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Derivation of the Tight-Binding
Approximation for Time-Dependent
Nonlinear Schrödinger Equations

Andrea Sacchetti

Abstract. In this paper, we consider the nonlinear one-dimensional time-
dependent Schrödinger equation with a periodic potential and a bounded
perturbation. In the limit of large periodic potential, the time behav-
ior of the wavefunction can be approximated, with a precise estimate of
the remainder term, by means of the solution to the discrete nonlinear
Schrödinger equation of the tight-binding model.
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1. Introduction

Here we consider the nonlinear one-dimensional time-dependent Schrödinger
equation with a cubic nonlinearity, a periodic potential V and a perturbing
potential W{

i�∂ψ
∂t = − �

2

2m
∂2ψ
∂x2 + 1

ε V ψ + α1Wψ + α2|ψ|2ψ,ψ(·, t) ∈ L2(R)

ψ(x, 0) = ψ0(x)
(1)

in the limit of large periodic potential, i.e., 0 < ε � 1; α1 represents the
strength of the perturbing potential W and α2 represents the strength of the
nonlinearity term. Equation (1) is the so-called Gross–Pitaevskii equation for
Bose–Einstein condensates where � is the Planck’s constant and m is the mass
of the single atom. Such a model describes, for instance, one-dimensional Bose–
Einstein condensates in an optical lattice and under the effect of an external
field with potential α1W ; in particular, when such a perturbing potential is a
Stark-type potential, that is, it is locally linear, then recently has been shown
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the existence of Bloch oscillations for the wavefunction condensate and a pre-
cise measurement of the gravity acceleration has given [10,19].

In the physical literature, a standard way to study Eq. (1) consists in
reducing it to a discrete Schrödinger equation taking into account only nearest
neighbor interactions, the so-called tight-binding model [3]. The validity of such
an approximation is, as far as we know, not yet rigorously proved in a general
setting.

Recently, it has been proved that (1) admits a family of stationary so-
lutions by reducing it to discrete nonlinear Schrödinger equations [11,18,23].
Concerning the reduction of the time-dependent equation to a discrete time-
dependent nonlinear Schrödinger equation, much less is known and rigorous
results are only given under some conditions: for instance, in [4], the authors
prove the validity of the reduction to discrete nonlinear Schrödinger equations
for large times when V is multiple-well trapped potential; while, in [17] a sim-
ilar result for periodic potentials V satisfying a sequence of specific technical
conditions (see Theorem 2.5 [16] for a resume) is obtained. We must also re-
call the papers [1,2,5] where applications of the orbital functions in a similar
context is developed; in particular, in [2], the authors prove the validity of the
reduction to discrete nonlinear Schrödinger equations of the Gross–Pitaevskii
equation with a periodic linear potential and a sign-varying nonlinearity co-
efficient. In [5], the authors consider the case of a two-dimensional lattice; in
particular, they show that tight-binding approximation is justified for simple
and honeycomb lattices provided that the initial wavefunction is exponentially
small.

In this paper, we are able to show that the reduction of (1) to the time-
dependent discrete nonlinear Schrödinger equations properly works with a pre-
cise estimate of the error, and that we do not need of special technical assump-
tions on the shape of the initial wavefunction and/or on the periodic potential;
in fact, we have only to assume that the initial wavefunction is prepared on
one band of the Bloch operator, let us say for argument’s sake the first one.

By introducing the new semiclassical parameter

h = �

√
ε/2m, (2)

the new time variable

τ =
�

h
t

and the effective perturbation and nonlinearity strengths

F = α1
2mh2

�2
and η = α2

2mh2

�2
, (3)

then Eq. (1) takes the semiclassical form

ih
∂ψ

∂τ
= −h2 ∂2ψ

∂x2
+ V ψ + FWψ + η|ψ|2ψ (4)

with h � 1.
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In the tight-binding approximation, solutions to (4) are approximated by
solutions to the time-dependent discrete nonlinear Schrödinger equation

ihġn = −β(gn+1 + gn−1) + Fξngn + ηC1|gn|2gn, n ∈ Z, (5)

where β ∼ e−S0/h is an exponentially small positive constant in the semiclas-
sical limit h � 1 (in fact, S0 > 0 is the Agmon distance between two adjacent
wells, and for a precise estimate of the coupling parameter β we refer to (13)).
Furthermore, ξn = 〈un,Wun〉 and C1 = ‖un‖4

L4 where, roughly speaking (a
precise definition for un is given by [9,11,23]), {un}n∈Z is an orthonormal base
of vectors of the eigenspace associated to the first band of the Bloch operator
such that un ∼ ψn as h goes to zero; where ψn is the ground state with asso-
ciated energy Λ1 of the Schrödinger equation with a single-well potential Vn

obtained by filling all the wells, but the nth one, of the periodic potential V :

− h2 ∂2ψn

∂x2
+ Vnψn = Λ1ψn. (6)

In fact, the linear operator −h2 ∂2

∂x2 + Vn has a single-well potential, and thus,
it has a not empty discrete spectrum, we denote by Λ1 the first eigenvalue
(which is independent on the index n by construction).

We must underline that usually the tight-binding approximation is con-
structed by making use of the Wannier’s functions instead of the vectors un

[3,16]. Indeed, the decomposition by means of the Wannier’s functions turns
out to be more natural and it works for any range of h; on the other hand,
the use of a suitable base {un}n∈Z in the semiclassical regime of h � 1 has
the great advantage that the vectors un are explicitly constructed by means of
the semiclassical approximation. In fact, Wannier’s functions may be approx-
imated by such vectors un as pointed out by [14].

The analysis of the discrete nonlinear Schrödinger Eq. (5) depends on
the relative value of the perturbative parameters F and η with respect to the
coupling parameter β. In this paper, we consider two situations.

In the first case, named model 1 corresponding to Hypothesis (3a), we
assume that α1 and α2 are fixed and independent of ε. In such a case, we
have that β � |F | and β � C1|η| and then the analysis of (5) is basically
reduced to the analysis of a system on infinitely many decoupled equations.
Indeed, the perturbative terms with strength F and η dominate the coupling
term with strength β between the adjacent wells. In fact, this model has some
interesting features; for instance, when W represents a Stark-type perturbation
then the analysis of the stationary solutions exhibits the existence of a cascade
of bifurcations [22,23]. On other hand, due to the fact that the perturbation is
large, when compared with the coupling term, the validity of the tight-binding
approximation is justified only for time intervals rather small.

In the second case, named model 2 corresponding to Hypothesis (3b), we
assume that both α1 and α2 go to zero when ε goes to zero. In particular, we
assume that

F = O(β) and C1η = O(β).
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That is the perturbative terms are of the same order of the coupling term.
In such a case, the validity of the tight-binding approximation holds true for
times of the order of the inverse of the coupling parameter β, that is the time
interval is exponentially large.

