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Environmental rhythmicity is able to affect the hypothalamic-pituitary-gonadal axis in

several animals to achieve reproductive advantages. However, conflicting results were

obtained when assessing the environmental-dependent rhythmicity on reproductive

hormone secretion in humans. This study was designed to evaluate seasonal fluctuations

of the main hormones involved in the hypothalamic-pituitary-gonadal axis in men, using

a big data approach. An observational, retrospective, big data trial was carried out,

including all testosterone, luteinizing hormone (LH) and follicle-stimulating hormone

(FSH) measurements performed in a single laboratory between January 2010 and

January 2019 using Chemiluminescent Microparticle Immunoassay. Subjects presenting

any factor interfering with the hypothalamic-pituitary-gonadal axis were excluded.

The trend and seasonal distributions were analyzed using autoregressive integrated

moving average (ARIMA) models. A total of 12,033 data, accounting for 7,491 men

(mean age 47.46 ± 13.51 years, range 18–91 years) were included. Testosterone

serum levels (mean 5.34 ± 2.06 ng/dL, range 1.70–15.80 ng/dL) showed a seasonal

distribution with higher levels in summer and a direct correlation to environmental

temperatures and daylight duration. LH levels (mean 4.64± 2.54 IU/L, range 1.00–15.00

IU/L) presented 2 peaks of secretion in autumn and spring, independently from

environmental parameters. FSH levels (mean 5.51 ± 3.24 IU/L) did not show any

seasonal distribution. A clear seasonal fluctuation of both LH and testosterone was

demonstrated in a large cohort of adult men, although a circannual seasonality of

hypothalamic-pituitary-gonadal hormones in humans could be not strictly evolutionarily

required. Testosterone seasonality seems independent from LH fluctuations, which could

be regulated by cyclic central genes expression, and more sensible to environmental

temperatures and daylight duration.
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INTRODUCTION

Life is strictly embedded in cyclic changes and several
organisms have developed circadian and circannual clocks to
adapt their physiological functions to external environmental
changes. Accordingly, humans developed circadian clocks to
synchronize biological functions to environmental rhythms (1,
2). While abundant evidence is available on daily rhythmicity,
less is known about the circannual clock. In particular, the
hypothalamic-pituitary-gonadal axis seems to be extremely
susceptible to environmental rhythmicity (3), since annual
hormone fluctuations are needed for several animals to optimize
reproduction timing (4). This physiological mechanism has
a genetic substrate, and several clock genes regulate the
circadian hormone rhythmicity in a large number of organisms,
including mammals (5–9). These genes are expressed in the
human hypothalamus, which could be considered the pacemaker
of the hypothalamic-pituitary-gonadal axis, and seem to be
relevant not only in circadian rhythmicity, but also in seasonal
fluctuations. Indeed, several trials confirm the key role of clock
genes on both human fertility and testosterone seasonality
(10). However, unlike most other animals, humans reproduce
throughout the entire year, being able to shield themselves from
harsh environmental conditions. Thus, a circannual seasonality
of sexual hormones in the human species could not be,
evolutionarily, strictly required.

Circannual rhythmicity of several hormones in humans was
evaluated so far. Among these, gonadotropins, testosterone and
prolactin are the mostly investigated hormones to detect the
possible persistence of hormone seasonality. Different times of
human life, such as prepuberty or adulthood, were studied to
assess the environmental-dependent rhythmicity in hormone
secretion (11) with conflicting results. Although hormone
efficacy is often dependent on the temporal pattern of secretion
(11), as confirmed in several animal models, the role of this
ancestral evolutionary mechanism in humans is unclear.

With this in mind, this study was designed to investigate
seasonality of reproductive hormones in humans. In particular,
we applied a big data approach to highlight the possible
circannual secretion of key hormones of the hypothalamic-
pituitary-gonadal axis in men in a real-world setting. Indeed,
an overall evaluation of the entire endocrine gonadal axis,
considering both gonadotropins and testosterone, is needed
to comprehensively evaluate whether seasonality still persists
in human males. Moreover, this approach could give new
light on the hierarchical organization regulating fluctuations in
sexual hormone production. Although several papers have been
published on this topic, this is the first study based on a big data
approach, collecting real-world data and considering a very large
dataset collected over a consecutive, 8-year period.

