: p =3,y ., p;.

Moving to the loss distribution, the bands have to be considered: each
band is now characterised by a double parameter ,uj(R) and ,uj(E).

The conditional pgf of losses is defined as in 10:

G(zlx)= ip(loss= nLlx)z" =exP(—z,uj (x)+z,uj (x)zv/)

(10)

Therefore the unconditional pgf is:

G(z) = P(E) exp(— DHE)+D ) py(E)” j +P(R) exp{— PYACEDINT (R)z"fJ
(11)



Moving to the last step, the loss distribution is defined as in :

1d"G(z 1d"G(z| E 1d"G(zIR
LLGD, _pigy LLCEIE) gy LG 1)

E).v. R).v.
= P(E)A(E)+ PRIA(R) = P(E) 3 X5 4 ()4 pR) Y ”(T)f"’An_vj (R)

< v <
Jwvisn Jiv;sn

A, = p(loss =nL) =
n!

(12)
with initialization Ag = P(E) exp (— X pt;(E) )+ P(R) exp (— ¥ p1;(R))



Tables and Figures

P(R) | E(D) | V(D) | VaR 95% | VaR 99%
0,1 |433 [624 |10 12
0,2 |479 [819 |11 14
05 |6,18 |11,49 |13 15
0,8 |7.56 |1096 |14 16

Table 1: Default distributions for different recession probabilities
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Figure 1: Comparison between Poisson and Negative Binomilal with default
probability equal to 4.3% and standard deviation equal to 2,5%.
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Figure 2: Comparison between Poisson distribution and E-R mixture distri-
bution with P(R)=0,1
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Figure 3: Comparison between the Poisson distribution and the E-R mixture
distribution with P(R)=0,4
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Figure 4: Comparison between the E-R mixture and the Gamma mixture
distribution for different volatility values
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Figure 5: Comparison of the E-R mixture and the Gamma mixture distribu-
tion for different values of the recession probability
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