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Introduction.

In the study of vector bundles on Pn (projective space over an algebraically
closed field, k, with ch(k) = 0) a useful technique is to consider the restrictions,
EL, of E to lines L ⊂ Pn. Thanks to a well known theorem EL splits as a sum
of line bundles: EL '

⊕
OL(a

(L)
i ). One says that (a

(L)
1 , ..., a

(L)
r ), a(L)1 ≥ · · · ≥

a
(L)
r , is the splitting type of E over L. By semi-continuity of cohomology there

exists a dense open subset U ⊂ G(1, n) and a set of integers (ai) such that the
splitting type of EL is (a1, ..., ar) for every L ∈ U . One says that (a1, ..., ar) is
the generic splitting type of E. If L /∈ U , the splitting type of EL is different
from the generic one and L is said to be a jumping line of E (although it is E
which jumps and not L!).

The set, J (E), of jumping lines doesn’t characterize E in general but it is
very useful in understanding the structure of E.

The first case is when J (E) = ∅, in this case E is said to be uniform. Ob-
serve that an homogeneous vector bundle is uniform. Uniform vector bundles
have been studied for a while, in particular they are classified up to rank n+ 1

([13], [11], [7] [8], [9], [1]). The classification shows that every uniform vector
bundle of rank ≤ n+1 on Pn is homogeneous. By the way there exist uniform,
non homogeneous vector bundles of rank 2n on Pn ([5]).

In this paper we consider the next step that is to say when J (E) is non-
empty but finite.

Definition 1. A vector bundle, E, on Pn is said to be almost-uniform if it
is not uniform but has only a finite number of jumping lines.
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We set A(n) := min{r | there exists an almost-uniform vector bundle of
rank r on Pn}.

It is not clear a priori that such vector bundles even exist! Actually they do
exist and our task will be to give bounds on the function A(n).

Our results may be summarized as follows:

Theorem 2.
With notations as above:
(1) A(2) = 2.
(3) For every n ≥ 3, n+ 1 ≤ A(n) ≤ 2n− 1.

In section 1 we treat the case of P2, which is easy. In Section 2 we show
A(n) ≥ n and A(n) ≥ n+ 1 if n ≥ 4. For this we observe that if H is a ”good”
hyperplane for E (i.e. H doesn’t contain any jumping line of E), then EH
is uniform and we use the classification of uniform bundles. In Section 3 we
show A(3) ≥ 4. This case deserves a special attention because it may happen
that EH ' S2TH for some ”good” hyperplane. Finally in Section 4 we show
A(n) ≤ 2n− 1 by constructing examples. The bound A(n) ≤ 2n− 1 could be
not too far from being sharp (see Remark 17).

In conclusion ”small” (≤ n) rank vector bundles on Pn, n ≥ 3, which are
not a direct sum of line bundles or a twist of the tangent or cotangent bundle,
have infinitely many jumping lines.

1. Almost uniform vector bundles on P2.

Let’s first treat the case of P2 which is fairly easy.

Lemma 3. There exist rank two vector bundles on P2 with a single jumping
line (hence A(2) = 2).
More precisely if E is a normalized, almost unifiorm rank two vector bundle
on P2, then c1(E) = −1 and E is stable.

Proof. Let X be a set of d points on a line D. Consider the associated vector
bundle:

0→ O → E → IX(1)→ 0
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Then c1(E) = 1, c2(E) = d and if d > 1, h0(E) = 2 and E is stable. If L 6= D,
then EL ' OL⊕OL(1), while ED ' OD(d)⊕OD(−d+ 1). So D is the unique
jumping line (if d > 1; if d = 1, E ' TP(−1)).

Assume E normalized (c1 = 0,−1). If E is not stable (h0(E) 6= 0), looking
at the minimal twist having a section we have:

0→ O → E(−t)→ IZ(−2t+ c1)→ 0

where Z has codimension two and degree c2(E(−t)). Observe that−2t+c1 ≤ 0.
If L ∩ Z = ∅, then EL(−t) = OL ⊕ OL(−2t + c1). Let p ∈ Z and let L be a
line through p with r = #(Z ∩ L), then EL(−t) = OL(r)⊕OL(−2t+ c1 − r).
Hence the pencil of lines through p ∈ Z is made of jumping lines.