MATERIALS AND METHODS

A retrospective observational analysis of a data warehouse was
performed on patients living in the Province of Modena, Italy.
All laboratory examinations performed from January 2010 to
January 2019 at the Department of Clinical Pathology (Ospedale

Civile of Baggiovara, Modena, Italy) were included in a large
database, enclosing 990,904,591 records. This data warehouse
was queried and data of all men older than 18 years who had
testosterone, luteinizing hormone (LH) and follicle-stimulating
hormone (FSH) measured in the same sample were extracted. All
assays were measured on a venous sample taken in the morning
after an overnight fast. For each record, the patients’ age and
the clinical diagnosis were recorded. After data extraction, the
clinical data of each patient considered was evaluated according
to inclusion and exclusion criteria. Afterwards, serum prolactin
(PRL) levels were searched for patients included in the database.
Thus, only a subgroup of patients enrolled showed testosterone,
gonadotropins and PRL levels.

The resulting dataset was analyzed, calculating the confidence
interval at 95% (95% CI) for testosterone, LH and FSH. Only data
included in all three 95% CI were included in the final database.

Exclusion criteria were: any kind of hypogonadism, both
primary (i.e., Klinefelter syndrome, unilateral and/or bilateral
orchiectomy for any reason) and secondary (i.e., Kallmann
syndrome, androgen-deprivation therapy for prostate cancer,
hyperprolactinemia, complete or partial hypopituitarism).
Patients with ongoing androgen replacement therapy were
excluded from the dataset. Moreover, if the reason for referral
was not available, the corresponding data were excluded from
the analysis.

Hormone Assays
Total testosterone serum levels were measured by
Chemiluminescent Microparticle Immunoassay (Architect,
Abbott, Dundee, UK), with inter- and intra-assay coefficients of
variation (CV) of 5.2 and 5.1%, respectively. FSH and LH were
measured by Chemiluminescent Microparticle Immunoassay
(Architect, Abbott, Longford, Ireland) with inter- and intra-
assay CV of 4.1 and 3.1% for LH, and 4.6 and 4.2% for
FSH, respectively. PRL was measured by Chemiluminescent
Immunoassay (Beckman Coulter, Brea, CA, USA) with inter-
and intra-assay CV of 4.2 and 1.6%, respectively.

The laboratory reference ranges were 2.2–8.7 ng/dL for
testosterone, 1–9 IU/L for LH, 1–12 IU/L for FSH and 3–
13 ng/mL for PRL. The assay methods and kits used did not
change over the years for all hormones considered.

Semen Analysis
The data warehouse was queried to extract available semen
analyses of patients with a complete hormonal evaluation of the
pituitary-gonadal axis. Semen analyses were performed following
the most recent World Health Organization (WHO) guideline
(12). The following seminal parameters were included: volume
(mL), total sperm number (millions), sperm concentration
(millions/mL), percentage of normal/abnormal forms (%),
percentage of motile sperms (%) and pH.

Seasonal Assessment
The effect of seasonal changes was considered connecting
hormonal data to humidity and maximum, minimum, and
mean daily temperatures registered on the day of blood
sample collection. Temperature data were obtained using
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a meteorological model, CALMET, developed at the Hydro
Meteorological Service of the Emilia-Romagna environmental
protection agency (ARPA) (https://www.arpae.it). Sites of
evaluation of environmental temperatures were used to localize
the recording unit and connecting it to the residential address
of each patient. In order to consider the diurnal rhythm, the
number of daylight hours was calculated using the Sunrise-Sunset
Calendar of SunEarthTools (https://sunrise-sunset.org/api).

Statistical Analysis
Data distribution was evaluated performing Kolmogorov-
Smirnov test. Correlations among data were performed by
Pearson or Spearman tests, for normal and not-normal
distributed parameters, respectively. Considering that usual
statistical analyses could be biased in large dataset, resampling
methods were applied to confirm the regression analyses. To this
purpose, the k-fold cross-validationmethod was selected (13, 14).
We randomly split all data into 5 folds, then we used 4 folds
for training and 1 fold for testing the result. This internal 5-
fold cross-validation test was repeated 100 times. The average
regressions obtained by each model were finally compared to the
usual statistical approach.

