
                             Elsevier Editorial System(tm) for Food 

Control 

                                  Manuscript Draft 

 

 

Manuscript Number: FOODCONT-D-19-03127 

 

Title: Exploring the potential of NIR hyperspectral imaging for automated 

quantification of rind amount in grated Parmigiano Reggiano cheese  

 

Article Type: Research Paper 

 

Keywords: Grated cheese; Rind percentage; NIR hyperspectral imaging; 

Multivariate calibration; Multivariate image analysis 

 

Corresponding Author: Professor Alessandro Ulrici,  

 

Corresponding Author's Institution: Università di Modena e Reggio Emilia 

 

First Author: Rosalba Calvini 

 

Order of Authors: Rosalba Calvini; Sara Michelini; Valentina Pizzamiglio; 

Giorgia Foca; Alessandro Ulrici 

 

Abstract: Parmigiano Reggiano (P-R) is one of the most important Italian 

food products labelled with Protected Designation of Origin (PDO). The 

PDO denomination is applied also to grated P-R cheese products meeting 

the requirements regulated by the Specifications of Parmigiano Reggiano 

Cheese. Different quality parameters are monitored, including also the 

percentage of rind, which is edible and should not exceed the limit of 

18% (w/w). The present study aims at evaluating the possibility of using 

near infrared hyperspectral imaging (NIR-HSI) to quantify the rind 

percentage in grated Parmigiano Reggiano cheese samples in a fast and 

non-destructive manner. Indeed, NIR-HSI allows the simultaneous 

acquisition of both spatial and spectral information from a sample, 

resulting more suitable than classical single-point spectroscopy for the 

analysis of heterogeneous samples like grated cheese. Hyperspectral 

images of grated P-R cheese samples containing increasing levels of rind 

were acquired in the 900-1700 nm spectral range. Each hyperspectral image 

was firstly converted into a one-dimensional signal, named 

hyperspectrogram, which codifies the relevant information contained in 

the image. Then, the matrix of hyperspectrograms was used to calculate a 

calibration model for the prediction of the rind percentage using Partial 

Least Squares (PLS) regression. The calibration model was validated 

considering two external test sets of samples, confirming the 

effectiveness of the proposed approach. 

 

Suggested Reviewers: Jose Manuel Amigo PhD 

Professor, Analytical Chemistry, Universidad del País Vasco 

josemanuel.amigo@ehu.eus 

Prof. Amigo is expert in Chemometrics and in Hyperspectral Imaging; many 

of his research works are focused on the application of hyperspectral 

imaging for the characterization of food samples. 

 

Paolo Oliveri PhD 

University researcher, Department of Pharmacy, University of Genova 

oliveri@difar.unige.it 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/287850761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dr. Oliveri is expert in the use of chemometrics for the characterization 

of food samples. 

 

Paul Williams PhD 

University researcher, Deparment of Food Science, Stellenbosch University 

pauljw@sun.ac.za 

Dr. Williams does research in Vibrational Spectroscopy, Hyperspectral 

Imaging and Multivariate Data Analysis. 

 

 

 

 



 

 

Prof. Alessandro Ulrici 

Dipartimento di Scienze della Vita 

Università degli Studi di Modena e Reggio Emilia 

Padiglione Besta - Via Amendola, 2  - 42122 Reggio Emilia - Italy 

Phone +39 0522 522043 

Fax +39 0522 522027 

email: alessandro.ulrici@unimore.it 

Reggio Emilia, October 31, 2019 

 

Dear Editor, 

please find enclosed a copy of the manuscript: 

 

Rosalba Calvini, Sara Michelini, Valentina Pizzamiglio, Giorgia Foca, Alessandro Ulrici 

Exploring the potential of NIR hyperspectral imaging for automated quantification of rind amount in 

grated Parmigiano Reggiano cheese 

 

that we would like to be considered for publication in Food Control. 

This article describes the development of a fast and non-destructive method based on near infrared 

hyperspectral imaging (NIR-HSI) for the quantification of rind percentage in grated Parmigiano Reggiano 

cheese. Although edible, in long-ripened cheeses such as Parmigiano Reggiano the rind has chemical and 

textural properties different from those of the inner part of the cheese. As a consequence, an excessive 

amount of rind in grated cheese can be perceived by consumers, negatively affecting the organoleptic 

properties of the product. For this reason, the percentage of rind in grated P-R cheese should not exceed the 

18% (w/w) threshold value.  

Since NIR-HSI allows to obtain both spatial and spectral information from a sample by detecting variations in 

the chemical composition over the sample surface, it can be effectively applied to the analysis of grated 

cheese, which is an heterogeneous food matrix composed by unevenly dispersed particles derived from both 

cheese rind and pulp. 

