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Abstract

In this paper we study the typical dilemma of social coordination between a risk-

dominant convention and a payoff-dominant convention. In particular, we consider a

model where a population of agents play a coordination game over time, choosing both

the action and the network of agents with whom to interact. The main novelty with

respect to the existing literature is that: (i) agents come in two distinct types, (ii)

the interaction with a different type is costly, and (iii) an agent’s type is unobservable

prior to interaction. We show that when the cost of interacting with a different type is

small with respect to the payoff of coordination, then the payoff-dominant convention

is the only stochastically stable convention; instead, when the cost of interacting with

a different type is large, the only stochastically stable conventions are those where all

agents of one type play the payoff-dominant action and all agents of the other type

play the risk-dominant action.
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1 Introduction

Our contribution. Social and economic interactions often involve the problem of coor-

dinating over the same action. Conventions such as the driving side or the product share,

and standards such as software or hardware platforms are common examples, among many.

These interactions are inherently strategic and give rise to coordination games where a mul-

tiplicity of Nash equilibria exists. The typical dilemma that arises in this setting is between a

payoff-dominant action, which pays a higher payoff if the equilibrium is actually played, and

a risk-dominant action, which performs better if out-of-equilibrium play happens (Harsanyi

and Selten, 1988). Which of these equilibria is more likely to emerge in the long run has

been a matter of study in evolutionary game theory.

We contribute to this stream of research by exploring the case of social coordination

in a population made of two different types that have a preference for own-type but can

observe others’ type only after first interaction, and that interact on a network which they

can shape but with a constraint on the maximum number of neighbors. More precisely, we

consider a model with a finite population of agents, who play a 2 × 2 coordination game

where action A is risk-dominant and action B is payoff-dominant. Agents choose both the

action and the set of agents with whom to interact. In particular, if agent i chooses to

have a connection to agent j, then he incurs a cost c > 0 to maintain the link, and the

payoff resulting from the interaction flows from j to i only. Every agent can maintain at

most a number k of connections. We assume that agents independently receive revision

opportunities over time, and that they use a noisy best response choice rule when updating

strategy. This is essentially the model in Staudigl and Weidenholzer (2014). With respect

to it, we introduce the novelty that agents are of two different types, x and y, and that types

are payoff relevant, in the sense that a penalty d > 0 is suffered when interacting with a

different type. Importantly, actions taken by agents are globally observable, while types are

not observable prior to interaction: each agent knows the type of agents with whom he is

connected, and ignores the type of other agents, being only able to form expectations on the

basis of the distribution of choices at the current population state.

Our main results concern the long-run prediction obtained by applying stochastic stability

(see Young, 1993, and Kandori et al., 1993), and are twofold. When d is low the payoff-

dominant convention is the only stochastically stable outcome: in the long run all agents of

both types end up choosing the payoff-dominant action. This result can be interpreted as a

robustness check of Staudigl and Weidenholzer (2014). When instead d is sufficiently high,

then stochastically stable states are those where all agents of one type choose an action,
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and all agents of the other type choose the other action. To our knowledge, we are the

first in the stream of literature on social coordination and stochastic stability to introduce

agents’ heterogeneity with local observability of types. As a result, we obtain that the risk-

dominant action and the payoff-dominant action coexist in the long run for a reason that

is substantially different from restrictions to agents’ mobility (see the paragraph on related

literature for a more articulated discussion). The intuition is the following. One single

mutation can be enough to leave an absorbing set whenever there exists some agent who,

if hit by a mutation, would be confronted with the risk of interacting with a different type

in the case he decides to go back to his previous action and to connect to agents choosing

that same action – and actually one single mutation is enough provided that the penalty for

interacting with a different type is large enough. In our model this condition holds for all

states where actions and types are not perfectly correlated; instead, it never holds for the

states where all agents of one type choose one action and all agents of the other type choose

the other action – whatever the value of d – and therefore the absorbing sets to which these

states belong are harder to be exited in terms of mutations, which makes them stochastically

stable.

The rest of the paper is organized as follows. The next paragraph surveys the relevant

literature, contrasting our contribution with the existing ones. Section 2 introduces the basic

elements of the model. Section 3 discusses the induced Markov chain, and provides some

simple results for the unperturbed dynamics. Section 4 considers the perturbed dynamics

and gives the main results concerning stochastic stability. Section 5 concludes by discussing

the assumptions, and providing directions for future research. An appendix collects all the

proofs of results and lemmas, while the proofs of the propositions on the long-run equilibria

are given in the main text.

Related literature. Most papers on social coordination in the long run consider agents

who follow myopic best reply rules and occasionally make mistakes.1 The main message in

this literature is that, when the interaction structure is exogenous, inefficient risk-dominant

conventions emerge in the long run.2 The fundamental intuition for this result is that the

1See, e.g., Eshel et al. (1998) and Alós-Ferrer and Weidenholzer (2008), and references therein, for models

of local interaction where agents follow imitative behavior.
2For global interaction models see, e.g., Kandori et al. (1993), Kandori and Rob (1995), Young (1993).

For local interaction models see Blume (1993, 1995), Ellison (1993, 2000) and Alós-Ferrer and Weidenholzer

(2007); for a general framework for local interaction models with an exogenous interaction structure see

Peski (2010); see also Weidenholzer (2010) for a recent survey on local interaction models focusing on social

coordination.
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risk-dominant action is more robust to mistakes, because of the higher payoff it provides in

case of miscoordination. However, when the interaction structure is endogenous this result

does not necessarily hold and the payoff-dominant action can be selected in the long-run.

Intuitively, the uncertainty due to mistakes plays a lesser role if agents can choose to change

neighborhood in response to a change in others’ actions; hence, the relative advantage of the

risk-dominant action as insurance against miscoordination is reduced. The endogeneity of

the interaction has been modeled mainly in two ways: (i) the agents can choose with whom

to form an interaction network, and (ii) the agents can select a location among a number of

locations available and then interact with agents in the same location.

In approach (i), to which our model belongs, network formation is typically associated to

a cost to maintain the existing links. In a non-cooperative setup, Goyal and Vega-Redondo

(2005) show that when interaction is unconstrained (i.e., there is no bound to the number of

agents one can form a link with) for relatively low costs to maintain a link the risk-dominant

convention still emerges in the long run, but for relatively high costs to maintain a link

the payoff-dominant convention does emerge.3 The main intuition for this result is that

for low costs it is always profitable to maintain a link whatever action the other agent is

playing; therefore, the possibility to disconnect from others is practically irrelevant and the

interaction structure is as if it were exogenously fixed. For high costs, instead, agents find it

unprofitable to maintain a link with someone choosing an action different from theirs; in such

a case they prefer to remain unlinked, and this erodes the advantages of the risk-dominant

action.4 Our model follows the version of Goyal and Vega-Redondo (2005) where both the

cost to maintain a link and the payoff flow is asymmetric (i.e., the agent who pays the cost

is the only one to receive the payoff of interaction);5 three key features are different in our

model: (1) agents have a maximum number of interactions that can maintain at the same

time, as in Staudigl and Weidenholzer (2014), (2) agents come in two distinct types with

a preference for interacting with agents of their own type, and (3) an agent’s type can be

observed only if already connected to him. Indeed, the paper that is most related to ours is

3Hojman and Szeidl (2006) develop a related model with uni-directional payoff flows that accrue from all

path-connected agents.
4Jackson and Watts (2002) study a cooperative (pairwise) network formation model and show that for

low costs to maintain a link the risk-dominant convention is selected, while for high costs both the payoff-

dominant and the risk-dominant conventions can be selected. The difference with Goyal and Vega-Redondo

(2005) is mainly due to the fact that the transition from one convention to the other is stepwise, while in

the non-cooperative setup it is all at once when a sufficient number of agents have mutated.
5In the main model of Goyal and Vega-Redondo (2005) the payoff is instead earned by players on both

sides of the link, independently of who is paying to maintain the link.
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Staudigl and Weidenholzer (2014). They show that, when interaction is constrained in the

sense that agents can only support a small number of links with respect to the population

size, then the payoff-dominant convention emerges in the long run. The main intuition for

this result is that a rather small number of agents choosing the payoff-dominant action is

enough to generate an incentive for all other agents to prefer the payoff-dominant action over

the risk-dominant one and connect to those agents already playing it. In this sense, having

too many neighbors makes the transition to the payoff-dominant convention more difficult.

Our paper shows that this result is robust to the introduction of features (2) and (3), provided

that the preference for interacting with one’s own type is not too strong; however, if the cost

of interacting with agents of a different type is large enough, then efficiency is lost and both

conventions co-exist in the long run.

In approach (ii), the interaction structure is constrained by the fact that an agent can

interact only with those agents choosing the same location. Oechssler (1997), Ely (2002),

and Bhaskar and Vega-Redondo (2004) are all nice examples of models in which agents play

a coordination game and have to choose one location among the locations where the coor-

dination game is played. In these models, the payoff-dominant convention typically emerges

in the long run. The main intuition for this result is that the existence of different locations

where to play the coordination game makes it easier for agents to avoid miscoordinated

interactions, so limiting the attractiveness of the risk-dominant action; in a sense, agents

can “vote by their feet” and this helps to coordinate on the payoff-dominant action. Other

relevant features of multiple location models are: how the payoff is obtained (average over

all interactions or additive per interaction) and the characteristics of the location (limited

or unlimited entrance, free or costly movement). When agents care about average payoffs

per interaction – instead of the sum of payoffs deriving from all interactions – the emergence

of the payoff-dominant convention is easier, since agents always prefer to interact with a

single other agent choosing the payoff-dominant action than with a large number of agents

choosing the risk-dominant one.

In the light of our results, the case of particular interest is when locations are subject

to a capacity constraint, thus impeding or forcing the movements of agents across them.

The important fact here is that under this constraint the payoff-dominant convention is no

longer the only one selected in the long run and, in addition, non-monomorphic states can

be stochastically stable. More precisely, the co-existence of both payoff-dominant and risk-

dominant conventions can be obtained in the long run. In this regard, Anwar (2002) studies

a model where there are constraints on locations and each location has a certain number of

patriots (i.e., agents who never want to leave their current location). The author shows that
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when the constraints on locations are tight (i.e., a small number of agents can/want to move)

then the risk-dominant convention emerges in the long run, while if sufficient movement is

possible across locations (capacity is large and/or patriots are few) then different conventions

emerge at different locations. Further, in the case where the size of location is asymmetric,

the location with the smaller size will have agents coordinating on the payoff-dominant

convention. The main intuition for the case of tight constraints (either too many patriots or

too little room for new arrival in the locations) is that the interaction structure is, for most

agents, as if it were exogenous because agents cannot really avoid undesired interactions.