Testosterone, LH and FSH distribution was evaluated
considering the date of examination by autocorrelation analyses.
Autocorrelation functions were first calculated as lag 1, which is
the correlation between adjacent observations in a time series (15,
16). Autocorrelation function represents the statistical approach
to measure the linear relationship between an observation at
specific time and the observations at previous times. Since
our dataset included a large number of data, autocorrelation
functions were repeated increasing lag number, from 1 (default)
to 100. Subsequently, the partial autocorrelation functions were
calculated by the correlation of the transformed time series,
aiming at identifying the order of an autoregressive model. The
Box-Ljung test was used at inspecting the autocorrelations among
residuals and to determine the seasonal model (17).

When the autocorrelation functions suggested a seasonality,
seasonal decomposition was applied. The Wilcoxon Signed Rank
test was used to detect seasonality (18). Once a seasonality
was suggested, the autoregressive integrated moving average
(ARIMA) model was used to quantify the seasonality pattern
detected. ARIMA is a generalization of an autoregressive moving
average (ARMA) model, created to better understand the series
data distribution. ARIMA models were defined by three letters
(p,d,q), where parameters p, d, and q are non-negative integers, p
is the order (number of time lags) of the autoregressive model,
d is the degree of differencing (the number of times the data
have had past values subtracted), and q is the order of the
moving-average model. The auto-ARIMA function was used
to select the best model to be applied to describe time series
distribution. Since the ARIMA models could have drawbacks
when applied to large dataset (with more than 200 data), we re-
tested the ARIMAmodel considering the last year of observation,
reducing the sample size. The Holt Winters method was used
to detect alpha coefficient for correction of distribution. The
prediction of seasonality was considered for alpha coefficient
between 0.01 and 0.30. Finally, the Ljung–Box test (h = 50) was

used to detect seasonality, considering whether any of a group of
autocorrelations of a time series was different from zero (19–21).

In order to investigate whether seasonal peaks were detectable,
the entire original dataset was divided in four groups according
to season in which the blood samples were taken: winter, spring,
summer and autumn. The four seasons were recognized using
the following solstices and equinoxes dates: 21st June, 22th
December, 20th March, and 23th September. The mean values
of testosterone, LH and FSH were compared among seasons
by Kruskal-Wallis test. Post hoc analyses were performed by
Tukey test. Moreover, in order to evaluate the role of age on
sexual hormone variations, the entire cohort was divided in
quartiles according to age distribution. Thus, testosterone, LH
and FSH distribution among seasons was evaluated in each
quartile of patient’s age. In order to evaluate whether seasonal
distribution was maintained considering only hormonal values
within the laboratory reference ranges, patients were divided in
3 subgroups: (i) below, (ii) within, and (iii) above the laboratory
reference ranges. These ranges are used to excluding outliers from
the analysis.

In order to evaluate the role of environment on sexual
hormones, bivariate correlations were performed among
testosterone, LH and FSH from one side and maximum,
minimum and mean temperatures, humidity and daylight
duration using Rho’s Spearman correlation. In this setting, in
the subgroup of patients with available PRL measurements, the
seasonal changes of PRL were evaluated. Thus, testosterone and
gonadotropins were correlated to PRL serum levels using Rho’s
Spearman correlation.

Statistical analysis was performed using the “Statistical
Package for the Social Sciences” software (version 25.0;
SPSS Inc., Chicago, IL) [Research Resource Identifier
(RRID):SCR_002865] and RStudio Server Open Source
Edit Version 0.99.902 2016 and R programming software
(RRID:SCR_000432). For all comparisons, p-values <0.05 were
considered statistically significant.

Ethical Statement
All procedures performed were in accordance with the ethical
standards of the Helsinki Declaration of 1975 as revised in 2013.
Considering the retrospective study design, it was not possible
to obtain informed consent from all participants included in
the study, but all examinations were approved by the Hospital
management, since data were collected anonymously.

RESULTS

From the 17,650 rows first extracted, 14,131 data remained after
inclusion and exclusion criteria evaluation. 12,033 data were
included in the final overall database, accounting for 7,491 men
(mean age 47.46 ± 13.51 years, min 18, max 91 years). Mean
testosterone serum levels ranged from 1.70 to 15.80 ng/dL (mean
5.34 ± 2.06 ng/dL), LH ranged from 1.00 to 15.00 IU/L (mean
4.64± 2.54 IU/L) and FSH from 0.40 to 16.30 IU/L (mean 5.51±
3.24 IU/L). The three parameters were not normally distributed
(p < 0.001).
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FIGURE 1 | Analysis of serum testosterone level distribution using autoregressive integrated moving average (ARIMA) model. (A) Shows the data distribution across

years, suggesting possible peak and nadir. (B) Shows the trend of data collected across years of observation.