We must remark that one could consider, in principle, other limits for α1

and α2 when h goes to zero and Theorem 6 is very general and it holds true
under different assumptions concerning α1 and α2 provided that F = O(h2)
and η = O(h2). In fact, Hyp. (3a) and Hyp. (3b) represents, in some sense,
two opposite situations concerning the choice of the parameters.

In Sect. 2, we state the assumptions on Eq. (4) and we state our main
results in Theorems 1 and 2, they follow from a more technical Theorem 6
we state and prove in Sect. 5. In Sect. 3, we prove a priori estimate of the
wavefunction ψ and of its gradient ∇ψ. In Sect. 4, we formally construct
the discrete nonlinear Schrödinger equations; in this section we make use of
some ideas already developed by [11,23] and we refer to these papers as much
as possible. We must underline that in [11,23] the estimate of the remainder
terms is given in the norm 
1, while in the present paper estimates in the norm

2 are necessary and thus most of the material of Sect. 3, and in particular
Lemmata 2, 3, 4, 5 and 6, is original and it cannot be simply derived from
the papers quoted above. In Sect. 5, we finally prove the validity of the tight-
binding approximation with a precise estimate of the error in Theorem 6, the
method used is based on an idea already applied by [21] for a double-well
model and now applied to a periodic potential; in particular, in Sect. 5.1, we
consider the case where α1 and α2 are fixed, i.e., model 1, and in Sect. 5.2, we
consider the case where α1 and α2 goes to zero as ε goes to zero in a suitable
way, i.e., model 2.

2. Description of the Model and Main Results

2.1. Assumptions

Here, we consider the nonlinear Schrödinger Eq. (1) where the following as-
sumptions hold true.

Hypothesis 1. V (x) is a smooth, real-valued, periodic and non-negative func-
tion with period a, i.e.,

V (x) = V (x + a), ∀x ∈ R,

and with minimum point x0 ∈ [− 1
2a,+ 1

2a
)
such that

V (x) > V (x0), ∀x ∈
[
−1

2
a,+

1
2
a

)
\{x0}.

For argument’s sake, we assume that V (x0) = 0 and x0 = 0.

Remark 1. We could, in principle, adapt our treatment to a more general
case where V (x) has more than one absolute minimum point in the interval[− 1

2a,+ 1
2a

)
.
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Hypothesis 2. The perturbation W (x) is a smooth real-valued function. We
assume that W ∈ L∞(R).

Concerning the parameters m, �, α1, α2 and ε we make the following
assumption

Hypothesis 3. We assume the semiclassical limit of large periodic potential,
i.e., ε is a real and positive parameter small enough

ε � 1.

Concerning the other parameters we assume that:

(a) The parameters m, �, α1, α2 are real-valued and independent of ε;
or

(b) The parameters m, � are real-valued and independent of ε while the pa-
rameters α1, α2 are real-valued and they go to zero as ε goes to zero; in
particular, we assume that there exist ε� > 0 and a positive constant C
such that for any 0 < ε < ε� then

|F | ≤ C|β| and |C1η| ≤ C|β|,
where F and η are defined in (3), and where the parameters β and C1

depend on ε (by means of h) and they are defined by (13) and (14).

For argument’s sake, we assume in both cases that α1 ≥ 0; hence F ≥ 0.

Remark 2. In both cases, we have that 0 ≤ F ≤ Ch2 and |η| ≤ Ch2 for some
positive constant C. In the case (b), in particular, F and η are exponentially
small when h goes to zero.

Let HB be the Bloch operator formally defined on L2(R,dx) as

HB := −h2 d2

dx2
+ V. (7)

It is well known that this operator admits self-adjoint extension on the domain
H2(R), still denoted by HB , and its spectrum is given by bands:

σ(HB) = ∪∞
�=1[E

b
� , E

t
�], where Et

� ≤ Eb
�+1 < Et

�+1.

The intervals (Et
�, E

b
�+1) are named gaps; a gap may be empty, that is Eb

�+1 =
Et

�, or not. It is well known that in the case of one-dimensional crystals all the
gaps are empty if, and only if, the periodic potential is a constant function.
Because we assume that the periodic potential is not a constant function then
one gap, at least, is not empty (for a review of Bloch operator we refer to [20]).
In particular, when h is small enough then the following asymptotic behaviors
[24,25]

1
C

h ≤ Eb
1 ≤ Ch and

1
C

h ≤ Eb
2 − Et

1 ≤ Ch (8)

hold true for some C > 1; hence, the first gap between Et
1 and Eb

2 is not empty
in the semiclassical limit.
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Let Π the projection operator associated to the first band [Eb
1, E

t
1] of HB

and let Π⊥ = 1 − Π. Let

ψ = ψ1 + ψ⊥ where ψ1 = Πψ and ψ⊥ = Π⊥ψ. (9)

We assume that

Hypothesis 4. Π⊥ψ0 = 0, where ψ0(x) = ψ(x, 0); that is the wave function
ψ is initially prepared on the first band. Through the paper we assume, for
argument’s sake, that ψ0 is normalized, i.e., ‖ψ0‖L2 = 1.

2.2. Main Results

Here, we state our main results; they are a consequence of a rather technical
Theorem 6 we postpone to Sect. 5. Let g ∈ C(R, 
2(Z)) be the solution to
the tight-binding model, that is the discrete nonlinear Schrödinger Eq. (5); let
ψ(τ, x) ∈ C(R,H1(R)) be the solution to the nonlinear Schrödinger Eq. (4)
with initial condition ψ0(x) =

∑
gn(0)un(x), let us recall (2) and, finally, let

Λ1 be the first eigenvalue of the single-well operator (6).

Theorem 1. Under the assumption Hypothesis (3a), we have that there exist
ε� > 0 and a positive constant C independent of ε such that for any 0 < ε < ε�

then ∥∥∥∥∥ψ(τ, ·) −
∑
n∈Z

gn(τ)eiΛ1τ/hun(·)
∥∥∥∥∥

L2

≤ Ch1/2,

for any τ ∈ [0, Ch−1/2].

Theorem 2. Under the assumption Hypothesis (3b), we have that there exists
ε� > 0 and two positive constants C and ζ independent of ε such that for any
0 < ε < ε� then∥∥∥∥∥ψ(τ, ·) −

∑
n∈Z

gn(τ)eiΛ1τ/hun(·)
∥∥∥∥∥

L2

≤ Ce−ζ/h

for any τ ∈ [0, Cβ−1h], where β−1 is exponentially large as h goes to zero.