The intuition for the case of non-tight constraints is somewhat related: some agents are free

to coordinate on the payoff-dominant actions at some location, but when all other locations

are at full capacity, the agents in the remaining location have no location to move to and,

hence, for them the interaction structure is given.

We stress that we obtain the co-existence of conventions without such constraints. In-

stead, we rely on the cost of type mismatch (that requires some degree of agents heterogene-

ity) and on the risk of mismatch (that requires some degree of imperfect observability of

types). Indeed, differently from Anwar (2002) we find that, when the total population size

is large, the relative size of the two populations of types does not affect which population

plays which convention, provided that the cost of mismatch is large enough.

Another relevant contribution is Dieckmann (1999), although it is in a sense less related

because agents are supposed to follow imitation rules instead of myopic best reply rules. In

this paper a location model is presented where, besides capacity constraints, the movement

across locations is subject to frictions (in the form of the possibility that only the action or

only the location is revised as desired) and the play outside the current location is imperfectly

observable. The main finding – substantially in line with Anwar (2002) – is that imperfect

observability and frictions alone cannot block the emergence of the payoff-dominant conven-

tion, while restricted mobility does.

We emphasize that in our model the imperfect observability (of types) does prevent the

emergence of the payoff-dominant convention, provided that the cost of mismatch is large

enough.

Somewhat detached from this stream of literature, but relevant for the present paper,

is Neary (2012) who studies a model of social coordination where the interaction structure

is exogenous and global, but agents are heterogeneous in their preferences about the action

upon which to coordinate. In this setup only payoff-efficient conventions are selected. In

addition, other interesting properties of the long run equilibria emerge: relative sizes of

type populations, strength of group preferences, and rates of group adaptiveness (group
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dynamism) do matter for selection, and a relative increase in group size and group dynamism

is always weakly beneficial.

2 The model

Network structure. We consider a set N = {1, 2, ..., n} of agents. Each i ∈ N can

choose the subset of other agents with whom to play a fixed bilateral social game. Formally,

let gi = (gi1, . . . , gin) be the n-dimensional vector collecting i’s connections; in particular,

gij ∈ {1, 0}, and we say that agent i maintains a link with agent j if gij = 1. We assume

that gii = 0 for every i ∈ N . Connections are directed, so that gij = 1 does not necessarily

imply gji = 1. The maximum number of links that an agent can maintain at any given time

is k ≥ 1, and the cost to maintain any single link is c. An agent i is said to be isolated if

gij = 0 for every j ∈ N . A profile of link formation choices, one for each agent in N , is

denoted by g = (g1, g2, ..., gn). We will often refer to g as the network of interactions.

Social game. Agents play a 2× 2 symmetric game in strategic form with common action

set. Each agent plays only with the agents with whom he is directly connected.

The table below describes the payoffs associated to the bilateral social game:

A B

A π(A,A) π(A,B)

B π(B,A) π(B,B)

where the following inequalities hold:

• π(A,A) < π(B,B)

• π(B,B) + π(B,A) < π(A,A) + π(A,B)

implying that A is the risk-dominant action and B is the payoff-dominant action; also,

this implies that π(B,A) < π(A,B). We further assume that all payoffs are positive, i.e.,

π(B,A) > 0.

Each agent i ∈ N has to choose an action ai ∈ {A,B} which is played against the choice

of each j for which gij = 1. A profile of action choices, one for each agent in N , is denoted

by a = (a1, a2, ..., an).
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Strategies. A strategy for agent i is si = (ai, gi), where ai ∈ {A,B} denotes the action

chosen by i, and gi ∈ {0, 1}n with
∑

j gij ≤ k denotes the agents with whom agent i is

connected (see network structure and social game). A profile of strategies for the whole

population – to which we also refer as state – is s = (s1, s2, . . . , sn). We will sometimes

write s = (a, g), where a is the action profile of the entire population and g is the interaction

network.

Agents’ types. There are two types of agents in the population, x-types and y-types. The

type of agent i ∈ N is denoted by wi ∈ {x, y}. With some abuse of notation, we use ¬wi
to denote the type other than wi. We also define the indicator function of type dissimilarity

δ : N2 → {0, 1} such that δ(i, j) = 1 if and only wi = wj, and δ(i, j) = 0 otherwise. The

number of agents of type x is denoted with nx, while the number of agents of type y is

denoted with ny = n − nx. Without loss of generality, we assume that nx ≥ ny. We also

assume that the number of agents of each type is rather large relative to the number of

maximum connections for each agent; in particular, ny ≥ 2k + 1.

If agent i is of type wi and interacts with agent j whose type is wj 6= wi, then i incurs a

cost of d > 0; if instead wj = wi, then no cost is incurred.

We introduce some further notation to make the following exposition easier. Let w ∈
{x, y} be a generic type and a ∈ {A,B} a generic action of the social game; n(w, a|s) is the

number of agents of type w who are choosing action a at state s; ni1(s) and ni0(s) are the

number of agents with whom agent i maintains and does not maintain a link, respectively,

at state s; ni1(a|s) and ni0(a|s) are the number of agents playing action a with whom agent

i maintains and does not maintain a link, respectively, at state s; ni1(w|s) and ni0(w|s) are

the number of agents of type w with whom agent i maintains and does not maintain a link,

respectively, at state s; finally, ni1(w, a|s) and ni0(w, a|s) are the number of agents of type

w playing action a with whom agent i maintains and does not maintain a link, respectively,

at state s.

Time. Agents repeatedly interact over time, which is assumed to be discrete, and indexed

natural numbers, i.e., t = 0, 1, 2, . . .. The state of the system at time t is denoted with

st = (st1, s
t
2, . . . , s

t
n), where sti is the strategy adopted by agent i at time t.

Revision protocol. In each round, every agent has a probability γ to be given the op-

portunity to revise his strategy, i.e., choosing to destroy any of the links he is currently

maintaining and/or to form links with other agents, without exceeding the constraint of k
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exiting links.

Every agent who is given a revision opportunity takes a choice that maximizes the interim

utility, which is formally provided a subsequent paragraph. If more than one optimal strategy

exist, then a revising agent randomly chooses among them.

Information. At the time an agent has to take a decision he is informed of the action

(either A or B) currently played by any other agent in the population, while he is uncertain

about the type of agents with whom he is not currently maintaining a link. More explicitly,

if agent i receives a revision opportunity at time t+1 then, for any agent j such that gtij = 1,

agent i knows both atj and wj, while for any agent h such that gtij = 0, agent i knows only

ath. Also, agent i is informed of the summary statistics of the population state at time t; in

particular, he knows the number of x types and y types that are playing action A, as well

as those who are playing action B, at state st.

On the whole, combining private and public information, a revising agent i at time t

knows: n(a|st), niρ(st), ni(a|st), niρ(a|st), niρ(w|st), and niρ(w, a|st), for all w ∈ {x, y},
a ∈ {A,B}, and ρ ∈ {0, 1}.

Utilities. The decision of an agent to revise his strategy has two effects on utility: one

is about the payoffs earned in the social game, the other is about the overall penalty due

to interactions with agents having a different type. While the first effect is known with

certainty at the time of the decision, the second effect is uncertain and so an expectation is

taken.

The interim utility of agent i who chooses strategy si at time t + 1, when the previous

state was st, can be formally written as follows:

ui(s
t+1
i , st) =

∑
j∈N

[(
π(at+1

i , atj)− c
)
gt+1
ij − d gtijgt+1

ij δ(i, j)− dn
t
0i(¬wi, ati|st)
nt0i(a

t
i|st)

gt+1
ij (1− gtij)

]
.

The first term of ui(s
t+1
i , st) is the payoff from the social game net of the link maintenance

cost, the second term is the cost of maintaining links with agents of a type different from

wi and with whom i was already maintaining a link at time t, while the third term is the

expected cost due to the formation of links with new agents that turn out to be of a type

different from wi. Once the decision is taken and the types of agents with whom new links

are formed become known, agent i obtains the following ex-post utility at time t+ 1:

vi(s
t+1) =

∑
j∈N

[
π(at+1

i , at+1
j )− c

]
gt+1
ij − dnt+1

1i (¬wi|st+1).
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The first term of vi(s
t+1
i ) is, again, the payoff from the social game net of the link maintenance

cost, while the second term is the cost of maintaining links with agents of a type different

from wi, independently of whether i already had links towards them or not.

3 Unperturbed dynamics

Markov chain. The process described in Section 2 formally defines a Markov chain (S, T ),

where S is the state space (i.e., the set containing all possible states) and T is the transition

matrix, with Tss′ denoting the probability to move from state s directly to state s′, with

s, s′ ∈ S.

Neighborhood heterogeneity. We start by providing two results on the short run be-

havior of the system. In particular, we focus on the persistence of links which are maintained

between agents who are of different types and/or who play different actions.

Result 1. If agent i is given a revision opportunity at time t+1 and, moreover, n(wi, a
t
i|s) ≥

k + 1 and there exists j ∈ N such that gtij and δ(i, j) = 1, then gt+1
ij = 0 with probability 1.

Result 1 states that a link between dissimilar agents (i.e., agents of different types) is unlikely

to last for long time. Indeed, an agent, say i, maintaining a link towards an agent of a different

type, say j, always finds it weakly better to replace sucha link with a new link towards a

new agent h choosing the same action than j, provided that at least one such h exists: h

cannot grant a lower payoff than j, and grants a higher payoff if he is of i’s type.

Result 2. If at time t there exist i, j ∈ N such that gtij = 1, δ(i, j) = 0 and ati 6= atj, and if

c < π(B,A), ni0(¬wi, atj) ≥ 1, and either ni0(a
t
i) = 0 or d

ni0(¬wi, ati)
ni0(ati)

> π(ati, a
t
i)− π(ati, a

t
j),

then gt+1
ij = 1 with probability 1.

The second result states that a link between agents of the same type who play different

actions can be stable, at least in the short run. Indeed, an agent, say i, will keep maintaining

a link with another agent, say j, that plays a different action if the act of replacing j with

some other agent h who plays i’s action implies a severe risk of type mismatch, i.e., if the

penalty d is large enough and if the pool of potential new neighbors playing i’s action has a

high enough fraction of agents who are not of i’s type.