Semen analyses were available only in 2.6% of the cohort
(317 patients), with a mean sperm concentration of 55.83 ±

26.48 millions/mL, progressive motility 35.75 ± 22.44%, non-
progressive motility 9.22 ± 8.11%, typical forms 3.99 ± 3.09%
and a mean volume of 3.64 ± 1.93mL. PRL serum levels
were available in 31.8% of the cohort (3,830 patients) with a
mean of 11.50 ± 6.36 ng/mL (minimum 0.30 and maximum
62.20 ng/mL).

Seasonal Decomposition
Autocorrelation function was applied to testosterone
distribution, identifying two significant peaks followed by a
long exponential tail, typical of historical series (peak 1: 0.178,
standard error 0.009, coefficient 380.13, Box-Ljung test, p <

0.001; peak 2: 0.045, standard error 0.009, coefficient 490.64, Box-
Ljung test, p < 0.001). This double peak suggests the existence
of a seasonal component in an annual period. Hypothesizing a
monthly change, seasonal decomposition was applied, setting
the correction factors for seasonality. TheWilcoxon Signed Rank
test confirmed the seasonal distribution (p = 0.001). ARIMA
models were applied to evaluate quantitatively the seasonal
testosterone pattern. The auto-ARIMA test selected the ARIMA
(2,0,9) as the best applicable model, with mean 4.59 and standard
error 0.50, depicting following coefficients: sigma2 estimated
2.78 with log likelihood=−18.78, Akaike’s information criterion
(AIC)= 41.55 and Bayesian information criterion (BIC)= 42.16
(Figure 1). This result was confirmed considering only the last
year of observation (sigma2 estimated 2.82 with log likelihood
= −17.02). From the distribution analysis, testosterone showed
a significant trend across the years (Figure 1B), together with a
seasonal distribution (Figure 1A), confirmed at the Box-Ljung
test (X-squared = 10.989, degrees of freedom = 8, p-value =

0.022). The d= 0 parameter represents the stationary time series,
which was not confirmed by our results (Figure 1B). Thus,
we run the ARIMA (1,1,1) model in which d = 1 represents
a stochastic trending component, confirming the seasonality
previously reported (mean 1.84 and standard error 0.10, sigma2

estimated 1.84 with log likelihood = 38.4, AIC = 61.39 and
BIC = 75.18). The analysis of testosterone difference among
seasons was performed to detect the zenith. Testosterone serum
levels were significantly different among seasons (p = 0.013),

TABLE 1 | Hormone serum levels in the four seasons across the study years.

Number of

samples

Mean Standard

deviation

Testosterone

(ng/dL)

Winter 3,199 5.36 2.07

Spring 3,140 5.35 2.08

Summer 2,181 5.44 2.11

Autumn 3,513 5.26 1.99

p-value 0.013

LH

(IU/L)

Winter 3,199 4.56 2.53

Spring 3,140 4.78 2.63

Summer 2,181 4.44 2.34

Autumn 3,513 4.72 2.59

p-value <0.001

FSH

(IU/L)

Winter 3,199 5.52 3.23

Spring 3,140 5.72 3.36

Summer 2,181 5.31 3.16

Autumn 3,513 5.44 3.19

p-value 0.202

P-values are obtained by Kruskall–Wallis test.

FSH, follicle-stimulating hormone; LH, luteinizing hormone.

Bold values represent statistical significant results.

with higher levels in summer compared to autumn (p = 0.008)
(Table 1, Figure 2).

Autocorrelation function was applied to LH distribution,
identifying two significant peaks followed by a long exponential
tail, typical of historical series (peak 1: 0.216, standard error
0.009, coefficient 562.7, Box-Ljung test, p < 0.001; peak 2: 0.108,
standard error 0.009, coefficient 1928.0, Box-Ljung test, p <

0.001). This double peak was confirmed using the Wilcoxon
Signed Rank test (p = 0.001), confirming the seasonal LH
distribution. Seasonal decomposition was applied with ARIMA
(0,0,0), detectingmean value 3.91 and standard error 0.54, sigma2

estimated 3.29 with log likelihood = −19.62, AIC = 43.23,
and BIC = 43.84. LH did not show any significant trend across
the years (Figure 3B). This result was confirmed considering
only the last year of observation (sigma2 estimated 3.11 with
log likelihood = −18.30). A seasonal distribution was evident
(Figure 3A), with two annual peaks. Mean LH levels confirmed a
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FIGURE 2 | Comparison of mean testosterone serum levels among seasons. Comparison was performed by Kruskal-Wallis test. *Identifies the highest testosterone

serum levels at post hoc Tukey test.