If E is stable with c1 = 0, it is a result of Barth that there is a curve of
jumping lines in the dual plane. �

Remark 4. As proved in [10] a stable rank two vector bundle with c1
odd has, in general, a finite number of jumping lines. More precisely Hulek
defines jumping lines of the second order as lines L such h0(E|L(1)) 6= 0, where
c1(E) = −1. He shows that the locus of jumping lines of the second order is a
curve, C(E), and that J (E), the set of jumping lines, is the singular locus of
C(E). Hence if C(E) is reduced, E has a finite number of jumping lines.

2. A lower bound for A(n).

Goal of this section is to show that A(n) ≥ n, if n ≥ 2.
Although not stated in this way, the following is proved in [6]

Proposition 5. (Glueing lemma)
Let F be a reflexive sheaf on Pn. Suppose for a general hyperplane H and a
general codimension two linear space K, that h0(FH) = h0(FK) = s. Further-
more assume that for any hyperplane, H, containing K, the restriction map
H0(FH)→ H0(FK) is an isomorphism. Then h0(F) = s.

Proof. The proof of Prop. 1.2 of [6] applies. The assumption h0(EK(−1)) = 0

in [6] is needed to show that the restriction map H0(EH) → H0(EK) is an
isomorphism for every H containing K (first part of the proof). �
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Lemma 6. Let n ≥ 3 be an integer. Let R1, ..., Rt ⊂ Pn be lines. Let E
be a rank r vector bundle such that:

(1) EH ' TH(−1)⊕ (r − n+ 1)OH

for every hyperplanes H containing no one of the lines Ri. Then r ≥ n and
E ' T (−1)⊕ (r − n).O.

Proof. Assume first n = 3. If L is a line different from the Ri’s, then EL =

OL(1)⊕ (r − 1)OL, hence h0(EL) = r + 1. Let L be a line not meeting any of
the Ri’s. Then for every plane H containing L, EH = TH(−1) ⊕ (r − 2).OH .
It follows that the restriction map H0(EH)→ H0(EL) is an isomorphism. By
Proposition 5, we conclude that h0(E) = r + 1. Let x ∈ P3 be a point and let
H be a plane through x not containing any of the Ri’s. We have:

H0(E)
ev→ E(x)

↓ rH ||
H0(EH)

evH→ E(x)

It follows that the evaluation map has constant rank r, i.e. E is globally
generated. So, considering Chern classes:

0→ O(−1)→ (r + 1).O → E → 0

It follows that E has rank r ≥ n because there is no injective vector bundle
morphism O(−1) → k.O if k ≤ n. Moreover E is uniform of splitting type
(1, 0, ..., 0) and the result follows by [9].

For n > 3 the argument is similar but easier. Since H1
∗ (EH) = 0, it follows

that H1
∗ (E) = 0 (h1(E(k−1)) ≥ h1(E(k)),∀k, but h1(E(−t)) = 0 for t >> 0).

So H0(E) → H0(EH) is surjective for every H. Since h0(EH(−1)) = 0 if H
doesn’t contain any of the Ri’s, for such an hyperplane the restriction map
H0(E)→ H0(EH) is an isomorphism. We conclude as above. �

Corollary 7. Let E be a rank r, almost uniform, vector bundle on Pn,
n ≥ 2, then r ≥ n (i.e. A(n) ≥ n).

Proof. We may assume n ≥ 3. We can find an hyperplane H such that EH
has no jumping lines.

If r < n − 1, by the classification of uniform vector bundles (cf [11], [8]),
EH '

⊕rOH(ai). This implies E '
⊕rO(ai), which is absurd.
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Assume r = n − 1. If there exists one hyperplane such that EH is a direct
sum of line bundles, then as before we are done. By the classification of uniform
bundles we may assume EH ' TH(a),ΩH(b). The first Chern class will tell
us if EH is a twist of TH or ΩH (on P2, Ω = T (−3)). So by dualizing and
twisting, we may assume EH ' TH(−1), for every hyperplane not containing
any of the finitely many jumping lines of E. Lemma 6 says that no such bundle
exists. �

According to [1] every rank n + 1 uniform bundle on Pn, n ≥ 3, is a direct
sum of bundles chosen among T (a),Ω(b),O(c), a, b, c ∈ Z. (This is no longer
true on P2 since we have to add to the list S2T (m).) Using this fact we will
show that A(n) ≥ n+ 1, if n ≥ 4.

Lemma 8. Let E be a rank n + 1 almost uniform bundle on Pn, n ≥ 4.
Then up to twisting or dualizing, there exists a ∈ Z such that: EH ' TH(−1)⊕
OH(a), for every hyperplane not containing any of the finitely many jumping
lines of E.