The above two results can be understood intuitively with the following argument. A link

with an agent of the same type has a value; the reason is that if such link is replaced by a
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new link then the risk of a mismatch of types is sustained. Instead, a link with an agent

choosing the same action has no value; indeed, such link can always be replaced by another

link with an agent choosing the same action. The difference is generated by the fact that a

revising agent can condition the choice of the strategy on the action of non-neighbors but

not on the type of non-neighbors. As a simple consequence, a link with an agent of the same

type choosing a different action has some value, differently from what happens for a link

with an agent of different type choosing the same action.

Absorbing sets. An absorbing set is a minimal set of states with respect to the property

that the system never moves from a state in the set to a state out of the set.

We introduce a number of definitions that will be useful in the subsequent analysis,

where we discuss the variety of possible absorbing sets. Consider a state s = (a, g). State

s is fully connected if ni = k for every i ∈ N . State s is type-segregated if gij = 1 implies

that δ(i, j) = 0. We say that state s is monomorphic if ai = aj for all i, j ∈ N . In

particular, we distinguish between states that are A-monomorphic and states that are B-

monomorphic, i.e., states where all agents choose A and states where all agents choose B,

respectively. States that are not monomorphic are called polymorphic. Among polymorphic

states, an important role in our analysis is played by type-monomorphic states; a state is

called type-monomorphic if ai = aj for all i, j such that wi = wj = w ∈ {x, y}, and it

is not monomorphic. We sometimes refer to states that are type-monomorphic with x on

A and y on B (which means that all agents of type x play A and all agents of type y

play B), and states that are type-monomorphic with x on B and y on A (with an analogous

definition). All remaining polymorphic states are called type-polymorphic. Finally, we denote

with SAA the union of all absorbing sets that contain only A-monomorphic states. We define

SBB analogously. We use SAB to denote the union of absorbing sets that contain only type-

monomorphic states with x on A and y on B; the set SBA is defined analogously, with the

general rule that the apix refers to the choice of agents of type x and the pedix refers to the

choice of agents of type y.

Result 3.

(a) If c < π(A,A), then (i) there exist absorbing sets containing A-monomorphic states,

and (ii) there exist absorbing sets containing B-monomorphic states.

(b) If c < π(A,A) and d > π(B,B)−π(A,A), then (i) there exist absorbing sets containing

type-monomorphic states with x on A and y on B, and (ii) there exist absorbing sets

containing type-monomorphic states with x on B and y on A.
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(c) If c < π(A,A) and d > 2[π(B,B)−π(A,A)], then there exist absorbing sets containing

type-polymorphic states.

(d) If c < π(A,A) and d > π(B,B)(n − 1)/nx, then there exist absorbing sets containing

states where some agent is isolated.

The above result6 allows us to make a remark about the effect that the introduction of

a payoff relevant heterogeneity in types has on the possibility to observe the coexistence of

both actions in the long run. If in our model all agents had the same type, or if we set d = 0

so that types are payoff irrelevant, essentially we would obtain the model of Staudigl and

Weidenholzer (2014), where the only absorbing sets (provided that c is not too large) are

those in which all agents choose the same action. This can be easily understood by noting

that, in such a case, if it is optimal for an agent to maintain his current action, then it

is optimal for agents using a different action to switch to his one. By introducing agents

of different types, and unobservability of types prior to linking, we obtain that agents at

different locations in the network are different because they have different local information

about the types of their neighbors. Such information is valuable if types are payoff relevant,

i.e., when d > 0. This leads to a substantially richer variety of states belonging to absorbing

sets. Monomorphic states still belong to absorbing sets (point (a)). In addition to them,

when d is sufficiently large we find absorbing sets containing polymorphic states. In particular

we have that both type-monomorphic states and type-polymorphic states can belong to

absorbing sets (points (b) and (c), respectively). This leads to the following observation:

even if interactions between agents of different types are unlikely to last for long time (see

Result 1), so that the two populations of agents may apparently live totally independent lives,

they in fact influence each other in an indirect way. As already observed in the comments

after Result 1 and Result 2, the presence of agents of different types, and the impossibility

to recognize types before a link is actually casted, creates an implicit cost to the agent that

wants to replace a neighbor who is of his own type but is currently miscoordinating: a new

agent who coordinates on the action might be chosen, but he may turn out to be of the wrong

type and, so, to entail the cost d for the replacing agent. The fear to incur such a cost can

prevent the emergence of coordination, even among agents of the same type. Finally, we have

that, when d is large enough, there are absorbing sets containing states where some agent is

isolated, even if c is not very large (point (d)). More importantly, as it will become clearer

6We stress that the conditions provided are only sufficient. Since this result does not play an important

role for the following investigation on stochastic stability, we have chosen not to give tighter conditions,

which would have required a much tougher analysis.
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in the following examples, there is the possibility that some agents are isolated and others

are not. We stress that this heterogeneity in the network structure can not be observed if

isolation is obtained by raising c.

The next paragraph provides examples where monomorphic states, type-monomorphic

states, type-polymorphic states and states with isolated agents are shown to belong to ab-

sorbing sets.

Examples. In Fig. 1–4 we provide some graphical representations with the aim of illus-

trating the variety of possible absorbing sets. In all the examples, we have nx = 10, ny = 9,

k = 3. Circles identify x types, squares identify y types. Agents choosing action A are

colored in light green, agents choosing B are colored in dark blue.

(a) An A-monomorphic state. (b) A B-monomorphic state.

Figure 1: Examples of monomorphic states.

Fig. 1 depicts monomorphic states; more precisely, in Subfig. 1a we have anA-monomorphic

state, and in Subfig. 1b we have a B-monomorphic state. Also, subfigures represent states

that are fully connected, since every agent has exactly 3 connections (in particular, the same

connections are in place in the two states). Consistently with point (a) of Result 3, such

states belong to absorbing sets for any value of d. In particular, each state belongs to a

singleton absorbing set: as long as d is positive, every agent prefers not to reshuffle his links,

in order to avoid the risk of a type-mismatch.

Fig. 2 depicts type-monomorphic states; more precisely, in Subfig. 2a we have a type-

monomorphic state with x on A and y on B, and in Subfig. 2b we have a type-monomorphic

state with x on B and y on A. Both states are fully connected; this must necessarily be the

case, since there is no risk of mismatch due to the perfect correlation between actions and
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(a) A type-monomorphic with x on A and y

on B.

(b) A type-monomorphic with x on B and y

on A.

Figure 2: Examples of type-monomorphic states.

types. We observe that each of these states belongs to an absorbing set comprising many

states; this is so because agents are indifferent between keeping current mates and substitut-

ing them with other agents choosing the same action. In order for type-monomorphic states

to belong to an absorbing set, we must have that agents choosing A do not find it profitable

to switch to B and cast links to agents choosing B; this happens when d > π(B,B)−π(A,A),

consistently with point (b) of Result 3.

Figure 3: A type-polymorphic state.

Fig. 3 represents a state that is type-polymorphic. In particular, there are agents of each

type choosing A, and agents of the same type choosing B. It is easy to understand that,

given the current network of interactions, no agent wants to change action. Also, agents
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who choose B will never reshuffle links, because there is a risk of type mismatch if doing

so, while there is no benefit. Agents who choose A face an expected penalty due to type

mismatch that is equal to d/2; if such a cost is larger than π(B,B) − π(A,A), then these

agents will never change strategy as well, so that the state in Fig. 3 actually belongs to a

singleton absorbing set.

We stress that, even if the state under consideration is fully connected, there are type-

polymorphic states belonging to absorbing sets where this is not the case (the same can occur

for monomorphic states, while type-monomorphic states are necessarily fully connected).

Imagine that, starting from the state represented in Fig. 3, a link is removed. Intuitively,

if d is large enough, then the expected penalty of a type mismatch is sufficiently large to

discourage any attempt to form a new link. Finally, a link between two agents of the same

type who choose different actions might also be in place, in case such an interaction brings

a positive payoff (which happens if c is not that large), and d again sufficiently large (see

Result 2).

i

Figure 4: A state where an agent is isolated.

Fig. 4 depicts a state where one agent is isolated. In particular, agent i has no link

outgoing from him. Furthermore, agent i plays action A, while all other agents (including

those having the same type as i) play B, so the state represented is type-polymorphic. If the

expected penalty for i of a new link towards an agent playing B (which is equal to d10/18) is

larger than the largest benefit coming from the new interaction (which is equal to π(B,B))

then casting a new link is unprofitable. We observe that the arising inequality is the same

as the inequality in point (c) of Result 3, once we consider that nx = 10 and ny = 9. We

also observe that agent i will keep on switching from action B to A and viceversa, since

both actions grant him the same (null) utility. Moreover, all other agents strictly prefer
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not to change their strategies, since they currently earn the maximum attainable utility and

reshuffling links comes with the risk of a type mismatch. Therefore, the state in Fig. 4

actually belongs to an absorbing set. We finally notice that agent i as no incoming links. We

remark that this is something specific to this example; indeed, there exist states belonging

to absorbing sets where an agent exists who has some incoming links and no outgoing links

(so that such agent is isolated).

4 Perturbed dynamics

Regular perturbed Markov chain. We are ready to introduce perturbations in the

unperturbed dynamics considered in Section 3, and to apply concepts and tools developed

by Foster and Young (1990), Young (1993), Kandori et al. (1993) and Ellison (2000).

We adopt the so-called uniform error model for mistakes. In particular, when an agent is

given a revision opportunity, with probability 1− ε he will update his strategy by using the

myopic best-reply rule described in the previous section, while with probability ε the agent

is hit by a perturbation (or mutation, mistakes, etc,) and chooses at random one strategy in

his strategy set. The arising transition matrix is denoted with T ε, and we refer to (S, T ε) as

a the perturbed Markov chain resulting from (S, T ). For any positive level of ε, the system

can move with positive probability from any state to any other state, i.e., it is ergodic. This

implies that the perturbed Markov chain is irreducible and aperiodic and hence, by known

results, there exists a unique invariant distribution µε over states in S that describes the long-

run behavior of the system. As ε tends to zero, we have that T ε tends to T ; in particular,

T εss′ ∼ εr(s,s
′) as ε → 0, where r(s, s′) is the so-called resistance of the passage from s to s′,

which basically counts how many perturbations (or mutation, mistakes, etc,) are required

to complete such a passage in one period of time. A family of perturbed Markov chains

for ε going to zero which satisfies the above properties is called a regular perturbed Markov

chain. For a regular perturbed Markov chain, the limit of the invariant distribution µε for

ε going to zero is known to exist, and the states having positive probability in that limiting

distribution are called stochastically stable. The following characterization of stochastically

stable states will be useful for our subsequent analysis (see Young, 2001, for a more detailed

exposition.).