In this work, 45 grated cheese samples containing different percentages of rind (from 0% to 40%) were 

considered. NIR hyperspectral images were acquired in the 900-1700 nm spectral range on three different 

aliquots of each sample, for a total of 135 images. In order to develop calibration models, the images were 

converted into a matrix of signals, named hyperspectrograms, which were obtained by merging in sequence 

the frequency distribution curves of quantities derived from a PCA model common to the whole dataset of 

images. The matrix of hyperspectrograms was then analysed by means of Partial Least Squares (PLS) algorithm 

for the determination of the amount of rind. The PLS calibration model was validated considering two external 

test sets of samples, confirming the effectiveness of the proposed approach. These results demonstrated the 

possibility to develop a fast and non-destructive method based on NIR-HSI to control the amount of rind in 

grated Parmigiano Reggiano cheese samples. 

The article is original, unpublished and not being considered for publication elsewhere. 

 

Best regards, 

Alessandro Ulrici 

Cover Letter



1 
 

Exploring the potential of NIR hyperspectral imaging for automated 1 

quantification of rind amount in grated Parmigiano Reggiano cheese 2 

 3 

R. Calvini 
a, b

, S. Michelini
c
, V. Pizzamiglio

c
, G. Foca 

a, b
, A. Ulrici 

a, b, 
* 4 

 5 
a
 Department of Life Sciences, University of Modena and Reggio Emilia, Pad. Besta, Via Amendola, 6 

2, Reggio Emilia, 42122, Italy 7 

b Interdepartmental Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Piazzale 8 

Europa, 1, Reggio Emilia, 42122, Italy 9 

c
 Parmigiano Reggiano Cheese Consortium, Via J.F. Kennedy, 18, Reggio Emilia, 42124, Italy  10 

 11 
* Corresponding author: alessandro.ulrici@unimore.it 12 

 13 

Abstract 14 

Parmigiano Reggiano (P-R) is one of the most important Italian food products labelled with 15 

Protected Designation of Origin (PDO). The PDO denomination is applied also to grated P-R 16 

cheese products meeting the requirements regulated by the Specifications of Parmigiano Reggiano 17 

Cheese. Different quality parameters are monitored, including also the percentage of rind, which is 18 

edible and should not exceed the limit of 18% (w/w). The present study aims at evaluating the 19 

possibility of using near infrared hyperspectral imaging (NIR-HSI) to quantify the rind percentage 20 

in grated Parmigiano Reggiano cheese samples in a fast and non-destructive manner. Indeed, NIR-21 

HSI allows the simultaneous acquisition of both spatial and spectral information from a sample, 22 

resulting more suitable than classical single-point spectroscopy for the analysis of heterogeneous 23 

samples like grated cheese. Hyperspectral images of grated P-R cheese samples containing 24 

increasing levels of rind were acquired in the 900-1700 nm spectral range. Each hyperspectral 25 

image was firstly converted into a one-dimensional signal, named hyperspectrogram, which codifies 26 

the relevant information contained in the image. Then, the matrix of hyperspectrograms was used to 27 

calculate a calibration model for the prediction of the rind percentage using Partial Least Squares 28 

(PLS) regression. The calibration model was validated considering two external test sets of samples, 29 

confirming the effectiveness of the proposed approach. 30 

 31 

Keywords 32 

Grated cheese; Rind percentage; NIR hyperspectral imaging; Multivariate calibration; Multivariate 33 

image analysis. 34 

  35 

*Manuscript
Click here to view linked References

mailto:alessandro.ulrici@unimore.it
http://ees.elsevier.com/foodcont/viewRCResults.aspx?pdf=1&docID=37362&rev=0&fileID=849141&msid={B0805535-5848-46F9-A83E-AACD7E341CB4}


2 
 

1. Introduction 36 

Parmigiano Reggiano (P-R) is a long-ripened, cooked, hard cheese produced in Italy and registered 37 

with Protected Denomination of Origin (PDO). P-R represents one of the most important typical 38 

Italian food products and it is exported worldwide. This cheese is manufactured from raw and 39 

unheated bovine milk, and the whole production chain must take place in a restricted area in 40 

Northern Italy (Malacarne et al., 2008). 41 

The PDO is extended also to grated cheese obtained from Parmigiano Reggiano cheese wheels, 42 

provided that the product is grated in the specific production area and packaged immediately 43 

afterwards, in order to avoid modifications of its organoleptic properties. 44 

Furthermore, grated cheese products designated as Parmigiano Reggiano should meet technical and 45 

technological parameters ruled by the Specifications of Parmigiano Reggiano Cheese 46 

(https://www.parmigianoreggiano.com/consortium/rules_regulation_2/default.aspx ), that regulates 47 

all stages of P-R production, including cow feeding, cheese manufacturing and ripening process. 48 