Proof. If H is a good hyperplane (i.e. non containing any jumping line of E),
then EH is uniform, hence a direct sum of bundles chosen among T (a),Ω(b),O(c),
a, b, c ∈ Z. If EH is a direct sum of line bundles for one good hyperplane, then
E is a direct sum of line bundles, but this is impossible. Assume EH '
TH(b) ⊕ OH(c) for one good hyperplane. Then h1(EH(m)) = 0,∀m. By
semi-continuity, this holds for H a general hyperplane. It follows that EH '
TH(b) ⊕ OH(c) for a general good hyperplane (looking at the splitting type,
we see that b, c do not depend on H). Let H0 be a good hyperplane such
that EH0 ' ΩH0(d) ⊕ OH0(e). Then hn−2(EH0(m)) = 0,∀m. By semi-
continuity this should hold for a general hyperplane. But on a general hy-
perplane EH ' TH(b) ⊕ OH(c) and hn−2(EH(−b − n + 1)) 6= 0. We conclude
that EH(−b − 1) ' TH(−1) ⊕ OH(a), a = c − b − 1, for every good hyper-
plane. �

Proposition 9. For n ≥ 4, A(n) ≥ n+ 1.

Proof. Let E be a rank n almost uniform bundle on Pn, n ≥ 4. By Lemma 8
we may assume, EH ' TH(−1) ⊕ OH(a), for every good hyperplane (i.e. H
doesn’t contain any jumping line of E).
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• If a = 0, we conclude by Lemma 6 that E ' T (−1), which is absurd.
• Assume a > 0. Since H1

∗ (EH) = 0 if H is a good hyperplane, we get
H1
∗ (E) = 0. Since h0(EH(−a− 1)) = 0, we get h0(E(−a− 1)) = 0. Finally we

see that h0(E(−a)) = h0(EH(−a)) = 1. Let s : O ↪→ E(−a), we claim that s
doesn’t vanish. Indeed if s(x) = 0, then s|H = 0 for every good hyperplane
through x, which is absurd. So we have 0 → O → E(−a) → F (−a) → 0,
where F is a rank n − 1 vector bundle. If L is not a jumping line of E,
then E(−a) has splitting type (1 − a,−a, ...,−a, 0) on L and it follows that
the splitting type of F (−a) is (1 − a,−a, ...,−a). So F is (at least) almost
uniform. Since there are no almost uniform bundles of rank n − 1 (Corollary
7), we conclude that F is uniform, hence a direct sum of line bundles. It follows
that the exact sequence splits and this yields a contradiction.

An alternative proof goes as follows: since h1(E(−1)) = 0, h0(E)→ H0(EH)

is surjective for every good hyperplane. This implies that E is globally gener-
ated. Hence F , also is globally generated. Since c1(F ) = 1, F is uniform and
we conclude as above.
• Assume a < 0. This time E∨H ' ΩH(1) ⊕ OH(b) (−a = b > 0). Since

hi(E∨H(−b −m)) = 0, for 0 ≤ i ≤ 1 and m > 0, the same holds for E∨(−b −
m)). It follows that h0(E∨(−b)) = h0(E∨H(−b)) = 1. As before the section of
E∨(−b) doesn’t vanish, so after dualizing and twisting we get: 0→ F → E →
O(−b) → 0, where F is a rank n − 1 vector bundle. If L is not a jumping
line of E, the splitting type of F on L is (1, 0, ..., 0). So F is (almost) uniform
and, as above, we conclude that F is a direct sum of line bundles, which is a
contradiction. �

3. Rank three bundles on P3.

Aim of this section is to prove that A(3) ≥ 4 (Theorem 15). Observe two
differences with Proposition 9: we no longer have H1

∗ (TH) = 0, moreover it
could be EH ' (S2TH)(m), for some good plane H.

Our major tool will be the classification of rank three uniform vector bundles
on P2 due to Elencwajg ([7]
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Theorem 10. Let E be a rank three uniform vector bundles on P2, then
E is isomorphic to one of the following:

3⊕
i=1

O(ai), T (a)⊕O(b), (S2T )(m)

(we recall that on P2: Ω = T (−3))

Before to start let us recall some basic facts on (S2T )(−3) (T := TP2).
From T ⊗T ' S2T ⊕∧2T , we get T ⊗T ∗ ' (S2T )(−3)⊕O. Since T is simple
End(T ) ' k and h0((S2T )(−3)) = 0. To compute the Chern classes one uses
the following:

Lemma 11. Let E be a rank two vector bundles with Chern classes c1, c2.
Then c2(E ⊗ E∗) = −c21 + 4c2.