FIGURE 3 | Analysis of luteinizing hormone (LH) levels distribution using autoregressive integrated moving average (ARIMA) model. (A) Shows the data distribution

across years, suggesting possible peak and nadir. (B) Shows the trend of data collected across years of observation.

different distribution among the seasons (p < 0.001), with two
peaks per year, in spring and autumn, respectively (Figure 4,
Table 1). Indeed, LH serum levels were significantly higher in
spring compared to summer and winter (p= 0.004 and p< 0.001,
respectively) and in autumn compared to winter and summer (p
= 0.044 and p < 0.001, respectively) (Figure 4, Table 1).

Considering FSH, no significant peaks were detected by
autocorrelation functions. As a confirmation, ARIMA did not
highlight any seasonal distribution of FSH (mean 3.82, standard
error 0.44, sigma2 estimated 2.14, log likelihood = −17.47,
AIC = 38.93 and BIC = 39.54), and the Box-Ljung test did
not detect any significant seasonal distribution (X-squared =

9.44, degrees of freedom = 8, p = 0.306). Mean FSH levels
differences among seasons confirmed the lack of seasonality
(p= 0.202) (Table 1).

Considering patients’ age, the following quartiles were created:
(i) from 18 to 35 years (group 1 – 3145 data), (ii) from 35.1 to
48 years (group 2 2880 data), (iii) from 48.1 to 57 years (group

3 – 3310 data), and (iv) older than 57.1 years (group 4 – 2698
data). In the first group, LH and testosterone did not differ among
seasons (p = 0.773 and p = 0.301, respectively). In group 2, LH
was significantly different among seasons (p< 0.001), confirming
the highest levels in spring and autumn (p < 0.001 and p =

0.005, respectively). However, annual peak of testosterone was
not confirmed (p = 0.060). In group 3, the seasonal differences
of both testosterone and LH were confirmed (p = 0.004 and p =
0.002, respectively). At post hoc analysis, the highest testosterone
levels were detected in summer (p = 0.002) and the highest
LH levels in spring and autumn (p = 0.004 and p = 0.006,
respectively). Finally, in group 4, no seasonal differences were
detected, neither for testosterone nor for LH (p = 0.155 and p
= 0.080, respectively).

Considering semen analyses, sperm concentration was used
to evaluate seasonality. Autocorrelation function did not detect
significant peaks and no seasonality was detected at Box-Ljung
test (p = 0.402). Finally, PRL did not show any seasonal
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FIGURE 4 | Comparison of mean luteinizing hormone (LH) serum levels among seasons. Comparison was performed by Kruskal–Wallis test. *Identifies the highest LH

serum levels at post hoc Tukey test.

fluctuation (p = 0.421), without significant differences among
seasons (p= 0.181).

Correlations Among Hormones
Patients’ age was inversely related to serum testosterone levels (R
= −0–148, p < 0.001) and directly related to LH (R = 0.185,
p < 0.001) and FSH (R = 0.281, p < 0.001). As expected, total
testosterone serum levels were directly related to LH (R = 0.147,
p < 0.001), but not to FSH (R = −0.006, p = 0.482). Finally, LH
was directly related to FSH (R = 0.538, p < 0.001). The internal
5-fold cross-validation method confirmed the significant result
obtained by conventional statistical analyses. No correlations
among semen parameters and sexual hormones were detected.

Environmental Influence on Seasonality
Testosterone serum levels were within the laboratory reference
range (2.2–8.7 ng/dL) in 10,905 patients (90.6%), while 311
patients (2.6%) and 817 patients (6.8%) showed testosterone
levels lower and higher than the reference range. Although
testosterone seasonality remained statistically significant
considering only data within the reference range, a significant
zenith was not detected by mean differences among seasons
(p = 0.288) (Table 2), suggesting that the significant seasonal
variability is evident including values that are outside the
laboratory reference range. On the contrary, LH seasonality was
confirmed for data within the reference range (1–9 IU/L) and
higher levels were confirmed in spring and autumn (Table 2)
(p= 0.001).