One of the different quality parameters of grated P-R cheese regulated by the Specifications is the 49 

amount of rind. The rind is the external part of cheese wheels; although edible, in long-ripened 50 

cheeses it has chemical and physical properties different from those of the inner part of the cheese. 51 

These differences are mainly caused by exposure to environmental conditions during ripening, 52 

which determines a decrease in moisture content, proteolytic activity and a higher degree of 53 

oxidation (Cattaneo et al., 2008; Karoui et al., 2007; Malacarne et al., 2019). Furthermore, the 54 

different properties of rind and pulp also affect size and shape of grated particles. In fact, generally 55 

rind particles are finer and less circular than those derived from the pulp (Alinovi et al., 2019). As a 56 

consequence of its peculiar chemical and textural properties, an excessive amount of rind in grated 57 

cheese can be perceived by consumers, negatively affecting the organoleptic properties of the 58 

product (Zannoni and Hunter, 2015). For these reasons, the percentage of rind in grated P-R cheese 59 

should not exceed the 18% (w/w) threshold value. 60 

In order to ensure quality compliance of commercial products of grated P-R cheese and to avoid 61 

counterfeits, it is essential to implement effective analytical methods to correctly estimate the rind 62 

amount, meeting the requirements of low costs, limited sample preparation and short times of 63 

analysis. In this context, Near Infrared (NIR) spectroscopy has been widely employed for fast and 64 

non-destructive analysis and characterization of food products, thanks to its ability to easily provide 65 

a spectral fingerprint codifying the chemical composition of the analysed sample (Curda et al., 66 

2004; Woodcok et al., 2008; Foca et al., 2013; Kraggerud et al.; 2014). 67 

https://www.parmigianoreggiano.com/consortium/rules_regulation_2/default.aspx
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In particular, previous research studies evaluated the effectiveness of NIR spectroscopy in verifying 68 

the authenticity of P-R grated cheese and in discriminating compliant from non-compliant samples 69 

(Cevoli et al., 2013a, Cevoli et al., 2013b).  70 

However, grated cheese is an inhomogeneous food matrix composed by unevenly dispersed 71 

particles derived from both cheese rind and pulp, which are characterized by different chemical 72 

properties. When dealing with heterogeneous samples, classical NIR spectroscopy may lead to 73 

inaccurate results since it is based on the acquisition of “average” spectra over a given sample area, 74 

thus losing the information related to the compositional variability within the sample. The 75 

importance of spatial information for the analysis of P-R grated cheese was recently demonstrated 76 

by Alinovi et al. (2019), which found a relationship between rind percentage and parameters related 77 

to particle size and distribution calculated from digital RGB images of the cheese samples. 78 

The advantages of image-based methods and NIR spectroscopy can be coupled in NIR 79 

Hyperspectral Imaging (NIR-HSI), an analytical technique based on the acquisition of particular 80 

types of images, called hyperspectral images, where a whole NIR spectrum is registered for each 81 

image pixel (Gowen et al., 2007; Amigo et al., 2013; Calvini et al.; 2018). More in detail, a 82 

hyperspectral image, also called hypercube, is a three-dimensional data array with two spatial 83 

dimensions (x pixel rows and y pixel columns) and one spectral dimension, corresponding to the λ 84 

acquired wavelengths. Therefore, the hypercube can be seen as a stack of spectrally resolved 85 

images, each one acquired at a given wavelength, or as a series of spatially resolved spectra, where 86 

each spectrum characterizes one pixel of the image (Wu and Sun, 2013a; Amigo et al., 2015; 87 

Calvini et al.; 2016). 88 

Considering that each NIR spectrum acts like a fingerprint of the chemical properties of a specific 89 

pixel, thanks to hyperspectral imaging it is possible to obtain both spatial and spectral information 90 

from a sample by observing variations in the chemical composition over the sample surface. These 91 

aspects resulted to be particularly useful for the analysis of heterogeneous matrices like food 92 

products (Wu and Sun, 2013b; Dale et al., 2013; Liu et al.,2017), generally overcoming the 93 

performances obtained with single-point spectroscopy (Burger and Geladi, 2006; Shonbichler et al., 94 

2013). 95 

However, the high amount of information contained in hyperspectral images can also become a 96 

drawback, since each hypercube can contain up to tens of thousands of pixel spectra, resulting in 97 

data handling and data storage issues. Indeed, in order to extract the relevant information from this 98 

kind of data, the application of proper multivariate statistical methods is mandatory (Burger and 99 