Proof. We use the splitting principle: E = O(a) ⊕ O(b). Then E ⊗ E∗ =

O ⊕ O(a − b) ⊕ O(b − a) ⊕ O. It follows that c2(E ⊗ E∗) = −(a − b)2.
We have c1 = a + b, c2 = ab, hence c21 = a2 + b2 + 2c2. It follows that
(a− b)2 = a2 + b2 − 2ab = c21 − 4c2. �

Let us set E = (S2TH)(−3), it is a rank 3 homogeneous vector bundle with
splitting type (1, 0,−1). We have h0(E) = 0 and h1(E(k)) = 0, k ≥ 0.

Lemma 12. The vector bundle E(1) = (S2TH)(−2) is globally generated
with h0(E(1)) = 6 and c1(E(1)) = 3, c2(E(1)) = 6.

We also have h1(E(−1)) = 3.

Proof. Since hi(E) = 0, 0 ≤ i ≤ 1, for every line L ⊂ H, the restriction
map H0(E(1)) → H0(EL(1)) is an isomorphism. Since E(1) has splitting type
(2, 1, 0), we see that h0(E(1)) = 6 and E(1) is globally generated.

We have T⊗T = S2T⊕∧2T = S2T⊕O(3). So T⊗T (−3) = (S2T )(−3)⊕O =

E ⊕ O. It follows that ci(E) = ci(T ⊗ T ∗). Since ci(T ) = (3, 3), by Lemma 11
c2(E) = 3 (c1(E) = 0).

For a rank three coherent sheaf c2(F(m)) = c2 + 2mc1 + 3m2.
From the exact sequence 0 → E(−1) → E → EL → 0, since hi(E) = 0, i =

0, 1, we get h1(E(−1)) = h0(EL) = 3. �
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Going back to our problem, if E is an almost uniform bundle of rank three on
P3, then for every good plane H, EH will be one of the bundles TH(a)⊕OH(b),
EH(m) (EH := (S2TH)(−3)). Indeed we can disregard the case where EH is a
direct sum of line bundles. A priori the restriction depends on the plane H,
but we have:

Lemma 13. Let E be an almost uniform rank three vector bundle on P3.
Assume E normalized (−2 ≤ c1(E) ≤ 0). Then one of the following occurs:
(1) For every good plane H, EH ' (S2TH)(−3)

(2) There exists a ∈ Z such that for every good plane H, EH ' TH(a)⊕OH(b),
where b = −3− 2a+ c1(E).

Proof. First of all observe that since two good planes intersect along a line,
the splitting type is the same for all good planes.

Assume EH0 = EH0 for one good plane (E = (S2T )(−3)). Then h0(EH0) = 0

and c1(E) = 0, also the splitting type is (1, 0,−1). If there exists a good plane

H1 with EH1 6= EH1 , then necessarily EH1 '

{
TH1(−1)⊕OH1(−1)

ΩH1(1)⊕OH1(1).

So h1(EH1(−1)) ≤ 1. So if H is a general plane, then H is a good plane and
h0(EH) = 0, h1(EH(−1)) ≤ 1. By Lemma 12, this is impossible. So EH ' EH
for every good plane.

We may now assume that EH is of the form TH(a)⊕OH(b) for every good
plane H (with a, b depending on H). Since the splitting type is constant it
is not hard to see that a, b are constant except if c1 = 0 with splitting type
(1, 0,−1), where the two cases (a) TH(−1)⊕OH(−1), (b) TH(−2)⊕OH(1) are
possible. Looking at h0(EH(−1)), by semi-continuity, case (a) is the general
one. But then looking at h0(E∨H(−1)), case (b) is the general one: contradic-
tion. �

Lemma 14. Let E be a normalized, almost uniform, vector bundle of rank
three on P3. Then for every good plane, H, EH ' (S2TH)(−3).

Proof. We have to show that case (2) of Lemma 13 cannot happen. So assume
to the contrary that EH ' TH(a)⊕OH(−3−2a+c1(E)), for every good plane.
Twisting by −a− 1, we may assume EH ' TH(−1)⊕OH(c).
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Assume c > 1. Since h0(EH(−c−1)) = 0 and h1(EH(−c−k)) = 0, if k ≥ 1,
we get H0(E(−c)) ' H0(EH(−c)) ' k and we conclude as in the proof of
Proposition 9.