The notion of resistance can be extended by relaxing the constraint that the passage must

occur in one period, and can be usefully applied to absorbing sets instead of states. Given

two absorbing sets S ′ and S ′′, the resistance between an absorbing set S ′ and a different

absorbing set S ′′ is given by the minimum sum of resistances between states over paths that
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start in a state belonging to S ′ and end in a state belonging to S ′′. Now, for any conceivable

tree having the absorbing set S ′ as root and all absorbing sets as nodes, consider the sum of

resistances assigned to each edge of the tree, and take the minimum over trees of such a sum.

This number represents the stochastic potential of S ′. Intuitively, the stochastic potential

tells us how difficult is to reach an absorbing set starting from other absorbing sets. A

fundamental result in this literature asserts that a state is stochastically stable if and only if

it belongs to an absorbing set with minimum potential: stochastically stable states are those

that are relatively easiest to reach in terms of the minimum number of mutations required

to reach such states starting from other states.

Two other notions are useful in the following analysis: the radius and coradius (Ellison,

2000). If Q is a union of absorbing sets, consider all possible paths – i.e., sequences of states

– starting from a state in Q and ending in a state belonging to an absorbing set that is

not part of Q. The radius of Q, denoted with R(Q), is defined as the minimum sum of

resistances between states over all such paths. Now consider all possible paths starting from

a state belonging to an absorbing set Q′ and ending in a state in Q. For each Q′, consider the

minimum sum of resistances between states over all such paths. The coradius of Q, denoted

with CR(Q), is the maximum among Q′ of such minimum numbers. Intuitively, R(Q) and

CR(Q) provide measures of how difficult it is, respectively, to leave Q and to reach Q.

Stochastic stability: low cost of mismatch in types. Our first main result on stochas-

tic stability is Proposition 1, and it addresses the case where the cost of interacting with an

agent of a different type is low relative to the gain of coordinating on the payoff-dominant

action instead of the risk-dominant one. Before stating proposition 1, we give Lemma 1

which provides a characterization of the set SBB that is then exploited in the proof of the

proposition.

Lemma 1 (Characterization of SBB ). If c < π(A,A), d < π(B,B) − π(A,A), then a state

s ∈ SBB if and only if (i) s is B-monomorphic, (ii) s is fully connected, and (iii) s is type-

segregated. Moreover, every s ∈ SBB belongs to a singleton absorbing set.

Lemma 1 states that SBB is made of the union of all and only the singleton absorbing sets

where each agent plays B and has k links towards agents of his own type.

Proposition 1. If c < π(A,A), d < π(B,B) − π(A,A), then a state s is stochastically

stable if and only if s ∈ SBB .

Proof. We remind that SBB is defined as a union of absorbing sets. We then compute its

radius and coradius, denoted with R(SBB ) and CR(SBB ), respectively. We first observe that
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in every state where at least k+ 1 agents choose B, then all agents find it optimal to choose

B and have k connections to agents choosing B: indeed, such a strategy grants in the worst

case of all mismatches a payoff of k(π(B,B)− c−d), while the highest payoff with any other

strategy is k(π(A,A) − c), which is lower by the assumption d < π(B,B) − π(A,A). So,

starting from a state in SBB , at least n− k mutations must occur to switch n− k agents from

B to A, hence leaving less than k + 1 agents choosing B. Our assumptions guarantee that

n ≥ 4k + 2. This implies that R(SBB ) ≥ 3k + 2.

We now suppose to start from a state outside SBB . With k mutations, we are sure to reach

a state where at least k agents choose B. In such a state, all other agents find it optimal

to choose B and connect to agents choosing B (for the same reasons discussed above).

This means that a state in SBB can be reached with positive probability in the unperturbed

dynamics, thus implying that CR(SBB ) ≤ k. Since R(SBB ) > CR(SBB ), we can conclude by

Theorem 1 of Ellison (2000) that all stochastically stable states belong to SBB .

The last step is to show that, for any two states s = (a, g), s′ = (a′, g′) ∈ SBB , there exists

a sequence of states belonging to absorbing sets s1, . . . , si, . . . , s` such that s1 = s, s` = s′,

and a single mutation allows to move from si to si+1 for i = 1, . . . , `− 1. If, for agent i, we

have that si 6= s′i, then a single mutation can change si to s′i. The state so reached forms an

absorbing set by Lemma 1, since all agents play B, it is fully connected and type-segregated.

With at most n of such steps, we are sure to have reached state s′. Therefore, SBB is a

mutation-connected component (in the words of Samuelson, 1994), and we apply Theorem

2 in that paper to conclude that all states in SBB are stochastically stable.

Let us make a remark to better constrast our results with those in Staudigl and Weiden-

holzer (2014). In our model, the assumption that nx ≥ ny ≥ 2k+1 implies that k < (n−1)/2.

In the model of Staudigl and Weidenholzer (2014) (see Theorem 1) this condition guarantees

that the payoff-dominant convention is the stochastically stable outcome. In this respect, our

Proposition 1 represents a robustness check of their result: the introduction of types that are

not globally observable and that determine a penalty in case of a mismatch does not affect

the long-run prediction in favor of the payoff-dominant convention, provided that the penalty

for a mismatch of types is sufficiently low. The only difference between our prediction and

theirs concerns the shape of the interaction network: we obtain that stochastically stable

states are type-segregated, while this feature is clearly absent in Staudigl and Weidenholzer

(2014). We stress that this is something expected – especially in monomorphic states – as

the interaction between agents of different types bears a cost.
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Stochastic stability: high cost of mismatch in types. The prediction obtained by

stochastic stability drastically changes when d is high. Surprisingly, neither the payoff-

dominant convention nor the risk-dominant convention is selected in this case. Rather, we

obtain the both actions will co-exist in the long run.

The argument behind the result relies on a tree surgery argument, exploiting the tech-

niques by Young (1993). Basically, we will show that, starting from any absorbing set that is

not included in SAB ∪SBA , we can build sequences of absorbing sets ending in SAB and SBA such

that each step has resistance 1. Then, we show that the radius of SAB and the radius of SBA
are larger than 1, which implies that all other absorbing sets have a stochastic potential that

is higher than SAB and SBA . The proof of Proposition 2, where our main result is provided,

makes use of the preliminary results stated in Lemmas from 2 to 6.

We start by providing a characterization of SAB and SBA . In particular, Lemma 2 states

that SAB and SBA are two absorbing sets, each made of all and only the states where all agents

of one type play an action, all agents of the other type play the other action, and every agent

has k links towards agents of his own type.

Lemma 2 (Characterization of SAB and SBA ). If c < π(A,A), d > π(B,B)
n− 1

ny
, then:

(a) a state s ∈ SAB if and only if (i) s is type-monomorphic with x on A and y on B, (ii)

s is fully connected, and (iii) s is type-segregated;

(b) a state s ∈ SBA if and only if (i) s is type-monomorphic with x on B and y on A, (ii)

s is fully connected, and (iii) s is type-segregated.

Moreover, SAB and SBA are two absorbing sets.

With the following lemma we establish that at least 2 mutations are required to leave SAB (or

SAB) reaching, with positive probability, another absorbing set. Moreover, we establish that

if the population of agents of each type is sufficiently large, then the number of mutations

to leave SAB is equal to the number of mutations to leave SBA .

Lemma 3 (Away from SAB and SBA ). If c < π(A,A), d > π(B,B)
n− 1

ny
, then R(SAB) ≥ 2 and

R(SBA ) ≥ 2. If, additionally, ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
, then R(SAB) =

R(SBA ).

By Lemma 4 we establish that, starting from any state in an absorbing set, there exists a

sequence of absorbing sets that reaches an absorbing set belonging to SAA ∪ SBB ∪ SAB ∪ SBA ,

with each step in the sequence requiring a single mutation.
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Lemma 4 (Towards SAA∪SBB ∪SBA ∪SAB). If Q is an absorbing set, then there exists a sequence

of absorbing sets Q1, . . . , Q`, where Q1 = Q and Q` ⊆ SAA ∪SBB ∪SAB ∪SBA , such that a single

mutation allows to move from Qi to Qi+1 for i = 1, . . . , `− 1.

Lemma 5 clarifies how the system can pass from SAB and SBA to SBB with a minimum number of

mutations; in particular, it shows the existence of a sequence of absorbing sets that, starting

from SAB (respectively, SBA ), involves R(SAB) (respectively, R(SBA )) mutations to do the first

step, and then proceeds with all steps requiring a single mutation until an absorbing set in

SBB is reached.

Lemma 5 (From SAB to SBB and from SBA to SBB ). If Q = SAB or Q = SBA and Q′ ⊆ SBA are

absorbing sets, then:

(a) there exists a sequence of absorbing sets Q1, . . . , Q`, where Q1 = Q and Q` = Q′, such

that R(SAB) mutations allow to move from Q1 to Q2, and a single mutation allows to

move from Qi to Qi+1 for i = 2, . . . , `− 1;

(b) there also exists a sequence of absorbing sets Q′1, . . . , Q
′
`, where Q

′
1 = Q′ and Q′` = Q,

such that R(SBA ) mutations allow to move from Q′1 to Q
′
2, and a single mutation allows

to move from Q′i to Q
′
i+1 for i = 2, . . . , `− 1.

Finally, the following lemma provides the last result to be used in the proof of Proposition 2:

for any absorbing set belonging to SAA ∪ SBB , we can find a sequence of absorbing sets where

each step of the sequence has resistance 1, which originates from the absorbing set under

consideration and reaches SAB (or SBA ).

Lemma 6 (From SAA ∪ SBB to SBA and to SAB). If Q ⊆ SAA ∪ SBB and Q′ = SBA or Q′ = SAB are

absorbing sets, then there exists a sequence of absorbing sets Q1, . . . , Q`, where Q1 = Q and

Q` = Q′, such that a single mutation allows to move from Qi to Qi+1 for i = i, . . . , `− 1.