PRL serum levels did neither correlate with testosterone (Rho:
0.002, p = 0.804), nor LH (Rho: 0.005, p = 0.665) nor FSH
(Rho: 0.006, p = 0.734). Serum total testosterone was directly
related to maximum, minimum and mean daily temperatures
(Rho: 0.019—p = 0.041, Rho: 0.023—p = 0.011, and Rho:
0.021—p = 0.024, respectively) (Figure 5), but not to humidity

TABLE 2 | Hormone serum levels in the four seasons across the study years

considering only hormones within the laboratory reference ranges.

Number of

samples

Mean Standard

deviation

Testosterone

(ng/dL)

Winter 2,891 5.11 1.62

Spring 2,827 5.14 1.68

Summer 1,958 5.13 1.61

Autumn 3,229 5.08 1.64

p-value 0.288

LH

(IU/L)

Winter 2,949 4.30 2.25

Spring 2,878 4.46 2.32

Summer 2,059 4.22 2.05

Autumn 3,222 4.45 2.32

p-value 0.001

FSH

(IU/L)

Winter 2,985 5.21 2.81

Spring 2,895 5.38 2.97

Summer 2,049 5.02 2.70

Autumn 3,306 5.19 2.89

p-value 0.312

P-values are obtained by Kruskall–Wallis test.

FSH, follicle-stimulating hormone; LH, luteinizing hormone.

Bold values represent statistical significant results.

(Rho: −0.009, p=0.340). Moreover, testosterone was directly
related to daylight duration (Rho: 0.021—p = 0.020). LH was
directly related to minimum temperatures (Rho: −0.022—p =

0.018), but not to maximum and mean temperatures, humidity
and daylight duration (Rho: 0.012—p = 0.173, Rho: 0.016—
p = 0.089, Rho: 0.012—p = 0.202, and Rho: 0.007 – p = 0–
467, respectively). The cross-validation method confirmed the
significant correlations, apart from the correlation between LH
and minimum temperatures. Indeed, after cross-validation, this
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FIGURE 5 | Linear regression between testosterone serum levels and environmental maximum temperatures.

correlation was lacking, suggesting that the large amount of data
biased this correlation. FSH was not related to environmental
parameters. Finally, after seasonal decomposition, environmental
temperatures (maximum, minimum and mean temperatures)
showed a significant increasing trend across years (p < 0.001).
In particular, the mean yearly temperature passed from 13.13 ±

8.28 ◦C in 2010 to 14.61 ± 7.81 ◦C in 2018. Thus, the increasing
trend detected in testosterone distribution could be related to the
increasing environmental temperature.

DISCUSSION

We demonstrate a clear seasonal fluctuation of both LH and
testosterone in a large sample of adult human males. As
expected, testosterone appears directly related to LH, but the
annual fluctuation of these two hormones is not synchronous.
LH shows a bi-annual fluctuation, with two peaks reached
in spring and autumn, while testosterone shows only one
summer peak. Moreover, the testosterone annual change shows
a wider variability in annual values compared to LH, evident
including levels below and above the laboratory reference ranges,
while LH fluctuations remain irrespective of the reference
range. Interestingly, the testosterone zenith is reached at least
3 months after the LH peak, a possible late consequence of
the vernal LH peak. However, should this rhythmicity reflect
a connection between the pituitary gland and the testicle,
we should find two testosterone peaks every year. Rather,
testosterone seasonal fluctuation could be mainly influenced by
the environment. In particular, we show here an increasing trend
of environmental temperatures across the years of observation,
related to increasing testosterone serum levels. Moreover, when
temperatures are higher during the year and the daylight
duration is the longest (i.e., summer), testosterone serum levels
reach their annual zenith. On the contrary, LH seasonality seems
to be independent from environment, and a central mechanism,

possibly regulating seasonal fluctuations of the hypothalamic
gonadotropin-releasing hormone (GnRH), might be involved. It
is well-known that LH secretion is the result of GnRH pulsatility,
regulated by hypothalamic clock genes from one side (22) and
pulsatile secretion of Kisspeptin on the other side (23), which is
themain regulatory mechanism of GnRH secretion in vertebrates
(24, 25). In seasonally breeding animals, the circadian and
photoperiodic regulation of the neuroendocrine system is largely
demonstrated to modulate diurnal and semilunar spawning
rhythm (23). Similarly, a complex regulation of hormonal
seasonality, involving the pineal pulse generator, is suggested in
humans (26). In particular, the melatonin secretory cyclic pattern
seems to be sufficient to compensate the physiological secretory
pattern which is lacking in men with congenital GnRH deficiency
(26). Our study does not show any influence of daylight duration
on LH secretion, suggesting a mechanism probably independent
from melatonin.