Gowen, 2011). This is known as Multivariate Image Analysis (MIA), which is based on the 100 

application to images of common chemometric methods, like e.g. Principal Component Analysis 101 
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(PCA). This approach essentially consists in considering each pixel of the image as a separate 102 

object and the main goal is to find similarities or differences among clusters of pixels based on their 103 

spectral signatures (Prats-Montalban et al., 2011; Amigo et al., 2015).  104 

When dealing with a large number of hyperspectral images that should be analysed altogether, 105 

classical pixel-level MIA can become unfeasible due to the intensive computational loads, since it 106 

would imply the simultaneous analysis of numerous images, each one with tens of thousands of 107 

pixel spectra. In these situations, a possible solution is to move from a pixel-level approach to an 108 

image-level approach, which consists in performing the analysis considering the image of each 109 

sample as a single object and extracting a feature vector characterizing the whole image, and thus 110 

the corresponding sample. In this manner, it is possible to analyse data matrices containing these 111 

feature vectors, in order to gain a general overview of the image dataset, to identify images sharing 112 

similar features or to quantify whole sample properties (Ulrici et al., 2012; Kucheryavskiy, 2013; 113 

Giraudo et al., 2018; Orlandi et al., 2018a; Orlandi et al., 2018b; Oliveri et al., 2019). 114 

To this aim, a data dimensionality reduction method has been proposed, which consists in 115 

converting each hyperspectral image of the dataset into a one-dimensional signal, named 116 

hyperspectrogram, obtained by merging in sequence the frequency distribution curves of quantities 117 

derived from a PCA model calculated on the images (Ferrari et al., 2013; Ferrari et al., 2015; Xu et 118 

al., 2016; Calvini et al., 2016; Corti et al., 2017). In this manner, each hyperspectrogram 119 

summarizes the relevant information contained in the corresponding hyperspectral image and a 120 

large dataset of hyperspectral images is converted into a matrix of signals, which in turn can be 121 

analysed by means of common chemometric methods. 122 

In this context, the main goal of the present study consisted in evaluating the possibility of 123 

exploiting the advantages of NIR-HSI coupled to data dimensionality reduction, in order to monitor 124 

the rind percentage of grated P-R cheese products. In particular, hyperspectral images of grated P-R 125 

cheese samples were analysed by means of the hyperspectrograms approach, and the resulting 126 

hyperspectrograms were then used to predict the rind percentage by means of Partial Least Squares 127 

(PLS) regression. 128 

 129 

2. Materials and Methods 130 

2.1 Grated cheese samples 131 

Samples of grated Parmigiano Reggiano cheese containing varying rind percentages (RP) were 132 

provided by Parmigiano Reggiano cheese Consortium. More in detail, the grated cheese samples 133 

were prepared considering the following 15 percentages (w/w) of rind in pulp: 0%, 5%, 10%, 12% 134 

14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, 35% and 40%. 135 
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In order to minimize possible effects of unwanted variations, the mixtures were prepared starting 136 

from the same matrices of cheese pulp and rind, obtained by grating pulp and rind pieces derived 137 

from different cheese wheels matured for a period of 12 months. The mixtures were replicated twice 138 

(deliveries A and B) as reported in Table 1, each time following a different random order. Firstly, 139 

the matrices of grated pulp and rind were prepared, and a part of them was then used to obtain the 140 

first set of 15 mixtures. The remaining part of the grated pulp and rind matrices was stored in the 141 

dark at 4 °C, and after one week it was used to prepare the second set of 15 mixtures. For both the 142 

replicate sets, the samples were stored in the dark at 4°C and the day after their preparation they 143 

were delivered to the laboratory, where they were immediately analysed. 144 

Furthermore, 15 additional samples with unknown rind percentage were provided by Parmigiano 145 

Reggiano cheese Consortium (X1-X15). These samples were prepared, delivered and stored 146 

considering the same procedure followed for the samples with known RP values. 147 

 148 

2.2 Image acquisition 149 

For each sample, three randomly sampled aliquots containing about 13 g of grated cheese were 150 

collected and placed inside a plastic Petri dish of 5.5 cm diameter. Each hyperspectral image 151 

included the three aliquots of two different samples. More in detail, the samples were positioned 152 

according to a 3  2 chessboard scheme, as reported in Figure 1. 153 

The hyperspectral images were acquired using a line scanning system (NIR Spectral Scanner, DV 154 

Optic) equipped with a Specim Imspector N17E imaging spectrometer coupled to a Xenics Xeva-155 

1.7-320 camera (320  256 pixels) embedding Specim Oles 31 f/2.0 optical lens. The hyperspectral 156 

system covers the 900-1700 nm spectral range with a spectral resolution equal to 5 nm. Due to the 157 

low signal-to-noise ratio at the edges of the spectral range, only 143 spectral channels between 960 158 

and 1670 nm were considered for further analysis.  159 

The hyperspectral images were acquired using a black silicon carbide sandpaper sheet as 160 

background and including in the image scene also a white ceramic tile with a 99 % reflectance 161 

standard reference and two ceramic tiles with intermediate reflectance values corresponding to 89 162 