We are now ready to state and to prove our main result.

Proposition 2. If c < π(A,A), d > π(B,B)
n− 1

ny
, then every stochastically stable state is

contained in SBA ∪SAB . If, additionally, ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
, then a

state s is stochastically stable if and only if s ∈ SBA ∪ SAB .

Proof. By Lemma 2 we know that SAB and SBA are two absorbing sets, and by nesting Lemma

4 with Lemma 5 and with Lemma 6 we can find, starting from any absorbing set, a path
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between absorbing sets that leads to SAB and such that every step in the path involves only

1 mutation, except if the path goes through SBA , which instead requires R(SBA ) mutations

to be exited. For every absorbing set, take one such path with the absorbing set as the

starting point, and consider the arising directed graph; for every absorbing set that has

more than one out-going link, all such links but one are deleted; by doing so, we are able to

construct an SAB-tree over absorbing sets where every link between any two nodes involves

only 1 mutation, except for the link out-going from SBA , which involves R(SBA ) mutations.

We observe that 1 is the minimum number of mutations required to move between ab-

sorbing sets, and R(SBA ) is the minimum number of mutations required to exit SBA , by Lemma

3. Therefore, the stochastic potential of SAB is equal to ξ − 2 + R(SBA ), where ξ denotes the

total number of absorbing sets. With an analogous reasoning we obtain that the stochastic

potential of SBA is equal to ξ − 2 +R(SAB).

Now we consider an absorbing set Q 6⊆ SAB ∪ SBA . We observe again that 1 is the mini-

mum number of mutations required to move between absorbing sets, R(SBA ) is the minimum

number of mutations required to exit SBA , and R(SAB) is the minimum number of muta-

tions required to exit SAB . Therefore, the stochastic potential of Q cannot be lower than

ξ−3+R(SAB)+R(SBA ), which is higher than the stochastic potentials of SAB and SBA , because

R(SAB) ≥ 2 and R(SBA ) ≥ 2 by Lemma 3. This allows us to conclude, by Theorem 2 in Young

(1993), that every stochastically stable state is contained in SBA ∪SAB . In case the additional

assumption ny >
dk

π(B,B)− π(B,A)
is satisfied, then the stochastic potentials of SAB and SBA

are equal, and hence we can conclude, again by Theorem 2 in Young (1993), that a state s

is stochastically stable state if and only if s ∈ SBA ∪ SAB .

The results stated in Proposition 2 can be better understood if contrasted with the results

provided in Anwar (2002). As mentioned in the Introduction, Anwar (2002) studies a model

where agents interact at specific locations and such locations are subject to capacity con-

straints; the main finding is that the risk-dominant and the payoff-dominant convention can

co-exist in the long run, provided that there is enough freedom of mobility across locations.

However, freedom of mobility must not be too much – i.e., constraints must be such that

some agents are not allowed to go to the location that they prefer – otherwise only the

payoff-dominant convention emerges – as shown by, e.g., Bhaskar and Vega-Redondo (2004).

So, co-existence can be understood as the result of imperfections – or frictions – that makes

this case lie in between absence of mobility – when the risk-dominant convention emerges in

the log-run – and full mobility – when the payoff-dominant convention does emerge.

On the contrary, in the present model the co-existence of distinct conventions is the
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consequence of a new effect that favors directly type-monomorphic states, rather than me-

diating between two extreme cases where the two conventions are globally adopted. Type-

monomorphic states are indeed the only states where the information on types can be per-

fectly derived from the observation of actions, allowing a mutated agent to come back with

certainty to having interactions with agents of own type; this makes type-monomorphic states

relatively more resilient to mutations. Additional comments follow in the next section.

5 Discussion

In this section we discuss the main assumptions affecting the network of local interactions

and the social coordination game.

The non-cooperative model of network formation that we have considered is non-cooperative

and asymmetric in both cost bearing and payoff flows (fundamentally, the one-way flow model

in Bala and Goyal, 2000). The assumption that connections are formed unilaterally can be

realistic for some cases, while for other cases a cooperative model of network formation

might be more appropriate – like that in Jackson and Watts (2002), where the consent of

both agents involved is needed to form a link. Further, the assumption that payoffs flow

unilaterally to the agent who has established the link – and bears the maintenance cost –

is another feature of our model that may fit some cases, but not others. Both assumptions

are also found in Staudigl and Weidenholzer (2014), which is the natural benchmark against

which to compare our results. In their analysis, as in ours, the two assumptions described

above allow a reasonable treatment of the model that, otherwise, would have been by far

more complicated – and this, admittedly, is the main reason why we adopt them.

However, we do want to stress that the main intuition underlying our results does not

depend crucially on the details of the network formation model. Indeed, it is a general fact

that, when types are not observable outside one’s own neighborhood and interactions with

different types are costly, it does emerge an implicit cost of adding a new neighbor which

is due to the risk of linking to an agent of a type different from one’s own; and such a

cost can be large enough to prevent an agent – who has been hit by a mutation – from

going back to his status quo. This fact allows paths made of single mutations to move

the system from one absorbing set to another absorbing set, making it rather easy to exit

most absorbing sets – including the ones with the payoff-dominant convention and the risk-

dominant convention. Similarly, it is a fact that there is only one situation where such a risk

is totally absent: when there is perfect correlation between actions and types, i.e., in type-

monomorphic states; indeed, if we start from a type-monomorphic state then going back to
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the status quo after a single mutation comes at no implicit cost and, hence, it is quite more

difficult to leave a type-monomorphic state. This is the core reason why the absorbing sets

collecting type-monomorphic states are stochastically stable, and in this argument there is

no substantial role played by a specific network formation model (even if details can well

and substantially affect transition periods and patterns).

The ingredients which are crucial in the above reasoning are related to two distinct

aspects: the unobservability of the types of agents with whom no link is currently maintained,

and the magnitude of the cost that has to be incurred to interact with an agent of a different

type. The fact that types are unobservable prior to interaction seems a plausible assumption

in many situations, at least if we think of the type as private piece of information which is

learned only after interaction – possibly inferring the type from the payoff earned (which

seems natural if type is a payoff relevant characteristic). The cost to be incurred for type

mismatch can be seen as a form of homophily, i.e., as the result of preferences for interacting

with one’s own type. In this regard, we observe that our model exhibits homophily in the

long run, and this is less obvious than it might appear at first because agents cannot choose

directly to interact with agents of similar type – exactly because types are not observable prior

to interaction. In this sense, the present paper can be seen as a marginal contribution to the

recent literature on homophily in social interactions (ser Currarini et al., 2009 and Bramoullé

et al., 2012): social coordination plus weak homophily (i.e., d is small enough) leads to the

global adoption of the payoff-dominant convention (like in Staudigl and Weidenholzer, 2014)

with the additional feature that interactions take place only between agents of the same

type (see Proposition 1 and comments thereafter), while if homophily is strong enough (i.e.,

d is large enough) in the long-run we observe segregation in both types and actions (see

Proposition 2). As a final remark on the cost of type mismatch, we observe that such cost

can well be interpreted as a part of the link maintenance cost. With this interpretation,

while a connection with a agent of similar type has a cost of c, a connection with an agent

of different type has a cost of c + d, where d measures some additional type-related cost of

interaction (e.g., extra communication costs due to a the use of a different language).

There is another assumption of our model that has a crucial role but has remained so far

implicit: the agents’ lack of memory. The important consequence of the lack of memory is

that agents who are hit by a mutation, and change the network of interactions, cannot choose

to go back and connect with the same agents with whom they were previously connected. In

fact, if this were possible, there would be no risk of type mismatch when an agent is hit by a

mutation and considers to go back to his previous status quo – i.e., to undo what a mutation

has done. So, without this assumption our results would not be warranted. However, we
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think that assuming agents’ lack of memory does fit some relevant cases. For instance, it fits

the case where the effects of a mutation persist over several periods and the mutated agents

return to their mind only after some time, but in the meanwhile old neighbors might have

become untraceable or unrecognizable. In general, we can think of the lack of memory as

not only due to agents’ cognitive bounds, but also to the actual technology of interactions

which might make it impossible to retain with certainty the access to old neighbors (for

instance, this is something quite widespread in social interactions over the internet). Most

importantly, we stress that what is really required for our main results is a weak version of

the lack of memory, i.e., a positive probability that agents are not able to trace back their

old neighbors once they disconnect from them.

We end this discussion with a couple of remarks concerning the coordination game. First,

we observe that the mechanism behind our results does not rest crucially on the fact that

one action is payoff-dominant and the other action is risk-dominant. What is important in

order to establish that absorbing sets made of type-monomorphic states are more resilient

to mutations – i.e., that at least two mutations are required to leave these absorbing set (see

Lemma 3) – is that, once a mutation has turned a single agent from A to B, the agents who

are connected to him must not find it profitable to switch from A to B. In our model this

condition is implied by the fact that A is risk-dominant (we remind also that in SAB and SBA
all agents are fully connected with agents of their own type). However, if action B were both

payoff-dominant and risk-dominant, and provided that at least 2 out of k neighbors must

play B to have that playing B is better than playing A, then stochastic stability would still

select, under the assumptions of Proposition 2, states where agents of one type coordinate

on B, and agents of the other type coordinate on A.

Moreover, the inspection of the mechanism driving our results makes us confident that

similar conclusions hold in more general coordination games, and with more than 2 types of

agents. Our belief is that in any coordination game with a number of actions greater than

or equal to the number of types, if the payoff to interact with any type different from one’s

own is large enough, then different types will coordinate on different actions. Indeed, states

where at least one action is played by agents of two different types admit paths leading to

new absorbing sets which are made of steps involving a single mutation, on the ground of

the same intuition used in this paper: going back to the status quo after a mutation involves

the risk of a type-mismatch for such agents. But this does not hold in states where types

and actions are perfectly correlated, and hence such states are more resilient to mutations;

of course, the existence of states where types and actions are perfectly correlated requires

that the existence of at least as many actions as types.
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We think that these observations reinforce the main message that can be drawn from

our contribution: in a setting where a population of agents has to form interactions and

coordinate on some action, if agents differ for some unobservable characteristic and inter-

actions between agents with dissimilar characteristics are costly enough, then actions will

end up playing the role of signals, allowing the formation of clusters of agents who are

type-homogeneous, each cluster coordinating on a different action.
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Appendix - Proofs of Results and Lemmas

Proof of Result 1

Proof. Suppose that agent i is given a revision opportunity at time t + 1, and suppose ad

absurdum that there exists a strategy si = (ai, gi) that maximizes the interim utility of i

and tells him to maintain the link with agent j, i.e., gij = 1. We construct another strategy

s′i = (a′i, g
′
i) such that a′i = ai and g′i is equal to gi with the only difference that in g′i the

link with agent j is removed and a new link is formed with an agent ` such that at` = atj.