Remark 3. In [17], the estimate of the error was given in the energy norm,
and even in [23], we used the H1-norm. If one wants to extend the result of
Theorem 1 to the H1-norm, it is clear that one has to pay a price; indeed, in
the proof of Theorem 6, the term ‖u0‖H1 ∼ h−1/2 would appear instead of the
term ‖u0‖L2 = 1, and therefore, the estimate of the error became meaningless.
On the other hand, this argument is not critical in the case of the extension of
Theorem 2 to the H1-norm because the term ‖u0‖H1 is controlled by means
of the exponentially small term e−ζ/h. In fact, we expect that Theorem 2 still
hold true with the H1-norm even if we do not dwell here with the detailed
proof.
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2.3. Notation and Some Functional Inequalities

Hereafter, we denote by ‖ · ‖Lp , p ∈ [+1,+∞], the usual norm of the Banach
space Lp(R,dx); we denote by ‖ · ‖�p , p ∈ [+1,+∞], the usual norm of the
Banach space 
p(Z).

Hereafter, we omit the dependence on τ in the wavefunctions ψ and in
the vectors c when this fact does not cause misunderstanding.

By C, we denote a generic positive constant independent of h [and then,
because of (2), by ε] whose value may change from line to line.

If f and g are two given quantities depending on the semiclassical pa-
rameter h, then by f ∼ g we mean that

lim
h→0+

f

g
∈ R\{0}.

Furthermore, we recall some well known results for reader’s convenience:
– One-dimensional Gagliardo–Nirenberg inequality by §B.5 [16]:

‖f‖Lp ≤ C‖∇f‖δ
L2‖f‖1−δ

L2 , δ =
1
2

− 1
p

=
p − 2
2p

, p ∈ [2,+∞],

– Gronwall’s Lemma by Theorem 1.3.1 [15]: let u(τ) be a non-negative and
continuous function such that

u(τ) ≤ α(τ) +
∫ τ

0

δ(q)u(q)dq, ∀τ ≥ 0,

where α(τ) and δ(τ) are non-negative and monotone not decreasing func-
tions, then

u(τ) ≤ α(τ)e
∫ τ
0 δ(q)dq,∀τ ≥ 0.

– Agmon distance let E be a given energy and V (x) be a potential function,
let [z]+ = z if z ≥ 0 and [z]+ = 0 if z < 0; then the Agmon distance
dA(x, y) between two points x, y ∈ R

d is induced by the Agmon metric
[V (x) − E]+dx2 where dx2 is the standard metric on L2(Rd):

dA(x, y) = inf
γ∈C

∫ 1

0

√
[V (γ(t)) − E]+|γ′(t)|dt

where C is the set of piecewise paths γ in R
d connecting γ(0) = x and

γ(1) = y (see [12] for a resume). In particular, in dimension d = 1 and for
energy E = Vmin we denote by S0 =

∫ xn+1

xn

√
V (x) − Vmindx the Agmon

distance between the bottoms xn and xn+1 of two adjacent wells; by the
periodicity of V (x) then S0 does not depend on the index n.

3. Preliminary Results

We recall here some results by [6–8] concerning the solution to the time-
dependent nonlinear Schrödinger equation with initial wavefunction ψ0. The
linear operator H, formally defined as

H := HB + FW
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on the Hilbert space L2(R,dx), admits a self-adjoint extension on the domain
H2(R), still denoted by H. In order to discuss the local and global existence of
solutions to (4), we apply Theorem 4.2 by [8]: if ψ0 ∈ H1(R) there is a unique
solution ψ ∈ C([−T, T ],H1(R)) to (4) with initial datum ψ0, such that

ψ,ψ
∂(V + FW )

∂x
,
∂ψ

∂x
∈ L8([−T, T ];L4(R)),

for some T > 0 depending on ‖ψ0‖H1 .
In fact (see [7]), this solution is global in time for any η ∈ R (because in

the case of one-dimensional nonlinear Schrödinger equations the cubic nonlin-
earity in sub-critical) and (4) enjoys the conservation of the mass

‖ψ(·, τ)‖L2 = ‖ψ0(·)‖L2

and of the energy

E [ψ(·, τ)] = E [ψ0(·)]
where

E(ψ) := 〈Hψ,ψ〉 +
η

2
‖ψ‖4

L4

= h2

∥∥∥∥∂ψ

∂x

∥∥∥∥
2

L2

+ 〈V ψ, ψ〉 + F 〈Wψ,ψ〉 +
η

2
‖ψ‖4

L4

Here, we prove some useful preliminary a priori estimates.

Theorem 3. The following a priori estimates hold true for any τ ∈ R:

‖ψ‖L2 = ‖ψ0‖L2 = 1 and ‖∇ψ‖L2 ≤ Ch−1/2,

‖ψ1‖L2 ≤ ‖ψ0‖L2 = 1 and ‖∇ψ1‖L2 ≤ Ch−1/2,

‖ψ⊥‖L2 ≤ ‖ψ0‖L2 = 1 and ‖∇ψ⊥‖L2 ≤ Ch−1/2 ;

for some positive constant C.

Proof. From the conservation of the norm, we have that

‖ψ0‖2
L2 = ‖ψ‖2

L2 = ‖ψ⊥‖2
L2 + ‖ψ1‖2

L2 ;

hence,

‖ψ⊥‖L2 ≤ ‖ψ0‖L2 = 1 and ‖ψ1‖L2 ≤ ‖ψ0‖L2 = 1.

From the conservation of the energy, we may obtain a priori estimate of
the gradient of the wavefunction. Let

E(ψ0) = 〈HBψ0, ψ0〉 + F 〈Wψ0, ψ0〉 +
1
2
η‖ψ0‖4

L4 ,

where 〈HBψ0, ψ0〉 ∼ h since ψ0 is restricted to the eigenspace associated to
the first band. Recalling that V ≥ 0 then we have that

h2‖∇ψ0‖2
L2 ≤ 〈HBψ0, ψ0〉 ∼ h,

which implies ‖∇ψ0‖L2 ≤ Ch−1/2. From this fact, using the fact that W is a
bounded potential and by the Gagliardo–Nirenberg inequality we have that

‖ψ0‖4
L4 ≤ C‖∇ψ0‖L2‖ψ0‖3

L2 ≤ C‖∇ψ0‖L2 ≤ Ch−1/2.
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Hence, E(ψ0) ∼ h since F ≤ Ch2 and |η| ≤ Ch2 (see Remark 2). Thus, the
conservation of the energy implies the following inequality:

h2‖∇ψ‖2
L2 = E(ψ0) − 〈V ψ, ψ〉 − F 〈Wψ,ψ〉 − 1

2
η‖ψ‖4

L4

≤ E(ψ0) − Vmin‖ψ‖2
L2 − FWmin‖ψ‖2

L2 − 1
2
η‖ψ‖4

L4

≤ E(ψ0) − FWmin − 1
2
η‖ψ‖4

L4

since Vmin = 0 and by the conservation of the norm. Let us set

Λ =
E(ψ0) − FWmin

h2
and Γ =

1
2

η

h2
=

mα2

�2
,

then |Γ| ≤ C and Λ ∼ h−1 as h goes to zero. The previous inequality becomes

‖∇ψ‖2
L2 ≤ |Λ| + |Γ| ‖ψ‖4

L4 .