% and 46 %, respectively. The raw data were converted into reflectance values using the 163 

instrumental calibration based on the measure of the white high reflectance standard reference and 164 

of the dark current (Ulrici et al., 2013). 165 

 166 

2.3 Image elaboration  167 

The first step of image elaboration consisted in the application of an additional internal calibration 168 

procedure in order to reduce possible variations over time. This correction procedure is based on the 169 
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comparison of the average reflectance values of the white standard reference, of the two ceramic 170 

tiles and of the black silicon carbide sandpaper between an image chosen as reference and all the 171 

remainder images of the dataset. Further details about the image correction algorithm can be found 172 

in Ulrici et al. (2013). 173 

Subsequently, the corrected images were cropped in order to obtain a single hyperspectral image for 174 

each aliquot of grated cheese sample. At the end of the cropping procedure, a total of 135 175 

hyperspectral images were obtained (= 45 grated cheese samples  3 aliquots), as reported in the 176 

last column of Table 1. 177 

After cropping, the pixels related to the black sandpaper background were removed using a 178 

thresholding procedure carried out considering a wavelength equal to 1100 nm. Indeed, at 1100 nm 179 

the pixels with reflectance value lower than 0.5 were ascribable to the background or to the plastic 180 

Petri dish, thus they were not considered in the subsequent steps. 181 

Finally, an additional morphological erosion procedure was performed using a disk-shaped 182 

structuring element with radius equal to 8 pixels (Van Den Boomgaard and Van Balen, 1992). 183 

Morphological erosion allowed to remove the pixels placed at the edges of the region of interest 184 

obtained after background removal, since these pixels were mainly influenced by scattering 185 

phenomena and specular reflections of the plastic Petri dish. 186 

The image elaboration steps, which are summarized in Step 1 and Step 2 of Figure 1, were 187 

performed with routines written ad hoc in MATLAB language (ver. 9.3, The Mathworks Inc., 188 

USA). 189 

 190 

2.4 Data analysis 191 

2.4.1. Exploratory analysis 192 

As a preliminary assessment, Principal Component Analysis (PCA) was performed at the pixel level 193 

on some representative images (Prats-Montalbán et al., 2011). More in detail, three images 194 

corresponding to RP values equal to 0%, 20% and 40% were merged together and analysed by 195 

means of PCA after applying standard normal variate (SNV) and mean center as spectral 196 

preprocessing methods. This preliminary analysis was carried out in order to obtain a qualitative 197 

evaluation of the differences between samples containing an increasing amount of rind. 198 

 199 

2.4.2. Calibration models 200 

Data organization 201 

Before calculating the calibration model to predict the rind percentage, the hyperspectral images of 202 

the grated cheese samples were split into training images, for model computation, and test images 203 
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for external validation. The training images included the hyperspectral images of grated cheese 204 

samples with RP values equal to 0%, 10%, 14%, 18%, 22%, 26%, 30% and 40%, for a total of 48 205 

images (= 8 RP values  2 deliveries  3 aliquots). The remainder images were separated into two 206 

different test sets:  207 

- TSknown: including the images acquired on cheese samples with RP values equal to 5%, 12%, 208 

16%, 20%, 24%, 28% and 35%, for a total of 42 images (= 7 RP values  2 deliveries  3 209 

aliquots); 210 

- TSunknown: including the images acquired on the cheese samples of unknown composition, 211 

for a total of 45 images (= 15 unknown samples  3 aliquots). 212 

 213 

Conversion into Common Space Hyperspectrograms 214 

The hyperspectral images were then converted into one-dimensional signals, named Common Space 215 

Hyperspectrograms (CSH) (Calvini et al., 2016). The basic idea behind the hyperspectrograms 216 

approach consists in converting each hyperspectral image of the dataset into a one-dimensional 217 

signal, which acts like a feature vector retaining the useful spectral/spatial information of the 218 

corresponding image (Ferrari et al., 2013; Ferrari et al., 2015). More in detail, in the case of CSH, 219 

the signals are obtained by merging in sequence the frequency distribution curves of quantities 220 

derived from a common PCA model, i.e. from a model calculated considering all the images of the 221 

training set. 222 

The first step in the computation of the CSH consisted in unfolding all the three-dimensional 223 

hyperspectral images into two-dimensional matrices with as many rows as the pixels retained after 224 

background removal and erosion, and as many columns as the number of spectral channels. Then, 225 

the unfolded hypercubes were row-preprocessed using SNV and scaled according to the global 226 

mean spectrum, obtained by averaging all the retained pixel spectra of the training images. After 227 

unfolding and spectra preprocessing, for each training image the corresponding variance-covariance 228 

matrix was calculated. Then, all the resulting variance-covariance matrices were summed in order 229 

to obtain the kernel variance-covariance matrix of the whole training set (Geladi and Grahn, 1996). 230 