We observe that the assumption that n(wi, a
t
j) ≥ k + 1 implies that there exists at least an

agent having the same type of i and choosing the same action of j. This in turn implies (i)

that a new link can actually be formed with an agent ` choosing at` = atj, and (ii) that the

overall change in utility for i by playing s′i instead of si is strictly positive: this is so because

the change of utility due to the play of the social game with all neighbors is trivially equal

to zero (since at` = atj and all other neighbors have remained the same, while the change in

the expected number of different types is negative (since there is a positive probability that

` has the same type of i, and agent j is known for sure to be of different type).

We have proven that ui(s
′
i, s

t) > ui(si, s
t), and this suffices to show that agent i cannot

choose a strategy such that gt+1
ij = 1.

Proof of Result 2

Proof. Let us suppose, ad absurdum, that strategy si = (ai, gi) such that gij = 0 maximizes

i’s interim utility. We first observe that gi cannot tell i to have less than k links, because

otherwise i might increase his utility by simply adding the link with j, obtaining an additional

utility of π(ai, a
t
j), which is surely positive because of the assumption that c < π(B,A),

which implies that every payoff in the social game is positive even after subtracting the

maintainance cost. Therefore, gi tells i to have k links, which in turn implies that a new link

with some agent ` has been formed, since the link with j has been removed. We construct

another strategy s′i = (a′i, g
′
i) such that a′i = ai and g′i is equal to gi with the only difference

that in g′i the link with agent j is maintained and the link with agent ` is not formed. We

now argue that ui(s
′
i, s

t) > ui(si, s
t).

We first note that the expected number of mismatches in types is lower with si than

with si, because w(i) = w(j) for sure while `’s type is different from i’s type with positive

probability: indeed, if at` = aj then we have the assumption that ni0(¬w(i), atj) ≥ 1, while

if at` = ati then we have that ni0(a
t
i) ≥ 1 and hence the assumption that d

n0
i (¬w(i), ati)

n0
i (a

t
i)

>
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π(ati, a
t
i)− π(ati, a

t
j) implies n0

i (¬w(i), ati) ≥ 1.

Therefore, if i obtains the same or a larger utility in the social game by interacting with j

than with `, then we have obtained that ui(s
′
i, s

t) > ui(si, s
t). The only case where i obtains

a larger utility interacting with ` than with j is if atj 6= ai and at` = ai. Even in such a case,

the assumption that d
n0
i (¬w(i), ati)

n0
i (a

t
i)

> π(ati, a
t
i)− π(ati, a

t
j) ensures us ui(s

′
i, s

t) > ui(si, s
t).

We can conclude that no strategy si such that gij = 0 can maximize i’s interim utility,

and this means that i will surely maintain the link with j if he has a revision opportunity

at time t+ 1 (and no change of course happens if i is not given a revision opportunity).

Proof of Result 3

Proof. We first prove point (a). Consider a state s that is A-monomorphic, fully connected,

and type-segregated. We check that an agent who receives a revision opportunity at s would

see his utility reduced if he changes strategy. Indeed, having less than k links is suboptimal,

since π(A,A) > c. Moreover, removing a link and casting a new one brings a neighbor who

still plays A (since the state is A-monomorphic) but possibly is of a different type, hence

generating an expected loss. Finally, switching from A to B is clearly detrimental, due to

π(A,A) > π(B,A). Therefore we can conclude that no agent will ever change strategy, and

hence state s belongs to a singleton absorbing state. An analogous reasoning can be made

for a state that is B-monomorphic, fully connected, and type-segregated, where π(B,B) > c

holds because π(B,B) > π(A,A).

We now prove point (b). Consider a state s that is type-monomorphic with x on A and y

on B, fully connected and type-segregated. Take an agent of type x who receives a revision

opportunity. Maintaining less than k links is sub-optimal for him, since π(A,A) > c and,

in addition, all agents playing A are of type x so that there is no risk of a type mismatch.

Replacing an existing link with a new one has no effect on utility if the new link is casted

towards an agent who currently plays A, since all agents playing A are of type x and hence

there is no risk of a type mismatch. Replacing an existing link with a new one has a negative

effect on expected utility if the new link is casted towards an agent playing B, since all agents

currently playing B are of type y and d > π(B,B)− π(A,A), which means that the penalty

for the type mismatch is larger than the maximum attainable gain. Finally, switching from

A to B without changing neighbors is detrimental because of π(A,A) > π(B,A). A similar

argument holds a fortiori if we consider an agent y who receives a revision opportunity. We

can conclude that any revising agent will at most reshuffle his links among agents playing

his same action, who are surely of his same type (due to the perfect correlation between
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actions and types). Therefore, starting from s we can only reach other states that are type-

monomorphic with x on A and y on B, fully connected and type-segregated. This shows

that an absorbing sets exists, containing type-monomorphic states with x on A and y on B.

Clearly, if we invert x with y we obtain that the same reasoning applies to type-monomorphic

states with x on B and y on A.

Then, we prove point (c). Consider a state s where k + 1 agents of type x play B,

k + 1 agents of type y play B, and all other agents play A; also, s is fully connected and

type-segregated (which is possible, since nx ≥ ny ≥ 2k+ 2). Any agent playing B will never

change strategy, because he is attaining the maximum possible payoff (i.e., k(π(B,B)− c)),
which is not reachable if he switches to A, and changing neighbors comes with the risk of

a type mismatch – since some agents currently playing B are of type x and some are of

type y. Any agent playing A will never change his strategy as well. Indeed, the maximum

gain which can be obtained by removing an existing link and connecting to someone playing

B is π(B,B) − π(A,A), which is lower than the expected cost of a type mismatch (which

is equal to d/2 since n(x,B|s) = k + 1 = n(y,B|s)) because of the assumption that d >

2(π(B,B) − π(A,A)). Moreover, removing an existing link and connecting to someone

playing A brings no benefit and an expected cost due to type mismatch; deleting any of

the k links is suboptimal, since π(A,A) > c; and switching from A to B without changing

neighbors is detrimental because of π(A,A) > π(B,A). Therefore, state s belongs to a

singleton absorbing state.

Finally, we prove point (d). Consider a state s where agent i of type y plays A and

maintains no link, while all other agents play B and maintain k links towards agents of the

same type different form i. Any agent other than i will never change strategy, because he

is attaining the maximum possible payoff (i.e., k(π(B,B) − c)), which is not reachable if

he switches to A, and changing neighbors comes with the risk of a type mismatch because

some agents currently playing B are of type y. If agent i chooses to connect towards an

agent playing B, he will earn at most π(B,B), but has to suffer an expected cost of type

mismatch equal to dnx/(n − 1), which is larger than π(B,B) due to the assumption that

d > π(B,B)(n − 1)/nx. If agent i is isolated, then he is indifferent between playing A and

B. Therefore, we have found an absorbing set that is made of states s and s′, where s′ is

identical to s with the only difference that agent i plays B instead of A.

Proof of Lemma 1

Proof. The requirement that s is B-monomorphic is trivially a necessary condition for s ∈
SBB . We first show that, given (i), if we are not in a state such that also (ii) and (iii) hold,
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then it must be the case that with positive probability we reach a state where (i), (ii), and

(iii) hold. Suppose that ai = B for all i ∈ N , but s is not fully connected and/or not

type-segregated. We observe that, for a revising agent, choosing action A would clearly be

suboptimal. Moreover, the expected payoff of forming a link with a new neighbor who plays

B is both higher than not forming that link at all (because π(B,B) − π(A,A) > d and

π(A,A) > c imply π(B,B) − c > d) and higher than maintaining an existing connection

with a type different from one’s own (because the resulting match cannot be worse, and

possibly better). Therefore, with positive probability any agent who has less than k links

and/or links with agents of a type different from his own will form new links with agents

who play B, and with positive probability these new agents are of his own type.

We now show that a state satisfying (i), (ii) and (iii) forms a singleton absorbing set. To

do so, it is enough to observe that any agent who receives a revision opportunity would see

his payoff decreased, in expectation, by changing strategy. Indeed, by choosing action A, the

agent would obtain a utility that is surely lower than his current utility k(π(B,B)− c), and

the same is true if he chooses to maintain less than k links; also, substituting an existing

link with a new one comes with the risk of linking to an agent of a type different from one’s

own, which leads to a lower expected payoff.

Proof of Lemma 2

Proof. We provide the proof for point (a) only, being the proof for point (b) essentially the

same.

By definition, if s ∈ SAB , then s is type-monomorphic with x on A and y on B, so (i)

is trivially necessary. We first show that, given (i), if we are not in a state such that also

(ii) and (iii) hold, then it must be the case that with positive probability we reach a state

where (i), (ii), and (iii) hold. Suppose that s is type-monomorphic with x on A and y on

B, but not fully connected and/or not type-segregated. Consider a revising agent currently

playing B. We observe that choosing A is clearly suboptimal since, at most, he can obtain

k(π(A,A) − c − d) < 0 because, by (i), all agents playing A are of a type different from

his own and, by assumption, d > π(B,B)(n − 1)/ny > π(A,A). Moreover, the expected

payoff of forming a link with a new neighbor who plays B is the same of keeping an existing

link with a neighbor who also plays B (because, again by (i), B is played only by agents

of similar type), it is strictly greater than the expected payoff of forming a link with an

agent who plays A (because, by (i), A is played only by agents of a different type), and

it is strictly greater that not forming that link at all (because π(B,B) > π(A,A) and

π(A,A) > c imply π(B,B) − c > 0). Consider a revising agent currently playing A. We
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observe that choosing B is suboptimal since, at most, he can obtain k(π(B,B)− c− d) < 0

because, by (i), all agents playing B are of a type different from his own and, by assumption,

d > π(B,B)(n − 1)/ny > π(B,B). Moreover, the expected payoff of forming a link with a

new neighbor who plays A is the same of keeping an existing link with a neighbor who also

plays A (because, by (i), A is played only by agents of similar type), it is strictly greater than

the expected payoff of forming a link with an agent who plays B (because, by (i), A is played

only by agents of a different type and, by assumption, d > π(B,B)(n − 1)/ny > π(A,B),

so that π(A,B) − d < 0 < π(A,A)), and it is strictly greater that not forming that link at

all (because π(A,A) − c > 0). Therefore, with positive probability any agent who plays B

(respectively, A) and that has less than k links and/or links with agents of a type different

from his own will form new links with agents who play B (respectively, A) up to k connections

in total, and with certainty these new agents are of his own type.