Again, the Gagliardo–Nirenberg inequality implies that

‖ψ‖4
L4 ≤ C‖∇ψ‖L2‖ψ‖3

L2 = C‖∇ψ‖L2 ,

and thus, we get

‖∇ψ‖2
L2 ≤ |Λ| + |Γ|C‖∇ψ‖L2

from which it follows that

‖∇ψ‖L2 ≤ 1
2

[
|Γ|C +

√
Γ2C2 + 4|Λ|

]
≤ C|Λ|1/2 ≤ Ch−1/2

for some positive constant C.
Since ΠHB = HBΠ, we have that

E(ψ0) − F 〈Wψ,ψ〉 − 1
2
η‖ψ‖4

L4 = 〈HBψ,ψ〉 = 〈HBψ1, ψ1〉 + 〈HBψ⊥, ψ⊥〉
= h2‖∇ψ1‖2

L2 + h2‖∇ψ⊥‖2
L2 + 〈V ψ1, ψ1〉 + 〈V ψ⊥, ψ⊥〉 ≥ h2‖∇ψ1‖2

L2

since Vmin ≥ 0. Then,

h2‖∇ψ1‖2
L2 ≤ Ch +

1
2
|η| ‖ψ‖4

L4 ≤ Ch + C|η|‖∇ψ‖L2 ≤ Ch ;

hence,

‖∇ψ1‖L2 ≤ Ch−1/2.

Similarly we get

‖∇ψ⊥‖L2 ≤ Ch−1/2,

and thus, the proof of the Theorem is so completed. �

Corollary 1. We have the following estimates:

‖ψ‖L∞ ≤ Ch−1/4, ‖ψ1‖L∞ ≤ Ch−1/4, ‖ψ⊥‖L∞ ≤ Ch−1/4, ∀τ ≥ 0.

Proof. They immediately follow from the one-dimensional Gagliardo–Nirenberg
inequality (where p = +∞ and δ = 1

2 ) and from the previous result. �
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4. Construction of the Discrete Time-Dependent Nonlinear
Schrödinger Equation

By the Carlsson’s construction [9] resumed and expanded in Appendix A by
[11] (see also §3 [23] for a short review of the main results) we may write ψ1

by means of a linear combination of a suitable orthonormal base {un}n∈Z of
the space Π

[
L2(R)

]
, that is

ψ1(x) =
∑
n∈Z

cnun(x), (10)

where un ∈ H1(R) and c = {cn}n∈Z ∈ 
2(Z) and where we omit, for simplic-
ity’s sake, the dependence on τ in the wavefunctions ψ, ψ1, ψ⊥ as well as in
the vector c.

By inserting (9) and (10) in Eq. (4), it takes the form (where ˙= ∂
∂τ ){

ihċn = 〈un,HBψ〉 + F 〈un,Wψ〉 + η〈un, |ψ|2ψ〉, n ∈ Z

ihψ̇⊥ = Π⊥HBψ + FΠ⊥Wψ + ηΠ⊥|ψ|2ψ
, (11)

where c ∈ 
2 and ψ⊥ are such that for any τ ∈ R

‖ψ⊥‖L2 ≤ ‖ψ0‖L2 = 1 and
∑
n∈Z

|cn|2 = ‖c‖2
�2 = ‖ψ1‖2

L2 ≤ ‖ψ0‖2
L2 = 1.

By mean of the gauge choice ψ(x, τ) → eiΛ1τ/hψ(x, τ), and then ψ⊥(x, τ)
→ eiΛ1τ/hψ⊥(x, τ) and cn(τ) → eiΛ1τ/hcn(τ), (11) takes the form{

ihċn = 〈un,HBψ〉 − Λ1cn + F 〈un,Wψ〉 + η〈un, |ψ|2ψ〉, n ∈ Z

ihψ̇⊥ = Π⊥(HB − Λ1)ψ + FΠ⊥Wψ + ηΠ⊥|ψ|2ψ
, (12)

where Λ1 is the energy associated to the ground state of the Schrödinger oper-
ator −h2 ∂2

∂x2 +Vn, with single-well potential Vn obtained by filling all the wells
of the periodic potential V , but the nth one; since Vn(x) = Vm(x−xn+xm) by
construction (see [11,23] for details) then the spectrum of this linear operator
is independent on the index n and the eigenvetor ψn associated to the ground
state Λ1 is such that ψm(x) = ψn(x − xm + xn) .

We have that

〈un,HBψ〉 = Λ1cn − β(cn+1 + cn−1) + r1,n,

where Λ1 and β are independent of the index n and β is such that for any
0 < ρ < S0 there is C := Cρ such that

1
C

e−(S0+ρ)/h < β < Ce−(S0−ρ)/h ; (13)

the remainder term r1,n is defined as

r1,n :=
∑
m∈Z

D̃n,mcm

where D̃n,m satisfies Lemma 1 in [23]. Furthermore,

〈un,Wψ〉 = ξncn + r2,n + r3,n ,
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where we set

ξn = 〈un,Wun〉, r2,n =
∑

m∈Z : m �=n

〈un,Wum〉cm and r3,n = 〈un,Wψ⊥〉.

Finally,

〈un, |ψ|2ψ〉 = C1|cn|2cn + r4,n, C1 = ‖un‖4
L4 ,

where we set

r4,n = 〈un, |ψ|2ψ〉 − C1|cn|2cn

and where by Lemma 1.vi [23] it follows that

C1 = ‖un‖4
L4 ≡ ‖u0‖4

L4 ∼ h−1/2 as h goes to zero. (14)

Therefore, (12) may be written{
ihċn = −β(cn+1 + cn−1) + Fξncn + ηC1|cn|2cn + rn

ihψ̇⊥ = Π⊥(HB − Λ1)ψ + FΠ⊥Wψ + ηΠ⊥|ψ|2ψ
, (15)

where we set

rn = r1,n + Fr2,n + Fr3,n + ηr4,n.

Tight-binding approximation (5) is obtained by putting ψ⊥ ≡ 0 and by ne-
glecting the coupling term rn in (15).

We have the following estimates.

Lemma 1.

‖r1‖�2 ≤ Ce−(S0+ζ)/h‖c‖�2

for some positive constants C and ζ independent of h.