The kernel-variance covariance matrix was then decomposed by singular value decomposition 231 

(SVD) to obtain the loading vectors of the common PC space. In this case, the common PC space 232 

was calculated considering 3 principal components, based on the results of the previous exploratory 233 

data analysis described in Section 2.4.1. 234 

Once calculated the PC space common to the training images, all the hyperspectral images 235 

belonging to both training and test sets were projected onto the PC space to obtain the 236 

corresponding scores, Q residuals and Hotelling’s T
2
 vectors. Finally, for each image, the 237 
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corresponding CSH signal was obtained by merging in sequence the frequency distribution curves 238 

of the three score vectors, of the Q residuals vector and of the Hotelling’s T
2
 vector. 239 

The frequency distribution curves were calculated considering a number of bins equal to 150 and 240 

normalized according to the number of pixels retained after image elaboration, as described in 241 

Section 2.3, to give the corresponding hyperspectrogram. Therefore, in this case each 242 

hyperspectrogram was a 750 points long vector, resulting from 150 bins 5 quantities derived from 243 

PCA (3 PCs + Q residuals + Hotelling’s T
2
). Further details about the algorithm used to calculate 244 

the CSH can be found in Calvini et al. (2016). The conversion of the hyperspectral images into CSH 245 

signals is schematically depicted in Step 3 of Figure 1. 246 

In this manner, at the end of the conversion procedure three different matrices of signals were 247 

obtained: the training set (TR), the test set derived from the TSknown images and the test set of 248 

unknown samples derived from the TSunknown images. 249 

Figure 2 shows a plot of the CSH signals belonging to the training set, coloured according to the 250 

rind percentage of the corresponding sample. 251 

 252 

Calibration model 253 

The training set matrix containing the CSH signals calculated from the training images was used to 254 

calculate the calibration model to predict the RP value, using Partial Least Squares (PLS) algorithm 255 

(Geladi and Kowalski, 1986). The signals were preprocessed using mean center and the optimal 256 

number of latent variables (LVs) was chosen by minimizing the cross-validation error. In particular, 257 

a custom cross-validation scheme was followed, considering 2 deletion groups, each one containing 258 

the signals derived from samples belonging to the same delivery day. 259 

The performances of the calibration models were evaluated both in terms of Root-Mean-Square 260 

Error (RMSE) and of coefficient of determination (R
2
). These parameters were calculated in 261 

calibration (RMSEC and R
2 

Cal), cross-validation (RMSECV and R
2 

CV) and prediction of the 262 

external test set (RMSEP and R
2 

Pred). 263 

The conversion of the hyperspectral images in CSH signals was done using a specific Graphical 264 

User Interface (GUI), that was previously developed by some of the authors of the present work. 265 

The GUI, which works under the MATLAB environment (ver. 9.3, The Mathworks, USA) and is 266 

named Hyperspectrograms GUI, is freely downloadable from 267 

www.chimslab.unimore.it/downloads. PCA and PLS models were calculated using PLS Toolbox 268 

(ver. 8.5, Eigenvector Research Inc., USA) and MIA Toolbox (ver. 3.0.4, Eigenvector Research 269 

Inc., USA). 270 

 271 

http://www.chimslab.unimore.it/downloads
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3. Results and discussion 272 

3.1. PCA at the pixel-level 273 

For a first evaluation of the differences between grated cheese samples containing different amounts 274 

of rind, three hyperspectral images corresponding to samples with RP values equal to 0%, 20% and 275 

40% were merged together to obtain a unique hyperspectral image, which was analysed at the pixel-276 

level by PCA. Figure 3.a reports the resulting PC1-PC2 score plot, where each object represents a 277 

single pixel and is coloured according to pixel density, i.e. a yellowish colour represents a region of 278 

the PC1-PC2 score space with a high density of pixels, while blue corresponds to low pixel density. 279 

From this score plot it is possible to observe the presence of three clusters of pixels, corresponding 280 

to the imaged samples with different RP values. The separation between samples with different rind 281 

levels is particularly evident along PC2. Indeed, the sample containing only cheese pulp is 282 

characterized by higher PC2 score values, while samples with increasing percentages of rind have 283 

decreasing PC2 score values, as shown in the PC2 score image reported in Figure 3.b. 284 

In order to investigate the spectral features involved in the definition of the PC space, the 285 

corresponding PC1-PC2 loading vectors are reported in Figure 3.c. The highest absolute values of 286 

the PC2 loading vector can be found in the 1195-1225 nm wavelength range, corresponding to the 287 

C-H bond second overtone ascribable to lipids (Burns and Ciurzak, 2008; Karoui et al., 2006), in 288 

the 1330-1340 nm spectral range corresponding to asymmetric stretching vibration of water (Ozaky, 289 