If c = 0, by Lemma 6 we should have E ' T (−1), but this is impossible.
If c < 0 or c = 1, we consider E∨: we have E∨H ' ΩH(1) ⊕ OH(−c). Since

ΩH(1) ' TH(−2), we get: E∨(1)H ' TH(−1) ⊕OH(−c + 1) and we conclude
by the previous cases. �

We may now prove the main result of this section:

Theorem 15. Let E be a rank three vector bundle on P3. If E is not
uniform, then E has infinitely many jumping lines.

Proof. From Lemma 14 we may assume that EH ' (S2TH)(−3) =: EH , for
every good plane.

Let L be a line not meeting any of the jumping lines of E. If H is a plane
through L then H doesn’t contain any of the jumping line, so H is a good plane
and EH = (S2TH)(−3). Now the restriction map H0(EH(1)) → H0(EL(1)) is
an isomorphism. By the Glueing Lemma 5, we get h0(E(1)) = h0(EH(1)) = 6.
Moreover from h0(EH) = 0 it follows that h0(E) = 0 so the restriction map
H0(E(1))→ H0(EH(1)) is an isomorphism. Now let x ∈ P3 be a point. Let H

be a good plane through x. The evaluation map H0(E(1))
ev(x)→ E(1)(x) factors

through the restriction to H. Since EH(1) is globally generated (Lemma 12),
we get that E(1) is globally generated, with h0(E(1)) = 6, c1 = 3, c2 = 6.

Now since E∨H ' EH (EH = (S2TH)(−3)). We conclude, in exactly the same
way, that E∨(1) too is globally generated, with h0(E∨(1)) = 6, c1 = 3, c2 = 6.

Now globally generated vector bundles with c1 = 3 on Pn are classified in
[12]. According to this classification if F is such a bundle on P3 with c2 = 6,
then one of the following occurs:
(a) F ' 3.T (−1)

(b) there is an exact sequence: 0→ O(−2)⊕ Ω(1)→ 7.O → F → 0

(c) there is an exact sequence: 0 → s.O → G ⊕ r.O → F → 0, where
s = h1(F∨), r = h0(F∨) and where G is as above, i.e.
(α) G = 3.T (−1) or
(β) there is an exact sequence: 0→ O(−2)⊕ Ω(1)→ 7.O → G → 0.
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Now E(1) and E∨(1) have to fit with this classification. Clearly, under
our assumptions, case (a) is impossible. Case (b) also is impossible. Indeed
restricting to a good plane H we get: 0 → OH(−3) ⊕ ΩH ⊕ OH(−1) →
7.OH(−1) → EH → 0. Since h0(EH) = 0, h1(ΩH) = 1, we get a contradiction.
So both E(1) and E∨(1) come from (c). In any case we have H1

∗ (G) = 0. This
implies H1

∗ (E) = H1
∗ (E

∨) = 0. By Serre duality H1
∗ (E) = H2

∗ (E) = 0. By
Horrocks’ theorem E is a direct sum of line bundles, which is impossible. �

4. An upper-bound for A(n).

Let Pn = P(V ), the projective space of lines of the vector space V . A point
x ∈ Pn corresponds to a line dx ⊂ V , this line is the (vector bundle) fiber
O(−1)(x) and Euler’s sequence

0→ O(−1)→ V ⊗O → T (−1)→ 0

can be seen at the point x as: 0 → dx → V → V/dx → 0. In particular
T (−1)(x) ' V/dx. We have H0(T (−1)) ' V and the section given by u ∈ V
vanishes exactly at the point x corresponding to the line 〈u〉.

Let L ⊂ Pn be a line. Then T (−1)L ' OL(1) ⊕ (n − 1).OL. We can
recover this isomorphism in the following way. The line L corresponds to a
two-dimensional vector space E ⊂ V . Write V = E⊕W . Then for any x ∈ L,
T (−1)L(x) ' E/dx ⊕W . If u ∈ V ' H0(T (−1)), then the value of uL at the
point x ∈ L is (uE, uW ) ∈ E/dx ⊕W , where u = uE + uW ∈ E ⊕W .

This being said we have:

Proposition 16. Assume n ≥ 2 and let σ : O (u,v)→ T (−1) ⊕ T (−1) be a
section given by two linearly independent vectors. Then the quotient, E, is
locally free of rank 2n−1 and has a unique jumping line (the line corresponding
to the plane 〈u, v〉). This shows A(n) ≤ 2n− 1.