Proof. Such an estimate directly comes from Lemma 1 by [23]. �

Lemma 2. For any 0 < ρ < S0, there is a positive constant C := Cρ such that

‖r2‖�2 ≤ Ce(S0−ρ)/h‖c‖�2 .

Proof. We set

Wn,m =
{ 〈un,Wum〉 if n �= m

0 if n = m
;

then r2,n =
∑

m∈Z
Wn,mcm. By Example 2.3 §III.2 [13], it follows that

‖r2‖�2 ≤ max[M ′,M ′′]‖c‖�2

where M ′ and M ′′ are such that
∑

m∈Z
|Wn,m| ≤ M ′ and

∑
n∈Z

|Wn,m| ≤ M ′′

for any n ∈ Z; then M ′ = M ′′ because |Wn,m| = |Wm,n|. Since W is a bounded
operator and by Lemma 1.iv [23] it immediately follows that M ′ = Ce(S0−ρ)/h

for any 0 < ρ < S0 and for some positive constant C := Cρ. Hence, Lemma 2
is so proved. �

Lemma 3.

‖r3‖�2 ≤ C‖ψ⊥‖L2 .
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Proof. Since r3,n = 〈un,Wψ⊥〉L2 where {un}n∈Z is an orthonormal base of
the space Π

[
L2(R)

]
; then, from the Parseval’s identity it follows that

‖r3‖�2 = ‖ΠWΠ⊥ψ‖L2 = ‖ΠWΠ⊥ψ⊥‖L2 ≤ ‖ΠWΠ⊥‖ ‖ψ⊥‖L2 ≤ C‖ψ⊥‖L2

because ΠWΠ⊥ is a bounded potential. �

For what concerns the vector r4, let

r4,n = 〈un, |ψ|2ψ〉 − C1|cn|2cn = An + Bn

where we set

An = 〈un, |ψ|2ψ〉 − 〈un, |ψ1|2ψ1〉
and

Bn = 〈un, |ψ1|2ψ1〉 − C1|cn|2cn =
�∑

j,�,m∈Z

〈un, ūmu�uj〉c̄mc�cj (16)

where
∑�

j,m,�∈Z
means that at least one of three indexes j, 
 and m is different

from the index n.

Lemma 4. Let B = {Bn}n∈Z, then for any 0 < ρ < S0 there is a positive
constant C such that

‖B‖�2 ≤ Ce−(S0−ρ)/h.

Proof. For argument’s sake, let us assume that m is the index different from
the index n in sum (16); then we have to check the term∑

m,�,j∈Z, m �=n

〈umun, u�uj〉c̄mc�cj = B1,n + B2,n + B3,n

where

B1,n =
�1∑

j,m,�∈Z

〈umun, u�uj〉c̄mc�cj

:=
∑

m∈Z\{n}

∑
�∈Z\{m,n}

∑
j∈Z\{�,m,n}

〈umun, u�uj〉c̄mc�cj

B2,n =
�2∑

j,m,�∈Z

〈umun, u2
�〉c̄mc2

� :=
∑

m∈Z\{n}

∑
�∈Z\{m,n}

〈umun, u2
�〉c̄mc2

�

B3,n =
�3∑

j,m,�∈Z

〈umun, u2
m〉c̄mc2

m :=
∑

m∈Z, m �=n

〈unum, u2
m〉c̄mc2

m

Let 0 < ρ < S0 be fixed; from Lemma 1.iv [23], it follows that for any
ρ′, ρ′′ > 0 such that ρ′ + ρ′′ < ρ then there exists a positive constant C > 0,
independent of the indexes n and m and of the semiclassical parameter h, such
that

‖unum‖L1(R) ≤ Ce[(S0−ρ′)|m−n|−ρ′′]/h. (17)
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Now, observing that |cm| ≤ 1 since ‖c‖�2 ≤ 1, then

|B3,n| ≤
∑

m∈Z, m �=n

|〈unum, u2
m〉| |cm|3

≤
∑

m∈Z, m �=n

‖unum‖L1‖um‖2
L∞ |cm|2

≤
∑

m∈Z, m �=n

Ch−1/2e−[(S0−ρ′)|n−m|−ρ′′]/h |cm|2

where we make use of estimate (17) and where ρ′, ρ′′ > 0 are such that ρ′+ρ′′ <
ρ. Hence,

‖B3‖�2 ≤ ‖B3‖�1 ≤
∑

n,m∈Z, m �=n

Ch−1/2e−[(S0−ρ′)|n−m|−ρ′′]/h|cm|2

≤ Ce−(S0−ρ)/h
∑
m∈Z

|cm|2 = Ce−(S0−ρ)/h‖c‖2
�2

≤ Ce−(S0−ρ)/h.

for some positive constant C. For what concerns the term B2,n, we have that

|B2,n| =

∣∣∣∣∣∣
�2∑

m,�∈Z

〈umun, u2
�〉c̄mc2

�

∣∣∣∣∣∣ ≤
�2∑

m,�∈Z

〈|um| |un|, |u�|2〉 |cm| |c�|2

≤
∑

�∈Z, � �=n

〈
|un|

∑
m∈Z

|um|, |u�|2
〉

|c�|2

≤ max
�∈Z

‖u�‖L∞

∥∥∥∥∥
∑
m∈Z

|um|
∥∥∥∥∥

L∞

∑
�∈Z, � �=n

〈|un|, |u�|〉 |c�|2

≤ max
�∈Z

‖u�‖L∞

∥∥∥∥∥
∑
m∈Z

|um|
∥∥∥∥∥

L∞

∑
�∈Z, � �=n

Ce−[(S0−ρ′)|n−�|−ρ′′]/h|c�|2

≤ C‖u0‖L∞

∥∥∥∥∥
∑
m∈Z

|um|
∥∥∥∥∥

L∞

∑
�∈Z, � �=n

e−[(S0−ρ′)|n−�|−ρ′′]/h|c�|2

≤ Ch−3/4
∑

�∈Z, � �=n

e−[(S0−ρ′)|n−�|−ρ′′]/h|c�|2

since ‖u�‖L∞ = ‖u0‖L∞ ≤ Ch−1/4 and
∥∥∑

m∈Z
|um|∥∥

L∞ ≤ Ch−1/2 (see
Lemma 1 [23]), from which it follows that

‖B2‖�2 ≤ ‖B2‖�1 =
∑
n∈Z

|B2,n| ≤ Ch−3/4
∑

n,�∈Z n�=�

Ce−[(S0−ρ′)|n−�|−ρ′′]/h|c�|2

≤ Ce−(S0−ρ)/h‖c‖�2 ≤ Ce−(S0−ρ)/h,
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where ρ′, ρ′′ > 0 are such that ρ′ + ρ′′ < ρ < S0. Finally,

|B1,n| ≤
�1∑

m,�,j∈Z

〈|um| |un|, |u�| |uj |〉|cm| |c�| |cj |

≤ 1
2

�1∑
m,�,j∈Z

〈|um| |un|, |u�| |uj |〉|cm| [|c�|2 + |cj |2]