We now show that the set of states satisfying (i), (ii) and (iii) forms an absorbing set.

To do so, we first observe that, for the same arguments described above, any agent who

receives a revision opportunity would see his payoff certainly decreased by changing action,

and/or by choosing to maintain less than k links, and/or by linking to new agents who play

a different action (since, by (i), they must be of a different type). Therefore, if we start from

a state where conditions (i), (ii) and (iii) are satisfied, we will always remain in states where

those conditions are satisfied. We finally show that, taken any two distinct states s and s′

satisfying (i), (ii) and (iii), we can move from one to the other with positive probability.

Indeed, s = (a, g) and s′ = (a′, g′) can only differ because gi 6= g′i for some agent i; every

such agent can receive with positive probability a revision opportunity, and he can choose

with positive probability to reshuffle all his links as long as links are casted towards agents

choosing his own action, since by (i) there is no risk of forming a link with an agent of a

type different from one’s own.

Proof of Lemma 3

Proof. We first show that 1 mutation is not sufficient to move from SAB to another absorbing

set. Consider a state s ∈ SAB , and suppose that a single mutation hits an agent possibly

changing both his action and his network of interactions. Suppose that an agent different

from the mutated one is given a revision opportunity. We claim that such an agent will

not change action and will not form new links with agents choosing an action different

from his own. To see why this is so, we observe five facts. First, forming new links with

an agent who is currently playing a different action is suboptimal, as the expected payoff

is negative due to the high penalty for a mismatch in type (because the expected payoff
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from such a link is at most π(B,B) − ny

ny−1d, which is negative due to the assumption that

d > π(B,B)n−1
ny

). Second, if the mutated agent switched from A toB, then any revising agent

who is maintaining a connection with the mutated agent will not switch to B since he has

k−1 other neighbors playing A and so by switching he would get (k−1)π(A,A)+π(A,B) >

π(B,B) + (k − 1)π(B,A) (the inequality holding because A is the risk-dominant action).

Third, if instead the mutated agent switched from B to A, then any neighboring revising

agent will not switch to A since he can keep playing B, remove the link with the mutated

agent and form a new link with another agent playing B (who exists because ny ≥ 2k + 1)

which gives him kπ(B,B) − kc > π(A,A) + (k − 1)π(A,B) − kc. Fourth, changing action

is clearly suboptimal for an agent who is not maintaining a connection with the mutated

agent. Finally, we observe that when the mutated agent is given a revising opportunity, he

will certainly choose to have k links towards agents playing the same action he was playing

before the mutation, because only doing so he can avoid to pay the cost d > π(B,B) since

all other agents’ action is perfectly correlated with their type; given this, it follows that the

mutated agent will also choose to play the action he was playing before the mutation, since

this allows him to coordinate. From these five observations ti follows that, after that a single

mutation has occurred, the system will surely go back to a state where conditions (i), (ii)

and (iii) in point (a) of Lemma 2 are satisfied, hence belonging to SAB .

A similar reasoning can be applied considering SBA in the place of SAB , thus obtaining that

R(SAB) ≥ 2 and R(SBA ) ≥ 2. In what follows we show that, if in addition we have that:

ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
, (1)

then R(SAB) and R(SBA ) can be computed considering only mutations that hit agents of a

single type – either x or y.

We start by providing a sufficient condition to have that m mutations hitting agents of

type x are enough for the system to leave SAB with positive probability. By Lemma 2, we

know that SAB is a single absorbing set. So we can choose a specific state in SAB to start from,

and in particular we can choose a state where there exists a cluster made of k + 1 agents of

type x (i.e., gij = 1 for any i and j in the cluster). If m mutations hit m distinct agents

in the cluster inducing them to switch action from A to B (and with no change to their

interaction networks), and if the following inequality is satisfied:

m(π(B,B)− c) + (k −m) max{0, π(B,A)− c} > k(π(A,A)− c), (2)

then all non-mutated agents in the cluster who receive a revision opportunity will find it

optimal to choose to perform action B while not changing their interaction networks. So,
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with positive probability the system reaches a new state that belongs to an absorbing set

different from SAB (indeed, at least the k + 1 agents of type x in the cluster will never go

back to action A). We also observe that other agents of type x might then find it profitable

to switch to action B, and that all agents of type y will keep playing action B. Finally, we

note that (2) is surely satisfied when m = k.

Suppose now that, starting from a state s ∈ SAB , mx mutations hit agents of type x, my

mutations hit agents of type y, so that state s′ is reached from which another absorbing set

can be reached with positive probability. Since we know that (2) is satisfied when m = k,

then in the following we focus on the case where mx +my < k.

We first observe that at least one of the following two inequalities must be satisfied in s′:

mx(π(B,B)− c) + (k −mx) max{0, π(B,A)− c} ≥ k[π(A,A)− c− (dmy)/(nx − 2k +my)]; (3)

my(π(A,A)− c) + (k −my) max{0, π(A,B)− c} ≥ k[π(B,B)− c− (dmx)/(ny − 2k +mx)]. (4)

To see why, suppose that both (3) and (4) are not satisfied. Then, no agent of type x who

is given a revision opportunity finds it profitable to play action B (due to the failure of (3)),

and no agent of type y who is given a revision opportunity finds it profitable choose to play

action A (due to the failure of (4)). For the mutated agent this is true a fortiori, since he can

interact with smaller number of mutated agents – being himself one of the mutated. Hence,

sooner or later all agents of type x will go back to play A and all agents of type y will go back

play B. When we have perfect correlation between types and actions, it is obvious (because

of the assumption that d > π(B,B)
n− 1

ny
) that revising agents will choose to maintain k

links with agents choosing their same action (and hence having their same type). Therefore,

if both (3) and (4) are not satisfied, then from s′ no other absorbing set can be reached.

We now show that, under the assumption that ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
,

inequality (4) is false. To understand this, it is enough to re-write (4) with < instead of

≥, and to obtain an explicit bound on ny (getting rid of mx by making the new inequality

harder to be satisfied). Therefore, inequality (3) must hold.

We then observe that, if inequality (3) holds, then inequality (2) is implied by the

assumption that ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
. To understand this, we fix

m = mx+my, we take the difference between the left-hand side of (2) and the left-hand side

of (3), and we set it larger than the difference between the right-hand side of (2) and the

right-hand side of (3). Working out such inequality we obtain a bound on nx that is implied

by ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
(once it is noted that ny < nx). This means

that, if mx mutations hitting agents of type x and my mutations hitting agents of type y
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allow the system to leave SAB with positive probability, then mx + my mutations hitting

agents of type x only are also sufficient for the system to leave SAB with positive probability.

We can repeat all the previous arguments with SBA in the place of SAB . The only difference

is that mx and my have inverted roles, and the same occurs for nx and my. Summing up, it

is true that, if ny > 2k +
kd

π(B,B)−max{π(A,A), π(A,B)}
, then we are allowed to focus on

mutations hitting only agents of one type, in the attempt to determine R(SAB) and R(SBA ).

Finally, we focus on mutations hitting only one type of agents, and we determine R(SAB)

and R(SBA ). We consider a state s ∈ SAB , and we observe that we already know that m

mutations that hit agents of type x inducing them to switch from A to B are enough to leave

SAB with positive probability, if inequality (2) is satisfied. We remark that such inequality is

also necessary for such an exit from SAB . Indeed, it is immediate to observe that, if (2) is not

satisfied, then no agent of type x who is given a revision opportunity will find it profitable

to play action B, and agents of type y will clearly keep playing action A. Furthermore, once

a mutated agent goes back to action A, the gain (potentially negative) of choosing B over A

for agents of type x is further reduced, while agents of type y never find it profitable to play

A over B. Sooner or later, perfect correlation between types and actions will be restored,

and a fully connected and type-segregated state will be reached, belonging to SAB . We denote

with m the minimum m such that inequality (2) is satisfied. We note that m ≥ k.

We now consider mutations hitting agents of type y who switch from B to A. As long

as at least k + 1 agents of type B keep choosing B, then agents who have mutated will

sooner of later go back to B (due to the perfect correlation between B and y, and the fact

that B is the payoff-dominant action). Since ny ≥ 2k + 1, this means that at least k + 1

mutations hitting agents of type y are required to leave SAB . Since m ≥ k, we can conclude

that R(SAB) = m. We can repeat exactly the same arguments with SBA in the place of SAB ,

thus obtaining that R(SBA ) = m. Therefore, R(SAB) = R(SBA ).

Proof of Lemma 4

Proof. The proof begins by showing that, starting from a generic state s ∈ Q, another state

ŝ can be reached with positive probability such that it satisfies properties that help in the

following construction of a path from ŝ to an absorbing set Q` ⊆ SAA ∪ SBB ∪ SAB ∪ SBA .

Preliminarily, we define βx(s) ⊆ Nx as the set of agents of type x at state s who are

playing A and have at least one best reply strategy where either action B is played, or a

new link towards an agent currently playing B is casted, or both. Similarly, define αy(s)

as the set of agents of type y such that, at state s, they are playing B and have at least
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one best reply strategy where either action A is played, or a new link towards an agent

currently playing B is casted, or both. We now show how the system can move with positive

probability from state s to a state ŝ where βx(ŝ) = ∅ and αy(ŝ) = ∅.
Starting from state s, with positive probability all and only the agents in βx(s) ∪ αy(s)

will receive a revision opportunity, and will choose a best reply strategy where, either action

B (respectively, action A) is played, or a new link towards an agent currently playing B

(respectively, A) is casted, or both. Call s′ the state reached after these updates. If βx(s
′) = ∅

and αy(s
′) = ∅ then we are done; otherwise we iterate the updating process, giving revision

opportunities to all and only the agents in βx(s)∪αy(s). We observe that this iteration will

yield a state ŝ with βx(ŝ) = ∅ and αy(ŝ) = ∅ in a finite number of repetitions. This is so

because agents who switch from A to B (respectively, from B to A) exit defintely set βx(s)

(respectively, set αy(s)), and agents who cast a new link towards an agent currently playing

B (respectively, A) can be part of set βx(s) (respectively, set αy(s)) for at most k times

(since k is the maximum number of links that each agent can maintain).