In the literature, 15 clinical trials investigated testosterone
seasonality (Table 3). Ten studies detected testosterone
fluctuations along the year (66.7%) (28–30, 35–41), with an
annual pattern of testosterone secretion highlighted in most
cases, and a bi-annual pattern detected only in 3 out of 10
studies (Table 3), whereas 5 did not (27, 31–34). Almost all
previous studies evaluated small groups of men and only 3
studies considered more than one thousand subjects. Moreover,
two of the most numerous casuistries enrolled older (32) and
younger (30) men separately, whereas in our study we cover the
entire life-time after puberty, from 18 to 91 years. Only Svartberg
et al. evaluated a large cohort including men of all ages older
than 25 years (41). However, the seasonal evaluation was limited
to testosterone serum levels. A comprehensive assessment of the
seasonal rhythmicity of the pituitary-gonadal axis requires not
only a high number of adult patients without age limits but also
all hormones involved. In our study we could evaluate how the
seasonal hormonal changes were affected by age. Indeed, dividing
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TABLE 3 | Published trials on testosterone seasonality.

Number of men Age of men

evaluated (years)

Patients’

characteristics

Country Testosterone

seasonality

LH seasonality FSH seasonality

Abbaticchio et al. (27) 248 Mean ± SD: 28.9

± 7.5

Infertile men Italy Not detected Not detected Not detected

Bellastella et al. (28) 106 Range: 6–10 Pre-pubertal Italy AP: summer AP: winter Not detected

Bellastella et al. (29) 10 Range: 25–30 Healthy men Italy AP: autumn AP: spring Not detected

Dabbs et al. (30) 4,462 Range: 32–44 Military veterans United States AP: autumn Not evaluated Not evaluated

Dai et al. (31) 243 Range: 35–73 Multiple Risk Factor

Intervention Trial

United States Not detected Not evaluated Not evaluated

Lee et al. (32) 3,369 Range: 40–79 European Male

Aging Study

Europe Not detected Not evaluated Not evaluated

Maes et al. (33) 13 Mean ± SD: 38.7

± 13.4

Healthy men Belgium Not detected Not evaluated Not evaluated

Martikainen et al. (34) 22 Not available Young men Finland Not detected Not detected Not detected

Meriggiola et al. (35) 16 Not available Healthy men Italy AP: summer AP: summer AP: summer

Nicolau et al. (36) 63 Mean ± SD: 77.0

± 8.0

Healthy men Romania Annual Annual Not detected

Perry et al. (37) 65 Range: 70–102 African-American

males

United States AP: winter Not evaluated Not evaluated

Reinberg et al. (38) 260 Median: 32 Men undergoing

vasectomy

France AP: autumn AP: autumn AP: summer

Sawhney et al. (39) 9 Not available Healthy men Antarctica Bi-AP: summer and

autumn

Not detected Not detected

Smals et al. (40) 15 Mean ± SD: 33.5

± 5.9

Healthy men United States Bi-AP: summer and

autumn

Not evaluated Not evaluated

Svartberg et al. (41) 1548 Older than 25 Healthy men Norway Bi-AP: winter and

autumn

Not evaluated Not evaluated

AP, annual peak; FSH, follicle-stimulating hormone; LH, luteinizing hormone; SD, standard deviation.

the entire cohort of patients according to age, we highlight
seasonal changes in men between 35 and 57 years, whereas no
seasonal effect seems evident for men younger than 35 years
or older than 57 years. This finding is novel and could explain
the discrepancies of the results reported in the earlier literature.
Hormones seasonality is lost after 57 years, when a progressive
decline of testosterone occurs, probably limiting the yearly
change (42).