≤
�1∑

m,�,j∈Z

〈|um| |un|, |u�| |uj |〉|cm| |cj |2

≤
∑

m∈Z\{n},j∈Z\{m,n}

〈
|um| |un|, |uj |

∑
�∈Z

|u�|
〉

|cm| |cj |2

≤
∥∥∥∥∥
∑
�∈Z

|u�|
∥∥∥∥∥

L∞

∑
m∈Z\{n},j∈Z\{m,n}

〈|um| |un|, |uj |〉|cm| |cj |2

≤
∥∥∥∥∥
∑
�∈Z

|u�|
∥∥∥∥∥

L∞

∑
j∈Z, j �=n

〈
|un|

∑
m∈Z

|um|, |uj |
〉

|cj |2

≤
∥∥∥∥∥
∑
�∈Z

|u�|
∥∥∥∥∥

2

L∞

∑
j∈Z, j �=n

〈|un|, |uj |〉|cj |2

≤ Ch−1
∑

j∈Z, j �=n

e−[(S0−ρ′)|n−j|−ρ′′]/h|cj |2

since |cm| ≤ 1. Hence,

‖B1‖�2 ≤ ‖B1‖�1 ≤ Ch−1
∑

n,j∈Z, j �=n

Ce−[(S0−ρ′)|n−j|−ρ′′]/h|cj |2

≤ Ce−(S0−ρ)/h
∑
j∈Z

|cj |2 = Ce−(S0−ρ)/h‖c‖�2

≤ Ce−(S0−ρ)/h.

From these estimates, it follows that

‖B‖�2 ≤ C [‖B1‖�2 + ‖B2‖�2 + ‖B3‖�2 ] ≤ Ce−(S0−ρ)/h

and Lemma 4 is so proved. �

Now, we deal with the vector A with elements

An = 〈un, g〉
where

g := |ψ|2ψ − |ψ1|2ψ1 = ψ̄1ψ
2
⊥ + 2|ψ1|2ψ⊥ + ψ2

1ψ̄⊥ + |ψ⊥|2ψ⊥ + 2ψ1|ψ⊥|2

Lemma 5.

‖A‖�2 ≤ Ch−1/2‖ψ⊥‖L2
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Proof. Indeed, since {un}n∈Z is an orthonormal base of Π
[
L2(R)

]
from the

Parseval’s identity it follows that

‖A‖�2 = ‖Πg‖L2 ≤ ‖g‖L2 ≤ C
[‖ψ3

⊥‖L2 + ‖ψ2
⊥ψ1‖L2 + ‖ψ⊥ψ2

1‖L2

]
≤ C max

(‖ψ⊥‖2
L∞ , ‖ψ1‖2

L∞
) ‖ψ⊥‖L2 ≤ Ch−1/2‖ψ⊥‖L2

from Corollary 1. �

In conclusion, we have proved the following Lemma;

Lemma 6.

‖r4‖�2 ≤ Ce−(S0−ρ)/h + Ch−1/2‖ψ⊥‖L2 .

5. Validity of the Tight-Binding Approximation

First of all we need of the following estimate:

Lemma 7. Let us set

λ := Fh−1 + |η|h−3/2

and let c and ψ⊥ be the solutions to (15); then

‖ċ‖�2 ≤ C

h
max [β, hλ, ‖r‖�2 ] . (18)

Proof. Indeed, from (15) it immediately follows that

‖ċ‖2
�2 =

1
h2

∑
n∈Z

∣∣−β(cn+1 + cn−1) + Fξncn + ηC1|cn|2cn + rn

∣∣2

≤ C

h2

[
β2

∑
n∈Z

|cn+1|2 + β2
∑
n∈Z

|cn−1|2 + F 2 max
n∈Z

|ξn|2
∑
n∈Z

|cn|2

+ η2C2
1

∑
n∈Z

|cn|6 +
∑
n∈Z

|rn|2
]

≤ C

h2

[
(β2 + F 2 + η2C2

1 )‖c‖2
�2 + ‖r‖2

�2

]
from which estimate (18) follows since ‖c‖�2 ≤ 1 and |cn| ≤ 1, |ξn| ≤ C because
W is a bounded potential and C1 ∼ h−1/2. �

Hereafter, we denote by ω a quantity, whose value may change from line
to line, such that

|ω| ≤ Ce−(S0+ζ)/h

for some ζ > 0 and some C > 0 independent of h.

Theorem 4.

‖r‖�2 ≤ ω + Cλe−(S0−ρ)/h + Chλ‖ψ⊥‖L2 (19)
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Proof. Indeed, collecting the results from Lemmata 2, 3 and 6 and from Re-
mark 2, we have that

‖r‖�2 ≤ ‖r1‖�2 + F ‖r2‖�2 + F ‖r3‖�2 + |η| ‖r4‖�2

≤ Ce−(S0+ζ)/h + CF e−(S0−ρ)/h + CF‖ψ⊥‖L2

+C|η|e−(S0−ρ)/h + C|η|h−1/2‖ψ⊥‖L2

from which the statement immediately follows. �

Since ψ⊥(x, 0) = Π⊥ψ0 = 0, then the second differential equation of the
system (15) may be written as an integral equation of the Duhamel’s form

ψ⊥(τ) = −i

∫ τ

0

e−i(HB−Λ1)(τ−q)/h

[
F

h
Π⊥Wψ +

η

h
Π⊥|ψ2|ψ

]
dq (20)

Theorem 5. We have the following estimate

‖ψ⊥‖L2 ≤ {
Cλ + τCh−1λ max [β, hλ]

}
eCλτ , ∀τ ∈ R. (21)

Proof. Let

U1 := U1(ψ1) =
[
F

h
Π⊥Wψ1 +

η

h
Π⊥|ψ2

1 |ψ1

]

U2 := U2(ψ1, ψ⊥) =
[
F

h
Π⊥Wψ⊥ +

η

h
Π⊥

(|ψ2|ψ − |ψ2
1 |ψ1

)]
then Eq. (20) becomes

ψ⊥(τ) = f1(τ) + f2(τ)

where

fj(τ) = −i

∫ τ

0

e−i(HB−Λ1)(τ−q)/hUjdq, j = 1, 2,

are such that

Lemma 8. The following estimates hold true:

‖f1‖L2 ≤ Cλ + τCh−1λ max [β, hλ] (22)

and

‖f2‖L2 ≤ Cλ

∫ τ

0

‖ψ⊥(q)‖L2dq. (23)

Proof. In order to prove estimates (22) and (23), we remark that
e−i(HB−Λ1)(τ−s)/h is an unitary operator; hence,∥∥∥e−i(HB−Λ1)(τ−s)/hUj

∥∥∥
L2

= ‖Uj‖L2 , j = 1, 2.