Let us denote with NxA(ŝ) the set of agents of type x who are playing action A at state

ŝ, and with NyB(ŝ) the set of agents of type y who are playing action B at state ŝ. The

proof now proceeds by considering 4 possible cases concerning the emptiness/non-emptiness

of the sets NxA(ŝ) and NyB(ŝ). For each case, we construct the needed sequence of states

from ŝ ∈ Q to a state in Q` that is either monomorphic or type-monomorphic.

Case 1. Suppose first that NxA(ŝ) 6= ∅ and NyB(ŝ) 6= ∅. We apply the following path-

building procedure.

Consider a single mutation that hits an agent j of type x who is playing action B at ŝ.

If no such agent exists, we are done. Otherwise, suppose thar after the mutation agent j

copies the strategy ŝi = (âi, ĝi) of an agent i ∈ NxA(ŝ); in particular, j will adopt strategy

s′j = (a′j, g
′
j) such that a′j = âi, g

′
jh = ĝih for every h 6= i, j, and g′ji = ĝij. We now observe

that 3 properties hold for every agent h ∈ NxA(s′): agent h has no best reply where (i) action

B is chosen, or (ii) a new link towards an agent playing B is casted, or (iii) an existing link

towards an agent of type x playing A is removed unless he is certain to find an agent of type

x when casting a new link towards an agent playing A. (i) and (ii) come from the fact that

agents belonging to NxA(ŝ) have, by construction, no best reply where action B is chosen

or a new link towards an agent choosing B is casted; the same holds for the same agents a

fortiori at state s′ (where agent j has switched from B to A), and it also holds for agent j,

who is copying agent i after mutation. (iii) comes from the simple observation that, given

the optimality of choosing A, it cannot be optimal to remove a link from an agent of type x

playing A unless he is certain to find an agent of type x when casting a new link towards an
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agent playing A.

For similar reasons, analogous properties hold for the agents belonging to NyB(s′) (=

NyB(ŝ)): no agent of type y who is playing B has a best reply where action A is chosen, or a

new link towards an agent playing A is casted, or an existing link towards an agent of type

y playing B is removed unless he is certain to find an agent of type y when casting a new

link towards an agent playing A.

The above 3 properties imply that any state s′′ that is reachable with positive probability

in the next period of the unperturbed dynamic is such that, for every agent h ∈ NxA(s′), (1.)

the number of h’s neighbors of type x choosing action B has not increased, i.e., nhxB(s′′) ≤
nhxB(ŝ), (2.) the number of neighbors of type x choosing action A has not decreased, i.e.,

nhxA(s′′) ≥ nhxA(ŝ), (3.) the probability of mismatch for a new link towards an agent

choosing action B has not decreased, i.e.,
nyB(s′′)− nhyB(s′′)

nB(s′′)− nhB(s′′)
≥ nyB(ŝ)− nhyB(ŝ)

nB(ŝ)− nhB(ŝ)
, and (4.)

the probability of type-mismatch for a new link towards an agent choosing action A has not

increased, i.e.,
nyA(s′′)− nhyA(s′′)

nA(s′′)− nhA(s′′)
≤ nyA(ŝ)− nhyA(ŝ)

nA(ŝ)− nhA(ŝ)
.

Analogous inequalities, of course appropriately adjusted, hold for agents belonging to

NyB(s′). Altogether these inequalities imply that, for the agents in NxA(s′) ∪ NyB(s′), the

3 properties holding at state s′ also hold at state s′′. By induction, we can conclude that

the same properties will hold forever, and hence an absorbing set must be reached where

the number of agents of type x playing A never falls below nxA(s′) = nxA(ŝ) + 1, and the

number of agents of type y playing B never falls below nyB(s)′ = nyB(ŝ).

Starting from any state s′ in this absorbing set, and following the reasoning done at the

beginning of the proof for state s, a state ŝ′ where βx(ŝ
′) = ∅ and αy(ŝ

′) = ∅ can be reached

with positive probability. At state ŝ′, there exist at least nxA(ŝ) + 1 agents of type x playing

A, and nyB(ŝ) agents of type y playing B. Then, following the above argument, a single

mutation allows to reach another absorbing set where the number of agents of type x playing

A is at least nxA(ŝ) + 2, and the number of agents of type y playing B is at least nyB(ŝ).

Given the finiteness of the set Nx, an absorbing set where all agents of type x play A must

eventually be reached and the number of agents of type y playing B is at least nyB(ŝ). This

completes the procedure.

The same path-building procedure can now be repeated, constructing a sequence of ab-

sorbing sets, with each step requiring a single mutation, and where the minimum number of

agents of type y playing B increases by at least 1 at each step, while the minimum number

of agents of type x playing A always remains nx. Given the finiteness of the set Ny, at the

end of this procedure a state is reached where all agents of type x play A, and all agents of
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type y play B; at such a state, all agents find it optimal to have exactly k links with agents

choosing the same action, and hence will end up having k connections with agents of the

same type; by Lemma 2, we know that the absorbing set set SAB has been reached.

Case 2. We now suppose that NxA(ŝ) = ∅ and NyB(ŝ) 6= ∅. We apply the procedure

described above to agents in NyB(ŝ), thus obtaining that a single mutation per step is

sufficient to move along a sequence of absorbing sets, where the number of agents of type y

playing B increases by at least 1 at each step, until all agents of type y play B. Starting from

any state s′′ in the absorbing set that has been reached, and following the reasoning done

at the beginning of the proof for state s, a state ŝ′′ where βx(ŝ
′′) = ∅ and αy(ŝ

′′) = ∅ can

be reached with positive probability. We know for sure that NyB(ŝ′′) = Ny. If NxA(ŝ′′) 6= ∅,
then we can apply the path-building procedure to agents in NxA(ŝ)′, and reason analogously

to what done for case 1, so reaching the absorbing set SAB .

If instead NxA(ŝ′′) = ∅, then all agents of type x are playing B at state ŝ′′. The only

possibility that some agents of type x are indifferent between playing A and playing B is

that they are isolated (an agent i is isolated if gij = 0 for all j ∈ N). If they want to

cast new links with agents choosing B, with positive probability they will do so and will

be lucky enough to link to agents of type x. These agents now strictly prefer B over A.

If more than one agent of type x remains isolated, then all such agents can jointly switch

from B to A with positive probability; in the subsequent period, these agents will find it

optimal to connect among themselves as playing A now implies to be an x and there is no

risk of type-mismatch; this leads with positive probability to a state ŝ′′′ where βx(ŝ
′′′) = ∅,

αy(ŝ
′′′) = ∅, and NxA 6= ∅. Then, the path-building procedure described in case 1 can be

applied starting from ŝ′′′, and the absorbing set SAB is eventually reached. Finally, if at most

one agent of type x is isolated and indifferent between A and B, then a single mutation can

hit such an agent and let him connect with other agents of type x playing B, so that an

absorbing set belonging to SBB is reached.

Case 3. Suppose that NxA(ŝ) 6= ∅ and NyB(ŝ) = ∅. This case runs as in case 2, with

reversed roles between x and y and, when only one agent of type y is isolated, leading to an

absorbing set belonging to SAA .

Case 4. Finally, we consider the case in which NxA(ŝ) = ∅ and NyB(ŝ) = ∅. All agents

of type x find it optimal to choose B and to have k links towards agents playing B (who

are surely of type x), while all agents y find it optimal to choose A and to have k links

towards agents playing A (who are surely of type y). The absorbing set SBA is so necessarily

reached.
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Proof of Lemma 5

Proof. Suppose to start from SAB . As shown in the proof of Lemma 3, after the formation

of a cluster of k+ 1 agents of type x (which happens with positive probability starting from

any s ∈ SAB) it is enough to have R(SAB) mutations hitting the agents in such a cluster (in

particular, making them switch from action A to action B while keeping their interaction

network fixed) to move the system to a state from which, with positive probability, a new

absorbing set Q̃ is reached where at least those k + 1 agents of type x choose B, and all

agents of type y keep choosing B.

If Q̃ ⊆ SBB , we are done. Otherwise, consider a single mutation hitting an agent of type

x who currently plays A, making him choose action B and cast all his connections towards

agents choosing action B. With positive probability, the mutated agent casts all his links

towards agents of type x (which, by construction, are at least k + 1). This leads the system

to either SBB or to another absorbing set where the number of agents of type x playing B

has increased by at least 1, while all agents of type y keep playing B. By repeating this

argument, SBB is surely reached within a finite number of steps each of which requires 1

mutation only.

The same reasoning can be applied to SBA in the place of SAB , completing the proof.

Proof of Lemma 6

Proof. We show in the following that, starting from state s ∈ SAA ∪ SBB , we can reach SAB
following a path of absorbing sets such that a single mutation is sufficient to move from

one absorbing set to its successor in the path. The same arguments can be repeated for SBA
instead of SAB , completing the proof.

Suppose that to be in state s ∈ SBB . Suppose also that a single mutation hits an agent,

say i, of type x making him switch to action A and no links. Call this new state s′. Since

d > π(B,B)n−1
ny

, at s′ agent i does not want to cast new links towards agents playing B; so

all states which are reachable with positive probability from s′ with one round of revision

opportunities are such that i maintains no links. Moreover, if i is the only isolated agent of

type x and no other agent wants to switch to action A, then s′ must belong to an absorbing

set; otherwise, we reach a new state s′′ which belongs to a new absorbing set where either

i forms links with other isolated agents of type x who (with positive probability) switch to

play A or some agents currently maintaining a link towards i switch to action A. With a

further single mutation, another agent of type x who is currently playing B can be made

switch to A, severe all his current links, and connect to and only to agents of type x who are
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playing A; this leads to a new state s′′ belonging to a new absorbing set where the number

of agents of type x playing A has increased. We can iterate the last passage until we get to

some state in SAB .

Suppose now that s′ ∈ SAA . We can apply an argument similar to the one just described

(with the only difference that mutations affect agents of type y) and draw an analogous

conclusion.
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