The seasonal variability could be due to environmental
influence on the reproductive system (4). Available studies
evaluating testosterone fluctuations are not homogeneously
distributed across the world and only few latitudes have been
studied so far. In this context, the lack of sun exposure
for a long period of the year, as observed at high latitude
countries (34, 39, 41), could represent a confounding factor
in evaluating the hormonal seasonality. Indeed, daily hours of
sunshine, minimum and maximum temperatures and humidity
were demonstrated to influence annual rhythms of human
reproduction already in the 1930s (4) and a relationship between
testosterone and melatonin secretion has been suggested (43).
However, after industrialization, humans are progressively and
increasingly shielded from both daylight duration by indoor
work, and environmental temperature by heating and air
conditioning. These changes in life habits might result in a
“de-seasonalization” of human reproduction and possibly in
testosterone fluctuation. However, as shown in the majority
of industrialized populations studied so far, we confirm the

persistence of an annual pattern of testosterone fluctuation.
Moreover, we confirm the correlation between testosterone and
environmental temperatures, considering maximum, minimum
and mean daily values. Increasing environmental temperatures,
testosterone raises, reaching the highest values in summer. In
this setting, there is large evidence of the detrimental effect
of local heat on Leydig cells activity and survival in animal
models (44, 45). In particular, heat-induced testicular damage
is mediated by the activation of specific apoptotic pathways in
animalmodels (46, 47). However, less is known about the possible
effect of environmental temperature on Leydig cells activity in
humans. Here we detect a direct linear correlation between
testosterone and environmental temperatures, suggesting that
low environmental temperatures may be less favorable for
testicular steroidogenesis.

Apart from the seasonal fluctuation, testosterone showed a
significant increasing trend during years, from 2010 to 2018.
This trend could be explained by the increasing environmental
temperatures, recorded in the years of the study. Indeed,
we demonstrated a direct relationship between testosterone
and environmental temperatures in our cohort. Accordingly,
environmental temperatures increased in the 9-years interval of
the study, with a mean increase of 1.48◦C. This increase goes
along with a mean testosterone increase of 0.44 ng/dL detected
after 9 years of evaluation.

In our cohort, FSH does not fluctuate and a seasonal change in
sperm parameter is not detected. However, semen analyses were
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available only in 2.6% of the entire group, limiting the statistical
power. Indeed, increasing the sample size (5,573 semen analyses),
we previously detected semen seasonality, with higher sperm
number in winter/spring seasons compared to summer/autumn
(48). Moreover, in this previous work, a significant correlation
between semen analyses and environmental parameters was
evident (48). Thus, a larger dataset, containing both semen
analyses and hormone evaluations, is needed to completely
understand the environmental influence on reproduction along
the seasons.

Our study has some strengths. We evaluated (i) a large
number of men, (ii) living at the same latitude, (iii) in a long
time-frame interval, (iv) without known diseases affecting the
hypothalamic-pituitary-gonadal axis, and (v) considering both
testosterone and gonadotropins serum levels. However, several
limitations should be considered. First, patients were evaluated
only once, thus a longitudinal evaluation of testosterone changes
in the same patient is not possible. Second, testosterone serum
levels were assayed using commercially available kits and
not the gold-standard liquid-chromatography tandem mass-
spectrometry (LC-MS/MS). Third, no information is available
about liver function. Thus, we are not able to consider
possible sex hormone binding globulin (SHBG) changes and,
consequently, whether these fluctuations are reflected in a
seasonal variation of bioavailable testosterone. Finally, semen
analyses were available only in a small subgroup of patients
and an overall assessment of the seasonality of FSH and semen
parameters together is prevented. An accurate evaluation of
the seasonal influence on spermatogenesis could elucidate the
possible residual role of environmental exposure in terms of
reproductive advantage. In this context, the coeval fluctuation
of androgens could be involved, maybe influencing libido to
optimize conceptions.

CONCLUSIONS

In conclusion, our results demonstrate biannual/circannual
fluctuations of serum LH and testosterone, suggesting a seasonal

influence on the pituitary-gonadal axis in the human species.
The circannual testosterone and LH fluctuation is possibly
subjected to different regulation mechanisms (central for LH

vs. environmental for testosterone). Considering the limited
amplitude of the testosterone and LH fluctuation across the
year, the absence of seasonality in the youngest and oldest
age groups, and the reduced exposure to environmental
factors in the industrialized era, we could speculate that
the ancestral secretory pattern adaptive toward seasons
in various animal species is (gradually?) disappearing in
the human.
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