Now,

‖U2‖L2 ≤ F

h
‖Π⊥Wψ⊥‖L2 +

|η|
h

∥∥Π⊥
(|ψ|2ψ − |ψ1|2ψ1

)∥∥
L2

≤ Ch−1F‖ψ⊥‖L2 + Ch−1|η| [‖ψ1ψ
2
⊥‖L2 + ‖ψ2

1ψ⊥‖L2 + ‖ψ3
⊥‖L2

]
≤ Ch−1F‖ψ⊥‖L2 + Ch−1|η| [‖ψ1‖L∞‖ψ⊥‖L∞ + ‖ψ1‖2

L∞



Vol. 21 (2020) Tight-Binding Approximation for NLS 643

+ ‖ψ⊥‖2
L∞

] ‖ψ⊥‖L2

≤ C
(
h−1F + h−3/2|η|

)
‖ψ⊥‖L2 = Cλ‖ψ⊥‖L2

from Theorem 3 and Corollary 1; hence, (23) follows. In order to prove (22),
we make use of an integration by parts:

f1(τ) = −i

∫ τ

0

e−i(HB−Λ1)(τ−q)/hU1dq

=
[
−he−i(HB−Λ1)(τ−q)/h[HB − Λ1]−1U1

]τ

0

+h

∫ τ

0

e−i(HB−Λ1)(τ−q)/h[HB − Λ1]−1 dU1

dq
dq

From this fact and since ‖[HB − Λ1]−1Π⊥‖ =
[
dist(Λ1, E

b
2)

]−1 ∼ h−1 then it
follows that

‖f1‖L2 ≤ max [‖U1(τ)‖L2 , ‖U1(0)‖L2 ] + τ max
s∈[0,τ ]

∥∥∥∥dU1

dτ

∥∥∥∥
L2

≤ Cλ + τCh−1λ max [β, hλ, ‖r‖�2 ]
≤ Cλ + τCh−1λ max [β, hλ]

since

‖U1‖L2 ≤ Fh−1‖Π⊥Wψ1‖L2 + |η|h−1‖Π⊥|ψ1|2ψ1‖L2

≤ CFh−1‖ψ1‖L2 + |η|h−1‖ψ1‖2
L∞‖ψ1‖L2

≤ Cλ

and ∥∥∥∥dU1

dτ

∥∥∥∥
L2

≤ Cλ‖ψ̇1‖L2 ≤ Cλ‖ċ‖�2

≤ Ch−1λ max [β, hλ, ‖r‖�2 ]

by Lemma 7, Theorem 4, and from the draft estimate ‖ψ⊥‖L2 ≤ 1. �

Hence, we have the following integral inequality

‖ψ⊥‖L2 ≤ {
Cλ + τCh−1λ max [β, hλ]

}
+ Cλ

∫ τ

0

‖ψ⊥‖L2dq

and then the Gronwall’s Lemma implies that

‖ψ⊥‖L2 ≤ {
Cλ + τCh−1λ max [β, hλ]

}
eCλτ , ∀τ ∈ R ;

Theorem 5 is so proved. �
Now, we deal with the first differential equation of the system (15){

ihċn = Gn(c) + rn,

cn(0) = 〈un, ψ0〉,
where

Gn(c) = −β(cn+1 + cn−1) + Fξncn + ηC1|cn|2cn.
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We compare it with the equation{
ihġn = Gn(g)

gn(0) = cn(0)
(24)

which represents the tight-binding approximation of (4), up to a phase factor
e−iΛ1τ/h depending on time.

The Cauchy problem (24) is globally well-posed, that is there exists a
unique solution g ∈ C(R, 
2(Z)) that depends continuously on the initial data
(see, e.g., Theorem 1.3 [16]). We must underline that we have the following a
priori estimate ‖c‖�2 ≤ 1 and the conservation of the norm of g

‖g‖�2 = ‖g(0)‖�2 = ‖c(0)‖�2 = 1 ;

indeed, an immediate calculus gives that

d

dτ
ih‖g‖2

�2 = β

[∑
n∈Z

ḡn+1gn +
∑
n∈Z

ḡn−1gn −
∑
n∈Z

gn+1ḡn −
∑
n∈Z

gn−1ḡn

]
= 0

because β, F , η, C1 and ξn are real-valued.
Then, it follows that the vector c − g satisfies to the following integral

equation

ih [cn(τ) − gn(τ)] =
∫ τ

0

[Gn(c) − Gn(g)] dq +
∫ τ

0

rn(q)dq,

from which

‖c − g‖�2 ≤ 1
h

∫ τ

0

‖G(c) − G(g)‖�2dq +
1
h

∫ τ

0

‖r‖�2dq.

Lemma 9. G is a Lipschitz function such that

‖G(c) − G(g)‖�2 ≤ C max[β, hλ]‖c − g‖�2 . (25)

Proof. Indeed

‖G(c) − G(g)‖2
�2 =

∑
n∈Z

|Gn(c) − Gn(g)|2

=
∑
n∈Z

|−β [(cn+1 − gn+1) + (cn−1 − gn−1)] + Fξn(cn − gn)

+ ηC1

[|cn|2cn − |gn|2gn

]∣∣2
≤ C

{
β2

∑
n∈Z

|cn+1 − gn+1|2 + β2
∑
n∈Z

|cn−1 − gn−1|2 +
∑
n∈Z

F 2ξ2
n|cn − gn|2

+
∑
n∈Z

η2C2
1

∣∣|cn|2cn − |gn|2gn

∣∣}

≤ C

{
2β2 ‖c − g‖2

�2 +
[
max
n∈Z

ξ2
n

]
F 2 ‖c − g‖2

�2
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+ η2C2
1

∑
n∈Z

∣∣|cn|2(cn − gn) +
(|cn|2 − |gn|2) |gn|∣∣

}

≤ C
[
β2 + F 2 + η2C2

1

] ‖c − g‖2
�2 ≤ C max[β2, h2λ2] ‖c − g‖2

�2

since |cn|2 − |gn|2 = cn [c̄n − ḡn] + ḡn [cn − gn] and (14). �

By Theorems 4 and 5, it turns out that the vector r is norm bounded by

‖r‖�2 ≤ a + beCλτ + cτeCλτ (26)

for some positive constant C independent of h and where

a = ω + Cλe−(S0−ρ)/h, (27)
b = Chλ2, (28)
c = Cλ2 max [β, hλ] . (29)