2002), and in the region centred at 1400 nm ascribable to the O-H bond first overtone of free water 290 

(Burns and Ciurzak, 2008). 291 

Therefore, the amount of rind of the cheese samples can be somehow described by the distribution 292 

of the corresponding pixel spectra along the principal components. A convenient way to summarize 293 

this pixel distribution consists in using the frequency distribution curves of the score vectors of each 294 

sample, as reported in Figure 3.a that shows the frequency distribution curves of both PC1 and PC2 295 

score vectors for each image. From this figure it is possible to observe the presence of a clear shift 296 

of the frequency distribution curves of PC2, which is related to the rind percentage of the 297 

corresponding samples. Although less marked, a variation with RP can be observed also for the 298 

frequency distribution curves of PC1 scores, which tend to become sharper and with a maximum 299 

located at lower PC1 values with increasing values of rind percentage. 300 

Since the hyperspectrograms approach is based on the use of frequency distribution curves of score 301 

vectors calculated from a PCA model in order to summarize the relevant information contained in 302 

the images, this preliminary analysis suggests the effectiveness of this approach for the 303 

determination of the rind amount in hyperspectral images of grated cheese samples. 304 

 305 
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3.2 PLS calibration model with the CSH approach 306 

The training set of CSH signals reported in Figure 2 was then used to calculate a PLS regression 307 

model for the quantification of rind percentage in the samples of grated Parmigiano Reggiano 308 

cheese, leading to the results reported in Table 2. 309 

The optimal model dimensionality was found to be equal to 8 LVs, leading to a RMSECV value 310 

equal to 1.70 RP units, corresponding to a R
2
 CV value of 0.979.  311 

The calibration model was then used to predict the RP of the samples belonging to the TSknown test 312 

set. In this case, the prediction results were calculated considering both the whole range of rind 313 

levels (0% - 40%) and only the interval of rind percentages ranging from 10% to 30%, which better 314 

reflects RP values that generally may occur in real situations. 315 

The prediction results confirm the effectiveness of the calibration model in quantifying the rind 316 

percentage, leading to RMSEP values equal to 1.91 and 1.85 RP units in the 0-40% and 10-30% 317 

ranges, respectively. 318 

Figure 4 shows the plot of the rind percentage values predicted for the TSknown test set versus the 319 

corresponding experimental values, where the samples are coloured according to the delivery day. 320 

Generally, all the objects are close to the bisector, indicating the good prediction performances of 321 

the model. In addition, from Figure 4 it is also possible to observe that there are not evident 322 

systematic variations in the prediction results caused by the different delivery days, which further 323 

confirms the robustness of the calibration model toward replicated measurements. 324 

Considering that compliant Parmigiano Reggiano grated cheese samples should have an RP value 325 

lower or equal than 18%, all the test set samples with a rind percentage falling outside this limit are 326 

correctly identified by the model. 327 

The calibration model was also used to predict the samples with unknown composition belonging to 328 

the TSunknown test set. The predicted rind percentages of the unknown samples were communicated 329 

to the Parmigiano Reggiano Cheese Consortium, which then revealed the corresponding 330 

experimental values. In this manner, it was possible to perform a further external validation of the 331 

calibration model. 332 

It has to be considered that, for each unknown sample, three different aliquots were imaged and, 333 

therefore, three RP values were obtained in prediction by the model. In order to have a single 334 

estimate of the RP value for each unknown sample, the three RP predicted values corresponding to 335 

the three aliquots were averaged for each sample. The results are reported in Table 3, together with 336 

the corresponding experimental values, further confirming the good prediction ability of the 337 

calibration model. More in detail, an RMSEP value equal to 2.50 RP units was obtained, 338 

corresponding to an R
2
 value equal to 0.955. The highest difference between predicted and 339 
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experimental rind percentage, equal to 5 RP units, was observed for sample X15, while samples X2 340 

and X4 were exactly predicted. 341 

In order to have a comprehensive evaluation of the hyperspectrogram regions most relevant to the 342 

calibration model, Figure 5.a reports the Variable Importance in Projection (VIP) scores: variables 343 

with VIP score values higher than one are considered significant for the model. This figure shows 344 

that all the frequency distribution curves of the PCA quantities included in the CSH signals have 345 

regions with significant variables. In particular, among the three score vectors included in the 346 

signals, the regions related to the frequency distribution curve of PC2 reach the highest VIP score 347 

values, together with the signal regions related to Hotelling T
2
 vales. 348 

As an example, Figure 5.b reports the PC2 score images of some representative test set samples 349 

with increasing percentage of rind. Similarly to what was previously reported in Section 3.1, images 350 

of samples with a lower RP value are characterized by higher PC2 score values, and the increase of 351 

the RP value in the grated cheese samples causes a shift of the corresponding pixels toward lower 352 