Proof. Since u and v are linearly independent, σ has rank one at every point
x ∈ Pn. The exact sequence 0 → O → 2.T (−1) → E → 0 shows that E is
globally generated with c1(E) = 2. It follows that for a line L we have only two
possibilities: (a) EL = 2.OL(1)⊕ (2n− 3).OL, (b) EL = OL(2)⊕ (2n− 2).OL.
Of course case (a) is the generic case, so the jumping lines of E are precisely
those of type (b).



ON JUMPING LINES OF VECTOR BUNDLES ON Pn. 11

With notations as above (T (−1)L ' OL(1) ⊕ (W ⊗ OL)), consider the fol-
lowing diagram:

OL
σL→ 2.OL(1)⊕ (W ⊕W )⊗OL

↓ pL
(W ⊕W )⊗OL

We see that we are in case (b) if and only if the composed map ψL = pL ◦σL is
the zero map. Using our earlier description this means that (uW , vW ) ∈ W⊕W
is the zero vector. It follows that u = uE, v = vE, hence E = 〈u, v〉. In
conclusion ψL ≡ 0 if and only if L is the line corresponding to the plane
〈u, v〉. �

Using a construction of Drezet ([5]) we can give another example (always of
rank 2n− 1).

Let V be a k vector space of dimension n + 1 and let H ⊂ S2V be a
sub-vector space. Consider O(−2) → (S2V/H) ⊗ O. At a point x ∈ P(V )

corresponding to the line 〈u〉 the vector bundle map is given by u2 ∈ S2V/H.
It follows that the quotient F (H) is a vector bundle if and only if H doesn’t
contain any non-zero square (u2 ∈ H ⇔ u = 0). Assume this is the case.
Then F (H) is globally generated with c1(F (H)) = 2. It follows that for a line
L ⊂ P(V ), the splitting type of F (H)L is (a) (1, 1, 0, ..., 0) or (b) (2, 0, ..., 0).
The jumping lines of F (H) are the lines of type (b). Clearly we are in case
(a) if and only if h0(F (H)L(−2)) = 0. By Serre duality this is equivalent to
h1(F (H)∨L) = 0. Dualizing and taking coomology on L this is equivalent to
require that f : H0((S2V/H)∨ ⊗OL)→ OL(2) is surjective. If L corresponds
to the plane E ⊂ V , then H0(OL(2)) ' S2(E∨) and f is the transpose of the
natural map S2E → S2V/H.

In conclusion we are in case (a) if and only if H ∩S2E = {0}, where E ⊂ V

is such that P(E) = L.
It follows that F (H) will be uniform if and only if we can find H such that

S2E ∩H = {0}, for every plane E ⊂ V .
Let Y ⊂ P(S2V ) be the union of the planes P(S2E), E ∈ Gr(2, V ). We have

the Veronese embedding ν : P(V )→ P(S2V ).〈u〉 → 〈u2〉. The secant variety to
X := ν(P(V )) can be described as follows. Given two points x = 〈u〉, y = 〈v〉
of P(V ), the line E = 〈u, v〉 is mapped to a conic KE (= {(αu + βv)2}).
Every line of the plane 〈KE〉 is a secant to X. It follows that Sec(X) is
the union of the planes 〈KE〉. Since G(1, n) has dimension 2n − 2, we get
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dim(Sec(X)) = 2n. Now 〈KE〉 = P(S2E) (indeed S2E = 〈u2, v2, uv〉, u2, v2 ∈
KE and uv = ((u+ v)/2)2 − ((u− v)/2)2 is on the line spanned by two points
of KE). We conclude that Y = Sec(X) has dimension 2n.

So if H ⊂ S2V is a general subspace of codimension 2n+1, the bundle F (H)

is uniform of rank 2n (and is not homogeneous, [5]).
Now if H is a general subspace of codimension 2n, it will intersect Y at

deg(Y ) distinct points (not on X) and F (H) will be a vector bundle of rank
2n− 1 with deg(Y ) jumping lines. Since deg(Y ) > 1, F (H) is not isomorphic
to the vector bundle E of Proposition 16.

Remark 17. Homogeneous vector bundles of rank ≤ 2n − 1 on Pn are
classified ([2]) and are those one expects i.e. those obtained by algebraic oper-
ations (⊕,⊗,∧) from O(1), T . It is conjectured that every uniform bundle of
rank ≤ 2n − 1 is homogeneous. This is true if n = 2, 3 ([7], [3]). Taking into
account Drezet’s example this should be sharp. For this reason I suspect the
bound A(n) ≤ 2n− 1 not too far from being sharp.
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