Then, we get the integral inequality

‖c − g‖�2 ≤ α(τ) +
∫ τ

0

δ(q)‖c − g‖�2dq (30)

where

α(τ) ≤ 1
h

∫ τ

0

‖r‖�2dq ≤ C

[
aτ

h
+

Cbλ + c

C2λ2h

(
eCλτ − 1

)
+

cτ

Cλh
eCλτ

]
and

δ(τ) ≤ C max[h−1β, λ]

By the Gronwall’s Lemma, we finally get the estimate

‖c − g‖�2 ≤ α(τ)e
∫ τ
0 δ(q)dq = α(τ)eC max[h−1β,λ]τ

Therefore, we have proved that

Lemma 10. Let a, b and c defined by (27)–(29), then

‖c − g‖�2 ≤ C

{
aτ

h
+

Cbλ + c

C2λ2h

(
eCλτ − 1

)
+

cτ

Cλh
eCλτ

}
eC max[h−1β,λ]τ

(31)

for some positive constant C independent of h.

In conclusion, recalling (2), we can state that

Theorem 6. Let g ∈ C(R, 
2(Z)) be the solution to the discrete nonlinear
Schrödinger Eq. (24); let ψ(τ, x) ∈ C(R,H1(R)) be the solution to the nonlin-
ear Schrödinger Eq. (4) with initial condition ψ0(x) =

∑
gn(0)un(x); let a, b

and c defined by Lemma 10; let λ be defined by Lemma 7. Then, there exist
ε� > 0 and a positive constant C independent of ε such that for any 0 < ε < ε�

then∥∥∥∥∥ψ(τ, ·) −
∑
n∈Z

gn(τ)eiΛ1τ/hun(·)
∥∥∥∥∥

L2

≤ {
Cλ + τCh−1λ max [β, hλ]

}
eCλτ

(32)
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+C

{
aτ

h
+

Cbλ + c

C2λ2h

(
eCλτ − 1

)
+

cτ

Cλh
eCλτ

}
eC max[h−1β,λ]τ , ∀τ ∈ R

+.

(33)

Proof. Indeed, recalling that we made use of the gauge choice ψ → eiΛ1τ/hψ,
we have that∥∥∥∥∥ψ −

∑
n∈Z

gneiΛ1τ/hun

∥∥∥∥∥
2

L2

=

∥∥∥∥∥e−iΛ1τ/hψ −
∑
n∈Z

gnun

∥∥∥∥∥
2

L2

= ‖ψ⊥‖2
L2 +

∥∥∥∥∥
∑
n∈Z

(cn − gn) un

∥∥∥∥∥
2

L2

where ∥∥∥∥∥
∑
n∈Z

(cn − gn) un

∥∥∥∥∥
2

L2

=
∑
n∈Z

|cn − gn|2‖un‖2
L2 = ‖c − g‖2

�2

because {un} is an orthonormal set of vectors. �

5.1. Proof of Theorem 1

Here, we assume, according with Hypothesis (3a), that the real-valued param-
eters α1 and α2 are fixed; in such a case we have that

F ∼ η ∼ h2. (34)

Therefore:

λ ∼ h1/2, |a|, β ≤ Ce−(S0−ρ)/h, b ∼ h2, c ∼ h5/2.

Then, estimate (33) makes sense for times of order τ ∈ [0, Ch−γ ] for some
fixed γ ≤ 1

2 . In such an interval we have that

Cλ + τCh−1λ max [β, hλ] ∼ h1/2 + h1−γ

aτ

h
+

Cbλ + c

C2λ2h

(
eCλτ − 1

)
+

cτ

Cλh
eCλτ ∼ h1/2 + h1−γ .

In particular, for γ = 1
2 then Theorem 1 follows.

5.2. Proof of Theorem 2

Here, we assume, according with Hypothesis (3b), that the real-valued param-
eters α1 and α2 are not fixed, but both go to zero when ε goes to zero; in
particular we have that

F = O(β) and h−1/2η = O(β).

In such a case, we have that

λ = O(h−1β), a = O(ω), b = O(h−1β2), c = O(h−2β3).

Estimate (33) makes sense for times of order τ ∈ [0, β−1h]. In such an interval
we have that

‖ψ⊥‖L2 ≤ Ce−(S0−ρ)/h
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and

‖c − g‖�2 ≤ Ce−ζ/h

for some ζ > 0. Hence, Theorem 2 is proved.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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[17] Pelinovsky, D.E., Schneider, G.: Bounds on the tight-binding approximation for
the Gross–Pitaevskii equation with a periodic potential. J. Differ. Equ. 248, 837
(2010)

[18] Pelinovsky, D.E., Schneider, G., MacKay, R.: Justification of the lattice equation
for a nonlinear elliptic problem with a periodic potential. Commun. Math. Phys.
284, 803 (2008)

[19] Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tino, G.M.:
Precision measurement of gravity with cold atoms in an optical lattice and com-
parison with a classical gravimeter. Phys. Rev. Lett. 106, 038501 (2011)

[20] Reed, M., Simon, B.: Analysis of Operators IV. Methods of Modern Mathemat-
ical Physics. Academic Press Inc. (1978)

[21] Sacchetti, A.: Nonlinear double-well Schrodinger equations in the semiclassical
limit. J. Stat. Phys. 119, 1347 (2005)

[22] Sacchetti, A.: Bifurcation trees of Stark–Wannier ladders for accelerated BECs
in an optical lattice. Phys. Rev. E 95, 062212 (2017)

[23] Sacchetti, A.: Nonlinear Stark–Wannier equation. SIAM J. Math. Anal. 50, 5783
(2018)

[24] Weinstein, M.I., Keller, J.B.: Hill’s equation with a large potential. SIAM J.
Appl. Math. 45, 200 (1985)

[25] Weinstein, M.I., Keller, J.B.: Asymptotic behaviour of stability regions for Hill’s
equation. SIAM J. Appl. Math. 47, 941 (1987)

Andrea Sacchetti
Department of Physics, Informatics and Mathematics
University of Modena e Reggio Emilia
Modena
Italy
e-mail: andrea.sacchetti@unimore.it

Communicated by Vieri Mastropietro.

Received: August 12, 2019.

Accepted: November 26, 2019.


	Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations
	Abstract
	1. Introduction
	2. Description of the Model and Main Results
	2.1. Assumptions
	2.2. Main Results
	2.3. Notation and Some Functional Inequalities

	3. Preliminary Results
	4. Construction of the Discrete Time-Dependent Nonlinear Schrödinger Equation
	5. Validity of the Tight-Binding Approximation
	5.1. Proof of Theorem 1
	5.2. Proof of Theorem 2

	References