PC2 score values. Actually, this is due to the fact that the PC2 loading vector of the common PCA 353 

model used to calculate the CSH signals is very similar to the PC2 loading vector calculated on the 354 

three sample hyperspectral images, reported in Figure 3c. 355 

 356 

Conclusions 357 

The present study demonstrated the possibility of using NIR-HSI as a tool for the quantification of 358 

the amount of rind in grated Parmigiano Reggiano cheese samples. The combined use of a data 359 

dimensionality reduction approach, namely the Common Space Hyperspectrograms approach, with 360 

PLS regression allowed to obtain satisfactory prediction performances. The calibration model was 361 

validated using two different test sets: the first test set consisted of cheese samples with known RP 362 

values, while for the second test set the experimental RP values of the analysed samples were 363 

revealed by the operators of Parmigiano Reggiano Cheese Consortium only after providing them 364 

with the RP values predicted by the model. The RMSEP values obtained for both test sets, 365 

corresponding to 1.91 RP units and 2.50 RP units, respectively, confirm the advantages of coupling 366 

spatial and spectral information of a sample brought by NIR-HSI in the analysis of heterogeneous 367 

products, like grated cheese. 368 

However, it has to be considered that commercial samples of grated Parmigiano Reggiano cheese 369 

may be affected by different variability factors, such as months of ripening, fat content and rind 370 

processing methods, among others. Therefore, in order to obtain a more robust calibration model 371 

the influence of these factors should be properly evaluated and included in the model. As a 372 
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consequence, the increasing complexity of the model should be faced by including further steps in 373 

the data analysis workflow, like e.g. spectral and/or spatial feature selection. 374 
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Captions to Tables and Figures 500 

Table 1. Summary information about the grated cheese samples considered in the present study 501 

Table 2. Results of PLS regression for the determination of rind percentage. 502 

Table 3. Prediction results of the unknown test samples and corresponding experimental RP values. 503 

 504 

Figure 1. Key steps involved in image elaboration and analysis 505 

Figure 2. Hyperspectrograms of the training set images; the signals are coloured according to the 506 

rind percentage of the corresponding grated cheese sample 507 

Figure 3. In (a) PC1-PC2 score plot of the image containing grated cheese sample with 0%, 20% 508 

and 40% percentages of rind, and corresponding frequency distribution curves of PC1 and PC2 509 

score vectors calculated separately for each sample. In (b) PC2 score image. In (c) PC1 and PC2 510 

loading vectors. 511 

Figure 4. Results of the PLS model: TSknown test set predicted rind percentage (Y Predicted) vs 512 

experimental rind percentage (Y measured). 513 

Figure 5. VIP scores of the PLS model (a) and PC2 score images of samples with increasing rind 514 

percentage values(b). 515 

 516 



Highlights 

 Rind percentage in grated Parmigiano Reggiano cheese should not exceed 18% (w/w) 

 Hyperspectral imaging (HSI) was used to estimate rind percentage in grated cheese 

 The images were converted in one-dimensional signals named hyperspectrograms 

 The hyperspectrograms were used to build PLS calibration models 

 Validation with test samples confirmed the effectiveness of the proposed approach 
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Table 1. Summary information about the grated cheese samples considered in the present study 

 

 

 

Delivery 

Date 
RP (w/w) 

Number of 

samples 

Number of 

images 

Delivery 

A 
12/04/2018 

0%, 5%, 10%, 12%, 14%, 16%, 

18%, 20%, 22%, 24%, 26%, 28%, 

30%, 35%, 40% 

15 45 (=15×3) 

X1-X7 7 21 (=7×3) 

Delivery 

B 
12/11/2018 

0%, 5%, 10%, 12%, 14%, 16%, 

18%, 20%, 22%, 24%, 26%, 28%, 

30%, 35%, 40% 

15 45 (=15×3) 

X8-X15 8 24 (=8×3) 

Table 1



Table 2. Results of PLS regression for the determination of rind percentage. 

 

LVs 8 

RMSEC 0.98 

RMSECV 1.70 

RMSEP0-40% 1.91 

RMSEP10-30% 1.85 

R
2
 Cal 0.993 

R
2
 CV 0.979 

R
2
 Pred0-40% 0.958 

R
2
 Pred10-30% 0.893 

 

 

Table 2



Table 3. Prediction results of the unknown test samples and corresponding experimental RP values. 

 

Sample 

name 

Predicted 

RP 

Experimental 

RP 

X1 30 32 

X2 23 23 

X3 20 18 

X4 0 0 

X5 7 5 

X6 24 23 

X7 13 10 

X8 43 40 

X9 14 12 

X10 18 16 

X11 30 28 

X12 9 5 

X13 35 32 

X14 1 0 

X15 23 18 

 

 

 

Table 3


